1// SPDX-License-Identifier: GPL-2.0
2/*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8#include <inttypes.h>
9
10#include <subcmd/parse-options.h>
11#include "../util/cloexec.h"
12
13#include "bench.h"
14
15#include <errno.h>
16#include <sched.h>
17#include <stdio.h>
18#include <assert.h>
19#include <debug.h>
20#include <malloc.h>
21#include <signal.h>
22#include <stdlib.h>
23#include <string.h>
24#include <unistd.h>
25#include <sys/mman.h>
26#include <sys/time.h>
27#include <sys/resource.h>
28#include <sys/wait.h>
29#include <sys/prctl.h>
30#include <sys/types.h>
31#include <linux/kernel.h>
32#include <linux/time64.h>
33#include <linux/numa.h>
34#include <linux/zalloc.h>
35
36#include "../util/header.h"
37#include "../util/mutex.h"
38#include <numa.h>
39#include <numaif.h>
40
41#ifndef RUSAGE_THREAD
42# define RUSAGE_THREAD 1
43#endif
44
45/*
46 * Regular printout to the terminal, suppressed if -q is specified:
47 */
48#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
49
50/*
51 * Debug printf:
52 */
53#undef dprintf
54#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
55
56struct thread_data {
57 int curr_cpu;
58 cpu_set_t *bind_cpumask;
59 int bind_node;
60 u8 *process_data;
61 int process_nr;
62 int thread_nr;
63 int task_nr;
64 unsigned int loops_done;
65 u64 val;
66 u64 runtime_ns;
67 u64 system_time_ns;
68 u64 user_time_ns;
69 double speed_gbs;
70 struct mutex *process_lock;
71};
72
73/* Parameters set by options: */
74
75struct params {
76 /* Startup synchronization: */
77 bool serialize_startup;
78
79 /* Task hierarchy: */
80 int nr_proc;
81 int nr_threads;
82
83 /* Working set sizes: */
84 const char *mb_global_str;
85 const char *mb_proc_str;
86 const char *mb_proc_locked_str;
87 const char *mb_thread_str;
88
89 double mb_global;
90 double mb_proc;
91 double mb_proc_locked;
92 double mb_thread;
93
94 /* Access patterns to the working set: */
95 bool data_reads;
96 bool data_writes;
97 bool data_backwards;
98 bool data_zero_memset;
99 bool data_rand_walk;
100 u32 nr_loops;
101 u32 nr_secs;
102 u32 sleep_usecs;
103
104 /* Working set initialization: */
105 bool init_zero;
106 bool init_random;
107 bool init_cpu0;
108
109 /* Misc options: */
110 int show_details;
111 int run_all;
112 int thp;
113
114 long bytes_global;
115 long bytes_process;
116 long bytes_process_locked;
117 long bytes_thread;
118
119 int nr_tasks;
120
121 bool show_convergence;
122 bool measure_convergence;
123
124 int perturb_secs;
125 int nr_cpus;
126 int nr_nodes;
127
128 /* Affinity options -C and -N: */
129 char *cpu_list_str;
130 char *node_list_str;
131};
132
133
134/* Global, read-writable area, accessible to all processes and threads: */
135
136struct global_info {
137 u8 *data;
138
139 struct mutex startup_mutex;
140 struct cond startup_cond;
141 int nr_tasks_started;
142
143 struct mutex start_work_mutex;
144 struct cond start_work_cond;
145 int nr_tasks_working;
146 bool start_work;
147
148 struct mutex stop_work_mutex;
149 u64 bytes_done;
150
151 struct thread_data *threads;
152
153 /* Convergence latency measurement: */
154 bool all_converged;
155 bool stop_work;
156
157 int print_once;
158
159 struct params p;
160};
161
162static struct global_info *g = NULL;
163
164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166
167struct params p0;
168
169static const struct option options[] = {
170 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
171 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
172
173 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
174 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
175 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
177
178 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
179 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
180 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
181
182 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
183 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
184 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
185 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
187
188
189 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
190 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
191 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
192 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
193
194 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
195 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
196 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
200 OPT_BOOLEAN('q', "quiet" , &quiet,
201 "quiet mode (do not show any warnings or messages)"),
202 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
203
204 /* Special option string parsing callbacks: */
205 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
206 "bind the first N tasks to these specific cpus (the rest is unbound)",
207 parse_cpus_opt),
208 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
209 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
210 parse_nodes_opt),
211 OPT_END()
212};
213
214static const char * const bench_numa_usage[] = {
215 "perf bench numa <options>",
216 NULL
217};
218
219static const char * const numa_usage[] = {
220 "perf bench numa mem [<options>]",
221 NULL
222};
223
224/*
225 * To get number of numa nodes present.
226 */
227static int nr_numa_nodes(void)
228{
229 int i, nr_nodes = 0;
230
231 for (i = 0; i < g->p.nr_nodes; i++) {
232 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
233 nr_nodes++;
234 }
235
236 return nr_nodes;
237}
238
239/*
240 * To check if given numa node is present.
241 */
242static int is_node_present(int node)
243{
244 return numa_bitmask_isbitset(numa_nodes_ptr, node);
245}
246
247/*
248 * To check given numa node has cpus.
