1//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the MachineInstr class, which is the
10// basic representation for all target dependent machine instructions used by
11// the back end.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_MACHINEINSTR_H
16#define LLVM_CODEGEN_MACHINEINSTR_H
17
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/PointerSumType.h"
20#include "llvm/ADT/ilist.h"
21#include "llvm/ADT/ilist_node.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Analysis/MemoryLocation.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineOperand.h"
26#include "llvm/CodeGen/TargetOpcodes.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/IR/InlineAsm.h"
29#include "llvm/MC/MCInstrDesc.h"
30#include "llvm/MC/MCSymbol.h"
31#include "llvm/Support/ArrayRecycler.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/TrailingObjects.h"
34#include <algorithm>
35#include <cassert>
36#include <cstdint>
37#include <utility>
38
39namespace llvm {
40
41class DILabel;
42class Instruction;
43class MDNode;
44class AAResults;
45template <typename T> class ArrayRef;
46class DIExpression;
47class DILocalVariable;
48class MachineBasicBlock;
49class MachineFunction;
50class MachineRegisterInfo;
51class ModuleSlotTracker;
52class raw_ostream;
53template <typename T> class SmallVectorImpl;
54class SmallBitVector;
55class StringRef;
56class TargetInstrInfo;
57class TargetRegisterClass;
58class TargetRegisterInfo;
59
60//===----------------------------------------------------------------------===//
61/// Representation of each machine instruction.
62///
63/// This class isn't a POD type, but it must have a trivial destructor. When a
64/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
65/// without having their destructor called.
66///
67class MachineInstr
68 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
69 ilist_sentinel_tracking<true>> {
70public:
71 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
72
73 /// Flags to specify different kinds of comments to output in
74 /// assembly code. These flags carry semantic information not
75 /// otherwise easily derivable from the IR text.
76 ///
77 enum CommentFlag {
78 ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
79 NoSchedComment = 0x2,
80 TAsmComments = 0x4 // Target Asm comments should start from this value.
81 };
82
83 enum MIFlag {
84 NoFlags = 0,
85 FrameSetup = 1 << 0, // Instruction is used as a part of
86 // function frame setup code.
87 FrameDestroy = 1 << 1, // Instruction is used as a part of
88 // function frame destruction code.
89 BundledPred = 1 << 2, // Instruction has bundled predecessors.
90 BundledSucc = 1 << 3, // Instruction has bundled successors.
91 FmNoNans = 1 << 4, // Instruction does not support Fast
92 // math nan values.
93 FmNoInfs = 1 << 5, // Instruction does not support Fast
94 // math infinity values.
95 FmNsz = 1 << 6, // Instruction is not required to retain
96 // signed zero values.
97 FmArcp = 1 << 7, // Instruction supports Fast math
98 // reciprocal approximations.
99 FmContract = 1 << 8, // Instruction supports Fast math
100 // contraction operations like fma.
101 FmAfn = 1 << 9, // Instruction may map to Fast math
102 // intrinsic approximation.
103 FmReassoc = 1 << 10, // Instruction supports Fast math
104 // reassociation of operand order.
105 NoUWrap = 1 << 11, // Instruction supports binary operator
106 // no unsigned wrap.
107 NoSWrap = 1 << 12, // Instruction supports binary operator
108 // no signed wrap.
109 IsExact = 1 << 13, // Instruction supports division is
110 // known to be exact.
111 NoFPExcept = 1 << 14, // Instruction does not raise
112 // floatint-point exceptions.
113 NoMerge = 1 << 15, // Passes that drop source location info
114 // (e.g. branch folding) should skip
115 // this instruction.
116 Unpredictable = 1 << 16, // Instruction with unpredictable condition.
117 NoConvergent = 1 << 17, // Call does not require convergence guarantees.
118 NonNeg = 1 << 18, // The operand is non-negative.
119 Disjoint = 1 << 19, // Each bit is zero in at least one of the inputs.
120 };
121
122private:
123 const MCInstrDesc *MCID; // Instruction descriptor.
124 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
125
126 // Operands are allocated by an ArrayRecycler.
127 MachineOperand *Operands = nullptr; // Pointer to the first operand.
128
129#define LLVM_MI_NUMOPERANDS_BITS 24
130#define LLVM_MI_FLAGS_BITS 24
131#define LLVM_MI_ASMPRINTERFLAGS_BITS 8
132
133 /// Number of operands on instruction.
134 uint32_t NumOperands : LLVM_MI_NUMOPERANDS_BITS;
135
136 // OperandCapacity has uint8_t size, so it should be next to NumOperands
137 // to properly pack.
138 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
139 OperandCapacity CapOperands; // Capacity of the Operands array.
140
141 /// Various bits of additional information about the machine instruction.
142 uint32_t Flags : LLVM_MI_FLAGS_BITS;
143
144 /// Various bits of information used by the AsmPrinter to emit helpful
145 /// comments. This is *not* semantic information. Do not use this for
146 /// anything other than to convey comment information to AsmPrinter.
147 uint8_t AsmPrinterFlags : LLVM_MI_ASMPRINTERFLAGS_BITS;
148
149 /// Internal implementation detail class that provides out-of-line storage for
150 /// extra info used by the machine instruction when this info cannot be stored
151 /// in-line within the instruction itself.
152 ///
153 /// This has to be defined eagerly due to the implementation constraints of
154 /// `PointerSumType` where it is used.
155 class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *,
156 MCSymbol *, MDNode *, uint32_t> {
157 public:
158 static ExtraInfo *create(BumpPtrAllocator &Allocator,
159 ArrayRef<MachineMemOperand *> MMOs,
160 MCSymbol *PreInstrSymbol = nullptr,
161 MCSymbol *PostInstrSymbol = nullptr,
162 MDNode *HeapAllocMarker = nullptr,
163 MDNode *PCSections = nullptr, uint32_t CFIType = 0,
164 MDNode *MMRAs = nullptr) {
165 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
166 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
167 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
168 bool HasMMRAs = MMRAs != nullptr;
169 bool HasCFIType = CFIType != 0;
170 bool HasPCSections = PCSections != nullptr;
171 auto *Result = new (Allocator.Allocate(
172 Size: totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>(
173 Counts: MMOs.size(), Counts: HasPreInstrSymbol + HasPostInstrSymbol,
174 Counts: HasHeapAllocMarker + HasPCSections + HasMMRAs, Counts: HasCFIType),
175 Alignment: alignof(ExtraInfo)))
176 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
177 HasHeapAllocMarker, HasPCSections, HasCFIType, HasMMRAs);
178
179 // Copy the actual data into the trailing objects.
180 std::copy(first: MMOs.begin(), last: MMOs.end(),
181 result: Result->getTrailingObjects<MachineMemOperand *>());
182
183 unsigned MDNodeIdx = 0;
184
185 if (HasPreInstrSymbol)
186 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
187 if (HasPostInstrSymbol)
188 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
189 PostInstrSymbol;
190 if (HasHeapAllocMarker)
191 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = HeapAllocMarker;
192 if (HasPCSections)
193 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = PCSections;
194 if (HasCFIType)
195 Result->getTrailingObjects<uint32_t>()[0] = CFIType;
196 if (HasMMRAs)
197 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = MMRAs;
198
199 return Result;
200 }
201
202 ArrayRef<MachineMemOperand *> getMMOs() const {
203 return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
204 }
205
206 MCSymbol *getPreInstrSymbol() const {
207 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
208 }
209
210 MCSymbol *getPostInstrSymbol() const {
211 return HasPostInstrSymbol
212 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
213 : nullptr;
214 }
215
216 MDNode *getHeapAllocMarker() const {
217 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
218 }
219
220 MDNode *getPCSections() const {
221 return HasPCSections
222 ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker]
223 : nullptr;
224 }
225
226 uint32_t getCFIType() const {
227 return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0;
228 }
229
230 MDNode *getMMRAMetadata() const {
231 return HasMMRAs ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker +
232 HasPCSections]
233 : nullptr;
234 }
235
236 private:
237 friend TrailingObjects;
238
239 // Description of the extra info, used to interpret the actual optional
240 // data appended.
241 //
242 // Note that this is not terribly space optimized. This leaves a great deal
243 // of flexibility to fit more in here later.
244 const int NumMMOs;
245 const bool HasPreInstrSymbol;
246 const bool HasPostInstrSymbol;
247 const bool HasHeapAllocMarker;
248 const bool HasPCSections;
249 const bool HasCFIType;
250 const bool HasMMRAs;
251
252 // Implement the `TrailingObjects` internal API.
253 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
254 return NumMMOs;
255 }
256 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
257 return HasPreInstrSymbol + HasPostInstrSymbol;
258 }
259 size_t numTrailingObjects(OverloadToken<MDNode *>) const {
260 return HasHeapAllocMarker + HasPCSections;
261 }
262 size_t numTrailingObjects(OverloadToken<uint32_t>) const {
263 return HasCFIType;
264 }
265
266 // Just a boring constructor to allow us to initialize the sizes. Always use
267 // the `create` routine above.
268 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
269 bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType,
270 bool HasMMRAs)
271 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
272 HasPostInstrSymbol(HasPostInstrSymbol),
273 HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections),
274 HasCFIType(HasCFIType), HasMMRAs(HasMMRAs) {}
275 };
276
277 /// Enumeration of the kinds of inline extra info available. It is important
278 /// that the `MachineMemOperand` inline kind has a tag value of zero to make
279 /// it accessible as an `ArrayRef`.
280 enum ExtraInfoInlineKinds {
281 EIIK_MMO = 0,
282 EIIK_PreInstrSymbol,
283 EIIK_PostInstrSymbol,
284 EIIK_OutOfLine
285 };
286
287 // We store extra information about the instruction here. The common case is
288 // expected to be nothing or a single pointer (typically a MMO or a symbol).
289 // We work to optimize this common case by storing it inline here rather than
290 // requiring a separate allocation, but we fall back to an allocation when
291 // multiple pointers are needed.
