1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9 */
10
11/*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56#include <linux/maple_tree.h>
57#include <linux/xarray.h>
58#include <linux/types.h>
59#include <linux/export.h>
60#include <linux/slab.h>
61#include <linux/limits.h>
62#include <asm/barrier.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/maple_tree.h>
66
67#define MA_ROOT_PARENT 1
68
69/*
70 * Maple state flags
71 * * MA_STATE_BULK - Bulk insert mode
72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
74 */
75#define MA_STATE_BULK 1
76#define MA_STATE_REBALANCE 2
77#define MA_STATE_PREALLOC 4
78
79#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
80#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
81#define ma_mnode_ptr(x) ((struct maple_node *)(x))
82#define ma_enode_ptr(x) ((struct maple_enode *)(x))
83static struct kmem_cache *maple_node_cache;
84
85#ifdef CONFIG_DEBUG_MAPLE_TREE
86static const unsigned long mt_max[] = {
87 [maple_dense] = MAPLE_NODE_SLOTS,
88 [maple_leaf_64] = ULONG_MAX,
89 [maple_range_64] = ULONG_MAX,
90 [maple_arange_64] = ULONG_MAX,
91};
92#define mt_node_max(x) mt_max[mte_node_type(x)]
93#endif
94
95static const unsigned char mt_slots[] = {
96 [maple_dense] = MAPLE_NODE_SLOTS,
97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
98 [maple_range_64] = MAPLE_RANGE64_SLOTS,
99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
100};
101#define mt_slot_count(x) mt_slots[mte_node_type(x)]
102
103static const unsigned char mt_pivots[] = {
104 [maple_dense] = 0,
105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
108};
109#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
110
111static const unsigned char mt_min_slots[] = {
112 [maple_dense] = MAPLE_NODE_SLOTS / 2,
113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
116};
117#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
118
119#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
120#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
121
122struct maple_big_node {
123 struct maple_pnode *parent;
124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
125 union {
126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
127 struct {
128 unsigned long padding[MAPLE_BIG_NODE_GAPS];
129 unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 };
131 };
132 unsigned char b_end;
133 enum maple_type type;
134};
135
136/*
137 * The maple_subtree_state is used to build a tree to replace a segment of an
138 * existing tree in a more atomic way. Any walkers of the older tree will hit a
139 * dead node and restart on updates.
140 */
141struct maple_subtree_state {
142 struct ma_state *orig_l; /* Original left side of subtree */
143 struct ma_state *orig_r; /* Original right side of subtree */
144 struct ma_state *l; /* New left side of subtree */
145 struct ma_state *m; /* New middle of subtree (rare) */
146 struct ma_state *r; /* New right side of subtree */
147 struct ma_topiary *free; /* nodes to be freed */
148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
149 struct maple_big_node *bn;
150};
151
152#ifdef CONFIG_KASAN_STACK
153/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154#define noinline_for_kasan noinline_for_stack
155#else
156#define noinline_for_kasan inline
157#endif
158
159/* Functions */
160static inline struct maple_node *mt_alloc_one(gfp_t gfp)
161{
162 return kmem_cache_alloc(cachep: maple_node_cache, flags: gfp);
163}
164
165static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
166{
167 return kmem_cache_alloc_bulk(s: maple_node_cache, flags: gfp, size, p: nodes);
168}
169
170static inline void mt_free_one(struct maple_node *node)
171{
172 kmem_cache_free(s: maple_node_cache, objp: node);
173}
174
175static inline void mt_free_bulk(size_t size, void __rcu **nodes)
176{
177 kmem_cache_free_bulk(s: maple_node_cache, size, p: (void **)nodes);
178}
179
180static void mt_free_rcu(struct rcu_head *head)
181{
182 struct maple_node *node = container_of(head, struct maple_node, rcu);
183
184 kmem_cache_free(s: maple_node_cache, objp: node);
185}
186
187/*
188 * ma_free_rcu() - Use rcu callback to free a maple node
189 * @node: The node to free
190 *
191 * The maple tree uses the parent pointer to indicate this node is no longer in
192 * use and will be freed.
193 */
194static void ma_free_rcu(struct maple_node *node)
195{
196 WARN_ON(node->parent != ma_parent_ptr(node));
197 call_rcu(head: &node->rcu, func: mt_free_rcu);
198}
199
200static void mas_set_height(struct ma_state *mas)
201{
202 unsigned int new_flags = mas->tree->ma_flags;
203
204 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207 mas->tree->ma_flags = new_flags;
208}
209
210static unsigned int mas_mt_height(struct ma_state *mas)
211{
212 return mt_height(mt: mas->tree);
213}
214
215static inline unsigned int mt_attr(struct maple_tree *mt)
216{
217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
218}
219
220static __always_inline enum maple_type mte_node_type(
221 const struct maple_enode *entry)
222{
223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
224 MAPLE_NODE_TYPE_MASK;
225}
226
227static __always_inline bool ma_is_dense(const enum maple_type type)
228{
229 return type < maple_leaf_64;
230}
231
232static __always_inline bool ma_is_leaf(const enum maple_type type)
233{
234 return type < maple_range_64;
235}
236
237static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
238{
239 return ma_is_leaf(type: mte_node_type(entry));
240}
241
242/*
243 * We also reserve values with the bottom two bits set to '10' which are
244 * below 4096
245 */
246static __always_inline bool mt_is_reserved(const void *entry)
247{
248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
249 xa_is_internal(entry);
250}
251
252static __always_inline void mas_set_err(struct ma_state *mas, long err)
253{
254 mas->node = MA_ERROR(err);
255 mas->status = ma_error;
256}
257
258static __always_inline bool mas_is_ptr(const struct ma_state *mas)
259{
260 return mas->status == ma_root;
261}
262
263static __always_inline bool mas_is_start(const struct ma_state *mas)
264{
265 return mas->status == ma_start;
266}
267
268static __always_inline bool mas_is_none(const struct ma_state *mas)
269{
270 return mas->status == ma_none;
271}
272
273static __always_inline bool mas_is_paused(const struct ma_state *mas)
274{
275 return mas->status == ma_pause;
276}
277
278static __always_inline bool mas_is_overflow(struct ma_state *mas)
279{
280 return mas->status == ma_overflow;
281}
282
283static inline bool mas_is_underflow(struct ma_state *mas)
284{
285 return mas->status == ma_underflow;
286}
287
288static __always_inline struct maple_node *mte_to_node(
289 const struct maple_enode *entry)
290{
291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
292}
293
294/*
295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
296 * @entry: The maple encoded node
297 *
298 * Return: a maple topiary pointer
299 */
300static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
301{
302 return (struct maple_topiary *)
303 ((unsigned long)entry & ~MAPLE_NODE_MASK);
304}
305
306/*
307 * mas_mn() - Get the maple state node.
308 * @mas: The maple state
309 *
310 * Return: the maple node (not encoded - bare pointer).
311 */
312static inline struct maple_node *mas_mn(const struct ma_state *mas)
313{
314 return mte_to_node(entry: mas->node);
315}
316
317/*
318 * mte_set_node_dead() - Set a maple encoded node as dead.
319 * @mn: The maple encoded node.
320 */
321static inline void mte_set_node_dead(struct maple_enode *mn)
322{
323 mte_to_node(entry: mn)->parent = ma_parent_ptr(mte_to_node(mn));
324 smp_wmb(); /* Needed for RCU */
325}
326
327/* Bit 1 indicates the root is a node */
328#define MAPLE_ROOT_NODE 0x02
329/* maple_type stored bit 3-6 */
330#define MAPLE_ENODE_TYPE_SHIFT 0x03
331/* Bit 2 means a NULL somewhere below */
332#define MAPLE_ENODE_NULL 0x04
333
334static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
335 enum maple_type type)
336{
337 return (void *)((unsigned long)node |
338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
339}
340
341static inline void *mte_mk_root(const struct maple_enode *node)
342{
343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
344}
345
346static inline void *mte_safe_root(const struct maple_enode *node)
347{
348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
349}
350
351static inline void *mte_set_full(const struct maple_enode *node)
352{
353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
354}
355
356static inline void *mte_clear_full(const struct maple_enode *node)
357{
358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
359}
360
361static inline bool mte_has_null(const struct maple_enode *node)
362{
363 return (unsigned long)node & MAPLE_ENODE_NULL;
364}
365
366static __always_inline bool ma_is_root(struct maple_node *node)
367{
368 return ((unsigned long)node->parent & MA_ROOT_PARENT);
369}
370
371static __always_inline bool mte_is_root(const struct maple_enode *node)
372{
373 return ma_is_root(node: mte_to_node(entry: node));
374}
375
376static inline bool mas_is_root_limits(const struct ma_state *mas)
377{
378 return !mas->min && mas->max == ULONG_MAX;
379}
380
381static __always_inline bool mt_is_alloc(struct maple_tree *mt)
382{
383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
384}
385
386/*
387 * The Parent Pointer
388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
390 * bit values need an extra bit to store the offset. This extra bit comes from
391 * a reuse of the last bit in the node type. This is possible by using bit 1 to
392 * indicate if bit 2 is part of the type or the slot.
393 *
394 * Note types:
395 * 0x??1 = Root
396 * 0x?00 = 16 bit nodes
397 * 0x010 = 32 bit nodes
398 * 0x110 = 64 bit nodes
399 *
400 * Slot size and alignment
401 * 0b??1 : Root
402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
405 */
406
407#define MAPLE_PARENT_ROOT 0x01
408
409#define MAPLE_PARENT_SLOT_SHIFT 0x03
410#define MAPLE_PARENT_SLOT_MASK 0xF8
411
412#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
413#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
414
415#define MAPLE_PARENT_RANGE64 0x06
416#define MAPLE_PARENT_RANGE32 0x04
417#define MAPLE_PARENT_NOT_RANGE16 0x02
418
419/*
420 * mte_parent_shift() - Get the parent shift for the slot storage.
421 * @parent: The parent pointer cast as an unsigned long
422 * Return: The shift into that pointer to the star to of the slot
423 */
424static inline unsigned long mte_parent_shift(unsigned long parent)
425{
426 /* Note bit 1 == 0 means 16B */
427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
428 return MAPLE_PARENT_SLOT_SHIFT;
429
430 return MAPLE_PARENT_16B_SLOT_SHIFT;
431}
432
433/*
434 * mte_parent_slot_mask() - Get the slot mask for the parent.
435 * @parent: The parent pointer cast as an unsigned long.
436 * Return: The slot mask for that parent.
437 */
438static inline unsigned long mte_parent_slot_mask(unsigned long parent)
439{
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_MASK;
443
444 return MAPLE_PARENT_16B_SLOT_MASK;
445}
446
447/*
448 * mas_parent_type() - Return the maple_type of the parent from the stored
449 * parent type.
450 * @mas: The maple state
451 * @enode: The maple_enode to extract the parent's enum
452 * Return: The node->parent maple_type
453 */
454static inline
455enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
456{
457 unsigned long p_type;
458
459 p_type = (unsigned long)mte_to_node(entry: enode)->parent;
460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
461 return 0;
462
463 p_type &= MAPLE_NODE_MASK;
464 p_type &= ~mte_parent_slot_mask(parent: p_type);
465 switch (p_type) {
466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
467 if (mt_is_alloc(mt: mas->tree))
468 return maple_arange_64;
469 return maple_range_64;
470 }
471
472 return 0;
473}
474
475/*
476 * mas_set_parent() - Set the parent node and encode the slot
477 * @enode: The encoded maple node.
478 * @parent: The encoded maple node that is the parent of @enode.
479 * @slot: The slot that @enode resides in @parent.
480 *
481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
482 * parent type.
483 */
484static inline
485void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
486 const struct maple_enode *parent, unsigned char slot)
487{
488 unsigned long val = (unsigned long)parent;
489 unsigned long shift;
490 unsigned long type;
491 enum maple_type p_type = mte_node_type(entry: parent);
492
493 MAS_BUG_ON(mas, p_type == maple_dense);
494 MAS_BUG_ON(mas, p_type == maple_leaf_64);
495
496 switch (p_type) {
497 case maple_range_64:
498 case maple_arange_64:
499 shift = MAPLE_PARENT_SLOT_SHIFT;
500 type = MAPLE_PARENT_RANGE64;
501 break;
502 default:
503 case maple_dense:
504 case maple_leaf_64:
505 shift = type = 0;
506 break;
507 }
508
509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
510 val |= (slot << shift) | type;
511 mte_to_node(entry: enode)->parent = ma_parent_ptr(val);
512}
513
514/*
515 * mte_parent_slot() - get the parent slot of @enode.
516 * @enode: The encoded maple node.
517 *
518 * Return: The slot in the parent node where @enode resides.
519 */
520static __always_inline
521unsigned int mte_parent_slot(const struct maple_enode *enode)
522{
523 unsigned long val = (unsigned long)mte_to_node(entry: enode)->parent;
524
525 if (unlikely(val & MA_ROOT_PARENT))
526 return 0;
527
528 /*
529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
531 */
532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(parent: val);
533}
534
535/*
536 * mte_parent() - Get the parent of @node.
537 * @node: The encoded maple node.
538 *
539 * Return: The parent maple node.
540 */
541static __always_inline
542struct maple_node *mte_parent(const struct maple_enode *enode)
543{
544 return (void *)((unsigned long)
545 (mte_to_node(entry: enode)->parent) & ~MAPLE_NODE_MASK);
546}
547
548/*
549 * ma_dead_node() - check if the @enode is dead.
550 * @enode: The encoded maple node
551 *
552 * Return: true if dead, false otherwise.
553 */
554static __always_inline bool ma_dead_node(const struct maple_node *node)
555{
556 struct maple_node *parent;
557
558 /* Do not reorder reads from the node prior to the parent check */
559 smp_rmb();
560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
561 return (parent == node);
562}
563
564/*
565 * mte_dead_node() - check if the @enode is dead.
566 * @enode: The encoded maple node
567 *
568 * Return: true if dead, false otherwise.
569 */
570static __always_inline bool mte_dead_node(const struct maple_enode *enode)
571{
572 struct maple_node *parent, *node;
573
574 node = mte_to_node(entry: enode);
575 /* Do not reorder reads from the node prior to the parent check */
576 smp_rmb();
577 parent = mte_parent(enode);
578 return (parent == node);
579}
580
581/*
582 * mas_allocated() - Get the number of nodes allocated in a maple state.
583 * @mas: The maple state
584 *
585 * The ma_state alloc member is overloaded to hold a pointer to the first
586 * allocated node or to the number of requested nodes to allocate. If bit 0 is
587 * set, then the alloc contains the number of requested nodes. If there is an
588 * allocated node, then the total allocated nodes is in that node.
589 *
590 * Return: The total number of nodes allocated
591 */
592static inline unsigned long mas_allocated(const struct ma_state *mas)
593{
594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
595 return 0;
596
597 return mas->alloc->total;
598}
599
600/*
601 * mas_set_alloc_req() - Set the requested number of allocations.
602 * @mas: the maple state
603 * @count: the number of allocations.
604 *
605 * The requested number of allocations is either in the first allocated node,
606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
607 * no allocated node. Set the request either in the node or do the necessary
608 * encoding to store in @mas->alloc directly.
609 */
610static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
611{
612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
613 if (!count)
614 mas->alloc = NULL;
615 else
616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
617 return;
618 }
619
620 mas->alloc->request_count = count;
621}
622
623/*
624 * mas_alloc_req() - get the requested number of allocations.
625 * @mas: The maple state
626 *
627 * The alloc count is either stored directly in @mas, or in
628 * @mas->alloc->request_count if there is at least one node allocated. Decode
629 * the request count if it's stored directly in @mas->alloc.
630 *
631 * Return: The allocation request count.
632 */
633static inline unsigned int mas_alloc_req(const struct ma_state *mas)
634{
635 if ((unsigned long)mas->alloc & 0x1)
636 return (unsigned long)(mas->alloc) >> 1;
637 else if (mas->alloc)
638 return mas->alloc->request_count;
639 return 0;
640}
641
642/*
643 * ma_pivots() - Get a pointer to the maple node pivots.
644 * @node - the maple node
645 * @type - the node type
646 *
647 * In the event of a dead node, this array may be %NULL
648 *
649 * Return: A pointer to the maple node pivots
650 */
651static inline unsigned long *ma_pivots(struct maple_node *node,
652 enum maple_type type)
653{
654 switch (type) {
655 case maple_arange_64:
656 return node->ma64.pivot;
657 case maple_range_64:
658 case maple_leaf_64:
659 return node->mr64.pivot;
660 case maple_dense:
661 return NULL;
662 }
663 return NULL;
664}
665
666/*
667 * ma_gaps() - Get a pointer to the maple node gaps.
668 * @node - the maple node
669 * @type - the node type
670 *
671 * Return: A pointer to the maple node gaps
672 */
673static inline unsigned long *ma_gaps(struct maple_node *node,
674 enum maple_type type)
675{
676 switch (type) {
677 case maple_arange_64:
678 return node->ma64.gap;
679 case maple_range_64:
680 case maple_leaf_64:
681 case maple_dense:
682 return NULL;
683 }
684 return NULL;
685}
686
687/*
688 * mas_safe_pivot() - get the pivot at @piv or mas->max.
689 * @mas: The maple state
690 * @pivots: The pointer to the maple node pivots
691 * @piv: The pivot to fetch
692 * @type: The maple node type
693 *
694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
695 * otherwise.
696 */
697static __always_inline unsigned long
698mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
699 unsigned char piv, enum maple_type type)
700{
701 if (piv >= mt_pivots[type])
702 return mas->max;
703
704 return pivots[piv];
705}
706
707/*
708 * mas_safe_min() - Return the minimum for a given offset.
709 * @mas: The maple state
710 * @pivots: The pointer to the maple node pivots
711 * @offset: The offset into the pivot array
712 *
713 * Return: The minimum range value that is contained in @offset.
714 */
715static inline unsigned long
716mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
717{
718 if (likely(offset))
719 return pivots[offset - 1] + 1;
720
721 return mas->min;
722}
723
724/*
725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
726 * @mn: The encoded maple node
727 * @piv: The pivot offset
728 * @val: The value of the pivot
729 */
730static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
731 unsigned long val)
732{
733 struct maple_node *node = mte_to_node(entry: mn);
734 enum maple_type type = mte_node_type(entry: mn);
735
736 BUG_ON(piv >= mt_pivots[type]);
737 switch (type) {
738 case maple_range_64:
739 case maple_leaf_64:
740 node->mr64.pivot[piv] = val;
741 break;
742 case maple_arange_64:
743 node->ma64.pivot[piv] = val;
744 break;
745 case maple_dense:
746 break;
747 }
748
749}
750
751/*
752 * ma_slots() - Get a pointer to the maple node slots.
753 * @mn: The maple node
754 * @mt: The maple node type
755 *
756 * Return: A pointer to the maple node slots
757 */
758static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
759{
760 switch (mt) {
761 case maple_arange_64:
762 return mn->ma64.slot;
763 case maple_range_64:
764 case maple_leaf_64:
765 return mn->mr64.slot;
766 case maple_dense:
767 return mn->slot;
768 }
769
770 return NULL;
771}
772
773static inline bool mt_write_locked(const struct maple_tree *mt)
774{
775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
776 lockdep_is_held(&mt->ma_lock);
777}
778
779static __always_inline bool mt_locked(const struct maple_tree *mt)
780{
781 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
782 lockdep_is_held(&mt->ma_lock);
783}
784
785static __always_inline void *mt_slot(const struct maple_tree *mt,
786 void __rcu **slots, unsigned char offset)
787{
788 return rcu_dereference_check(slots[offset], mt_locked(mt));
789}
790
791static __always_inline void *mt_slot_locked(struct maple_tree *mt,
792 void __rcu **slots, unsigned char offset)
793{
794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
795}
796/*
797 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
798 * @mas: The maple state
799 * @slots: The pointer to the slots
800 * @offset: The offset into the slots array to fetch
801 *
802 * Return: The entry stored in @slots at the @offset.
803 */
804static __always_inline void *mas_slot_locked(struct ma_state *mas,
805 void __rcu **slots, unsigned char offset)
806{
807 return mt_slot_locked(mt: mas->tree, slots, offset);
808}
809
810/*
811 * mas_slot() - Get the slot value when not holding the maple tree lock.
812 * @mas: The maple state
813 * @slots: The pointer to the slots
814 * @offset: The offset into the slots array to fetch
815 *
816 * Return: The entry stored in @slots at the @offset
817 */
818static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
819 unsigned char offset)
820{
821 return mt_slot(mt: mas->tree, slots, offset);
822}
823
824/*
825 * mas_root() - Get the maple tree root.
826 * @mas: The maple state.
827 *
828 * Return: The pointer to the root of the tree
829 */
830static __always_inline void *mas_root(struct ma_state *mas)
831{
832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
833}
834
835static inline void *mt_root_locked(struct maple_tree *mt)
836{
837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
838}
839
840/*
841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
842 * @mas: The maple state.
843 *
844 * Return: The pointer to the root of the tree
845 */
846static inline void *mas_root_locked(struct ma_state *mas)
847{
848 return mt_root_locked(mt: mas->tree);
849}
850
851static inline struct maple_metadata *ma_meta(struct maple_node *mn,
852 enum maple_type mt)
853{
854 switch (mt) {
855 case maple_arange_64:
856 return &mn->ma64.meta;
857 default:
858 return &mn->mr64.meta;
859 }
860}
861
862/*
863 * ma_set_meta() - Set the metadata information of a node.
864 * @mn: The maple node
865 * @mt: The maple node type
866 * @offset: The offset of the highest sub-gap in this node.
867 * @end: The end of the data in this node.
868 */
869static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
870 unsigned char offset, unsigned char end)
871{
872 struct maple_metadata *meta = ma_meta(mn, mt);
873
874 meta->gap = offset;
875 meta->end = end;
876}
877
878/*
879 * mt_clear_meta() - clear the metadata information of a node, if it exists
880 * @mt: The maple tree
881 * @mn: The maple node
882 * @type: The maple node type
883 * @offset: The offset of the highest sub-gap in this node.
884 * @end: The end of the data in this node.
885 */
886static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
887 enum maple_type type)
888{
889 struct maple_metadata *meta;
890 unsigned long *pivots;
891 void __rcu **slots;
892 void *next;
893
894 switch (type) {
895 case maple_range_64:
896 pivots = mn->mr64.pivot;
897 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
898 slots = mn->mr64.slot;
899 next = mt_slot_locked(mt, slots,
900 MAPLE_RANGE64_SLOTS - 1);
901 if (unlikely((mte_to_node(next) &&
902 mte_node_type(next))))
903 return; /* no metadata, could be node */
904 }
905 fallthrough;
906 case maple_arange_64:
907 meta = ma_meta(mn, mt: type);
908 break;
909 default:
910 return;
911 }
912
913 meta->gap = 0;
914 meta->end = 0;
915}
916
917/*
918 * ma_meta_end() - Get the data end of a node from the metadata
919 * @mn: The maple node
920 * @mt: The maple node type
921 */
922static inline unsigned char ma_meta_end(struct maple_node *mn,
923 enum maple_type mt)
924{
925 struct maple_metadata *meta = ma_meta(mn, mt);
926
927 return meta->end;
928}
929
930/*
931 * ma_meta_gap() - Get the largest gap location of a node from the metadata
932 * @mn: The maple node
933 */
934static inline unsigned char ma_meta_gap(struct maple_node *mn)
935{
936 return mn->ma64.meta.gap;
937}
938
939/*
940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
941 * @mn: The maple node
942 * @mn: The maple node type
943 * @offset: The location of the largest gap.
944 */
945static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
946 unsigned char offset)
947{
948
949 struct maple_metadata *meta = ma_meta(mn, mt);
950
951 meta->gap = offset;
952}
953
954/*
955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
956 * @mat - the ma_topiary, a linked list of dead nodes.
957 * @dead_enode - the node to be marked as dead and added to the tail of the list
958 *
959 * Add the @dead_enode to the linked list in @mat.
960 */
961static inline void mat_add(struct ma_topiary *mat,
962 struct maple_enode *dead_enode)
963{
964 mte_set_node_dead(mn: dead_enode);
965 mte_to_mat(entry: dead_enode)->next = NULL;
966 if (!mat->tail) {
967 mat->tail = mat->head = dead_enode;
968 return;
969 }
970
971 mte_to_mat(entry: mat->tail)->next = dead_enode;
972 mat->tail = dead_enode;
973}
974
975static void mt_free_walk(struct rcu_head *head);
976static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
977 bool free);
978/*
979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
980 * @mas - the maple state
981 * @mat - the ma_topiary linked list of dead nodes to free.
982 *
983 * Destroy walk a dead list.
984 */
985static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
986{
987 struct maple_enode *next;
988 struct maple_node *node;
989 bool in_rcu = mt_in_rcu(mt: mas->tree);
990
991 while (mat->head) {
992 next = mte_to_mat(entry: mat->head)->next;
993 node = mte_to_node(entry: mat->head);
994 mt_destroy_walk(enode: mat->head, mt: mas->tree, free: !in_rcu);
995 if (in_rcu)
996 call_rcu(head: &node->rcu, func: mt_free_walk);
997 mat->head = next;
998 }
999}
1000/*
1001 * mas_descend() - Descend into the slot stored in the ma_state.
1002 * @mas - the maple state.
1003 *
1004 * Note: Not RCU safe, only use in write side or debug code.
1005 */
1006static inline void mas_descend(struct ma_state *mas)
1007{
1008 enum maple_type type;
1009 unsigned long *pivots;
1010 struct maple_node *node;
1011 void __rcu **slots;
1012
1013 node = mas_mn(mas);
1014 type = mte_node_type(entry: mas->node);
1015 pivots = ma_pivots(node, type);
1016 slots = ma_slots(mn: node, mt: type);
1017
1018 if (mas->offset)
1019 mas->min = pivots[mas->offset - 1] + 1;
1020 mas->max = mas_safe_pivot(mas, pivots, piv: mas->offset, type);
1021 mas->node = mas_slot(mas, slots, offset: mas->offset);
1022}
1023
1024/*
1025 * mte_set_gap() - Set a maple node gap.
1026 * @mn: The encoded maple node
1027 * @gap: The offset of the gap to set
1028 * @val: The gap value
1029 */
1030static inline void mte_set_gap(const struct maple_enode *mn,
1031 unsigned char gap, unsigned long val)
1032{
1033 switch (mte_node_type(entry: mn)) {
1034 default:
1035 break;
1036 case maple_arange_64:
1037 mte_to_node(entry: mn)->ma64.gap[gap] = val;
1038 break;
1039 }
1040}
1041
1042/*
1043 * mas_ascend() - Walk up a level of the tree.
1044 * @mas: The maple state
1045 *
1046 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1047 * may cause several levels of walking up to find the correct min and max.
1048 * May find a dead node which will cause a premature return.
1049 * Return: 1 on dead node, 0 otherwise
1050 */
1051static int mas_ascend(struct ma_state *mas)
1052{
1053 struct maple_enode *p_enode; /* parent enode. */
1054 struct maple_enode *a_enode; /* ancestor enode. */
1055 struct maple_node *a_node; /* ancestor node. */
1056 struct maple_node *p_node; /* parent node. */
1057 unsigned char a_slot;
1058 enum maple_type a_type;
1059 unsigned long min, max;
1060 unsigned long *pivots;
1061 bool set_max = false, set_min = false;
1062
1063 a_node = mas_mn(mas);
1064 if (ma_is_root(node: a_node)) {
1065 mas->offset = 0;
1066 return 0;
1067 }
1068
1069 p_node = mte_parent(enode: mas->node);
1070 if (unlikely(a_node == p_node))
1071 return 1;
1072
1073 a_type = mas_parent_type(mas, enode: mas->node);
1074 mas->offset = mte_parent_slot(enode: mas->node);
1075 a_enode = mt_mk_node(node: p_node, type: a_type);
1076
1077 /* Check to make sure all parent information is still accurate */
1078 if (p_node != mte_parent(enode: mas->node))
1079 return 1;
1080
1081 mas->node = a_enode;
1082
1083 if (mte_is_root(node: a_enode)) {
1084 mas->max = ULONG_MAX;
1085 mas->min = 0;
1086 return 0;
1087 }
1088
1089 min = 0;
1090 max = ULONG_MAX;
1091 if (!mas->offset) {
1092 min = mas->min;
1093 set_min = true;
1094 }
1095
1096 if (mas->max == ULONG_MAX)
1097 set_max = true;
1098
1099 do {
1100 p_enode = a_enode;
1101 a_type = mas_parent_type(mas, enode: p_enode);
1102 a_node = mte_parent(enode: p_enode);
1103 a_slot = mte_parent_slot(enode: p_enode);
1104 a_enode = mt_mk_node(node: a_node, type: a_type);
1105 pivots = ma_pivots(node: a_node, type: a_type);
1106
1107 if (unlikely(ma_dead_node(a_node)))
1108 return 1;
1109
1110 if (!set_min && a_slot) {
1111 set_min = true;
1112 min = pivots[a_slot - 1] + 1;
1113 }
1114
1115 if (!set_max && a_slot < mt_pivots[a_type]) {
1116 set_max = true;
1117 max = pivots[a_slot];
1118 }
1119
1120 if (unlikely(ma_dead_node(a_node)))
1121 return 1;
1122
1123 if (unlikely(ma_is_root(a_node)))
1124 break;
1125
1126 } while (!set_min || !set_max);
1127
1128 mas->max = max;
1129 mas->min = min;
1130 return 0;
1131}
1132
1133/*
1134 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1135 * @mas: The maple state
1136 *
1137 * Return: A pointer to a maple node.