249 */
250static bool node_has_cpus(int node)
251{
252 struct bitmask *cpumask = numa_allocate_cpumask();
253 bool ret = false; /* fall back to nocpus */
254 int cpu;
255
256 BUG_ON(!cpumask);
257 if (!numa_node_to_cpus(node, cpumask)) {
258 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
259 if (numa_bitmask_isbitset(cpumask, cpu)) {
260 ret = true;
261 break;
262 }
263 }
264 }
265 numa_free_cpumask(cpumask);
266
267 return ret;
268}
269
270static cpu_set_t *bind_to_cpu(int target_cpu)
271{
272 int nrcpus = numa_num_possible_cpus();
273 cpu_set_t *orig_mask, *mask;
274 size_t size;
275
276 orig_mask = CPU_ALLOC(nrcpus);
277 BUG_ON(!orig_mask);
278 size = CPU_ALLOC_SIZE(nrcpus);
279 CPU_ZERO_S(size, orig_mask);
280
281 if (sched_getaffinity(pid: 0, mask: size, orig_mask))
282 goto err_out;
283
284 mask = CPU_ALLOC(nrcpus);
285 if (!mask)
286 goto err_out;
287
288 CPU_ZERO_S(size, mask);
289
290 if (target_cpu == -1) {
291 int cpu;
292
293 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
294 CPU_SET_S(cpu, size, mask);
295 } else {
296 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
297 goto err;
298
299 CPU_SET_S(target_cpu, size, mask);
300 }
301
302 if (sched_setaffinity(0, size, mask))
303 goto err;
304
305 return orig_mask;
306
307err:
308 CPU_FREE(mask);
309err_out:
310 CPU_FREE(orig_mask);
311
312 /* BUG_ON due to failure in allocation of orig_mask/mask */
313 BUG_ON(-1);
314 return NULL;
315}
316
317static cpu_set_t *bind_to_node(int target_node)
318{
319 int nrcpus = numa_num_possible_cpus();
320 size_t size;
321 cpu_set_t *orig_mask, *mask;
322 int cpu;
323
324 orig_mask = CPU_ALLOC(nrcpus);
325 BUG_ON(!orig_mask);
326 size = CPU_ALLOC_SIZE(nrcpus);
327 CPU_ZERO_S(size, orig_mask);
328
329 if (sched_getaffinity(0, size, orig_mask))
330 goto err_out;
331
332 mask = CPU_ALLOC(nrcpus);
333 if (!mask)
334 goto err_out;
335
336 CPU_ZERO_S(size, mask);
337
338 if (target_node == NUMA_NO_NODE) {
339 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
340 CPU_SET_S(cpu, size, mask);
341 } else {
342 struct bitmask *cpumask = numa_allocate_cpumask();
343
344 if (!cpumask)
345 goto err;
346
347 if (!numa_node_to_cpus(target_node, cpumask)) {
348 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
349 if (numa_bitmask_isbitset(cpumask, cpu))
350 CPU_SET_S(cpu, size, mask);
351 }
352 }
353 numa_free_cpumask(cpumask);
354 }
355
356 if (sched_setaffinity(0, size, mask))
357 goto err;
358
359 return orig_mask;
360
361err:
362 CPU_FREE(mask);
363err_out:
364 CPU_FREE(orig_mask);
365
366 /* BUG_ON due to failure in allocation of orig_mask/mask */
367 BUG_ON(-1);
368 return NULL;
369}
370
371static void bind_to_cpumask(cpu_set_t *mask)
372{
373 int ret;
374 size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
375
376 ret = sched_setaffinity(pid: 0, new_mask: size, mask);
377 if (ret) {
378 CPU_FREE(mask);
379 BUG_ON(ret);
380 }
381}
382
383static void mempol_restore(void)
384{
385 int ret;
386
387 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
388
389 BUG_ON(ret);
390}
391
392static void bind_to_memnode(int node)
393{
394 struct bitmask *node_mask;
395 int ret;
396
397 if (node == NUMA_NO_NODE)
398 return;
399
400 node_mask = numa_allocate_nodemask();
401 BUG_ON(!node_mask);
402
403 numa_bitmask_clearall(node_mask);
404 numa_bitmask_setbit(node_mask, node);
405
406 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
407 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
408
409 numa_bitmask_free(node_mask);
410 BUG_ON(ret);
411}
412
413#define HPSIZE (2*1024*1024)
414
415#define set_taskname(fmt...) \
416do { \
417 char name[20]; \
418 \
419 snprintf(name, 20, fmt); \
420 prctl(PR_SET_NAME, name); \
421} while (0)
422
423static u8 *alloc_data(ssize_t bytes0, int map_flags,
424 int init_zero, int init_cpu0, int thp, int init_random)
425{
426 cpu_set_t *orig_mask = NULL;
427 ssize_t bytes;
428 u8 *buf;
429 int ret;
430
431 if (!bytes0)
432 return NULL;
433
434 /* Allocate and initialize all memory on CPU#0: */
435 if (init_cpu0) {
436 int node = numa_node_of_cpu(0);
437
438 orig_mask = bind_to_node(node);
439 bind_to_memnode(node);
440 }
441
442 bytes = bytes0 + HPSIZE;
443
444 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
445 BUG_ON(buf == (void *)-1);
446
447 if (map_flags == MAP_PRIVATE) {
448 if (thp > 0) {
449 ret = madvise(buf, bytes, MADV_HUGEPAGE);
450 if (ret && !g->print_once) {
451 g->print_once = 1;
452 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
453 }
454 }
455 if (thp < 0) {
456 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
457 if (ret && !g->print_once) {
458 g->print_once = 1;
459 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
460 }
461 }
462 }
463
464 if (init_zero) {
465 bzero(buf, bytes);
466 } else {
467 /* Initialize random contents, different in each word: */
468 if (init_random) {
469 u64 *wbuf = (void *)buf;
470 long off = rand();
471 long i;
472
473 for (i = 0; i < bytes/8; i++)
474 wbuf[i] = i + off;
475 }
476 }
477
478 /* Align to 2MB boundary: */
479 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
480
481 /* Restore affinity: */
482 if (init_cpu0) {
483 bind_to_cpumask(orig_mask);
484 CPU_FREE(orig_mask);
485 mempol_restore();
486 }
487
488 return buf;
489}
490
491static void free_data(void *data, ssize_t bytes)
492{
493 int ret;
494
495 if (!data)
496 return;
497
498 ret = munmap(data, bytes);
499 BUG_ON(ret);
500}
501
502/*
503 * Create a shared memory buffer that can be shared between processes, zeroed:
504 */
505static void * zalloc_shared_data(ssize_t bytes)
506{
507 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
508}
509
510/*
511 * Create a shared memory buffer that can be shared between processes:
512 */
513static void * setup_shared_data(ssize_t bytes)
514{
515 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
516}
517
518/*
519 * Allocate process-local memory - this will either be shared between
520 * threads of this process, or only be accessed by this thread:
521 */
522static void * setup_private_data(ssize_t bytes)
523{
524 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
525}
526
527static int parse_cpu_list(const char *arg)
528{
529 p0.cpu_list_str = strdup(arg);
530
531 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
532
533 return 0;
534}
535
536static int parse_setup_cpu_list(void)
537{
538 struct thread_data *td;
539 char *str0, *str;
540 int t;
541
542 if (!g->p.cpu_list_str)
543 return 0;
544
545 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
546
547 str0 = str = strdup(g->p.cpu_list_str);
548 t = 0;
549
550 BUG_ON(!str);
551
552 tprintf("# binding tasks to CPUs:\n");
553 tprintf("# ");
554
555 while (true) {
556 int bind_cpu, bind_cpu_0, bind_cpu_1;
557 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
558 int bind_len;
559 int step;
560 int mul;
561
562 tok = strsep(&str, ",");
563 if (!tok)
564 break;
565
566 tok_end = strstr(tok, "-");
567
568 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
569 if (!tok_end) {
570 /* Single CPU specified: */
571 bind_cpu_0 = bind_cpu_1 = atol(tok);
572 } else {
573 /* CPU range specified (for example: "5-11"): */
574 bind_cpu_0 = atol(tok);
575 bind_cpu_1 = atol(tok_end + 1);
576 }
577
578 step = 1;
579 tok_step = strstr(tok, "#");
580 if (tok_step) {
581 step = atol(tok_step + 1);
582 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
583 }
584
585 /*
586 * Mask length.