292 PointerSumType<ExtraInfoInlineKinds,
293 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
294 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
295 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
296 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
297 Info;
298
299 DebugLoc DbgLoc; // Source line information.
300
301 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
302 /// defined by this instruction.
303 unsigned DebugInstrNum;
304
305 // Intrusive list support
306 friend struct ilist_traits<MachineInstr>;
307 friend struct ilist_callback_traits<MachineBasicBlock>;
308 void setParent(MachineBasicBlock *P) { Parent = P; }
309
310 /// This constructor creates a copy of the given
311 /// MachineInstr in the given MachineFunction.
312 MachineInstr(MachineFunction &, const MachineInstr &);
313
314 /// This constructor create a MachineInstr and add the implicit operands.
315 /// It reserves space for number of operands specified by
316 /// MCInstrDesc. An explicit DebugLoc is supplied.
317 MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL,
318 bool NoImp = false);
319
320 // MachineInstrs are pool-allocated and owned by MachineFunction.
321 friend class MachineFunction;
322
323 void
324 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
325 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
326
327 static bool opIsRegDef(const MachineOperand &Op) {
328 return Op.isReg() && Op.isDef();
329 }
330
331 static bool opIsRegUse(const MachineOperand &Op) {
332 return Op.isReg() && Op.isUse();
333 }
334
335public:
336 MachineInstr(const MachineInstr &) = delete;
337 MachineInstr &operator=(const MachineInstr &) = delete;
338 // Use MachineFunction::DeleteMachineInstr() instead.
339 ~MachineInstr() = delete;
340
341 const MachineBasicBlock* getParent() const { return Parent; }
342 MachineBasicBlock* getParent() { return Parent; }
343
344 /// Move the instruction before \p MovePos.
345 void moveBefore(MachineInstr *MovePos);
346
347 /// Return the function that contains the basic block that this instruction
348 /// belongs to.
349 ///
350 /// Note: this is undefined behaviour if the instruction does not have a
351 /// parent.
352 const MachineFunction *getMF() const;
353 MachineFunction *getMF() {
354 return const_cast<MachineFunction *>(
355 static_cast<const MachineInstr *>(this)->getMF());
356 }
357
358 /// Return the asm printer flags bitvector.
359 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
360
361 /// Clear the AsmPrinter bitvector.
362 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
363
364 /// Return whether an AsmPrinter flag is set.
365 bool getAsmPrinterFlag(CommentFlag Flag) const {
366 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) &&
367 "Flag is out of range for the AsmPrinterFlags field");
368 return AsmPrinterFlags & Flag;
369 }
370
371 /// Set a flag for the AsmPrinter.
372 void setAsmPrinterFlag(uint8_t Flag) {
373 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) &&
374 "Flag is out of range for the AsmPrinterFlags field");
375 AsmPrinterFlags |= Flag;
376 }
377
378 /// Clear specific AsmPrinter flags.
379 void clearAsmPrinterFlag(CommentFlag Flag) {
380 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) &&
381 "Flag is out of range for the AsmPrinterFlags field");
382 AsmPrinterFlags &= ~Flag;
383 }
384
385 /// Return the MI flags bitvector.
386 uint32_t getFlags() const {
387 return Flags;
388 }
389
390 /// Return whether an MI flag is set.
391 bool getFlag(MIFlag Flag) const {
392 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
393 "Flag is out of range for the Flags field");
394 return Flags & Flag;
395 }
396
397 /// Set a MI flag.
398 void setFlag(MIFlag Flag) {
399 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
400 "Flag is out of range for the Flags field");
401 Flags |= (uint32_t)Flag;
402 }
403
404 void setFlags(unsigned flags) {
405 assert(isUInt<LLVM_MI_FLAGS_BITS>(flags) &&
406 "flags to be set are out of range for the Flags field");
407 // Filter out the automatically maintained flags.
408 unsigned Mask = BundledPred | BundledSucc;
409 Flags = (Flags & Mask) | (flags & ~Mask);
410 }
411
412 /// clearFlag - Clear a MI flag.
413 void clearFlag(MIFlag Flag) {
414 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
415 "Flag to clear is out of range for the Flags field");
416 Flags &= ~((uint32_t)Flag);
417 }
418
419 /// Return true if MI is in a bundle (but not the first MI in a bundle).
420 ///
421 /// A bundle looks like this before it's finalized:
422 /// ----------------
423 /// | MI |
424 /// ----------------
425 /// |
426 /// ----------------
427 /// | MI * |
428 /// ----------------
429 /// |
430 /// ----------------
431 /// | MI * |
432 /// ----------------
433 /// In this case, the first MI starts a bundle but is not inside a bundle, the
434 /// next 2 MIs are considered "inside" the bundle.
435 ///
436 /// After a bundle is finalized, it looks like this:
437 /// ----------------
438 /// | Bundle |
439 /// ----------------
440 /// |
441 /// ----------------
442 /// | MI * |
443 /// ----------------
444 /// |
445 /// ----------------
446 /// | MI * |
447 /// ----------------
448 /// |
449 /// ----------------
450 /// | MI * |
451 /// ----------------
452 /// The first instruction has the special opcode "BUNDLE". It's not "inside"
453 /// a bundle, but the next three MIs are.
454 bool isInsideBundle() const {
455 return getFlag(Flag: BundledPred);
456 }
457
458 /// Return true if this instruction part of a bundle. This is true
459 /// if either itself or its following instruction is marked "InsideBundle".
460 bool isBundled() const {
461 return isBundledWithPred() || isBundledWithSucc();
462 }
463
464 /// Return true if this instruction is part of a bundle, and it is not the
465 /// first instruction in the bundle.
466 bool isBundledWithPred() const { return getFlag(Flag: BundledPred); }
467
468 /// Return true if this instruction is part of a bundle, and it is not the
469 /// last instruction in the bundle.
470 bool isBundledWithSucc() const { return getFlag(Flag: BundledSucc); }
471
472 /// Bundle this instruction with its predecessor. This can be an unbundled
473 /// instruction, or it can be the first instruction in a bundle.
474 void bundleWithPred();
475
476 /// Bundle this instruction with its successor. This can be an unbundled
477 /// instruction, or it can be the last instruction in a bundle.
478 void bundleWithSucc();
479
480 /// Break bundle above this instruction.
481 void unbundleFromPred();
482
483 /// Break bundle below this instruction.
484 void unbundleFromSucc();
485
486 /// Returns the debug location id of this MachineInstr.
487 const DebugLoc &getDebugLoc() const { return DbgLoc; }
488
489 /// Return the operand containing the offset to be used if this DBG_VALUE
490 /// instruction is indirect; will be an invalid register if this value is
491 /// not indirect, and an immediate with value 0 otherwise.
492 const MachineOperand &getDebugOffset() const {
493 assert(isNonListDebugValue() && "not a DBG_VALUE");
494 return getOperand(i: 1);
495 }
496 MachineOperand &getDebugOffset() {
497 assert(isNonListDebugValue() && "not a DBG_VALUE");
498 return getOperand(i: 1);
499 }
500
501 /// Return the operand for the debug variable referenced by
502 /// this DBG_VALUE instruction.
503 const MachineOperand &getDebugVariableOp() const;
504 MachineOperand &getDebugVariableOp();
505
506 /// Return the debug variable referenced by
507 /// this DBG_VALUE instruction.
508 const DILocalVariable *getDebugVariable() const;
509
510 /// Return the operand for the complex address expression referenced by
511 /// this DBG_VALUE instruction.
512 const MachineOperand &getDebugExpressionOp() const;
513 MachineOperand &getDebugExpressionOp();
514
515 /// Return the complex address expression referenced by
516 /// this DBG_VALUE instruction.
517 const DIExpression *getDebugExpression() const;
518
519 /// Return the debug label referenced by
520 /// this DBG_LABEL instruction.
521 const DILabel *getDebugLabel() const;
522
523 /// Fetch the instruction number of this MachineInstr. If it does not have
524 /// one already, a new and unique number will be assigned.
525 unsigned getDebugInstrNum();
526
527 /// Fetch instruction number of this MachineInstr -- but before it's inserted
528 /// into \p MF. Needed for transformations that create an instruction but
529 /// don't immediately insert them.
530 unsigned getDebugInstrNum(MachineFunction &MF);
531
532 /// Examine the instruction number of this MachineInstr. May be zero if
533 /// it hasn't been assigned a number yet.
534 unsigned peekDebugInstrNum() const { return DebugInstrNum; }
535
536 /// Set instruction number of this MachineInstr. Avoid using unless you're
537 /// deserializing this information.
538 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
539
540 /// Drop any variable location debugging information associated with this
541 /// instruction. Use when an instruction is modified in such a way that it no
542 /// longer defines the value it used to. Variable locations using that value
543 /// will be dropped.
544 void dropDebugNumber() { DebugInstrNum = 0; }
545
546 /// Emit an error referring to the source location of this instruction.
547 /// This should only be used for inline assembly that is somehow
548 /// impossible to compile. Other errors should have been handled much
549 /// earlier.
550 ///
551 /// If this method returns, the caller should try to recover from the error.
552 void emitError(StringRef Msg) const;
553
554 /// Returns the target instruction descriptor of this MachineInstr.
555 const MCInstrDesc &getDesc() const { return *MCID; }
556
557 /// Returns the opcode of this MachineInstr.
558 unsigned getOpcode() const { return MCID->Opcode; }
559
560 /// Retuns the total number of operands.
561 unsigned getNumOperands() const { return NumOperands; }
562
563 /// Returns the total number of operands which are debug locations.
