1//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the target machine instruction set to the code generator.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14#define LLVM_CODEGEN_TARGETINSTRINFO_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/Uniformity.h"
20#include "llvm/CodeGen/MIRFormatter.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineCombinerPattern.h"
23#include "llvm/CodeGen/MachineCycleAnalysis.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineOperand.h"
28#include "llvm/CodeGen/MachineOutliner.h"
29#include "llvm/CodeGen/RegisterClassInfo.h"
30#include "llvm/CodeGen/VirtRegMap.h"
31#include "llvm/MC/MCInstrInfo.h"
32#include "llvm/Support/BranchProbability.h"
33#include "llvm/Support/ErrorHandling.h"
34#include <array>
35#include <cassert>
36#include <cstddef>
37#include <cstdint>
38#include <utility>
39#include <vector>
40
41namespace llvm {
42
43class DFAPacketizer;
44class InstrItineraryData;
45class LiveIntervals;
46class LiveVariables;
47class MachineLoop;
48class MachineMemOperand;
49class MachineRegisterInfo;
50class MCAsmInfo;
51class MCInst;
52struct MCSchedModel;
53class Module;
54class ScheduleDAG;
55class ScheduleDAGMI;
56class ScheduleHazardRecognizer;
57class SDNode;
58class SelectionDAG;
59class SMSchedule;
60class SwingSchedulerDAG;
61class RegScavenger;
62class TargetRegisterClass;
63class TargetRegisterInfo;
64class TargetSchedModel;
65class TargetSubtargetInfo;
66enum class MachineTraceStrategy;
67
68template <class T> class SmallVectorImpl;
69
70using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
71
72struct DestSourcePair {
73 const MachineOperand *Destination;
74 const MachineOperand *Source;
75
76 DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
77 : Destination(&Dest), Source(&Src) {}
78};
79
80/// Used to describe a register and immediate addition.
81struct RegImmPair {
82 Register Reg;
83 int64_t Imm;
84
85 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
86};
87
88/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
89/// It holds the register values, the scale value and the displacement.
90/// It also holds a descriptor for the expression used to calculate the address
91/// from the operands.
92struct ExtAddrMode {
93 enum class Formula {
94 Basic = 0, // BaseReg + ScaledReg * Scale + Displacement
95 SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement
96 ZExtScaledReg = 2 // BaseReg + zext(ScaledReg) * Scale + Displacement
97 };
98
99 Register BaseReg;
100 Register ScaledReg;
101 int64_t Scale = 0;
102 int64_t Displacement = 0;
103 Formula Form = Formula::Basic;
104 ExtAddrMode() = default;
105};
106
107//---------------------------------------------------------------------------
108///
109/// TargetInstrInfo - Interface to description of machine instruction set
110///
111class TargetInstrInfo : public MCInstrInfo {
112public:
113 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
114 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
115 : CallFrameSetupOpcode(CFSetupOpcode),
116 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
117 ReturnOpcode(ReturnOpcode) {}
118 TargetInstrInfo(const TargetInstrInfo &) = delete;
119 TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
120 virtual ~TargetInstrInfo();
121
122 static bool isGenericOpcode(unsigned Opc) {
123 return Opc <= TargetOpcode::GENERIC_OP_END;
124 }
125
126 static bool isGenericAtomicRMWOpcode(unsigned Opc) {
127 return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
128 Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
129 }
130
131 /// Given a machine instruction descriptor, returns the register
132 /// class constraint for OpNum, or NULL.
133 virtual
134 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
135 const TargetRegisterInfo *TRI,
136 const MachineFunction &MF) const;
137
138 /// Return true if the instruction is trivially rematerializable, meaning it
139 /// has no side effects and requires no operands that aren't always available.
140 /// This means the only allowed uses are constants and unallocatable physical
141 /// registers so that the instructions result is independent of the place
142 /// in the function.
143 bool isTriviallyReMaterializable(const MachineInstr &MI) const {
144 return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF &&
145 MI.getNumOperands() == 1) ||
146 (MI.getDesc().isRematerializable() &&
147 isReallyTriviallyReMaterializable(MI));
148 }
149
150 /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
151 /// of instruction rematerialization or sinking.
152 virtual bool isIgnorableUse(const MachineOperand &MO) const {
153 return false;
154 }
155
156 virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo,
157 MachineCycleInfo *CI) const {
158 return true;
159 }
160
161protected:
162 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
163 /// set, this hook lets the target specify whether the instruction is actually
164 /// trivially rematerializable, taking into consideration its operands. This
165 /// predicate must return false if the instruction has any side effects other
166 /// than producing a value, or if it requres any address registers that are
167 /// not always available.
168 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const;
169
170 /// This method commutes the operands of the given machine instruction MI.
171 /// The operands to be commuted are specified by their indices OpIdx1 and
172 /// OpIdx2.
173 ///
174 /// If a target has any instructions that are commutable but require
175 /// converting to different instructions or making non-trivial changes
176 /// to commute them, this method can be overloaded to do that.
177 /// The default implementation simply swaps the commutable operands.
178 ///
179 /// If NewMI is false, MI is modified in place and returned; otherwise, a
180 /// new machine instruction is created and returned.
181 ///
182 /// Do not call this method for a non-commutable instruction.
183 /// Even though the instruction is commutable, the method may still
184 /// fail to commute the operands, null pointer is returned in such cases.
185 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
186 unsigned OpIdx1,
187 unsigned OpIdx2) const;
188
189 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
190 /// operand indices to (ResultIdx1, ResultIdx2).
191 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
192 /// predefined to some indices or be undefined (designated by the special
193 /// value 'CommuteAnyOperandIndex').
194 /// The predefined result indices cannot be re-defined.
195 /// The function returns true iff after the result pair redefinition
196 /// the fixed result pair is equal to or equivalent to the source pair of
197 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
198 /// the pairs (x,y) and (y,x) are equivalent.
199 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
200 unsigned CommutableOpIdx1,
201 unsigned CommutableOpIdx2);
202
203public:
204 /// These methods return the opcode of the frame setup/destroy instructions
205 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
206 /// order to abstract away the difference between operating with a frame
207 /// pointer and operating without, through the use of these two instructions.
208 /// A FrameSetup MI in MF implies MFI::AdjustsStack.
209 ///
210 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
211 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
212
213 /// Returns true if the argument is a frame pseudo instruction.
214 bool isFrameInstr(const MachineInstr &I) const {
215 return I.getOpcode() == getCallFrameSetupOpcode() ||
216 I.getOpcode() == getCallFrameDestroyOpcode();
217 }
218
219 /// Returns true if the argument is a frame setup pseudo instruction.
220 bool isFrameSetup(const MachineInstr &I) const {
221 return I.getOpcode() == getCallFrameSetupOpcode();
222 }
223
224 /// Returns size of the frame associated with the given frame instruction.
225 /// For frame setup instruction this is frame that is set up space set up
226 /// after the instruction. For frame destroy instruction this is the frame
227 /// freed by the caller.
228 /// Note, in some cases a call frame (or a part of it) may be prepared prior
229 /// to the frame setup instruction. It occurs in the calls that involve
230 /// inalloca arguments. This function reports only the size of the frame part
231 /// that is set up between the frame setup and destroy pseudo instructions.
232 int64_t getFrameSize(const MachineInstr &I) const {
233 assert(isFrameInstr(I) && "Not a frame instruction");
234 assert(I.getOperand(0).getImm() >= 0);
235 return I.getOperand(i: 0).getImm();
236 }
237
238 /// Returns the total frame size, which is made up of the space set up inside
239 /// the pair of frame start-stop instructions and the space that is set up
240 /// prior to the pair.
241 int64_t getFrameTotalSize(const MachineInstr &I) const {
242 if (isFrameSetup(I)) {
243 assert(I.getOperand(1).getImm() >= 0 &&
244 "Frame size must not be negative");
245 return getFrameSize(I) + I.getOperand(i: 1).getImm();
246 }
247 return getFrameSize(I);
248 }
249
250 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
251 unsigned getReturnOpcode() const { return ReturnOpcode; }
252
253 /// Returns the actual stack pointer adjustment made by an instruction
254 /// as part of a call sequence. By default, only call frame setup/destroy
255 /// instructions adjust the stack, but targets may want to override this
256 /// to enable more fine-grained adjustment, or adjust by a different value.
257 virtual int getSPAdjust(const MachineInstr &MI) const;
258
259 /// Return true if the instruction is a "coalescable" extension instruction.
260 /// That is, it's like a copy where it's legal for the source to overlap the
261 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
262 /// expected the pre-extension value is available as a subreg of the result
263 /// register. This also returns the sub-register index in SubIdx.
264 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
265 Register &DstReg, unsigned &SubIdx) const {
266 return false;
267 }
268
269 /// If the specified machine instruction is a direct
270 /// load from a stack slot, return the virtual or physical register number of
271 /// the destination along with the FrameIndex of the loaded stack slot. If
272 /// not, return 0. This predicate must return 0 if the instruction has
273 /// any side effects other than loading from the stack slot.
274 virtual Register isLoadFromStackSlot(const MachineInstr &MI,
275 int &FrameIndex) const {
276 return 0;
277 }
278
279 /// Optional extension of isLoadFromStackSlot that returns the number of
280 /// bytes loaded from the stack. This must be implemented if a backend
281 /// supports partial stack slot spills/loads to further disambiguate
282 /// what the load does.
283 virtual Register isLoadFromStackSlot(const MachineInstr &MI,
284 int &FrameIndex,
285 unsigned &MemBytes) const {
286 MemBytes = 0;
287 return isLoadFromStackSlot(MI, FrameIndex);
288 }
289
290 /// Check for post-frame ptr elimination stack locations as well.
291 /// This uses a heuristic so it isn't reliable for correctness.
292 virtual Register isLoadFromStackSlotPostFE(const MachineInstr &MI,
293 int &FrameIndex) const {
294 return 0;
295 }
296
297 /// If the specified machine instruction has a load from a stack slot,
298 /// return true along with the FrameIndices of the loaded stack slot and the
299 /// machine mem operands containing the reference.
300 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
301 /// any instructions that loads from the stack. This is just a hint, as some
302 /// cases may be missed.
303 virtual bool hasLoadFromStackSlot(
304 const MachineInstr &MI,
305 SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
306
307 /// If the specified machine instruction is a direct
308 /// store to a stack slot, return the virtual or physical register number of
309 /// the source reg along with the FrameIndex of the loaded stack slot. If
310 /// not, return 0. This predicate must return 0 if the instruction has
311 /// any side effects other than storing to the stack slot.