1138 */
1139static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1140{
1141 struct maple_alloc *ret, *node = mas->alloc;
1142 unsigned long total = mas_allocated(mas);
1143 unsigned int req = mas_alloc_req(mas);
1144
1145 /* nothing or a request pending. */
1146 if (WARN_ON(!total))
1147 return NULL;
1148
1149 if (total == 1) {
1150 /* single allocation in this ma_state */
1151 mas->alloc = NULL;
1152 ret = node;
1153 goto single_node;
1154 }
1155
1156 if (node->node_count == 1) {
1157 /* Single allocation in this node. */
1158 mas->alloc = node->slot[0];
1159 mas->alloc->total = node->total - 1;
1160 ret = node;
1161 goto new_head;
1162 }
1163 node->total--;
1164 ret = node->slot[--node->node_count];
1165 node->slot[node->node_count] = NULL;
1166
1167single_node:
1168new_head:
1169 if (req) {
1170 req++;
1171 mas_set_alloc_req(mas, count: req);
1172 }
1173
1174 memset(ret, 0, sizeof(*ret));
1175 return (struct maple_node *)ret;
1176}
1177
1178/*
1179 * mas_push_node() - Push a node back on the maple state allocation.
1180 * @mas: The maple state
1181 * @used: The used maple node
1182 *
1183 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1184 * requested node count as necessary.
1185 */
1186static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1187{
1188 struct maple_alloc *reuse = (struct maple_alloc *)used;
1189 struct maple_alloc *head = mas->alloc;
1190 unsigned long count;
1191 unsigned int requested = mas_alloc_req(mas);
1192
1193 count = mas_allocated(mas);
1194
1195 reuse->request_count = 0;
1196 reuse->node_count = 0;
1197 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1198 head->slot[head->node_count++] = reuse;
1199 head->total++;
1200 goto done;
1201 }
1202
1203 reuse->total = 1;
1204 if ((head) && !((unsigned long)head & 0x1)) {
1205 reuse->slot[0] = head;
1206 reuse->node_count = 1;
1207 reuse->total += head->total;
1208 }
1209
1210 mas->alloc = reuse;
1211done:
1212 if (requested > 1)
1213 mas_set_alloc_req(mas, count: requested - 1);
1214}
1215
1216/*
1217 * mas_alloc_nodes() - Allocate nodes into a maple state
1218 * @mas: The maple state
1219 * @gfp: The GFP Flags
1220 */
1221static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1222{
1223 struct maple_alloc *node;
1224 unsigned long allocated = mas_allocated(mas);
1225 unsigned int requested = mas_alloc_req(mas);
1226 unsigned int count;
1227 void **slots = NULL;
1228 unsigned int max_req = 0;
1229
1230 if (!requested)
1231 return;
1232
1233 mas_set_alloc_req(mas, count: 0);
1234 if (mas->mas_flags & MA_STATE_PREALLOC) {
1235 if (allocated)
1236 return;
1237 BUG_ON(!allocated);
1238 WARN_ON(!allocated);
1239 }
1240
1241 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1242 node = (struct maple_alloc *)mt_alloc_one(gfp);
1243 if (!node)
1244 goto nomem_one;
1245
1246 if (allocated) {
1247 node->slot[0] = mas->alloc;
1248 node->node_count = 1;
1249 } else {
1250 node->node_count = 0;
1251 }
1252
1253 mas->alloc = node;
1254 node->total = ++allocated;
1255 requested--;
1256 }
1257
1258 node = mas->alloc;
1259 node->request_count = 0;
1260 while (requested) {
1261 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1262 slots = (void **)&node->slot[node->node_count];
1263 max_req = min(requested, max_req);
1264 count = mt_alloc_bulk(gfp, size: max_req, nodes: slots);
1265 if (!count)
1266 goto nomem_bulk;
1267
1268 if (node->node_count == 0) {
1269 node->slot[0]->node_count = 0;
1270 node->slot[0]->request_count = 0;
1271 }
1272
1273 node->node_count += count;
1274 allocated += count;
1275 node = node->slot[0];
1276 requested -= count;
1277 }
1278 mas->alloc->total = allocated;
1279 return;
1280
1281nomem_bulk:
1282 /* Clean up potential freed allocations on bulk failure */
1283 memset(slots, 0, max_req * sizeof(unsigned long));
1284nomem_one:
1285 mas_set_alloc_req(mas, count: requested);
1286 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1287 mas->alloc->total = allocated;
1288 mas_set_err(mas, err: -ENOMEM);
1289}
1290
1291/*
1292 * mas_free() - Free an encoded maple node
1293 * @mas: The maple state
1294 * @used: The encoded maple node to free.
1295 *
1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1297 * otherwise.
1298 */
1299static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1300{
1301 struct maple_node *tmp = mte_to_node(entry: used);
1302
1303 if (mt_in_rcu(mt: mas->tree))
1304 ma_free_rcu(node: tmp);
1305 else
1306 mas_push_node(mas, used: tmp);
1307}
1308
1309/*
1310 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1311 * if there is not enough nodes.
1312 * @mas: The maple state
1313 * @count: The number of nodes needed
1314 * @gfp: the gfp flags
1315 */
1316static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1317{
1318 unsigned long allocated = mas_allocated(mas);
1319
1320 if (allocated < count) {
1321 mas_set_alloc_req(mas, count: count - allocated);
1322 mas_alloc_nodes(mas, gfp);
1323 }
1324}
1325
1326/*
1327 * mas_node_count() - Check if enough nodes are allocated and request more if
1328 * there is not enough nodes.
1329 * @mas: The maple state
1330 * @count: The number of nodes needed
1331 *
1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1333 */
1334static void mas_node_count(struct ma_state *mas, int count)
1335{
1336 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1337}
1338
1339/*
1340 * mas_start() - Sets up maple state for operations.
1341 * @mas: The maple state.
1342 *
1343 * If mas->status == mas_start, then set the min, max and depth to
1344 * defaults.
1345 *
1346 * Return:
1347 * - If mas->node is an error or not mas_start, return NULL.
1348 * - If it's an empty tree: NULL & mas->status == ma_none
1349 * - If it's a single entry: The entry & mas->status == mas_root
1350 * - If it's a tree: NULL & mas->status == safe root node.
1351 */
1352static inline struct maple_enode *mas_start(struct ma_state *mas)
1353{
1354 if (likely(mas_is_start(mas))) {
1355 struct maple_enode *root;
1356
1357 mas->min = 0;
1358 mas->max = ULONG_MAX;
1359
1360retry:
1361 mas->depth = 0;
1362 root = mas_root(mas);
1363 /* Tree with nodes */
1364 if (likely(xa_is_node(root))) {
1365 mas->depth = 1;
1366 mas->status = ma_active;
1367 mas->node = mte_safe_root(node: root);
1368 mas->offset = 0;
1369 if (mte_dead_node(enode: mas->node))
1370 goto retry;
1371
1372 return NULL;
1373 }
1374
1375 /* empty tree */
1376 if (unlikely(!root)) {
1377 mas->node = NULL;
1378 mas->status = ma_none;
1379 mas->offset = MAPLE_NODE_SLOTS;
1380 return NULL;
1381 }
1382
1383 /* Single entry tree */
1384 mas->status = ma_root;
1385 mas->offset = MAPLE_NODE_SLOTS;
1386
1387 /* Single entry tree. */
1388 if (mas->index > 0)
1389 return NULL;
1390
1391 return root;
1392 }
1393
1394 return NULL;
1395}
1396
1397/*
1398 * ma_data_end() - Find the end of the data in a node.
1399 * @node: The maple node
1400 * @type: The maple node type
1401 * @pivots: The array of pivots in the node
1402 * @max: The maximum value in the node
1403 *
1404 * Uses metadata to find the end of the data when possible.
1405 * Return: The zero indexed last slot with data (may be null).
1406 */
1407static __always_inline unsigned char ma_data_end(struct maple_node *node,
1408 enum maple_type type, unsigned long *pivots, unsigned long max)
1409{
1410 unsigned char offset;
1411
1412 if (!pivots)
1413 return 0;
1414
1415 if (type == maple_arange_64)
1416 return ma_meta_end(mn: node, mt: type);
1417
1418 offset = mt_pivots[type] - 1;
1419 if (likely(!pivots[offset]))
1420 return ma_meta_end(mn: node, mt: type);
1421
1422 if (likely(pivots[offset] == max))
1423 return offset;
1424
1425 return mt_pivots[type];
1426}
1427
1428/*
1429 * mas_data_end() - Find the end of the data (slot).
1430 * @mas: the maple state
1431 *
1432 * This method is optimized to check the metadata of a node if the node type
1433 * supports data end metadata.
1434 *
1435 * Return: The zero indexed last slot with data (may be null).
1436 */
1437static inline unsigned char mas_data_end(struct ma_state *mas)
1438{
1439 enum maple_type type;
1440 struct maple_node *node;
1441 unsigned char offset;
1442 unsigned long *pivots;
1443
1444 type = mte_node_type(entry: mas->node);
1445 node = mas_mn(mas);
1446 if (type == maple_arange_64)
1447 return ma_meta_end(mn: node, mt: type);
1448
1449 pivots = ma_pivots(node, type);
1450 if (unlikely(ma_dead_node(node)))
1451 return 0;
1452
1453 offset = mt_pivots[type] - 1;
1454 if (likely(!pivots[offset]))
1455 return ma_meta_end(mn: node, mt: type);
1456
1457 if (likely(pivots[offset] == mas->max))
1458 return offset;
1459
1460 return mt_pivots[type];
1461}
1462
1463/*
1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1465 * @mas - the maple state
1466 *
1467 * Return: The maximum gap in the leaf.
1468 */
1469static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1470{
1471 enum maple_type mt;
1472 unsigned long pstart, gap, max_gap;
1473 struct maple_node *mn;
1474 unsigned long *pivots;
1475 void __rcu **slots;
1476 unsigned char i;
1477 unsigned char max_piv;
1478
1479 mt = mte_node_type(entry: mas->node);
1480 mn = mas_mn(mas);
1481 slots = ma_slots(mn, mt);
1482 max_gap = 0;
1483 if (unlikely(ma_is_dense(mt))) {
1484 gap = 0;
1485 for (i = 0; i < mt_slots[mt]; i++) {
1486 if (slots[i]) {
1487 if (gap > max_gap)
1488 max_gap = gap;
1489 gap = 0;
1490 } else {
1491 gap++;
1492 }
1493 }
1494 if (gap > max_gap)
1495 max_gap = gap;
1496 return max_gap;
1497 }
1498
1499 /*
1500 * Check the first implied pivot optimizes the loop below and slot 1 may
1501 * be skipped if there is a gap in slot 0.
1502 */
1503 pivots = ma_pivots(node: mn, type: mt);
1504 if (likely(!slots[0])) {
1505 max_gap = pivots[0] - mas->min + 1;
1506 i = 2;
1507 } else {
1508 i = 1;
1509 }
1510
1511 /* reduce max_piv as the special case is checked before the loop */
1512 max_piv = ma_data_end(node: mn, type: mt, pivots, max: mas->max) - 1;
1513 /*
1514 * Check end implied pivot which can only be a gap on the right most
1515 * node.
1516 */
1517 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1518 gap = ULONG_MAX - pivots[max_piv];
1519 if (gap > max_gap)
1520 max_gap = gap;
1521
1522 if (max_gap > pivots[max_piv] - mas->min)
1523 return max_gap;
1524 }
1525
1526 for (; i <= max_piv; i++) {
1527 /* data == no gap. */
1528 if (likely(slots[i]))
1529 continue;
1530
1531 pstart = pivots[i - 1];
1532 gap = pivots[i] - pstart;
1533 if (gap > max_gap)
1534 max_gap = gap;
1535
1536 /* There cannot be two gaps in a row. */
1537 i++;
1538 }
1539 return max_gap;
1540}
1541
1542/*
1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1544 * @node: The maple node
1545 * @gaps: The pointer to the gaps
1546 * @mt: The maple node type
1547 * @*off: Pointer to store the offset location of the gap.
1548 *
1549 * Uses the metadata data end to scan backwards across set gaps.
1550 *
1551 * Return: The maximum gap value
1552 */
1553static inline unsigned long
1554ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1555 unsigned char *off)
1556{
1557 unsigned char offset, i;
1558 unsigned long max_gap = 0;
1559
1560 i = offset = ma_meta_end(mn: node, mt);
1561 do {
1562 if (gaps[i] > max_gap) {
1563 max_gap = gaps[i];
1564 offset = i;
1565 }
1566 } while (i--);
1567
1568 *off = offset;
1569 return max_gap;
1570}
1571
1572/*
1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1574 * @mas: The maple state.
1575 *
1576 * Return: The gap value.
1577 */
1578static inline unsigned long mas_max_gap(struct ma_state *mas)
1579{
1580 unsigned long *gaps;
1581 unsigned char offset;
1582 enum maple_type mt;
1583 struct maple_node *node;
1584
1585 mt = mte_node_type(entry: mas->node);
1586 if (ma_is_leaf(type: mt))
1587 return mas_leaf_max_gap(mas);
1588
1589 node = mas_mn(mas);
1590 MAS_BUG_ON(mas, mt != maple_arange_64);
1591 offset = ma_meta_gap(mn: node);
1592 gaps = ma_gaps(node, type: mt);
1593 return gaps[offset];
1594}
1595
1596/*
1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1598 * @mas: The maple state
1599 * @offset: The gap offset in the parent to set
1600 * @new: The new gap value.
1601 *
1602 * Set the parent gap then continue to set the gap upwards, using the metadata
1603 * of the parent to see if it is necessary to check the node above.
1604 */
1605static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1606 unsigned long new)
1607{
1608 unsigned long meta_gap = 0;
1609 struct maple_node *pnode;
1610 struct maple_enode *penode;
1611 unsigned long *pgaps;
1612 unsigned char meta_offset;
1613 enum maple_type pmt;
1614
1615 pnode = mte_parent(enode: mas->node);
1616 pmt = mas_parent_type(mas, enode: mas->node);
1617 penode = mt_mk_node(node: pnode, type: pmt);
1618 pgaps = ma_gaps(node: pnode, type: pmt);
1619
1620ascend:
1621 MAS_BUG_ON(mas, pmt != maple_arange_64);
1622 meta_offset = ma_meta_gap(mn: pnode);
1623 meta_gap = pgaps[meta_offset];
1624
1625 pgaps[offset] = new;
1626
1627 if (meta_gap == new)
1628 return;
1629
1630 if (offset != meta_offset) {
1631 if (meta_gap > new)
1632 return;
1633
1634 ma_set_meta_gap(mn: pnode, mt: pmt, offset);
1635 } else if (new < meta_gap) {
1636 new = ma_max_gap(node: pnode, gaps: pgaps, mt: pmt, off: &meta_offset);
1637 ma_set_meta_gap(mn: pnode, mt: pmt, offset: meta_offset);
1638 }
1639
1640 if (ma_is_root(node: pnode))
1641 return;
1642
1643 /* Go to the parent node. */
1644 pnode = mte_parent(enode: penode);
1645 pmt = mas_parent_type(mas, enode: penode);
1646 pgaps = ma_gaps(node: pnode, type: pmt);
1647 offset = mte_parent_slot(enode: penode);
1648 penode = mt_mk_node(node: pnode, type: pmt);
1649 goto ascend;
1650}
1651
1652/*
1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1654 * @mas - the maple state.
1655 */
1656static inline void mas_update_gap(struct ma_state *mas)
1657{
1658 unsigned char pslot;
1659 unsigned long p_gap;
1660 unsigned long max_gap;
1661
1662 if (!mt_is_alloc(mt: mas->tree))
1663 return;
1664
1665 if (mte_is_root(node: mas->node))
1666 return;
1667
1668 max_gap = mas_max_gap(mas);
1669
1670 pslot = mte_parent_slot(enode: mas->node);
1671 p_gap = ma_gaps(node: mte_parent(enode: mas->node),
1672 type: mas_parent_type(mas, enode: mas->node))[pslot];
1673
1674 if (p_gap != max_gap)
1675 mas_parent_gap(mas, offset: pslot, new: max_gap);
1676}
1677
1678/*
1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1680 * @parent with the slot encoded.
1681 * @mas - the maple state (for the tree)
1682 * @parent - the maple encoded node containing the children.
1683 */
1684static inline void mas_adopt_children(struct ma_state *mas,
1685 struct maple_enode *parent)
1686{
1687 enum maple_type type = mte_node_type(entry: parent);
1688 struct maple_node *node = mte_to_node(entry: parent);
1689 void __rcu **slots = ma_slots(mn: node, mt: type);
1690 unsigned long *pivots = ma_pivots(node, type);
1691 struct maple_enode *child;
1692 unsigned char offset;
1693
1694 offset = ma_data_end(node, type, pivots, max: mas->max);
1695 do {
1696 child = mas_slot_locked(mas, slots, offset);
1697 mas_set_parent(mas, enode: child, parent, slot: offset);
1698 } while (offset--);
1699}
1700
1701/*
1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1703 * node as dead.
1704 * @mas - the maple state with the new node
1705 * @old_enode - The old maple encoded node to replace.
1706 */
1707static inline void mas_put_in_tree(struct ma_state *mas,
1708 struct maple_enode *old_enode)
1709 __must_hold(mas->tree->ma_lock)
1710{
1711 unsigned char offset;
1712 void __rcu **slots;
1713
1714 if (mte_is_root(node: mas->node)) {
1715 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1716 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1717 mas_set_height(mas);
1718 } else {
1719
1720 offset = mte_parent_slot(enode: mas->node);
1721 slots = ma_slots(mn: mte_parent(enode: mas->node),
1722 mt: mas_parent_type(mas, enode: mas->node));
1723 rcu_assign_pointer(slots[offset], mas->node);
1724 }
1725
1726 mte_set_node_dead(mn: old_enode);
1727}
1728
1729/*
1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1731 * dead, and freeing it.
1732 * the parent encoding to locate the maple node in the tree.
1733 * @mas - the ma_state with @mas->node pointing to the new node.
1734 * @old_enode - The old maple encoded node.
1735 */
1736static inline void mas_replace_node(struct ma_state *mas,
1737 struct maple_enode *old_enode)
1738 __must_hold(mas->tree->ma_lock)
1739{
1740 mas_put_in_tree(mas, old_enode);
1741 mas_free(mas, used: old_enode);
1742}
1743
1744/*
1745 * mas_find_child() - Find a child who has the parent @mas->node.
1746 * @mas: the maple state with the parent.
1747 * @child: the maple state to store the child.
1748 */
1749static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1750 __must_hold(mas->tree->ma_lock)
1751{
1752 enum maple_type mt;
1753 unsigned char offset;
1754 unsigned char end;
1755 unsigned long *pivots;
1756 struct maple_enode *entry;
1757 struct maple_node *node;
1758 void __rcu **slots;
1759
1760 mt = mte_node_type(entry: mas->node);
1761 node = mas_mn(mas);
1762 slots = ma_slots(mn: node, mt);
1763 pivots = ma_pivots(node, type: mt);
1764 end = ma_data_end(node, type: mt, pivots, max: mas->max);
1765 for (offset = mas->offset; offset <= end; offset++) {
1766 entry = mas_slot_locked(mas, slots, offset);
1767 if (mte_parent(enode: entry) == node) {
1768 *child = *mas;
1769 mas->offset = offset + 1;
1770 child->offset = offset;
1771 mas_descend(mas: child);
1772 child->offset = 0;
1773 return true;
1774 }
1775 }
1776 return false;
1777}
1778
1779/*
1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1781 * old data or set b_node->b_end.
1782 * @b_node: the maple_big_node
1783 * @shift: the shift count
1784 */
1785static inline void mab_shift_right(struct maple_big_node *b_node,
1786 unsigned char shift)
1787{
1788 unsigned long size = b_node->b_end * sizeof(unsigned long);
1789
1790 memmove(b_node->pivot + shift, b_node->pivot, size);
1791 memmove(b_node->slot + shift, b_node->slot, size);
1792 if (b_node->type == maple_arange_64)
1793 memmove(b_node->gap + shift, b_node->gap, size);
1794}
1795
1796/*
1797 * mab_middle_node() - Check if a middle node is needed (unlikely)
1798 * @b_node: the maple_big_node that contains the data.
1799 * @size: the amount of data in the b_node
1800 * @split: the potential split location
1801 * @slot_count: the size that can be stored in a single node being considered.
1802 *
1803 * Return: true if a middle node is required.
1804 */
1805static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1806 unsigned char slot_count)
1807{
1808 unsigned char size = b_node->b_end;
1809
1810 if (size >= 2 * slot_count)
1811 return true;
1812
1813 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1814 return true;
1815
1816 return false;
1817}
1818
1819/*
1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1821 * @b_node: the maple_big_node with the data
1822 * @split: the suggested split location
1823 * @slot_count: the number of slots in the node being considered.
1824 *
1825 * Return: the split location.
1826 */
1827static inline int mab_no_null_split(struct maple_big_node *b_node,
1828 unsigned char split, unsigned char slot_count)
1829{
1830 if (!b_node->slot[split]) {
1831 /*
1832 * If the split is less than the max slot && the right side will
1833 * still be sufficient, then increment the split on NULL.
1834 */
1835 if ((split < slot_count - 1) &&
1836 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1837 split++;
1838 else
1839 split--;
1840 }
1841 return split;
1842}
1843
1844/*
1845 * mab_calc_split() - Calculate the split location and if there needs to be two
1846 * splits.
1847 * @bn: The maple_big_node with the data
1848 * @mid_split: The second split, if required. 0 otherwise.
1849 *
1850 * Return: The first split location. The middle split is set in @mid_split.
1851 */
1852static inline int mab_calc_split(struct ma_state *mas,
1853 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1854{
1855 unsigned char b_end = bn->b_end;
1856 int split = b_end / 2; /* Assume equal split. */
1857 unsigned char slot_min, slot_count = mt_slots[bn->type];
1858
1859 /*
1860 * To support gap tracking, all NULL entries are kept together and a node cannot
1861 * end on a NULL entry, with the exception of the left-most leaf. The
1862 * limitation means that the split of a node must be checked for this condition
1863 * and be able to put more data in one direction or the other.
1864 */
1865 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1866 *mid_split = 0;
1867 split = b_end - mt_min_slots[bn->type];
1868
1869 if (!ma_is_leaf(type: bn->type))
1870 return split;
1871
1872 mas->mas_flags |= MA_STATE_REBALANCE;
1873 if (!bn->slot[split])
1874 split--;
1875 return split;
1876 }
1877
1878 /*
1879 * Although extremely rare, it is possible to enter what is known as the 3-way
1880 * split scenario. The 3-way split comes about by means of a store of a range
1881 * that overwrites the end and beginning of two full nodes. The result is a set
1882 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1883 * also be located in different parent nodes which are also full. This can
1884 * carry upwards all the way to the root in the worst case.
1885 */
1886 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1887 split = b_end / 3;
1888 *mid_split = split * 2;
1889 } else {
1890 slot_min = mt_min_slots[bn->type];
1891
1892 *mid_split = 0;
1893 /*
1894 * Avoid having a range less than the slot count unless it
1895 * causes one node to be deficient.
1896 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1897 */
1898 while ((split < slot_count - 1) &&
1899 ((bn->pivot[split] - min) < slot_count - 1) &&
1900 (b_end - split > slot_min))
1901 split++;
1902 }
1903
1904 /* Avoid ending a node on a NULL entry */
1905 split = mab_no_null_split(b_node: bn, split, slot_count);
1906
1907 if (unlikely(*mid_split))
1908 *mid_split = mab_no_null_split(b_node: bn, split: *mid_split, slot_count);
1909
1910 return split;
1911}
1912
1913/*
1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1915 * and set @b_node->b_end to the next free slot.
1916 * @mas: The maple state
1917 * @mas_start: The starting slot to copy
1918 * @mas_end: The end slot to copy (inclusively)
1919 * @b_node: The maple_big_node to place the data
1920 * @mab_start: The starting location in maple_big_node to store the data.
1921 */
1922static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1923 unsigned char mas_end, struct maple_big_node *b_node,
1924 unsigned char mab_start)
1925{
1926 enum maple_type mt;
1927 struct maple_node *node;
1928 void __rcu **slots;
1929 unsigned long *pivots, *gaps;
1930 int i = mas_start, j = mab_start;
1931 unsigned char piv_end;
1932
1933 node = mas_mn(mas);
1934 mt = mte_node_type(entry: mas->node);
1935 pivots = ma_pivots(node, type: mt);
1936 if (!i) {
1937 b_node->pivot[j] = pivots[i++];
1938 if (unlikely(i > mas_end))
1939 goto complete;
1940 j++;
1941 }
1942
1943 piv_end = min(mas_end, mt_pivots[mt]);
1944 for (; i < piv_end; i++, j++) {
1945 b_node->pivot[j] = pivots[i];
1946 if (unlikely(!b_node->pivot[j]))
1947 break;
1948
1949 if (unlikely(mas->max == b_node->pivot[j]))
1950 goto complete;
1951 }
1952
1953 if (likely(i <= mas_end))
1954 b_node->pivot[j] = mas_safe_pivot(mas, pivots, piv: i, type: mt);
1955
1956complete:
1957 b_node->b_end = ++j;
1958 j -= mab_start;
1959 slots = ma_slots(mn: node, mt);
1960 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1961 if (!ma_is_leaf(type: mt) && mt_is_alloc(mt: mas->tree)) {
1962 gaps = ma_gaps(node, type: mt);
1963 memcpy(b_node->gap + mab_start, gaps + mas_start,
1964 sizeof(unsigned long) * j);
1965 }
1966}
1967
1968/*
1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1970 * @node: The maple node
1971 * @mt: The maple type
1972 * @end: The node end
1973 */
1974static inline void mas_leaf_set_meta(struct maple_node *node,
1975 enum maple_type mt, unsigned char end)
1976{
1977 if (end < mt_slots[mt] - 1)
1978 ma_set_meta(mn: node, mt, offset: 0, end);
1979}
1980
1981/*
1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1983 * @b_node: the maple_big_node that has the data
1984 * @mab_start: the start location in @b_node.
1985 * @mab_end: The end location in @b_node (inclusively)
1986 * @mas: The maple state with the maple encoded node.
1987 */
1988static inline void mab_mas_cp(struct maple_big_node *b_node,
1989 unsigned char mab_start, unsigned char mab_end,
1990 struct ma_state *mas, bool new_max)
1991{
1992 int i, j = 0;
1993 enum maple_type mt = mte_node_type(entry: mas->node);
1994 struct maple_node *node = mte_to_node(entry: mas->node);
1995 void __rcu **slots = ma_slots(mn: node, mt);
1996 unsigned long *pivots = ma_pivots(node, type: mt);
1997 unsigned long *gaps = NULL;
1998 unsigned char end;
1999
2000 if (mab_end - mab_start > mt_pivots[mt])
2001 mab_end--;
2002
2003 if (!pivots[mt_pivots[mt] - 1])
2004 slots[mt_pivots[mt]] = NULL;
2005
2006 i = mab_start;
2007 do {
2008 pivots[j++] = b_node->pivot[i++];
2009 } while (i <= mab_end && likely(b_node->pivot[i]));
2010
2011 memcpy(slots, b_node->slot + mab_start,
2012 sizeof(void *) * (i - mab_start));
2013
2014 if (new_max)
2015 mas->max = b_node->pivot[i - 1];
2016
2017 end = j - 1;
2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2019 unsigned long max_gap = 0;
2020 unsigned char offset = 0;
2021
2022 gaps = ma_gaps(node, type: mt);
2023 do {
2024 gaps[--j] = b_node->gap[--i];
2025 if (gaps[j] > max_gap) {
2026 offset = j;
2027 max_gap = gaps[j];
2028 }
2029 } while (j);
2030
2031 ma_set_meta(mn: node, mt, offset, end);
2032 } else {
2033 mas_leaf_set_meta(node, mt, end);
2034 }
2035}
2036
2037/*
2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2039 * @mas: The maple state
2040 * @end: The maple node end
2041 * @mt: The maple node type
2042 */
2043static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2044 enum maple_type mt)
2045{
2046 if (!(mas->mas_flags & MA_STATE_BULK))
2047 return;
2048
2049 if (mte_is_root(node: mas->node))
2050 return;
2051
2052 if (end > mt_min_slots[mt]) {
2053 mas->mas_flags &= ~MA_STATE_REBALANCE;
2054 return;
2055 }
2056}
2057
2058/*
2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2060 * data from a maple encoded node.
2061 * @wr_mas: the maple write state
2062 * @b_node: the maple_big_node to fill with data
2063 * @offset_end: the offset to end copying
2064 *
2065 * Return: The actual end of the data stored in @b_node
2066 */
2067static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2068 struct maple_big_node *b_node, unsigned char offset_end)
2069{
2070 unsigned char slot;
2071 unsigned char b_end;
2072 /* Possible underflow of piv will wrap back to 0 before use. */
2073 unsigned long piv;
2074 struct ma_state *mas = wr_mas->mas;
2075
2076 b_node->type = wr_mas->type;
2077 b_end = 0;
2078 slot = mas->offset;
2079 if (slot) {
2080 /* Copy start data up to insert. */
2081 mas_mab_cp(mas, mas_start: 0, mas_end: slot - 1, b_node, mab_start: 0);
2082 b_end = b_node->b_end;
2083 piv = b_node->pivot[b_end - 1];
2084 } else
2085 piv = mas->min - 1;
2086
2087 if (piv + 1 < mas->index) {
2088 /* Handle range starting after old range */
2089 b_node->slot[b_end] = wr_mas->content;
2090 if (!wr_mas->content)
2091 b_node->gap[b_end] = mas->index - 1 - piv;
2092 b_node->pivot[b_end++] = mas->index - 1;
2093 }
2094
2095 /* Store the new entry. */
2096 mas->offset = b_end;
2097 b_node->slot[b_end] = wr_mas->entry;
2098 b_node->pivot[b_end] = mas->last;
2099
2100 /* Appended. */
2101 if (mas->last >= mas->max)
2102 goto b_end;
2103
2104 /* Handle new range ending before old range ends */
2105 piv = mas_safe_pivot(mas, pivots: wr_mas->pivots, piv: offset_end, type: wr_mas->type);
2106 if (piv > mas->last) {
2107 if (piv == ULONG_MAX)
2108 mas_bulk_rebalance(mas, end: b_node->b_end, mt: wr_mas->type);
2109
2110 if (offset_end != slot)
2111 wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots,
2112 offset: offset_end);
2113
2114 b_node->slot[++b_end] = wr_mas->content;
2115 if (!wr_mas->content)
2116 b_node->gap[b_end] = piv - mas->last + 1;
2117 b_node->pivot[b_end] = piv;
2118 }
2119
2120 slot = offset_end + 1;
2121 if (slot > mas->end)
2122 goto b_end;
2123
2124 /* Copy end data to the end of the node. */
2125 mas_mab_cp(mas, mas_start: slot, mas_end: mas->end + 1, b_node, mab_start: ++b_end);
2126 b_node->b_end--;
2127 return;
2128
2129b_end:
2130 b_node->b_end = b_end;
2131}
2132
2133/*
2134 * mas_prev_sibling() - Find the previous node with the same parent.