587 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
588 * where the _4 means the next 4 CPUs are allowed.
589 */
590 bind_len = 1;
591 tok_len = strstr(tok, "_");
592 if (tok_len) {
593 bind_len = atol(tok_len + 1);
594 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
595 }
596
597 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
598 mul = 1;
599 tok_mul = strstr(tok, "x");
600 if (tok_mul) {
601 mul = atol(tok_mul + 1);
602 BUG_ON(mul <= 0);
603 }
604
605 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
606
607 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
608 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
609 return -1;
610 }
611
612 if (is_cpu_online(cpu: bind_cpu_0) != 1 || is_cpu_online(cpu: bind_cpu_1) != 1) {
613 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
614 return -1;
615 }
616
617 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
618 BUG_ON(bind_cpu_0 > bind_cpu_1);
619
620 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
621 size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
622 int i;
623
624 for (i = 0; i < mul; i++) {
625 int cpu;
626
627 if (t >= g->p.nr_tasks) {
628 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
629 goto out;
630 }
631 td = g->threads + t;
632
633 if (t)
634 tprintf(",");
635 if (bind_len > 1) {
636 tprintf("%2d/%d", bind_cpu, bind_len);
637 } else {
638 tprintf("%2d", bind_cpu);
639 }
640
641 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
642 BUG_ON(!td->bind_cpumask);
643 CPU_ZERO_S(size, td->bind_cpumask);
644 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
645 if (cpu < 0 || cpu >= g->p.nr_cpus) {
646 CPU_FREE(td->bind_cpumask);
647 BUG_ON(-1);
648 }
649 CPU_SET_S(cpu, size, td->bind_cpumask);
650 }
651 t++;
652 }
653 }
654 }
655out:
656
657 tprintf("\n");
658
659 if (t < g->p.nr_tasks)
660 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
661
662 free(str0);
663 return 0;
664}
665
666static int parse_cpus_opt(const struct option *opt __maybe_unused,
667 const char *arg, int unset __maybe_unused)
668{
669 if (!arg)
670 return -1;
671
672 return parse_cpu_list(arg);
673}
674
675static int parse_node_list(const char *arg)
676{
677 p0.node_list_str = strdup(arg);
678
679 dprintf("got NODE list: {%s}\n", p0.node_list_str);
680
681 return 0;
682}
683
684static int parse_setup_node_list(void)
685{
686 struct thread_data *td;
687 char *str0, *str;
688 int t;
689
690 if (!g->p.node_list_str)
691 return 0;
692
693 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
694
695 str0 = str = strdup(g->p.node_list_str);
696 t = 0;
697
698 BUG_ON(!str);
699
700 tprintf("# binding tasks to NODEs:\n");
701 tprintf("# ");
702
703 while (true) {
704 int bind_node, bind_node_0, bind_node_1;
705 char *tok, *tok_end, *tok_step, *tok_mul;
706 int step;
707 int mul;
708
709 tok = strsep(&str, ",");
710 if (!tok)
711 break;
712
713 tok_end = strstr(tok, "-");
714
715 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
716 if (!tok_end) {
717 /* Single NODE specified: */
718 bind_node_0 = bind_node_1 = atol(tok);
719 } else {
720 /* NODE range specified (for example: "5-11"): */
721 bind_node_0 = atol(tok);
722 bind_node_1 = atol(tok_end + 1);
723 }
724
725 step = 1;
726 tok_step = strstr(tok, "#");
727 if (tok_step) {
728 step = atol(tok_step + 1);
729 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
730 }
731
732 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
733 mul = 1;
734 tok_mul = strstr(tok, "x");
735 if (tok_mul) {
736 mul = atol(tok_mul + 1);
737 BUG_ON(mul <= 0);
738 }
739
740 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
741
742 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
743 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
744 return -1;
745 }
746
747 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
748 BUG_ON(bind_node_0 > bind_node_1);
749
750 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
751 int i;
752
753 for (i = 0; i < mul; i++) {
754 if (t >= g->p.nr_tasks || !node_has_cpus(node: bind_node)) {
755 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
756 goto out;
757 }
758 td = g->threads + t;
759
760 if (!t)
761 tprintf(" %2d", bind_node);
762 else
763 tprintf(",%2d", bind_node);
764
765 td->bind_node = bind_node;
766 t++;
767 }
768 }
769 }
770out:
771
772 tprintf("\n");
773
774 if (t < g->p.nr_tasks)
775 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
776
777 free(str0);
778 return 0;
779}
780
781static int parse_nodes_opt(const struct option *opt __maybe_unused,
782 const char *arg, int unset __maybe_unused)
783{
784 if (!arg)
785 return -1;
786
787 return parse_node_list(arg);
788}
789
790static inline uint32_t lfsr_32(uint32_t lfsr)
791{
792 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
793 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
794}
795
796/*
797 * Make sure there's real data dependency to RAM (when read
798 * accesses are enabled), so the compiler, the CPU and the
799 * kernel (KSM, zero page, etc.) cannot optimize away RAM
800 * accesses:
801 */
802static inline u64 access_data(u64 *data, u64 val)
803{
804 if (g->p.data_reads)
805 val += *data;
806 if (g->p.data_writes)
807 *data = val + 1;
808 return val;
809}
810
811/*
812 * The worker process does two types of work, a forwards going
813 * loop and a backwards going loop.
814 *
815 * We do this so that on multiprocessor systems we do not create
816 * a 'train' of processing, with highly synchronized processes,
817 * skewing the whole benchmark.
