1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Digigram VX222 V2/Mic soundcards
4 *
5 * VX222-specific low-level routines
6 *
7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 */
9
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/firmware.h>
13#include <linux/mutex.h>
14#include <linux/io.h>
15
16#include <sound/core.h>
17#include <sound/control.h>
18#include <sound/tlv.h>
19#include "vx222.h"
20
21
22static const int vx2_reg_offset[VX_REG_MAX] = {
23 [VX_ICR] = 0x00,
24 [VX_CVR] = 0x04,
25 [VX_ISR] = 0x08,
26 [VX_IVR] = 0x0c,
27 [VX_RXH] = 0x14,
28 [VX_RXM] = 0x18,
29 [VX_RXL] = 0x1c,
30 [VX_DMA] = 0x10,
31 [VX_CDSP] = 0x20,
32 [VX_CFG] = 0x24,
33 [VX_RUER] = 0x28,
34 [VX_DATA] = 0x2c,
35 [VX_STATUS] = 0x30,
36 [VX_LOFREQ] = 0x34,
37 [VX_HIFREQ] = 0x38,
38 [VX_CSUER] = 0x3c,
39 [VX_SELMIC] = 0x40,
40 [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
41 [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
42 [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
43 [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
44 [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
45 [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
46};
47
48static const int vx2_reg_index[VX_REG_MAX] = {
49 [VX_ICR] = 1,
50 [VX_CVR] = 1,
51 [VX_ISR] = 1,
52 [VX_IVR] = 1,
53 [VX_RXH] = 1,
54 [VX_RXM] = 1,
55 [VX_RXL] = 1,
56 [VX_DMA] = 1,
57 [VX_CDSP] = 1,
58 [VX_CFG] = 1,
59 [VX_RUER] = 1,
60 [VX_DATA] = 1,
61 [VX_STATUS] = 1,
62 [VX_LOFREQ] = 1,
63 [VX_HIFREQ] = 1,
64 [VX_CSUER] = 1,
65 [VX_SELMIC] = 1,
66 [VX_COMPOT] = 1,
67 [VX_SCOMPR] = 1,
68 [VX_GLIMIT] = 1,
69 [VX_INTCSR] = 0, /* on the PLX */
70 [VX_CNTRL] = 0, /* on the PLX */
71 [VX_GPIOC] = 0, /* on the PLX */
72};
73
74static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
75{
76 struct snd_vx222 *chip = to_vx222(_chip);
77 return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
78}
79
80/**
81 * vx2_inb - read a byte from the register
82 * @chip: VX core instance
83 * @offset: register enum
84 */
85static unsigned char vx2_inb(struct vx_core *chip, int offset)
86{
87 return inb(port: vx2_reg_addr(chip: chip, reg: offset));
88}
89
90/**
91 * vx2_outb - write a byte on the register
92 * @chip: VX core instance
93 * @offset: the register offset
94 * @val: the value to write
95 */
96static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
97{
98 outb(value: val, port: vx2_reg_addr(chip: chip, reg: offset));
99 /*
100 dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
101 */
102}
103
104/**
105 * vx2_inl - read a 32bit word from the register
106 * @chip: VX core instance
107 * @offset: register enum
108 */
109static unsigned int vx2_inl(struct vx_core *chip, int offset)
110{
111 return inl(port: vx2_reg_addr(chip: chip, reg: offset));
112}
113
114/**
115 * vx2_outl - write a 32bit word on the register
116 * @chip: VX core instance
117 * @offset: the register enum
118 * @val: the value to write
119 */
120static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
121{
122 /*
123 dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
124 */
125 outl(value: val, port: vx2_reg_addr(chip: chip, reg: offset));
126}
127
128/*
129 * redefine macros to call directly
130 */
131#undef vx_inb
132#define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
133#undef vx_outb
134#define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
135#undef vx_inl
136#define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
137#undef vx_outl
138#define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
139
140
141/*
142 * vx_reset_dsp - reset the DSP
143 */
144
145#define XX_DSP_RESET_WAIT_TIME 2 /* ms */
146
147static void vx2_reset_dsp(struct vx_core *_chip)
148{
149 struct snd_vx222 *chip = to_vx222(_chip);
150
151 /* set the reset dsp bit to 0 */
152 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
153
154 mdelay(XX_DSP_RESET_WAIT_TIME);
155
156 chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
157 /* set the reset dsp bit to 1 */