2135 * @mas: the maple state
2136 *
2137 * Return: True if there is a previous sibling, false otherwise.
2138 */
2139static inline bool mas_prev_sibling(struct ma_state *mas)
2140{
2141 unsigned int p_slot = mte_parent_slot(enode: mas->node);
2142
2143 if (mte_is_root(node: mas->node))
2144 return false;
2145
2146 if (!p_slot)
2147 return false;
2148
2149 mas_ascend(mas);
2150 mas->offset = p_slot - 1;
2151 mas_descend(mas);
2152 return true;
2153}
2154
2155/*
2156 * mas_next_sibling() - Find the next node with the same parent.
2157 * @mas: the maple state
2158 *
2159 * Return: true if there is a next sibling, false otherwise.
2160 */
2161static inline bool mas_next_sibling(struct ma_state *mas)
2162{
2163 MA_STATE(parent, mas->tree, mas->index, mas->last);
2164
2165 if (mte_is_root(node: mas->node))
2166 return false;
2167
2168 parent = *mas;
2169 mas_ascend(mas: &parent);
2170 parent.offset = mte_parent_slot(enode: mas->node) + 1;
2171 if (parent.offset > mas_data_end(mas: &parent))
2172 return false;
2173
2174 *mas = parent;
2175 mas_descend(mas);
2176 return true;
2177}
2178
2179/*
2180 * mte_node_or_none() - Set the enode and state.
2181 * @enode: The encoded maple node.
2182 *
2183 * Set the node to the enode and the status.
2184 */
2185static inline void mas_node_or_none(struct ma_state *mas,
2186 struct maple_enode *enode)
2187{
2188 if (enode) {
2189 mas->node = enode;
2190 mas->status = ma_active;
2191 } else {
2192 mas->node = NULL;
2193 mas->status = ma_none;
2194 }
2195}
2196
2197/*
2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2199 * @wr_mas: The maple write state
2200 *
2201 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2202 */
2203static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2204{
2205 struct ma_state *mas = wr_mas->mas;
2206 unsigned char count, offset;
2207
2208 if (unlikely(ma_is_dense(wr_mas->type))) {
2209 wr_mas->r_max = wr_mas->r_min = mas->index;
2210 mas->offset = mas->index = mas->min;
2211 return;
2212 }
2213
2214 wr_mas->node = mas_mn(mas: wr_mas->mas);
2215 wr_mas->pivots = ma_pivots(node: wr_mas->node, type: wr_mas->type);
2216 count = mas->end = ma_data_end(node: wr_mas->node, type: wr_mas->type,
2217 pivots: wr_mas->pivots, max: mas->max);
2218 offset = mas->offset;
2219
2220 while (offset < count && mas->index > wr_mas->pivots[offset])
2221 offset++;
2222
2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224 wr_mas->r_min = mas_safe_min(mas, pivots: wr_mas->pivots, offset);
2225 wr_mas->offset_end = mas->offset = offset;
2226}
2227
2228/*
2229 * mast_rebalance_next() - Rebalance against the next node
2230 * @mast: The maple subtree state
2231 * @old_r: The encoded maple node to the right (next node).
2232 */
2233static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2234{
2235 unsigned char b_end = mast->bn->b_end;
2236
2237 mas_mab_cp(mas: mast->orig_r, mas_start: 0, mt_slot_count(mast->orig_r->node),
2238 b_node: mast->bn, mab_start: b_end);
2239 mast->orig_r->last = mast->orig_r->max;
2240}
2241
2242/*
2243 * mast_rebalance_prev() - Rebalance against the previous node
2244 * @mast: The maple subtree state
2245 * @old_l: The encoded maple node to the left (previous node)
2246 */
2247static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2248{
2249 unsigned char end = mas_data_end(mas: mast->orig_l) + 1;
2250 unsigned char b_end = mast->bn->b_end;
2251
2252 mab_shift_right(b_node: mast->bn, shift: end);
2253 mas_mab_cp(mas: mast->orig_l, mas_start: 0, mas_end: end - 1, b_node: mast->bn, mab_start: 0);
2254 mast->l->min = mast->orig_l->min;
2255 mast->orig_l->index = mast->orig_l->min;
2256 mast->bn->b_end = end + b_end;
2257 mast->l->offset += end;
2258}
2259
2260/*
2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2262 * the node to the right. Checking the nodes to the right then the left at each
2263 * level upwards until root is reached.
2264 * Data is copied into the @mast->bn.
2265 * @mast: The maple_subtree_state.
2266 */
2267static inline
2268bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2269{
2270 struct ma_state r_tmp = *mast->orig_r;
2271 struct ma_state l_tmp = *mast->orig_l;
2272 unsigned char depth = 0;
2273
2274 do {
2275 mas_ascend(mas: mast->orig_r);
2276 mas_ascend(mas: mast->orig_l);
2277 depth++;
2278 if (mast->orig_r->offset < mas_data_end(mas: mast->orig_r)) {
2279 mast->orig_r->offset++;
2280 do {
2281 mas_descend(mas: mast->orig_r);
2282 mast->orig_r->offset = 0;
2283 } while (--depth);
2284
2285 mast_rebalance_next(mast);
2286 *mast->orig_l = l_tmp;
2287 return true;
2288 } else if (mast->orig_l->offset != 0) {
2289 mast->orig_l->offset--;
2290 do {
2291 mas_descend(mas: mast->orig_l);
2292 mast->orig_l->offset =
2293 mas_data_end(mas: mast->orig_l);
2294 } while (--depth);
2295
2296 mast_rebalance_prev(mast);
2297 *mast->orig_r = r_tmp;
2298 return true;
2299 }
2300 } while (!mte_is_root(node: mast->orig_r->node));
2301
2302 *mast->orig_r = r_tmp;
2303 *mast->orig_l = l_tmp;
2304 return false;
2305}
2306
2307/*
2308 * mast_ascend() - Ascend the original left and right maple states.
2309 * @mast: the maple subtree state.
2310 *
2311 * Ascend the original left and right sides. Set the offsets to point to the
2312 * data already in the new tree (@mast->l and @mast->r).
2313 */
2314static inline void mast_ascend(struct maple_subtree_state *mast)
2315{
2316 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2317 mas_ascend(mas: mast->orig_l);
2318 mas_ascend(mas: mast->orig_r);
2319
2320 mast->orig_r->offset = 0;
2321 mast->orig_r->index = mast->r->max;
2322 /* last should be larger than or equal to index */
2323 if (mast->orig_r->last < mast->orig_r->index)
2324 mast->orig_r->last = mast->orig_r->index;
2325
2326 wr_mas.type = mte_node_type(entry: mast->orig_r->node);
2327 mas_wr_node_walk(wr_mas: &wr_mas);
2328 /* Set up the left side of things */
2329 mast->orig_l->offset = 0;
2330 mast->orig_l->index = mast->l->min;
2331 wr_mas.mas = mast->orig_l;
2332 wr_mas.type = mte_node_type(entry: mast->orig_l->node);
2333 mas_wr_node_walk(wr_mas: &wr_mas);
2334
2335 mast->bn->type = wr_mas.type;
2336}
2337
2338/*
2339 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2340 * @mas: the maple state with the allocations.
2341 * @b_node: the maple_big_node with the type encoding.
2342 *
2343 * Use the node type from the maple_big_node to allocate a new node from the
2344 * ma_state. This function exists mainly for code readability.
2345 *
2346 * Return: A new maple encoded node
2347 */
2348static inline struct maple_enode
2349*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2350{
2351 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), type: b_node->type);
2352}
2353
2354/*
2355 * mas_mab_to_node() - Set up right and middle nodes
2356 *
2357 * @mas: the maple state that contains the allocations.
2358 * @b_node: the node which contains the data.
2359 * @left: The pointer which will have the left node
2360 * @right: The pointer which may have the right node
2361 * @middle: the pointer which may have the middle node (rare)
2362 * @mid_split: the split location for the middle node
2363 *
2364 * Return: the split of left.
2365 */
2366static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2367 struct maple_big_node *b_node, struct maple_enode **left,
2368 struct maple_enode **right, struct maple_enode **middle,
2369 unsigned char *mid_split, unsigned long min)
2370{
2371 unsigned char split = 0;
2372 unsigned char slot_count = mt_slots[b_node->type];
2373
2374 *left = mas_new_ma_node(mas, b_node);
2375 *right = NULL;
2376 *middle = NULL;
2377 *mid_split = 0;
2378
2379 if (b_node->b_end < slot_count) {
2380 split = b_node->b_end;
2381 } else {
2382 split = mab_calc_split(mas, bn: b_node, mid_split, min);
2383 *right = mas_new_ma_node(mas, b_node);
2384 }
2385
2386 if (*mid_split)
2387 *middle = mas_new_ma_node(mas, b_node);
2388
2389 return split;
2390
2391}
2392
2393/*
2394 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2395 * pointer.
2396 * @b_node - the big node to add the entry
2397 * @mas - the maple state to get the pivot (mas->max)
2398 * @entry - the entry to add, if NULL nothing happens.
2399 */
2400static inline void mab_set_b_end(struct maple_big_node *b_node,
2401 struct ma_state *mas,
2402 void *entry)
2403{
2404 if (!entry)
2405 return;
2406
2407 b_node->slot[b_node->b_end] = entry;
2408 if (mt_is_alloc(mt: mas->tree))
2409 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2410 b_node->pivot[b_node->b_end++] = mas->max;
2411}
2412
2413/*
2414 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2415 * of @mas->node to either @left or @right, depending on @slot and @split
2416 *
2417 * @mas - the maple state with the node that needs a parent
2418 * @left - possible parent 1
2419 * @right - possible parent 2
2420 * @slot - the slot the mas->node was placed
2421 * @split - the split location between @left and @right
2422 */
2423static inline void mas_set_split_parent(struct ma_state *mas,
2424 struct maple_enode *left,
2425 struct maple_enode *right,
2426 unsigned char *slot, unsigned char split)
2427{
2428 if (mas_is_none(mas))
2429 return;
2430
2431 if ((*slot) <= split)
2432 mas_set_parent(mas, enode: mas->node, parent: left, slot: *slot);
2433 else if (right)
2434 mas_set_parent(mas, enode: mas->node, parent: right, slot: (*slot) - split - 1);
2435
2436 (*slot)++;
2437}
2438
2439/*
2440 * mte_mid_split_check() - Check if the next node passes the mid-split
2441 * @**l: Pointer to left encoded maple node.
2442 * @**m: Pointer to middle encoded maple node.
2443 * @**r: Pointer to right encoded maple node.
2444 * @slot: The offset
2445 * @*split: The split location.
2446 * @mid_split: The middle split.
2447 */
2448static inline void mte_mid_split_check(struct maple_enode **l,
2449 struct maple_enode **r,
2450 struct maple_enode *right,
2451 unsigned char slot,
2452 unsigned char *split,
2453 unsigned char mid_split)
2454{
2455 if (*r == right)
2456 return;
2457
2458 if (slot < mid_split)
2459 return;
2460
2461 *l = *r;
2462 *r = right;
2463 *split = mid_split;
2464}
2465
2466/*
2467 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2468 * is taken from @mast->l.
2469 * @mast - the maple subtree state
2470 * @left - the left node
2471 * @right - the right node
2472 * @split - the split location.
2473 */
2474static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2475 struct maple_enode *left,
2476 struct maple_enode *middle,
2477 struct maple_enode *right,
2478 unsigned char split,
2479 unsigned char mid_split)
2480{
2481 unsigned char slot;
2482 struct maple_enode *l = left;
2483 struct maple_enode *r = right;
2484
2485 if (mas_is_none(mas: mast->l))
2486 return;
2487
2488 if (middle)
2489 r = middle;
2490
2491 slot = mast->l->offset;
2492
2493 mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split);
2494 mas_set_split_parent(mas: mast->l, left: l, right: r, slot: &slot, split);
2495
2496 mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split);
2497 mas_set_split_parent(mas: mast->m, left: l, right: r, slot: &slot, split);
2498
2499 mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split);
2500 mas_set_split_parent(mas: mast->r, left: l, right: r, slot: &slot, split);
2501}
2502
2503/*
2504 * mas_topiary_node() - Dispose of a single node
2505 * @mas: The maple state for pushing nodes
2506 * @enode: The encoded maple node
2507 * @in_rcu: If the tree is in rcu mode
2508 *
2509 * The node will either be RCU freed or pushed back on the maple state.
2510 */
2511static inline void mas_topiary_node(struct ma_state *mas,
2512 struct ma_state *tmp_mas, bool in_rcu)
2513{
2514 struct maple_node *tmp;
2515 struct maple_enode *enode;
2516
2517 if (mas_is_none(mas: tmp_mas))
2518 return;
2519
2520 enode = tmp_mas->node;
2521 tmp = mte_to_node(entry: enode);
2522 mte_set_node_dead(mn: enode);
2523 if (in_rcu)
2524 ma_free_rcu(node: tmp);
2525 else
2526 mas_push_node(mas, used: tmp);
2527}
2528
2529/*
2530 * mas_topiary_replace() - Replace the data with new data, then repair the
2531 * parent links within the new tree. Iterate over the dead sub-tree and collect
2532 * the dead subtrees and topiary the nodes that are no longer of use.
2533 *
2534 * The new tree will have up to three children with the correct parent. Keep
2535 * track of the new entries as they need to be followed to find the next level
2536 * of new entries.
2537 *
2538 * The old tree will have up to three children with the old parent. Keep track
2539 * of the old entries as they may have more nodes below replaced. Nodes within
2540 * [index, last] are dead subtrees, others need to be freed and followed.
2541 *
2542 * @mas: The maple state pointing at the new data
2543 * @old_enode: The maple encoded node being replaced
2544 *
2545 */
2546static inline void mas_topiary_replace(struct ma_state *mas,
2547 struct maple_enode *old_enode)
2548{
2549 struct ma_state tmp[3], tmp_next[3];
2550 MA_TOPIARY(subtrees, mas->tree);
2551 bool in_rcu;
2552 int i, n;
2553
2554 /* Place data in tree & then mark node as old */
2555 mas_put_in_tree(mas, old_enode);
2556
2557 /* Update the parent pointers in the tree */
2558 tmp[0] = *mas;
2559 tmp[0].offset = 0;
2560 tmp[1].status = ma_none;
2561 tmp[2].status = ma_none;
2562 while (!mte_is_leaf(entry: tmp[0].node)) {
2563 n = 0;
2564 for (i = 0; i < 3; i++) {
2565 if (mas_is_none(mas: &tmp[i]))
2566 continue;
2567
2568 while (n < 3) {
2569 if (!mas_find_child(mas: &tmp[i], child: &tmp_next[n]))
2570 break;
2571 n++;
2572 }
2573
2574 mas_adopt_children(mas: &tmp[i], parent: tmp[i].node);
2575 }
2576
2577 if (MAS_WARN_ON(mas, n == 0))
2578 break;
2579
2580 while (n < 3)
2581 tmp_next[n++].status = ma_none;
2582
2583 for (i = 0; i < 3; i++)
2584 tmp[i] = tmp_next[i];
2585 }
2586
2587 /* Collect the old nodes that need to be discarded */
2588 if (mte_is_leaf(entry: old_enode))
2589 return mas_free(mas, used: old_enode);
2590
2591 tmp[0] = *mas;
2592 tmp[0].offset = 0;
2593 tmp[0].node = old_enode;
2594 tmp[1].status = ma_none;
2595 tmp[2].status = ma_none;
2596 in_rcu = mt_in_rcu(mt: mas->tree);
2597 do {
2598 n = 0;
2599 for (i = 0; i < 3; i++) {
2600 if (mas_is_none(mas: &tmp[i]))
2601 continue;
2602
2603 while (n < 3) {
2604 if (!mas_find_child(mas: &tmp[i], child: &tmp_next[n]))
2605 break;
2606
2607 if ((tmp_next[n].min >= tmp_next->index) &&
2608 (tmp_next[n].max <= tmp_next->last)) {
2609 mat_add(mat: &subtrees, dead_enode: tmp_next[n].node);
2610 tmp_next[n].status = ma_none;
2611 } else {
2612 n++;
2613 }
2614 }
2615 }
2616
2617 if (MAS_WARN_ON(mas, n == 0))
2618 break;
2619
2620 while (n < 3)
2621 tmp_next[n++].status = ma_none;
2622
2623 for (i = 0; i < 3; i++) {
2624 mas_topiary_node(mas, tmp_mas: &tmp[i], in_rcu);
2625 tmp[i] = tmp_next[i];
2626 }
2627 } while (!mte_is_leaf(entry: tmp[0].node));
2628
2629 for (i = 0; i < 3; i++)
2630 mas_topiary_node(mas, tmp_mas: &tmp[i], in_rcu);
2631
2632 mas_mat_destroy(mas, mat: &subtrees);
2633}
2634
2635/*
2636 * mas_wmb_replace() - Write memory barrier and replace
2637 * @mas: The maple state
2638 * @old: The old maple encoded node that is being replaced.
2639 *
2640 * Updates gap as necessary.
2641 */
2642static inline void mas_wmb_replace(struct ma_state *mas,
2643 struct maple_enode *old_enode)
2644{
2645 /* Insert the new data in the tree */
2646 mas_topiary_replace(mas, old_enode);
2647
2648 if (mte_is_leaf(entry: mas->node))
2649 return;
2650
2651 mas_update_gap(mas);
2652}
2653
2654/*
2655 * mast_cp_to_nodes() - Copy data out to nodes.
2656 * @mast: The maple subtree state
2657 * @left: The left encoded maple node
2658 * @middle: The middle encoded maple node
2659 * @right: The right encoded maple node
2660 * @split: The location to split between left and (middle ? middle : right)
2661 * @mid_split: The location to split between middle and right.
2662 */
2663static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2664 struct maple_enode *left, struct maple_enode *middle,
2665 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2666{
2667 bool new_lmax = true;
2668
2669 mas_node_or_none(mas: mast->l, enode: left);
2670 mas_node_or_none(mas: mast->m, enode: middle);
2671 mas_node_or_none(mas: mast->r, enode: right);
2672
2673 mast->l->min = mast->orig_l->min;
2674 if (split == mast->bn->b_end) {
2675 mast->l->max = mast->orig_r->max;
2676 new_lmax = false;
2677 }
2678
2679 mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: split, mas: mast->l, new_max: new_lmax);
2680
2681 if (middle) {
2682 mab_mas_cp(b_node: mast->bn, mab_start: 1 + split, mab_end: mid_split, mas: mast->m, new_max: true);
2683 mast->m->min = mast->bn->pivot[split] + 1;
2684 split = mid_split;
2685 }
2686
2687 mast->r->max = mast->orig_r->max;
2688 if (right) {
2689 mab_mas_cp(b_node: mast->bn, mab_start: 1 + split, mab_end: mast->bn->b_end, mas: mast->r, new_max: false);
2690 mast->r->min = mast->bn->pivot[split] + 1;
2691 }
2692}
2693
2694/*
2695 * mast_combine_cp_left - Copy in the original left side of the tree into the
2696 * combined data set in the maple subtree state big node.
2697 * @mast: The maple subtree state
2698 */
2699static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2700{
2701 unsigned char l_slot = mast->orig_l->offset;
2702
2703 if (!l_slot)
2704 return;
2705
2706 mas_mab_cp(mas: mast->orig_l, mas_start: 0, mas_end: l_slot - 1, b_node: mast->bn, mab_start: 0);
2707}
2708
2709/*
2710 * mast_combine_cp_right: Copy in the original right side of the tree into the
2711 * combined data set in the maple subtree state big node.
2712 * @mast: The maple subtree state
2713 */
2714static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2715{
2716 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2717 return;
2718
2719 mas_mab_cp(mas: mast->orig_r, mas_start: mast->orig_r->offset + 1,
2720 mt_slot_count(mast->orig_r->node), b_node: mast->bn,
2721 mab_start: mast->bn->b_end);
2722 mast->orig_r->last = mast->orig_r->max;
2723}
2724
2725/*
2726 * mast_sufficient: Check if the maple subtree state has enough data in the big
2727 * node to create at least one sufficient node
2728 * @mast: the maple subtree state
2729 */
2730static inline bool mast_sufficient(struct maple_subtree_state *mast)
2731{
2732 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2733 return true;
2734
2735 return false;
2736}
2737
2738/*
2739 * mast_overflow: Check if there is too much data in the subtree state for a
2740 * single node.
2741 * @mast: The maple subtree state
2742 */
2743static inline bool mast_overflow(struct maple_subtree_state *mast)
2744{
2745 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2746 return true;
2747
2748 return false;
2749}
2750
2751static inline void *mtree_range_walk(struct ma_state *mas)
2752{
2753 unsigned long *pivots;
2754 unsigned char offset;
2755 struct maple_node *node;
2756 struct maple_enode *next, *last;
2757 enum maple_type type;
2758 void __rcu **slots;
2759 unsigned char end;
2760 unsigned long max, min;
2761 unsigned long prev_max, prev_min;
2762
2763 next = mas->node;
2764 min = mas->min;
2765 max = mas->max;
2766 do {
2767 last = next;
2768 node = mte_to_node(entry: next);
2769 type = mte_node_type(entry: next);
2770 pivots = ma_pivots(node, type);
2771 end = ma_data_end(node, type, pivots, max);
2772 prev_min = min;
2773 prev_max = max;
2774 if (pivots[0] >= mas->index) {
2775 offset = 0;
2776 max = pivots[0];
2777 goto next;
2778 }
2779
2780 offset = 1;
2781 while (offset < end) {
2782 if (pivots[offset] >= mas->index) {
2783 max = pivots[offset];
2784 break;
2785 }
2786 offset++;
2787 }
2788
2789 min = pivots[offset - 1] + 1;
2790next:
2791 slots = ma_slots(mn: node, mt: type);
2792 next = mt_slot(mt: mas->tree, slots, offset);
2793 if (unlikely(ma_dead_node(node)))
2794 goto dead_node;
2795 } while (!ma_is_leaf(type));
2796
2797 mas->end = end;
2798 mas->offset = offset;
2799 mas->index = min;
2800 mas->last = max;
2801 mas->min = prev_min;
2802 mas->max = prev_max;
2803 mas->node = last;
2804 return (void *)next;
2805
2806dead_node:
2807 mas_reset(mas);
2808 return NULL;
2809}
2810
2811/*
2812 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2813 * @mas: The starting maple state
2814 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2815 * @count: The estimated count of iterations needed.
2816 *
2817 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2818 * is hit. First @b_node is split into two entries which are inserted into the
2819 * next iteration of the loop. @b_node is returned populated with the final
2820 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2821 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2822 * to account of what has been copied into the new sub-tree. The update of
2823 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2824 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2825 * the new sub-tree in case the sub-tree becomes the full tree.
2826 *
2827 * Return: the number of elements in b_node during the last loop.
2828 */
2829static int mas_spanning_rebalance(struct ma_state *mas,
2830 struct maple_subtree_state *mast, unsigned char count)
2831{
2832 unsigned char split, mid_split;
2833 unsigned char slot = 0;
2834 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2835 struct maple_enode *old_enode;
2836
2837 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2838 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2839 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2840
2841 /*
2842 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2843 * Rebalancing is done by use of the ``struct maple_topiary``.
2844 */
2845 mast->l = &l_mas;
2846 mast->m = &m_mas;
2847 mast->r = &r_mas;
2848 l_mas.status = r_mas.status = m_mas.status = ma_none;
2849
2850 /* Check if this is not root and has sufficient data. */
2851 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2852 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2853 mast_spanning_rebalance(mast);
2854
2855 l_mas.depth = 0;
2856
2857 /*
2858 * Each level of the tree is examined and balanced, pushing data to the left or
2859 * right, or rebalancing against left or right nodes is employed to avoid
2860 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2861 * the tree is created, there may be a mix of new and old nodes. The old nodes
2862 * will have the incorrect parent pointers and currently be in two trees: the
2863 * original tree and the partially new tree. To remedy the parent pointers in
2864 * the old tree, the new data is swapped into the active tree and a walk down
2865 * the tree is performed and the parent pointers are updated.
2866 * See mas_topiary_replace() for more information.
2867 */
2868 while (count--) {
2869 mast->bn->b_end--;
2870 mast->bn->type = mte_node_type(entry: mast->orig_l->node);
2871 split = mas_mab_to_node(mas, b_node: mast->bn, left: &left, right: &right, middle: &middle,
2872 mid_split: &mid_split, min: mast->orig_l->min);
2873 mast_set_split_parents(mast, left, middle, right, split,
2874 mid_split);
2875 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2876
2877 /*
2878 * Copy data from next level in the tree to mast->bn from next
2879 * iteration
2880 */
2881 memset(mast->bn, 0, sizeof(struct maple_big_node));
2882 mast->bn->type = mte_node_type(entry: left);
2883 l_mas.depth++;
2884
2885 /* Root already stored in l->node. */
2886 if (mas_is_root_limits(mas: mast->l))
2887 goto new_root;
2888
2889 mast_ascend(mast);
2890 mast_combine_cp_left(mast);
2891 l_mas.offset = mast->bn->b_end;
2892 mab_set_b_end(b_node: mast->bn, mas: &l_mas, entry: left);
2893 mab_set_b_end(b_node: mast->bn, mas: &m_mas, entry: middle);
2894 mab_set_b_end(b_node: mast->bn, mas: &r_mas, entry: right);
2895
2896 /* Copy anything necessary out of the right node. */
2897 mast_combine_cp_right(mast);
2898 mast->orig_l->last = mast->orig_l->max;
2899
2900 if (mast_sufficient(mast))
2901 continue;
2902
2903 if (mast_overflow(mast))
2904 continue;
2905
2906 /* May be a new root stored in mast->bn */
2907 if (mas_is_root_limits(mas: mast->orig_l))
2908 break;
2909
2910 mast_spanning_rebalance(mast);
2911
2912 /* rebalancing from other nodes may require another loop. */
2913 if (!count)
2914 count++;
2915 }
2916
2917 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2918 type: mte_node_type(entry: mast->orig_l->node));
2919 l_mas.depth++;
2920 mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: mt_slots[mast->bn->type] - 1, mas: &l_mas, new_max: true);
2921 mas_set_parent(mas, enode: left, parent: l_mas.node, slot);
2922 if (middle)
2923 mas_set_parent(mas, enode: middle, parent: l_mas.node, slot: ++slot);
2924
2925 if (right)
2926 mas_set_parent(mas, enode: right, parent: l_mas.node, slot: ++slot);
2927
2928 if (mas_is_root_limits(mas: mast->l)) {
2929new_root:
2930 mas_mn(mas: mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2931 while (!mte_is_root(node: mast->orig_l->node))
2932 mast_ascend(mast);
2933 } else {
2934 mas_mn(mas: &l_mas)->parent = mas_mn(mas: mast->orig_l)->parent;
2935 }
2936
2937 old_enode = mast->orig_l->node;
2938 mas->depth = l_mas.depth;
2939 mas->node = l_mas.node;
2940 mas->min = l_mas.min;
2941 mas->max = l_mas.max;
2942 mas->offset = l_mas.offset;
2943 mas_wmb_replace(mas, old_enode);
2944 mtree_range_walk(mas);
2945 return mast->bn->b_end;
2946}
2947
2948/*
2949 * mas_rebalance() - Rebalance a given node.
2950 * @mas: The maple state
2951 * @b_node: The big maple node.
2952 *
2953 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2954 * Continue upwards until tree is sufficient.
2955 *
2956 * Return: the number of elements in b_node during the last loop.
2957 */
2958static inline int mas_rebalance(struct ma_state *mas,
2959 struct maple_big_node *b_node)
2960{
2961 char empty_count = mas_mt_height(mas);
2962 struct maple_subtree_state mast;
2963 unsigned char shift, b_end = ++b_node->b_end;
2964
2965 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2966 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2967
2968 trace_ma_op(fn: __func__, mas);
2969
2970 /*
2971 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2972 * against the node to the right if it exists, otherwise the node to the
2973 * left of this node is rebalanced against this node. If rebalancing
2974 * causes just one node to be produced instead of two, then the parent
2975 * is also examined and rebalanced if it is insufficient. Every level
2976 * tries to combine the data in the same way. If one node contains the
2977 * entire range of the tree, then that node is used as a new root node.