564 unsigned getNumDebugOperands() const {
565 return std::distance(first: debug_operands().begin(), last: debug_operands().end());
566 }
567
568 const MachineOperand& getOperand(unsigned i) const {
569 assert(i < getNumOperands() && "getOperand() out of range!");
570 return Operands[i];
571 }
572 MachineOperand& getOperand(unsigned i) {
573 assert(i < getNumOperands() && "getOperand() out of range!");
574 return Operands[i];
575 }
576
577 MachineOperand &getDebugOperand(unsigned Index) {
578 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
579 return *(debug_operands().begin() + Index);
580 }
581 const MachineOperand &getDebugOperand(unsigned Index) const {
582 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
583 return *(debug_operands().begin() + Index);
584 }
585
586 /// Returns whether this debug value has at least one debug operand with the
587 /// register \p Reg.
588 bool hasDebugOperandForReg(Register Reg) const {
589 return any_of(Range: debug_operands(), P: [Reg](const MachineOperand &Op) {
590 return Op.isReg() && Op.getReg() == Reg;
591 });
592 }
593
594 /// Returns a range of all of the operands that correspond to a debug use of
595 /// \p Reg.
596 template <typename Operand, typename Instruction>
597 static iterator_range<
598 filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
599 getDebugOperandsForReg(Instruction *MI, Register Reg) {
600 std::function<bool(Operand & Op)> OpUsesReg(
601 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
602 return make_filter_range(MI->debug_operands(), OpUsesReg);
603 }
604 iterator_range<filter_iterator<const MachineOperand *,
605 std::function<bool(const MachineOperand &Op)>>>
606 getDebugOperandsForReg(Register Reg) const {
607 return MachineInstr::getDebugOperandsForReg<const MachineOperand,
608 const MachineInstr>(MI: this, Reg);
609 }
610 iterator_range<filter_iterator<MachineOperand *,
611 std::function<bool(MachineOperand &Op)>>>
612 getDebugOperandsForReg(Register Reg) {
613 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
614 MI: this, Reg);
615 }
616
617 bool isDebugOperand(const MachineOperand *Op) const {
618 return Op >= adl_begin(range: debug_operands()) && Op <= adl_end(range: debug_operands());
619 }
620
621 unsigned getDebugOperandIndex(const MachineOperand *Op) const {
622 assert(isDebugOperand(Op) && "Expected a debug operand.");
623 return std::distance(first: adl_begin(range: debug_operands()), last: Op);
624 }
625
626 /// Returns the total number of definitions.
627 unsigned getNumDefs() const {
628 return getNumExplicitDefs() + MCID->implicit_defs().size();
629 }
630
631 /// Returns true if the instruction has implicit definition.
632 bool hasImplicitDef() const {
633 for (const MachineOperand &MO : implicit_operands())
634 if (MO.isDef() && MO.isImplicit())
635 return true;
636 return false;
637 }
638
639 /// Returns the implicit operands number.
640 unsigned getNumImplicitOperands() const {
641 return getNumOperands() - getNumExplicitOperands();
642 }
643
644 /// Return true if operand \p OpIdx is a subregister index.
645 bool isOperandSubregIdx(unsigned OpIdx) const {
646 assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type.");
647 if (isExtractSubreg() && OpIdx == 2)
648 return true;
649 if (isInsertSubreg() && OpIdx == 3)
650 return true;
651 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
652 return true;
653 if (isSubregToReg() && OpIdx == 3)
654 return true;
655 return false;
656 }
657
658 /// Returns the number of non-implicit operands.
659 unsigned getNumExplicitOperands() const;
660
661 /// Returns the number of non-implicit definitions.
662 unsigned getNumExplicitDefs() const;
663
664 /// iterator/begin/end - Iterate over all operands of a machine instruction.
665 using mop_iterator = MachineOperand *;
666 using const_mop_iterator = const MachineOperand *;
667
668 mop_iterator operands_begin() { return Operands; }
669 mop_iterator operands_end() { return Operands + NumOperands; }
670
671 const_mop_iterator operands_begin() const { return Operands; }
672 const_mop_iterator operands_end() const { return Operands + NumOperands; }
673
674 iterator_range<mop_iterator> operands() {
675 return make_range(x: operands_begin(), y: operands_end());
676 }
677 iterator_range<const_mop_iterator> operands() const {
678 return make_range(x: operands_begin(), y: operands_end());
679 }
680 iterator_range<mop_iterator> explicit_operands() {
681 return make_range(x: operands_begin(),
682 y: operands_begin() + getNumExplicitOperands());
683 }
684 iterator_range<const_mop_iterator> explicit_operands() const {
685 return make_range(x: operands_begin(),
686 y: operands_begin() + getNumExplicitOperands());
687 }
688 iterator_range<mop_iterator> implicit_operands() {
689 return make_range(x: explicit_operands().end(), y: operands_end());
690 }
691 iterator_range<const_mop_iterator> implicit_operands() const {
692 return make_range(x: explicit_operands().end(), y: operands_end());
693 }
694 /// Returns a range over all operands that are used to determine the variable
695 /// location for this DBG_VALUE instruction.
696 iterator_range<mop_iterator> debug_operands() {
697 assert((isDebugValueLike()) && "Must be a debug value instruction.");
698 return isNonListDebugValue()
699 ? make_range(x: operands_begin(), y: operands_begin() + 1)
700 : make_range(x: operands_begin() + 2, y: operands_end());
701 }
702 /// \copydoc debug_operands()
703 iterator_range<const_mop_iterator> debug_operands() const {
704 assert((isDebugValueLike()) && "Must be a debug value instruction.");
705 return isNonListDebugValue()
706 ? make_range(x: operands_begin(), y: operands_begin() + 1)
707 : make_range(x: operands_begin() + 2, y: operands_end());
708 }
709 /// Returns a range over all explicit operands that are register definitions.
710 /// Implicit definition are not included!
711 iterator_range<mop_iterator> defs() {
712 return make_range(x: operands_begin(),
713 y: operands_begin() + getNumExplicitDefs());
714 }
715 /// \copydoc defs()
716 iterator_range<const_mop_iterator> defs() const {
717 return make_range(x: operands_begin(),
718 y: operands_begin() + getNumExplicitDefs());
719 }
720 /// Returns a range that includes all operands that are register uses.
721 /// This may include unrelated operands which are not register uses.
722 iterator_range<mop_iterator> uses() {
723 return make_range(x: operands_begin() + getNumExplicitDefs(), y: operands_end());
724 }
725 /// \copydoc uses()
726 iterator_range<const_mop_iterator> uses() const {
727 return make_range(x: operands_begin() + getNumExplicitDefs(), y: operands_end());
728 }
729 iterator_range<mop_iterator> explicit_uses() {
730 return make_range(x: operands_begin() + getNumExplicitDefs(),
731 y: operands_begin() + getNumExplicitOperands());
732 }
733 iterator_range<const_mop_iterator> explicit_uses() const {
734 return make_range(x: operands_begin() + getNumExplicitDefs(),
735 y: operands_begin() + getNumExplicitOperands());
736 }
737
738 using filtered_mop_iterator =
739 filter_iterator<mop_iterator, bool (*)(const MachineOperand &)>;
740 using filtered_const_mop_iterator =
741 filter_iterator<const_mop_iterator, bool (*)(const MachineOperand &)>;
742
743 /// Returns an iterator range over all operands that are (explicit or
744 /// implicit) register defs.
745 iterator_range<filtered_mop_iterator> all_defs() {
746 return make_filter_range(Range: operands(), Pred: opIsRegDef);
747 }
748 /// \copydoc all_defs()
749 iterator_range<filtered_const_mop_iterator> all_defs() const {
750 return make_filter_range(Range: operands(), Pred: opIsRegDef);
751 }
752
753 /// Returns an iterator range over all operands that are (explicit or
754 /// implicit) register uses.
755 iterator_range<filtered_mop_iterator> all_uses() {
756 return make_filter_range(Range: uses(), Pred: opIsRegUse);
757 }
758 /// \copydoc all_uses()
759 iterator_range<filtered_const_mop_iterator> all_uses() const {
760 return make_filter_range(Range: uses(), Pred: opIsRegUse);
761 }
762
763 /// Returns the number of the operand iterator \p I points to.
764 unsigned getOperandNo(const_mop_iterator I) const {
765 return I - operands_begin();
766 }
767
768 /// Access to memory operands of the instruction. If there are none, that does
769 /// not imply anything about whether the function accesses memory. Instead,
770 /// the caller must behave conservatively.
771 ArrayRef<MachineMemOperand *> memoperands() const {
772 if (!Info)
773 return {};
774
775 if (Info.is<EIIK_MMO>())
776 return ArrayRef(Info.getAddrOfZeroTagPointer(), 1);
777
778 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
779 return EI->getMMOs();
780
781 return {};
782 }
783
784 /// Access to memory operands of the instruction.
785 ///
786 /// If `memoperands_begin() == memoperands_end()`, that does not imply
787 /// anything about whether the function accesses memory. Instead, the caller
788 /// must behave conservatively.
789 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
790
791 /// Access to memory operands of the instruction.
792 ///
793 /// If `memoperands_begin() == memoperands_end()`, that does not imply
794 /// anything about whether the function accesses memory. Instead, the caller
795 /// must behave conservatively.
796 mmo_iterator memoperands_end() const { return memoperands().end(); }
797
798 /// Return true if we don't have any memory operands which described the
799 /// memory access done by this instruction. If this is true, calling code
800 /// must be conservative.
801 bool memoperands_empty() const { return memoperands().empty(); }
802
803 /// Return true if this instruction has exactly one MachineMemOperand.
804 bool hasOneMemOperand() const { return memoperands().size() == 1; }
805
806 /// Return the number of memory operands.
807 unsigned getNumMemOperands() const { return memoperands().size(); }
808
809 /// Helper to extract a pre-instruction symbol if one has been added.
810 MCSymbol *getPreInstrSymbol() const {
811 if (!Info)
812 return nullptr;
813 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
814 return S;
815 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
816 return EI->getPreInstrSymbol();
817
818 return nullptr;
819 }
820
821 /// Helper to extract a post-instruction symbol if one has been added.