818 */
819static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
820{
821 long words = bytes/sizeof(u64);
822 u64 *data = (void *)__data;
823 long chunk_0, chunk_1;
824 u64 *d0, *d, *d1;
825 long off;
826 long i;
827
828 BUG_ON(!data && words);
829 BUG_ON(data && !words);
830
831 if (!data)
832 return val;
833
834 /* Very simple memset() work variant: */
835 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
836 bzero(data, bytes);
837 return val;
838 }
839
840 /* Spread out by PID/TID nr and by loop nr: */
841 chunk_0 = words/nr_max;
842 chunk_1 = words/g->p.nr_loops;
843 off = nr*chunk_0 + loop*chunk_1;
844
845 while (off >= words)
846 off -= words;
847
848 if (g->p.data_rand_walk) {
849 u32 lfsr = nr + loop + val;
850 long j;
851
852 for (i = 0; i < words/1024; i++) {
853 long start, end;
854
855 lfsr = lfsr_32(lfsr);
856
857 start = lfsr % words;
858 end = min(start + 1024, words-1);
859
860 if (g->p.data_zero_memset) {
861 bzero(data + start, (end-start) * sizeof(u64));
862 } else {
863 for (j = start; j < end; j++)
864 val = access_data(data: data + j, val);
865 }
866 }
867 } else if (!g->p.data_backwards || (nr + loop) & 1) {
868 /* Process data forwards: */
869
870 d0 = data + off;
871 d = data + off + 1;
872 d1 = data + words;
873
874 for (;;) {
875 if (unlikely(d >= d1))
876 d = data;
877 if (unlikely(d == d0))
878 break;
879
880 val = access_data(data: d, val);
881
882 d++;
883 }
884 } else {
885 /* Process data backwards: */
886
887 d0 = data + off;
888 d = data + off - 1;
889 d1 = data + words;
890
891 for (;;) {
892 if (unlikely(d < data))
893 d = data + words-1;
894 if (unlikely(d == d0))
895 break;
896
897 val = access_data(data: d, val);
898
899 d--;
900 }
901 }
902
903 return val;
904}
905
906static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
907{
908 unsigned int cpu;
909
910 cpu = sched_getcpu();
911
912 g->threads[task_nr].curr_cpu = cpu;
913 prctl(0, bytes_worked);
914}
915
916/*
917 * Count the number of nodes a process's threads
918 * are spread out on.
919 *
920 * A count of 1 means that the process is compressed
921 * to a single node. A count of g->p.nr_nodes means it's
922 * spread out on the whole system.
923 */
924static int count_process_nodes(int process_nr)
925{
926 char *node_present;
927 int nodes;
928 int n, t;
929
930 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
931 BUG_ON(!node_present);
932 for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
933 node_present[nodes] = 0;
934
935 for (t = 0; t < g->p.nr_threads; t++) {
936 struct thread_data *td;
937 int task_nr;
938 int node;
939
940 task_nr = process_nr*g->p.nr_threads + t;
941 td = g->threads + task_nr;
942
943 node = numa_node_of_cpu(td->curr_cpu);
944 if (node < 0) /* curr_cpu was likely still -1 */ {
945 free(node_present);
946 return 0;
947 }
948
949 node_present[node] = 1;
950 }
951
952 nodes = 0;
953
954 for (n = 0; n < g->p.nr_nodes; n++)
955 nodes += node_present[n];
956
957 free(node_present);
958 return nodes;
959}
960
961/*
962 * Count the number of distinct process-threads a node contains.
963 *
964 * A count of 1 means that the node contains only a single
965 * process. If all nodes on the system contain at most one
966 * process then we are well-converged.
967 */
968static int count_node_processes(int node)
969{
970 int processes = 0;
971 int t, p;
972
973 for (p = 0; p < g->p.nr_proc; p++) {
974 for (t = 0; t < g->p.nr_threads; t++) {
975 struct thread_data *td;
976 int task_nr;
977 int n;
978
979 task_nr = p*g->p.nr_threads + t;
980 td = g->threads + task_nr;
981
982 n = numa_node_of_cpu(td->curr_cpu);
983 if (n == node) {
984 processes++;
985 break;
986 }
987 }
988 }
989
990 return processes;
991}
992
993static void calc_convergence_compression(int *strong)
994{
995 unsigned int nodes_min, nodes_max;
996 int p;
997
998 nodes_min = -1;
999 nodes_max = 0;
1000
1001 for (p = 0; p < g->p.nr_proc; p++) {
1002 unsigned int nodes = count_process_nodes(process_nr: p);
1003
1004 if (!nodes) {
1005 *strong = 0;
1006 return;
1007 }
1008
1009 nodes_min = min(nodes, nodes_min);
1010 nodes_max = max(nodes, nodes_max);
1011 }
1012
1013 /* Strong convergence: all threads compress on a single node: */
1014 if (nodes_min == 1 && nodes_max == 1) {
1015 *strong = 1;
1016 } else {
1017 *strong = 0;
1018 tprintf(" {%d-%d}", nodes_min, nodes_max);
1019 }
1020}
1021
1022static void calc_convergence(double runtime_ns_max, double *convergence)
1023{
1024 unsigned int loops_done_min, loops_done_max;
1025 int process_groups;
1026 int *nodes;
1027 int distance;
1028 int nr_min;
1029 int nr_max;
1030 int strong;
1031 int sum;
1032 int nr;
1033 int node;
1034 int cpu;
1035 int t;
1036
1037 if (!g->p.show_convergence && !g->p.measure_convergence)
1038 return;
1039
1040 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1041 BUG_ON(!nodes);
1042 for (node = 0; node < g->p.nr_nodes; node++)
1043 nodes[node] = 0;
1044
1045 loops_done_min = -1;
1046 loops_done_max = 0;
1047
1048 for (t = 0; t < g->p.nr_tasks; t++) {
1049 struct thread_data *td = g->threads + t;
1050 unsigned int loops_done;
1051
1052 cpu = td->curr_cpu;
1053
1054 /* Not all threads have written it yet: */
1055 if (cpu < 0)
1056 continue;
1057
1058 node = numa_node_of_cpu(cpu);
1059
1060 nodes[node]++;
1061
1062 loops_done = td->loops_done;
1063 loops_done_min = min(loops_done, loops_done_min);
1064 loops_done_max = max(loops_done, loops_done_max);
1065 }
1066
1067 nr_max = 0;
1068 nr_min = g->p.nr_tasks;
1069 sum = 0;
1070
1071 for (node = 0; node < g->p.nr_nodes; node++) {
1072 if (!is_node_present(node))
1073 continue;
1074 nr = nodes[node];
1075 nr_min = min(nr, nr_min);
1076 nr_max = max(nr, nr_max);
1077 sum += nr;
1078 }
1079 BUG_ON(nr_min > nr_max);
1080
1081 BUG_ON(sum > g->p.nr_tasks);
1082
1083 if (0 && (sum < g->p.nr_tasks)) {
1084 free(nodes);
1085 return;
1086 }
1087
1088 /*
1089 * Count the number of distinct process groups present
1090 * on nodes - when we are converged this will decrease
1091 * to g->p.nr_proc:
1092 */
1093 process_groups = 0;
1094
1095 for (node = 0; node < g->p.nr_nodes; node++) {
1096 int processes;
1097
1098 if (!is_node_present(node))
1099 continue;
1100 processes = count_node_processes(node);
1101 nr = nodes[node];