2978 */
2979 mas_node_count(mas, count: empty_count * 2 - 1);
2980 if (mas_is_err(mas))
2981 return 0;
2982
2983 mast.orig_l = &l_mas;
2984 mast.orig_r = &r_mas;
2985 mast.bn = b_node;
2986 mast.bn->type = mte_node_type(entry: mas->node);
2987
2988 l_mas = r_mas = *mas;
2989
2990 if (mas_next_sibling(mas: &r_mas)) {
2991 mas_mab_cp(mas: &r_mas, mas_start: 0, mt_slot_count(r_mas.node), b_node, mab_start: b_end);
2992 r_mas.last = r_mas.index = r_mas.max;
2993 } else {
2994 mas_prev_sibling(mas: &l_mas);
2995 shift = mas_data_end(mas: &l_mas) + 1;
2996 mab_shift_right(b_node, shift);
2997 mas->offset += shift;
2998 mas_mab_cp(mas: &l_mas, mas_start: 0, mas_end: shift - 1, b_node, mab_start: 0);
2999 b_node->b_end = shift + b_end;
3000 l_mas.index = l_mas.last = l_mas.min;
3001 }
3002
3003 return mas_spanning_rebalance(mas, mast: &mast, count: empty_count);
3004}
3005
3006/*
3007 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3008 * state.
3009 * @mas: The maple state
3010 * @end: The end of the left-most node.
3011 *
3012 * During a mass-insert event (such as forking), it may be necessary to
3013 * rebalance the left-most node when it is not sufficient.
3014 */
3015static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3016{
3017 enum maple_type mt = mte_node_type(entry: mas->node);
3018 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3019 struct maple_enode *eparent, *old_eparent;
3020 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3021 void __rcu **l_slots, **slots;
3022 unsigned long *l_pivs, *pivs, gap;
3023 bool in_rcu = mt_in_rcu(mt: mas->tree);
3024
3025 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3026
3027 l_mas = *mas;
3028 mas_prev_sibling(mas: &l_mas);
3029
3030 /* set up node. */
3031 if (in_rcu) {
3032 /* Allocate for both left and right as well as parent. */
3033 mas_node_count(mas, count: 3);
3034 if (mas_is_err(mas))
3035 return;
3036
3037 newnode = mas_pop_node(mas);
3038 } else {
3039 newnode = &reuse;
3040 }
3041
3042 node = mas_mn(mas);
3043 newnode->parent = node->parent;
3044 slots = ma_slots(mn: newnode, mt);
3045 pivs = ma_pivots(node: newnode, type: mt);
3046 left = mas_mn(mas: &l_mas);
3047 l_slots = ma_slots(mn: left, mt);
3048 l_pivs = ma_pivots(node: left, type: mt);
3049 if (!l_slots[split])
3050 split++;
3051 tmp = mas_data_end(mas: &l_mas) - split;
3052
3053 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3054 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3055 pivs[tmp] = l_mas.max;
3056 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3057 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3058
3059 l_mas.max = l_pivs[split];
3060 mas->min = l_mas.max + 1;
3061 old_eparent = mt_mk_node(node: mte_parent(enode: l_mas.node),
3062 type: mas_parent_type(mas: &l_mas, enode: l_mas.node));
3063 tmp += end;
3064 if (!in_rcu) {
3065 unsigned char max_p = mt_pivots[mt];
3066 unsigned char max_s = mt_slots[mt];
3067
3068 if (tmp < max_p)
3069 memset(pivs + tmp, 0,
3070 sizeof(unsigned long) * (max_p - tmp));
3071
3072 if (tmp < mt_slots[mt])
3073 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3074
3075 memcpy(node, newnode, sizeof(struct maple_node));
3076 ma_set_meta(mn: node, mt, offset: 0, end: tmp - 1);
3077 mte_set_pivot(mn: old_eparent, piv: mte_parent_slot(enode: l_mas.node),
3078 val: l_pivs[split]);
3079
3080 /* Remove data from l_pivs. */
3081 tmp = split + 1;
3082 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3083 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3084 ma_set_meta(mn: left, mt, offset: 0, end: split);
3085 eparent = old_eparent;
3086
3087 goto done;
3088 }
3089
3090 /* RCU requires replacing both l_mas, mas, and parent. */
3091 mas->node = mt_mk_node(node: newnode, type: mt);
3092 ma_set_meta(mn: newnode, mt, offset: 0, end: tmp);
3093
3094 new_left = mas_pop_node(mas);
3095 new_left->parent = left->parent;
3096 mt = mte_node_type(entry: l_mas.node);
3097 slots = ma_slots(mn: new_left, mt);
3098 pivs = ma_pivots(node: new_left, type: mt);
3099 memcpy(slots, l_slots, sizeof(void *) * split);
3100 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3101 ma_set_meta(mn: new_left, mt, offset: 0, end: split);
3102 l_mas.node = mt_mk_node(node: new_left, type: mt);
3103
3104 /* replace parent. */
3105 offset = mte_parent_slot(enode: mas->node);
3106 mt = mas_parent_type(mas: &l_mas, enode: l_mas.node);
3107 parent = mas_pop_node(mas);
3108 slots = ma_slots(mn: parent, mt);
3109 pivs = ma_pivots(node: parent, type: mt);
3110 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3111 rcu_assign_pointer(slots[offset], mas->node);
3112 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3113 pivs[offset - 1] = l_mas.max;
3114 eparent = mt_mk_node(node: parent, type: mt);
3115done:
3116 gap = mas_leaf_max_gap(mas);
3117 mte_set_gap(mn: eparent, gap: mte_parent_slot(enode: mas->node), val: gap);
3118 gap = mas_leaf_max_gap(mas: &l_mas);
3119 mte_set_gap(mn: eparent, gap: mte_parent_slot(enode: l_mas.node), val: gap);
3120 mas_ascend(mas);
3121
3122 if (in_rcu) {
3123 mas_replace_node(mas, old_enode: old_eparent);
3124 mas_adopt_children(mas, parent: mas->node);
3125 }
3126
3127 mas_update_gap(mas);
3128}
3129
3130/*
3131 * mas_split_final_node() - Split the final node in a subtree operation.
3132 * @mast: the maple subtree state
3133 * @mas: The maple state
3134 * @height: The height of the tree in case it's a new root.
3135 */
3136static inline void mas_split_final_node(struct maple_subtree_state *mast,
3137 struct ma_state *mas, int height)
3138{
3139 struct maple_enode *ancestor;
3140
3141 if (mte_is_root(node: mas->node)) {
3142 if (mt_is_alloc(mt: mas->tree))
3143 mast->bn->type = maple_arange_64;
3144 else
3145 mast->bn->type = maple_range_64;
3146 mas->depth = height;
3147 }
3148 /*
3149 * Only a single node is used here, could be root.
3150 * The Big_node data should just fit in a single node.
3151 */
3152 ancestor = mas_new_ma_node(mas, b_node: mast->bn);
3153 mas_set_parent(mas, enode: mast->l->node, parent: ancestor, slot: mast->l->offset);
3154 mas_set_parent(mas, enode: mast->r->node, parent: ancestor, slot: mast->r->offset);
3155 mte_to_node(entry: ancestor)->parent = mas_mn(mas)->parent;
3156
3157 mast->l->node = ancestor;
3158 mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: mt_slots[mast->bn->type] - 1, mas: mast->l, new_max: true);
3159 mas->offset = mast->bn->b_end - 1;
3160}
3161
3162/*
3163 * mast_fill_bnode() - Copy data into the big node in the subtree state
3164 * @mast: The maple subtree state
3165 * @mas: the maple state
3166 * @skip: The number of entries to skip for new nodes insertion.
3167 */
3168static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3169 struct ma_state *mas,
3170 unsigned char skip)
3171{
3172 bool cp = true;
3173 unsigned char split;
3174
3175 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3176 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3177 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3178 mast->bn->b_end = 0;
3179
3180 if (mte_is_root(node: mas->node)) {
3181 cp = false;
3182 } else {
3183 mas_ascend(mas);
3184 mas->offset = mte_parent_slot(enode: mas->node);
3185 }
3186
3187 if (cp && mast->l->offset)
3188 mas_mab_cp(mas, mas_start: 0, mas_end: mast->l->offset - 1, b_node: mast->bn, mab_start: 0);
3189
3190 split = mast->bn->b_end;
3191 mab_set_b_end(b_node: mast->bn, mas: mast->l, entry: mast->l->node);
3192 mast->r->offset = mast->bn->b_end;
3193 mab_set_b_end(b_node: mast->bn, mas: mast->r, entry: mast->r->node);
3194 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3195 cp = false;
3196
3197 if (cp)
3198 mas_mab_cp(mas, mas_start: split + skip, mt_slot_count(mas->node) - 1,
3199 b_node: mast->bn, mab_start: mast->bn->b_end);
3200
3201 mast->bn->b_end--;
3202 mast->bn->type = mte_node_type(entry: mas->node);
3203}
3204
3205/*
3206 * mast_split_data() - Split the data in the subtree state big node into regular
3207 * nodes.
3208 * @mast: The maple subtree state
3209 * @mas: The maple state
3210 * @split: The location to split the big node
3211 */
3212static inline void mast_split_data(struct maple_subtree_state *mast,
3213 struct ma_state *mas, unsigned char split)
3214{
3215 unsigned char p_slot;
3216
3217 mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: split, mas: mast->l, new_max: true);
3218 mte_set_pivot(mn: mast->r->node, piv: 0, val: mast->r->max);
3219 mab_mas_cp(b_node: mast->bn, mab_start: split + 1, mab_end: mast->bn->b_end, mas: mast->r, new_max: false);
3220 mast->l->offset = mte_parent_slot(enode: mas->node);
3221 mast->l->max = mast->bn->pivot[split];
3222 mast->r->min = mast->l->max + 1;
3223 if (mte_is_leaf(entry: mas->node))
3224 return;
3225
3226 p_slot = mast->orig_l->offset;
3227 mas_set_split_parent(mas: mast->orig_l, left: mast->l->node, right: mast->r->node,
3228 slot: &p_slot, split);
3229 mas_set_split_parent(mas: mast->orig_r, left: mast->l->node, right: mast->r->node,
3230 slot: &p_slot, split);
3231}
3232
3233/*
3234 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3235 * data to the right or left node if there is room.
3236 * @mas: The maple state
3237 * @height: The current height of the maple state
3238 * @mast: The maple subtree state
3239 * @left: Push left or not.
3240 *
3241 * Keeping the height of the tree low means faster lookups.
3242 *
3243 * Return: True if pushed, false otherwise.
3244 */
3245static inline bool mas_push_data(struct ma_state *mas, int height,
3246 struct maple_subtree_state *mast, bool left)
3247{
3248 unsigned char slot_total = mast->bn->b_end;
3249 unsigned char end, space, split;
3250
3251 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3252 tmp_mas = *mas;
3253 tmp_mas.depth = mast->l->depth;
3254
3255 if (left && !mas_prev_sibling(mas: &tmp_mas))
3256 return false;
3257 else if (!left && !mas_next_sibling(mas: &tmp_mas))
3258 return false;
3259
3260 end = mas_data_end(mas: &tmp_mas);
3261 slot_total += end;
3262 space = 2 * mt_slot_count(mas->node) - 2;
3263 /* -2 instead of -1 to ensure there isn't a triple split */
3264 if (ma_is_leaf(type: mast->bn->type))
3265 space--;
3266
3267 if (mas->max == ULONG_MAX)
3268 space--;
3269
3270 if (slot_total >= space)
3271 return false;
3272
3273 /* Get the data; Fill mast->bn */
3274 mast->bn->b_end++;
3275 if (left) {
3276 mab_shift_right(b_node: mast->bn, shift: end + 1);
3277 mas_mab_cp(mas: &tmp_mas, mas_start: 0, mas_end: end, b_node: mast->bn, mab_start: 0);
3278 mast->bn->b_end = slot_total + 1;
3279 } else {
3280 mas_mab_cp(mas: &tmp_mas, mas_start: 0, mas_end: end, b_node: mast->bn, mab_start: mast->bn->b_end);
3281 }
3282
3283 /* Configure mast for splitting of mast->bn */
3284 split = mt_slots[mast->bn->type] - 2;
3285 if (left) {
3286 /* Switch mas to prev node */
3287 *mas = tmp_mas;
3288 /* Start using mast->l for the left side. */
3289 tmp_mas.node = mast->l->node;
3290 *mast->l = tmp_mas;
3291 } else {
3292 tmp_mas.node = mast->r->node;
3293 *mast->r = tmp_mas;
3294 split = slot_total - split;
3295 }
3296 split = mab_no_null_split(b_node: mast->bn, split, slot_count: mt_slots[mast->bn->type]);
3297 /* Update parent slot for split calculation. */
3298 if (left)
3299 mast->orig_l->offset += end + 1;
3300
3301 mast_split_data(mast, mas, split);
3302 mast_fill_bnode(mast, mas, skip: 2);
3303 mas_split_final_node(mast, mas, height: height + 1);
3304 return true;
3305}
3306
3307/*
3308 * mas_split() - Split data that is too big for one node into two.
3309 * @mas: The maple state
3310 * @b_node: The maple big node
3311 * Return: 1 on success, 0 on failure.
3312 */
3313static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3314{
3315 struct maple_subtree_state mast;
3316 int height = 0;
3317 unsigned char mid_split, split = 0;
3318 struct maple_enode *old;
3319
3320 /*
3321 * Splitting is handled differently from any other B-tree; the Maple
3322 * Tree splits upwards. Splitting up means that the split operation
3323 * occurs when the walk of the tree hits the leaves and not on the way
3324 * down. The reason for splitting up is that it is impossible to know
3325 * how much space will be needed until the leaf is (or leaves are)
3326 * reached. Since overwriting data is allowed and a range could
3327 * overwrite more than one range or result in changing one entry into 3
3328 * entries, it is impossible to know if a split is required until the
3329 * data is examined.
3330 *
3331 * Splitting is a balancing act between keeping allocations to a minimum
3332 * and avoiding a 'jitter' event where a tree is expanded to make room
3333 * for an entry followed by a contraction when the entry is removed. To
3334 * accomplish the balance, there are empty slots remaining in both left
3335 * and right nodes after a split.
3336 */
3337 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3338 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3339 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3340 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3341
3342 trace_ma_op(fn: __func__, mas);
3343 mas->depth = mas_mt_height(mas);
3344 /* Allocation failures will happen early. */
3345 mas_node_count(mas, count: 1 + mas->depth * 2);
3346 if (mas_is_err(mas))
3347 return 0;
3348
3349 mast.l = &l_mas;
3350 mast.r = &r_mas;
3351 mast.orig_l = &prev_l_mas;
3352 mast.orig_r = &prev_r_mas;
3353 mast.bn = b_node;
3354
3355 while (height++ <= mas->depth) {
3356 if (mt_slots[b_node->type] > b_node->b_end) {
3357 mas_split_final_node(mast: &mast, mas, height);
3358 break;
3359 }
3360
3361 l_mas = r_mas = *mas;
3362 l_mas.node = mas_new_ma_node(mas, b_node);
3363 r_mas.node = mas_new_ma_node(mas, b_node);
3364 /*
3365 * Another way that 'jitter' is avoided is to terminate a split up early if the
3366 * left or right node has space to spare. This is referred to as "pushing left"
3367 * or "pushing right" and is similar to the B* tree, except the nodes left or
3368 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3369 * is a significant savings.
3370 */
3371 /* Try to push left. */
3372 if (mas_push_data(mas, height, mast: &mast, left: true))
3373 break;
3374 /* Try to push right. */
3375 if (mas_push_data(mas, height, mast: &mast, left: false))
3376 break;
3377
3378 split = mab_calc_split(mas, bn: b_node, mid_split: &mid_split, min: prev_l_mas.min);
3379 mast_split_data(mast: &mast, mas, split);
3380 /*
3381 * Usually correct, mab_mas_cp in the above call overwrites
3382 * r->max.
3383 */
3384 mast.r->max = mas->max;
3385 mast_fill_bnode(mast: &mast, mas, skip: 1);
3386 prev_l_mas = *mast.l;
3387 prev_r_mas = *mast.r;
3388 }
3389
3390 /* Set the original node as dead */
3391 old = mas->node;
3392 mas->node = l_mas.node;
3393 mas_wmb_replace(mas, old_enode: old);
3394 mtree_range_walk(mas);
3395 return 1;
3396}
3397
3398/*
3399 * mas_reuse_node() - Reuse the node to store the data.
3400 * @wr_mas: The maple write state
3401 * @bn: The maple big node
3402 * @end: The end of the data.
3403 *
3404 * Will always return false in RCU mode.
3405 *
3406 * Return: True if node was reused, false otherwise.
3407 */
3408static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3409 struct maple_big_node *bn, unsigned char end)
3410{
3411 /* Need to be rcu safe. */
3412 if (mt_in_rcu(mt: wr_mas->mas->tree))
3413 return false;
3414
3415 if (end > bn->b_end) {
3416 int clear = mt_slots[wr_mas->type] - bn->b_end;
3417
3418 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3419 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3420 }
3421 mab_mas_cp(b_node: bn, mab_start: 0, mab_end: bn->b_end, mas: wr_mas->mas, new_max: false);
3422 return true;
3423}
3424
3425/*
3426 * mas_commit_b_node() - Commit the big node into the tree.
3427 * @wr_mas: The maple write state
3428 * @b_node: The maple big node
3429 * @end: The end of the data.
3430 */
3431static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3432 struct maple_big_node *b_node, unsigned char end)
3433{
3434 struct maple_node *node;
3435 struct maple_enode *old_enode;
3436 unsigned char b_end = b_node->b_end;
3437 enum maple_type b_type = b_node->type;
3438
3439 old_enode = wr_mas->mas->node;
3440 if ((b_end < mt_min_slots[b_type]) &&
3441 (!mte_is_root(node: old_enode)) &&
3442 (mas_mt_height(mas: wr_mas->mas) > 1))
3443 return mas_rebalance(mas: wr_mas->mas, b_node);
3444
3445 if (b_end >= mt_slots[b_type])
3446 return mas_split(mas: wr_mas->mas, b_node);
3447
3448 if (mas_reuse_node(wr_mas, bn: b_node, end))
3449 goto reuse_node;
3450
3451 mas_node_count(mas: wr_mas->mas, count: 1);
3452 if (mas_is_err(mas: wr_mas->mas))
3453 return 0;
3454
3455 node = mas_pop_node(mas: wr_mas->mas);
3456 node->parent = mas_mn(mas: wr_mas->mas)->parent;
3457 wr_mas->mas->node = mt_mk_node(node, type: b_type);
3458 mab_mas_cp(b_node, mab_start: 0, mab_end: b_end, mas: wr_mas->mas, new_max: false);
3459 mas_replace_node(mas: wr_mas->mas, old_enode);
3460reuse_node:
3461 mas_update_gap(mas: wr_mas->mas);
3462 wr_mas->mas->end = b_end;
3463 return 1;
3464}
3465
3466/*
3467 * mas_root_expand() - Expand a root to a node
3468 * @mas: The maple state
3469 * @entry: The entry to store into the tree
3470 */
3471static inline int mas_root_expand(struct ma_state *mas, void *entry)
3472{
3473 void *contents = mas_root_locked(mas);
3474 enum maple_type type = maple_leaf_64;
3475 struct maple_node *node;
3476 void __rcu **slots;
3477 unsigned long *pivots;
3478 int slot = 0;
3479
3480 mas_node_count(mas, count: 1);
3481 if (unlikely(mas_is_err(mas)))
3482 return 0;
3483
3484 node = mas_pop_node(mas);
3485 pivots = ma_pivots(node, type);
3486 slots = ma_slots(mn: node, mt: type);
3487 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3488 mas->node = mt_mk_node(node, type);
3489 mas->status = ma_active;
3490
3491 if (mas->index) {
3492 if (contents) {
3493 rcu_assign_pointer(slots[slot], contents);
3494 if (likely(mas->index > 1))
3495 slot++;
3496 }
3497 pivots[slot++] = mas->index - 1;
3498 }
3499
3500 rcu_assign_pointer(slots[slot], entry);
3501 mas->offset = slot;
3502 pivots[slot] = mas->last;
3503 if (mas->last != ULONG_MAX)
3504 pivots[++slot] = ULONG_MAX;
3505
3506 mas->depth = 1;
3507 mas_set_height(mas);
3508 ma_set_meta(mn: node, mt: maple_leaf_64, offset: 0, end: slot);
3509 /* swap the new root into the tree */
3510 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3511 return slot;
3512}
3513
3514static inline void mas_store_root(struct ma_state *mas, void *entry)
3515{
3516 if (likely((mas->last != 0) || (mas->index != 0)))
3517 mas_root_expand(mas, entry);
3518 else if (((unsigned long) (entry) & 3) == 2)
3519 mas_root_expand(mas, entry);
3520 else {
3521 rcu_assign_pointer(mas->tree->ma_root, entry);
3522 mas->status = ma_start;
3523 }
3524}
3525
3526/*
3527 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3528 * spans the node.
3529 * @mas: The maple state
3530 * @piv: The pivot value being written
3531 * @type: The maple node type
3532 * @entry: The data to write
3533 *
3534 * Spanning writes are writes that start in one node and end in another OR if
3535 * the write of a %NULL will cause the node to end with a %NULL.
3536 *
3537 * Return: True if this is a spanning write, false otherwise.
3538 */
3539static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3540{
3541 unsigned long max = wr_mas->r_max;
3542 unsigned long last = wr_mas->mas->last;
3543 enum maple_type type = wr_mas->type;
3544 void *entry = wr_mas->entry;
3545
3546 /* Contained in this pivot, fast path */
3547 if (last < max)
3548 return false;
3549
3550 if (ma_is_leaf(type)) {
3551 max = wr_mas->mas->max;
3552 if (last < max)
3553 return false;
3554 }
3555
3556 if (last == max) {
3557 /*
3558 * The last entry of leaf node cannot be NULL unless it is the
3559 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3560 */
3561 if (entry || last == ULONG_MAX)
3562 return false;
3563 }
3564
3565 trace_ma_write(fn: __func__, mas: wr_mas->mas, piv: wr_mas->r_max, val: entry);
3566 return true;
3567}
3568
3569static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3570{
3571 wr_mas->type = mte_node_type(entry: wr_mas->mas->node);
3572 mas_wr_node_walk(wr_mas);
3573 wr_mas->slots = ma_slots(mn: wr_mas->node, mt: wr_mas->type);
3574}
3575
3576static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3577{
3578 wr_mas->mas->max = wr_mas->r_max;
3579 wr_mas->mas->min = wr_mas->r_min;
3580 wr_mas->mas->node = wr_mas->content;
3581 wr_mas->mas->offset = 0;
3582 wr_mas->mas->depth++;
3583}
3584/*
3585 * mas_wr_walk() - Walk the tree for a write.
3586 * @wr_mas: The maple write state
3587 *
3588 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3589 *
3590 * Return: True if it's contained in a node, false on spanning write.
3591 */
3592static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3593{
3594 struct ma_state *mas = wr_mas->mas;
3595
3596 while (true) {
3597 mas_wr_walk_descend(wr_mas);
3598 if (unlikely(mas_is_span_wr(wr_mas)))
3599 return false;
3600
3601 wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots,
3602 offset: mas->offset);
3603 if (ma_is_leaf(type: wr_mas->type))
3604 return true;
3605
3606 mas_wr_walk_traverse(wr_mas);
3607 }
3608
3609 return true;
3610}
3611
3612static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3613{
3614 struct ma_state *mas = wr_mas->mas;
3615
3616 while (true) {
3617 mas_wr_walk_descend(wr_mas);
3618 wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots,
3619 offset: mas->offset);
3620 if (ma_is_leaf(type: wr_mas->type))
3621 return true;
3622 mas_wr_walk_traverse(wr_mas);
3623
3624 }
3625 return true;
3626}
3627/*
3628 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3629 * @l_wr_mas: The left maple write state
3630 * @r_wr_mas: The right maple write state
3631 */
3632static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3633 struct ma_wr_state *r_wr_mas)
3634{
3635 struct ma_state *r_mas = r_wr_mas->mas;
3636 struct ma_state *l_mas = l_wr_mas->mas;
3637 unsigned char l_slot;
3638
3639 l_slot = l_mas->offset;
3640 if (!l_wr_mas->content)
3641 l_mas->index = l_wr_mas->r_min;
3642
3643 if ((l_mas->index == l_wr_mas->r_min) &&
3644 (l_slot &&
3645 !mas_slot_locked(mas: l_mas, slots: l_wr_mas->slots, offset: l_slot - 1))) {
3646 if (l_slot > 1)
3647 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3648 else
3649 l_mas->index = l_mas->min;
3650
3651 l_mas->offset = l_slot - 1;
3652 }
3653
3654 if (!r_wr_mas->content) {
3655 if (r_mas->last < r_wr_mas->r_max)
3656 r_mas->last = r_wr_mas->r_max;
3657 r_mas->offset++;
3658 } else if ((r_mas->last == r_wr_mas->r_max) &&
3659 (r_mas->last < r_mas->max) &&
3660 !mas_slot_locked(mas: r_mas, slots: r_wr_mas->slots, offset: r_mas->offset + 1)) {
3661 r_mas->last = mas_safe_pivot(mas: r_mas, pivots: r_wr_mas->pivots,
3662 piv: r_wr_mas->type, type: r_mas->offset + 1);
3663 r_mas->offset++;
3664 }
3665}
3666
3667static inline void *mas_state_walk(struct ma_state *mas)
3668{
3669 void *entry;
3670
3671 entry = mas_start(mas);
3672 if (mas_is_none(mas))
3673 return NULL;
3674
3675 if (mas_is_ptr(mas))
3676 return entry;
3677
3678 return mtree_range_walk(mas);
3679}
3680
3681/*
3682 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3683 * to date.
3684 *
3685 * @mas: The maple state.
3686 *
3687 * Note: Leaves mas in undesirable state.
3688 * Return: The entry for @mas->index or %NULL on dead node.
3689 */
3690static inline void *mtree_lookup_walk(struct ma_state *mas)
3691{
3692 unsigned long *pivots;
3693 unsigned char offset;
3694 struct maple_node *node;
3695 struct maple_enode *next;
3696 enum maple_type type;
3697 void __rcu **slots;
3698 unsigned char end;
3699
3700 next = mas->node;
3701 do {
3702 node = mte_to_node(entry: next);
3703 type = mte_node_type(entry: next);
3704 pivots = ma_pivots(node, type);
3705 end = mt_pivots[type];
3706 offset = 0;
3707 do {
3708 if (pivots[offset] >= mas->index)
3709 break;
3710 } while (++offset < end);
3711
3712 slots = ma_slots(mn: node, mt: type);
3713 next = mt_slot(mt: mas->tree, slots, offset);
3714 if (unlikely(ma_dead_node(node)))
3715 goto dead_node;
3716 } while (!ma_is_leaf(type));
3717
3718 return (void *)next;
3719
3720dead_node:
3721 mas_reset(mas);
3722 return NULL;
3723}
3724
3725static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3726/*
3727 * mas_new_root() - Create a new root node that only contains the entry passed
3728 * in.
3729 * @mas: The maple state
3730 * @entry: The entry to store.
3731 *
3732 * Only valid when the index == 0 and the last == ULONG_MAX
3733 *
3734 * Return 0 on error, 1 on success.
3735 */
3736static inline int mas_new_root(struct ma_state *mas, void *entry)
3737{
3738 struct maple_enode *root = mas_root_locked(mas);
3739 enum maple_type type = maple_leaf_64;
3740 struct maple_node *node;
3741 void __rcu **slots;
3742 unsigned long *pivots;
3743
3744 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3745 mas->depth = 0;
3746 mas_set_height(mas);
3747 rcu_assign_pointer(mas->tree->ma_root, entry);
3748 mas->status = ma_start;
3749 goto done;
3750 }
3751
3752 mas_node_count(mas, count: 1);
3753 if (mas_is_err(mas))
3754 return 0;
3755
3756 node = mas_pop_node(mas);
3757 pivots = ma_pivots(node, type);
3758 slots = ma_slots(mn: node, mt: type);
3759 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3760 mas->node = mt_mk_node(node, type);
3761 mas->status = ma_active;
3762 rcu_assign_pointer(slots[0], entry);
3763 pivots[0] = mas->last;
3764 mas->depth = 1;
3765 mas_set_height(mas);
3766 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3767
3768done:
3769 if (xa_is_node(entry: root))
3770 mte_destroy_walk(root, mas->tree);
3771
3772 return 1;
3773}
3774/*
3775 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3776 * and new nodes where necessary, then place the sub-tree in the actual tree.
3777 * Note that mas is expected to point to the node which caused the store to
3778 * span.
3779 * @wr_mas: The maple write state
3780 *
3781 * Return: 0 on error, positive on success.
3782 */
3783static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3784{
3785 struct maple_subtree_state mast;
3786 struct maple_big_node b_node;
3787 struct ma_state *mas;
3788 unsigned char height;
3789
3790 /* Left and Right side of spanning store */
3791 MA_STATE(l_mas, NULL, 0, 0);
3792 MA_STATE(r_mas, NULL, 0, 0);
3793 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3794 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3795
3796 /*
3797 * A store operation that spans multiple nodes is called a spanning
3798 * store and is handled early in the store call stack by the function
3799 * mas_is_span_wr(). When a spanning store is identified, the maple
3800 * state is duplicated. The first maple state walks the left tree path
3801 * to ``index``, the duplicate walks the right tree path to ``last``.
3802 * The data in the two nodes are combined into a single node, two nodes,
3803 * or possibly three nodes (see the 3-way split above). A ``NULL``
3804 * written to the last entry of a node is considered a spanning store as
3805 * a rebalance is required for the operation to complete and an overflow
3806 * of data may happen.
3807 */
3808 mas = wr_mas->mas;
3809 trace_ma_op(fn: __func__, mas);
3810
3811 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3812 return mas_new_root(mas, entry: wr_mas->entry);
3813 /*
3814 * Node rebalancing may occur due to this store, so there may be three new
3815 * entries per level plus a new root.
3816 */
3817 height = mas_mt_height(mas);
3818 mas_node_count(mas, count: 1 + height * 3);
3819 if (mas_is_err(mas))
3820 return 0;
3821
3822 /*
3823 * Set up right side. Need to get to the next offset after the spanning
3824 * store to ensure it's not NULL and to combine both the next node and
3825 * the node with the start together.