822 MCSymbol *getPostInstrSymbol() const {
823 if (!Info)
824 return nullptr;
825 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
826 return S;
827 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
828 return EI->getPostInstrSymbol();
829
830 return nullptr;
831 }
832
833 /// Helper to extract a heap alloc marker if one has been added.
834 MDNode *getHeapAllocMarker() const {
835 if (!Info)
836 return nullptr;
837 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
838 return EI->getHeapAllocMarker();
839
840 return nullptr;
841 }
842
843 /// Helper to extract PCSections metadata target sections.
844 MDNode *getPCSections() const {
845 if (!Info)
846 return nullptr;
847 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
848 return EI->getPCSections();
849
850 return nullptr;
851 }
852
853 /// Helper to extract mmra.op metadata.
854 MDNode *getMMRAMetadata() const {
855 if (!Info)
856 return nullptr;
857 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
858 return EI->getMMRAMetadata();
859 return nullptr;
860 }
861
862 /// Helper to extract a CFI type hash if one has been added.
863 uint32_t getCFIType() const {
864 if (!Info)
865 return 0;
866 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
867 return EI->getCFIType();
868
869 return 0;
870 }
871
872 /// API for querying MachineInstr properties. They are the same as MCInstrDesc
873 /// queries but they are bundle aware.
874
875 enum QueryType {
876 IgnoreBundle, // Ignore bundles
877 AnyInBundle, // Return true if any instruction in bundle has property
878 AllInBundle // Return true if all instructions in bundle have property
879 };
880
881 /// Return true if the instruction (or in the case of a bundle,
882 /// the instructions inside the bundle) has the specified property.
883 /// The first argument is the property being queried.
884 /// The second argument indicates whether the query should look inside
885 /// instruction bundles.
886 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
887 assert(MCFlag < 64 &&
888 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
889 // Inline the fast path for unbundled or bundle-internal instructions.
890 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
891 return getDesc().getFlags() & (1ULL << MCFlag);
892
893 // If this is the first instruction in a bundle, take the slow path.
894 return hasPropertyInBundle(Mask: 1ULL << MCFlag, Type);
895 }
896
897 /// Return true if this is an instruction that should go through the usual
898 /// legalization steps.
899 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
900 return hasProperty(MCFlag: MCID::PreISelOpcode, Type);
901 }
902
903 /// Return true if this instruction can have a variable number of operands.
904 /// In this case, the variable operands will be after the normal
905 /// operands but before the implicit definitions and uses (if any are
906 /// present).
907 bool isVariadic(QueryType Type = IgnoreBundle) const {
908 return hasProperty(MCFlag: MCID::Variadic, Type);
909 }
910
911 /// Set if this instruction has an optional definition, e.g.
912 /// ARM instructions which can set condition code if 's' bit is set.
913 bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
914 return hasProperty(MCFlag: MCID::HasOptionalDef, Type);
915 }
916
917 /// Return true if this is a pseudo instruction that doesn't
918 /// correspond to a real machine instruction.
919 bool isPseudo(QueryType Type = IgnoreBundle) const {
920 return hasProperty(MCFlag: MCID::Pseudo, Type);
921 }
922
923 /// Return true if this instruction doesn't produce any output in the form of
924 /// executable instructions.
925 bool isMetaInstruction(QueryType Type = IgnoreBundle) const {
926 return hasProperty(MCFlag: MCID::Meta, Type);
927 }
928
929 bool isReturn(QueryType Type = AnyInBundle) const {
930 return hasProperty(MCFlag: MCID::Return, Type);
931 }
932
933 /// Return true if this is an instruction that marks the end of an EH scope,
934 /// i.e., a catchpad or a cleanuppad instruction.
935 bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
936 return hasProperty(MCFlag: MCID::EHScopeReturn, Type);
937 }
938
939 bool isCall(QueryType Type = AnyInBundle) const {
940 return hasProperty(MCFlag: MCID::Call, Type);
941 }
942
943 /// Return true if this is a call instruction that may have an associated
944 /// call site entry in the debug info.
945 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
946 /// Return true if copying, moving, or erasing this instruction requires
947 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
948 /// \ref eraseCallSiteInfo).
949 bool shouldUpdateCallSiteInfo() const;
950
951 /// Returns true if the specified instruction stops control flow
952 /// from executing the instruction immediately following it. Examples include
953 /// unconditional branches and return instructions.
954 bool isBarrier(QueryType Type = AnyInBundle) const {
955 return hasProperty(MCFlag: MCID::Barrier, Type);
956 }
957
958 /// Returns true if this instruction part of the terminator for a basic block.
959 /// Typically this is things like return and branch instructions.
960 ///
961 /// Various passes use this to insert code into the bottom of a basic block,
962 /// but before control flow occurs.
963 bool isTerminator(QueryType Type = AnyInBundle) const {
964 return hasProperty(MCFlag: MCID::Terminator, Type);
965 }
966
967 /// Returns true if this is a conditional, unconditional, or indirect branch.
968 /// Predicates below can be used to discriminate between
969 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
970 /// get more information.
971 bool isBranch(QueryType Type = AnyInBundle) const {
972 return hasProperty(MCFlag: MCID::Branch, Type);
973 }
974
975 /// Return true if this is an indirect branch, such as a
976 /// branch through a register.
977 bool isIndirectBranch(QueryType Type = AnyInBundle) const {
978 return hasProperty(MCFlag: MCID::IndirectBranch, Type);
979 }
980
981 /// Return true if this is a branch which may fall
982 /// through to the next instruction or may transfer control flow to some other
983 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more
984 /// information about this branch.
985 bool isConditionalBranch(QueryType Type = AnyInBundle) const {
986 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
987 }
988
989 /// Return true if this is a branch which always
990 /// transfers control flow to some other block. The
991 /// TargetInstrInfo::analyzeBranch method can be used to get more information
992 /// about this branch.
993 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
994 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
995 }
996
997 /// Return true if this instruction has a predicate operand that
998 /// controls execution. It may be set to 'always', or may be set to other
999 /// values. There are various methods in TargetInstrInfo that can be used to
1000 /// control and modify the predicate in this instruction.
1001 bool isPredicable(QueryType Type = AllInBundle) const {
1002 // If it's a bundle than all bundled instructions must be predicable for this
1003 // to return true.
1004 return hasProperty(MCFlag: MCID::Predicable, Type);
1005 }
1006
1007 /// Return true if this instruction is a comparison.
1008 bool isCompare(QueryType Type = IgnoreBundle) const {
1009 return hasProperty(MCFlag: MCID::Compare, Type);
1010 }
1011
1012 /// Return true if this instruction is a move immediate
1013 /// (including conditional moves) instruction.
1014 bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
1015 return hasProperty(MCFlag: MCID::MoveImm, Type);
1016 }
1017
1018 /// Return true if this instruction is a register move.
1019 /// (including moving values from subreg to reg)
1020 bool isMoveReg(QueryType Type = IgnoreBundle) const {
1021 return hasProperty(MCFlag: MCID::MoveReg, Type);
1022 }
1023
1024 /// Return true if this instruction is a bitcast instruction.
1025 bool isBitcast(QueryType Type = IgnoreBundle) const {
1026 return hasProperty(MCFlag: MCID::Bitcast, Type);
1027 }
1028
1029 /// Return true if this instruction is a select instruction.
1030 bool isSelect(QueryType Type = IgnoreBundle) const {
1031 return hasProperty(MCFlag: MCID::Select, Type);
1032 }
1033
1034 /// Return true if this instruction cannot be safely duplicated.
1035 /// For example, if the instruction has a unique labels attached
1036 /// to it, duplicating it would cause multiple definition errors.
1037 bool isNotDuplicable(QueryType Type = AnyInBundle) const {
1038 if (getPreInstrSymbol() || getPostInstrSymbol())
1039 return true;
1040 return hasProperty(MCFlag: MCID::NotDuplicable, Type);
1041 }
1042
1043 /// Return true if this instruction is convergent.
1044 /// Convergent instructions can not be made control-dependent on any
1045 /// additional values.
1046 bool isConvergent(QueryType Type = AnyInBundle) const {
1047 if (isInlineAsm()) {
1048 unsigned ExtraInfo = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm();
1049 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1050 return true;
1051 }
1052 if (getFlag(Flag: NoConvergent))
1053 return false;
1054 return hasProperty(MCFlag: MCID::Convergent, Type);
1055 }
1056
1057 /// Returns true if the specified instruction has a delay slot
1058 /// which must be filled by the code generator.
1059 bool hasDelaySlot(QueryType Type = AnyInBundle) const {
1060 return hasProperty(MCFlag: MCID::DelaySlot, Type);
1061 }
1062
1063 /// Return true for instructions that can be folded as
1064 /// memory operands in other instructions. The most common use for this
1065 /// is instructions that are simple loads from memory that don't modify
1066 /// the loaded value in any way, but it can also be used for instructions
1067 /// that can be expressed as constant-pool loads, such as V_SETALLONES
1068 /// on x86, to allow them to be folded when it is beneficial.
1069 /// This should only be set on instructions that return a value in their
1070 /// only virtual register definition.
1071 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
1072 return hasProperty(MCFlag: MCID::FoldableAsLoad, Type);
1073 }
1074
1075 /// Return true if this instruction behaves
1076 /// the same way as the generic REG_SEQUENCE instructions.
1077 /// E.g., on ARM,
1078 /// dX VMOVDRR rY, rZ
1079 /// is equivalent to
1080 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
1081 ///
1082 /// Note that for the optimizers to be able to take advantage of
1083 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
1084 /// override accordingly.
1085 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
1086 return hasProperty(MCFlag: MCID::RegSequence, Type);
1087 }
1088
1089 /// Return true if this instruction behaves
1090 /// the same way as the generic EXTRACT_SUBREG instructions.
1091 /// E.g., on ARM,
1092 /// rX, rY VMOVRRD dZ
1093 /// is equivalent to two EXTRACT_SUBREG:
1094 /// rX = EXTRACT_SUBREG dZ, ssub_0
1095 /// rY = EXTRACT_SUBREG dZ, ssub_1
1096 ///
1097 /// Note that for the optimizers to be able to take advantage of
1098 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
1099 /// override accordingly.
