1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Lee Revell <rlrevell@joe-job.com>
5 * James Courtier-Dutton <James@superbug.co.uk>
6 * Oswald Buddenhagen <oswald.buddenhagen@gmx.de>
7 * Creative Labs, Inc.
8 *
9 * Routines for control of EMU10K1 chips
10 */
11
12#include <linux/time.h>
13#include <sound/core.h>
14#include <sound/emu10k1.h>
15#include <linux/delay.h>
16#include <linux/export.h>
17#include "p17v.h"
18
19static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
20{
21 if (snd_BUG_ON(!emu))
22 return false;
23 if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
24 : (0xffff0000 & ~PTR_ADDRESS_MASK))))
25 return false;
26 if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
27 return false;
28 return true;
29}
30
31unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
32{
33 unsigned long flags;
34 unsigned int regptr, val;
35 unsigned int mask;
36
37 regptr = (reg << 16) | chn;
38 if (!check_ptr_reg(emu, reg: regptr))
39 return 0;
40
41 spin_lock_irqsave(&emu->emu_lock, flags);
42 outl(value: regptr, port: emu->port + PTR);
43 val = inl(port: emu->port + DATA);
44 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
45
46 if (reg & 0xff000000) {
47 unsigned char size, offset;
48
49 size = (reg >> 24) & 0x3f;
50 offset = (reg >> 16) & 0x1f;
51 mask = (1 << size) - 1;
52
53 return (val >> offset) & mask;
54 } else {
55 return val;
56 }
57}
58
59EXPORT_SYMBOL(snd_emu10k1_ptr_read);
60
61void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
62{
63 unsigned int regptr;
64 unsigned long flags;
65 unsigned int mask;
66
67 regptr = (reg << 16) | chn;
68 if (!check_ptr_reg(emu, reg: regptr))
69 return;
70
71 if (reg & 0xff000000) {
72 unsigned char size, offset;
73
74 size = (reg >> 24) & 0x3f;
75 offset = (reg >> 16) & 0x1f;
76 mask = (1 << size) - 1;
77 if (snd_BUG_ON(data & ~mask))
78 return;
79 mask <<= offset;
80 data <<= offset;
81
82 spin_lock_irqsave(&emu->emu_lock, flags);
83 outl(value: regptr, port: emu->port + PTR);
84 data |= inl(port: emu->port + DATA) & ~mask;
85 } else {
86 spin_lock_irqsave(&emu->emu_lock, flags);
87 outl(value: regptr, port: emu->port + PTR);
88 }
89 outl(value: data, port: emu->port + DATA);
90 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
91}
92
93EXPORT_SYMBOL(snd_emu10k1_ptr_write);
94
95void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
96{
97 va_list va;
98 u32 addr_mask;
99 unsigned long flags;
100
101 if (snd_BUG_ON(!emu))
102 return;
103 if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
104 return;
105 addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);
106
107 va_start(va, chn);
108 spin_lock_irqsave(&emu->emu_lock, flags);
109 for (;;) {
110 u32 data;
111 u32 reg = va_arg(va, u32);
112 if (reg == REGLIST_END)
113 break;
114 data = va_arg(va, u32);
115 if (snd_BUG_ON(reg & addr_mask)) // Only raw registers supported here
116 continue;
117 outl(value: (reg << 16) | chn, port: emu->port + PTR);
118 outl(value: data, port: emu->port + DATA);
119 }
120 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
121 va_end(va);
122}
123
124EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);
125
126unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
127 unsigned int reg,
128 unsigned int chn)
129{
130 unsigned long flags;
131 unsigned int regptr, val;
132
133 regptr = (reg << 16) | chn;
134
135 spin_lock_irqsave(&emu->emu_lock, flags);
136 outl(value: regptr, port: emu->port + PTR2);
137 val = inl(port: emu->port + DATA2);
138 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
139 return val;
140}
141
142void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
143 unsigned int reg,
144 unsigned int chn,
145 unsigned int data)
146{
147 unsigned int regptr;
148 unsigned long flags;
149
150 regptr = (reg << 16) | chn;
151
152 spin_lock_irqsave(&emu->emu_lock, flags);
153 outl(value: regptr, port: emu->port + PTR2);
154 outl(value: data, port: emu->port + DATA2);
155 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
156}
157
158int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
159 unsigned int data)
160{
161 unsigned int reset, set;
162 unsigned int reg, tmp;
163 int n, result;
164 int err = 0;
165