312 virtual Register isStoreToStackSlot(const MachineInstr &MI,
313 int &FrameIndex) const {
314 return 0;
315 }
316
317 /// Optional extension of isStoreToStackSlot that returns the number of
318 /// bytes stored to the stack. This must be implemented if a backend
319 /// supports partial stack slot spills/loads to further disambiguate
320 /// what the store does.
321 virtual Register isStoreToStackSlot(const MachineInstr &MI,
322 int &FrameIndex,
323 unsigned &MemBytes) const {
324 MemBytes = 0;
325 return isStoreToStackSlot(MI, FrameIndex);
326 }
327
328 /// Check for post-frame ptr elimination stack locations as well.
329 /// This uses a heuristic, so it isn't reliable for correctness.
330 virtual Register isStoreToStackSlotPostFE(const MachineInstr &MI,
331 int &FrameIndex) const {
332 return 0;
333 }
334
335 /// If the specified machine instruction has a store to a stack slot,
336 /// return true along with the FrameIndices of the loaded stack slot and the
337 /// machine mem operands containing the reference.
338 /// If not, return false. Unlike isStoreToStackSlot,
339 /// this returns true for any instructions that stores to the
340 /// stack. This is just a hint, as some cases may be missed.
341 virtual bool hasStoreToStackSlot(
342 const MachineInstr &MI,
343 SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
344
345 /// Return true if the specified machine instruction
346 /// is a copy of one stack slot to another and has no other effect.
347 /// Provide the identity of the two frame indices.
348 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
349 int &SrcFrameIndex) const {
350 return false;
351 }
352
353 /// Compute the size in bytes and offset within a stack slot of a spilled
354 /// register or subregister.
355 ///
356 /// \param [out] Size in bytes of the spilled value.
357 /// \param [out] Offset in bytes within the stack slot.
358 /// \returns true if both Size and Offset are successfully computed.
359 ///
360 /// Not all subregisters have computable spill slots. For example,
361 /// subregisters registers may not be byte-sized, and a pair of discontiguous
362 /// subregisters has no single offset.
363 ///
364 /// Targets with nontrivial bigendian implementations may need to override
365 /// this, particularly to support spilled vector registers.
366 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
367 unsigned &Size, unsigned &Offset,
368 const MachineFunction &MF) const;
369
370 /// Return true if the given instruction is terminator that is unspillable,
371 /// according to isUnspillableTerminatorImpl.
372 bool isUnspillableTerminator(const MachineInstr *MI) const {
373 return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
374 }
375
376 /// Returns the size in bytes of the specified MachineInstr, or ~0U
377 /// when this function is not implemented by a target.
378 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
379 return ~0U;
380 }
381
382 /// Return true if the instruction is as cheap as a move instruction.
383 ///
384 /// Targets for different archs need to override this, and different
385 /// micro-architectures can also be finely tuned inside.
386 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
387 return MI.isAsCheapAsAMove();
388 }
389
390 /// Return true if the instruction should be sunk by MachineSink.
391 ///
392 /// MachineSink determines on its own whether the instruction is safe to sink;
393 /// this gives the target a hook to override the default behavior with regards
394 /// to which instructions should be sunk.
395 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
396
397 /// Return false if the instruction should not be hoisted by MachineLICM.
398 ///
399 /// MachineLICM determines on its own whether the instruction is safe to
400 /// hoist; this gives the target a hook to extend this assessment and prevent
401 /// an instruction being hoisted from a given loop for target specific
402 /// reasons.
403 virtual bool shouldHoist(const MachineInstr &MI,
404 const MachineLoop *FromLoop) const {
405 return true;
406 }
407
408 /// Re-issue the specified 'original' instruction at the
409 /// specific location targeting a new destination register.
410 /// The register in Orig->getOperand(0).getReg() will be substituted by
411 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
412 /// SubIdx.
413 virtual void reMaterialize(MachineBasicBlock &MBB,
414 MachineBasicBlock::iterator MI, Register DestReg,
415 unsigned SubIdx, const MachineInstr &Orig,
416 const TargetRegisterInfo &TRI) const;
417
418 /// Clones instruction or the whole instruction bundle \p Orig and
419 /// insert into \p MBB before \p InsertBefore. The target may update operands
420 /// that are required to be unique.
421 ///
422 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
423 virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
424 MachineBasicBlock::iterator InsertBefore,
425 const MachineInstr &Orig) const;
426
427 /// This method must be implemented by targets that
428 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
429 /// may be able to convert a two-address instruction into one or more true
430 /// three-address instructions on demand. This allows the X86 target (for
431 /// example) to convert ADD and SHL instructions into LEA instructions if they
432 /// would require register copies due to two-addressness.
433 ///
434 /// This method returns a null pointer if the transformation cannot be
435 /// performed, otherwise it returns the last new instruction.
436 ///
437 /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
438 /// replacing \p MI with new instructions, even though this function does not
439 /// remove MI.
440 virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
441 LiveVariables *LV,
442 LiveIntervals *LIS) const {
443 return nullptr;
444 }
445
446 // This constant can be used as an input value of operand index passed to
447 // the method findCommutedOpIndices() to tell the method that the
448 // corresponding operand index is not pre-defined and that the method
449 // can pick any commutable operand.
450 static const unsigned CommuteAnyOperandIndex = ~0U;
451
452 /// This method commutes the operands of the given machine instruction MI.
453 ///
454 /// The operands to be commuted are specified by their indices OpIdx1 and
455 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
456 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
457 /// any arbitrarily chosen commutable operand. If both arguments are set to
458 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
459 /// operands; then commutes them if such operands could be found.
460 ///
461 /// If NewMI is false, MI is modified in place and returned; otherwise, a
462 /// new machine instruction is created and returned.
463 ///
464 /// Do not call this method for a non-commutable instruction or
465 /// for non-commuable operands.
466 /// Even though the instruction is commutable, the method may still
467 /// fail to commute the operands, null pointer is returned in such cases.
468 MachineInstr *
469 commuteInstruction(MachineInstr &MI, bool NewMI = false,
470 unsigned OpIdx1 = CommuteAnyOperandIndex,
471 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
472
473 /// Returns true iff the routine could find two commutable operands in the
474 /// given machine instruction.
475 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
476 /// If any of the INPUT values is set to the special value
477 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
478 /// operand, then returns its index in the corresponding argument.
479 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
480 /// looks for 2 commutable operands.
481 /// If INPUT values refer to some operands of MI, then the method simply
482 /// returns true if the corresponding operands are commutable and returns
483 /// false otherwise.
484 ///
485 /// For example, calling this method this way:
486 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
487 /// findCommutedOpIndices(MI, Op1, Op2);
488 /// can be interpreted as a query asking to find an operand that would be
489 /// commutable with the operand#1.
490 virtual bool findCommutedOpIndices(const MachineInstr &MI,
491 unsigned &SrcOpIdx1,
492 unsigned &SrcOpIdx2) const;
493
494 /// Returns true if the target has a preference on the operands order of
495 /// the given machine instruction. And specify if \p Commute is required to
496 /// get the desired operands order.
497 virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
498 return false;
499 }
500
501 /// A pair composed of a register and a sub-register index.
502 /// Used to give some type checking when modeling Reg:SubReg.
503 struct RegSubRegPair {
504 Register Reg;
505 unsigned SubReg;
506
507 RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
508 : Reg(Reg), SubReg(SubReg) {}
509
510 bool operator==(const RegSubRegPair& P) const {
511 return Reg == P.Reg && SubReg == P.SubReg;
512 }
513 bool operator!=(const RegSubRegPair& P) const {
514 return !(*this == P);
515 }
516 };
517
518 /// A pair composed of a pair of a register and a sub-register index,
519 /// and another sub-register index.
520 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
521 struct RegSubRegPairAndIdx : RegSubRegPair {
522 unsigned SubIdx;
523
524 RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
525 unsigned SubIdx = 0)
526 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
527 };
528
529 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
530 /// and \p DefIdx.
531 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
532 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
533 /// flag are not added to this list.
534 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
535 /// two elements:
536 /// - %1:sub1, sub0
537 /// - %2<:0>, sub1
538 ///
539 /// \returns true if it is possible to build such an input sequence
540 /// with the pair \p MI, \p DefIdx. False otherwise.
541 ///
542 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
543 ///
544 /// \note The generic implementation does not provide any support for
545 /// MI.isRegSequenceLike(). In other words, one has to override
546 /// getRegSequenceLikeInputs for target specific instructions.
547 bool
548 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
549 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
550
551 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
552 /// and \p DefIdx.
553 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
554 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
555 /// - %1:sub1, sub0
556 ///
557 /// \returns true if it is possible to build such an input sequence
558 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
559 /// False otherwise.
560 ///
561 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
562 ///
563 /// \note The generic implementation does not provide any support for
564 /// MI.isExtractSubregLike(). In other words, one has to override
565 /// getExtractSubregLikeInputs for target specific instructions.
566 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
567 RegSubRegPairAndIdx &InputReg) const;
568
569 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
570 /// and \p DefIdx.
571 /// \p [out] BaseReg and \p [out] InsertedReg contain
572 /// the equivalent inputs of INSERT_SUBREG.
573 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
574 /// - BaseReg: %0:sub0
575 /// - InsertedReg: %1:sub1, sub3
576 ///
577 /// \returns true if it is possible to build such an input sequence
578 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
579 /// False otherwise.
580 ///
581 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
582 ///
583 /// \note The generic implementation does not provide any support for
584 /// MI.isInsertSubregLike(). In other words, one has to override
585 /// getInsertSubregLikeInputs for target specific instructions.
586 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
587 RegSubRegPair &BaseReg,
588 RegSubRegPairAndIdx &InsertedReg) const;
589
590 /// Return true if two machine instructions would produce identical values.
591 /// By default, this is only true when the two instructions
592 /// are deemed identical except for defs. If this function is called when the
593 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
594 /// aggressive checks.
595 virtual bool produceSameValue(const MachineInstr &MI0,
596 const MachineInstr &MI1,
597 const MachineRegisterInfo *MRI = nullptr) const;
598
599 /// \returns true if a branch from an instruction with opcode \p BranchOpc
600 /// bytes is capable of jumping to a position \p BrOffset bytes away.
601 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
602 int64_t BrOffset) const {
603 llvm_unreachable("target did not implement");
604 }
605
606 /// \returns The block that branch instruction \p MI jumps to.