1102 tprintf(" %2d/%-2d", nr, processes);
1103
1104 process_groups += processes;
1105 }
1106
1107 distance = nr_max - nr_min;
1108
1109 tprintf(" [%2d/%-2d]", distance, process_groups);
1110
1111 tprintf(" l:%3d-%-3d (%3d)",
1112 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1113
1114 if (loops_done_min && loops_done_max) {
1115 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1116
1117 tprintf(" [%4.1f%%]", skew * 100.0);
1118 }
1119
1120 calc_convergence_compression(strong: &strong);
1121
1122 if (strong && process_groups == g->p.nr_proc) {
1123 if (!*convergence) {
1124 *convergence = runtime_ns_max;
1125 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1126 if (g->p.measure_convergence) {
1127 g->all_converged = true;
1128 g->stop_work = true;
1129 }
1130 }
1131 } else {
1132 if (*convergence) {
1133 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1134 *convergence = 0;
1135 }
1136 tprintf("\n");
1137 }
1138
1139 free(nodes);
1140}
1141
1142static void show_summary(double runtime_ns_max, int l, double *convergence)
1143{
1144 tprintf("\r # %5.1f%% [%.1f mins]",
1145 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1146
1147 calc_convergence(runtime_ns_max, convergence);
1148
1149 if (g->p.show_details >= 0)
1150 fflush(stdout);
1151}
1152
1153static void *worker_thread(void *__tdata)
1154{
1155 struct thread_data *td = __tdata;
1156 struct timeval start0, start, stop, diff;
1157 int process_nr = td->process_nr;
1158 int thread_nr = td->thread_nr;
1159 unsigned long last_perturbance;
1160 int task_nr = td->task_nr;
1161 int details = g->p.show_details;
1162 int first_task, last_task;
1163 double convergence = 0;
1164 u64 val = td->val;
1165 double runtime_ns_max;
1166 u8 *global_data;
1167 u8 *process_data;
1168 u8 *thread_data;
1169 u64 bytes_done, secs;
1170 long work_done;
1171 u32 l;
1172 struct rusage rusage;
1173
1174 bind_to_cpumask(td->bind_cpumask);
1175 bind_to_memnode(node: td->bind_node);
1176
1177 set_taskname("thread %d/%d", process_nr, thread_nr);
1178
1179 global_data = g->data;
1180 process_data = td->process_data;
1181 thread_data = setup_private_data(g->p.bytes_thread);
1182
1183 bytes_done = 0;
1184
1185 last_task = 0;
1186 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1187 last_task = 1;
1188
1189 first_task = 0;
1190 if (process_nr == 0 && thread_nr == 0)
1191 first_task = 1;
1192
1193 if (details >= 2) {
1194 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1195 process_nr, thread_nr, global_data, process_data, thread_data);
1196 }
1197
1198 if (g->p.serialize_startup) {
1199 mutex_lock(&g->startup_mutex);
1200 g->nr_tasks_started++;
1201 /* The last thread wakes the main process. */
1202 if (g->nr_tasks_started == g->p.nr_tasks)
1203 cond_signal(cnd: &g->startup_cond);
1204
1205 mutex_unlock(mtx: &g->startup_mutex);
1206
1207 /* Here we will wait for the main process to start us all at once: */
1208 mutex_lock(&g->start_work_mutex);
1209 g->start_work = false;
1210 g->nr_tasks_working++;
1211 while (!g->start_work)
1212 cond_wait(cnd: &g->start_work_cond, mtx: &g->start_work_mutex);
1213
1214 mutex_unlock(mtx: &g->start_work_mutex);
1215 }
1216
1217 gettimeofday(&start0, NULL);
1218
1219 start = stop = start0;
1220 last_perturbance = start.tv_sec;
1221
1222 for (l = 0; l < g->p.nr_loops; l++) {
1223 start = stop;
1224
1225 if (g->stop_work)
1226 break;
1227
1228 val += do_work(data: global_data, bytes: g->p.bytes_global, nr: process_nr, nr_max: g->p.nr_proc, loop: l, val);
1229 val += do_work(data: process_data, bytes: g->p.bytes_process, nr: thread_nr, nr_max: g->p.nr_threads, loop: l, val);
1230 val += do_work(data: thread_data, bytes: g->p.bytes_thread, nr: 0, nr_max: 1, loop: l, val);
1231
1232 if (g->p.sleep_usecs) {
1233 mutex_lock(td->process_lock);
1234 usleep(g->p.sleep_usecs);
1235 mutex_unlock(mtx: td->process_lock);
1236 }
1237 /*
1238 * Amount of work to be done under a process-global lock:
1239 */
1240 if (g->p.bytes_process_locked) {
1241 mutex_lock(td->process_lock);
1242 val += do_work(data: process_data, bytes: g->p.bytes_process_locked, nr: thread_nr, nr_max: g->p.nr_threads, loop: l, val);
1243 mutex_unlock(mtx: td->process_lock);
1244 }
1245
1246 work_done = g->p.bytes_global + g->p.bytes_process +
1247 g->p.bytes_process_locked + g->p.bytes_thread;
1248
1249 update_curr_cpu(task_nr, bytes_worked: work_done);
1250 bytes_done += work_done;
1251
1252 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1253 continue;
1254
1255 td->loops_done = l;
1256
1257 gettimeofday(&stop, NULL);
1258
1259 /* Check whether our max runtime timed out: */
1260 if (g->p.nr_secs) {
1261 timersub(&stop, &start0, &diff);
1262 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1263 g->stop_work = true;
1264 break;
1265 }
1266 }
1267
1268 /* Update the summary at most once per second: */
1269 if (start.tv_sec == stop.tv_sec)
1270 continue;
1271
1272 /*
1273 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1274 * by migrating to CPU#0:
1275 */
1276 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1277 cpu_set_t *orig_mask;
1278 int target_cpu;
1279 int this_cpu;
1280
1281 last_perturbance = stop.tv_sec;
1282
1283 /*
1284 * Depending on where we are running, move into
1285 * the other half of the system, to create some
1286 * real disturbance:
1287 */
1288 this_cpu = g->threads[task_nr].curr_cpu;
1289 if (this_cpu < g->p.nr_cpus/2)
1290 target_cpu = g->p.nr_cpus-1;
1291 else
1292 target_cpu = 0;
1293
1294 orig_mask = bind_to_cpu(target_cpu);
1295
1296 /* Here we are running on the target CPU already */
1297 if (details >= 1)
1298 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1299
1300 bind_to_cpumask(orig_mask);
1301 CPU_FREE(orig_mask);
1302 }
1303
1304 if (details >= 3) {
1305 timersub(&stop, &start, &diff);
1306 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1307 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1308
1309 if (details >= 0) {
1310 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1311 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1312 }
1313 fflush(stdout);
1314 }
1315 if (!last_task)
1316 continue;
1317
1318 timersub(&stop, &start0, &diff);
1319 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1320 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1321