1100 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
1101 return hasProperty(MCFlag: MCID::ExtractSubreg, Type);
1102 }
1103
1104 /// Return true if this instruction behaves
1105 /// the same way as the generic INSERT_SUBREG instructions.
1106 /// E.g., on ARM,
1107 /// dX = VSETLNi32 dY, rZ, Imm
1108 /// is equivalent to a INSERT_SUBREG:
1109 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
1110 ///
1111 /// Note that for the optimizers to be able to take advantage of
1112 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
1113 /// override accordingly.
1114 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
1115 return hasProperty(MCFlag: MCID::InsertSubreg, Type);
1116 }
1117
1118 //===--------------------------------------------------------------------===//
1119 // Side Effect Analysis
1120 //===--------------------------------------------------------------------===//
1121
1122 /// Return true if this instruction could possibly read memory.
1123 /// Instructions with this flag set are not necessarily simple load
1124 /// instructions, they may load a value and modify it, for example.
1125 bool mayLoad(QueryType Type = AnyInBundle) const {
1126 if (isInlineAsm()) {
1127 unsigned ExtraInfo = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm();
1128 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1129 return true;
1130 }
1131 return hasProperty(MCFlag: MCID::MayLoad, Type);
1132 }
1133
1134 /// Return true if this instruction could possibly modify memory.
1135 /// Instructions with this flag set are not necessarily simple store
1136 /// instructions, they may store a modified value based on their operands, or
1137 /// may not actually modify anything, for example.
1138 bool mayStore(QueryType Type = AnyInBundle) const {
1139 if (isInlineAsm()) {
1140 unsigned ExtraInfo = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm();
1141 if (ExtraInfo & InlineAsm::Extra_MayStore)
1142 return true;
1143 }
1144 return hasProperty(MCFlag: MCID::MayStore, Type);
1145 }
1146
1147 /// Return true if this instruction could possibly read or modify memory.
1148 bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1149 return mayLoad(Type) || mayStore(Type);
1150 }
1151
1152 /// Return true if this instruction could possibly raise a floating-point
1153 /// exception. This is the case if the instruction is a floating-point
1154 /// instruction that can in principle raise an exception, as indicated
1155 /// by the MCID::MayRaiseFPException property, *and* at the same time,
1156 /// the instruction is used in a context where we expect floating-point
1157 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1158 bool mayRaiseFPException() const {
1159 return hasProperty(MCFlag: MCID::MayRaiseFPException) &&
1160 !getFlag(Flag: MachineInstr::MIFlag::NoFPExcept);
1161 }
1162
1163 //===--------------------------------------------------------------------===//
1164 // Flags that indicate whether an instruction can be modified by a method.
1165 //===--------------------------------------------------------------------===//
1166
1167 /// Return true if this may be a 2- or 3-address
1168 /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1169 /// result if Y and Z are exchanged. If this flag is set, then the
1170 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1171 /// instruction.
1172 ///
1173 /// Note that this flag may be set on instructions that are only commutable
1174 /// sometimes. In these cases, the call to commuteInstruction will fail.
1175 /// Also note that some instructions require non-trivial modification to
1176 /// commute them.
1177 bool isCommutable(QueryType Type = IgnoreBundle) const {
1178 return hasProperty(MCFlag: MCID::Commutable, Type);
1179 }
1180
1181 /// Return true if this is a 2-address instruction
1182 /// which can be changed into a 3-address instruction if needed. Doing this
1183 /// transformation can be profitable in the register allocator, because it
1184 /// means that the instruction can use a 2-address form if possible, but
1185 /// degrade into a less efficient form if the source and dest register cannot
1186 /// be assigned to the same register. For example, this allows the x86
1187 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1188 /// is the same speed as the shift but has bigger code size.
1189 ///
1190 /// If this returns true, then the target must implement the
1191 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1192 /// is allowed to fail if the transformation isn't valid for this specific
1193 /// instruction (e.g. shl reg, 4 on x86).
1194 ///
1195 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1196 return hasProperty(MCFlag: MCID::ConvertibleTo3Addr, Type);
1197 }
1198
1199 /// Return true if this instruction requires
1200 /// custom insertion support when the DAG scheduler is inserting it into a
1201 /// machine basic block. If this is true for the instruction, it basically
1202 /// means that it is a pseudo instruction used at SelectionDAG time that is
1203 /// expanded out into magic code by the target when MachineInstrs are formed.
1204 ///
1205 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1206 /// is used to insert this into the MachineBasicBlock.
1207 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1208 return hasProperty(MCFlag: MCID::UsesCustomInserter, Type);
1209 }
1210
1211 /// Return true if this instruction requires *adjustment*
1212 /// after instruction selection by calling a target hook. For example, this
1213 /// can be used to fill in ARM 's' optional operand depending on whether
1214 /// the conditional flag register is used.
1215 bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1216 return hasProperty(MCFlag: MCID::HasPostISelHook, Type);
1217 }
1218
1219 /// Returns true if this instruction is a candidate for remat.
1220 /// This flag is deprecated, please don't use it anymore. If this
1221 /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1222 /// verify the instruction is really rematerializable.
1223 bool isRematerializable(QueryType Type = AllInBundle) const {
1224 // It's only possible to re-mat a bundle if all bundled instructions are
1225 // re-materializable.
1226 return hasProperty(MCFlag: MCID::Rematerializable, Type);
1227 }
1228
1229 /// Returns true if this instruction has the same cost (or less) than a move
1230 /// instruction. This is useful during certain types of optimizations
1231 /// (e.g., remat during two-address conversion or machine licm)
1232 /// where we would like to remat or hoist the instruction, but not if it costs
1233 /// more than moving the instruction into the appropriate register. Note, we
1234 /// are not marking copies from and to the same register class with this flag.
1235 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1236 // Only returns true for a bundle if all bundled instructions are cheap.
1237 return hasProperty(MCFlag: MCID::CheapAsAMove, Type);
1238 }
1239
1240 /// Returns true if this instruction source operands
1241 /// have special register allocation requirements that are not captured by the
1242 /// operand register classes. e.g. ARM::STRD's two source registers must be an
1243 /// even / odd pair, ARM::STM registers have to be in ascending order.
1244 /// Post-register allocation passes should not attempt to change allocations
1245 /// for sources of instructions with this flag.
1246 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1247 return hasProperty(MCFlag: MCID::ExtraSrcRegAllocReq, Type);
1248 }
1249
1250 /// Returns true if this instruction def operands
1251 /// have special register allocation requirements that are not captured by the
1252 /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1253 /// even / odd pair, ARM::LDM registers have to be in ascending order.
1254 /// Post-register allocation passes should not attempt to change allocations
1255 /// for definitions of instructions with this flag.
1256 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1257 return hasProperty(MCFlag: MCID::ExtraDefRegAllocReq, Type);
1258 }
1259
1260 enum MICheckType {
1261 CheckDefs, // Check all operands for equality
1262 CheckKillDead, // Check all operands including kill / dead markers
1263 IgnoreDefs, // Ignore all definitions
1264 IgnoreVRegDefs // Ignore virtual register definitions
1265 };
1266
1267 /// Return true if this instruction is identical to \p Other.
1268 /// Two instructions are identical if they have the same opcode and all their
1269 /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1270 /// Note that this means liveness related flags (dead, undef, kill) do not
1271 /// affect the notion of identical.
1272 bool isIdenticalTo(const MachineInstr &Other,
1273 MICheckType Check = CheckDefs) const;
1274
1275 /// Returns true if this instruction is a debug instruction that represents an
1276 /// identical debug value to \p Other.
1277 /// This function considers these debug instructions equivalent if they have
1278 /// identical variables, debug locations, and debug operands, and if the
1279 /// DIExpressions combined with the directness flags are equivalent.
1280 bool isEquivalentDbgInstr(const MachineInstr &Other) const;
1281
1282 /// Unlink 'this' from the containing basic block, and return it without
1283 /// deleting it.
1284 ///
1285 /// This function can not be used on bundled instructions, use
1286 /// removeFromBundle() to remove individual instructions from a bundle.
1287 MachineInstr *removeFromParent();
1288
1289 /// Unlink this instruction from its basic block and return it without
1290 /// deleting it.
1291 ///
1292 /// If the instruction is part of a bundle, the other instructions in the
1293 /// bundle remain bundled.
1294 MachineInstr *removeFromBundle();
1295
1296 /// Unlink 'this' from the containing basic block and delete it.
1297 ///
1298 /// If this instruction is the header of a bundle, the whole bundle is erased.
1299 /// This function can not be used for instructions inside a bundle, use
1300 /// eraseFromBundle() to erase individual bundled instructions.
1301 void eraseFromParent();
1302
1303 /// Unlink 'this' from its basic block and delete it.
1304 ///
1305 /// If the instruction is part of a bundle, the other instructions in the
1306 /// bundle remain bundled.
1307 void eraseFromBundle();
1308
1309 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1310 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1311 bool isAnnotationLabel() const {
1312 return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1313 }
1314
1315 /// Returns true if the MachineInstr represents a label.
1316 bool isLabel() const {
1317 return isEHLabel() || isGCLabel() || isAnnotationLabel();
1318 }
1319
1320 bool isCFIInstruction() const {
1321 return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1322 }
1323
1324 bool isPseudoProbe() const {
1325 return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1326 }
1327
1328 // True if the instruction represents a position in the function.
1329 bool isPosition() const { return isLabel() || isCFIInstruction(); }
1330
1331 bool isNonListDebugValue() const {
1332 return getOpcode() == TargetOpcode::DBG_VALUE;
1333 }
1334 bool isDebugValueList() const {
1335 return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1336 }
1337 bool isDebugValue() const {
1338 return isNonListDebugValue() || isDebugValueList();
1339 }
1340 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1341 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1342 bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); }
1343 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1344 bool isDebugInstr() const {
1345 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
1346 }
1347 bool isDebugOrPseudoInstr() const {
1348 return isDebugInstr() || isPseudoProbe();
1349 }
1350
1351 bool isDebugOffsetImm() const {
1352 return isNonListDebugValue() && getDebugOffset().isImm();
1353 }
1354
1355 /// A DBG_VALUE is indirect iff the location operand is a register and
1356 /// the offset operand is an immediate.