166 /* This function is not re-entrant, so protect against it. */
167 spin_lock(lock: &emu->spi_lock);
168 if (emu->card_capabilities->ca0108_chip)
169 reg = P17V_SPI;
170 else {
171 /* For other chip types the SPI register
172 * is currently unknown. */
173 err = 1;
174 goto spi_write_exit;
175 }
176 if (data > 0xffff) {
177 /* Only 16bit values allowed */
178 err = 1;
179 goto spi_write_exit;
180 }
181
182 tmp = snd_emu10k1_ptr20_read(emu, reg, chn: 0);
183 reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
184 set = reset | 0x10000; /* Set xxx1xxxx */
185 snd_emu10k1_ptr20_write(emu, reg, chn: 0, data: reset | data);
186 tmp = snd_emu10k1_ptr20_read(emu, reg, chn: 0); /* write post */
187 snd_emu10k1_ptr20_write(emu, reg, chn: 0, data: set | data);
188 result = 1;
189 /* Wait for status bit to return to 0 */
190 for (n = 0; n < 100; n++) {
191 udelay(10);
192 tmp = snd_emu10k1_ptr20_read(emu, reg, chn: 0);
193 if (!(tmp & 0x10000)) {
194 result = 0;
195 break;
196 }
197 }
198 if (result) {
199 /* Timed out */
200 err = 1;
201 goto spi_write_exit;
202 }
203 snd_emu10k1_ptr20_write(emu, reg, chn: 0, data: reset | data);
204 tmp = snd_emu10k1_ptr20_read(emu, reg, chn: 0); /* Write post */
205 err = 0;
206spi_write_exit:
207 spin_unlock(lock: &emu->spi_lock);
208 return err;
209}
210
211/* The ADC does not support i2c read, so only write is implemented */
212int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
213 u32 reg,
214 u32 value)
215{
216 u32 tmp;
217 int timeout = 0;
218 int status;
219 int retry;
220 int err = 0;
221
222 if ((reg > 0x7f) || (value > 0x1ff)) {
223 dev_err(emu->card->dev, "i2c_write: invalid values.\n");
224 return -EINVAL;
225 }
226
227 /* This function is not re-entrant, so protect against it. */
228 spin_lock(lock: &emu->i2c_lock);
229
230 tmp = reg << 25 | value << 16;
231
232 /* This controls the I2C connected to the WM8775 ADC Codec */
233 snd_emu10k1_ptr20_write(emu, P17V_I2C_1, chn: 0, data: tmp);
234 tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, chn: 0); /* write post */
235
236 for (retry = 0; retry < 10; retry++) {
237 /* Send the data to i2c */
238 tmp = 0;
239 tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
240 snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, chn: 0, data: tmp);
241
242 /* Wait till the transaction ends */
243 while (1) {
244 mdelay(1);
245 status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, chn: 0);
246 timeout++;
247 if ((status & I2C_A_ADC_START) == 0)
248 break;
249
250 if (timeout > 1000) {
251 dev_warn(emu->card->dev,
252 "emu10k1:I2C:timeout status=0x%x\n",
253 status);
254 break;
255 }
256 }
257 //Read back and see if the transaction is successful
258 if ((status & I2C_A_ADC_ABORT) == 0)
259 break;
260 }
261
262 if (retry == 10) {
263 dev_err(emu->card->dev, "Writing to ADC failed!\n");
264 dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
265 status, reg, value);
266 /* dump_stack(); */
267 err = -EINVAL;
268 }
269
270 spin_unlock(lock: &emu->i2c_lock);
271 return err;
272}
273
274static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
275{
276 if (snd_BUG_ON(reg > 0x3f))
277 return;
278 reg += 0x40; /* 0x40 upwards are registers. */
279 if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
280 return;
281 outw(value: reg, port: emu->port + A_GPIO);
282 udelay(10);
283 outw(value: reg | 0x80, port: emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
284 udelay(10);
285 outw(value, port: emu->port + A_GPIO);
286 udelay(10);
287 outw(value: value | 0x80 , port: emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
288}
289
290void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
291{
292 unsigned long flags;
293
294 spin_lock_irqsave(&emu->emu_lock, flags);
295 snd_emu1010_fpga_write_locked(emu, reg, value);
296 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
297}
298
299static void snd_emu1010_fpga_read_locked(struct snd_emu10k1 *emu, u32 reg, u32 *value)
300{
301 // The higest input pin is used as the designated interrupt trigger,
302 // so it needs to be masked out.
303 // But note that any other input pin change will also cause an IRQ,
304 // so using this function often causes an IRQ as a side effect.