158 vx_outl(chip, CDSP, chip->regCDSP);
159}
160
161
162static int vx2_test_xilinx(struct vx_core *_chip)
163{
164 struct snd_vx222 *chip = to_vx222(_chip);
165 unsigned int data;
166
167 dev_dbg(_chip->card->dev, "testing xilinx...\n");
168 /* This test uses several write/read sequences on TEST0 and TEST1 bits
169 * to figure out whever or not the xilinx was correctly loaded
170 */
171
172 /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
173 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
174 vx_inl(chip, ISR);
175 data = vx_inl(chip, STATUS);
176 if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
177 dev_dbg(_chip->card->dev, "bad!\n");
178 return -ENODEV;
179 }
180
181 /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
182 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
183 vx_inl(chip, ISR);
184 data = vx_inl(chip, STATUS);
185 if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
186 dev_dbg(_chip->card->dev, "bad! #2\n");
187 return -ENODEV;
188 }
189
190 if (_chip->type == VX_TYPE_BOARD) {
191 /* not implemented on VX_2_BOARDS */
192 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
193 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
194 vx_inl(chip, ISR);
195 data = vx_inl(chip, STATUS);
196 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
197 dev_dbg(_chip->card->dev, "bad! #3\n");
198 return -ENODEV;
199 }
200
201 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
202 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
203 vx_inl(chip, ISR);
204 data = vx_inl(chip, STATUS);
205 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
206 dev_dbg(_chip->card->dev, "bad! #4\n");
207 return -ENODEV;
208 }
209 }
210 dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
211 return 0;
212}
213
214
215/**
216 * vx2_setup_pseudo_dma - set up the pseudo dma read/write mode.
217 * @chip: VX core instance
218 * @do_write: 0 = read, 1 = set up for DMA write
219 */
220static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
221{
222 /* Interrupt mode and HREQ pin enabled for host transmit data transfers
223 * (in case of the use of the pseudo-dma facility).
224 */
225 vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
226
227 /* Reset the pseudo-dma register (in case of the use of the
228 * pseudo-dma facility).
229 */
230 vx_outl(chip, RESET_DMA, 0);
231}
232
233/*
234 * vx_release_pseudo_dma - disable the pseudo-DMA mode
235 */
236static inline void vx2_release_pseudo_dma(struct vx_core *chip)
237{
238 /* HREQ pin disabled. */
239 vx_outl(chip, ICR, 0);
240}
241
242
243
244/* pseudo-dma write */
245static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
246 struct vx_pipe *pipe, int count)
247{
248 unsigned long port = vx2_reg_addr(chip: chip, reg: VX_DMA);
249 int offset = pipe->hw_ptr;
250 u32 *addr = (u32 *)(runtime->dma_area + offset);
251
252 if (snd_BUG_ON(count % 4))
253 return;
254
255 vx2_setup_pseudo_dma(chip, do_write: 1);
256
257 /* Transfer using pseudo-dma.
258 */
259 if (offset + count >= pipe->buffer_bytes) {
260 int length = pipe->buffer_bytes - offset;
261 count -= length;
262 length >>= 2; /* in 32bit words */
263 /* Transfer using pseudo-dma. */
264 for (; length > 0; length--) {
265 outl(value: *addr, port);
266 addr++;
267 }
268 addr = (u32 *)runtime->dma_area;
269 pipe->hw_ptr = 0;
270 }
271 pipe->hw_ptr += count;
272 count >>= 2; /* in 32bit words */
273 /* Transfer using pseudo-dma. */
274 for (; count > 0; count--) {
275 outl(value: *addr, port);
276 addr++;
277 }
278
279 vx2_release_pseudo_dma(chip);
280}
281
282
283/* pseudo dma read */
284static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
285 struct vx_pipe *pipe, int count)
286{
287 int offset = pipe->hw_ptr;
288 u32 *addr = (u32 *)(runtime->dma_area + offset);
289 unsigned long port = vx2_reg_addr(chip: chip, reg: VX_DMA);
290
291 if (snd_BUG_ON(count % 4))
292 return;
293
294 vx2_setup_pseudo_dma(chip, do_write: 0);
295 /* Transfer using pseudo-dma.