3826 */
3827 r_mas = *mas;
3828 /* Avoid overflow, walk to next slot in the tree. */
3829 if (r_mas.last + 1)
3830 r_mas.last++;
3831
3832 r_mas.index = r_mas.last;
3833 mas_wr_walk_index(wr_mas: &r_wr_mas);
3834 r_mas.last = r_mas.index = mas->last;
3835
3836 /* Set up left side. */
3837 l_mas = *mas;
3838 mas_wr_walk_index(wr_mas: &l_wr_mas);
3839
3840 if (!wr_mas->entry) {
3841 mas_extend_spanning_null(l_wr_mas: &l_wr_mas, r_wr_mas: &r_wr_mas);
3842 mas->offset = l_mas.offset;
3843 mas->index = l_mas.index;
3844 mas->last = l_mas.last = r_mas.last;
3845 }
3846
3847 /* expanding NULLs may make this cover the entire range */
3848 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3849 mas_set_range(mas, start: 0, ULONG_MAX);
3850 return mas_new_root(mas, entry: wr_mas->entry);
3851 }
3852
3853 memset(&b_node, 0, sizeof(struct maple_big_node));
3854 /* Copy l_mas and store the value in b_node. */
3855 mas_store_b_node(wr_mas: &l_wr_mas, b_node: &b_node, offset_end: l_mas.end);
3856 /* Copy r_mas into b_node. */
3857 if (r_mas.offset <= r_mas.end)
3858 mas_mab_cp(mas: &r_mas, mas_start: r_mas.offset, mas_end: r_mas.end,
3859 b_node: &b_node, mab_start: b_node.b_end + 1);
3860 else
3861 b_node.b_end++;
3862
3863 /* Stop spanning searches by searching for just index. */
3864 l_mas.index = l_mas.last = mas->index;
3865
3866 mast.bn = &b_node;
3867 mast.orig_l = &l_mas;
3868 mast.orig_r = &r_mas;
3869 /* Combine l_mas and r_mas and split them up evenly again. */
3870 return mas_spanning_rebalance(mas, mast: &mast, count: height + 1);
3871}
3872
3873/*
3874 * mas_wr_node_store() - Attempt to store the value in a node
3875 * @wr_mas: The maple write state
3876 *
3877 * Attempts to reuse the node, but may allocate.
3878 *
3879 * Return: True if stored, false otherwise
3880 */
3881static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3882 unsigned char new_end)
3883{
3884 struct ma_state *mas = wr_mas->mas;
3885 void __rcu **dst_slots;
3886 unsigned long *dst_pivots;
3887 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3888 struct maple_node reuse, *newnode;
3889 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3890 bool in_rcu = mt_in_rcu(mt: mas->tree);
3891
3892 /* Check if there is enough data. The room is enough. */
3893 if (!mte_is_root(node: mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3894 !(mas->mas_flags & MA_STATE_BULK))
3895 return false;
3896
3897 if (mas->last == wr_mas->end_piv)
3898 offset_end++; /* don't copy this offset */
3899 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3900 mas_bulk_rebalance(mas, end: mas->end, mt: wr_mas->type);
3901
3902 /* set up node. */
3903 if (in_rcu) {
3904 mas_node_count(mas, count: 1);
3905 if (mas_is_err(mas))
3906 return false;
3907
3908 newnode = mas_pop_node(mas);
3909 } else {
3910 memset(&reuse, 0, sizeof(struct maple_node));
3911 newnode = &reuse;
3912 }
3913
3914 newnode->parent = mas_mn(mas)->parent;
3915 dst_pivots = ma_pivots(node: newnode, type: wr_mas->type);
3916 dst_slots = ma_slots(mn: newnode, mt: wr_mas->type);
3917 /* Copy from start to insert point */
3918 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3919 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3920
3921 /* Handle insert of new range starting after old range */
3922 if (wr_mas->r_min < mas->index) {
3923 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3924 dst_pivots[mas->offset++] = mas->index - 1;
3925 }
3926
3927 /* Store the new entry and range end. */
3928 if (mas->offset < node_pivots)
3929 dst_pivots[mas->offset] = mas->last;
3930 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3931
3932 /*
3933 * this range wrote to the end of the node or it overwrote the rest of
3934 * the data
3935 */
3936 if (offset_end > mas->end)
3937 goto done;
3938
3939 dst_offset = mas->offset + 1;
3940 /* Copy to the end of node if necessary. */
3941 copy_size = mas->end - offset_end + 1;
3942 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3943 sizeof(void *) * copy_size);
3944 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3945 sizeof(unsigned long) * (copy_size - 1));
3946
3947 if (new_end < node_pivots)
3948 dst_pivots[new_end] = mas->max;
3949
3950done:
3951 mas_leaf_set_meta(node: newnode, mt: maple_leaf_64, end: new_end);
3952 if (in_rcu) {
3953 struct maple_enode *old_enode = mas->node;
3954
3955 mas->node = mt_mk_node(node: newnode, type: wr_mas->type);
3956 mas_replace_node(mas, old_enode);
3957 } else {
3958 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3959 }
3960 trace_ma_write(fn: __func__, mas, piv: 0, val: wr_mas->entry);
3961 mas_update_gap(mas);
3962 mas->end = new_end;
3963 return true;
3964}
3965
3966/*
3967 * mas_wr_slot_store: Attempt to store a value in a slot.
3968 * @wr_mas: the maple write state
3969 *
3970 * Return: True if stored, false otherwise
3971 */
3972static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
3973{
3974 struct ma_state *mas = wr_mas->mas;
3975 unsigned char offset = mas->offset;
3976 void __rcu **slots = wr_mas->slots;
3977 bool gap = false;
3978
3979 gap |= !mt_slot_locked(mt: mas->tree, slots, offset);
3980 gap |= !mt_slot_locked(mt: mas->tree, slots, offset: offset + 1);
3981
3982 if (wr_mas->offset_end - offset == 1) {
3983 if (mas->index == wr_mas->r_min) {
3984 /* Overwriting the range and a part of the next one */
3985 rcu_assign_pointer(slots[offset], wr_mas->entry);
3986 wr_mas->pivots[offset] = mas->last;
3987 } else {
3988 /* Overwriting a part of the range and the next one */
3989 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3990 wr_mas->pivots[offset] = mas->index - 1;
3991 mas->offset++; /* Keep mas accurate. */
3992 }
3993 } else if (!mt_in_rcu(mt: mas->tree)) {
3994 /*
3995 * Expand the range, only partially overwriting the previous and
3996 * next ranges
3997 */
3998 gap |= !mt_slot_locked(mt: mas->tree, slots, offset: offset + 2);
3999 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4000 wr_mas->pivots[offset] = mas->index - 1;
4001 wr_mas->pivots[offset + 1] = mas->last;
4002 mas->offset++; /* Keep mas accurate. */
4003 } else {
4004 return false;
4005 }
4006
4007 trace_ma_write(fn: __func__, mas, piv: 0, val: wr_mas->entry);
4008 /*
4009 * Only update gap when the new entry is empty or there is an empty
4010 * entry in the original two ranges.
4011 */
4012 if (!wr_mas->entry || gap)
4013 mas_update_gap(mas);
4014
4015 return true;
4016}
4017
4018static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4019{
4020 struct ma_state *mas = wr_mas->mas;
4021
4022 if (!wr_mas->slots[wr_mas->offset_end]) {
4023 /* If this one is null, the next and prev are not */
4024 mas->last = wr_mas->end_piv;
4025 } else {
4026 /* Check next slot(s) if we are overwriting the end */
4027 if ((mas->last == wr_mas->end_piv) &&
4028 (mas->end != wr_mas->offset_end) &&
4029 !wr_mas->slots[wr_mas->offset_end + 1]) {
4030 wr_mas->offset_end++;
4031 if (wr_mas->offset_end == mas->end)
4032 mas->last = mas->max;
4033 else
4034 mas->last = wr_mas->pivots[wr_mas->offset_end];
4035 wr_mas->end_piv = mas->last;
4036 }
4037 }
4038
4039 if (!wr_mas->content) {
4040 /* If this one is null, the next and prev are not */
4041 mas->index = wr_mas->r_min;
4042 } else {
4043 /* Check prev slot if we are overwriting the start */
4044 if (mas->index == wr_mas->r_min && mas->offset &&
4045 !wr_mas->slots[mas->offset - 1]) {
4046 mas->offset--;
4047 wr_mas->r_min = mas->index =
4048 mas_safe_min(mas, pivots: wr_mas->pivots, offset: mas->offset);
4049 wr_mas->r_max = wr_mas->pivots[mas->offset];
4050 }
4051 }
4052}
4053
4054static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4055{
4056 while ((wr_mas->offset_end < wr_mas->mas->end) &&
4057 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4058 wr_mas->offset_end++;
4059
4060 if (wr_mas->offset_end < wr_mas->mas->end)
4061 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4062 else
4063 wr_mas->end_piv = wr_mas->mas->max;
4064
4065 if (!wr_mas->entry)
4066 mas_wr_extend_null(wr_mas);
4067}
4068
4069static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4070{
4071 struct ma_state *mas = wr_mas->mas;
4072 unsigned char new_end = mas->end + 2;
4073
4074 new_end -= wr_mas->offset_end - mas->offset;
4075 if (wr_mas->r_min == mas->index)
4076 new_end--;
4077
4078 if (wr_mas->end_piv == mas->last)
4079 new_end--;
4080
4081 return new_end;
4082}
4083
4084/*
4085 * mas_wr_append: Attempt to append
4086 * @wr_mas: the maple write state
4087 * @new_end: The end of the node after the modification
4088 *
4089 * This is currently unsafe in rcu mode since the end of the node may be cached
4090 * by readers while the node contents may be updated which could result in
4091 * inaccurate information.
4092 *
4093 * Return: True if appended, false otherwise
4094 */
4095static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4096 unsigned char new_end)
4097{
4098 struct ma_state *mas;
4099 void __rcu **slots;
4100 unsigned char end;
4101
4102 mas = wr_mas->mas;
4103 if (mt_in_rcu(mt: mas->tree))
4104 return false;
4105
4106 end = mas->end;
4107 if (mas->offset != end)
4108 return false;
4109
4110 if (new_end < mt_pivots[wr_mas->type]) {
4111 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4112 ma_set_meta(mn: wr_mas->node, mt: wr_mas->type, offset: 0, end: new_end);
4113 }
4114
4115 slots = wr_mas->slots;
4116 if (new_end == end + 1) {
4117 if (mas->last == wr_mas->r_max) {
4118 /* Append to end of range */
4119 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4120 wr_mas->pivots[end] = mas->index - 1;
4121 mas->offset = new_end;
4122 } else {
4123 /* Append to start of range */
4124 rcu_assign_pointer(slots[new_end], wr_mas->content);
4125 wr_mas->pivots[end] = mas->last;
4126 rcu_assign_pointer(slots[end], wr_mas->entry);
4127 }
4128 } else {
4129 /* Append to the range without touching any boundaries. */
4130 rcu_assign_pointer(slots[new_end], wr_mas->content);
4131 wr_mas->pivots[end + 1] = mas->last;
4132 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4133 wr_mas->pivots[end] = mas->index - 1;
4134 mas->offset = end + 1;
4135 }
4136
4137 if (!wr_mas->content || !wr_mas->entry)
4138 mas_update_gap(mas);
4139
4140 mas->end = new_end;
4141 trace_ma_write(fn: __func__, mas, piv: new_end, val: wr_mas->entry);
4142 return true;
4143}
4144
4145/*
4146 * mas_wr_bnode() - Slow path for a modification.
4147 * @wr_mas: The write maple state
4148 *
4149 * This is where split, rebalance end up.
4150 */
4151static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4152{
4153 struct maple_big_node b_node;
4154
4155 trace_ma_write(fn: __func__, mas: wr_mas->mas, piv: 0, val: wr_mas->entry);
4156 memset(&b_node, 0, sizeof(struct maple_big_node));
4157 mas_store_b_node(wr_mas, b_node: &b_node, offset_end: wr_mas->offset_end);
4158 mas_commit_b_node(wr_mas, b_node: &b_node, end: wr_mas->mas->end);
4159}
4160
4161static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4162{
4163 struct ma_state *mas = wr_mas->mas;
4164 unsigned char new_end;
4165
4166 /* Direct replacement */
4167 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4168 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4169 if (!!wr_mas->entry ^ !!wr_mas->content)
4170 mas_update_gap(mas);
4171 return;
4172 }
4173
4174 /*
4175 * new_end exceeds the size of the maple node and cannot enter the fast
4176 * path.
4177 */
4178 new_end = mas_wr_new_end(wr_mas);
4179 if (new_end >= mt_slots[wr_mas->type])
4180 goto slow_path;
4181
4182 /* Attempt to append */
4183 if (mas_wr_append(wr_mas, new_end))
4184 return;
4185
4186 if (new_end == mas->end && mas_wr_slot_store(wr_mas))
4187 return;
4188
4189 if (mas_wr_node_store(wr_mas, new_end))
4190 return;
4191
4192 if (mas_is_err(mas))
4193 return;
4194
4195slow_path:
4196 mas_wr_bnode(wr_mas);
4197}
4198
4199/*
4200 * mas_wr_store_entry() - Internal call to store a value
4201 * @mas: The maple state
4202 * @entry: The entry to store.
4203 *
4204 * Return: The contents that was stored at the index.
4205 */
4206static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4207{
4208 struct ma_state *mas = wr_mas->mas;
4209
4210 wr_mas->content = mas_start(mas);
4211 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4212 mas_store_root(mas, entry: wr_mas->entry);
4213 return wr_mas->content;
4214 }
4215
4216 if (unlikely(!mas_wr_walk(wr_mas))) {
4217 mas_wr_spanning_store(wr_mas);
4218 return wr_mas->content;
4219 }
4220
4221 /* At this point, we are at the leaf node that needs to be altered. */
4222 mas_wr_end_piv(wr_mas);
4223 /* New root for a single pointer */
4224 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4225 mas_new_root(mas, entry: wr_mas->entry);
4226 return wr_mas->content;
4227 }
4228
4229 mas_wr_modify(wr_mas);
4230 return wr_mas->content;
4231}
4232
4233/**
4234 * mas_insert() - Internal call to insert a value
4235 * @mas: The maple state
4236 * @entry: The entry to store
4237 *
4238 * Return: %NULL or the contents that already exists at the requested index
4239 * otherwise. The maple state needs to be checked for error conditions.
4240 */
4241static inline void *mas_insert(struct ma_state *mas, void *entry)
4242{
4243 MA_WR_STATE(wr_mas, mas, entry);
4244
4245 /*
4246 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4247 * tree. If the insert fits exactly into an existing gap with a value
4248 * of NULL, then the slot only needs to be written with the new value.
4249 * If the range being inserted is adjacent to another range, then only a
4250 * single pivot needs to be inserted (as well as writing the entry). If
4251 * the new range is within a gap but does not touch any other ranges,
4252 * then two pivots need to be inserted: the start - 1, and the end. As
4253 * usual, the entry must be written. Most operations require a new node
4254 * to be allocated and replace an existing node to ensure RCU safety,
4255 * when in RCU mode. The exception to requiring a newly allocated node
4256 * is when inserting at the end of a node (appending). When done
4257 * carefully, appending can reuse the node in place.
4258 */
4259 wr_mas.content = mas_start(mas);
4260 if (wr_mas.content)
4261 goto exists;
4262
4263 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4264 mas_store_root(mas, entry);
4265 return NULL;
4266 }
4267
4268 /* spanning writes always overwrite something */
4269 if (!mas_wr_walk(wr_mas: &wr_mas))
4270 goto exists;
4271
4272 /* At this point, we are at the leaf node that needs to be altered. */
4273 wr_mas.offset_end = mas->offset;
4274 wr_mas.end_piv = wr_mas.r_max;
4275
4276 if (wr_mas.content || (mas->last > wr_mas.r_max))
4277 goto exists;
4278
4279 if (!entry)
4280 return NULL;
4281
4282 mas_wr_modify(wr_mas: &wr_mas);
4283 return wr_mas.content;
4284
4285exists:
4286 mas_set_err(mas, err: -EEXIST);
4287 return wr_mas.content;
4288
4289}
4290
4291/**
4292 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4293 * @mas: The maple state.
4294 * @startp: Pointer to ID.
4295 * @range_lo: Lower bound of range to search.
4296 * @range_hi: Upper bound of range to search.
4297 * @entry: The entry to store.
4298 * @next: Pointer to next ID to allocate.
4299 * @gfp: The GFP_FLAGS to use for allocations.
4300 *
4301 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4302 * allocation succeeded after wrapping, or -EBUSY if there are no
4303 * free entries.
4304 */
4305int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4306 void *entry, unsigned long range_lo, unsigned long range_hi,
4307 unsigned long *next, gfp_t gfp)
4308{
4309 unsigned long min = range_lo;
4310 int ret = 0;
4311
4312 range_lo = max(min, *next);
4313 ret = mas_empty_area(mas, min: range_lo, max: range_hi, size: 1);
4314 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4315 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4316 ret = 1;
4317 }
4318 if (ret < 0 && range_lo > min) {
4319 ret = mas_empty_area(mas, min, max: range_hi, size: 1);
4320 if (ret == 0)
4321 ret = 1;
4322 }
4323 if (ret < 0)
4324 return ret;
4325
4326 do {
4327 mas_insert(mas, entry);
4328 } while (mas_nomem(mas, gfp));
4329 if (mas_is_err(mas))
4330 return xa_err(entry: mas->node);
4331
4332 *startp = mas->index;
4333 *next = *startp + 1;
4334 if (*next == 0)
4335 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4336
4337 return ret;
4338}
4339EXPORT_SYMBOL(mas_alloc_cyclic);
4340
4341static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4342{
4343retry:
4344 mas_set(mas, index);
4345 mas_state_walk(mas);
4346 if (mas_is_start(mas))
4347 goto retry;
4348}
4349
4350static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4351 struct maple_node *node, const unsigned long index)
4352{
4353 if (unlikely(ma_dead_node(node))) {
4354 mas_rewalk(mas, index);
4355 return true;
4356 }
4357 return false;
4358}
4359
4360/*
4361 * mas_prev_node() - Find the prev non-null entry at the same level in the
4362 * tree. The prev value will be mas->node[mas->offset] or the status will be
4363 * ma_none.
4364 * @mas: The maple state
4365 * @min: The lower limit to search
4366 *
4367 * The prev node value will be mas->node[mas->offset] or the status will be
4368 * ma_none.
4369 * Return: 1 if the node is dead, 0 otherwise.
4370 */
4371static int mas_prev_node(struct ma_state *mas, unsigned long min)
4372{
4373 enum maple_type mt;
4374 int offset, level;
4375 void __rcu **slots;
4376 struct maple_node *node;
4377 unsigned long *pivots;
4378 unsigned long max;
4379
4380 node = mas_mn(mas);
4381 if (!mas->min)
4382 goto no_entry;
4383
4384 max = mas->min - 1;
4385 if (max < min)
4386 goto no_entry;
4387
4388 level = 0;
4389 do {
4390 if (ma_is_root(node))
4391 goto no_entry;
4392
4393 /* Walk up. */
4394 if (unlikely(mas_ascend(mas)))
4395 return 1;
4396 offset = mas->offset;
4397 level++;
4398 node = mas_mn(mas);
4399 } while (!offset);
4400
4401 offset--;
4402 mt = mte_node_type(entry: mas->node);
4403 while (level > 1) {
4404 level--;
4405 slots = ma_slots(mn: node, mt);
4406 mas->node = mas_slot(mas, slots, offset);
4407 if (unlikely(ma_dead_node(node)))
4408 return 1;
4409
4410 mt = mte_node_type(entry: mas->node);
4411 node = mas_mn(mas);
4412 pivots = ma_pivots(node, type: mt);
4413 offset = ma_data_end(node, type: mt, pivots, max);
4414 if (unlikely(ma_dead_node(node)))
4415 return 1;
4416 }
4417
4418 slots = ma_slots(mn: node, mt);
4419 mas->node = mas_slot(mas, slots, offset);
4420 pivots = ma_pivots(node, type: mt);
4421 if (unlikely(ma_dead_node(node)))
4422 return 1;
4423
4424 if (likely(offset))
4425 mas->min = pivots[offset - 1] + 1;
4426 mas->max = max;
4427 mas->offset = mas_data_end(mas);
4428 if (unlikely(mte_dead_node(mas->node)))
4429 return 1;
4430
4431 mas->end = mas->offset;
4432 return 0;
4433
4434no_entry:
4435 if (unlikely(ma_dead_node(node)))
4436 return 1;
4437
4438 mas->status = ma_underflow;
4439 return 0;
4440}
4441
4442/*
4443 * mas_prev_slot() - Get the entry in the previous slot
4444 *
4445 * @mas: The maple state
4446 * @max: The minimum starting range
4447 * @empty: Can be empty
4448 * @set_underflow: Set the @mas->node to underflow state on limit.
4449 *
4450 * Return: The entry in the previous slot which is possibly NULL
4451 */
4452static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4453{
4454 void *entry;
4455 void __rcu **slots;
4456 unsigned long pivot;
4457 enum maple_type type;
4458 unsigned long *pivots;
4459 struct maple_node *node;
4460 unsigned long save_point = mas->index;
4461
4462retry:
4463 node = mas_mn(mas);
4464 type = mte_node_type(entry: mas->node);
4465 pivots = ma_pivots(node, type);
4466 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4467 goto retry;
4468
4469 if (mas->min <= min) {
4470 pivot = mas_safe_min(mas, pivots, offset: mas->offset);
4471
4472 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4473 goto retry;
4474
4475 if (pivot <= min)
4476 goto underflow;
4477 }
4478
4479again:
4480 if (likely(mas->offset)) {
4481 mas->offset--;
4482 mas->last = mas->index - 1;
4483 mas->index = mas_safe_min(mas, pivots, offset: mas->offset);
4484 } else {
4485 if (mas->index <= min)
4486 goto underflow;
4487
4488 if (mas_prev_node(mas, min)) {
4489 mas_rewalk(mas, index: save_point);
4490 goto retry;
4491 }
4492
4493 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4494 return NULL;
4495
4496 mas->last = mas->max;
4497 node = mas_mn(mas);
4498 type = mte_node_type(entry: mas->node);
4499 pivots = ma_pivots(node, type);
4500 mas->index = pivots[mas->offset - 1] + 1;
4501 }
4502
4503 slots = ma_slots(mn: node, mt: type);
4504 entry = mas_slot(mas, slots, offset: mas->offset);
4505 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4506 goto retry;
4507
4508
4509 if (likely(entry))
4510 return entry;
4511
4512 if (!empty) {
4513 if (mas->index <= min) {
4514 mas->status = ma_underflow;
4515 return NULL;
4516 }
4517
4518 goto again;
4519 }
4520
4521 return entry;
4522
4523underflow:
4524 mas->status = ma_underflow;
4525 return NULL;
4526}
4527
4528/*
4529 * mas_next_node() - Get the next node at the same level in the tree.
4530 * @mas: The maple state
4531 * @max: The maximum pivot value to check.
4532 *
4533 * The next value will be mas->node[mas->offset] or the status will have
4534 * overflowed.
4535 * Return: 1 on dead node, 0 otherwise.
4536 */
4537static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4538 unsigned long max)
4539{
4540 unsigned long min;
4541 unsigned long *pivots;
4542 struct maple_enode *enode;
4543 struct maple_node *tmp;
4544 int level = 0;
4545 unsigned char node_end;
4546 enum maple_type mt;
4547 void __rcu **slots;
4548
4549 if (mas->max >= max)
4550 goto overflow;
4551
4552 min = mas->max + 1;
4553 level = 0;
4554 do {
4555 if (ma_is_root(node))
4556 goto overflow;
4557
4558 /* Walk up. */
4559 if (unlikely(mas_ascend(mas)))
4560 return 1;
4561
4562 level++;
4563 node = mas_mn(mas);
4564 mt = mte_node_type(entry: mas->node);
4565 pivots = ma_pivots(node, type: mt);
4566 node_end = ma_data_end(node, type: mt, pivots, max: mas->max);
4567 if (unlikely(ma_dead_node(node)))
4568 return 1;
4569
4570 } while (unlikely(mas->offset == node_end));
4571
4572 slots = ma_slots(mn: node, mt);
4573 mas->offset++;
4574 enode = mas_slot(mas, slots, offset: mas->offset);
4575 if (unlikely(ma_dead_node(node)))
4576 return 1;
4577
4578 if (level > 1)
4579 mas->offset = 0;
4580
4581 while (unlikely(level > 1)) {
4582 level--;
4583 mas->node = enode;
4584 node = mas_mn(mas);
4585 mt = mte_node_type(entry: mas->node);
4586 slots = ma_slots(mn: node, mt);
4587 enode = mas_slot(mas, slots, offset: 0);
4588 if (unlikely(ma_dead_node(node)))
4589 return 1;
4590 }
4591
4592 if (!mas->offset)
4593 pivots = ma_pivots(node, type: mt);
4594
4595 mas->max = mas_safe_pivot(mas, pivots, piv: mas->offset, type: mt);
4596 tmp = mte_to_node(entry: enode);
4597 mt = mte_node_type(entry: enode);
4598 pivots = ma_pivots(node: tmp, type: mt);
4599 mas->end = ma_data_end(node: tmp, type: mt, pivots, max: mas->max);
4600 if (unlikely(ma_dead_node(node)))
4601 return 1;
4602
4603 mas->node = enode;
4604 mas->min = min;
4605 return 0;
4606
4607overflow:
4608 if (unlikely(ma_dead_node(node)))
4609 return 1;
4610
4611 mas->status = ma_overflow;
4612 return 0;
4613}
4614
4615/*
4616 * mas_next_slot() - Get the entry in the next slot
4617 *
4618 * @mas: The maple state
4619 * @max: The maximum starting range
4620 * @empty: Can be empty
4621 * @set_overflow: Should @mas->node be set to overflow when the limit is
4622 * reached.
4623 *
4624 * Return: The entry in the next slot which is possibly NULL
4625 */
4626static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4627{
4628 void __rcu **slots;
4629 unsigned long *pivots;
4630 unsigned long pivot;
4631 enum maple_type type;
4632 struct maple_node *node;
4633 unsigned long save_point = mas->last;
4634 void *entry;
4635
4636retry:
4637 node = mas_mn(mas);
4638 type = mte_node_type(entry: mas->node);
4639 pivots = ma_pivots(node, type);
4640 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4641 goto retry;
4642
4643 if (mas->max >= max) {
4644 if (likely(mas->offset < mas->end))
4645 pivot = pivots[mas->offset];
4646 else
4647 pivot = mas->max;
4648
4649 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4650 goto retry;
4651
4652 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4653 mas->status = ma_overflow;
4654 return NULL;
4655 }
4656 }
4657
4658 if (likely(mas->offset < mas->end)) {
4659 mas->index = pivots[mas->offset] + 1;
4660again:
4661 mas->offset++;
4662 if (likely(mas->offset < mas->end))
4663 mas->last = pivots[mas->offset];
4664 else
4665 mas->last = mas->max;
4666 } else {
4667 if (mas->last >= max) {
4668 mas->status = ma_overflow;
4669 return NULL;
4670 }
4671
4672 if (mas_next_node(mas, node, max)) {
4673 mas_rewalk(mas, index: save_point);
4674 goto retry;
4675 }
4676
4677 if (WARN_ON_ONCE(mas_is_overflow(mas)))
4678 return NULL;
4679
4680 mas->offset = 0;
4681 mas->index = mas->min;
4682 node = mas_mn(mas);
4683 type = mte_node_type(entry: mas->node);
4684 pivots = ma_pivots(node, type);
4685 mas->last = pivots[0];
4686 }
4687
4688 slots = ma_slots(mn: node, mt: type);
4689 entry = mt_slot(mt: mas->tree, slots, offset: mas->offset);
4690 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4691 goto retry;
4692
4693 if (entry)
4694 return entry;
4695
4696
4697 if (!empty) {
4698 if (mas->last >= max) {
4699 mas->status = ma_overflow;
4700 return NULL;
4701 }
4702
4703 mas->index = mas->last + 1;
4704 goto again;
4705 }
4706
4707 return entry;
4708}
4709
4710/*
4711 * mas_next_entry() - Internal function to get the next entry.
4712 * @mas: The maple state
4713 * @limit: The maximum range start.
4714 *
4715 * Set the @mas->node to the next entry and the range_start to
4716 * the beginning value for the entry. Does not check beyond @limit.
4717 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4718 * @mas->last on overflow.
4719 * Restarts on dead nodes.
4720 *
4721 * Return: the next entry or %NULL.
4722 */
4723static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4724{
4725 if (mas->last >= limit) {
4726 mas->status = ma_overflow;
4727 return NULL;
4728 }
4729
4730 return mas_next_slot(mas, max: limit, empty: false);
4731}
4732
4733/*
4734 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4735 * highest gap address of a given size in a given node and descend.
4736 * @mas: The maple state
4737 * @size: The needed size.
4738 *
4739 * Return: True if found in a leaf, false otherwise.