607 virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
608 llvm_unreachable("target did not implement");
609 }
610
611 /// Insert an unconditional indirect branch at the end of \p MBB to \p
612 /// NewDestBB. Optionally, insert the clobbered register restoring in \p
613 /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
614 /// the offset of the position to insert the new branch.
615 virtual void insertIndirectBranch(MachineBasicBlock &MBB,
616 MachineBasicBlock &NewDestBB,
617 MachineBasicBlock &RestoreBB,
618 const DebugLoc &DL, int64_t BrOffset = 0,
619 RegScavenger *RS = nullptr) const {
620 llvm_unreachable("target did not implement");
621 }
622
623 /// Analyze the branching code at the end of MBB, returning
624 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
625 /// implemented for a target). Upon success, this returns false and returns
626 /// with the following information in various cases:
627 ///
628 /// 1. If this block ends with no branches (it just falls through to its succ)
629 /// just return false, leaving TBB/FBB null.
630 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
631 /// the destination block.
632 /// 3. If this block ends with a conditional branch and it falls through to a
633 /// successor block, it sets TBB to be the branch destination block and a
634 /// list of operands that evaluate the condition. These operands can be
635 /// passed to other TargetInstrInfo methods to create new branches.
636 /// 4. If this block ends with a conditional branch followed by an
637 /// unconditional branch, it returns the 'true' destination in TBB, the
638 /// 'false' destination in FBB, and a list of operands that evaluate the
639 /// condition. These operands can be passed to other TargetInstrInfo
640 /// methods to create new branches.
641 ///
642 /// Note that removeBranch and insertBranch must be implemented to support
643 /// cases where this method returns success.
644 ///
645 /// If AllowModify is true, then this routine is allowed to modify the basic
646 /// block (e.g. delete instructions after the unconditional branch).
647 ///
648 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
649 /// before calling this function.
650 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
651 MachineBasicBlock *&FBB,
652 SmallVectorImpl<MachineOperand> &Cond,
653 bool AllowModify = false) const {
654 return true;
655 }
656
657 /// Represents a predicate at the MachineFunction level. The control flow a
658 /// MachineBranchPredicate represents is:
659 ///
660 /// Reg = LHS `Predicate` RHS == ConditionDef
661 /// if Reg then goto TrueDest else goto FalseDest
662 ///
663 struct MachineBranchPredicate {
664 enum ComparePredicate {
665 PRED_EQ, // True if two values are equal
666 PRED_NE, // True if two values are not equal
667 PRED_INVALID // Sentinel value
668 };
669
670 ComparePredicate Predicate = PRED_INVALID;
671 MachineOperand LHS = MachineOperand::CreateImm(Val: 0);
672 MachineOperand RHS = MachineOperand::CreateImm(Val: 0);
673 MachineBasicBlock *TrueDest = nullptr;
674 MachineBasicBlock *FalseDest = nullptr;
675 MachineInstr *ConditionDef = nullptr;
676
677 /// SingleUseCondition is true if ConditionDef is dead except for the
678 /// branch(es) at the end of the basic block.
679 ///
680 bool SingleUseCondition = false;
681
682 explicit MachineBranchPredicate() = default;
683 };
684
685 /// Analyze the branching code at the end of MBB and parse it into the
686 /// MachineBranchPredicate structure if possible. Returns false on success
687 /// and true on failure.
688 ///
689 /// If AllowModify is true, then this routine is allowed to modify the basic
690 /// block (e.g. delete instructions after the unconditional branch).
691 ///
692 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
693 MachineBranchPredicate &MBP,
694 bool AllowModify = false) const {
695 return true;
696 }
697
698 /// Remove the branching code at the end of the specific MBB.
699 /// This is only invoked in cases where analyzeBranch returns success. It
700 /// returns the number of instructions that were removed.
701 /// If \p BytesRemoved is non-null, report the change in code size from the
702 /// removed instructions.
703 virtual unsigned removeBranch(MachineBasicBlock &MBB,
704 int *BytesRemoved = nullptr) const {
705 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
706 }
707
708 /// Insert branch code into the end of the specified MachineBasicBlock. The
709 /// operands to this method are the same as those returned by analyzeBranch.
710 /// This is only invoked in cases where analyzeBranch returns success. It
711 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
712 /// report the change in code size from the added instructions.
713 ///
714 /// It is also invoked by tail merging to add unconditional branches in
715 /// cases where analyzeBranch doesn't apply because there was no original
716 /// branch to analyze. At least this much must be implemented, else tail
717 /// merging needs to be disabled.
718 ///
719 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
720 /// before calling this function.
721 virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
722 MachineBasicBlock *FBB,
723 ArrayRef<MachineOperand> Cond,
724 const DebugLoc &DL,
725 int *BytesAdded = nullptr) const {
726 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
727 }
728
729 unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
730 MachineBasicBlock *DestBB,
731 const DebugLoc &DL,
732 int *BytesAdded = nullptr) const {
733 return insertBranch(MBB, TBB: DestBB, FBB: nullptr, Cond: ArrayRef<MachineOperand>(), DL,
734 BytesAdded);
735 }
736
737 /// Object returned by analyzeLoopForPipelining. Allows software pipelining
738 /// implementations to query attributes of the loop being pipelined and to
739 /// apply target-specific updates to the loop once pipelining is complete.
740 class PipelinerLoopInfo {
741 public:
742 virtual ~PipelinerLoopInfo();
743 /// Return true if the given instruction should not be pipelined and should
744 /// be ignored. An example could be a loop comparison, or induction variable
745 /// update with no users being pipelined.
746 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
747
748 /// Return true if the proposed schedule should used. Otherwise return
749 /// false to not pipeline the loop. This function should be used to ensure
750 /// that pipelined loops meet target-specific quality heuristics.
751 virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
752 return true;
753 }
754
755 /// Create a condition to determine if the trip count of the loop is greater
756 /// than TC, where TC is always one more than for the previous prologue or
757 /// 0 if this is being called for the outermost prologue.
758 ///
759 /// If the trip count is statically known to be greater than TC, return
760 /// true. If the trip count is statically known to be not greater than TC,
761 /// return false. Otherwise return nullopt and fill out Cond with the test
762 /// condition.
763 ///
764 /// Note: This hook is guaranteed to be called from the innermost to the
765 /// outermost prologue of the loop being software pipelined.
766 virtual std::optional<bool>
767 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
768 SmallVectorImpl<MachineOperand> &Cond) = 0;
769
770 /// Modify the loop such that the trip count is
771 /// OriginalTC + TripCountAdjust.
772 virtual void adjustTripCount(int TripCountAdjust) = 0;
773
774 /// Called when the loop's preheader has been modified to NewPreheader.
775 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
776
777 /// Called when the loop is being removed. Any instructions in the preheader
778 /// should be removed.
779 ///
780 /// Once this function is called, no other functions on this object are
781 /// valid; the loop has been removed.
782 virtual void disposed() = 0;
783 };
784
785 /// Analyze loop L, which must be a single-basic-block loop, and if the
786 /// conditions can be understood enough produce a PipelinerLoopInfo object.
787 virtual std::unique_ptr<PipelinerLoopInfo>
788 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
789 return nullptr;
790 }
791
792 /// Analyze the loop code, return true if it cannot be understood. Upon
793 /// success, this function returns false and returns information about the
794 /// induction variable and compare instruction used at the end.
795 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
796 MachineInstr *&CmpInst) const {
797 return true;
798 }
799
800 /// Generate code to reduce the loop iteration by one and check if the loop
801 /// is finished. Return the value/register of the new loop count. We need
802 /// this function when peeling off one or more iterations of a loop. This
803 /// function assumes the nth iteration is peeled first.
804 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
805 MachineBasicBlock &PreHeader,
806 MachineInstr *IndVar, MachineInstr &Cmp,
807 SmallVectorImpl<MachineOperand> &Cond,
808 SmallVectorImpl<MachineInstr *> &PrevInsts,
809 unsigned Iter, unsigned MaxIter) const {
810 llvm_unreachable("Target didn't implement ReduceLoopCount");
811 }
812
813 /// Delete the instruction OldInst and everything after it, replacing it with
814 /// an unconditional branch to NewDest. This is used by the tail merging pass.
815 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
816 MachineBasicBlock *NewDest) const;
817
818 /// Return true if it's legal to split the given basic
819 /// block at the specified instruction (i.e. instruction would be the start
820 /// of a new basic block).
821 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
822 MachineBasicBlock::iterator MBBI) const {
823 return true;
824 }
825
826 /// Return true if it's profitable to predicate
827 /// instructions with accumulated instruction latency of "NumCycles"
828 /// of the specified basic block, where the probability of the instructions
829 /// being executed is given by Probability, and Confidence is a measure
830 /// of our confidence that it will be properly predicted.
831 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
832 unsigned ExtraPredCycles,
833 BranchProbability Probability) const {
834 return false;
835 }
836
837 /// Second variant of isProfitableToIfCvt. This one
838 /// checks for the case where two basic blocks from true and false path
839 /// of a if-then-else (diamond) are predicated on mutually exclusive
840 /// predicates, where the probability of the true path being taken is given
841 /// by Probability, and Confidence is a measure of our confidence that it
842 /// will be properly predicted.
843 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
844 unsigned ExtraTCycles,
845 MachineBasicBlock &FMBB, unsigned NumFCycles,
846 unsigned ExtraFCycles,
847 BranchProbability Probability) const {
848 return false;
849 }
850
851 /// Return true if it's profitable for if-converter to duplicate instructions
852 /// of specified accumulated instruction latencies in the specified MBB to
853 /// enable if-conversion.
854 /// The probability of the instructions being executed is given by
855 /// Probability, and Confidence is a measure of our confidence that it
856 /// will be properly predicted.
857 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
858 unsigned NumCycles,
859 BranchProbability Probability) const {
860 return false;
861 }
862
863 /// Return the increase in code size needed to predicate a contiguous run of
864 /// NumInsts instructions.
865 virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
866 unsigned NumInsts) const {
867 return 0;
868 }
869
870 /// Return an estimate for the code size reduction (in bytes) which will be
871 /// caused by removing the given branch instruction during if-conversion.
872 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
873 return getInstSizeInBytes(MI);
874 }
875
876 /// Return true if it's profitable to unpredicate
877 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
878 /// exclusive predicates.
879 /// e.g.
880 /// subeq r0, r1, #1
881 /// addne r0, r1, #1
882 /// =>
883 /// sub r0, r1, #1
884 /// addne r0, r1, #1
885 ///
886 /// This may be profitable is conditional instructions are always executed.
