1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015, Sony Mobile Communications Inc.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6#include <linux/module.h>
7#include <linux/netlink.h>
8#include <linux/qrtr.h>
9#include <linux/termios.h> /* For TIOCINQ/OUTQ */
10#include <linux/spinlock.h>
11#include <linux/wait.h>
12
13#include <net/sock.h>
14
15#include "qrtr.h"
16
17#define QRTR_PROTO_VER_1 1
18#define QRTR_PROTO_VER_2 3
19
20/* auto-bind range */
21#define QRTR_MIN_EPH_SOCKET 0x4000
22#define QRTR_MAX_EPH_SOCKET 0x7fff
23#define QRTR_EPH_PORT_RANGE \
24 XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25
26#define QRTR_PORT_CTRL_LEGACY 0xffff
27
28/**
29 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
30 * @version: protocol version
31 * @type: packet type; one of QRTR_TYPE_*
32 * @src_node_id: source node
33 * @src_port_id: source port
34 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
35 * @size: length of packet, excluding this header
36 * @dst_node_id: destination node
37 * @dst_port_id: destination port
38 */
39struct qrtr_hdr_v1 {
40 __le32 version;
41 __le32 type;
42 __le32 src_node_id;
43 __le32 src_port_id;
44 __le32 confirm_rx;
45 __le32 size;
46 __le32 dst_node_id;
47 __le32 dst_port_id;
48} __packed;
49
50/**
51 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
52 * @version: protocol version
53 * @type: packet type; one of QRTR_TYPE_*
54 * @flags: bitmask of QRTR_FLAGS_*
55 * @optlen: length of optional header data
56 * @size: length of packet, excluding this header and optlen
57 * @src_node_id: source node
58 * @src_port_id: source port
59 * @dst_node_id: destination node
60 * @dst_port_id: destination port
61 */
62struct qrtr_hdr_v2 {
63 u8 version;
64 u8 type;
65 u8 flags;
66 u8 optlen;
67 __le32 size;
68 __le16 src_node_id;
69 __le16 src_port_id;
70 __le16 dst_node_id;
71 __le16 dst_port_id;
72};
73
74#define QRTR_FLAGS_CONFIRM_RX BIT(0)
75
76struct qrtr_cb {
77 u32 src_node;
78 u32 src_port;
79 u32 dst_node;
80 u32 dst_port;
81
82 u8 type;
83 u8 confirm_rx;
84};
85
86#define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
87 sizeof(struct qrtr_hdr_v2))
88
89struct qrtr_sock {
90 /* WARNING: sk must be the first member */
91 struct sock sk;
92 struct sockaddr_qrtr us;
93 struct sockaddr_qrtr peer;
94};
95
96static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
97{
98 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
99 return container_of(sk, struct qrtr_sock, sk);
100}
101
102static unsigned int qrtr_local_nid = 1;
103
104/* for node ids */
105static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
106static DEFINE_SPINLOCK(qrtr_nodes_lock);
107/* broadcast list */
108static LIST_HEAD(qrtr_all_nodes);
109/* lock for qrtr_all_nodes and node reference */
110static DEFINE_MUTEX(qrtr_node_lock);
111
112/* local port allocation management */
113static DEFINE_XARRAY_ALLOC(qrtr_ports);
114
115/**
116 * struct qrtr_node - endpoint node
117 * @ep_lock: lock for endpoint management and callbacks
118 * @ep: endpoint
119 * @ref: reference count for node
120 * @nid: node id
121 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
122 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
123 * @rx_queue: receive queue
124 * @item: list item for broadcast list
125 */
126struct qrtr_node {
127 struct mutex ep_lock;
128 struct qrtr_endpoint *ep;
129 struct kref ref;
130 unsigned int nid;
131
132 struct radix_tree_root qrtr_tx_flow;
133 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
134
135 struct sk_buff_head rx_queue;
136 struct list_head item;
137};
138
139/**
140 * struct qrtr_tx_flow - tx flow control
141 * @resume_tx: waiters for a resume tx from the remote
142 * @pending: number of waiting senders
143 * @tx_failed: indicates that a message with confirm_rx flag was lost
144 */
145struct qrtr_tx_flow {
146 struct wait_queue_head resume_tx;
147 int pending;
148 int tx_failed;
149};
150
151#define QRTR_TX_FLOW_HIGH 10
152#define QRTR_TX_FLOW_LOW 5
153
154static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
155 int type, struct sockaddr_qrtr *from,
156 struct sockaddr_qrtr *to);
157static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
158 int type, struct sockaddr_qrtr *from,
159 struct sockaddr_qrtr *to);
160static struct qrtr_sock *qrtr_port_lookup(int port);
161static void qrtr_port_put(struct qrtr_sock *ipc);
162
163/* Release node resources and free the node.
164 *
165 * Do not call directly, use qrtr_node_release. To be used with
166 * kref_put_mutex. As such, the node mutex is expected to be locked on call.
167 */
168static void __qrtr_node_release(struct kref *kref)
169{
170 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
171 struct radix_tree_iter iter;
172 struct qrtr_tx_flow *flow;
173 unsigned long flags;
174 void __rcu **slot;
175
176 spin_lock_irqsave(&qrtr_nodes_lock, flags);
177 /* If the node is a bridge for other nodes, there are possibly
178 * multiple entries pointing to our released node, delete them all.