305 u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;
306 if (snd_BUG_ON(reg > 0x3f))
307 return;
308 reg += 0x40; /* 0x40 upwards are registers. */
309 outw(value: reg, port: emu->port + A_GPIO);
310 udelay(10);
311 outw(value: reg | 0x80, port: emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
312 udelay(10);
313 *value = ((inw(port: emu->port + A_GPIO) >> 8) & mask);
314}
315
316void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
317{
318 unsigned long flags;
319
320 spin_lock_irqsave(&emu->emu_lock, flags);
321 snd_emu1010_fpga_read_locked(emu, reg, value);
322 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
323}
324
325/* Each Destination has one and only one Source,
326 * but one Source can feed any number of Destinations simultaneously.
327 */
328void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
329{
330 unsigned long flags;
331
332 if (snd_BUG_ON(dst & ~0x71f))
333 return;
334 if (snd_BUG_ON(src & ~0x71f))
335 return;
336 spin_lock_irqsave(&emu->emu_lock, flags);
337 snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, value: dst >> 8);
338 snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, value: dst & 0x1f);
339 snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCHI, value: src >> 8);
340 snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCLO, value: src & 0x1f);
341 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
342}
343
344u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
345{
346 unsigned long flags;
347 u32 hi, lo;
348
349 if (snd_BUG_ON(dst & ~0x71f))
350 return 0;
351 spin_lock_irqsave(&emu->emu_lock, flags);
352 snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, value: dst >> 8);
353 snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, value: dst & 0x1f);
354 snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCHI, value: &hi);
355 snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCLO, value: &lo);
356 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
357 return (hi << 8) | lo;
358}
359
360int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
361{
362 u32 reg_lo, reg_hi, value, value2;
363
364 switch (src) {
365 case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
366 snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, value: &value);
367 if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
368 return 0;
369 reg_lo = EMU_HANA_WC_SPDIF_LO;
370 reg_hi = EMU_HANA_WC_SPDIF_HI;
371 break;
372 case EMU_HANA_WCLOCK_HANA_ADAT_IN:
373 reg_lo = EMU_HANA_WC_ADAT_LO;
374 reg_hi = EMU_HANA_WC_ADAT_HI;
375 break;
376 case EMU_HANA_WCLOCK_SYNC_BNC:
377 reg_lo = EMU_HANA_WC_BNC_LO;
378 reg_hi = EMU_HANA_WC_BNC_HI;
379 break;
380 case EMU_HANA_WCLOCK_2ND_HANA:
381 reg_lo = EMU_HANA2_WC_SPDIF_LO;
382 reg_hi = EMU_HANA2_WC_SPDIF_HI;
383 break;
384 default:
385 return 0;
386 }
387 snd_emu1010_fpga_read(emu, reg: reg_hi, value: &value);
388 snd_emu1010_fpga_read(emu, reg: reg_lo, value: &value2);
389 // FIXME: The /4 is valid for 0404b, but contradicts all other info.
390 return 0x1770000 / 4 / (((value << 5) | value2) + 1);
391}
392
393void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
394{
395 int clock;
396 u32 leds;
397
398 switch (emu->emu1010.wclock) {
399 case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
400 clock = 44100;
401 leds = EMU_HANA_DOCK_LEDS_2_44K;
402 break;
403 case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
404 clock = 48000;
405 leds = EMU_HANA_DOCK_LEDS_2_48K;
406 break;
407 default:
408 clock = snd_emu1010_get_raw_rate(
409 emu, src: emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
410 // The raw rate reading is rather coarse (it cannot accurately
411 // represent 44.1 kHz) and fluctuates slightly. Luckily, the
412 // clock comes from digital inputs, which use standardized rates.
413 // So we round to the closest standard rate and ignore discrepancies.
414 if (clock < 46000) {
415 clock = 44100;
416 leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
417 } else {
418 clock = 48000;
419 leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
420 }
421 break;
422 }
423 emu->emu1010.word_clock = clock;
424
425 // FIXME: this should probably represent the AND of all currently
426 // used sources' lock status. But we don't know how to get that ...