1357 bool isIndirectDebugValue() const {
1358 return isDebugOffsetImm() && getDebugOperand(Index: 0).isReg();
1359 }
1360
1361 /// A DBG_VALUE is an entry value iff its debug expression contains the
1362 /// DW_OP_LLVM_entry_value operation.
1363 bool isDebugEntryValue() const;
1364
1365 /// Return true if the instruction is a debug value which describes a part of
1366 /// a variable as unavailable.
1367 bool isUndefDebugValue() const {
1368 if (!isDebugValue())
1369 return false;
1370 // If any $noreg locations are given, this DV is undef.
1371 for (const MachineOperand &Op : debug_operands())
1372 if (Op.isReg() && !Op.getReg().isValid())
1373 return true;
1374 return false;
1375 }
1376
1377 bool isJumpTableDebugInfo() const {
1378 return getOpcode() == TargetOpcode::JUMP_TABLE_DEBUG_INFO;
1379 }
1380
1381 bool isPHI() const {
1382 return getOpcode() == TargetOpcode::PHI ||
1383 getOpcode() == TargetOpcode::G_PHI;
1384 }
1385 bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1386 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1387 bool isInlineAsm() const {
1388 return getOpcode() == TargetOpcode::INLINEASM ||
1389 getOpcode() == TargetOpcode::INLINEASM_BR;
1390 }
1391 /// Returns true if the register operand can be folded with a load or store
1392 /// into a frame index. Does so by checking the InlineAsm::Flag immediate
1393 /// operand at OpId - 1.
1394 bool mayFoldInlineAsmRegOp(unsigned OpId) const;
1395
1396 bool isStackAligningInlineAsm() const;
1397 InlineAsm::AsmDialect getInlineAsmDialect() const;
1398
1399 bool isInsertSubreg() const {
1400 return getOpcode() == TargetOpcode::INSERT_SUBREG;
1401 }
1402
1403 bool isSubregToReg() const {
1404 return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1405 }
1406
1407 bool isRegSequence() const {
1408 return getOpcode() == TargetOpcode::REG_SEQUENCE;
1409 }
1410
1411 bool isBundle() const {
1412 return getOpcode() == TargetOpcode::BUNDLE;
1413 }
1414
1415 bool isCopy() const {
1416 return getOpcode() == TargetOpcode::COPY;
1417 }
1418
1419 bool isFullCopy() const {
1420 return isCopy() && !getOperand(i: 0).getSubReg() && !getOperand(i: 1).getSubReg();
1421 }
1422
1423 bool isExtractSubreg() const {
1424 return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1425 }
1426
1427 /// Return true if the instruction behaves like a copy.
1428 /// This does not include native copy instructions.
1429 bool isCopyLike() const {
1430 return isCopy() || isSubregToReg();
1431 }
1432
1433 /// Return true is the instruction is an identity copy.
1434 bool isIdentityCopy() const {
1435 return isCopy() && getOperand(i: 0).getReg() == getOperand(i: 1).getReg() &&
1436 getOperand(i: 0).getSubReg() == getOperand(i: 1).getSubReg();
1437 }
1438
1439 /// Return true if this is a transient instruction that is either very likely
1440 /// to be eliminated during register allocation (such as copy-like
1441 /// instructions), or if this instruction doesn't have an execution-time cost.
1442 bool isTransient() const {
1443 switch (getOpcode()) {
1444 default:
1445 return isMetaInstruction();
1446 // Copy-like instructions are usually eliminated during register allocation.
1447 case TargetOpcode::PHI:
1448 case TargetOpcode::G_PHI:
1449 case TargetOpcode::COPY:
1450 case TargetOpcode::INSERT_SUBREG:
1451 case TargetOpcode::SUBREG_TO_REG:
1452 case TargetOpcode::REG_SEQUENCE:
1453 return true;
1454 }
1455 }
1456
1457 /// Return the number of instructions inside the MI bundle, excluding the
1458 /// bundle header.
1459 ///
1460 /// This is the number of instructions that MachineBasicBlock::iterator
1461 /// skips, 0 for unbundled instructions.
1462 unsigned getBundleSize() const;
1463
1464 /// Return true if the MachineInstr reads the specified register.
1465 /// If TargetRegisterInfo is non-null, then it also checks if there
1466 /// is a read of a super-register.
1467 /// This does not count partial redefines of virtual registers as reads:
1468 /// %reg1024:6 = OP.
1469 bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const {
1470 return findRegisterUseOperandIdx(Reg, TRI, isKill: false) != -1;
1471 }
1472
1473 /// Return true if the MachineInstr reads the specified virtual register.
1474 /// Take into account that a partial define is a
1475 /// read-modify-write operation.
1476 bool readsVirtualRegister(Register Reg) const {
1477 return readsWritesVirtualRegister(Reg).first;
1478 }
1479
1480 /// Return a pair of bools (reads, writes) indicating if this instruction
1481 /// reads or writes Reg. This also considers partial defines.
1482 /// If Ops is not null, all operand indices for Reg are added.
1483 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1484 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1485
1486 /// Return true if the MachineInstr kills the specified register.
1487 /// If TargetRegisterInfo is non-null, then it also checks if there is
1488 /// a kill of a super-register.
1489 bool killsRegister(Register Reg, const TargetRegisterInfo *TRI) const {
1490 return findRegisterUseOperandIdx(Reg, TRI, isKill: true) != -1;
1491 }
1492
1493 /// Return true if the MachineInstr fully defines the specified register.
1494 /// If TargetRegisterInfo is non-null, then it also checks
1495 /// if there is a def of a super-register.
1496 /// NOTE: It's ignoring subreg indices on virtual registers.
1497 bool definesRegister(Register Reg, const TargetRegisterInfo *TRI) const {
1498 return findRegisterDefOperandIdx(Reg, TRI, isDead: false, Overlap: false) != -1;
1499 }
1500
1501 /// Return true if the MachineInstr modifies (fully define or partially
1502 /// define) the specified register.
1503 /// NOTE: It's ignoring subreg indices on virtual registers.
1504 bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const {
1505 return findRegisterDefOperandIdx(Reg, TRI, isDead: false, Overlap: true) != -1;
1506 }
1507
1508 /// Returns true if the register is dead in this machine instruction.
1509 /// If TargetRegisterInfo is non-null, then it also checks
1510 /// if there is a dead def of a super-register.
1511 bool registerDefIsDead(Register Reg, const TargetRegisterInfo *TRI) const {
1512 return findRegisterDefOperandIdx(Reg, TRI, isDead: true, Overlap: false) != -1;
1513 }
1514
1515 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1516 /// the given register (not considering sub/super-registers).
1517 bool hasRegisterImplicitUseOperand(Register Reg) const;
1518
1519 /// Returns the operand index that is a use of the specific register or -1
1520 /// if it is not found. It further tightens the search criteria to a use
1521 /// that kills the register if isKill is true.
1522 int findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI,
1523 bool isKill = false) const;
1524
1525 /// Wrapper for findRegisterUseOperandIdx, it returns
1526 /// a pointer to the MachineOperand rather than an index.
1527 MachineOperand *findRegisterUseOperand(Register Reg,
1528 const TargetRegisterInfo *TRI,
1529 bool isKill = false) {
1530 int Idx = findRegisterUseOperandIdx(Reg, TRI, isKill);
1531 return (Idx == -1) ? nullptr : &getOperand(i: Idx);
1532 }
1533
1534 const MachineOperand *findRegisterUseOperand(Register Reg,
1535 const TargetRegisterInfo *TRI,
1536 bool isKill = false) const {
1537 return const_cast<MachineInstr *>(this)->findRegisterUseOperand(Reg, TRI,
1538 isKill);
1539 }
1540
1541 /// Returns the operand index that is a def of the specified register or
1542 /// -1 if it is not found. If isDead is true, defs that are not dead are
1543 /// skipped. If Overlap is true, then it also looks for defs that merely
1544 /// overlap the specified register. If TargetRegisterInfo is non-null,
1545 /// then it also checks if there is a def of a super-register.
1546 /// This may also return a register mask operand when Overlap is true.
1547 int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI,
1548 bool isDead = false,
1549 bool Overlap = false) const;
1550
1551 /// Wrapper for findRegisterDefOperandIdx, it returns
1552 /// a pointer to the MachineOperand rather than an index.
1553 MachineOperand *findRegisterDefOperand(Register Reg,
1554 const TargetRegisterInfo *TRI,
1555 bool isDead = false,
1556 bool Overlap = false) {
1557 int Idx = findRegisterDefOperandIdx(Reg, TRI, isDead, Overlap);
1558 return (Idx == -1) ? nullptr : &getOperand(i: Idx);
1559 }
1560
1561 const MachineOperand *findRegisterDefOperand(Register Reg,
1562 const TargetRegisterInfo *TRI,
1563 bool isDead = false,
1564 bool Overlap = false) const {
1565 return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1566 Reg, TRI, isDead, Overlap);
1567 }
1568
1569 /// Find the index of the first operand in the
1570 /// operand list that is used to represent the predicate. It returns -1 if
1571 /// none is found.
1572 int findFirstPredOperandIdx() const;
1573
1574 /// Find the index of the flag word operand that
1575 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
1576 /// getOperand(OpIdx) does not belong to an inline asm operand group.
1577 ///
1578 /// If GroupNo is not NULL, it will receive the number of the operand group
1579 /// containing OpIdx.
1580 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1581
1582 /// Compute the static register class constraint for operand OpIdx.
1583 /// For normal instructions, this is derived from the MCInstrDesc.