179 */
180 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
181 if (*slot == node)
182 radix_tree_iter_delete(&qrtr_nodes, iter: &iter, slot);
183 }
184 spin_unlock_irqrestore(lock: &qrtr_nodes_lock, flags);
185
186 list_del(entry: &node->item);
187 mutex_unlock(lock: &qrtr_node_lock);
188
189 skb_queue_purge(list: &node->rx_queue);
190
191 /* Free tx flow counters */
192 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
193 flow = *slot;
194 radix_tree_iter_delete(&node->qrtr_tx_flow, iter: &iter, slot);
195 kfree(objp: flow);
196 }
197 kfree(objp: node);
198}
199
200/* Increment reference to node. */
201static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
202{
203 if (node)
204 kref_get(kref: &node->ref);
205 return node;
206}
207
208/* Decrement reference to node and release as necessary. */
209static void qrtr_node_release(struct qrtr_node *node)
210{
211 if (!node)
212 return;
213 kref_put_mutex(kref: &node->ref, release: __qrtr_node_release, lock: &qrtr_node_lock);
214}
215
216/**
217 * qrtr_tx_resume() - reset flow control counter
218 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
219 * @skb: resume_tx packet
220 */
221static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
222{
223 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
224 u64 remote_node = le32_to_cpu(pkt->client.node);
225 u32 remote_port = le32_to_cpu(pkt->client.port);
226 struct qrtr_tx_flow *flow;
227 unsigned long key;
228
229 key = remote_node << 32 | remote_port;
230
231 rcu_read_lock();
232 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
233 rcu_read_unlock();
234 if (flow) {
235 spin_lock(lock: &flow->resume_tx.lock);
236 flow->pending = 0;
237 spin_unlock(lock: &flow->resume_tx.lock);
238 wake_up_interruptible_all(&flow->resume_tx);
239 }
240
241 consume_skb(skb);
242}
243
244/**
245 * qrtr_tx_wait() - flow control for outgoing packets
246 * @node: qrtr_node that the packet is to be send to
247 * @dest_node: node id of the destination
248 * @dest_port: port number of the destination
249 * @type: type of message
250 *
251 * The flow control scheme is based around the low and high "watermarks". When
252 * the low watermark is passed the confirm_rx flag is set on the outgoing
253 * message, which will trigger the remote to send a control message of the type
254 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
255 * further transmision should be paused.
256 *
257 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
258 */
259static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
260 int type)
261{
262 unsigned long key = (u64)dest_node << 32 | dest_port;
263 struct qrtr_tx_flow *flow;
264 int confirm_rx = 0;
265 int ret;
266
267 /* Never set confirm_rx on non-data packets */
268 if (type != QRTR_TYPE_DATA)
269 return 0;
270
271 mutex_lock(&node->qrtr_tx_lock);
272 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
273 if (!flow) {
274 flow = kzalloc(size: sizeof(*flow), GFP_KERNEL);
275 if (flow) {
276 init_waitqueue_head(&flow->resume_tx);
277 if (radix_tree_insert(&node->qrtr_tx_flow, index: key, flow)) {
278 kfree(objp: flow);
279 flow = NULL;
280 }
281 }
282 }
283 mutex_unlock(lock: &node->qrtr_tx_lock);
284
285 /* Set confirm_rx if we where unable to find and allocate a flow */
286 if (!flow)
287 return 1;
288
289 spin_lock_irq(lock: &flow->resume_tx.lock);
290 ret = wait_event_interruptible_locked_irq(flow->resume_tx,
291 flow->pending < QRTR_TX_FLOW_HIGH ||
292 flow->tx_failed ||
293 !node->ep);
294 if (ret < 0) {
295 confirm_rx = ret;
296 } else if (!node->ep) {
297 confirm_rx = -EPIPE;
298 } else if (flow->tx_failed) {
299 flow->tx_failed = 0;
300 confirm_rx = 1;
301 } else {
302 flow->pending++;
303 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
304 }
305 spin_unlock_irq(lock: &flow->resume_tx.lock);
306
307 return confirm_rx;
308}
309
310/**
311 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
312 * @node: qrtr_node that the packet is to be send to
313 * @dest_node: node id of the destination
314 * @dest_port: port number of the destination
315 *
316 * Signal that the transmission of a message with confirm_rx flag failed. The
317 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
318 * at which point transmission would stall forever waiting for the resume TX
319 * message associated with the dropped confirm_rx message.
320 * Work around this by marking the flow as having a failed transmission and
321 * cause the next transmission attempt to be sent with the confirm_rx.