1322 show_summary(runtime_ns_max, l, convergence: &convergence);
1323 }
1324
1325 gettimeofday(&stop, NULL);
1326 timersub(&stop, &start0, &diff);
1327 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1328 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1329 secs = td->runtime_ns / NSEC_PER_SEC;
1330 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1331
1332 getrusage(RUSAGE_THREAD, &rusage);
1333 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1334 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1335 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1336 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1337
1338 free_data(data: thread_data, bytes: g->p.bytes_thread);
1339
1340 mutex_lock(&g->stop_work_mutex);
1341 g->bytes_done += bytes_done;
1342 mutex_unlock(mtx: &g->stop_work_mutex);
1343
1344 return NULL;
1345}
1346
1347/*
1348 * A worker process starts a couple of threads:
1349 */
1350static void worker_process(int process_nr)
1351{
1352 struct mutex process_lock;
1353 struct thread_data *td;
1354 pthread_t *pthreads;
1355 u8 *process_data;
1356 int task_nr;
1357 int ret;
1358 int t;
1359
1360 mutex_init(&process_lock);
1361 set_taskname("process %d", process_nr);
1362
1363 /*
1364 * Pick up the memory policy and the CPU binding of our first thread,
1365 * so that we initialize memory accordingly:
1366 */
1367 task_nr = process_nr*g->p.nr_threads;
1368 td = g->threads + task_nr;
1369
1370 bind_to_memnode(node: td->bind_node);
1371 bind_to_cpumask(td->bind_cpumask);
1372
1373 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1374 process_data = setup_private_data(g->p.bytes_process);
1375
1376 if (g->p.show_details >= 3) {
1377 printf(" # process %2d global mem: %p, process mem: %p\n",
1378 process_nr, g->data, process_data);
1379 }
1380
1381 for (t = 0; t < g->p.nr_threads; t++) {
1382 task_nr = process_nr*g->p.nr_threads + t;
1383 td = g->threads + task_nr;
1384
1385 td->process_data = process_data;
1386 td->process_nr = process_nr;
1387 td->thread_nr = t;
1388 td->task_nr = task_nr;
1389 td->val = rand();
1390 td->curr_cpu = -1;
1391 td->process_lock = &process_lock;
1392
1393 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1394 BUG_ON(ret);
1395 }
1396
1397 for (t = 0; t < g->p.nr_threads; t++) {
1398 ret = pthread_join(pthreads[t], NULL);
1399 BUG_ON(ret);
1400 }
1401
1402 free_data(data: process_data, bytes: g->p.bytes_process);
1403 free(pthreads);
1404}
1405
1406static void print_summary(void)
1407{
1408 if (g->p.show_details < 0)
1409 return;
1410
1411 printf("\n ###\n");
1412 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1413 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1414 printf(" # %5dx %5ldMB global shared mem operations\n",
1415 g->p.nr_loops, g->p.bytes_global/1024/1024);
1416 printf(" # %5dx %5ldMB process shared mem operations\n",
1417 g->p.nr_loops, g->p.bytes_process/1024/1024);
1418 printf(" # %5dx %5ldMB thread local mem operations\n",
1419 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1420
1421 printf(" ###\n");
1422
1423 printf("\n ###\n"); fflush(stdout);
1424}
1425
1426static void init_thread_data(void)
1427{
1428 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1429 int t;
1430
1431 g->threads = zalloc_shared_data(bytes: size);
1432
1433 for (t = 0; t < g->p.nr_tasks; t++) {
1434 struct thread_data *td = g->threads + t;
1435 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1436 int cpu;
1437
1438 /* Allow all nodes by default: */
1439 td->bind_node = NUMA_NO_NODE;
1440
1441 /* Allow all CPUs by default: */
1442 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1443 BUG_ON(!td->bind_cpumask);
1444 CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1445 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1446 CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1447 }
1448}
1449
1450static void deinit_thread_data(void)
1451{
1452 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1453 int t;
1454
1455 /* Free the bind_cpumask allocated for thread_data */
1456 for (t = 0; t < g->p.nr_tasks; t++) {
1457 struct thread_data *td = g->threads + t;
1458 CPU_FREE(td->bind_cpumask);
1459 }
1460
1461 free_data(data: g->threads, bytes: size);
1462}
1463
1464static int init(void)
1465{
1466 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1467
1468 /* Copy over options: */
1469 g->p = p0;
1470
1471 g->p.nr_cpus = numa_num_configured_cpus();
1472
1473 g->p.nr_nodes = numa_max_node() + 1;
1474
1475 /* char array in count_process_nodes(): */
1476 BUG_ON(g->p.nr_nodes < 0);
1477
1478 if (quiet && !g->p.show_details)
1479 g->p.show_details = -1;
1480
1481 /* Some memory should be specified: */
1482 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1483 return -1;
1484
1485 if (g->p.mb_global_str) {
1486 g->p.mb_global = atof(g->p.mb_global_str);
1487 BUG_ON(g->p.mb_global < 0);
1488 }
1489
1490 if (g->p.mb_proc_str) {
1491 g->p.mb_proc = atof(g->p.mb_proc_str);
1492 BUG_ON(g->p.mb_proc < 0);
1493 }
1494
1495 if (g->p.mb_proc_locked_str) {
1496 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1497 BUG_ON(g->p.mb_proc_locked < 0);
1498 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1499 }
1500
1501 if (g->p.mb_thread_str) {
1502 g->p.mb_thread = atof(g->p.mb_thread_str);
1503 BUG_ON(g->p.mb_thread < 0);
1504 }
1505
1506 BUG_ON(g->p.nr_threads <= 0);
1507 BUG_ON(g->p.nr_proc <= 0);
1508
1509 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1510
1511 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1512 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1513 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1514 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1515
1516 g->data = setup_shared_data(g->p.bytes_global);
1517
1518 /* Startup serialization: */
1519 mutex_init_pshared(mtx: &g->start_work_mutex);
1520 cond_init_pshared(cnd: &g->start_work_cond);
1521 mutex_init_pshared(mtx: &g->startup_mutex);
1522 cond_init_pshared(cnd: &g->startup_cond);
1523 mutex_init_pshared(mtx: &g->stop_work_mutex);
1524
1525 init_thread_data();
1526
1527 tprintf("#\n");
1528 if (parse_setup_cpu_list() || parse_setup_node_list())
1529 return -1;
1530 tprintf("#\n");