1584 /// For inline assembly it is derived from the flag words.
1585 ///
1586 /// Returns NULL if the static register class constraint cannot be
1587 /// determined.
1588 const TargetRegisterClass*
1589 getRegClassConstraint(unsigned OpIdx,
1590 const TargetInstrInfo *TII,
1591 const TargetRegisterInfo *TRI) const;
1592
1593 /// Applies the constraints (def/use) implied by this MI on \p Reg to
1594 /// the given \p CurRC.
1595 /// If \p ExploreBundle is set and MI is part of a bundle, all the
1596 /// instructions inside the bundle will be taken into account. In other words,
1597 /// this method accumulates all the constraints of the operand of this MI and
1598 /// the related bundle if MI is a bundle or inside a bundle.
1599 ///
1600 /// Returns the register class that satisfies both \p CurRC and the
1601 /// constraints set by MI. Returns NULL if such a register class does not
1602 /// exist.
1603 ///
1604 /// \pre CurRC must not be NULL.
1605 const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1606 Register Reg, const TargetRegisterClass *CurRC,
1607 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1608 bool ExploreBundle = false) const;
1609
1610 /// Applies the constraints (def/use) implied by the \p OpIdx operand
1611 /// to the given \p CurRC.
1612 ///
1613 /// Returns the register class that satisfies both \p CurRC and the
1614 /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1615 /// does not exist.
1616 ///
1617 /// \pre CurRC must not be NULL.
1618 /// \pre The operand at \p OpIdx must be a register.
1619 const TargetRegisterClass *
1620 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1621 const TargetInstrInfo *TII,
1622 const TargetRegisterInfo *TRI) const;
1623
1624 /// Add a tie between the register operands at DefIdx and UseIdx.
1625 /// The tie will cause the register allocator to ensure that the two
1626 /// operands are assigned the same physical register.
1627 ///
1628 /// Tied operands are managed automatically for explicit operands in the
1629 /// MCInstrDesc. This method is for exceptional cases like inline asm.
1630 void tieOperands(unsigned DefIdx, unsigned UseIdx);
1631
1632 /// Given the index of a tied register operand, find the
1633 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1634 /// index of the tied operand which must exist.
1635 unsigned findTiedOperandIdx(unsigned OpIdx) const;
1636
1637 /// Given the index of a register def operand,
1638 /// check if the register def is tied to a source operand, due to either
1639 /// two-address elimination or inline assembly constraints. Returns the
1640 /// first tied use operand index by reference if UseOpIdx is not null.
1641 bool isRegTiedToUseOperand(unsigned DefOpIdx,
1642 unsigned *UseOpIdx = nullptr) const {
1643 const MachineOperand &MO = getOperand(i: DefOpIdx);
1644 if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1645 return false;
1646 if (UseOpIdx)
1647 *UseOpIdx = findTiedOperandIdx(OpIdx: DefOpIdx);
1648 return true;
1649 }
1650
1651 /// Return true if the use operand of the specified index is tied to a def
1652 /// operand. It also returns the def operand index by reference if DefOpIdx
1653 /// is not null.
1654 bool isRegTiedToDefOperand(unsigned UseOpIdx,
1655 unsigned *DefOpIdx = nullptr) const {
1656 const MachineOperand &MO = getOperand(i: UseOpIdx);
1657 if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1658 return false;
1659 if (DefOpIdx)
1660 *DefOpIdx = findTiedOperandIdx(OpIdx: UseOpIdx);
1661 return true;
1662 }
1663
1664 /// Clears kill flags on all operands.
1665 void clearKillInfo();
1666
1667 /// Replace all occurrences of FromReg with ToReg:SubIdx,
1668 /// properly composing subreg indices where necessary.
1669 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1670 const TargetRegisterInfo &RegInfo);
1671
1672 /// We have determined MI kills a register. Look for the
1673 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1674 /// add a implicit operand if it's not found. Returns true if the operand
1675 /// exists / is added.
1676 bool addRegisterKilled(Register IncomingReg,
1677 const TargetRegisterInfo *RegInfo,
1678 bool AddIfNotFound = false);
1679
1680 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
1681 /// all aliasing registers.
1682 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1683
1684 /// We have determined MI defined a register without a use.
1685 /// Look for the operand that defines it and mark it as IsDead. If
1686 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1687 /// true if the operand exists / is added.
1688 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1689 bool AddIfNotFound = false);
1690
1691 /// Clear all dead flags on operands defining register @p Reg.
1692 void clearRegisterDeads(Register Reg);
1693
1694 /// Mark all subregister defs of register @p Reg with the undef flag.
1695 /// This function is used when we determined to have a subregister def in an
1696 /// otherwise undefined super register.
1697 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1698
1699 /// We have determined MI defines a register. Make sure there is an operand
1700 /// defining Reg.
1701 void addRegisterDefined(Register Reg,
1702 const TargetRegisterInfo *RegInfo = nullptr);
1703
1704 /// Mark every physreg used by this instruction as
1705 /// dead except those in the UsedRegs list.
1706 ///
1707 /// On instructions with register mask operands, also add implicit-def
1708 /// operands for all registers in UsedRegs.
1709 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1710 const TargetRegisterInfo &TRI);
1711
1712 /// Return true if it is safe to move this instruction. If
1713 /// SawStore is set to true, it means that there is a store (or call) between
1714 /// the instruction's location and its intended destination.
1715 bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1716
1717 /// Returns true if this instruction's memory access aliases the memory
1718 /// access of Other.
1719 //
1720 /// Assumes any physical registers used to compute addresses
1721 /// have the same value for both instructions. Returns false if neither
1722 /// instruction writes to memory.
1723 ///
1724 /// @param AA Optional alias analysis, used to compare memory operands.
1725 /// @param Other MachineInstr to check aliasing against.
1726 /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1727 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1728
1729 /// Return true if this instruction may have an ordered
1730 /// or volatile memory reference, or if the information describing the memory
1731 /// reference is not available. Return false if it is known to have no
1732 /// ordered or volatile memory references.
1733 bool hasOrderedMemoryRef() const;
1734
1735 /// Return true if this load instruction never traps and points to a memory
1736 /// location whose value doesn't change during the execution of this function.
1737 ///
1738 /// Examples include loading a value from the constant pool or from the
1739 /// argument area of a function (if it does not change). If the instruction
1740 /// does multiple loads, this returns true only if all of the loads are
1741 /// dereferenceable and invariant.
1742 bool isDereferenceableInvariantLoad() const;
1743
1744 /// If the specified instruction is a PHI that always merges together the
1745 /// same virtual register, return the register, otherwise return 0.
1746 unsigned isConstantValuePHI() const;
1747
1748 /// Return true if this instruction has side effects that are not modeled
1749 /// by mayLoad / mayStore, etc.
1750 /// For all instructions, the property is encoded in MCInstrDesc::Flags
1751 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1752 /// INLINEASM instruction, in which case the side effect property is encoded
1753 /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1754 ///
1755 bool hasUnmodeledSideEffects() const;
1756
1757 /// Returns true if it is illegal to fold a load across this instruction.
1758 bool isLoadFoldBarrier() const;
1759
1760 /// Return true if all the defs of this instruction are dead.
1761 bool allDefsAreDead() const;
1762
1763 /// Return true if all the implicit defs of this instruction are dead.
1764 bool allImplicitDefsAreDead() const;
1765
1766 /// Return a valid size if the instruction is a spill instruction.
1767 std::optional<LocationSize> getSpillSize(const TargetInstrInfo *TII) const;
1768
1769 /// Return a valid size if the instruction is a folded spill instruction.
1770 std::optional<LocationSize>
1771 getFoldedSpillSize(const TargetInstrInfo *TII) const;
1772
1773 /// Return a valid size if the instruction is a restore instruction.
1774 std::optional<LocationSize> getRestoreSize(const TargetInstrInfo *TII) const;
1775
1776 /// Return a valid size if the instruction is a folded restore instruction.
1777 std::optional<LocationSize>
1778 getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1779
1780 /// Copy implicit register operands from specified
1781 /// instruction to this instruction.
1782 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1783
1784 /// Debugging support
1785 /// @{
1786 /// Determine the generic type to be printed (if needed) on uses and defs.
1787 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1788 const MachineRegisterInfo &MRI) const;
1789
1790 /// Return true when an instruction has tied register that can't be determined
1791 /// by the instruction's descriptor. This is useful for MIR printing, to
1792 /// determine whether we need to print the ties or not.
1793 bool hasComplexRegisterTies() const;
1794
1795 /// Print this MI to \p OS.
1796 /// Don't print information that can be inferred from other instructions if
1797 /// \p IsStandalone is false. It is usually true when only a fragment of the
1798 /// function is printed.
1799 /// Only print the defs and the opcode if \p SkipOpers is true.
1800 /// Otherwise, also print operands if \p SkipDebugLoc is true.
1801 /// Otherwise, also print the debug loc, with a terminating newline.
1802 /// \p TII is used to print the opcode name. If it's not present, but the
1803 /// MI is in a function, the opcode will be printed using the function's TII.
1804 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1805 bool SkipDebugLoc = false, bool AddNewLine = true,
1806 const TargetInstrInfo *TII = nullptr) const;
1807 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1808 bool SkipOpers = false, bool SkipDebugLoc = false,
1809 bool AddNewLine = true,
1810 const TargetInstrInfo *TII = nullptr) const;
1811 void dump() const;
1812 /// Print on dbgs() the current instruction and the instructions defining its
1813 /// operands and so on until we reach \p MaxDepth.
1814 void dumpr(const MachineRegisterInfo &MRI,
1815 unsigned MaxDepth = UINT_MAX) const;
1816 /// @}
1817
1818 //===--------------------------------------------------------------------===//
1819 // Accessors used to build up machine instructions.
1820
1821 /// Add the specified operand to the instruction. If it is an implicit
1822 /// operand, it is added to the end of the operand list. If it is an
1823 /// explicit operand it is added at the end of the explicit operand list
1824 /// (before the first implicit operand).