4740 *
4741 */
4742static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4743 unsigned long *gap_min, unsigned long *gap_max)
4744{
4745 enum maple_type type = mte_node_type(entry: mas->node);
4746 struct maple_node *node = mas_mn(mas);
4747 unsigned long *pivots, *gaps;
4748 void __rcu **slots;
4749 unsigned long gap = 0;
4750 unsigned long max, min;
4751 unsigned char offset;
4752
4753 if (unlikely(mas_is_err(mas)))
4754 return true;
4755
4756 if (ma_is_dense(type)) {
4757 /* dense nodes. */
4758 mas->offset = (unsigned char)(mas->index - mas->min);
4759 return true;
4760 }
4761
4762 pivots = ma_pivots(node, type);
4763 slots = ma_slots(mn: node, mt: type);
4764 gaps = ma_gaps(node, type);
4765 offset = mas->offset;
4766 min = mas_safe_min(mas, pivots, offset);
4767 /* Skip out of bounds. */
4768 while (mas->last < min)
4769 min = mas_safe_min(mas, pivots, offset: --offset);
4770
4771 max = mas_safe_pivot(mas, pivots, piv: offset, type);
4772 while (mas->index <= max) {
4773 gap = 0;
4774 if (gaps)
4775 gap = gaps[offset];
4776 else if (!mas_slot(mas, slots, offset))
4777 gap = max - min + 1;
4778
4779 if (gap) {
4780 if ((size <= gap) && (size <= mas->last - min + 1))
4781 break;
4782
4783 if (!gaps) {
4784 /* Skip the next slot, it cannot be a gap. */
4785 if (offset < 2)
4786 goto ascend;
4787
4788 offset -= 2;
4789 max = pivots[offset];
4790 min = mas_safe_min(mas, pivots, offset);
4791 continue;
4792 }
4793 }
4794
4795 if (!offset)
4796 goto ascend;
4797
4798 offset--;
4799 max = min - 1;
4800 min = mas_safe_min(mas, pivots, offset);
4801 }
4802
4803 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4804 goto no_space;
4805
4806 if (unlikely(ma_is_leaf(type))) {
4807 mas->offset = offset;
4808 *gap_min = min;
4809 *gap_max = min + gap - 1;
4810 return true;
4811 }
4812
4813 /* descend, only happens under lock. */
4814 mas->node = mas_slot(mas, slots, offset);
4815 mas->min = min;
4816 mas->max = max;
4817 mas->offset = mas_data_end(mas);
4818 return false;
4819
4820ascend:
4821 if (!mte_is_root(node: mas->node))
4822 return false;
4823
4824no_space:
4825 mas_set_err(mas, err: -EBUSY);
4826 return false;
4827}
4828
4829static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4830{
4831 enum maple_type type = mte_node_type(entry: mas->node);
4832 unsigned long pivot, min, gap = 0;
4833 unsigned char offset, data_end;
4834 unsigned long *gaps, *pivots;
4835 void __rcu **slots;
4836 struct maple_node *node;
4837 bool found = false;
4838
4839 if (ma_is_dense(type)) {
4840 mas->offset = (unsigned char)(mas->index - mas->min);
4841 return true;
4842 }
4843
4844 node = mas_mn(mas);
4845 pivots = ma_pivots(node, type);
4846 slots = ma_slots(mn: node, mt: type);
4847 gaps = ma_gaps(node, type);
4848 offset = mas->offset;
4849 min = mas_safe_min(mas, pivots, offset);
4850 data_end = ma_data_end(node, type, pivots, max: mas->max);
4851 for (; offset <= data_end; offset++) {
4852 pivot = mas_safe_pivot(mas, pivots, piv: offset, type);
4853
4854 /* Not within lower bounds */
4855 if (mas->index > pivot)
4856 goto next_slot;
4857
4858 if (gaps)
4859 gap = gaps[offset];
4860 else if (!mas_slot(mas, slots, offset))
4861 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4862 else
4863 goto next_slot;
4864
4865 if (gap >= size) {
4866 if (ma_is_leaf(type)) {
4867 found = true;
4868 goto done;
4869 }
4870 if (mas->index <= pivot) {
4871 mas->node = mas_slot(mas, slots, offset);
4872 mas->min = min;
4873 mas->max = pivot;
4874 offset = 0;
4875 break;
4876 }
4877 }
4878next_slot:
4879 min = pivot + 1;
4880 if (mas->last <= pivot) {
4881 mas_set_err(mas, err: -EBUSY);
4882 return true;
4883 }
4884 }
4885
4886 if (mte_is_root(node: mas->node))
4887 found = true;
4888done:
4889 mas->offset = offset;
4890 return found;
4891}
4892
4893/**
4894 * mas_walk() - Search for @mas->index in the tree.
4895 * @mas: The maple state.
4896 *
4897 * mas->index and mas->last will be set to the range if there is a value. If
4898 * mas->status is ma_none, reset to ma_start
4899 *
4900 * Return: the entry at the location or %NULL.
4901 */
4902void *mas_walk(struct ma_state *mas)
4903{
4904 void *entry;
4905
4906 if (!mas_is_active(mas) || !mas_is_start(mas))
4907 mas->status = ma_start;
4908retry:
4909 entry = mas_state_walk(mas);
4910 if (mas_is_start(mas)) {
4911 goto retry;
4912 } else if (mas_is_none(mas)) {
4913 mas->index = 0;
4914 mas->last = ULONG_MAX;
4915 } else if (mas_is_ptr(mas)) {
4916 if (!mas->index) {
4917 mas->last = 0;
4918 return entry;
4919 }
4920
4921 mas->index = 1;
4922 mas->last = ULONG_MAX;
4923 mas->status = ma_none;
4924 return NULL;
4925 }
4926
4927 return entry;
4928}
4929EXPORT_SYMBOL_GPL(mas_walk);
4930
4931static inline bool mas_rewind_node(struct ma_state *mas)
4932{
4933 unsigned char slot;
4934
4935 do {
4936 if (mte_is_root(node: mas->node)) {
4937 slot = mas->offset;
4938 if (!slot)
4939 return false;
4940 } else {
4941 mas_ascend(mas);
4942 slot = mas->offset;
4943 }
4944 } while (!slot);
4945
4946 mas->offset = --slot;
4947 return true;
4948}
4949
4950/*
4951 * mas_skip_node() - Internal function. Skip over a node.
4952 * @mas: The maple state.
4953 *
4954 * Return: true if there is another node, false otherwise.
4955 */
4956static inline bool mas_skip_node(struct ma_state *mas)
4957{
4958 if (mas_is_err(mas))
4959 return false;
4960
4961 do {
4962 if (mte_is_root(node: mas->node)) {
4963 if (mas->offset >= mas_data_end(mas)) {
4964 mas_set_err(mas, err: -EBUSY);
4965 return false;
4966 }
4967 } else {
4968 mas_ascend(mas);
4969 }
4970 } while (mas->offset >= mas_data_end(mas));
4971
4972 mas->offset++;
4973 return true;
4974}
4975
4976/*
4977 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
4978 * @size
4979 * @mas: The maple state
4980 * @size: The size of the gap required
4981 *
4982 * Search between @mas->index and @mas->last for a gap of @size.
4983 */
4984static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4985{
4986 struct maple_enode *last = NULL;
4987
4988 /*
4989 * There are 4 options:
4990 * go to child (descend)
4991 * go back to parent (ascend)
4992 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4993 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4994 */
4995 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4996 if (last == mas->node)
4997 mas_skip_node(mas);
4998 else
4999 last = mas->node;
5000 }
5001}
5002
5003/*
5004 * mas_sparse_area() - Internal function. Return upper or lower limit when
5005 * searching for a gap in an empty tree.
5006 * @mas: The maple state
5007 * @min: the minimum range
5008 * @max: The maximum range
5009 * @size: The size of the gap
5010 * @fwd: Searching forward or back
5011 */
5012static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5013 unsigned long max, unsigned long size, bool fwd)
5014{
5015 if (!unlikely(mas_is_none(mas)) && min == 0) {
5016 min++;
5017 /*
5018 * At this time, min is increased, we need to recheck whether
5019 * the size is satisfied.
5020 */
5021 if (min > max || max - min + 1 < size)
5022 return -EBUSY;
5023 }
5024 /* mas_is_ptr */
5025
5026 if (fwd) {
5027 mas->index = min;
5028 mas->last = min + size - 1;
5029 } else {
5030 mas->last = max;
5031 mas->index = max - size + 1;
5032 }
5033 return 0;
5034}
5035
5036/*
5037 * mas_empty_area() - Get the lowest address within the range that is
5038 * sufficient for the size requested.
5039 * @mas: The maple state
5040 * @min: The lowest value of the range
5041 * @max: The highest value of the range
5042 * @size: The size needed
5043 */
5044int mas_empty_area(struct ma_state *mas, unsigned long min,
5045 unsigned long max, unsigned long size)
5046{
5047 unsigned char offset;
5048 unsigned long *pivots;
5049 enum maple_type mt;
5050 struct maple_node *node;
5051
5052 if (min > max)
5053 return -EINVAL;
5054
5055 if (size == 0 || max - min < size - 1)
5056 return -EINVAL;
5057
5058 if (mas_is_start(mas))
5059 mas_start(mas);
5060 else if (mas->offset >= 2)
5061 mas->offset -= 2;
5062 else if (!mas_skip_node(mas))
5063 return -EBUSY;
5064
5065 /* Empty set */
5066 if (mas_is_none(mas) || mas_is_ptr(mas))
5067 return mas_sparse_area(mas, min, max, size, fwd: true);
5068
5069 /* The start of the window can only be within these values */
5070 mas->index = min;
5071 mas->last = max;
5072 mas_awalk(mas, size);
5073
5074 if (unlikely(mas_is_err(mas)))
5075 return xa_err(entry: mas->node);
5076
5077 offset = mas->offset;
5078 if (unlikely(offset == MAPLE_NODE_SLOTS))
5079 return -EBUSY;
5080
5081 node = mas_mn(mas);
5082 mt = mte_node_type(entry: mas->node);
5083 pivots = ma_pivots(node, type: mt);
5084 min = mas_safe_min(mas, pivots, offset);
5085 if (mas->index < min)
5086 mas->index = min;
5087 mas->last = mas->index + size - 1;
5088 mas->end = ma_data_end(node, type: mt, pivots, max: mas->max);
5089 return 0;
5090}
5091EXPORT_SYMBOL_GPL(mas_empty_area);
5092
5093/*
5094 * mas_empty_area_rev() - Get the highest address within the range that is
5095 * sufficient for the size requested.
5096 * @mas: The maple state
5097 * @min: The lowest value of the range
5098 * @max: The highest value of the range
5099 * @size: The size needed
5100 */
5101int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5102 unsigned long max, unsigned long size)
5103{
5104 struct maple_enode *last = mas->node;
5105
5106 if (min > max)
5107 return -EINVAL;
5108
5109 if (size == 0 || max - min < size - 1)
5110 return -EINVAL;
5111
5112 if (mas_is_start(mas)) {
5113 mas_start(mas);
5114 mas->offset = mas_data_end(mas);
5115 } else if (mas->offset >= 2) {
5116 mas->offset -= 2;
5117 } else if (!mas_rewind_node(mas)) {
5118 return -EBUSY;
5119 }
5120
5121 /* Empty set. */
5122 if (mas_is_none(mas) || mas_is_ptr(mas))
5123 return mas_sparse_area(mas, min, max, size, fwd: false);
5124
5125 /* The start of the window can only be within these values. */
5126 mas->index = min;
5127 mas->last = max;
5128
5129 while (!mas_rev_awalk(mas, size, gap_min: &min, gap_max: &max)) {
5130 if (last == mas->node) {
5131 if (!mas_rewind_node(mas))
5132 return -EBUSY;
5133 } else {
5134 last = mas->node;
5135 }
5136 }
5137
5138 if (mas_is_err(mas))
5139 return xa_err(entry: mas->node);
5140
5141 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5142 return -EBUSY;
5143
5144 /* Trim the upper limit to the max. */
5145 if (max < mas->last)
5146 mas->last = max;
5147
5148 mas->index = mas->last - size + 1;
5149 mas->end = mas_data_end(mas);
5150 return 0;
5151}
5152EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5153
5154/*
5155 * mte_dead_leaves() - Mark all leaves of a node as dead.
5156 * @mas: The maple state
5157 * @slots: Pointer to the slot array
5158 * @type: The maple node type
5159 *
5160 * Must hold the write lock.
5161 *
5162 * Return: The number of leaves marked as dead.
5163 */
5164static inline
5165unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5166 void __rcu **slots)
5167{
5168 struct maple_node *node;
5169 enum maple_type type;
5170 void *entry;
5171 int offset;
5172
5173 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5174 entry = mt_slot(mt, slots, offset);
5175 type = mte_node_type(entry);
5176 node = mte_to_node(entry);
5177 /* Use both node and type to catch LE & BE metadata */
5178 if (!node || !type)
5179 break;
5180
5181 mte_set_node_dead(mn: entry);
5182 node->type = type;
5183 rcu_assign_pointer(slots[offset], node);
5184 }
5185
5186 return offset;
5187}
5188
5189/**
5190 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5191 * @enode: The maple encoded node
5192 * @offset: The starting offset
5193 *
5194 * Note: This can only be used from the RCU callback context.
5195 */
5196static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5197{
5198 struct maple_node *node, *next;
5199 void __rcu **slots = NULL;
5200
5201 next = mte_to_node(entry: *enode);
5202 do {
5203 *enode = ma_enode_ptr(next);
5204 node = mte_to_node(entry: *enode);
5205 slots = ma_slots(mn: node, mt: node->type);
5206 next = rcu_dereference_protected(slots[offset],
5207 lock_is_held(&rcu_callback_map));
5208 offset = 0;
5209 } while (!ma_is_leaf(type: next->type));
5210
5211 return slots;
5212}
5213
5214/**
5215 * mt_free_walk() - Walk & free a tree in the RCU callback context
5216 * @head: The RCU head that's within the node.
5217 *
5218 * Note: This can only be used from the RCU callback context.
5219 */
5220static void mt_free_walk(struct rcu_head *head)
5221{
5222 void __rcu **slots;
5223 struct maple_node *node, *start;
5224 struct maple_enode *enode;
5225 unsigned char offset;
5226 enum maple_type type;
5227
5228 node = container_of(head, struct maple_node, rcu);
5229
5230 if (ma_is_leaf(type: node->type))
5231 goto free_leaf;
5232
5233 start = node;
5234 enode = mt_mk_node(node, type: node->type);
5235 slots = mte_dead_walk(enode: &enode, offset: 0);
5236 node = mte_to_node(entry: enode);
5237 do {
5238 mt_free_bulk(size: node->slot_len, nodes: slots);
5239 offset = node->parent_slot + 1;
5240 enode = node->piv_parent;
5241 if (mte_to_node(entry: enode) == node)
5242 goto free_leaf;
5243
5244 type = mte_node_type(entry: enode);
5245 slots = ma_slots(mn: mte_to_node(entry: enode), mt: type);
5246 if ((offset < mt_slots[type]) &&
5247 rcu_dereference_protected(slots[offset],
5248 lock_is_held(&rcu_callback_map)))
5249 slots = mte_dead_walk(enode: &enode, offset);
5250 node = mte_to_node(entry: enode);
5251 } while ((node != start) || (node->slot_len < offset));
5252
5253 slots = ma_slots(mn: node, mt: node->type);
5254 mt_free_bulk(size: node->slot_len, nodes: slots);
5255
5256free_leaf:
5257 mt_free_rcu(head: &node->rcu);
5258}
5259
5260static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5261 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5262{
5263 struct maple_node *node;
5264 struct maple_enode *next = *enode;
5265 void __rcu **slots = NULL;
5266 enum maple_type type;
5267 unsigned char next_offset = 0;
5268
5269 do {
5270 *enode = next;
5271 node = mte_to_node(entry: *enode);
5272 type = mte_node_type(entry: *enode);
5273 slots = ma_slots(mn: node, mt: type);
5274 next = mt_slot_locked(mt, slots, offset: next_offset);
5275 if ((mte_dead_node(enode: next)))
5276 next = mt_slot_locked(mt, slots, offset: ++next_offset);
5277
5278 mte_set_node_dead(mn: *enode);
5279 node->type = type;
5280 node->piv_parent = prev;
5281 node->parent_slot = offset;
5282 offset = next_offset;
5283 next_offset = 0;
5284 prev = *enode;
5285 } while (!mte_is_leaf(entry: next));
5286
5287 return slots;
5288}
5289
5290static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5291 bool free)
5292{
5293 void __rcu **slots;
5294 struct maple_node *node = mte_to_node(entry: enode);
5295 struct maple_enode *start;
5296
5297 if (mte_is_leaf(entry: enode)) {
5298 node->type = mte_node_type(entry: enode);
5299 goto free_leaf;
5300 }
5301
5302 start = enode;
5303 slots = mte_destroy_descend(enode: &enode, mt, prev: start, offset: 0);
5304 node = mte_to_node(entry: enode); // Updated in the above call.
5305 do {
5306 enum maple_type type;
5307 unsigned char offset;
5308 struct maple_enode *parent, *tmp;
5309
5310 node->slot_len = mte_dead_leaves(enode, mt, slots);
5311 if (free)
5312 mt_free_bulk(size: node->slot_len, nodes: slots);
5313 offset = node->parent_slot + 1;
5314 enode = node->piv_parent;
5315 if (mte_to_node(entry: enode) == node)
5316 goto free_leaf;
5317
5318 type = mte_node_type(entry: enode);
5319 slots = ma_slots(mn: mte_to_node(entry: enode), mt: type);
5320 if (offset >= mt_slots[type])
5321 goto next;
5322
5323 tmp = mt_slot_locked(mt, slots, offset);
5324 if (mte_node_type(entry: tmp) && mte_to_node(entry: tmp)) {
5325 parent = enode;
5326 enode = tmp;
5327 slots = mte_destroy_descend(enode: &enode, mt, prev: parent, offset);
5328 }
5329next:
5330 node = mte_to_node(entry: enode);
5331 } while (start != enode);
5332
5333 node = mte_to_node(entry: enode);
5334 node->slot_len = mte_dead_leaves(enode, mt, slots);
5335 if (free)
5336 mt_free_bulk(size: node->slot_len, nodes: slots);
5337
5338free_leaf:
5339 if (free)
5340 mt_free_rcu(head: &node->rcu);
5341 else
5342 mt_clear_meta(mt, mn: node, type: node->type);
5343}
5344
5345/*
5346 * mte_destroy_walk() - Free a tree or sub-tree.
5347 * @enode: the encoded maple node (maple_enode) to start
5348 * @mt: the tree to free - needed for node types.
5349 *
5350 * Must hold the write lock.
5351 */
5352static inline void mte_destroy_walk(struct maple_enode *enode,
5353 struct maple_tree *mt)
5354{
5355 struct maple_node *node = mte_to_node(entry: enode);
5356
5357 if (mt_in_rcu(mt)) {
5358 mt_destroy_walk(enode, mt, free: false);
5359 call_rcu(head: &node->rcu, func: mt_free_walk);
5360 } else {
5361 mt_destroy_walk(enode, mt, free: true);
5362 }
5363}
5364
5365static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5366{
5367 if (!mas_is_active(mas: wr_mas->mas)) {
5368 if (mas_is_start(mas: wr_mas->mas))
5369 return;
5370
5371 if (unlikely(mas_is_paused(wr_mas->mas)))
5372 goto reset;
5373
5374 if (unlikely(mas_is_none(wr_mas->mas)))
5375 goto reset;
5376
5377 if (unlikely(mas_is_overflow(wr_mas->mas)))
5378 goto reset;
5379
5380 if (unlikely(mas_is_underflow(wr_mas->mas)))
5381 goto reset;
5382 }
5383
5384 /*
5385 * A less strict version of mas_is_span_wr() where we allow spanning
5386 * writes within this node. This is to stop partial walks in
5387 * mas_prealloc() from being reset.
5388 */
5389 if (wr_mas->mas->last > wr_mas->mas->max)
5390 goto reset;
5391
5392 if (wr_mas->entry)
5393 return;
5394
5395 if (mte_is_leaf(entry: wr_mas->mas->node) &&
5396 wr_mas->mas->last == wr_mas->mas->max)
5397 goto reset;
5398
5399 return;
5400
5401reset:
5402 mas_reset(mas: wr_mas->mas);
5403}
5404
5405/* Interface */
5406
5407/**
5408 * mas_store() - Store an @entry.
5409 * @mas: The maple state.
5410 * @entry: The entry to store.
5411 *
5412 * The @mas->index and @mas->last is used to set the range for the @entry.
5413 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5414 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5415 *
5416 * Return: the first entry between mas->index and mas->last or %NULL.
5417 */
5418void *mas_store(struct ma_state *mas, void *entry)
5419{
5420 MA_WR_STATE(wr_mas, mas, entry);
5421
5422 trace_ma_write(fn: __func__, mas, piv: 0, val: entry);
5423#ifdef CONFIG_DEBUG_MAPLE_TREE
5424 if (MAS_WARN_ON(mas, mas->index > mas->last))
5425 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5426
5427 if (mas->index > mas->last) {
5428 mas_set_err(mas, err: -EINVAL);
5429 return NULL;
5430 }
5431
5432#endif
5433
5434 /*
5435 * Storing is the same operation as insert with the added caveat that it
5436 * can overwrite entries. Although this seems simple enough, one may
5437 * want to examine what happens if a single store operation was to
5438 * overwrite multiple entries within a self-balancing B-Tree.
5439 */
5440 mas_wr_store_setup(wr_mas: &wr_mas);
5441 mas_wr_store_entry(wr_mas: &wr_mas);
5442 return wr_mas.content;
5443}
5444EXPORT_SYMBOL_GPL(mas_store);
5445
5446/**
5447 * mas_store_gfp() - Store a value into the tree.
5448 * @mas: The maple state
5449 * @entry: The entry to store
5450 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5451 *
5452 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5453 * be allocated.
5454 */
5455int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5456{
5457 MA_WR_STATE(wr_mas, mas, entry);
5458
5459 mas_wr_store_setup(wr_mas: &wr_mas);
5460 trace_ma_write(fn: __func__, mas, piv: 0, val: entry);
5461retry:
5462 mas_wr_store_entry(wr_mas: &wr_mas);
5463 if (unlikely(mas_nomem(mas, gfp)))
5464 goto retry;
5465
5466 if (unlikely(mas_is_err(mas)))
5467 return xa_err(entry: mas->node);
5468
5469 return 0;
5470}
5471EXPORT_SYMBOL_GPL(mas_store_gfp);
5472
5473/**
5474 * mas_store_prealloc() - Store a value into the tree using memory
5475 * preallocated in the maple state.
5476 * @mas: The maple state
5477 * @entry: The entry to store.
5478 */
5479void mas_store_prealloc(struct ma_state *mas, void *entry)
5480{
5481 MA_WR_STATE(wr_mas, mas, entry);
5482
5483 mas_wr_store_setup(wr_mas: &wr_mas);
5484 trace_ma_write(fn: __func__, mas, piv: 0, val: entry);
5485 mas_wr_store_entry(wr_mas: &wr_mas);
5486 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5487 mas_destroy(mas);
5488}
5489EXPORT_SYMBOL_GPL(mas_store_prealloc);
5490
5491/**
5492 * mas_preallocate() - Preallocate enough nodes for a store operation
5493 * @mas: The maple state
5494 * @entry: The entry that will be stored
5495 * @gfp: The GFP_FLAGS to use for allocations.
5496 *
5497 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5498 */
5499int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5500{
5501 MA_WR_STATE(wr_mas, mas, entry);
5502 unsigned char node_size;
5503 int request = 1;
5504 int ret;
5505
5506
5507 if (unlikely(!mas->index && mas->last == ULONG_MAX))
5508 goto ask_now;
5509
5510 mas_wr_store_setup(wr_mas: &wr_mas);
5511 wr_mas.content = mas_start(mas);
5512 /* Root expand */
5513 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5514 goto ask_now;
5515
5516 if (unlikely(!mas_wr_walk(&wr_mas))) {
5517 /* Spanning store, use worst case for now */
5518 request = 1 + mas_mt_height(mas) * 3;
5519 goto ask_now;
5520 }
5521
5522 /* At this point, we are at the leaf node that needs to be altered. */
5523 /* Exact fit, no nodes needed. */
5524 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5525 return 0;
5526
5527 mas_wr_end_piv(wr_mas: &wr_mas);
5528 node_size = mas_wr_new_end(wr_mas: &wr_mas);
5529
5530 /* Slot store, does not require additional nodes */
5531 if (node_size == mas->end) {
5532 /* reuse node */
5533 if (!mt_in_rcu(mt: mas->tree))
5534 return 0;
5535 /* shifting boundary */
5536 if (wr_mas.offset_end - mas->offset == 1)
5537 return 0;
5538 }
5539
5540 if (node_size >= mt_slots[wr_mas.type]) {
5541 /* Split, worst case for now. */
5542 request = 1 + mas_mt_height(mas) * 2;
5543 goto ask_now;
5544 }
5545
5546 /* New root needs a single node */
5547 if (unlikely(mte_is_root(mas->node)))
5548 goto ask_now;
5549
5550 /* Potential spanning rebalance collapsing a node, use worst-case */
5551 if (node_size - 1 <= mt_min_slots[wr_mas.type])
5552 request = mas_mt_height(mas) * 2 - 1;
5553
5554 /* node store, slot store needs one node */
5555ask_now:
5556 mas_node_count_gfp(mas, count: request, gfp);
5557 mas->mas_flags |= MA_STATE_PREALLOC;
5558 if (likely(!mas_is_err(mas)))
5559 return 0;
5560
5561 mas_set_alloc_req(mas, count: 0);
5562 ret = xa_err(entry: mas->node);
5563 mas_reset(mas);
5564 mas_destroy(mas);
5565 mas_reset(mas);
5566 return ret;
5567}
5568EXPORT_SYMBOL_GPL(mas_preallocate);
5569
5570/*
5571 * mas_destroy() - destroy a maple state.
5572 * @mas: The maple state
5573 *
5574 * Upon completion, check the left-most node and rebalance against the node to
5575 * the right if necessary. Frees any allocated nodes associated with this maple
5576 * state.
5577 */
5578void mas_destroy(struct ma_state *mas)
5579{
5580 struct maple_alloc *node;
5581 unsigned long total;
5582
5583 /*
5584 * When using mas_for_each() to insert an expected number of elements,
5585 * it is possible that the number inserted is less than the expected
5586 * number. To fix an invalid final node, a check is performed here to
5587 * rebalance the previous node with the final node.
5588 */
5589 if (mas->mas_flags & MA_STATE_REBALANCE) {
5590 unsigned char end;
5591
5592 mas_start(mas);
5593 mtree_range_walk(mas);
5594 end = mas->end + 1;
5595 if (end < mt_min_slot_count(mas->node) - 1)
5596 mas_destroy_rebalance(mas, end);
5597
5598 mas->mas_flags &= ~MA_STATE_REBALANCE;
5599 }
5600 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5601
5602 total = mas_allocated(mas);
5603 while (total) {
5604 node = mas->alloc;
5605 mas->alloc = node->slot[0];
5606 if (node->node_count > 1) {
5607 size_t count = node->node_count - 1;
5608
5609 mt_free_bulk(size: count, nodes: (void __rcu **)&node->slot[1]);
5610 total -= count;
5611 }
5612 mt_free_one(ma_mnode_ptr(node));
5613 total--;
5614 }
5615
5616 mas->alloc = NULL;
5617}
5618EXPORT_SYMBOL_GPL(mas_destroy);
5619
5620/*
5621 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5622 * @mas: The maple state
5623 * @nr_entries: The number of expected entries.
5624 *
5625 * This will attempt to pre-allocate enough nodes to store the expected number
5626 * of entries. The allocations will occur using the bulk allocator interface
5627 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5628 * to ensure any unused nodes are freed.
5629 *
5630 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5631 */
5632int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5633{
5634 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5635 struct maple_enode *enode = mas->node;
5636 int nr_nodes;
5637 int ret;
5638
5639 /*
5640 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5641 * forking a process and duplicating the VMAs from one tree to a new
5642 * tree. When such a situation arises, it is known that the new tree is
5643 * not going to be used until the entire tree is populated. For
5644 * performance reasons, it is best to use a bulk load with RCU disabled.
5645 * This allows for optimistic splitting that favours the left and reuse
5646 * of nodes during the operation.
5647 */
5648
5649 /* Optimize splitting for bulk insert in-order */
5650 mas->mas_flags |= MA_STATE_BULK;
5651
5652 /*
5653 * Avoid overflow, assume a gap between each entry and a trailing null.
5654 * If this is wrong, it just means allocation can happen during
5655 * insertion of entries.
5656 */
5657 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5658 if (!mt_is_alloc(mt: mas->tree))
5659 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5660
5661 /* Leaves; reduce slots to keep space for expansion */
5662 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5663 /* Internal nodes */
5664 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5665 /* Add working room for split (2 nodes) + new parents */
5666 mas_node_count_gfp(mas, count: nr_nodes + 3, GFP_KERNEL);
5667
5668 /* Detect if allocations run out */
5669 mas->mas_flags |= MA_STATE_PREALLOC;
5670
5671 if (!mas_is_err(mas))
5672 return 0;
5673
5674 ret = xa_err(entry: mas->node);
5675 mas->node = enode;
5676 mas_destroy(mas);
5677 return ret;
5678
5679}
5680EXPORT_SYMBOL_GPL(mas_expected_entries);
5681
5682static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5683 void **entry)
5684{
5685 bool was_none = mas_is_none(mas);
5686
5687 if (unlikely(mas->last >= max)) {
5688 mas->status = ma_overflow;
5689 return true;
5690 }
5691
5692 switch (mas->status) {
5693 case ma_active:
5694 return false;
5695 case ma_none:
5696 fallthrough;
5697 case ma_pause:
5698 mas->status = ma_start;
5699 fallthrough;
5700 case ma_start:
5701 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5702 break;
5703 case ma_overflow:
5704 /* Overflowed before, but the max changed */
5705 mas->status = ma_active;
5706 break;
5707 case ma_underflow:
5708 /* The user expects the mas to be one before where it is */
5709 mas->status = ma_active;
5710 *entry = mas_walk(mas);
5711 if (*entry)
5712 return true;
5713 break;
5714 case ma_root:
5715 break;
5716 case ma_error:
5717 return true;
5718 }
5719
5720 if (likely(mas_is_active(mas))) /* Fast path */
5721 return false;
5722
5723 if (mas_is_ptr(mas)) {
5724 *entry = NULL;
5725 if (was_none && mas->index == 0) {
5726 mas->index = mas->last = 0;
5727 return true;
5728 }
5729 mas->index = 1;
5730 mas->last = ULONG_MAX;
5731 mas->status = ma_none;
5732 return true;
5733 }
5734
5735 if (mas_is_none(mas))
5736 return true;
5737
5738 return false;
5739}
5740
5741/**
5742 * mas_next() - Get the next entry.