322 */
323static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
324 int dest_port)
325{
326 unsigned long key = (u64)dest_node << 32 | dest_port;
327 struct qrtr_tx_flow *flow;
328
329 rcu_read_lock();
330 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
331 rcu_read_unlock();
332 if (flow) {
333 spin_lock_irq(lock: &flow->resume_tx.lock);
334 flow->tx_failed = 1;
335 spin_unlock_irq(lock: &flow->resume_tx.lock);
336 }
337}
338
339/* Pass an outgoing packet socket buffer to the endpoint driver. */
340static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
341 int type, struct sockaddr_qrtr *from,
342 struct sockaddr_qrtr *to)
343{
344 struct qrtr_hdr_v1 *hdr;
345 size_t len = skb->len;
346 int rc, confirm_rx;
347
348 confirm_rx = qrtr_tx_wait(node, dest_node: to->sq_node, dest_port: to->sq_port, type);
349 if (confirm_rx < 0) {
350 kfree_skb(skb);
351 return confirm_rx;
352 }
353
354 hdr = skb_push(skb, len: sizeof(*hdr));
355 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
356 hdr->type = cpu_to_le32(type);
357 hdr->src_node_id = cpu_to_le32(from->sq_node);
358 hdr->src_port_id = cpu_to_le32(from->sq_port);
359 if (to->sq_port == QRTR_PORT_CTRL) {
360 hdr->dst_node_id = cpu_to_le32(node->nid);
361 hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
362 } else {
363 hdr->dst_node_id = cpu_to_le32(to->sq_node);
364 hdr->dst_port_id = cpu_to_le32(to->sq_port);
365 }
366
367 hdr->size = cpu_to_le32(len);
368 hdr->confirm_rx = !!confirm_rx;
369
370 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
371
372 if (!rc) {
373 mutex_lock(&node->ep_lock);
374 rc = -ENODEV;
375 if (node->ep)
376 rc = node->ep->xmit(node->ep, skb);
377 else
378 kfree_skb(skb);
379 mutex_unlock(lock: &node->ep_lock);
380 }
381 /* Need to ensure that a subsequent message carries the otherwise lost
382 * confirm_rx flag if we dropped this one */
383 if (rc && confirm_rx)
384 qrtr_tx_flow_failed(node, dest_node: to->sq_node, dest_port: to->sq_port);
385
386 return rc;
387}
388
389/* Lookup node by id.
390 *
391 * callers must release with qrtr_node_release()
392 */
393static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
394{
395 struct qrtr_node *node;
396 unsigned long flags;
397
398 mutex_lock(&qrtr_node_lock);
399 spin_lock_irqsave(&qrtr_nodes_lock, flags);
400 node = radix_tree_lookup(&qrtr_nodes, nid);
401 node = qrtr_node_acquire(node);
402 spin_unlock_irqrestore(lock: &qrtr_nodes_lock, flags);
403 mutex_unlock(lock: &qrtr_node_lock);
404
405 return node;
406}
407
408/* Assign node id to node.
409 *
410 * This is mostly useful for automatic node id assignment, based on
411 * the source id in the incoming packet.
412 */
413static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
414{
415 unsigned long flags;
416
417 if (nid == QRTR_EP_NID_AUTO)
418 return;
419
420 spin_lock_irqsave(&qrtr_nodes_lock, flags);
421 radix_tree_insert(&qrtr_nodes, index: nid, node);
422 if (node->nid == QRTR_EP_NID_AUTO)
423 node->nid = nid;
424 spin_unlock_irqrestore(lock: &qrtr_nodes_lock, flags);
425}
426
427/**
428 * qrtr_endpoint_post() - post incoming data
429 * @ep: endpoint handle
430 * @data: data pointer
431 * @len: size of data in bytes
432 *
433 * Return: 0 on success; negative error code on failure
434 */
435int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
436{
437 struct qrtr_node *node = ep->node;
438 const struct qrtr_hdr_v1 *v1;
439 const struct qrtr_hdr_v2 *v2;
440 struct qrtr_sock *ipc;
441 struct sk_buff *skb;
442 struct qrtr_cb *cb;
443 size_t size;
444 unsigned int ver;
445 size_t hdrlen;
446
447 if (len == 0 || len & 3)
448 return -EINVAL;
449
450 skb = __netdev_alloc_skb(NULL, length: len, GFP_ATOMIC | __GFP_NOWARN);
451 if (!skb)
452 return -ENOMEM;
453
454 cb = (struct qrtr_cb *)skb->cb;
455
456 /* Version field in v1 is little endian, so this works for both cases */
457 ver = *(u8*)data;
458
459 switch (ver) {
460 case QRTR_PROTO_VER_1:
461 if (len < sizeof(*v1))
462 goto err;
463 v1 = data;
464 hdrlen = sizeof(*v1);
465
466 cb->type = le32_to_cpu(v1->type);
467 cb->src_node = le32_to_cpu(v1->src_node_id);
468 cb->src_port = le32_to_cpu(v1->src_port_id);
469 cb->confirm_rx = !!v1->confirm_rx;
470 cb->dst_node = le32_to_cpu(v1->dst_node_id);
471 cb->dst_port = le32_to_cpu(v1->dst_port_id);
472
473 size = le32_to_cpu(v1->size);
474 break;
475 case QRTR_PROTO_VER_2:
476 if (len < sizeof(*v2))
477 goto err;
478 v2 = data;
479 hdrlen = sizeof(*v2) + v2->optlen;
480
481 cb->type = v2->type;
482 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
483 cb->src_node = le16_to_cpu(v2->src_node_id);
484 cb->src_port = le16_to_cpu(v2->src_port_id);
485 cb->dst_node = le16_to_cpu(v2->dst_node_id);
486 cb->dst_port = le16_to_cpu(v2->dst_port_id);
487
488 if (cb->src_port == (u16)QRTR_PORT_CTRL)
489 cb->src_port = QRTR_PORT_CTRL;