296 */
297 if (offset + count >= pipe->buffer_bytes) {
298 int length = pipe->buffer_bytes - offset;
299 count -= length;
300 length >>= 2; /* in 32bit words */
301 /* Transfer using pseudo-dma. */
302 for (; length > 0; length--)
303 *addr++ = inl(port);
304 addr = (u32 *)runtime->dma_area;
305 pipe->hw_ptr = 0;
306 }
307 pipe->hw_ptr += count;
308 count >>= 2; /* in 32bit words */
309 /* Transfer using pseudo-dma. */
310 for (; count > 0; count--)
311 *addr++ = inl(port);
312
313 vx2_release_pseudo_dma(chip);
314}
315
316#define VX_XILINX_RESET_MASK 0x40000000
317#define VX_USERBIT0_MASK 0x00000004
318#define VX_USERBIT1_MASK 0x00000020
319#define VX_CNTRL_REGISTER_VALUE 0x00172012
320
321/*
322 * transfer counts bits to PLX
323 */
324static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
325{
326 unsigned int i;
327
328 for (i = 0; i < counts; i++) {
329 unsigned int val;
330
331 /* set the clock bit to 0. */
332 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
333 vx2_outl(chip, offset: port, val);
334 vx2_inl(chip, offset: port);
335 udelay(1);
336
337 if (data & (1 << i))
338 val |= VX_USERBIT1_MASK;
339 else
340 val &= ~VX_USERBIT1_MASK;
341 vx2_outl(chip, offset: port, val);
342 vx2_inl(chip, offset: port);
343
344 /* set the clock bit to 1. */
345 val |= VX_USERBIT0_MASK;
346 vx2_outl(chip, offset: port, val);
347 vx2_inl(chip, offset: port);
348 udelay(1);
349 }
350 return 0;
351}
352
353/*
354 * load the xilinx image
355 */
356static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
357{
358 unsigned int i;
359 unsigned int port;
360 const unsigned char *image;
361
362 /* XILINX reset (wait at least 1 millisecond between reset on and off). */
363 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
364 vx_inl(chip, CNTRL);
365 msleep(msecs: 10);
366 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
367 vx_inl(chip, CNTRL);
368 msleep(msecs: 10);
369
370 if (chip->type == VX_TYPE_BOARD)
371 port = VX_CNTRL;
372 else
373 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
374
375 image = xilinx->data;
376 for (i = 0; i < xilinx->size; i++, image++) {
377 if (put_xilinx_data(chip, port, counts: 8, data: *image) < 0)
378 return -EINVAL;
379 /* don't take too much time in this loop... */
380 cond_resched();
381 }
382 put_xilinx_data(chip, port, counts: 4, data: 0xff); /* end signature */
383
384 msleep(msecs: 200);
385
386 /* test after loading (is buggy with VX222) */
387 if (chip->type != VX_TYPE_BOARD) {
388 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
389 i = vx_inl(chip, GPIOC);
390 if (i & 0x0100)
391 return 0;
392 dev_err(chip->card->dev,
393 "xilinx test failed after load, GPIOC=0x%x\n", i);
394 return -EINVAL;
395 }
396
397 return 0;
398}
399
400
401/*
402 * load the boot/dsp images
403 */
404static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
405{
406 int err;
407
408 switch (index) {
409 case 1:
410 /* xilinx image */
411 err = vx2_load_xilinx_binary(chip: vx, xilinx: dsp);
412 if (err < 0)
413 return err;
414 err = vx2_test_xilinx(chip: vx);
415 if (err < 0)
416 return err;
417 return 0;
418 case 2:
419 /* DSP boot */
420 return snd_vx_dsp_boot(chip: vx, dsp);
421 case 3:
422 /* DSP image */
423 return snd_vx_dsp_load(chip: vx, dsp);
424 default:
425 snd_BUG();
426 return -EINVAL;
427 }
428}
429
430
431/*
432 * vx_test_and_ack - test and acknowledge interrupt
433 *
434 * called from irq hander, too
435 *
436 * spinlock held!