1825 ///
1826 /// MF must be the machine function that was used to allocate this
1827 /// instruction.
1828 ///
1829 /// MachineInstrBuilder provides a more convenient interface for creating
1830 /// instructions and adding operands.
1831 void addOperand(MachineFunction &MF, const MachineOperand &Op);
1832
1833 /// Add an operand without providing an MF reference. This only works for
1834 /// instructions that are inserted in a basic block.
1835 ///
1836 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1837 /// preferred.
1838 void addOperand(const MachineOperand &Op);
1839
1840 /// Inserts Ops BEFORE It. Can untie/retie tied operands.
1841 void insert(mop_iterator InsertBefore, ArrayRef<MachineOperand> Ops);
1842
1843 /// Replace the instruction descriptor (thus opcode) of
1844 /// the current instruction with a new one.
1845 void setDesc(const MCInstrDesc &TID);
1846
1847 /// Replace current source information with new such.
1848 /// Avoid using this, the constructor argument is preferable.
1849 void setDebugLoc(DebugLoc DL) {
1850 DbgLoc = std::move(DL);
1851 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
1852 }
1853
1854 /// Erase an operand from an instruction, leaving it with one
1855 /// fewer operand than it started with.
1856 void removeOperand(unsigned OpNo);
1857
1858 /// Clear this MachineInstr's memory reference descriptor list. This resets
1859 /// the memrefs to their most conservative state. This should be used only
1860 /// as a last resort since it greatly pessimizes our knowledge of the memory
1861 /// access performed by the instruction.
1862 void dropMemRefs(MachineFunction &MF);
1863
1864 /// Assign this MachineInstr's memory reference descriptor list.
1865 ///
1866 /// Unlike other methods, this *will* allocate them into a new array
1867 /// associated with the provided `MachineFunction`.
1868 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1869
1870 /// Add a MachineMemOperand to the machine instruction.
1871 /// This function should be used only occasionally. The setMemRefs function
1872 /// is the primary method for setting up a MachineInstr's MemRefs list.
1873 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1874
1875 /// Clone another MachineInstr's memory reference descriptor list and replace
1876 /// ours with it.
1877 ///
1878 /// Note that `*this` may be the incoming MI!
1879 ///
1880 /// Prefer this API whenever possible as it can avoid allocations in common
1881 /// cases.
1882 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1883
1884 /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1885 /// list and replace ours with it.
1886 ///
1887 /// Note that `*this` may be one of the incoming MIs!
1888 ///
1889 /// Prefer this API whenever possible as it can avoid allocations in common
1890 /// cases.
1891 void cloneMergedMemRefs(MachineFunction &MF,
1892 ArrayRef<const MachineInstr *> MIs);
1893
1894 /// Set a symbol that will be emitted just prior to the instruction itself.
1895 ///
1896 /// Setting this to a null pointer will remove any such symbol.
1897 ///
1898 /// FIXME: This is not fully implemented yet.
1899 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1900
1901 /// Set a symbol that will be emitted just after the instruction itself.
1902 ///
1903 /// Setting this to a null pointer will remove any such symbol.
1904 ///
1905 /// FIXME: This is not fully implemented yet.
1906 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1907
1908 /// Clone another MachineInstr's pre- and post- instruction symbols and
1909 /// replace ours with it.
1910 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1911
1912 /// Set a marker on instructions that denotes where we should create and emit
1913 /// heap alloc site labels. This waits until after instruction selection and
1914 /// optimizations to create the label, so it should still work if the
1915 /// instruction is removed or duplicated.
1916 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1917
1918 // Set metadata on instructions that say which sections to emit instruction
1919 // addresses into.
1920 void setPCSections(MachineFunction &MF, MDNode *MD);
1921
1922 void setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs);
1923
1924 /// Set the CFI type for the instruction.
1925 void setCFIType(MachineFunction &MF, uint32_t Type);
1926
1927 /// Return the MIFlags which represent both MachineInstrs. This
1928 /// should be used when merging two MachineInstrs into one. This routine does
1929 /// not modify the MIFlags of this MachineInstr.
1930 uint32_t mergeFlagsWith(const MachineInstr& Other) const;
1931
1932 static uint32_t copyFlagsFromInstruction(const Instruction &I);
1933
1934 /// Copy all flags to MachineInst MIFlags
1935 void copyIRFlags(const Instruction &I);
1936
1937 /// Break any tie involving OpIdx.
1938 void untieRegOperand(unsigned OpIdx) {
1939 MachineOperand &MO = getOperand(i: OpIdx);
1940 if (MO.isReg() && MO.isTied()) {
1941 getOperand(i: findTiedOperandIdx(OpIdx)).TiedTo = 0;
1942 MO.TiedTo = 0;
1943 }
1944 }
1945
1946 /// Add all implicit def and use operands to this instruction.
1947 void addImplicitDefUseOperands(MachineFunction &MF);
1948
1949 /// Scan instructions immediately following MI and collect any matching
1950 /// DBG_VALUEs.
1951 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1952
1953 /// Find all DBG_VALUEs that point to the register def in this instruction
1954 /// and point them to \p Reg instead.
1955 void changeDebugValuesDefReg(Register Reg);
1956
1957 /// Sets all register debug operands in this debug value instruction to be
1958 /// undef.
1959 void setDebugValueUndef() {
1960 assert(isDebugValue() && "Must be a debug value instruction.");
1961 for (MachineOperand &MO : debug_operands()) {
1962 if (MO.isReg()) {
1963 MO.setReg(0);
1964 MO.setSubReg(0);
1965 }
1966 }
1967 }
1968
1969 std::tuple<Register, Register> getFirst2Regs() const {
1970 return std::tuple(getOperand(i: 0).getReg(), getOperand(i: 1).getReg());
1971 }
1972
1973 std::tuple<Register, Register, Register> getFirst3Regs() const {
1974 return std::tuple(getOperand(i: 0).getReg(), getOperand(i: 1).getReg(),
1975 getOperand(i: 2).getReg());
1976 }
1977
1978 std::tuple<Register, Register, Register, Register> getFirst4Regs() const {
1979 return std::tuple(getOperand(i: 0).getReg(), getOperand(i: 1).getReg(),
1980 getOperand(i: 2).getReg(), getOperand(i: 3).getReg());
1981 }
1982
1983 std::tuple<Register, Register, Register, Register, Register>
1984 getFirst5Regs() const {
1985 return std::tuple(getOperand(i: 0).getReg(), getOperand(i: 1).getReg(),
1986 getOperand(i: 2).getReg(), getOperand(i: 3).getReg(),
1987 getOperand(i: 4).getReg());
1988 }
1989
1990 std::tuple<LLT, LLT> getFirst2LLTs() const;
1991 std::tuple<LLT, LLT, LLT> getFirst3LLTs() const;
1992 std::tuple<LLT, LLT, LLT, LLT> getFirst4LLTs() const;
1993 std::tuple<LLT, LLT, LLT, LLT, LLT> getFirst5LLTs() const;
1994
1995 std::tuple<Register, LLT, Register, LLT> getFirst2RegLLTs() const;
1996 std::tuple<Register, LLT, Register, LLT, Register, LLT>
1997 getFirst3RegLLTs() const;
1998 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
1999 getFirst4RegLLTs() const;
2000 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT,
2001 Register, LLT>
2002 getFirst5RegLLTs() const;
2003
2004private:
2005 /// If this instruction is embedded into a MachineFunction, return the
2006 /// MachineRegisterInfo object for the current function, otherwise
2007 /// return null.
2008 MachineRegisterInfo *getRegInfo();
2009 const MachineRegisterInfo *getRegInfo() const;
2010
2011 /// Unlink all of the register operands in this instruction from their
2012 /// respective use lists. This requires that the operands already be on their
2013 /// use lists.
2014 void removeRegOperandsFromUseLists(MachineRegisterInfo&);
2015
2016 /// Add all of the register operands in this instruction from their
2017 /// respective use lists. This requires that the operands not be on their
2018 /// use lists yet.
2019 void addRegOperandsToUseLists(MachineRegisterInfo&);
2020
2021 /// Slow path for hasProperty when we're dealing with a bundle.
2022 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
2023
2024 /// Implements the logic of getRegClassConstraintEffectForVReg for the
2025 /// this MI and the given operand index \p OpIdx.
2026 /// If the related operand does not constrained Reg, this returns CurRC.
2027 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
2028 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
2029 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
2030
2031 /// Stores extra instruction information inline or allocates as ExtraInfo
2032 /// based on the number of pointers.
2033 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
2034 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
2035 MDNode *HeapAllocMarker, MDNode *PCSections,
2036 uint32_t CFIType, MDNode *MMRAs);
2037};
2038
2039/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
2040/// instruction rather than by pointer value.
2041/// The hashing and equality testing functions ignore definitions so this is
2042/// useful for CSE, etc.
2043struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
2044 static inline MachineInstr *getEmptyKey() {
2045 return nullptr;
2046 }
2047
2048 static inline MachineInstr *getTombstoneKey() {
2049 return reinterpret_cast<MachineInstr*>(-1);
2050 }
2051
2052 static unsigned getHashValue(const MachineInstr* const &MI);
2053
2054 static bool isEqual(const MachineInstr* const &LHS,
2055 const MachineInstr* const &RHS) {
2056 if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
2057 LHS == getEmptyKey() || LHS == getTombstoneKey())
2058 return LHS == RHS;
2059 return LHS->isIdenticalTo(Other: *RHS, Check: MachineInstr::IgnoreVRegDefs);
2060 }
2061};
2062
2063//===----------------------------------------------------------------------===//
2064// Debugging Support
2065
2066inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
2067 MI.print(OS);
2068 return OS;
2069}
2070
2071} // end namespace llvm
2072
2073#endif // LLVM_CODEGEN_MACHINEINSTR_H
2074

source code of llvm/include/llvm/CodeGen/MachineInstr.h