490 if (cb->dst_port == (u16)QRTR_PORT_CTRL)
491 cb->dst_port = QRTR_PORT_CTRL;
492
493 size = le32_to_cpu(v2->size);
494 break;
495 default:
496 pr_err("qrtr: Invalid version %d\n", ver);
497 goto err;
498 }
499
500 if (cb->dst_port == QRTR_PORT_CTRL_LEGACY)
501 cb->dst_port = QRTR_PORT_CTRL;
502
503 if (!size || len != ALIGN(size, 4) + hdrlen)
504 goto err;
505
506 if ((cb->type == QRTR_TYPE_NEW_SERVER ||
507 cb->type == QRTR_TYPE_RESUME_TX) &&
508 size < sizeof(struct qrtr_ctrl_pkt))
509 goto err;
510
511 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
512 cb->type != QRTR_TYPE_RESUME_TX)
513 goto err;
514
515 skb_put_data(skb, data: data + hdrlen, len: size);
516
517 qrtr_node_assign(node, nid: cb->src_node);
518
519 if (cb->type == QRTR_TYPE_NEW_SERVER) {
520 /* Remote node endpoint can bridge other distant nodes */
521 const struct qrtr_ctrl_pkt *pkt;
522
523 pkt = data + hdrlen;
524 qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
525 }
526
527 if (cb->type == QRTR_TYPE_RESUME_TX) {
528 qrtr_tx_resume(node, skb);
529 } else {
530 ipc = qrtr_port_lookup(port: cb->dst_port);
531 if (!ipc)
532 goto err;
533
534 if (sock_queue_rcv_skb(sk: &ipc->sk, skb)) {
535 qrtr_port_put(ipc);
536 goto err;
537 }
538
539 qrtr_port_put(ipc);
540 }
541
542 return 0;
543
544err:
545 kfree_skb(skb);
546 return -EINVAL;
547
548}
549EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
550
551/**
552 * qrtr_alloc_ctrl_packet() - allocate control packet skb
553 * @pkt: reference to qrtr_ctrl_pkt pointer
554 * @flags: the type of memory to allocate
555 *
556 * Returns newly allocated sk_buff, or NULL on failure
557 *
558 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
559 * on success returns a reference to the control packet in @pkt.
560 */
561static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt,
562 gfp_t flags)
563{
564 const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
565 struct sk_buff *skb;
566
567 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, priority: flags);
568 if (!skb)
569 return NULL;
570
571 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
572 *pkt = skb_put_zero(skb, len: pkt_len);
573
574 return skb;
575}
576
577/**
578 * qrtr_endpoint_register() - register a new endpoint
579 * @ep: endpoint to register
580 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
581 * Return: 0 on success; negative error code on failure
582 *
583 * The specified endpoint must have the xmit function pointer set on call.
584 */
585int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
586{
587 struct qrtr_node *node;
588
589 if (!ep || !ep->xmit)
590 return -EINVAL;
591
592 node = kzalloc(size: sizeof(*node), GFP_KERNEL);
593 if (!node)
594 return -ENOMEM;
595
596 kref_init(kref: &node->ref);
597 mutex_init(&node->ep_lock);
598 skb_queue_head_init(list: &node->rx_queue);
599 node->nid = QRTR_EP_NID_AUTO;
600 node->ep = ep;
601
602 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
603 mutex_init(&node->qrtr_tx_lock);
604
605 qrtr_node_assign(node, nid);
606
607 mutex_lock(&qrtr_node_lock);
608 list_add(new: &node->item, head: &qrtr_all_nodes);
609 mutex_unlock(lock: &qrtr_node_lock);
610 ep->node = node;
611
612 return 0;
613}
614EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
615
616/**
617 * qrtr_endpoint_unregister - unregister endpoint
618 * @ep: endpoint to unregister
619 */
620void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
621{
622 struct qrtr_node *node = ep->node;
623 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
624 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
625 struct radix_tree_iter iter;
626 struct qrtr_ctrl_pkt *pkt;
627 struct qrtr_tx_flow *flow;
628 struct sk_buff *skb;
629 unsigned long flags;
630 void __rcu **slot;
631
632 mutex_lock(&node->ep_lock);
633 node->ep = NULL;
634 mutex_unlock(lock: &node->ep_lock);
635
636 /* Notify the local controller about the event */
637 spin_lock_irqsave(&qrtr_nodes_lock, flags);
638 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
639 if (*slot != node)
640 continue;
641 src.sq_node = iter.index;
642 skb = qrtr_alloc_ctrl_packet(pkt: &pkt, GFP_ATOMIC);
643 if (skb) {
644 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
645 qrtr_local_enqueue(NULL, skb, type: QRTR_TYPE_BYE, from: &src, to: &dst);
646 }
647 }
648 spin_unlock_irqrestore(lock: &qrtr_nodes_lock, flags);
649
650 /* Wake up any transmitters waiting for resume-tx from the node */
651 mutex_lock(&node->qrtr_tx_lock);
652 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
653 flow = *slot;
654 wake_up_interruptible_all(&flow->resume_tx);
655 }
656 mutex_unlock(lock: &node->qrtr_tx_lock);
657
658 qrtr_node_release(node);
659 ep->node = NULL;
660}
661EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
662
663/* Lookup socket by port.