437 */
438static int vx2_test_and_ack(struct vx_core *chip)
439{
440 /* not booted yet? */
441 if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
442 return -ENXIO;
443
444 if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
445 return -EIO;
446
447 /* ok, interrupts generated, now ack it */
448 /* set ACQUIT bit up and down */
449 vx_outl(chip, STATUS, 0);
450 /* useless read just to spend some time and maintain
451 * the ACQUIT signal up for a while ( a bus cycle )
452 */
453 vx_inl(chip, STATUS);
454 /* ack */
455 vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
456 /* useless read just to spend some time and maintain
457 * the ACQUIT signal up for a while ( a bus cycle ) */
458 vx_inl(chip, STATUS);
459 /* clear */
460 vx_outl(chip, STATUS, 0);
461
462 return 0;
463}
464
465
466/*
467 * vx_validate_irq - enable/disable IRQ
468 */
469static void vx2_validate_irq(struct vx_core *_chip, int enable)
470{
471 struct snd_vx222 *chip = to_vx222(_chip);
472
473 /* Set the interrupt enable bit to 1 in CDSP register */
474 if (enable) {
475 /* Set the PCI interrupt enable bit to 1.*/
476 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
477 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
478 } else {
479 /* Set the PCI interrupt enable bit to 0. */
480 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
481 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
482 }
483 vx_outl(chip, CDSP, chip->regCDSP);
484}
485
486
487/*
488 * write an AKM codec data (24bit)
489 */
490static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
491{
492 unsigned int i;
493
494 vx_inl(chip, HIFREQ);
495
496 /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
497 for (i = 0; i < 24; i++, data <<= 1)
498 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
499 /* Terminate access to codec registers */
500 vx_inl(chip, RUER);
501}
502
503
504#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
505#define AKM_CODEC_RESET_ON_CMD 0xA100
506#define AKM_CODEC_RESET_OFF_CMD 0xA103
507#define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
508#define AKM_CODEC_MUTE_CMD 0xA38D
509#define AKM_CODEC_UNMUTE_CMD 0xA30D
510#define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
511#define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
512
513static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
514 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
515 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
516 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
517 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
518 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
519 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
520 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
521 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
522 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
523 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
524 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
525 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
526 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
527 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
528 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
529 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
530 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
531 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
532 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
533 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
534 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
535 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
536 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
537 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
538 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
539 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
540 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
541 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
542 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
543 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
544 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
545 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
546 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
547 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
548 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
549 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
550 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
551 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
552 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
553 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
554 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
555 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
556 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
557 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
558 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
559 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
560 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
561 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
562 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
563 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
564 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
565 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
566 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
567 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
568 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
569 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
570 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
571 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
572 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
573 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
574 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
575 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
576 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
577 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
578 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
579 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
580 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
581 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
582 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
583 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
584 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
585 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
586 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
587 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
588 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
589 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
590 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
591 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
592 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
593 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
594 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
595 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
596 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
597 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