1531
1532 print_summary();
1533
1534 return 0;
1535}
1536
1537static void deinit(void)
1538{
1539 free_data(data: g->data, bytes: g->p.bytes_global);
1540 g->data = NULL;
1541
1542 deinit_thread_data();
1543
1544 free_data(data: g, bytes: sizeof(*g));
1545 g = NULL;
1546}
1547
1548/*
1549 * Print a short or long result, depending on the verbosity setting:
1550 */
1551static void print_res(const char *name, double val,
1552 const char *txt_unit, const char *txt_short, const char *txt_long)
1553{
1554 if (!name)
1555 name = "main,";
1556
1557 if (!quiet)
1558 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1559 else
1560 printf(" %14.3f %s\n", val, txt_long);
1561}
1562
1563static int __bench_numa(const char *name)
1564{
1565 struct timeval start, stop, diff;
1566 u64 runtime_ns_min, runtime_ns_sum;
1567 pid_t *pids, pid, wpid;
1568 double delta_runtime;
1569 double runtime_avg;
1570 double runtime_sec_max;
1571 double runtime_sec_min;
1572 int wait_stat;
1573 double bytes;
1574 int i, t, p;
1575
1576 if (init())
1577 return -1;
1578
1579 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1580 pid = -1;
1581
1582 if (g->p.serialize_startup) {
1583 tprintf(" #\n");
1584 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1585 }
1586
1587 gettimeofday(&start, NULL);
1588
1589 for (i = 0; i < g->p.nr_proc; i++) {
1590 pid = fork();
1591 dprintf(" # process %2d: PID %d\n", i, pid);
1592
1593 BUG_ON(pid < 0);
1594 if (!pid) {
1595 /* Child process: */
1596 worker_process(process_nr: i);
1597
1598 exit(0);
1599 }
1600 pids[i] = pid;
1601
1602 }
1603
1604 if (g->p.serialize_startup) {
1605 bool threads_ready = false;
1606 double startup_sec;
1607
1608 /*
1609 * Wait for all the threads to start up. The last thread will
1610 * signal this process.
1611 */
1612 mutex_lock(&g->startup_mutex);
1613 while (g->nr_tasks_started != g->p.nr_tasks)
1614 cond_wait(cnd: &g->startup_cond, mtx: &g->startup_mutex);
1615
1616 mutex_unlock(mtx: &g->startup_mutex);
1617
1618 /* Wait for all threads to be at the start_work_cond. */
1619 while (!threads_ready) {
1620 mutex_lock(&g->start_work_mutex);
1621 threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1622 mutex_unlock(mtx: &g->start_work_mutex);
1623 if (!threads_ready)
1624 usleep(1);
1625 }
1626
1627 gettimeofday(&stop, NULL);
1628
1629 timersub(&stop, &start, &diff);
1630
1631 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1632 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1633 startup_sec /= NSEC_PER_SEC;
1634
1635 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1636 tprintf(" #\n");
1637
1638 start = stop;
1639 /* Start all threads running. */
1640 mutex_lock(&g->start_work_mutex);
1641 g->start_work = true;
1642 mutex_unlock(mtx: &g->start_work_mutex);
1643 cond_broadcast(cnd: &g->start_work_cond);
1644 } else {
1645 gettimeofday(&start, NULL);
1646 }
1647
1648 /* Parent process: */
1649
1650
1651 for (i = 0; i < g->p.nr_proc; i++) {
1652 wpid = waitpid(pids[i], &wait_stat, 0);
1653 BUG_ON(wpid < 0);
1654 BUG_ON(!WIFEXITED(wait_stat));
1655
1656 }
1657
1658 runtime_ns_sum = 0;
1659 runtime_ns_min = -1LL;
1660
1661 for (t = 0; t < g->p.nr_tasks; t++) {
1662 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1663
1664 runtime_ns_sum += thread_runtime_ns;
1665 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1666 }
1667
1668 gettimeofday(&stop, NULL);
1669 timersub(&stop, &start, &diff);
1670
1671 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1672
1673 tprintf("\n ###\n");
1674 tprintf("\n");
1675
1676 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1677 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1678 runtime_sec_max /= NSEC_PER_SEC;
1679
1680 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1681
1682 bytes = g->bytes_done;
1683 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1684
1685 if (g->p.measure_convergence) {
1686 print_res(name, val: runtime_sec_max,
1687 txt_unit: "secs,", txt_short: "NUMA-convergence-latency", txt_long: "secs latency to NUMA-converge");
1688 }
1689
1690 print_res(name, val: runtime_sec_max,
1691 txt_unit: "secs,", txt_short: "runtime-max/thread", txt_long: "secs slowest (max) thread-runtime");
1692
1693 print_res(name, val: runtime_sec_min,
1694 txt_unit: "secs,", txt_short: "runtime-min/thread", txt_long: "secs fastest (min) thread-runtime");
1695
1696 print_res(name, val: runtime_avg,
1697 txt_unit: "secs,", txt_short: "runtime-avg/thread", txt_long: "secs average thread-runtime");
1698
1699 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1700 print_res(name, val: delta_runtime / runtime_sec_max * 100.0,
1701 txt_unit: "%,", txt_short: "spread-runtime/thread", txt_long: "% difference between max/avg runtime");
1702
1703 print_res(name, val: bytes / g->p.nr_tasks / 1e9,
1704 txt_unit: "GB,", txt_short: "data/thread", txt_long: "GB data processed, per thread");
1705
1706 print_res(name, val: bytes / 1e9,
1707 txt_unit: "GB,", txt_short: "data-total", txt_long: "GB data processed, total");
1708
1709 print_res(name, val: runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1710 txt_unit: "nsecs,", txt_short: "runtime/byte/thread",txt_long: "nsecs/byte/thread runtime");
1711
1712 print_res(name, val: bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1713 txt_unit: "GB/sec,", txt_short: "thread-speed", txt_long: "GB/sec/thread speed");
1714
1715 print_res(name, val: bytes / runtime_sec_max / 1e9,
1716 txt_unit: "GB/sec,", txt_short: "total-speed", txt_long: "GB/sec total speed");
1717
1718 if (g->p.show_details >= 2) {
1719 char tname[14 + 2 * 11 + 1];
1720 struct thread_data *td;
1721 for (p = 0; p < g->p.nr_proc; p++) {
1722 for (t = 0; t < g->p.nr_threads; t++) {
1723 memset(tname, 0, sizeof(tname));
1724 td = g->threads + p*g->p.nr_threads + t;
1725 snprintf(buf: tname, size: sizeof(tname), fmt: "process%d:thread%d", p, t);
1726 print_res(name: tname, val: td->speed_gbs,
1727 txt_unit: "GB/sec", txt_short: "thread-speed", txt_long: "GB/sec/thread speed");
1728 print_res(name: tname, val: td->system_time_ns / NSEC_PER_SEC,
1729 txt_unit: "secs", txt_short: "thread-system-time", txt_long: "system CPU time/thread");
1730 print_res(name: tname, val: td->user_time_ns / NSEC_PER_SEC,