664 *
665 * Callers must release with qrtr_port_put()
666 */
667static struct qrtr_sock *qrtr_port_lookup(int port)
668{
669 struct qrtr_sock *ipc;
670
671 if (port == QRTR_PORT_CTRL)
672 port = 0;
673
674 rcu_read_lock();
675 ipc = xa_load(&qrtr_ports, index: port);
676 if (ipc)
677 sock_hold(sk: &ipc->sk);
678 rcu_read_unlock();
679
680 return ipc;
681}
682
683/* Release acquired socket. */
684static void qrtr_port_put(struct qrtr_sock *ipc)
685{
686 sock_put(sk: &ipc->sk);
687}
688
689/* Remove port assignment. */
690static void qrtr_port_remove(struct qrtr_sock *ipc)
691{
692 struct qrtr_ctrl_pkt *pkt;
693 struct sk_buff *skb;
694 int port = ipc->us.sq_port;
695 struct sockaddr_qrtr to;
696
697 to.sq_family = AF_QIPCRTR;
698 to.sq_node = QRTR_NODE_BCAST;
699 to.sq_port = QRTR_PORT_CTRL;
700
701 skb = qrtr_alloc_ctrl_packet(pkt: &pkt, GFP_KERNEL);
702 if (skb) {
703 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
704 pkt->client.node = cpu_to_le32(ipc->us.sq_node);
705 pkt->client.port = cpu_to_le32(ipc->us.sq_port);
706
707 skb_set_owner_w(skb, sk: &ipc->sk);
708 qrtr_bcast_enqueue(NULL, skb, type: QRTR_TYPE_DEL_CLIENT, from: &ipc->us,
709 to: &to);
710 }
711
712 if (port == QRTR_PORT_CTRL)
713 port = 0;
714
715 __sock_put(sk: &ipc->sk);
716
717 xa_erase(&qrtr_ports, index: port);
718
719 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we
720 * wait for it to up increment the refcount */
721 synchronize_rcu();
722}
723
724/* Assign port number to socket.
725 *
726 * Specify port in the integer pointed to by port, and it will be adjusted
727 * on return as necesssary.
728 *
729 * Port may be:
730 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
731 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
732 * >QRTR_MIN_EPH_SOCKET: Specified; available to all
733 */
734static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
735{
736 int rc;
737
738 if (!*port) {
739 rc = xa_alloc(xa: &qrtr_ports, id: port, entry: ipc, QRTR_EPH_PORT_RANGE,
740 GFP_KERNEL);
741 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
742 rc = -EACCES;
743 } else if (*port == QRTR_PORT_CTRL) {
744 rc = xa_insert(xa: &qrtr_ports, index: 0, entry: ipc, GFP_KERNEL);
745 } else {
746 rc = xa_insert(xa: &qrtr_ports, index: *port, entry: ipc, GFP_KERNEL);
747 }
748
749 if (rc == -EBUSY)
750 return -EADDRINUSE;
751 else if (rc < 0)
752 return rc;
753
754 sock_hold(sk: &ipc->sk);
755
756 return 0;
757}
758
759/* Reset all non-control ports */
760static void qrtr_reset_ports(void)
761{
762 struct qrtr_sock *ipc;
763 unsigned long index;
764
765 rcu_read_lock();
766 xa_for_each_start(&qrtr_ports, index, ipc, 1) {
767 sock_hold(sk: &ipc->sk);
768 ipc->sk.sk_err = ENETRESET;
769 sk_error_report(sk: &ipc->sk);
770 sock_put(sk: &ipc->sk);
771 }
772 rcu_read_unlock();
773}
774
775/* Bind socket to address.
776 *
777 * Socket should be locked upon call.