598 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
599 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
600 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
601 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
602 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
603 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
604 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
605 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
606 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
607 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
608 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
609 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
610 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
611 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
612 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
613 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
614 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
615 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
616 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
617 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
618 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
619 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
620 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
621 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
622 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
623 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
624 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
625 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
626 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
627 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
628 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
629 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
630 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
631 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
632 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
633 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
634 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
635 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
636 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
637 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
638 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
639 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
640 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
641 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
642 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
643 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
644 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
645 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
646 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
647 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
648 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
649 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
650 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
651 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
652 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
653 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
654 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
655 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
656 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
657 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
658 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
659 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
660 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
661 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
662
663/*
664 * pseudo-codec write entry
665 */
666static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
667{
668 unsigned int val;
669
670 if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
671 vx2_write_codec_reg(chip, data: data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
672 return;
673 }
674
675 /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
676 a look up table, as there is no linear matching between the driver codec values
677 and the real dBu value
678 */
679 if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
680 return;
681
682 switch (reg) {
683 case XX_CODEC_LEVEL_LEFT_REGISTER:
684 val = AKM_CODEC_LEFT_LEVEL_CMD;
685 break;
686 case XX_CODEC_LEVEL_RIGHT_REGISTER:
687 val = AKM_CODEC_RIGHT_LEVEL_CMD;
688 break;
689 default:
690 snd_BUG();
691 return;
692 }
693 val |= vx2_akm_gains_lut[data];
694
695 vx2_write_codec_reg(chip, data: val);
696}
697
698
699/*
700 * write codec bit for old VX222 board
701 */
702static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
703{
704 int i;
705
706 /* activate access to codec registers */
707 vx_inl(chip, HIFREQ);
708
709 for (i = 0; i < 24; i++, data <<= 1)
710 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
711
712 /* Terminate access to codec registers */
713 vx_inl(chip, RUER);
714}
715
716
717/*
718 * reset codec bit
719 */
720static void vx2_reset_codec(struct vx_core *_chip)
721{
722 struct snd_vx222 *chip = to_vx222(_chip);
723
724 /* Set the reset CODEC bit to 0. */
725 vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
726 vx_inl(chip, CDSP);
727 msleep(msecs: 10);
728 /* Set the reset CODEC bit to 1. */
729 chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
730 vx_outl(chip, CDSP, chip->regCDSP);
731 vx_inl(chip, CDSP);
732 if (_chip->type == VX_TYPE_BOARD) {
733 msleep(msecs: 1);
734 return;
735 }
736
737 msleep(msecs: 5); /* additionnel wait time for AKM's */
738
739 vx2_write_codec_reg(chip: _chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
740
741 vx2_write_codec_reg(chip: _chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
742 vx2_write_codec_reg(chip: _chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
743 vx2_write_codec_reg(chip: _chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
744
745 if (_chip->type == VX_TYPE_MIC) {
746 /* set up the micro input selector */
747 chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
748 MICRO_SELECT_PREAMPLI_G_0 |
749 MICRO_SELECT_NOISE_T_52DB;
750
751 /* reset phantom power supply */
752 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
753
754 vx_outl(_chip, SELMIC, chip->regSELMIC);
755 }
756}
757
758
759/*
760 * change the audio source
761 */
762static void vx2_change_audio_source(struct vx_core *_chip, int src)
763{
764 struct snd_vx222 *chip = to_vx222(_chip);
765
766 switch (src) {
767 case VX_AUDIO_SRC_DIGITAL:
768 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
769 break;
770 default:
771 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
772 break;
773 }
774 vx_outl(chip, CFG, chip->regCFG);
775}
776
777
778/*
779 * set the clock source
780 */
781static void vx2_set_clock_source(struct vx_core *_chip, int source)
782{
783 struct snd_vx222 *chip = to_vx222(_chip);
784
785 if (source == INTERNAL_QUARTZ)
786 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
787 else
788 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
789 vx_outl(chip, CFG, chip->regCFG);
790}
791
792/*
793 * reset the board
794 */
795static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
796{