887 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
888 MachineBasicBlock &FMBB) const {
889 return false;
890 }
891
892 /// Return true if it is possible to insert a select
893 /// instruction that chooses between TrueReg and FalseReg based on the
894 /// condition code in Cond.
895 ///
896 /// When successful, also return the latency in cycles from TrueReg,
897 /// FalseReg, and Cond to the destination register. In most cases, a select
898 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
899 ///
900 /// Some x86 implementations have 2-cycle cmov instructions.
901 ///
902 /// @param MBB Block where select instruction would be inserted.
903 /// @param Cond Condition returned by analyzeBranch.
904 /// @param DstReg Virtual dest register that the result should write to.
905 /// @param TrueReg Virtual register to select when Cond is true.
906 /// @param FalseReg Virtual register to select when Cond is false.
907 /// @param CondCycles Latency from Cond+Branch to select output.
908 /// @param TrueCycles Latency from TrueReg to select output.
909 /// @param FalseCycles Latency from FalseReg to select output.
910 virtual bool canInsertSelect(const MachineBasicBlock &MBB,
911 ArrayRef<MachineOperand> Cond, Register DstReg,
912 Register TrueReg, Register FalseReg,
913 int &CondCycles, int &TrueCycles,
914 int &FalseCycles) const {
915 return false;
916 }
917
918 /// Insert a select instruction into MBB before I that will copy TrueReg to
919 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
920 ///
921 /// This function can only be called after canInsertSelect() returned true.
922 /// The condition in Cond comes from analyzeBranch, and it can be assumed
923 /// that the same flags or registers required by Cond are available at the
924 /// insertion point.
925 ///
926 /// @param MBB Block where select instruction should be inserted.
927 /// @param I Insertion point.
928 /// @param DL Source location for debugging.
929 /// @param DstReg Virtual register to be defined by select instruction.
930 /// @param Cond Condition as computed by analyzeBranch.
931 /// @param TrueReg Virtual register to copy when Cond is true.
932 /// @param FalseReg Virtual register to copy when Cons is false.
933 virtual void insertSelect(MachineBasicBlock &MBB,
934 MachineBasicBlock::iterator I, const DebugLoc &DL,
935 Register DstReg, ArrayRef<MachineOperand> Cond,
936 Register TrueReg, Register FalseReg) const {
937 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
938 }
939
940 /// Analyze the given select instruction, returning true if
941 /// it cannot be understood. It is assumed that MI->isSelect() is true.
942 ///
943 /// When successful, return the controlling condition and the operands that
944 /// determine the true and false result values.
945 ///
946 /// Result = SELECT Cond, TrueOp, FalseOp
947 ///
948 /// Some targets can optimize select instructions, for example by predicating
949 /// the instruction defining one of the operands. Such targets should set
950 /// Optimizable.
951 ///
952 /// @param MI Select instruction to analyze.
953 /// @param Cond Condition controlling the select.
954 /// @param TrueOp Operand number of the value selected when Cond is true.
955 /// @param FalseOp Operand number of the value selected when Cond is false.
956 /// @param Optimizable Returned as true if MI is optimizable.
957 /// @returns False on success.
958 virtual bool analyzeSelect(const MachineInstr &MI,
959 SmallVectorImpl<MachineOperand> &Cond,
960 unsigned &TrueOp, unsigned &FalseOp,
961 bool &Optimizable) const {
962 assert(MI.getDesc().isSelect() && "MI must be a select instruction");
963 return true;
964 }
965
966 /// Given a select instruction that was understood by
967 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
968 /// merging it with one of its operands. Returns NULL on failure.
969 ///
970 /// When successful, returns the new select instruction. The client is
971 /// responsible for deleting MI.
972 ///
973 /// If both sides of the select can be optimized, PreferFalse is used to pick
974 /// a side.
975 ///
976 /// @param MI Optimizable select instruction.
977 /// @param NewMIs Set that record all MIs in the basic block up to \p
978 /// MI. Has to be updated with any newly created MI or deleted ones.
979 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
980 /// @returns Optimized instruction or NULL.
981 virtual MachineInstr *optimizeSelect(MachineInstr &MI,
982 SmallPtrSetImpl<MachineInstr *> &NewMIs,
983 bool PreferFalse = false) const {
984 // This function must be implemented if Optimizable is ever set.
985 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
986 }
987
988 /// Emit instructions to copy a pair of physical registers.
989 ///
990 /// This function should support copies within any legal register class as
991 /// well as any cross-class copies created during instruction selection.
992 ///
993 /// The source and destination registers may overlap, which may require a
994 /// careful implementation when multiple copy instructions are required for
995 /// large registers. See for example the ARM target.
996 virtual void copyPhysReg(MachineBasicBlock &MBB,
997 MachineBasicBlock::iterator MI, const DebugLoc &DL,
998 MCRegister DestReg, MCRegister SrcReg,
999 bool KillSrc) const {
1000 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
1001 }
1002
1003 /// Allow targets to tell MachineVerifier whether a specific register
1004 /// MachineOperand can be used as part of PC-relative addressing.
1005 /// PC-relative addressing modes in many CISC architectures contain
1006 /// (non-PC) registers as offsets or scaling values, which inherently
1007 /// tags the corresponding MachineOperand with OPERAND_PCREL.
1008 ///
1009 /// @param MO The MachineOperand in question. MO.isReg() should always
1010 /// be true.
1011 /// @return Whether this operand is allowed to be used PC-relatively.
1012 virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1013 return false;
1014 }
1015
1016 /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump
1017 /// using a jump table, otherwise -1.
1018 virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; }
1019
1020protected:
1021 /// Target-dependent implementation for IsCopyInstr.
1022 /// If the specific machine instruction is a instruction that moves/copies
1023 /// value from one register to another register return destination and source
1024 /// registers as machine operands.
1025 virtual std::optional<DestSourcePair>
1026 isCopyInstrImpl(const MachineInstr &MI) const {
1027 return std::nullopt;
1028 }
1029
1030 virtual std::optional<DestSourcePair>
1031 isCopyLikeInstrImpl(const MachineInstr &MI) const {
1032 return std::nullopt;
1033 }
1034
1035 /// Return true if the given terminator MI is not expected to spill. This
1036 /// sets the live interval as not spillable and adjusts phi node lowering to
1037 /// not introduce copies after the terminator. Use with care, these are
1038 /// currently used for hardware loop intrinsics in very controlled situations,
1039 /// created prior to registry allocation in loops that only have single phi
1040 /// users for the terminators value. They may run out of registers if not used
1041 /// carefully.
1042 virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1043 return false;
1044 }
1045
1046public:
1047 /// If the specific machine instruction is a instruction that moves/copies
1048 /// value from one register to another register return destination and source
1049 /// registers as machine operands.
1050 /// For COPY-instruction the method naturally returns destination and source
1051 /// registers as machine operands, for all other instructions the method calls
1052 /// target-dependent implementation.
1053 std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1054 if (MI.isCopy()) {
1055 return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)};
1056 }
1057 return isCopyInstrImpl(MI);
1058 }
1059
1060 // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but
1061 // ultimately generates a copy instruction.
1062 std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const {
1063 if (auto IsCopyInstr = isCopyInstr(MI))
1064 return IsCopyInstr;
1065 return isCopyLikeInstrImpl(MI);
1066 }
1067
1068 bool isFullCopyInstr(const MachineInstr &MI) const {
1069 auto DestSrc = isCopyInstr(MI);
1070 if (!DestSrc)
1071 return false;
1072
1073 const MachineOperand *DestRegOp = DestSrc->Destination;
1074 const MachineOperand *SrcRegOp = DestSrc->Source;
1075 return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg();
1076 }
1077
1078 /// If the specific machine instruction is an instruction that adds an
1079 /// immediate value and a register, and stores the result in the given
1080 /// register \c Reg, return a pair of the source register and the offset
1081 /// which has been added.
1082 virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1083 Register Reg) const {
1084 return std::nullopt;
1085 }
1086
1087 /// Returns true if MI is an instruction that defines Reg to have a constant
1088 /// value and the value is recorded in ImmVal. The ImmVal is a result that
1089 /// should be interpreted as modulo size of Reg.
1090 virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1091 const Register Reg,
1092 int64_t &ImmVal) const {
1093 return false;
1094 }
1095
1096 /// Store the specified register of the given register class to the specified
1097 /// stack frame index. The store instruction is to be added to the given
1098 /// machine basic block before the specified machine instruction. If isKill
1099 /// is true, the register operand is the last use and must be marked kill. If
1100 /// \p SrcReg is being directly spilled as part of assigning a virtual
1101 /// register, \p VReg is the register being assigned. This additional register
1102 /// argument is needed for certain targets when invoked from RegAllocFast to
1103 /// map the spilled physical register to its virtual register. A null register
1104 /// can be passed elsewhere.
1105 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1106 MachineBasicBlock::iterator MI,
1107 Register SrcReg, bool isKill, int FrameIndex,
1108 const TargetRegisterClass *RC,
1109 const TargetRegisterInfo *TRI,
1110 Register VReg) const {
1111 llvm_unreachable("Target didn't implement "
1112 "TargetInstrInfo::storeRegToStackSlot!");
1113 }
1114
1115 /// Load the specified register of the given register class from the specified
1116 /// stack frame index. The load instruction is to be added to the given
1117 /// machine basic block before the specified machine instruction. If \p
1118 /// DestReg is being directly reloaded as part of assigning a virtual
1119 /// register, \p VReg is the register being assigned. This additional register
1120 /// argument is needed for certain targets when invoked from RegAllocFast to
1121 /// map the loaded physical register to its virtual register. A null register
1122 /// can be passed elsewhere.
1123 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1124 MachineBasicBlock::iterator MI,
1125 Register DestReg, int FrameIndex,
1126 const TargetRegisterClass *RC,
1127 const TargetRegisterInfo *TRI,
1128 Register VReg) const {
1129 llvm_unreachable("Target didn't implement "
1130 "TargetInstrInfo::loadRegFromStackSlot!");
1131 }
1132
1133 /// This function is called for all pseudo instructions
1134 /// that remain after register allocation. Many pseudo instructions are
1135 /// created to help register allocation. This is the place to convert them
1136 /// into real instructions. The target can edit MI in place, or it can insert
1137 /// new instructions and erase MI. The function should return true if
1138 /// anything was changed.
1139 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1140
1141 /// Check whether the target can fold a load that feeds a subreg operand
1142 /// (or a subreg operand that feeds a store).
1143 /// For example, X86 may want to return true if it can fold
1144 /// movl (%esp), %eax
1145 /// subb, %al, ...