778 */
779static int __qrtr_bind(struct socket *sock,
780 const struct sockaddr_qrtr *addr, int zapped)
781{
782 struct qrtr_sock *ipc = qrtr_sk(sk: sock->sk);
783 struct sock *sk = sock->sk;
784 int port;
785 int rc;
786
787 /* rebinding ok */
788 if (!zapped && addr->sq_port == ipc->us.sq_port)
789 return 0;
790
791 port = addr->sq_port;
792 rc = qrtr_port_assign(ipc, port: &port);
793 if (rc)
794 return rc;
795
796 /* unbind previous, if any */
797 if (!zapped)
798 qrtr_port_remove(ipc);
799 ipc->us.sq_port = port;
800
801 sock_reset_flag(sk, flag: SOCK_ZAPPED);
802
803 /* Notify all open ports about the new controller */
804 if (port == QRTR_PORT_CTRL)
805 qrtr_reset_ports();
806
807 return 0;
808}
809
810/* Auto bind to an ephemeral port. */
811static int qrtr_autobind(struct socket *sock)
812{
813 struct sock *sk = sock->sk;
814 struct sockaddr_qrtr addr;
815
816 if (!sock_flag(sk, flag: SOCK_ZAPPED))
817 return 0;
818
819 addr.sq_family = AF_QIPCRTR;
820 addr.sq_node = qrtr_local_nid;
821 addr.sq_port = 0;
822
823 return __qrtr_bind(sock, addr: &addr, zapped: 1);
824}
825
826/* Bind socket to specified sockaddr. */
827static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
828{
829 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
830 struct qrtr_sock *ipc = qrtr_sk(sk: sock->sk);
831 struct sock *sk = sock->sk;
832 int rc;
833
834 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
835 return -EINVAL;
836
837 if (addr->sq_node != ipc->us.sq_node)
838 return -EINVAL;
839
840 lock_sock(sk);
841 rc = __qrtr_bind(sock, addr, zapped: sock_flag(sk, flag: SOCK_ZAPPED));
842 release_sock(sk);
843
844 return rc;
845}
846
847/* Queue packet to local peer socket. */
848static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
849 int type, struct sockaddr_qrtr *from,
850 struct sockaddr_qrtr *to)
851{
852 struct qrtr_sock *ipc;
853 struct qrtr_cb *cb;
854
855 ipc = qrtr_port_lookup(port: to->sq_port);
856 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
857 if (ipc)
858 qrtr_port_put(ipc);
859 kfree_skb(skb);
860 return -ENODEV;
861 }
862
863 cb = (struct qrtr_cb *)skb->cb;
864 cb->src_node = from->sq_node;
865 cb->src_port = from->sq_port;
866
867 if (sock_queue_rcv_skb(sk: &ipc->sk, skb)) {
868 qrtr_port_put(ipc);
869 kfree_skb(skb);
870 return -ENOSPC;
871 }
872
873 qrtr_port_put(ipc);
874
875 return 0;
876}
877
878/* Queue packet for broadcast. */
879static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
880 int type, struct sockaddr_qrtr *from,
881 struct sockaddr_qrtr *to)
882{
883 struct sk_buff *skbn;
884
885 mutex_lock(&qrtr_node_lock);
886 list_for_each_entry(node, &qrtr_all_nodes, item) {
887 skbn = skb_clone(skb, GFP_KERNEL);
888 if (!skbn)
889 break;
890 skb_set_owner_w(skb: skbn, sk: skb->sk);
891 qrtr_node_enqueue(node, skb: skbn, type, from, to);
892 }
893 mutex_unlock(lock: &qrtr_node_lock);
894
895 qrtr_local_enqueue(NULL, skb, type, from, to);
896
897 return 0;
898}
899
900static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
901{
902 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
903 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
904 struct sockaddr_qrtr *, struct sockaddr_qrtr *);
905 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
906 struct qrtr_sock *ipc = qrtr_sk(sk: sock->sk);
907 struct sock *sk = sock->sk;
908 struct qrtr_node *node;
909 struct sk_buff *skb;
910 size_t plen;
911 u32 type;
912 int rc;
913
914 if (msg->msg_flags & ~(MSG_DONTWAIT))
915 return -EINVAL;
916
917 if (len > 65535)
918 return -EMSGSIZE;
919
920 lock_sock(sk);
921
922 if (addr) {
923 if (msg->msg_namelen < sizeof(*addr)) {
924 release_sock(sk);
925 return -EINVAL;
926 }
927
928 if (addr->sq_family != AF_QIPCRTR) {
929 release_sock(sk);
930 return -EINVAL;
931 }
932
933 rc = qrtr_autobind(sock);
934 if (rc) {
935 release_sock(sk);
936 return rc;
937 }
938 } else if (sk->sk_state == TCP_ESTABLISHED) {
939 addr = &ipc->peer;
940 } else {
941 release_sock(sk);
942 return -ENOTCONN;
943 }
944
945 node = NULL;
946 if (addr->sq_node == QRTR_NODE_BCAST) {
947 if (addr->sq_port != QRTR_PORT_CTRL &&
948 qrtr_local_nid != QRTR_NODE_BCAST) {
949 release_sock(sk);
950 return -ENOTCONN;
951 }
952 enqueue_fn = qrtr_bcast_enqueue;
953 } else if (addr->sq_node == ipc->us.sq_node) {
954 enqueue_fn = qrtr_local_enqueue;
955 } else {