797 struct snd_vx222 *chip = to_vx222(_chip);
798
799 /* initialize the register values */
800 chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
801 chip->regCFG = 0;
802}
803
804
805
806/*
807 * input level controls for VX222 Mic
808 */
809
810/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
811 * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
812 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
813 */
814#define V2_MICRO_LEVEL_RANGE (318 - 255)
815
816static void vx2_set_input_level(struct snd_vx222 *chip)
817{
818 int i, miclevel, preamp;
819 unsigned int data;
820
821 miclevel = chip->mic_level;
822 miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
823 preamp = 0;
824 while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
825 preamp++; /* raise pre ampli + 18dB */
826 miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
827 }
828 if (snd_BUG_ON(preamp >= 4))
829 return;
830
831 /* set pre-amp level */
832 chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
833 chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
834 vx_outl(chip, SELMIC, chip->regSELMIC);
835
836 data = (unsigned int)miclevel << 16 |
837 (unsigned int)chip->input_level[1] << 8 |
838 (unsigned int)chip->input_level[0];
839 vx_inl(chip, DATA); /* Activate input level programming */
840
841 /* We have to send 32 bits (4 x 8 bits) */
842 for (i = 0; i < 32; i++, data <<= 1)
843 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
844
845 vx_inl(chip, RUER); /* Terminate input level programming */
846}
847
848
849#define MIC_LEVEL_MAX 0xff
850
851static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
852
853/*
854 * controls API for input levels
855 */
856
857/* input levels */
858static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
859{
860 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
861 uinfo->count = 2;
862 uinfo->value.integer.min = 0;
863 uinfo->value.integer.max = MIC_LEVEL_MAX;
864 return 0;
865}
866
867static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
868{
869 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
870 struct snd_vx222 *chip = to_vx222(_chip);
871 mutex_lock(&_chip->mixer_mutex);
872 ucontrol->value.integer.value[0] = chip->input_level[0];
873 ucontrol->value.integer.value[1] = chip->input_level[1];
874 mutex_unlock(lock: &_chip->mixer_mutex);
875 return 0;
876}
877
878static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879{
880 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
881 struct snd_vx222 *chip = to_vx222(_chip);
882 if (ucontrol->value.integer.value[0] < 0 ||
883 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
884 return -EINVAL;
885 if (ucontrol->value.integer.value[1] < 0 ||
886 ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
887 return -EINVAL;
888 mutex_lock(&_chip->mixer_mutex);
889 if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
890 chip->input_level[1] != ucontrol->value.integer.value[1]) {
891 chip->input_level[0] = ucontrol->value.integer.value[0];
892 chip->input_level[1] = ucontrol->value.integer.value[1];
893 vx2_set_input_level(chip);
894 mutex_unlock(lock: &_chip->mixer_mutex);
895 return 1;
896 }
897 mutex_unlock(lock: &_chip->mixer_mutex);
898 return 0;
899}
900
901/* mic level */
902static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
903{
904 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
905 uinfo->count = 1;
906 uinfo->value.integer.min = 0;
907 uinfo->value.integer.max = MIC_LEVEL_MAX;
908 return 0;
909}
910
911static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
912{
913 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
914 struct snd_vx222 *chip = to_vx222(_chip);
915 ucontrol->value.integer.value[0] = chip->mic_level;
916 return 0;
917}
918
919static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
920{
921 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
922 struct snd_vx222 *chip = to_vx222(_chip);
923 if (ucontrol->value.integer.value[0] < 0 ||
924 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
925 return -EINVAL;
926 mutex_lock(&_chip->mixer_mutex);
927 if (chip->mic_level != ucontrol->value.integer.value[0]) {
928 chip->mic_level = ucontrol->value.integer.value[0];
929 vx2_set_input_level(chip);
930 mutex_unlock(lock: &_chip->mixer_mutex);
931 return 1;
932 }
933 mutex_unlock(lock: &_chip->mixer_mutex);
934 return 0;
935}
936
937static const struct snd_kcontrol_new vx_control_input_level = {
938 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
939 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
940 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
941 .name = "Capture Volume",
942 .info = vx_input_level_info,
943 .get = vx_input_level_get,
944 .put = vx_input_level_put,
945 .tlv = { .p = db_scale_mic },
946};
947
948static const struct snd_kcontrol_new vx_control_mic_level = {
949 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
950 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
951 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
952 .name = "Mic Capture Volume",
953 .info = vx_mic_level_info,
954 .get = vx_mic_level_get,
955 .put = vx_mic_level_put,
956 .tlv = { .p = db_scale_mic },
957};
958
959/*
960 * FIXME: compressor/limiter implementation is missing yet...
961 */
962
963static int vx2_add_mic_controls(struct vx_core *_chip)
964{
965 struct snd_vx222 *chip = to_vx222(_chip);
966 int err;
967
968 if (_chip->type != VX_TYPE_MIC)
969 return 0;
970
971 /* mute input levels */
972 chip->input_level[0] = chip->input_level[1] = 0;
973 chip->mic_level = 0;
974 vx2_set_input_level(chip);
975
976 /* controls */
977 err = snd_ctl_add(card: _chip->card, kcontrol: snd_ctl_new1(kcontrolnew: &vx_control_input_level, private_data: chip));
978 if (err < 0)
979 return err;
980 err = snd_ctl_add(card: _chip->card, kcontrol: snd_ctl_new1(kcontrolnew: &vx_control_mic_level, private_data: chip));
981 if (err < 0)
982 return err;
983
984 return 0;
985}
986
987
988/*
989 * callbacks
990 */
991const struct snd_vx_ops vx222_ops = {
992 .in8 = vx2_inb,
993 .in32 = vx2_inl,
994 .out8 = vx2_outb,
995 .out32 = vx2_outl,
996 .test_and_ack = vx2_test_and_ack,
997 .validate_irq = vx2_validate_irq,
998 .akm_write = vx2_write_akm,
999 .reset_codec = vx2_reset_codec,
1000 .change_audio_source = vx2_change_audio_source,
1001 .set_clock_source = vx2_set_clock_source,
1002 .load_dsp = vx2_load_dsp,
1003 .reset_dsp = vx2_reset_dsp,
1004 .reset_board = vx2_reset_board,
1005 .dma_write = vx2_dma_write,
1006 .dma_read = vx2_dma_read,
1007 .add_controls = vx2_add_mic_controls,
1008};
1009
1010/* for old VX222 board */
1011const struct snd_vx_ops vx222_old_ops = {
1012 .in8 = vx2_inb,
1013 .in32 = vx2_inl,
1014 .out8 = vx2_outb,
1015 .out32 = vx2_outl,
1016 .test_and_ack = vx2_test_and_ack,
1017 .validate_irq = vx2_validate_irq,
1018 .write_codec = vx2_old_write_codec_bit,
1019 .reset_codec = vx2_reset_codec,
1020 .change_audio_source = vx2_change_audio_source,
1021 .set_clock_source = vx2_set_clock_source,
1022 .load_dsp = vx2_load_dsp,
1023 .reset_dsp = vx2_reset_dsp,
1024 .reset_board = vx2_reset_board,
1025 .dma_write = vx2_dma_write,
1026 .dma_read = vx2_dma_read,
1027};
1028
1029

source code of linux/sound/pci/vx222/vx222_ops.c