1146 /// Into:
1147 /// subb (%esp), ...
1148 ///
1149 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1150 /// reject subregs - but since this behavior used to be enforced in the
1151 /// target-independent code, moving this responsibility to the targets
1152 /// has the potential of causing nasty silent breakage in out-of-tree targets.
1153 virtual bool isSubregFoldable() const { return false; }
1154
1155 /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1156 /// operands which can't be folded into stack references. Operands outside
1157 /// of the range are most likely foldable but it is not guaranteed.
1158 /// These instructions are unique in that stack references for some operands
1159 /// have the same execution cost (e.g. none) as the unfolded register forms.
1160 /// The ranged return is guaranteed to include all operands which can't be
1161 /// folded at zero cost.
1162 virtual std::pair<unsigned, unsigned>
1163 getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1164
1165 /// Attempt to fold a load or store of the specified stack
1166 /// slot into the specified machine instruction for the specified operand(s).
1167 /// If this is possible, a new instruction is returned with the specified
1168 /// operand folded, otherwise NULL is returned.
1169 /// The new instruction is inserted before MI, and the client is responsible
1170 /// for removing the old instruction.
1171 /// If VRM is passed, the assigned physregs can be inspected by target to
1172 /// decide on using an opcode (note that those assignments can still change).
1173 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1174 int FI,
1175 LiveIntervals *LIS = nullptr,
1176 VirtRegMap *VRM = nullptr) const;
1177
1178 /// Same as the previous version except it allows folding of any load and
1179 /// store from / to any address, not just from a specific stack slot.
1180 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1181 MachineInstr &LoadMI,
1182 LiveIntervals *LIS = nullptr) const;
1183
1184 /// This function defines the logic to lower COPY instruction to
1185 /// target specific instruction(s).
1186 void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const;
1187
1188 /// Return true when there is potentially a faster code sequence
1189 /// for an instruction chain ending in \p Root. All potential patterns are
1190 /// returned in the \p Pattern vector. Pattern should be sorted in priority
1191 /// order since the pattern evaluator stops checking as soon as it finds a
1192 /// faster sequence.
1193 /// \param Root - Instruction that could be combined with one of its operands
1194 /// \param Patterns - Vector of possible combination patterns
1195 virtual bool getMachineCombinerPatterns(MachineInstr &Root,
1196 SmallVectorImpl<unsigned> &Patterns,
1197 bool DoRegPressureReduce) const;
1198
1199 /// Return true if target supports reassociation of instructions in machine
1200 /// combiner pass to reduce register pressure for a given BB.
1201 virtual bool
1202 shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
1203 const RegisterClassInfo *RegClassInfo) const {
1204 return false;
1205 }
1206
1207 /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1208 virtual void
1209 finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern,
1210 SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1211
1212 /// Return true when a code sequence can improve throughput. It
1213 /// should be called only for instructions in loops.
1214 /// \param Pattern - combiner pattern
1215 virtual bool isThroughputPattern(unsigned Pattern) const;
1216
1217 /// Return the objective of a combiner pattern.
1218 /// \param Pattern - combiner pattern
1219 virtual CombinerObjective getCombinerObjective(unsigned Pattern) const;
1220
1221 /// Return true if the input \P Inst is part of a chain of dependent ops
1222 /// that are suitable for reassociation, otherwise return false.
1223 /// If the instruction's operands must be commuted to have a previous
1224 /// instruction of the same type define the first source operand, \P Commuted
1225 /// will be set to true.
1226 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1227
1228 /// Return true when \P Inst is both associative and commutative. If \P Invert
1229 /// is true, then the inverse of \P Inst operation must be tested.
1230 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
1231 bool Invert = false) const {
1232 return false;
1233 }
1234
1235 /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1236 /// for sub and vice versa).
1237 virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1238 return std::nullopt;
1239 }
1240
1241 /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1242 bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1243
1244 /// Return true when \P Inst has reassociable operands in the same \P MBB.
1245 virtual bool hasReassociableOperands(const MachineInstr &Inst,
1246 const MachineBasicBlock *MBB) const;
1247
1248 /// Return true when \P Inst has reassociable sibling.
1249 virtual bool hasReassociableSibling(const MachineInstr &Inst,
1250 bool &Commuted) const;
1251
1252 /// When getMachineCombinerPatterns() finds patterns, this function generates
1253 /// the instructions that could replace the original code sequence. The client
1254 /// has to decide whether the actual replacement is beneficial or not.
1255 /// \param Root - Instruction that could be combined with one of its operands
1256 /// \param Pattern - Combination pattern for Root
1257 /// \param InsInstrs - Vector of new instructions that implement P
1258 /// \param DelInstrs - Old instructions, including Root, that could be
1259 /// replaced by InsInstr
1260 /// \param InstIdxForVirtReg - map of virtual register to instruction in
1261 /// InsInstr that defines it
1262 virtual void genAlternativeCodeSequence(
1263 MachineInstr &Root, unsigned Pattern,
1264 SmallVectorImpl<MachineInstr *> &InsInstrs,
1265 SmallVectorImpl<MachineInstr *> &DelInstrs,
1266 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1267
1268 /// When calculate the latency of the root instruction, accumulate the
1269 /// latency of the sequence to the root latency.
1270 /// \param Root - Instruction that could be combined with one of its operands
1271 virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const {
1272 return true;
1273 }
1274
1275 /// The returned array encodes the operand index for each parameter because
1276 /// the operands may be commuted; the operand indices for associative
1277 /// operations might also be target-specific. Each element specifies the index
1278 /// of {Prev, A, B, X, Y}.
1279 virtual void
1280 getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern,
1281 std::array<unsigned, 5> &OperandIndices) const;
1282
1283 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1284 /// reduce critical path length.
1285 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern,
1286 SmallVectorImpl<MachineInstr *> &InsInstrs,
1287 SmallVectorImpl<MachineInstr *> &DelInstrs,
1288 ArrayRef<unsigned> OperandIndices,
1289 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1290
1291 /// Reassociation of some instructions requires inverse operations (e.g.
1292 /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1293 /// (new root opcode, new prev opcode) that must be used to reassociate \P
1294 /// Root and \P Prev accoring to \P Pattern.
1295 std::pair<unsigned, unsigned>
1296 getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root,
1297 const MachineInstr &Prev) const;
1298
1299 /// The limit on resource length extension we accept in MachineCombiner Pass.
1300 virtual int getExtendResourceLenLimit() const { return 0; }
1301
1302 /// This is an architecture-specific helper function of reassociateOps.
1303 /// Set special operand attributes for new instructions after reassociation.
1304 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1305 MachineInstr &NewMI1,
1306 MachineInstr &NewMI2) const {}
1307
1308 /// Return true when a target supports MachineCombiner.
1309 virtual bool useMachineCombiner() const { return false; }
1310
1311 /// Return a strategy that MachineCombiner must use when creating traces.
1312 virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const;
1313
1314 /// Return true if the given SDNode can be copied during scheduling
1315 /// even if it has glue.
1316 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1317
1318protected:
1319 /// Target-dependent implementation for foldMemoryOperand.
1320 /// Target-independent code in foldMemoryOperand will
1321 /// take care of adding a MachineMemOperand to the newly created instruction.
1322 /// The instruction and any auxiliary instructions necessary will be inserted
1323 /// at InsertPt.
1324 virtual MachineInstr *
1325 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1326 ArrayRef<unsigned> Ops,
1327 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1328 LiveIntervals *LIS = nullptr,
1329 VirtRegMap *VRM = nullptr) const {
1330 return nullptr;
1331 }
1332
1333 /// Target-dependent implementation for foldMemoryOperand.
1334 /// Target-independent code in foldMemoryOperand will
1335 /// take care of adding a MachineMemOperand to the newly created instruction.
1336 /// The instruction and any auxiliary instructions necessary will be inserted
1337 /// at InsertPt.
1338 virtual MachineInstr *foldMemoryOperandImpl(
1339 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1340 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1341 LiveIntervals *LIS = nullptr) const {
1342 return nullptr;
1343 }
1344
1345 /// Target-dependent implementation of getRegSequenceInputs.
1346 ///
1347 /// \returns true if it is possible to build the equivalent
1348 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1349 ///
1350 /// \pre MI.isRegSequenceLike().
1351 ///
1352 /// \see TargetInstrInfo::getRegSequenceInputs.
1353 virtual bool getRegSequenceLikeInputs(
1354 const MachineInstr &MI, unsigned DefIdx,
1355 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1356 return false;
1357 }
1358
1359 /// Target-dependent implementation of getExtractSubregInputs.
1360 ///
1361 /// \returns true if it is possible to build the equivalent
1362 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1363 ///
1364 /// \pre MI.isExtractSubregLike().
1365 ///
1366 /// \see TargetInstrInfo::getExtractSubregInputs.
1367 virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1368 unsigned DefIdx,
1369 RegSubRegPairAndIdx &InputReg) const {
1370 return false;
1371 }
1372
1373 /// Target-dependent implementation of getInsertSubregInputs.
1374 ///
1375 /// \returns true if it is possible to build the equivalent
1376 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1377 ///
1378 /// \pre MI.isInsertSubregLike().
1379 ///
1380 /// \see TargetInstrInfo::getInsertSubregInputs.
1381 virtual bool
1382 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1383 RegSubRegPair &BaseReg,
1384 RegSubRegPairAndIdx &InsertedReg) const {
1385 return false;
1386 }
1387
1388public:
1389 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1390 /// a store or a load and a store into two or more instruction. If this is
1391 /// possible, returns true as well as the new instructions by reference.
1392 virtual bool
1393 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1394 bool UnfoldLoad, bool UnfoldStore,
1395 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1396 return false;
1397 }
1398
1399 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1400 SmallVectorImpl<SDNode *> &NewNodes) const {
1401 return false;
1402 }
1403
1404 /// Returns the opcode of the would be new
1405 /// instruction after load / store are unfolded from an instruction of the
1406 /// specified opcode. It returns zero if the specified unfolding is not
1407 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1408 /// index of the operand which will hold the register holding the loaded
1409 /// value.
1410 virtual unsigned
1411 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1412 unsigned *LoadRegIndex = nullptr) const {
1413 return 0;
1414 }
1415
1416 /// This is used by the pre-regalloc scheduler to determine if two loads are
1417 /// loading from the same base address. It should only return true if the base
1418 /// pointers are the same and the only differences between the two addresses
1419 /// are the offset. It also returns the offsets by reference.