5743 * @mas: The maple state
5744 * @max: The maximum index to check.
5745 *
5746 * Returns the next entry after @mas->index.
5747 * Must hold rcu_read_lock or the write lock.
5748 * Can return the zero entry.
5749 *
5750 * Return: The next entry or %NULL
5751 */
5752void *mas_next(struct ma_state *mas, unsigned long max)
5753{
5754 void *entry = NULL;
5755
5756 if (mas_next_setup(mas, max, entry: &entry))
5757 return entry;
5758
5759 /* Retries on dead nodes handled by mas_next_slot */
5760 return mas_next_slot(mas, max, empty: false);
5761}
5762EXPORT_SYMBOL_GPL(mas_next);
5763
5764/**
5765 * mas_next_range() - Advance the maple state to the next range
5766 * @mas: The maple state
5767 * @max: The maximum index to check.
5768 *
5769 * Sets @mas->index and @mas->last to the range.
5770 * Must hold rcu_read_lock or the write lock.
5771 * Can return the zero entry.
5772 *
5773 * Return: The next entry or %NULL
5774 */
5775void *mas_next_range(struct ma_state *mas, unsigned long max)
5776{
5777 void *entry = NULL;
5778
5779 if (mas_next_setup(mas, max, entry: &entry))
5780 return entry;
5781
5782 /* Retries on dead nodes handled by mas_next_slot */
5783 return mas_next_slot(mas, max, empty: true);
5784}
5785EXPORT_SYMBOL_GPL(mas_next_range);
5786
5787/**
5788 * mt_next() - get the next value in the maple tree
5789 * @mt: The maple tree
5790 * @index: The start index
5791 * @max: The maximum index to check
5792 *
5793 * Takes RCU read lock internally to protect the search, which does not
5794 * protect the returned pointer after dropping RCU read lock.
5795 * See also: Documentation/core-api/maple_tree.rst
5796 *
5797 * Return: The entry higher than @index or %NULL if nothing is found.
5798 */
5799void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5800{
5801 void *entry = NULL;
5802 MA_STATE(mas, mt, index, index);
5803
5804 rcu_read_lock();
5805 entry = mas_next(&mas, max);
5806 rcu_read_unlock();
5807 return entry;
5808}
5809EXPORT_SYMBOL_GPL(mt_next);
5810
5811static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5812{
5813 if (unlikely(mas->index <= min)) {
5814 mas->status = ma_underflow;
5815 return true;
5816 }
5817
5818 switch (mas->status) {
5819 case ma_active:
5820 return false;
5821 case ma_start:
5822 break;
5823 case ma_none:
5824 fallthrough;
5825 case ma_pause:
5826 mas->status = ma_start;
5827 break;
5828 case ma_underflow:
5829 /* underflowed before but the min changed */
5830 mas->status = ma_active;
5831 break;
5832 case ma_overflow:
5833 /* User expects mas to be one after where it is */
5834 mas->status = ma_active;
5835 *entry = mas_walk(mas);
5836 if (*entry)
5837 return true;
5838 break;
5839 case ma_root:
5840 break;
5841 case ma_error:
5842 return true;
5843 }
5844
5845 if (mas_is_start(mas))
5846 mas_walk(mas);
5847
5848 if (unlikely(mas_is_ptr(mas))) {
5849 if (!mas->index) {
5850 mas->status = ma_none;
5851 return true;
5852 }
5853 mas->index = mas->last = 0;
5854 *entry = mas_root(mas);
5855 return true;
5856 }
5857
5858 if (mas_is_none(mas)) {
5859 if (mas->index) {
5860 /* Walked to out-of-range pointer? */
5861 mas->index = mas->last = 0;
5862 mas->status = ma_root;
5863 *entry = mas_root(mas);
5864 return true;
5865 }
5866 return true;
5867 }
5868
5869 return false;
5870}
5871
5872/**
5873 * mas_prev() - Get the previous entry
5874 * @mas: The maple state
5875 * @min: The minimum value to check.
5876 *
5877 * Must hold rcu_read_lock or the write lock.
5878 * Will reset mas to ma_start if the status is ma_none. Will stop on not
5879 * searchable nodes.
5880 *
5881 * Return: the previous value or %NULL.
5882 */
5883void *mas_prev(struct ma_state *mas, unsigned long min)
5884{
5885 void *entry = NULL;
5886
5887 if (mas_prev_setup(mas, min, entry: &entry))
5888 return entry;
5889
5890 return mas_prev_slot(mas, min, empty: false);
5891}
5892EXPORT_SYMBOL_GPL(mas_prev);
5893
5894/**
5895 * mas_prev_range() - Advance to the previous range
5896 * @mas: The maple state
5897 * @min: The minimum value to check.
5898 *
5899 * Sets @mas->index and @mas->last to the range.
5900 * Must hold rcu_read_lock or the write lock.
5901 * Will reset mas to ma_start if the node is ma_none. Will stop on not
5902 * searchable nodes.
5903 *
5904 * Return: the previous value or %NULL.
5905 */
5906void *mas_prev_range(struct ma_state *mas, unsigned long min)
5907{
5908 void *entry = NULL;
5909
5910 if (mas_prev_setup(mas, min, entry: &entry))
5911 return entry;
5912
5913 return mas_prev_slot(mas, min, empty: true);
5914}
5915EXPORT_SYMBOL_GPL(mas_prev_range);
5916
5917/**
5918 * mt_prev() - get the previous value in the maple tree
5919 * @mt: The maple tree
5920 * @index: The start index
5921 * @min: The minimum index to check
5922 *
5923 * Takes RCU read lock internally to protect the search, which does not
5924 * protect the returned pointer after dropping RCU read lock.
5925 * See also: Documentation/core-api/maple_tree.rst
5926 *
5927 * Return: The entry before @index or %NULL if nothing is found.
5928 */
5929void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5930{
5931 void *entry = NULL;
5932 MA_STATE(mas, mt, index, index);
5933
5934 rcu_read_lock();
5935 entry = mas_prev(&mas, min);
5936 rcu_read_unlock();
5937 return entry;
5938}
5939EXPORT_SYMBOL_GPL(mt_prev);
5940
5941/**
5942 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5943 * @mas: The maple state to pause
5944 *
5945 * Some users need to pause a walk and drop the lock they're holding in
5946 * order to yield to a higher priority thread or carry out an operation
5947 * on an entry. Those users should call this function before they drop
5948 * the lock. It resets the @mas to be suitable for the next iteration
5949 * of the loop after the user has reacquired the lock. If most entries
5950 * found during a walk require you to call mas_pause(), the mt_for_each()
5951 * iterator may be more appropriate.
5952 *
5953 */
5954void mas_pause(struct ma_state *mas)
5955{
5956 mas->status = ma_pause;
5957 mas->node = NULL;
5958}
5959EXPORT_SYMBOL_GPL(mas_pause);
5960
5961/**
5962 * mas_find_setup() - Internal function to set up mas_find*().
5963 * @mas: The maple state
5964 * @max: The maximum index
5965 * @entry: Pointer to the entry
5966 *
5967 * Returns: True if entry is the answer, false otherwise.
5968 */
5969static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5970{
5971 switch (mas->status) {
5972 case ma_active:
5973 if (mas->last < max)
5974 return false;
5975 return true;
5976 case ma_start:
5977 break;
5978 case ma_pause:
5979 if (unlikely(mas->last >= max))
5980 return true;
5981
5982 mas->index = ++mas->last;
5983 mas->status = ma_start;
5984 break;
5985 case ma_none:
5986 if (unlikely(mas->last >= max))
5987 return true;
5988
5989 mas->index = mas->last;
5990 mas->status = ma_start;
5991 break;
5992 case ma_underflow:
5993 /* mas is pointing at entry before unable to go lower */
5994 if (unlikely(mas->index >= max)) {
5995 mas->status = ma_overflow;
5996 return true;
5997 }
5998
5999 mas->status = ma_active;
6000 *entry = mas_walk(mas);
6001 if (*entry)
6002 return true;
6003 break;
6004 case ma_overflow:
6005 if (unlikely(mas->last >= max))
6006 return true;
6007
6008 mas->status = ma_active;
6009 *entry = mas_walk(mas);
6010 if (*entry)
6011 return true;
6012 break;
6013 case ma_root:
6014 break;
6015 case ma_error:
6016 return true;
6017 }
6018
6019 if (mas_is_start(mas)) {
6020 /* First run or continue */
6021 if (mas->index > max)
6022 return true;
6023
6024 *entry = mas_walk(mas);
6025 if (*entry)
6026 return true;
6027
6028 }
6029
6030 if (unlikely(mas_is_ptr(mas)))
6031 goto ptr_out_of_range;
6032
6033 if (unlikely(mas_is_none(mas)))
6034 return true;
6035
6036 if (mas->index == max)
6037 return true;
6038
6039 return false;
6040
6041ptr_out_of_range:
6042 mas->status = ma_none;
6043 mas->index = 1;
6044 mas->last = ULONG_MAX;
6045 return true;
6046}
6047
6048/**
6049 * mas_find() - On the first call, find the entry at or after mas->index up to
6050 * %max. Otherwise, find the entry after mas->index.
6051 * @mas: The maple state
6052 * @max: The maximum value to check.
6053 *
6054 * Must hold rcu_read_lock or the write lock.
6055 * If an entry exists, last and index are updated accordingly.
6056 * May set @mas->status to ma_overflow.
6057 *
6058 * Return: The entry or %NULL.
6059 */
6060void *mas_find(struct ma_state *mas, unsigned long max)
6061{
6062 void *entry = NULL;
6063
6064 if (mas_find_setup(mas, max, entry: &entry))
6065 return entry;
6066
6067 /* Retries on dead nodes handled by mas_next_slot */
6068 entry = mas_next_slot(mas, max, empty: false);
6069 /* Ignore overflow */
6070 mas->status = ma_active;
6071 return entry;
6072}
6073EXPORT_SYMBOL_GPL(mas_find);
6074
6075/**
6076 * mas_find_range() - On the first call, find the entry at or after
6077 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6078 * @mas: The maple state
6079 * @max: The maximum value to check.
6080 *
6081 * Must hold rcu_read_lock or the write lock.
6082 * If an entry exists, last and index are updated accordingly.
6083 * May set @mas->status to ma_overflow.
6084 *
6085 * Return: The entry or %NULL.
6086 */
6087void *mas_find_range(struct ma_state *mas, unsigned long max)
6088{
6089 void *entry = NULL;
6090
6091 if (mas_find_setup(mas, max, entry: &entry))
6092 return entry;
6093
6094 /* Retries on dead nodes handled by mas_next_slot */
6095 return mas_next_slot(mas, max, empty: true);
6096}
6097EXPORT_SYMBOL_GPL(mas_find_range);
6098
6099/**
6100 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6101 * @mas: The maple state
6102 * @min: The minimum index
6103 * @entry: Pointer to the entry
6104 *
6105 * Returns: True if entry is the answer, false otherwise.
6106 */
6107static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6108 void **entry)
6109{
6110
6111 switch (mas->status) {
6112 case ma_active:
6113 goto active;
6114 case ma_start:
6115 break;
6116 case ma_pause:
6117 if (unlikely(mas->index <= min)) {
6118 mas->status = ma_underflow;
6119 return true;
6120 }
6121 mas->last = --mas->index;
6122 mas->status = ma_start;
6123 break;
6124 case ma_none:
6125 if (mas->index <= min)
6126 goto none;
6127
6128 mas->last = mas->index;
6129 mas->status = ma_start;
6130 break;
6131 case ma_overflow: /* user expects the mas to be one after where it is */
6132 if (unlikely(mas->index <= min)) {
6133 mas->status = ma_underflow;
6134 return true;
6135 }
6136
6137 mas->status = ma_active;
6138 break;
6139 case ma_underflow: /* user expects the mas to be one before where it is */
6140 if (unlikely(mas->index <= min))
6141 return true;
6142
6143 mas->status = ma_active;
6144 break;
6145 case ma_root:
6146 break;
6147 case ma_error:
6148 return true;
6149 }
6150
6151 if (mas_is_start(mas)) {
6152 /* First run or continue */
6153 if (mas->index < min)
6154 return true;
6155
6156 *entry = mas_walk(mas);
6157 if (*entry)
6158 return true;
6159 }
6160
6161 if (unlikely(mas_is_ptr(mas)))
6162 goto none;
6163
6164 if (unlikely(mas_is_none(mas))) {
6165 /*
6166 * Walked to the location, and there was nothing so the previous
6167 * location is 0.
6168 */
6169 mas->last = mas->index = 0;
6170 mas->status = ma_root;
6171 *entry = mas_root(mas);
6172 return true;
6173 }
6174
6175active:
6176 if (mas->index < min)
6177 return true;
6178
6179 return false;
6180
6181none:
6182 mas->status = ma_none;
6183 return true;
6184}
6185
6186/**
6187 * mas_find_rev: On the first call, find the first non-null entry at or below
6188 * mas->index down to %min. Otherwise find the first non-null entry below
6189 * mas->index down to %min.
6190 * @mas: The maple state
6191 * @min: The minimum value to check.
6192 *
6193 * Must hold rcu_read_lock or the write lock.
6194 * If an entry exists, last and index are updated accordingly.
6195 * May set @mas->status to ma_underflow.
6196 *
6197 * Return: The entry or %NULL.
6198 */
6199void *mas_find_rev(struct ma_state *mas, unsigned long min)
6200{
6201 void *entry = NULL;
6202
6203 if (mas_find_rev_setup(mas, min, entry: &entry))
6204 return entry;
6205
6206 /* Retries on dead nodes handled by mas_prev_slot */
6207 return mas_prev_slot(mas, min, empty: false);
6208
6209}
6210EXPORT_SYMBOL_GPL(mas_find_rev);
6211
6212/**
6213 * mas_find_range_rev: On the first call, find the first non-null entry at or
6214 * below mas->index down to %min. Otherwise advance to the previous slot after
6215 * mas->index down to %min.
6216 * @mas: The maple state
6217 * @min: The minimum value to check.
6218 *
6219 * Must hold rcu_read_lock or the write lock.
6220 * If an entry exists, last and index are updated accordingly.
6221 * May set @mas->status to ma_underflow.
6222 *
6223 * Return: The entry or %NULL.
6224 */
6225void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6226{
6227 void *entry = NULL;
6228
6229 if (mas_find_rev_setup(mas, min, entry: &entry))
6230 return entry;
6231
6232 /* Retries on dead nodes handled by mas_prev_slot */
6233 return mas_prev_slot(mas, min, empty: true);
6234}
6235EXPORT_SYMBOL_GPL(mas_find_range_rev);
6236
6237/**
6238 * mas_erase() - Find the range in which index resides and erase the entire
6239 * range.
6240 * @mas: The maple state
6241 *
6242 * Must hold the write lock.
6243 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6244 * erases that range.
6245 *
6246 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6247 */
6248void *mas_erase(struct ma_state *mas)
6249{
6250 void *entry;
6251 MA_WR_STATE(wr_mas, mas, NULL);
6252
6253 if (!mas_is_active(mas) || !mas_is_start(mas))
6254 mas->status = ma_start;
6255
6256 /* Retry unnecessary when holding the write lock. */
6257 entry = mas_state_walk(mas);
6258 if (!entry)
6259 return NULL;
6260
6261write_retry:
6262 /* Must reset to ensure spanning writes of last slot are detected */
6263 mas_reset(mas);
6264 mas_wr_store_setup(wr_mas: &wr_mas);
6265 mas_wr_store_entry(wr_mas: &wr_mas);
6266 if (mas_nomem(mas, GFP_KERNEL))
6267 goto write_retry;
6268
6269 return entry;
6270}
6271EXPORT_SYMBOL_GPL(mas_erase);
6272
6273/**
6274 * mas_nomem() - Check if there was an error allocating and do the allocation
6275 * if necessary If there are allocations, then free them.
6276 * @mas: The maple state
6277 * @gfp: The GFP_FLAGS to use for allocations
6278 * Return: true on allocation, false otherwise.
6279 */
6280bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6281 __must_hold(mas->tree->ma_lock)
6282{
6283 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6284 mas_destroy(mas);
6285 return false;
6286 }
6287
6288 if (gfpflags_allow_blocking(gfp_flags: gfp) && !mt_external_lock(mt: mas->tree)) {
6289 mtree_unlock(mas->tree);
6290 mas_alloc_nodes(mas, gfp);
6291 mtree_lock(mas->tree);
6292 } else {
6293 mas_alloc_nodes(mas, gfp);
6294 }
6295
6296 if (!mas_allocated(mas))
6297 return false;
6298
6299 mas->status = ma_start;
6300 return true;
6301}
6302
6303void __init maple_tree_init(void)
6304{
6305 maple_node_cache = kmem_cache_create(name: "maple_node",
6306 size: sizeof(struct maple_node), align: sizeof(struct maple_node),
6307 SLAB_PANIC, NULL);
6308}
6309
6310/**
6311 * mtree_load() - Load a value stored in a maple tree
6312 * @mt: The maple tree
6313 * @index: The index to load
6314 *
6315 * Return: the entry or %NULL
6316 */
6317void *mtree_load(struct maple_tree *mt, unsigned long index)
6318{
6319 MA_STATE(mas, mt, index, index);
6320 void *entry;
6321
6322 trace_ma_read(fn: __func__, mas: &mas);
6323 rcu_read_lock();
6324retry:
6325 entry = mas_start(mas: &mas);
6326 if (unlikely(mas_is_none(&mas)))
6327 goto unlock;
6328
6329 if (unlikely(mas_is_ptr(&mas))) {
6330 if (index)
6331 entry = NULL;
6332
6333 goto unlock;
6334 }
6335
6336 entry = mtree_lookup_walk(mas: &mas);
6337 if (!entry && unlikely(mas_is_start(&mas)))
6338 goto retry;
6339unlock:
6340 rcu_read_unlock();
6341 if (xa_is_zero(entry))
6342 return NULL;
6343
6344 return entry;
6345}
6346EXPORT_SYMBOL(mtree_load);
6347
6348/**
6349 * mtree_store_range() - Store an entry at a given range.
6350 * @mt: The maple tree
6351 * @index: The start of the range
6352 * @last: The end of the range
6353 * @entry: The entry to store
6354 * @gfp: The GFP_FLAGS to use for allocations
6355 *
6356 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6357 * be allocated.
6358 */
6359int mtree_store_range(struct maple_tree *mt, unsigned long index,
6360 unsigned long last, void *entry, gfp_t gfp)
6361{
6362 MA_STATE(mas, mt, index, last);
6363 MA_WR_STATE(wr_mas, &mas, entry);
6364
6365 trace_ma_write(fn: __func__, mas: &mas, piv: 0, val: entry);
6366 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6367 return -EINVAL;
6368
6369 if (index > last)
6370 return -EINVAL;
6371
6372 mtree_lock(mt);
6373retry:
6374 mas_wr_store_entry(wr_mas: &wr_mas);
6375 if (mas_nomem(mas: &mas, gfp))
6376 goto retry;
6377
6378 mtree_unlock(mt);
6379 if (mas_is_err(mas: &mas))
6380 return xa_err(entry: mas.node);
6381
6382 return 0;
6383}
6384EXPORT_SYMBOL(mtree_store_range);
6385
6386/**
6387 * mtree_store() - Store an entry at a given index.
6388 * @mt: The maple tree
6389 * @index: The index to store the value
6390 * @entry: The entry to store
6391 * @gfp: The GFP_FLAGS to use for allocations
6392 *
6393 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6394 * be allocated.
6395 */
6396int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6397 gfp_t gfp)
6398{
6399 return mtree_store_range(mt, index, index, entry, gfp);
6400}
6401EXPORT_SYMBOL(mtree_store);
6402
6403/**
6404 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6405 * @mt: The maple tree
6406 * @first: The start of the range
6407 * @last: The end of the range
6408 * @entry: The entry to store
6409 * @gfp: The GFP_FLAGS to use for allocations.
6410 *
6411 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6412 * request, -ENOMEM if memory could not be allocated.
6413 */
6414int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6415 unsigned long last, void *entry, gfp_t gfp)
6416{
6417 MA_STATE(ms, mt, first, last);
6418
6419 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6420 return -EINVAL;
6421
6422 if (first > last)
6423 return -EINVAL;
6424
6425 mtree_lock(mt);
6426retry:
6427 mas_insert(mas: &ms, entry);
6428 if (mas_nomem(mas: &ms, gfp))
6429 goto retry;
6430
6431 mtree_unlock(mt);
6432 if (mas_is_err(mas: &ms))
6433 return xa_err(entry: ms.node);
6434
6435 return 0;
6436}
6437EXPORT_SYMBOL(mtree_insert_range);
6438
6439/**
6440 * mtree_insert() - Insert an entry at a given index if there is no value.
6441 * @mt: The maple tree
6442 * @index : The index to store the value
6443 * @entry: The entry to store
6444 * @gfp: The GFP_FLAGS to use for allocations.
6445 *
6446 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6447 * request, -ENOMEM if memory could not be allocated.
6448 */
6449int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6450 gfp_t gfp)
6451{
6452 return mtree_insert_range(mt, index, index, entry, gfp);
6453}
6454EXPORT_SYMBOL(mtree_insert);
6455
6456int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6457 void *entry, unsigned long size, unsigned long min,
6458 unsigned long max, gfp_t gfp)
6459{
6460 int ret = 0;
6461
6462 MA_STATE(mas, mt, 0, 0);
6463 if (!mt_is_alloc(mt))
6464 return -EINVAL;
6465
6466 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6467 return -EINVAL;
6468
6469 mtree_lock(mt);
6470retry:
6471 ret = mas_empty_area(&mas, min, max, size);
6472 if (ret)
6473 goto unlock;
6474
6475 mas_insert(mas: &mas, entry);
6476 /*
6477 * mas_nomem() may release the lock, causing the allocated area
6478 * to be unavailable, so try to allocate a free area again.
6479 */
6480 if (mas_nomem(mas: &mas, gfp))
6481 goto retry;
6482
6483 if (mas_is_err(mas: &mas))
6484 ret = xa_err(entry: mas.node);
6485 else
6486 *startp = mas.index;
6487
6488unlock:
6489 mtree_unlock(mt);
6490 return ret;
6491}
6492EXPORT_SYMBOL(mtree_alloc_range);
6493
6494/**
6495 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6496 * @mt: The maple tree.
6497 * @startp: Pointer to ID.
6498 * @range_lo: Lower bound of range to search.
6499 * @range_hi: Upper bound of range to search.
6500 * @entry: The entry to store.
6501 * @next: Pointer to next ID to allocate.
6502 * @gfp: The GFP_FLAGS to use for allocations.
6503 *
6504 * Finds an empty entry in @mt after @next, stores the new index into
6505 * the @id pointer, stores the entry at that index, then updates @next.
6506 *
6507 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6508 *
6509 * Context: Any context. Takes and releases the mt.lock. May sleep if
6510 * the @gfp flags permit.
6511 *
6512 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6513 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6514 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6515 * free entries.
6516 */
6517int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6518 void *entry, unsigned long range_lo, unsigned long range_hi,
6519 unsigned long *next, gfp_t gfp)
6520{
6521 int ret;
6522
6523 MA_STATE(mas, mt, 0, 0);
6524
6525 if (!mt_is_alloc(mt))
6526 return -EINVAL;
6527 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6528 return -EINVAL;
6529 mtree_lock(mt);
6530 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6531 next, gfp);
6532 mtree_unlock(mt);
6533 return ret;
6534}
6535EXPORT_SYMBOL(mtree_alloc_cyclic);
6536
6537int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6538 void *entry, unsigned long size, unsigned long min,
6539 unsigned long max, gfp_t gfp)
6540{
6541 int ret = 0;
6542
6543 MA_STATE(mas, mt, 0, 0);
6544 if (!mt_is_alloc(mt))
6545 return -EINVAL;
6546
6547 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6548 return -EINVAL;
6549
6550 mtree_lock(mt);
6551retry:
6552 ret = mas_empty_area_rev(&mas, min, max, size);
6553 if (ret)
6554 goto unlock;
6555
6556 mas_insert(mas: &mas, entry);
6557 /*
6558 * mas_nomem() may release the lock, causing the allocated area
6559 * to be unavailable, so try to allocate a free area again.
6560 */
6561 if (mas_nomem(mas: &mas, gfp))
6562 goto retry;
6563
6564 if (mas_is_err(mas: &mas))
6565 ret = xa_err(entry: mas.node);
6566 else
6567 *startp = mas.index;
6568
6569unlock:
6570 mtree_unlock(mt);
6571 return ret;
6572}
6573EXPORT_SYMBOL(mtree_alloc_rrange);
6574
6575/**
6576 * mtree_erase() - Find an index and erase the entire range.
6577 * @mt: The maple tree
6578 * @index: The index to erase
6579 *
6580 * Erasing is the same as a walk to an entry then a store of a NULL to that
6581 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6582 *
6583 * Return: The entry stored at the @index or %NULL
6584 */
6585void *mtree_erase(struct maple_tree *mt, unsigned long index)
6586{
6587 void *entry = NULL;
6588
6589 MA_STATE(mas, mt, index, index);
6590 trace_ma_op(fn: __func__, mas: &mas);
6591
6592 mtree_lock(mt);
6593 entry = mas_erase(&mas);
6594 mtree_unlock(mt);
6595
6596 return entry;
6597}
6598EXPORT_SYMBOL(mtree_erase);
6599
6600/*
6601 * mas_dup_free() - Free an incomplete duplication of a tree.
6602 * @mas: The maple state of a incomplete tree.
6603 *
6604 * The parameter @mas->node passed in indicates that the allocation failed on
6605 * this node. This function frees all nodes starting from @mas->node in the
6606 * reverse order of mas_dup_build(). There is no need to hold the source tree
6607 * lock at this time.
6608 */
6609static void mas_dup_free(struct ma_state *mas)
6610{
6611 struct maple_node *node;
6612 enum maple_type type;
6613 void __rcu **slots;
6614 unsigned char count, i;
6615
6616 /* Maybe the first node allocation failed. */
6617 if (mas_is_none(mas))
6618 return;
6619
6620 while (!mte_is_root(node: mas->node)) {
6621 mas_ascend(mas);
6622 if (mas->offset) {
6623 mas->offset--;
6624 do {
6625 mas_descend(mas);
6626 mas->offset = mas_data_end(mas);
6627 } while (!mte_is_leaf(entry: mas->node));
6628
6629 mas_ascend(mas);
6630 }
6631
6632 node = mte_to_node(entry: mas->node);
6633 type = mte_node_type(entry: mas->node);
6634 slots = ma_slots(mn: node, mt: type);
6635 count = mas_data_end(mas) + 1;
6636 for (i = 0; i < count; i++)
6637 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6638 mt_free_bulk(size: count, nodes: slots);
6639 }
6640
6641 node = mte_to_node(entry: mas->node);
6642 mt_free_one(node);
6643}
6644
6645/*
6646 * mas_copy_node() - Copy a maple node and replace the parent.
6647 * @mas: The maple state of source tree.
6648 * @new_mas: The maple state of new tree.
6649 * @parent: The parent of the new node.
6650 *
6651 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6652 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6653 */
6654static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6655 struct maple_pnode *parent)
6656{
6657 struct maple_node *node = mte_to_node(entry: mas->node);
6658 struct maple_node *new_node = mte_to_node(entry: new_mas->node);
6659 unsigned long val;
6660
6661 /* Copy the node completely. */
6662 memcpy(new_node, node, sizeof(struct maple_node));
6663 /* Update the parent node pointer. */
6664 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6665 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6666}
6667
6668/*
6669 * mas_dup_alloc() - Allocate child nodes for a maple node.
6670 * @mas: The maple state of source tree.
6671 * @new_mas: The maple state of new tree.
6672 * @gfp: The GFP_FLAGS to use for allocations.
6673 *
6674 * This function allocates child nodes for @new_mas->node during the duplication
6675 * process. If memory allocation fails, @mas is set to -ENOMEM.
6676 */
6677static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6678 gfp_t gfp)
6679{
6680 struct maple_node *node = mte_to_node(entry: mas->node);
6681 struct maple_node *new_node = mte_to_node(entry: new_mas->node);
6682 enum maple_type type;
6683 unsigned char request, count, i;
6684 void __rcu **slots;
6685 void __rcu **new_slots;
6686 unsigned long val;
6687
6688 /* Allocate memory for child nodes. */
6689 type = mte_node_type(entry: mas->node);
6690 new_slots = ma_slots(mn: new_node, mt: type);
6691 request = mas_data_end(mas) + 1;
6692 count = mt_alloc_bulk(gfp, size: request, nodes: (void **)new_slots);
6693 if (unlikely(count < request)) {
6694 memset(new_slots, 0, request * sizeof(void *));
6695 mas_set_err(mas, err: -ENOMEM);
6696 return;
6697 }
6698
6699 /* Restore node type information in slots. */
6700 slots = ma_slots(mn: node, mt: type);
6701 for (i = 0; i < count; i++) {
6702 val = (unsigned long)mt_slot_locked(mt: mas->tree, slots, offset: i);
6703 val &= MAPLE_NODE_MASK;
6704 ((unsigned long *)new_slots)[i] |= val;
6705 }
6706}
6707
6708/*
6709 * mas_dup_build() - Build a new maple tree from a source tree
6710 * @mas: The maple state of source tree, need to be in MAS_START state.
6711 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6712 * @gfp: The GFP_FLAGS to use for allocations.