427 leds |= EMU_HANA_DOCK_LEDS_2_LOCK;
428
429 snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, value: leds);
430}
431
432void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
433{
434 unsigned long flags;
435 unsigned int enable;
436
437 spin_lock_irqsave(&emu->emu_lock, flags);
438 enable = inl(port: emu->port + INTE) | intrenb;
439 outl(value: enable, port: emu->port + INTE);
440 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
441}
442
443void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
444{
445 unsigned long flags;
446 unsigned int enable;
447
448 spin_lock_irqsave(&emu->emu_lock, flags);
449 enable = inl(port: emu->port + INTE) & ~intrenb;
450 outl(value: enable, port: emu->port + INTE);
451 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
452}
453
454void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
455{
456 unsigned long flags;
457 unsigned int val;
458
459 spin_lock_irqsave(&emu->emu_lock, flags);
460 if (voicenum >= 32) {
461 outl(CLIEH << 16, port: emu->port + PTR);
462 val = inl(port: emu->port + DATA);
463 val |= 1 << (voicenum - 32);
464 } else {
465 outl(CLIEL << 16, port: emu->port + PTR);
466 val = inl(port: emu->port + DATA);
467 val |= 1 << voicenum;
468 }
469 outl(value: val, port: emu->port + DATA);
470 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
471}
472
473void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
474{
475 unsigned long flags;
476 unsigned int val;
477
478 spin_lock_irqsave(&emu->emu_lock, flags);
479 if (voicenum >= 32) {
480 outl(CLIEH << 16, port: emu->port + PTR);
481 val = inl(port: emu->port + DATA);
482 val &= ~(1 << (voicenum - 32));
483 } else {
484 outl(CLIEL << 16, port: emu->port + PTR);
485 val = inl(port: emu->port + DATA);
486 val &= ~(1 << voicenum);
487 }
488 outl(value: val, port: emu->port + DATA);
489 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
490}
491
492void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
493{
494 unsigned long flags;
495
496 spin_lock_irqsave(&emu->emu_lock, flags);
497 if (voicenum >= 32) {
498 outl(CLIPH << 16, port: emu->port + PTR);
499 voicenum = 1 << (voicenum - 32);
500 } else {
501 outl(CLIPL << 16, port: emu->port + PTR);
502 voicenum = 1 << voicenum;
503 }
504 outl(value: voicenum, port: emu->port + DATA);
505 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
506}
507
508void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
509{
510 unsigned long flags;
511 unsigned int val;
512
513 spin_lock_irqsave(&emu->emu_lock, flags);
514 if (voicenum >= 32) {
515 outl(HLIEH << 16, port: emu->port + PTR);
516 val = inl(port: emu->port + DATA);
517 val |= 1 << (voicenum - 32);
518 } else {
519 outl(HLIEL << 16, port: emu->port + PTR);
520 val = inl(port: emu->port + DATA);
521 val |= 1 << voicenum;
522 }
523 outl(value: val, port: emu->port + DATA);
524 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
525}
526
527void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
528{
529 unsigned long flags;
530 unsigned int val;
531
532 spin_lock_irqsave(&emu->emu_lock, flags);
533 if (voicenum >= 32) {
534 outl(HLIEH << 16, port: emu->port + PTR);
535 val = inl(port: emu->port + DATA);
536 val &= ~(1 << (voicenum - 32));
537 } else {
538 outl(HLIEL << 16, port: emu->port + PTR);
539 val = inl(port: emu->port + DATA);
540 val &= ~(1 << voicenum);
541 }
542 outl(value: val, port: emu->port + DATA);
543 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
544}
545
546void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
547{
548 unsigned long flags;
549
550 spin_lock_irqsave(&emu->emu_lock, flags);
551 if (voicenum >= 32) {
552 outl(HLIPH << 16, port: emu->port + PTR);
553 voicenum = 1 << (voicenum - 32);
554 } else {
555 outl(HLIPL << 16, port: emu->port + PTR);
556 voicenum = 1 << voicenum;
557 }
558 outl(value: voicenum, port: emu->port + DATA);
559 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
560}
561
562#if 0
563void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
564{
565 unsigned long flags;
566 unsigned int sol;
567
568 spin_lock_irqsave(&emu->emu_lock, flags);
569 if (voicenum >= 32) {
570 outl(SOLEH << 16, emu->port + PTR);
571 sol = inl(emu->port + DATA);
572 sol |= 1 << (voicenum - 32);
573 } else {
574 outl(SOLEL << 16, emu->port + PTR);
575 sol = inl(emu->port + DATA);
576 sol |= 1 << voicenum;
577 }
578 outl(sol, emu->port + DATA);
579 spin_unlock_irqrestore(&emu->emu_lock, flags);
580}
581
582void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
583{