1420 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1421 int64_t &Offset1,
1422 int64_t &Offset2) const {
1423 return false;
1424 }
1425
1426 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1427 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1428 /// On some targets if two loads are loading from
1429 /// addresses in the same cache line, it's better if they are scheduled
1430 /// together. This function takes two integers that represent the load offsets
1431 /// from the common base address. It returns true if it decides it's desirable
1432 /// to schedule the two loads together. "NumLoads" is the number of loads that
1433 /// have already been scheduled after Load1.
1434 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1435 int64_t Offset1, int64_t Offset2,
1436 unsigned NumLoads) const {
1437 return false;
1438 }
1439
1440 /// Get the base operand and byte offset of an instruction that reads/writes
1441 /// memory. This is a convenience function for callers that are only prepared
1442 /// to handle a single base operand.
1443 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1444 /// abstraction that supports negative offsets.
1445 bool getMemOperandWithOffset(const MachineInstr &MI,
1446 const MachineOperand *&BaseOp, int64_t &Offset,
1447 bool &OffsetIsScalable,
1448 const TargetRegisterInfo *TRI) const;
1449
1450 /// Get zero or more base operands and the byte offset of an instruction that
1451 /// reads/writes memory. Note that there may be zero base operands if the
1452 /// instruction accesses a constant address.
1453 /// It returns false if MI does not read/write memory.
1454 /// It returns false if base operands and offset could not be determined.
1455 /// It is not guaranteed to always recognize base operands and offsets in all
1456 /// cases.
1457 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1458 /// abstraction that supports negative offsets.
1459 virtual bool getMemOperandsWithOffsetWidth(
1460 const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1461 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
1462 const TargetRegisterInfo *TRI) const {
1463 return false;
1464 }
1465
1466 /// Return true if the instruction contains a base register and offset. If
1467 /// true, the function also sets the operand position in the instruction
1468 /// for the base register and offset.
1469 virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1470 unsigned &BasePos,
1471 unsigned &OffsetPos) const {
1472 return false;
1473 }
1474
1475 /// Target dependent implementation to get the values constituting the address
1476 /// MachineInstr that is accessing memory. These values are returned as a
1477 /// struct ExtAddrMode which contains all relevant information to make up the
1478 /// address.
1479 virtual std::optional<ExtAddrMode>
1480 getAddrModeFromMemoryOp(const MachineInstr &MemI,
1481 const TargetRegisterInfo *TRI) const {
1482 return std::nullopt;
1483 }
1484
1485 /// Check if it's possible and beneficial to fold the addressing computation
1486 /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The
1487 /// memory instruction is a user of the virtual register `Reg`, which in turn
1488 /// is the ultimate destination of zero or more COPY instructions from the
1489 /// output register of `AddrI`.
1490 /// Return the adddressing mode after folding in `AM`.
1491 virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg,
1492 const MachineInstr &AddrI,
1493 ExtAddrMode &AM) const {
1494 return false;
1495 }
1496
1497 /// Emit a load/store instruction with the same value register as `MemI`, but
1498 /// using the address from `AM`. The addressing mode must have been obtained
1499 /// from `canFoldIntoAddr` for the same memory instruction.
1500 virtual MachineInstr *emitLdStWithAddr(MachineInstr &MemI,
1501 const ExtAddrMode &AM) const {
1502 llvm_unreachable("target did not implement emitLdStWithAddr()");
1503 }
1504
1505 /// Returns true if MI's Def is NullValueReg, and the MI
1506 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1507 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1508 /// function can return true even if becomes zero. Specifically cases such as
1509 /// NullValueReg = shl NullValueReg, 63.
1510 virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1511 const Register NullValueReg,
1512 const TargetRegisterInfo *TRI) const {
1513 return false;
1514 }
1515
1516 /// If the instruction is an increment of a constant value, return the amount.
1517 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1518 return false;
1519 }
1520
1521 /// Returns true if the two given memory operations should be scheduled
1522 /// adjacent. Note that you have to add:
1523 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1524 /// or
1525 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1526 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1527 ///
1528 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1529 /// \p Offset1 and \p Offset2 are the byte offsets for the memory
1530 /// operations.
1531 /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is
1532 /// scaled by a runtime quantity.
1533 /// \p ClusterSize is the number of operations in the resulting load/store
1534 /// cluster if this hook returns true.
1535 /// \p NumBytes is the number of bytes that will be loaded from all the
1536 /// clustered loads if this hook returns true.
1537 virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1538 int64_t Offset1, bool OffsetIsScalable1,
1539 ArrayRef<const MachineOperand *> BaseOps2,
1540 int64_t Offset2, bool OffsetIsScalable2,
1541 unsigned ClusterSize,
1542 unsigned NumBytes) const {
1543 llvm_unreachable("target did not implement shouldClusterMemOps()");
1544 }
1545
1546 /// Reverses the branch condition of the specified condition list,
1547 /// returning false on success and true if it cannot be reversed.
1548 virtual bool
1549 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1550 return true;
1551 }
1552
1553 /// Insert a noop into the instruction stream at the specified point.
1554 virtual void insertNoop(MachineBasicBlock &MBB,
1555 MachineBasicBlock::iterator MI) const;
1556
1557 /// Insert noops into the instruction stream at the specified point.
1558 virtual void insertNoops(MachineBasicBlock &MBB,
1559 MachineBasicBlock::iterator MI,
1560 unsigned Quantity) const;
1561
1562 /// Return the noop instruction to use for a noop.
1563 virtual MCInst getNop() const;
1564
1565 /// Return true for post-incremented instructions.
1566 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1567
1568 /// Returns true if the instruction is already predicated.
1569 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1570
1571 /// Assumes the instruction is already predicated and returns true if the
1572 /// instruction can be predicated again.
1573 virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1574 assert(isPredicated(MI) && "Instruction is not predicated");
1575 return false;
1576 }
1577
1578 // Returns a MIRPrinter comment for this machine operand.
1579 virtual std::string
1580 createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1581 unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1582
1583 /// Returns true if the instruction is a
1584 /// terminator instruction that has not been predicated.
1585 bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1586
1587 /// Returns true if MI is an unconditional tail call.
1588 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1589 return false;
1590 }
1591
1592 /// Returns true if the tail call can be made conditional on BranchCond.
1593 virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1594 const MachineInstr &TailCall) const {
1595 return false;
1596 }
1597
1598 /// Replace the conditional branch in MBB with a conditional tail call.
1599 virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1600 SmallVectorImpl<MachineOperand> &Cond,
1601 const MachineInstr &TailCall) const {
1602 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1603 }
1604
1605 /// Convert the instruction into a predicated instruction.
1606 /// It returns true if the operation was successful.
1607 virtual bool PredicateInstruction(MachineInstr &MI,
1608 ArrayRef<MachineOperand> Pred) const;
1609
1610 /// Returns true if the first specified predicate
1611 /// subsumes the second, e.g. GE subsumes GT.
1612 virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1613 ArrayRef<MachineOperand> Pred2) const {
1614 return false;
1615 }
1616
1617 /// If the specified instruction defines any predicate
1618 /// or condition code register(s) used for predication, returns true as well
1619 /// as the definition predicate(s) by reference.
1620 /// SkipDead should be set to false at any point that dead
1621 /// predicate instructions should be considered as being defined.
1622 /// A dead predicate instruction is one that is guaranteed to be removed
1623 /// after a call to PredicateInstruction.
1624 virtual bool ClobbersPredicate(MachineInstr &MI,
1625 std::vector<MachineOperand> &Pred,
1626 bool SkipDead) const {
1627 return false;
1628 }
1629
1630 /// Return true if the specified instruction can be predicated.
1631 /// By default, this returns true for every instruction with a
1632 /// PredicateOperand.
1633 virtual bool isPredicable(const MachineInstr &MI) const {
1634 return MI.getDesc().isPredicable();
1635 }
1636
1637 /// Return true if it's safe to move a machine
1638 /// instruction that defines the specified register class.
1639 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1640 return true;
1641 }
1642
1643 /// Test if the given instruction should be considered a scheduling boundary.
1644 /// This primarily includes labels and terminators.
1645 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1646 const MachineBasicBlock *MBB,
1647 const MachineFunction &MF) const;
1648
1649 /// Measure the specified inline asm to determine an approximation of its
1650 /// length.
1651 virtual unsigned getInlineAsmLength(
1652 const char *Str, const MCAsmInfo &MAI,
1653 const TargetSubtargetInfo *STI = nullptr) const;
1654
1655 /// Allocate and return a hazard recognizer to use for this target when
1656 /// scheduling the machine instructions before register allocation.
1657 virtual ScheduleHazardRecognizer *
1658 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1659 const ScheduleDAG *DAG) const;
1660
1661 /// Allocate and return a hazard recognizer to use for this target when
1662 /// scheduling the machine instructions before register allocation.
1663 virtual ScheduleHazardRecognizer *
1664 CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1665 const ScheduleDAGMI *DAG) const;
1666
1667 /// Allocate and return a hazard recognizer to use for this target when
1668 /// scheduling the machine instructions after register allocation.
1669 virtual ScheduleHazardRecognizer *
1670 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1671 const ScheduleDAG *DAG) const;
1672
1673 /// Allocate and return a hazard recognizer to use for by non-scheduling
1674 /// passes.
1675 virtual ScheduleHazardRecognizer *
1676 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1677 return nullptr;
1678 }
1679
1680 /// Provide a global flag for disabling the PreRA hazard recognizer that
1681 /// targets may choose to honor.
1682 bool usePreRAHazardRecognizer() const;
1683
1684 /// For a comparison instruction, return the source registers
1685 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1686 /// compares against in CmpValue. Return true if the comparison instruction
1687 /// can be analyzed.
1688 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1689 Register &SrcReg2, int64_t &Mask,
1690 int64_t &Value) const {
1691 return false;
1692 }
1693
1694 /// See if the comparison instruction can be converted
1695 /// into something more efficient. E.g., on ARM most instructions can set the
1696 /// flags register, obviating the need for a separate CMP.
1697 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1698 Register SrcReg2, int64_t Mask,
1699 int64_t Value,
1700 const MachineRegisterInfo *MRI) const {
1701 return false;
1702 }
1703 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1704
1705 /// Try to remove the load by folding it to a register operand at the use.
1706 /// We fold the load instructions if and only if the
1707 /// def and use are in the same BB. We only look at one load and see
1708 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1709 /// defined by the load we are trying to fold. DefMI returns the machine
1710 /// instruction that defines FoldAsLoadDefReg, and the function returns
1711 /// the machine instruction generated due to folding.