1731 txt_unit: "secs", txt_short: "thread-user-time", txt_long: "user CPU time/thread");
1732 }
1733 }
1734 }
1735
1736 free(pids);
1737
1738 deinit();
1739
1740 return 0;
1741}
1742
1743#define MAX_ARGS 50
1744
1745static int command_size(const char **argv)
1746{
1747 int size = 0;
1748
1749 while (*argv) {
1750 size++;
1751 argv++;
1752 }
1753
1754 BUG_ON(size >= MAX_ARGS);
1755
1756 return size;
1757}
1758
1759static void init_params(struct params *p, const char *name, int argc, const char **argv)
1760{
1761 int i;
1762
1763 printf("\n # Running %s \"perf bench numa", name);
1764
1765 for (i = 0; i < argc; i++)
1766 printf(" %s", argv[i]);
1767
1768 printf("\"\n");
1769
1770 memset(p, 0, sizeof(*p));
1771
1772 /* Initialize nonzero defaults: */
1773
1774 p->serialize_startup = 1;
1775 p->data_reads = true;
1776 p->data_writes = true;
1777 p->data_backwards = true;
1778 p->data_rand_walk = true;
1779 p->nr_loops = -1;
1780 p->init_random = true;
1781 p->mb_global_str = "1";
1782 p->nr_proc = 1;
1783 p->nr_threads = 1;
1784 p->nr_secs = 5;
1785 p->run_all = argc == 1;
1786}
1787
1788static int run_bench_numa(const char *name, const char **argv)
1789{
1790 int argc = command_size(argv);
1791
1792 init_params(p: &p0, name, argc, argv);
1793 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1794 if (argc)
1795 goto err;
1796
1797 if (__bench_numa(name))
1798 goto err;
1799
1800 return 0;
1801
1802err:
1803 return -1;
1804}
1805
1806#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1807#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1808
1809#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1810#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1811
1812#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1813#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1814
1815/*
1816 * The built-in test-suite executed by "perf bench numa -a".
1817 *
1818 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1819 */
1820static const char *tests[][MAX_ARGS] = {
1821 /* Basic single-stream NUMA bandwidth measurements: */
1822 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1823 "-C" , "0", "-M", "0", OPT_BW_RAM },
1824 { "RAM-bw-local-NOTHP,",
1825 "mem", "-p", "1", "-t", "1", "-P", "1024",
1826 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1827 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1828 "-C" , "0", "-M", "1", OPT_BW_RAM },
1829
1830 /* 2-stream NUMA bandwidth measurements: */
1831 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1832 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1833 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1834 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1835
1836 /* Cross-stream NUMA bandwidth measurement: */
1837 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1838 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1839
1840 /* Convergence latency measurements: */
1841 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1842 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1843 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1844 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1845 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1846 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1847 { " 4x4-convergence-NOTHP,",
1848 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1849 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1850 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1851 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1852 { " 8x4-convergence-NOTHP,",
1853 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1854 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1855 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1856 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1857 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1858 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1859
1860 /* Various NUMA process/thread layout bandwidth measurements: */
1861 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1862 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1863 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1864 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1865 { " 8x1-bw-process-NOTHP,",
1866 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1867 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1868
1869 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1870 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1871 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1872 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1873
1874 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1875 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1876 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1877 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1878 { " 4x8-bw-process-NOTHP,",
1879 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1880 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1881 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1882
1883 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1884 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1885
1886 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1887 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1888 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1889 { "numa01-bw-thread-NOTHP,",
1890 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1891};
1892
1893static int bench_all(void)
1894{
1895 int nr = ARRAY_SIZE(tests);
1896 int ret;
1897 int i;
1898
1899 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1900 BUG_ON(ret < 0);
1901
1902 for (i = 0; i < nr; i++) {
1903 run_bench_numa(name: tests[i][0], argv: tests[i] + 1);
1904 }
1905
1906 printf("\n");
1907
1908 return 0;
1909}
1910
1911int bench_numa(int argc, const char **argv)
1912{
1913 init_params(p: &p0, name: "main,", argc, argv);
1914 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1915 if (argc)
1916 goto err;
1917
1918 if (p0.run_all)
1919 return bench_all();
1920
1921 if (__bench_numa(NULL))
1922 goto err;
1923
1924 return 0;
1925
1926err:
1927 usage_with_options(numa_usage, options);
1928 return -1;
1929}
1930

source code of linux/tools/perf/bench/numa.c