584 unsigned long flags;
585 unsigned int sol;
586
587 spin_lock_irqsave(&emu->emu_lock, flags);
588 if (voicenum >= 32) {
589 outl(SOLEH << 16, emu->port + PTR);
590 sol = inl(emu->port + DATA);
591 sol &= ~(1 << (voicenum - 32));
592 } else {
593 outl(SOLEL << 16, emu->port + PTR);
594 sol = inl(emu->port + DATA);
595 sol &= ~(1 << voicenum);
596 }
597 outl(sol, emu->port + DATA);
598 spin_unlock_irqrestore(&emu->emu_lock, flags);
599}
600#endif
601
602void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
603{
604 unsigned long flags;
605
606 spin_lock_irqsave(&emu->emu_lock, flags);
607 outl(SOLEL << 16, port: emu->port + PTR);
608 outl(inl(port: emu->port + DATA) | (u32)voices, port: emu->port + DATA);
609 outl(SOLEH << 16, port: emu->port + PTR);
610 outl(inl(port: emu->port + DATA) | (u32)(voices >> 32), port: emu->port + DATA);
611 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
612}
613
614void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
615{
616 unsigned long flags;
617
618 spin_lock_irqsave(&emu->emu_lock, flags);
619 outl(SOLEL << 16, port: emu->port + PTR);
620 outl(inl(port: emu->port + DATA) & (u32)~voices, port: emu->port + DATA);
621 outl(SOLEH << 16, port: emu->port + PTR);
622 outl(inl(port: emu->port + DATA) & (u32)(~voices >> 32), port: emu->port + DATA);
623 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
624}
625
626int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
627{
628 unsigned long flags;
629 u32 soll, solh;
630 int ret = -EIO;
631
632 spin_lock_irqsave(&emu->emu_lock, flags);
633
634 outl(SOLEL << 16, port: emu->port + PTR);
635 soll = inl(port: emu->port + DATA);
636 outl(SOLEH << 16, port: emu->port + PTR);
637 solh = inl(port: emu->port + DATA);
638
639 soll &= (u32)~voices;
640 solh &= (u32)(~voices >> 32);
641
642 for (int tries = 0; tries < 1000; tries++) {
643 const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
644 // First we wait for the third quarter of the sample cycle ...
645 u32 wc = inl(port: emu->port + WC);
646 u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
647 if (cc >= quart * 2 && cc < quart * 3) {
648 // ... and release the low voices, while the high ones are serviced.
649 outl(SOLEL << 16, port: emu->port + PTR);
650 outl(value: soll, port: emu->port + DATA);
651 // Then we wait for the first quarter of the next sample cycle ...
652 for (; tries < 1000; tries++) {
653 cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
654 if (cc < quart)
655 goto good;
656 // We will block for 10+ us with interrupts disabled. This is
657 // not nice at all, but necessary for reasonable reliability.
658 udelay(1);
659 }
660 break;
661 good:
662 // ... and release the high voices, while the low ones are serviced.
663 outl(SOLEH << 16, port: emu->port + PTR);
664 outl(value: solh, port: emu->port + DATA);
665 // Finally we verify that nothing interfered in fact.
666 if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
667 ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
668 ret = 0;
669 } else {
670 ret = -EAGAIN;
671 }
672 break;
673 }
674 // Don't block for too long
675 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
676 udelay(1);
677 spin_lock_irqsave(&emu->emu_lock, flags);
678 }
679
680 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
681 return ret;
682}
683
684void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
685{
686 volatile unsigned count;
687 unsigned int newtime = 0, curtime;
688
689 curtime = inl(port: emu->port + WC) >> 6;
690 while (wait-- > 0) {
691 count = 0;
692 while (count++ < 16384) {
693 newtime = inl(port: emu->port + WC) >> 6;
694 if (newtime != curtime)
695 break;
696 }
697 if (count > 16384)
698 break;
699 curtime = newtime;
700 }
701}
702
703unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
704{
705 struct snd_emu10k1 *emu = ac97->private_data;
706 unsigned long flags;
707 unsigned short val;
708
709 spin_lock_irqsave(&emu->emu_lock, flags);
710 outb(value: reg, port: emu->port + AC97ADDRESS);
711 val = inw(port: emu->port + AC97DATA);
712 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
713 return val;
714}
715
716void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
717{
718 struct snd_emu10k1 *emu = ac97->private_data;
719 unsigned long flags;
720
721 spin_lock_irqsave(&emu->emu_lock, flags);
722 outb(value: reg, port: emu->port + AC97ADDRESS);
723 outw(value: data, port: emu->port + AC97DATA);
724 spin_unlock_irqrestore(lock: &emu->emu_lock, flags);
725}
726

source code of linux/sound/pci/emu10k1/io.c