1712 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1713 const MachineRegisterInfo *MRI,
1714 Register &FoldAsLoadDefReg,
1715 MachineInstr *&DefMI) const {
1716 return nullptr;
1717 }
1718
1719 /// 'Reg' is known to be defined by a move immediate instruction,
1720 /// try to fold the immediate into the use instruction.
1721 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1722 /// then the caller may assume that DefMI has been erased from its parent
1723 /// block. The caller may assume that it will not be erased by this
1724 /// function otherwise.
1725 virtual bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1726 Register Reg, MachineRegisterInfo *MRI) const {
1727 return false;
1728 }
1729
1730 /// Return the number of u-operations the given machine
1731 /// instruction will be decoded to on the target cpu. The itinerary's
1732 /// IssueWidth is the number of microops that can be dispatched each
1733 /// cycle. An instruction with zero microops takes no dispatch resources.
1734 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1735 const MachineInstr &MI) const;
1736
1737 /// Return true for pseudo instructions that don't consume any
1738 /// machine resources in their current form. These are common cases that the
1739 /// scheduler should consider free, rather than conservatively handling them
1740 /// as instructions with no itinerary.
1741 bool isZeroCost(unsigned Opcode) const {
1742 return Opcode <= TargetOpcode::COPY;
1743 }
1744
1745 virtual std::optional<unsigned>
1746 getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode,
1747 unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const;
1748
1749 /// Compute and return the use operand latency of a given pair of def and use.
1750 /// In most cases, the static scheduling itinerary was enough to determine the
1751 /// operand latency. But it may not be possible for instructions with variable
1752 /// number of defs / uses.
1753 ///
1754 /// This is a raw interface to the itinerary that may be directly overridden
1755 /// by a target. Use computeOperandLatency to get the best estimate of
1756 /// latency.
1757 virtual std::optional<unsigned>
1758 getOperandLatency(const InstrItineraryData *ItinData,
1759 const MachineInstr &DefMI, unsigned DefIdx,
1760 const MachineInstr &UseMI, unsigned UseIdx) const;
1761
1762 /// Compute the instruction latency of a given instruction.
1763 /// If the instruction has higher cost when predicated, it's returned via
1764 /// PredCost.
1765 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1766 const MachineInstr &MI,
1767 unsigned *PredCost = nullptr) const;
1768
1769 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1770
1771 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1772 SDNode *Node) const;
1773
1774 /// Return the default expected latency for a def based on its opcode.
1775 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1776 const MachineInstr &DefMI) const;
1777
1778 /// Return true if this opcode has high latency to its result.
1779 virtual bool isHighLatencyDef(int opc) const { return false; }
1780
1781 /// Compute operand latency between a def of 'Reg'
1782 /// and a use in the current loop. Return true if the target considered
1783 /// it 'high'. This is used by optimization passes such as machine LICM to
1784 /// determine whether it makes sense to hoist an instruction out even in a
1785 /// high register pressure situation.
1786 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1787 const MachineRegisterInfo *MRI,
1788 const MachineInstr &DefMI, unsigned DefIdx,
1789 const MachineInstr &UseMI,
1790 unsigned UseIdx) const {
1791 return false;
1792 }
1793
1794 /// Compute operand latency of a def of 'Reg'. Return true
1795 /// if the target considered it 'low'.
1796 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1797 const MachineInstr &DefMI,
1798 unsigned DefIdx) const;
1799
1800 /// Perform target-specific instruction verification.
1801 virtual bool verifyInstruction(const MachineInstr &MI,
1802 StringRef &ErrInfo) const {
1803 return true;
1804 }
1805
1806 /// Return the current execution domain and bit mask of
1807 /// possible domains for instruction.
1808 ///
1809 /// Some micro-architectures have multiple execution domains, and multiple
1810 /// opcodes that perform the same operation in different domains. For
1811 /// example, the x86 architecture provides the por, orps, and orpd
1812 /// instructions that all do the same thing. There is a latency penalty if a
1813 /// register is written in one domain and read in another.
1814 ///
1815 /// This function returns a pair (domain, mask) containing the execution
1816 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1817 /// function can be used to change the opcode to one of the domains in the
1818 /// bit mask. Instructions whose execution domain can't be changed should
1819 /// return a 0 mask.
1820 ///
1821 /// The execution domain numbers don't have any special meaning except domain
1822 /// 0 is used for instructions that are not associated with any interesting
1823 /// execution domain.
1824 ///
1825 virtual std::pair<uint16_t, uint16_t>
1826 getExecutionDomain(const MachineInstr &MI) const {
1827 return std::make_pair(x: 0, y: 0);
1828 }
1829
1830 /// Change the opcode of MI to execute in Domain.
1831 ///
1832 /// The bit (1 << Domain) must be set in the mask returned from
1833 /// getExecutionDomain(MI).
1834 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1835
1836 /// Returns the preferred minimum clearance
1837 /// before an instruction with an unwanted partial register update.
1838 ///
1839 /// Some instructions only write part of a register, and implicitly need to
1840 /// read the other parts of the register. This may cause unwanted stalls
1841 /// preventing otherwise unrelated instructions from executing in parallel in
1842 /// an out-of-order CPU.
1843 ///
1844 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1845 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1846 /// the instruction needs to wait for the old value of the register to become
1847 /// available:
1848 ///
1849 /// addps %xmm1, %xmm0
1850 /// movaps %xmm0, (%rax)
1851 /// cvtsi2ss %rbx, %xmm0
1852 ///
1853 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1854 /// instruction before it can issue, even though the high bits of %xmm0
1855 /// probably aren't needed.
1856 ///
1857 /// This hook returns the preferred clearance before MI, measured in
1858 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1859 /// instructions before MI. It should only return a positive value for
1860 /// unwanted dependencies. If the old bits of the defined register have
1861 /// useful values, or if MI is determined to otherwise read the dependency,
1862 /// the hook should return 0.
1863 ///
1864 /// The unwanted dependency may be handled by:
1865 ///
1866 /// 1. Allocating the same register for an MI def and use. That makes the
1867 /// unwanted dependency identical to a required dependency.
1868 ///
1869 /// 2. Allocating a register for the def that has no defs in the previous N
1870 /// instructions.
1871 ///
1872 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1873 /// allows the target to insert a dependency breaking instruction.
1874 ///
1875 virtual unsigned
1876 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1877 const TargetRegisterInfo *TRI) const {
1878 // The default implementation returns 0 for no partial register dependency.
1879 return 0;
1880 }
1881
1882 /// Return the minimum clearance before an instruction that reads an
1883 /// unused register.
1884 ///
1885 /// For example, AVX instructions may copy part of a register operand into
1886 /// the unused high bits of the destination register.
1887 ///
1888 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1889 ///
1890 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1891 /// false dependence on any previous write to %xmm0.
1892 ///
1893 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1894 /// does not take an operand index. Instead sets \p OpNum to the index of the
1895 /// unused register.
1896 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1897 const TargetRegisterInfo *TRI) const {
1898 // The default implementation returns 0 for no undef register dependency.
1899 return 0;
1900 }
1901
1902 /// Insert a dependency-breaking instruction
1903 /// before MI to eliminate an unwanted dependency on OpNum.
1904 ///
1905 /// If it wasn't possible to avoid a def in the last N instructions before MI
1906 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1907 /// unwanted dependency.
1908 ///
1909 /// On x86, an xorps instruction can be used as a dependency breaker:
1910 ///
1911 /// addps %xmm1, %xmm0
1912 /// movaps %xmm0, (%rax)
1913 /// xorps %xmm0, %xmm0
1914 /// cvtsi2ss %rbx, %xmm0
1915 ///
1916 /// An <imp-kill> operand should be added to MI if an instruction was
1917 /// inserted. This ties the instructions together in the post-ra scheduler.
1918 ///
1919 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1920 const TargetRegisterInfo *TRI) const {}
1921
1922 /// Create machine specific model for scheduling.
1923 virtual DFAPacketizer *
1924 CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1925 return nullptr;
1926 }
1927
1928 /// Sometimes, it is possible for the target
1929 /// to tell, even without aliasing information, that two MIs access different
1930 /// memory addresses. This function returns true if two MIs access different
1931 /// memory addresses and false otherwise.
1932 ///
1933 /// Assumes any physical registers used to compute addresses have the same
1934 /// value for both instructions. (This is the most useful assumption for
1935 /// post-RA scheduling.)
1936 ///
1937 /// See also MachineInstr::mayAlias, which is implemented on top of this
1938 /// function.
1939 virtual bool
1940 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1941 const MachineInstr &MIb) const {
1942 assert(MIa.mayLoadOrStore() &&
1943 "MIa must load from or modify a memory location");
1944 assert(MIb.mayLoadOrStore() &&
1945 "MIb must load from or modify a memory location");
1946 return false;
1947 }
1948
1949 /// Return the value to use for the MachineCSE's LookAheadLimit,
1950 /// which is a heuristic used for CSE'ing phys reg defs.
1951 virtual unsigned getMachineCSELookAheadLimit() const {
1952 // The default lookahead is small to prevent unprofitable quadratic
1953 // behavior.
1954 return 5;
1955 }
1956
1957 /// Return the maximal number of alias checks on memory operands. For
1958 /// instructions with more than one memory operands, the alias check on a
1959 /// single MachineInstr pair has quadratic overhead and results in
1960 /// unacceptable performance in the worst case. The limit here is to clamp
1961 /// that maximal checks performed. Usually, that's the product of memory
1962 /// operand numbers from that pair of MachineInstr to be checked. For
1963 /// instance, with two MachineInstrs with 4 and 5 memory operands
1964 /// correspondingly, a total of 20 checks are required. With this limit set to
1965 /// 16, their alias check is skipped. We choose to limit the product instead
1966 /// of the individual instruction as targets may have special MachineInstrs
1967 /// with a considerably high number of memory operands, such as `ldm` in ARM.
1968 /// Setting this limit per MachineInstr would result in either too high
1969 /// overhead or too rigid restriction.
1970 virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1971
1972 /// Return an array that contains the ids of the target indices (used for the
1973 /// TargetIndex machine operand) and their names.
1974 ///
1975 /// MIR Serialization is able to serialize only the target indices that are
1976 /// defined by this method.
1977 virtual ArrayRef<std::pair<int, const char *>>
1978 getSerializableTargetIndices() const {
1979 return std::nullopt;
1980 }
1981
1982 /// Decompose the machine operand's target flags into two values - the direct
1983 /// target flag value and any of bit flags that are applied.