956 node = qrtr_node_lookup(nid: addr->sq_node);
957 if (!node) {
958 release_sock(sk);
959 return -ECONNRESET;
960 }
961 enqueue_fn = qrtr_node_enqueue;
962 }
963
964 plen = (len + 3) & ~3;
965 skb = sock_alloc_send_skb(sk, size: plen + QRTR_HDR_MAX_SIZE,
966 noblock: msg->msg_flags & MSG_DONTWAIT, errcode: &rc);
967 if (!skb) {
968 rc = -ENOMEM;
969 goto out_node;
970 }
971
972 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
973
974 rc = memcpy_from_msg(data: skb_put(skb, len), msg, len);
975 if (rc) {
976 kfree_skb(skb);
977 goto out_node;
978 }
979
980 if (ipc->us.sq_port == QRTR_PORT_CTRL) {
981 if (len < 4) {
982 rc = -EINVAL;
983 kfree_skb(skb);
984 goto out_node;
985 }
986
987 /* control messages already require the type as 'command' */
988 skb_copy_bits(skb, offset: 0, to: &qrtr_type, len: 4);
989 }
990
991 type = le32_to_cpu(qrtr_type);
992 rc = enqueue_fn(node, skb, type, &ipc->us, addr);
993 if (rc >= 0)
994 rc = len;
995
996out_node:
997 qrtr_node_release(node);
998 release_sock(sk);
999
1000 return rc;
1001}
1002
1003static int qrtr_send_resume_tx(struct qrtr_cb *cb)
1004{
1005 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
1006 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
1007 struct qrtr_ctrl_pkt *pkt;
1008 struct qrtr_node *node;
1009 struct sk_buff *skb;
1010 int ret;
1011
1012 node = qrtr_node_lookup(nid: remote.sq_node);
1013 if (!node)
1014 return -EINVAL;
1015
1016 skb = qrtr_alloc_ctrl_packet(pkt: &pkt, GFP_KERNEL);
1017 if (!skb)
1018 return -ENOMEM;
1019
1020 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
1021 pkt->client.node = cpu_to_le32(cb->dst_node);
1022 pkt->client.port = cpu_to_le32(cb->dst_port);
1023
1024 ret = qrtr_node_enqueue(node, skb, type: QRTR_TYPE_RESUME_TX, from: &local, to: &remote);
1025
1026 qrtr_node_release(node);
1027
1028 return ret;
1029}
1030
1031static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1032 size_t size, int flags)
1033{
1034 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1035 struct sock *sk = sock->sk;
1036 struct sk_buff *skb;
1037 struct qrtr_cb *cb;
1038 int copied, rc;
1039
1040 lock_sock(sk);
1041
1042 if (sock_flag(sk, flag: SOCK_ZAPPED)) {
1043 release_sock(sk);
1044 return -EADDRNOTAVAIL;
1045 }
1046
1047 skb = skb_recv_datagram(sk, flags, err: &rc);
1048 if (!skb) {
1049 release_sock(sk);
1050 return rc;
1051 }
1052 cb = (struct qrtr_cb *)skb->cb;
1053
1054 copied = skb->len;
1055 if (copied > size) {
1056 copied = size;
1057 msg->msg_flags |= MSG_TRUNC;
1058 }
1059
1060 rc = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: copied);
1061 if (rc < 0)
1062 goto out;
1063 rc = copied;
1064
1065 if (addr) {
1066 /* There is an anonymous 2-byte hole after sq_family,
1067 * make sure to clear it.
1068 */
1069 memset(addr, 0, sizeof(*addr));
1070
1071 addr->sq_family = AF_QIPCRTR;
1072 addr->sq_node = cb->src_node;
1073 addr->sq_port = cb->src_port;
1074 msg->msg_namelen = sizeof(*addr);
1075 }
1076
1077out:
1078 if (cb->confirm_rx)
1079 qrtr_send_resume_tx(cb);
1080
1081 skb_free_datagram(sk, skb);
1082 release_sock(sk);
1083
1084 return rc;
1085}
1086
1087static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1088 int len, int flags)
1089{
1090 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1091 struct qrtr_sock *ipc = qrtr_sk(sk: sock->sk);
1092 struct sock *sk = sock->sk;
1093 int rc;
1094
1095 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1096 return -EINVAL;
1097
1098 lock_sock(sk);
1099
1100 sk->sk_state = TCP_CLOSE;
1101 sock->state = SS_UNCONNECTED;
1102
1103 rc = qrtr_autobind(sock);
1104 if (rc) {
1105 release_sock(sk);
1106 return rc;
1107 }
1108
1109 ipc->peer = *addr;
1110 sock->state = SS_CONNECTED;
1111 sk->sk_state = TCP_ESTABLISHED;
1112
1113 release_sock(sk);
1114
1115 return 0;
1116}
1117
1118static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1119 int peer)
1120{
1121 struct qrtr_sock *ipc = qrtr_sk(sk: sock->sk);
1122 struct sockaddr_qrtr qaddr;
1123 struct sock *sk = sock->sk;
1124
1125 lock_sock(sk);
1126 if (peer) {
1127 if (sk->sk_state != TCP_ESTABLISHED) {
1128 release_sock(sk);
1129 return -ENOTCONN;
1130 }
1131
1132 qaddr = ipc->peer;
1133 } else {
1134 qaddr = ipc->us;
1135 }
1136 release_sock(sk);
1137
1138 qaddr.sq_family = AF_QIPCRTR;
1139
1140 memcpy(saddr, &qaddr, sizeof(qaddr));
1141
1142 return sizeof(qaddr);
1143}
1144