6713 *
6714 * This function builds a new tree in DFS preorder. If the memory allocation
6715 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6716 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6717 *
6718 * Note that the attributes of the two trees need to be exactly the same, and the
6719 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6720 */
6721static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6722 gfp_t gfp)
6723{
6724 struct maple_node *node;
6725 struct maple_pnode *parent = NULL;
6726 struct maple_enode *root;
6727 enum maple_type type;
6728
6729 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6730 unlikely(!mtree_empty(new_mas->tree))) {
6731 mas_set_err(mas, err: -EINVAL);
6732 return;
6733 }
6734
6735 root = mas_start(mas);
6736 if (mas_is_ptr(mas) || mas_is_none(mas))
6737 goto set_new_tree;
6738
6739 node = mt_alloc_one(gfp);
6740 if (!node) {
6741 new_mas->status = ma_none;
6742 mas_set_err(mas, err: -ENOMEM);
6743 return;
6744 }
6745
6746 type = mte_node_type(entry: mas->node);
6747 root = mt_mk_node(node, type);
6748 new_mas->node = root;
6749 new_mas->min = 0;
6750 new_mas->max = ULONG_MAX;
6751 root = mte_mk_root(node: root);
6752 while (1) {
6753 mas_copy_node(mas, new_mas, parent);
6754 if (!mte_is_leaf(entry: mas->node)) {
6755 /* Only allocate child nodes for non-leaf nodes. */
6756 mas_dup_alloc(mas, new_mas, gfp);
6757 if (unlikely(mas_is_err(mas)))
6758 return;
6759 } else {
6760 /*
6761 * This is the last leaf node and duplication is
6762 * completed.
6763 */
6764 if (mas->max == ULONG_MAX)
6765 goto done;
6766
6767 /* This is not the last leaf node and needs to go up. */
6768 do {
6769 mas_ascend(mas);
6770 mas_ascend(mas: new_mas);
6771 } while (mas->offset == mas_data_end(mas));
6772
6773 /* Move to the next subtree. */
6774 mas->offset++;
6775 new_mas->offset++;
6776 }
6777
6778 mas_descend(mas);
6779 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6780 mas_descend(mas: new_mas);
6781 mas->offset = 0;
6782 new_mas->offset = 0;
6783 }
6784done:
6785 /* Specially handle the parent of the root node. */
6786 mte_to_node(entry: root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6787set_new_tree:
6788 /* Make them the same height */
6789 new_mas->tree->ma_flags = mas->tree->ma_flags;
6790 rcu_assign_pointer(new_mas->tree->ma_root, root);
6791}
6792
6793/**
6794 * __mt_dup(): Duplicate an entire maple tree
6795 * @mt: The source maple tree
6796 * @new: The new maple tree
6797 * @gfp: The GFP_FLAGS to use for allocations
6798 *
6799 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6800 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6801 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6802 * source node except for all the addresses stored in it. It will be faster than
6803 * traversing all elements in the source tree and inserting them one by one into
6804 * the new tree.
6805 * The user needs to ensure that the attributes of the source tree and the new
6806 * tree are the same, and the new tree needs to be an empty tree, otherwise
6807 * -EINVAL will be returned.
6808 * Note that the user needs to manually lock the source tree and the new tree.
6809 *
6810 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6811 * the attributes of the two trees are different or the new tree is not an empty
6812 * tree.
6813 */
6814int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6815{
6816 int ret = 0;
6817 MA_STATE(mas, mt, 0, 0);
6818 MA_STATE(new_mas, new, 0, 0);
6819
6820 mas_dup_build(mas: &mas, new_mas: &new_mas, gfp);
6821 if (unlikely(mas_is_err(&mas))) {
6822 ret = xa_err(entry: mas.node);
6823 if (ret == -ENOMEM)
6824 mas_dup_free(mas: &new_mas);
6825 }
6826
6827 return ret;
6828}
6829EXPORT_SYMBOL(__mt_dup);
6830
6831/**
6832 * mtree_dup(): Duplicate an entire maple tree
6833 * @mt: The source maple tree
6834 * @new: The new maple tree
6835 * @gfp: The GFP_FLAGS to use for allocations
6836 *
6837 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6838 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6839 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6840 * source node except for all the addresses stored in it. It will be faster than
6841 * traversing all elements in the source tree and inserting them one by one into
6842 * the new tree.
6843 * The user needs to ensure that the attributes of the source tree and the new
6844 * tree are the same, and the new tree needs to be an empty tree, otherwise
6845 * -EINVAL will be returned.
6846 *
6847 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6848 * the attributes of the two trees are different or the new tree is not an empty
6849 * tree.
6850 */
6851int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6852{
6853 int ret = 0;
6854 MA_STATE(mas, mt, 0, 0);
6855 MA_STATE(new_mas, new, 0, 0);
6856
6857 mas_lock(&new_mas);
6858 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6859 mas_dup_build(mas: &mas, new_mas: &new_mas, gfp);
6860 mas_unlock(&mas);
6861 if (unlikely(mas_is_err(&mas))) {
6862 ret = xa_err(entry: mas.node);
6863 if (ret == -ENOMEM)
6864 mas_dup_free(mas: &new_mas);
6865 }
6866
6867 mas_unlock(&new_mas);
6868 return ret;
6869}
6870EXPORT_SYMBOL(mtree_dup);
6871
6872/**
6873 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6874 * @mt: The maple tree
6875 *
6876 * Note: Does not handle locking.
6877 */
6878void __mt_destroy(struct maple_tree *mt)
6879{
6880 void *root = mt_root_locked(mt);
6881
6882 rcu_assign_pointer(mt->ma_root, NULL);
6883 if (xa_is_node(entry: root))
6884 mte_destroy_walk(enode: root, mt);
6885
6886 mt->ma_flags = mt_attr(mt);
6887}
6888EXPORT_SYMBOL_GPL(__mt_destroy);
6889
6890/**
6891 * mtree_destroy() - Destroy a maple tree
6892 * @mt: The maple tree
6893 *
6894 * Frees all resources used by the tree. Handles locking.
6895 */
6896void mtree_destroy(struct maple_tree *mt)
6897{
6898 mtree_lock(mt);
6899 __mt_destroy(mt);
6900 mtree_unlock(mt);
6901}
6902EXPORT_SYMBOL(mtree_destroy);
6903
6904/**
6905 * mt_find() - Search from the start up until an entry is found.
6906 * @mt: The maple tree
6907 * @index: Pointer which contains the start location of the search
6908 * @max: The maximum value of the search range
6909 *
6910 * Takes RCU read lock internally to protect the search, which does not
6911 * protect the returned pointer after dropping RCU read lock.
6912 * See also: Documentation/core-api/maple_tree.rst
6913 *
6914 * In case that an entry is found @index is updated to point to the next
6915 * possible entry independent whether the found entry is occupying a
6916 * single index or a range if indices.
6917 *
6918 * Return: The entry at or after the @index or %NULL
6919 */
6920void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6921{
6922 MA_STATE(mas, mt, *index, *index);
6923 void *entry;
6924#ifdef CONFIG_DEBUG_MAPLE_TREE
6925 unsigned long copy = *index;
6926#endif
6927
6928 trace_ma_read(fn: __func__, mas: &mas);
6929
6930 if ((*index) > max)
6931 return NULL;
6932
6933 rcu_read_lock();
6934retry:
6935 entry = mas_state_walk(mas: &mas);
6936 if (mas_is_start(mas: &mas))
6937 goto retry;
6938
6939 if (unlikely(xa_is_zero(entry)))
6940 entry = NULL;
6941
6942 if (entry)
6943 goto unlock;
6944
6945 while (mas_is_active(mas: &mas) && (mas.last < max)) {
6946 entry = mas_next_entry(mas: &mas, limit: max);
6947 if (likely(entry && !xa_is_zero(entry)))
6948 break;
6949 }
6950
6951 if (unlikely(xa_is_zero(entry)))
6952 entry = NULL;
6953unlock:
6954 rcu_read_unlock();
6955 if (likely(entry)) {
6956 *index = mas.last + 1;
6957#ifdef CONFIG_DEBUG_MAPLE_TREE
6958 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6959 pr_err("index not increased! %lx <= %lx\n",
6960 *index, copy);
6961#endif
6962 }
6963
6964 return entry;
6965}
6966EXPORT_SYMBOL(mt_find);
6967
6968/**
6969 * mt_find_after() - Search from the start up until an entry is found.
6970 * @mt: The maple tree
6971 * @index: Pointer which contains the start location of the search
6972 * @max: The maximum value to check
6973 *
6974 * Same as mt_find() except that it checks @index for 0 before
6975 * searching. If @index == 0, the search is aborted. This covers a wrap
6976 * around of @index to 0 in an iterator loop.
6977 *
6978 * Return: The entry at or after the @index or %NULL
6979 */
6980void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6981 unsigned long max)
6982{
6983 if (!(*index))
6984 return NULL;
6985
6986 return mt_find(mt, index, max);
6987}
6988EXPORT_SYMBOL(mt_find_after);
6989
6990#ifdef CONFIG_DEBUG_MAPLE_TREE
6991atomic_t maple_tree_tests_run;
6992EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6993atomic_t maple_tree_tests_passed;
6994EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6995
6996#ifndef __KERNEL__
6997extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6998void mt_set_non_kernel(unsigned int val)
6999{
7000 kmem_cache_set_non_kernel(maple_node_cache, val);
7001}
7002
7003extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7004unsigned long mt_get_alloc_size(void)
7005{
7006 return kmem_cache_get_alloc(maple_node_cache);
7007}
7008
7009extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7010void mt_zero_nr_tallocated(void)
7011{
7012 kmem_cache_zero_nr_tallocated(maple_node_cache);
7013}
7014
7015extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7016unsigned int mt_nr_tallocated(void)
7017{
7018 return kmem_cache_nr_tallocated(maple_node_cache);
7019}
7020
7021extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7022unsigned int mt_nr_allocated(void)
7023{
7024 return kmem_cache_nr_allocated(maple_node_cache);
7025}
7026
7027void mt_cache_shrink(void)
7028{
7029}
7030#else
7031/*
7032 * mt_cache_shrink() - For testing, don't use this.
7033 *
7034 * Certain testcases can trigger an OOM when combined with other memory
7035 * debugging configuration options. This function is used to reduce the
7036 * possibility of an out of memory even due to kmem_cache objects remaining
7037 * around for longer than usual.
7038 */
7039void mt_cache_shrink(void)
7040{
7041 kmem_cache_shrink(s: maple_node_cache);
7042
7043}
7044EXPORT_SYMBOL_GPL(mt_cache_shrink);
7045
7046#endif /* not defined __KERNEL__ */
7047/*
7048 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7049 * @mas: The maple state
7050 * @offset: The offset into the slot array to fetch.
7051 *
7052 * Return: The entry stored at @offset.
7053 */
7054static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7055 unsigned char offset)
7056{
7057 return mas_slot(mas, slots: ma_slots(mn: mas_mn(mas), mt: mte_node_type(entry: mas->node)),
7058 offset);
7059}
7060
7061/* Depth first search, post-order */
7062static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7063{
7064
7065 struct maple_enode *p, *mn = mas->node;
7066 unsigned long p_min, p_max;
7067
7068 mas_next_node(mas, node: mas_mn(mas), max);
7069 if (!mas_is_overflow(mas))
7070 return;
7071
7072 if (mte_is_root(node: mn))
7073 return;
7074
7075 mas->node = mn;
7076 mas_ascend(mas);
7077 do {
7078 p = mas->node;
7079 p_min = mas->min;
7080 p_max = mas->max;
7081 mas_prev_node(mas, min: 0);
7082 } while (!mas_is_underflow(mas));
7083
7084 mas->node = p;
7085 mas->max = p_max;
7086 mas->min = p_min;
7087}
7088
7089/* Tree validations */
7090static void mt_dump_node(const struct maple_tree *mt, void *entry,
7091 unsigned long min, unsigned long max, unsigned int depth,
7092 enum mt_dump_format format);
7093static void mt_dump_range(unsigned long min, unsigned long max,
7094 unsigned int depth, enum mt_dump_format format)
7095{
7096 static const char spaces[] = " ";
7097
7098 switch(format) {
7099 case mt_dump_hex:
7100 if (min == max)
7101 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7102 else
7103 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7104 break;
7105 case mt_dump_dec:
7106 if (min == max)
7107 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7108 else
7109 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7110 }
7111}
7112
7113static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7114 unsigned int depth, enum mt_dump_format format)
7115{
7116 mt_dump_range(min, max, depth, format);
7117
7118 if (xa_is_value(entry))
7119 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7120 xa_to_value(entry), entry);
7121 else if (xa_is_zero(entry))
7122 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7123 else if (mt_is_reserved(entry))
7124 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7125 else
7126 pr_cont("%p\n", entry);
7127}
7128
7129static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7130 unsigned long min, unsigned long max, unsigned int depth,
7131 enum mt_dump_format format)
7132{
7133 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7134 bool leaf = mte_is_leaf(entry);
7135 unsigned long first = min;
7136 int i;
7137
7138 pr_cont(" contents: ");
7139 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7140 switch(format) {
7141 case mt_dump_hex:
7142 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7143 break;
7144 case mt_dump_dec:
7145 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7146 }
7147 }
7148 pr_cont("%p\n", node->slot[i]);
7149 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7150 unsigned long last = max;
7151
7152 if (i < (MAPLE_RANGE64_SLOTS - 1))
7153 last = node->pivot[i];
7154 else if (!node->slot[i] && max != mt_node_max(entry))
7155 break;
7156 if (last == 0 && i > 0)
7157 break;
7158 if (leaf)
7159 mt_dump_entry(entry: mt_slot(mt, slots: node->slot, offset: i),
7160 min: first, max: last, depth: depth + 1, format);
7161 else if (node->slot[i])
7162 mt_dump_node(mt, entry: mt_slot(mt, slots: node->slot, offset: i),
7163 min: first, max: last, depth: depth + 1, format);
7164
7165 if (last == max)
7166 break;
7167 if (last > max) {
7168 switch(format) {
7169 case mt_dump_hex:
7170 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7171 node, last, max, i);
7172 break;
7173 case mt_dump_dec:
7174 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7175 node, last, max, i);
7176 }
7177 }
7178 first = last + 1;
7179 }
7180}
7181
7182static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7183 unsigned long min, unsigned long max, unsigned int depth,
7184 enum mt_dump_format format)
7185{
7186 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7187 bool leaf = mte_is_leaf(entry);
7188 unsigned long first = min;
7189 int i;
7190
7191 pr_cont(" contents: ");
7192 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7193 switch (format) {
7194 case mt_dump_hex:
7195 pr_cont("%lx ", node->gap[i]);
7196 break;
7197 case mt_dump_dec:
7198 pr_cont("%lu ", node->gap[i]);
7199 }
7200 }
7201 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7202 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7203 switch (format) {
7204 case mt_dump_hex:
7205 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7206 break;
7207 case mt_dump_dec:
7208 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7209 }
7210 }
7211 pr_cont("%p\n", node->slot[i]);
7212 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7213 unsigned long last = max;
7214
7215 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7216 last = node->pivot[i];
7217 else if (!node->slot[i])
7218 break;
7219 if (last == 0 && i > 0)
7220 break;
7221 if (leaf)
7222 mt_dump_entry(entry: mt_slot(mt, slots: node->slot, offset: i),
7223 min: first, max: last, depth: depth + 1, format);
7224 else if (node->slot[i])
7225 mt_dump_node(mt, entry: mt_slot(mt, slots: node->slot, offset: i),
7226 min: first, max: last, depth: depth + 1, format);
7227
7228 if (last == max)
7229 break;
7230 if (last > max) {
7231 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7232 node, last, max, i);
7233 break;
7234 }
7235 first = last + 1;
7236 }
7237}
7238
7239static void mt_dump_node(const struct maple_tree *mt, void *entry,
7240 unsigned long min, unsigned long max, unsigned int depth,
7241 enum mt_dump_format format)
7242{
7243 struct maple_node *node = mte_to_node(entry);
7244 unsigned int type = mte_node_type(entry);
7245 unsigned int i;
7246
7247 mt_dump_range(min, max, depth, format);
7248
7249 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7250 node ? node->parent : NULL);
7251 switch (type) {
7252 case maple_dense:
7253 pr_cont("\n");
7254 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7255 if (min + i > max)
7256 pr_cont("OUT OF RANGE: ");
7257 mt_dump_entry(entry: mt_slot(mt, slots: node->slot, offset: i),
7258 min: min + i, max: min + i, depth, format);
7259 }
7260 break;
7261 case maple_leaf_64:
7262 case maple_range_64:
7263 mt_dump_range64(mt, entry, min, max, depth, format);
7264 break;
7265 case maple_arange_64:
7266 mt_dump_arange64(mt, entry, min, max, depth, format);
7267 break;
7268
7269 default:
7270 pr_cont(" UNKNOWN TYPE\n");
7271 }
7272}
7273
7274void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7275{
7276 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7277
7278 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7279 mt, mt->ma_flags, mt_height(mt), entry);
7280 if (!xa_is_node(entry))
7281 mt_dump_entry(entry, min: 0, max: 0, depth: 0, format);
7282 else if (entry)
7283 mt_dump_node(mt, entry, min: 0, mt_node_max(entry), depth: 0, format);
7284}
7285EXPORT_SYMBOL_GPL(mt_dump);
7286
7287/*
7288 * Calculate the maximum gap in a node and check if that's what is reported in
7289 * the parent (unless root).
7290 */
7291static void mas_validate_gaps(struct ma_state *mas)
7292{
7293 struct maple_enode *mte = mas->node;
7294 struct maple_node *p_mn, *node = mte_to_node(entry: mte);
7295 enum maple_type mt = mte_node_type(entry: mas->node);
7296 unsigned long gap = 0, max_gap = 0;
7297 unsigned long p_end, p_start = mas->min;
7298 unsigned char p_slot, offset;
7299 unsigned long *gaps = NULL;
7300 unsigned long *pivots = ma_pivots(node, type: mt);
7301 unsigned int i;
7302
7303 if (ma_is_dense(type: mt)) {
7304 for (i = 0; i < mt_slot_count(mte); i++) {
7305 if (mas_get_slot(mas, offset: i)) {
7306 if (gap > max_gap)
7307 max_gap = gap;
7308 gap = 0;
7309 continue;
7310 }
7311 gap++;
7312 }
7313 goto counted;
7314 }
7315
7316 gaps = ma_gaps(node, type: mt);
7317 for (i = 0; i < mt_slot_count(mte); i++) {
7318 p_end = mas_safe_pivot(mas, pivots, piv: i, type: mt);
7319
7320 if (!gaps) {
7321 if (!mas_get_slot(mas, offset: i))
7322 gap = p_end - p_start + 1;
7323 } else {
7324 void *entry = mas_get_slot(mas, offset: i);
7325
7326 gap = gaps[i];
7327 MT_BUG_ON(mas->tree, !entry);
7328
7329 if (gap > p_end - p_start + 1) {
7330 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7331 mas_mn(mas), i, gap, p_end, p_start,
7332 p_end - p_start + 1);
7333 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7334 }
7335 }
7336
7337 if (gap > max_gap)
7338 max_gap = gap;
7339
7340 p_start = p_end + 1;
7341 if (p_end >= mas->max)
7342 break;
7343 }
7344
7345counted:
7346 if (mt == maple_arange_64) {
7347 MT_BUG_ON(mas->tree, !gaps);
7348 offset = ma_meta_gap(mn: node);
7349 if (offset > i) {
7350 pr_err("gap offset %p[%u] is invalid\n", node, offset);
7351 MT_BUG_ON(mas->tree, 1);
7352 }
7353
7354 if (gaps[offset] != max_gap) {
7355 pr_err("gap %p[%u] is not the largest gap %lu\n",
7356 node, offset, max_gap);
7357 MT_BUG_ON(mas->tree, 1);
7358 }
7359
7360 for (i++ ; i < mt_slot_count(mte); i++) {
7361 if (gaps[i] != 0) {
7362 pr_err("gap %p[%u] beyond node limit != 0\n",
7363 node, i);
7364 MT_BUG_ON(mas->tree, 1);
7365 }
7366 }
7367 }
7368
7369 if (mte_is_root(node: mte))
7370 return;
7371
7372 p_slot = mte_parent_slot(enode: mas->node);
7373 p_mn = mte_parent(enode: mte);
7374 MT_BUG_ON(mas->tree, max_gap > mas->max);
7375 if (ma_gaps(node: p_mn, type: mas_parent_type(mas, enode: mte))[p_slot] != max_gap) {
7376 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7377 mt_dump(mas->tree, mt_dump_hex);
7378 MT_BUG_ON(mas->tree, 1);
7379 }
7380}
7381
7382static void mas_validate_parent_slot(struct ma_state *mas)
7383{
7384 struct maple_node *parent;
7385 struct maple_enode *node;
7386 enum maple_type p_type;
7387 unsigned char p_slot;
7388 void __rcu **slots;
7389 int i;
7390
7391 if (mte_is_root(node: mas->node))
7392 return;
7393
7394 p_slot = mte_parent_slot(enode: mas->node);
7395 p_type = mas_parent_type(mas, enode: mas->node);
7396 parent = mte_parent(enode: mas->node);
7397 slots = ma_slots(mn: parent, mt: p_type);
7398 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7399
7400 /* Check prev/next parent slot for duplicate node entry */
7401
7402 for (i = 0; i < mt_slots[p_type]; i++) {
7403 node = mas_slot(mas, slots, offset: i);
7404 if (i == p_slot) {
7405 if (node != mas->node)
7406 pr_err("parent %p[%u] does not have %p\n",
7407 parent, i, mas_mn(mas));
7408 MT_BUG_ON(mas->tree, node != mas->node);
7409 } else if (node == mas->node) {
7410 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7411 mas_mn(mas), parent, i, p_slot);
7412 MT_BUG_ON(mas->tree, node == mas->node);
7413 }
7414 }
7415}
7416
7417static void mas_validate_child_slot(struct ma_state *mas)
7418{
7419 enum maple_type type = mte_node_type(entry: mas->node);
7420 void __rcu **slots = ma_slots(mn: mte_to_node(entry: mas->node), mt: type);
7421 unsigned long *pivots = ma_pivots(node: mte_to_node(entry: mas->node), type);
7422 struct maple_enode *child;
7423 unsigned char i;
7424
7425 if (mte_is_leaf(entry: mas->node))
7426 return;
7427
7428 for (i = 0; i < mt_slots[type]; i++) {
7429 child = mas_slot(mas, slots, offset: i);
7430
7431 if (!child) {
7432 pr_err("Non-leaf node lacks child at %p[%u]\n",
7433 mas_mn(mas), i);
7434 MT_BUG_ON(mas->tree, 1);
7435 }
7436
7437 if (mte_parent_slot(enode: child) != i) {
7438 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7439 mas_mn(mas), i, mte_to_node(child),
7440 mte_parent_slot(child));
7441 MT_BUG_ON(mas->tree, 1);
7442 }
7443
7444 if (mte_parent(enode: child) != mte_to_node(entry: mas->node)) {
7445 pr_err("child %p has parent %p not %p\n",
7446 mte_to_node(child), mte_parent(child),
7447 mte_to_node(mas->node));
7448 MT_BUG_ON(mas->tree, 1);
7449 }
7450
7451 if (i < mt_pivots[type] && pivots[i] == mas->max)
7452 break;
7453 }
7454}
7455
7456/*
7457 * Validate all pivots are within mas->min and mas->max, check metadata ends
7458 * where the maximum ends and ensure there is no slots or pivots set outside of
7459 * the end of the data.
7460 */
7461static void mas_validate_limits(struct ma_state *mas)
7462{
7463 int i;
7464 unsigned long prev_piv = 0;
7465 enum maple_type type = mte_node_type(entry: mas->node);
7466 void __rcu **slots = ma_slots(mn: mte_to_node(entry: mas->node), mt: type);
7467 unsigned long *pivots = ma_pivots(node: mas_mn(mas), type);
7468
7469 for (i = 0; i < mt_slots[type]; i++) {
7470 unsigned long piv;
7471
7472 piv = mas_safe_pivot(mas, pivots, piv: i, type);
7473
7474 if (!piv && (i != 0)) {
7475 pr_err("Missing node limit pivot at %p[%u]",
7476 mas_mn(mas), i);
7477 MAS_WARN_ON(mas, 1);
7478 }
7479
7480 if (prev_piv > piv) {
7481 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7482 mas_mn(mas), i, piv, prev_piv);
7483 MAS_WARN_ON(mas, piv < prev_piv);
7484 }
7485
7486 if (piv < mas->min) {
7487 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7488 piv, mas->min);
7489 MAS_WARN_ON(mas, piv < mas->min);
7490 }
7491 if (piv > mas->max) {
7492 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7493 piv, mas->max);
7494 MAS_WARN_ON(mas, piv > mas->max);
7495 }
7496 prev_piv = piv;
7497 if (piv == mas->max)
7498 break;
7499 }
7500
7501 if (mas_data_end(mas) != i) {
7502 pr_err("node%p: data_end %u != the last slot offset %u\n",
7503 mas_mn(mas), mas_data_end(mas), i);
7504 MT_BUG_ON(mas->tree, 1);
7505 }
7506
7507 for (i += 1; i < mt_slots[type]; i++) {
7508 void *entry = mas_slot(mas, slots, offset: i);
7509
7510 if (entry && (i != mt_slots[type] - 1)) {
7511 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7512 i, entry);
7513 MT_BUG_ON(mas->tree, entry != NULL);
7514 }
7515
7516 if (i < mt_pivots[type]) {
7517 unsigned long piv = pivots[i];
7518
7519 if (!piv)
7520 continue;
7521
7522 pr_err("%p[%u] should not have piv %lu\n",
7523 mas_mn(mas), i, piv);
7524 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7525 }
7526 }
7527}
7528
7529static void mt_validate_nulls(struct maple_tree *mt)
7530{
7531 void *entry, *last = (void *)1;
7532 unsigned char offset = 0;
7533 void __rcu **slots;
7534 MA_STATE(mas, mt, 0, 0);
7535
7536 mas_start(mas: &mas);
7537 if (mas_is_none(mas: &mas) || (mas_is_ptr(mas: &mas)))
7538 return;
7539
7540 while (!mte_is_leaf(entry: mas.node))
7541 mas_descend(mas: &mas);
7542
7543 slots = ma_slots(mn: mte_to_node(entry: mas.node), mt: mte_node_type(entry: mas.node));
7544 do {
7545 entry = mas_slot(mas: &mas, slots, offset);
7546 if (!last && !entry) {
7547 pr_err("Sequential nulls end at %p[%u]\n",
7548 mas_mn(&mas), offset);
7549 }
7550 MT_BUG_ON(mt, !last && !entry);
7551 last = entry;
7552 if (offset == mas_data_end(mas: &mas)) {
7553 mas_next_node(mas: &mas, node: mas_mn(mas: &mas), ULONG_MAX);
7554 if (mas_is_overflow(mas: &mas))
7555 return;
7556 offset = 0;
7557 slots = ma_slots(mn: mte_to_node(entry: mas.node),
7558 mt: mte_node_type(entry: mas.node));
7559 } else {
7560 offset++;
7561 }
7562
7563 } while (!mas_is_overflow(mas: &mas));
7564}
7565
7566/*
7567 * validate a maple tree by checking:
7568 * 1. The limits (pivots are within mas->min to mas->max)
7569 * 2. The gap is correctly set in the parents
7570 */
7571void mt_validate(struct maple_tree *mt)
7572{
7573 unsigned char end;
7574
7575 MA_STATE(mas, mt, 0, 0);
7576 rcu_read_lock();
7577 mas_start(mas: &mas);
7578 if (!mas_is_active(mas: &mas))
7579 goto done;
7580
7581 while (!mte_is_leaf(entry: mas.node))
7582 mas_descend(mas: &mas);
7583
7584 while (!mas_is_overflow(mas: &mas)) {
7585 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7586 end = mas_data_end(mas: &mas);
7587 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7588 (mas.max != ULONG_MAX))) {
7589 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7590 }
7591
7592 mas_validate_parent_slot(mas: &mas);
7593 mas_validate_limits(mas: &mas);
7594 mas_validate_child_slot(mas: &mas);
7595 if (mt_is_alloc(mt))
7596 mas_validate_gaps(mas: &mas);
7597 mas_dfs_postorder(mas: &mas, ULONG_MAX);
7598 }
7599 mt_validate_nulls(mt);
7600done:
7601 rcu_read_unlock();
7602
7603}
7604EXPORT_SYMBOL_GPL(mt_validate);
7605
7606void mas_dump(const struct ma_state *mas)
7607{
7608 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7609 switch (mas->status) {
7610 case ma_active:
7611 pr_err("(ma_active)");
7612 break;
7613 case ma_none:
7614 pr_err("(ma_none)");
7615 break;
7616 case ma_root:
7617 pr_err("(ma_root)");
7618 break;
7619 case ma_start:
7620 pr_err("(ma_start) ");
7621 break;
7622 case ma_pause:
7623 pr_err("(ma_pause) ");
7624 break;
7625 case ma_overflow:
7626 pr_err("(ma_overflow) ");
7627 break;
7628 case ma_underflow:
7629 pr_err("(ma_underflow) ");
7630 break;
7631 case ma_error:
7632 pr_err("(ma_error) ");
7633 break;
7634 }
7635
7636 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7637 mas->index, mas->last);
7638 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7639 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7640 if (mas->index > mas->last)
7641 pr_err("Check index & last\n");
7642}
7643EXPORT_SYMBOL_GPL(mas_dump);
7644
7645void mas_wr_dump(const struct ma_wr_state *wr_mas)
7646{
7647 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7648 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7649 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7650 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7651 wr_mas->end_piv);
7652}
7653EXPORT_SYMBOL_GPL(mas_wr_dump);
7654
7655#endif /* CONFIG_DEBUG_MAPLE_TREE */
7656

source code of linux/lib/maple_tree.c