1145static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1146{
1147 void __user *argp = (void __user *)arg;
1148 struct qrtr_sock *ipc = qrtr_sk(sk: sock->sk);
1149 struct sock *sk = sock->sk;
1150 struct sockaddr_qrtr *sq;
1151 struct sk_buff *skb;
1152 struct ifreq ifr;
1153 long len = 0;
1154 int rc = 0;
1155
1156 lock_sock(sk);
1157
1158 switch (cmd) {
1159 case TIOCOUTQ:
1160 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1161 if (len < 0)
1162 len = 0;
1163 rc = put_user(len, (int __user *)argp);
1164 break;
1165 case TIOCINQ:
1166 skb = skb_peek(list_: &sk->sk_receive_queue);
1167 if (skb)
1168 len = skb->len;
1169 rc = put_user(len, (int __user *)argp);
1170 break;
1171 case SIOCGIFADDR:
1172 if (get_user_ifreq(ifr: &ifr, NULL, arg: argp)) {
1173 rc = -EFAULT;
1174 break;
1175 }
1176
1177 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1178 *sq = ipc->us;
1179 if (put_user_ifreq(ifr: &ifr, arg: argp)) {
1180 rc = -EFAULT;
1181 break;
1182 }
1183 break;
1184 case SIOCADDRT:
1185 case SIOCDELRT:
1186 case SIOCSIFADDR:
1187 case SIOCGIFDSTADDR:
1188 case SIOCSIFDSTADDR:
1189 case SIOCGIFBRDADDR:
1190 case SIOCSIFBRDADDR:
1191 case SIOCGIFNETMASK:
1192 case SIOCSIFNETMASK:
1193 rc = -EINVAL;
1194 break;
1195 default:
1196 rc = -ENOIOCTLCMD;
1197 break;
1198 }
1199
1200 release_sock(sk);
1201
1202 return rc;
1203}
1204
1205static int qrtr_release(struct socket *sock)
1206{
1207 struct sock *sk = sock->sk;
1208 struct qrtr_sock *ipc;
1209
1210 if (!sk)
1211 return 0;
1212
1213 lock_sock(sk);
1214
1215 ipc = qrtr_sk(sk);
1216 sk->sk_shutdown = SHUTDOWN_MASK;
1217 if (!sock_flag(sk, flag: SOCK_DEAD))
1218 sk->sk_state_change(sk);
1219
1220 sock_set_flag(sk, flag: SOCK_DEAD);
1221 sock_orphan(sk);
1222 sock->sk = NULL;
1223
1224 if (!sock_flag(sk, flag: SOCK_ZAPPED))
1225 qrtr_port_remove(ipc);
1226
1227 skb_queue_purge(list: &sk->sk_receive_queue);
1228
1229 release_sock(sk);
1230 sock_put(sk);
1231
1232 return 0;
1233}
1234
1235static const struct proto_ops qrtr_proto_ops = {
1236 .owner = THIS_MODULE,
1237 .family = AF_QIPCRTR,
1238 .bind = qrtr_bind,
1239 .connect = qrtr_connect,
1240 .socketpair = sock_no_socketpair,
1241 .accept = sock_no_accept,
1242 .listen = sock_no_listen,
1243 .sendmsg = qrtr_sendmsg,
1244 .recvmsg = qrtr_recvmsg,
1245 .getname = qrtr_getname,
1246 .ioctl = qrtr_ioctl,
1247 .gettstamp = sock_gettstamp,
1248 .poll = datagram_poll,
1249 .shutdown = sock_no_shutdown,
1250 .release = qrtr_release,
1251 .mmap = sock_no_mmap,
1252};
1253
1254static struct proto qrtr_proto = {
1255 .name = "QIPCRTR",
1256 .owner = THIS_MODULE,
1257 .obj_size = sizeof(struct qrtr_sock),
1258};
1259
1260static int qrtr_create(struct net *net, struct socket *sock,
1261 int protocol, int kern)
1262{
1263 struct qrtr_sock *ipc;
1264 struct sock *sk;
1265
1266 if (sock->type != SOCK_DGRAM)
1267 return -EPROTOTYPE;
1268
1269 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, prot: &qrtr_proto, kern);
1270 if (!sk)
1271 return -ENOMEM;
1272
1273 sock_set_flag(sk, flag: SOCK_ZAPPED);
1274
1275 sock_init_data(sock, sk);
1276 sock->ops = &qrtr_proto_ops;
1277
1278 ipc = qrtr_sk(sk);
1279 ipc->us.sq_family = AF_QIPCRTR;
1280 ipc->us.sq_node = qrtr_local_nid;
1281 ipc->us.sq_port = 0;
1282
1283 return 0;
1284}
1285
1286static const struct net_proto_family qrtr_family = {
1287 .owner = THIS_MODULE,
1288 .family = AF_QIPCRTR,
1289 .create = qrtr_create,
1290};
1291
1292static int __init qrtr_proto_init(void)
1293{
1294 int rc;
1295
1296 rc = proto_register(prot: &qrtr_proto, alloc_slab: 1);
1297 if (rc)
1298 return rc;
1299
1300 rc = sock_register(fam: &qrtr_family);
1301 if (rc)
1302 goto err_proto;
1303
1304 rc = qrtr_ns_init();
1305 if (rc)
1306 goto err_sock;
1307
1308 return 0;
1309
1310err_sock:
1311 sock_unregister(family: qrtr_family.family);
1312err_proto:
1313 proto_unregister(prot: &qrtr_proto);
1314 return rc;
1315}
1316postcore_initcall(qrtr_proto_init);
1317
1318static void __exit qrtr_proto_fini(void)
1319{
1320 qrtr_ns_remove();
1321 sock_unregister(family: qrtr_family.family);
1322 proto_unregister(prot: &qrtr_proto);
1323}
1324module_exit(qrtr_proto_fini);
1325
1326MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1327MODULE_LICENSE("GPL v2");
1328MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
1329

source code of linux/net/qrtr/af_qrtr.c