1984 virtual std::pair<unsigned, unsigned>
1985 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1986 return std::make_pair(x: 0u, y: 0u);
1987 }
1988
1989 /// Return an array that contains the direct target flag values and their
1990 /// names.
1991 ///
1992 /// MIR Serialization is able to serialize only the target flags that are
1993 /// defined by this method.
1994 virtual ArrayRef<std::pair<unsigned, const char *>>
1995 getSerializableDirectMachineOperandTargetFlags() const {
1996 return std::nullopt;
1997 }
1998
1999 /// Return an array that contains the bitmask target flag values and their
2000 /// names.
2001 ///
2002 /// MIR Serialization is able to serialize only the target flags that are
2003 /// defined by this method.
2004 virtual ArrayRef<std::pair<unsigned, const char *>>
2005 getSerializableBitmaskMachineOperandTargetFlags() const {
2006 return std::nullopt;
2007 }
2008
2009 /// Return an array that contains the MMO target flag values and their
2010 /// names.
2011 ///
2012 /// MIR Serialization is able to serialize only the MMO target flags that are
2013 /// defined by this method.
2014 virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
2015 getSerializableMachineMemOperandTargetFlags() const {
2016 return std::nullopt;
2017 }
2018
2019 /// Determines whether \p Inst is a tail call instruction. Override this
2020 /// method on targets that do not properly set MCID::Return and MCID::Call on
2021 /// tail call instructions."
2022 virtual bool isTailCall(const MachineInstr &Inst) const {
2023 return Inst.isReturn() && Inst.isCall();
2024 }
2025
2026 /// True if the instruction is bound to the top of its basic block and no
2027 /// other instructions shall be inserted before it. This can be implemented
2028 /// to prevent register allocator to insert spills for \p Reg before such
2029 /// instructions.
2030 virtual bool isBasicBlockPrologue(const MachineInstr &MI,
2031 Register Reg = Register()) const {
2032 return false;
2033 }
2034
2035 /// Allows targets to use appropriate copy instruction while spilitting live
2036 /// range of a register in register allocation.
2037 virtual unsigned getLiveRangeSplitOpcode(Register Reg,
2038 const MachineFunction &MF) const {
2039 return TargetOpcode::COPY;
2040 }
2041
2042 /// During PHI eleimination lets target to make necessary checks and
2043 /// insert the copy to the PHI destination register in a target specific
2044 /// manner.
2045 virtual MachineInstr *createPHIDestinationCopy(
2046 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
2047 const DebugLoc &DL, Register Src, Register Dst) const {
2048 return BuildMI(BB&: MBB, I: InsPt, MIMD: DL, MCID: get(Opcode: TargetOpcode::COPY), DestReg: Dst)
2049 .addReg(RegNo: Src);
2050 }
2051
2052 /// During PHI eleimination lets target to make necessary checks and
2053 /// insert the copy to the PHI destination register in a target specific
2054 /// manner.
2055 virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
2056 MachineBasicBlock::iterator InsPt,
2057 const DebugLoc &DL, Register Src,
2058 unsigned SrcSubReg,
2059 Register Dst) const {
2060 return BuildMI(BB&: MBB, I: InsPt, MIMD: DL, MCID: get(Opcode: TargetOpcode::COPY), DestReg: Dst)
2061 .addReg(RegNo: Src, flags: 0, SubReg: SrcSubReg);
2062 }
2063
2064 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
2065 /// information for a set of outlining candidates. Returns std::nullopt if the
2066 /// candidates are not suitable for outlining.
2067 virtual std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
2068 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
2069 llvm_unreachable(
2070 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
2071 }
2072
2073 /// Optional target hook to create the LLVM IR attributes for the outlined
2074 /// function. If overridden, the overriding function must call the default
2075 /// implementation.
2076 virtual void mergeOutliningCandidateAttributes(
2077 Function &F, std::vector<outliner::Candidate> &Candidates) const;
2078
2079protected:
2080 /// Target-dependent implementation for getOutliningTypeImpl.
2081 virtual outliner::InstrType
2082 getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
2083 llvm_unreachable(
2084 "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!");
2085 }
2086
2087public:
2088 /// Returns how or if \p MIT should be outlined. \p Flags is the
2089 /// target-specific information returned by isMBBSafeToOutlineFrom.
2090 outliner::InstrType
2091 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const;
2092
2093 /// Optional target hook that returns true if \p MBB is safe to outline from,
2094 /// and returns any target-specific information in \p Flags.
2095 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
2096 unsigned &Flags) const;
2097
2098 /// Optional target hook which partitions \p MBB into outlinable ranges for
2099 /// instruction mapping purposes. Each range is defined by two iterators:
2100 /// [start, end).
2101 ///
2102 /// Ranges are expected to be ordered top-down. That is, ranges closer to the
2103 /// top of the block should come before ranges closer to the end of the block.
2104 ///
2105 /// Ranges cannot overlap.
2106 ///
2107 /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end())
2108 ///
2109 /// All instructions not present in an outlinable range are considered
2110 /// illegal.
2111 virtual SmallVector<
2112 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
2113 getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const {
2114 return {std::make_pair(x: MBB.begin(), y: MBB.end())};
2115 }
2116
2117 /// Insert a custom frame for outlined functions.
2118 virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
2119 const outliner::OutlinedFunction &OF) const {
2120 llvm_unreachable(
2121 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
2122 }
2123
2124 /// Insert a call to an outlined function into the program.
2125 /// Returns an iterator to the spot where we inserted the call. This must be
2126 /// implemented by the target.
2127 virtual MachineBasicBlock::iterator
2128 insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
2129 MachineBasicBlock::iterator &It, MachineFunction &MF,
2130 outliner::Candidate &C) const {
2131 llvm_unreachable(
2132 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2133 }
2134
2135 /// Insert an architecture-specific instruction to clear a register. If you
2136 /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set
2137 /// \p AllowSideEffects to \p false.
2138 virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB,
2139 MachineBasicBlock::iterator Iter,
2140 DebugLoc &DL,
2141 bool AllowSideEffects = true) const {
2142#if 0
2143 // FIXME: This should exist once all platforms that use stack protectors
2144 // implements it.
2145 llvm_unreachable(
2146 "Target didn't implement TargetInstrInfo::buildClearRegister!");
2147#endif
2148 }
2149
2150 /// Return true if the function can safely be outlined from.
2151 /// A function \p MF is considered safe for outlining if an outlined function
2152 /// produced from instructions in F will produce a program which produces the
2153 /// same output for any set of given inputs.
2154 virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
2155 bool OutlineFromLinkOnceODRs) const {
2156 llvm_unreachable("Target didn't implement "
2157 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2158 }
2159
2160 /// Return true if the function should be outlined from by default.
2161 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
2162 return false;
2163 }
2164
2165 /// Return true if the function is a viable candidate for machine function
2166 /// splitting. The criteria for if a function can be split may vary by target.
2167 virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const;
2168
2169 /// Return true if the MachineBasicBlock can safely be split to the cold
2170 /// section. On AArch64, certain instructions may cause a block to be unsafe
2171 /// to split to the cold section.
2172 virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const {
2173 return true;
2174 }
2175
2176 /// Produce the expression describing the \p MI loading a value into
2177 /// the physical register \p Reg. This hook should only be used with
2178 /// \p MIs belonging to VReg-less functions.
2179 virtual std::optional<ParamLoadedValue>
2180 describeLoadedValue(const MachineInstr &MI, Register Reg) const;
2181
2182 /// Given the generic extension instruction \p ExtMI, returns true if this
2183 /// extension is a likely candidate for being folded into an another
2184 /// instruction.
2185 virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
2186 MachineRegisterInfo &MRI) const {
2187 return false;
2188 }
2189
2190 /// Return MIR formatter to format/parse MIR operands. Target can override
2191 /// this virtual function and return target specific MIR formatter.
2192 virtual const MIRFormatter *getMIRFormatter() const {
2193 if (!Formatter.get())
2194 Formatter = std::make_unique<MIRFormatter>();
2195 return Formatter.get();
2196 }
2197
2198 /// Returns the target-specific default value for tail duplication.
2199 /// This value will be used if the tail-dup-placement-threshold argument is
2200 /// not provided.
2201 virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
2202 return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2;
2203 }
2204
2205 /// Returns the callee operand from the given \p MI.
2206 virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2207 return MI.getOperand(i: 0);
2208 }
2209
2210 /// Return the uniformity behavior of the given instruction.
2211 virtual InstructionUniformity
2212 getInstructionUniformity(const MachineInstr &MI) const {
2213 return InstructionUniformity::Default;
2214 }
2215
2216 /// Returns true if the given \p MI defines a TargetIndex operand that can be
2217 /// tracked by their offset, can have values, and can have debug info
2218 /// associated with it. If so, sets \p Index and \p Offset of the target index
2219 /// operand.
2220 virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
2221 int64_t &Offset) const {
2222 return false;
2223 }
2224
2225 // Get the call frame size just before MI.
2226 unsigned getCallFrameSizeAt(MachineInstr &MI) const;
2227
2228 /// Fills in the necessary MachineOperands to refer to a frame index.
2229 /// The best way to understand this is to print `asm(""::"m"(x));` after
2230 /// finalize-isel. Example:
2231 /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg
2232 /// we would add placeholders for: ^ ^ ^ ^
2233 virtual void getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops,
2234 int FI) const {
2235 llvm_unreachable("unknown number of operands necessary");
2236 }
2237
2238 /// Gets the opcode for the Pseudo Instruction used to initialize
2239 /// the undef value. If no Instruction is available, this will
2240 /// fail compilation.
2241 virtual unsigned getUndefInitOpcode(unsigned RegClassID) const {
2242 (void)RegClassID;
2243
2244 llvm_unreachable("Unexpected register class.");
2245 }
2246
2247private:
2248 mutable std::unique_ptr<MIRFormatter> Formatter;
2249 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2250 unsigned CatchRetOpcode;
2251 unsigned ReturnOpcode;
2252};
2253
2254/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2255template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2256 using RegInfo = DenseMapInfo<unsigned>;
2257
2258 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2259 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2260 RegInfo::getEmptyKey());
2261 }
2262
2263 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2264 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2265 RegInfo::getTombstoneKey());
2266 }
2267
2268 /// Reuse getHashValue implementation from
2269 /// std::pair<unsigned, unsigned>.
2270 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2271 std::pair<unsigned, unsigned> PairVal = std::make_pair(x: Val.Reg, y: Val.SubReg);
2272 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2273 }
2274
2275 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2276 const TargetInstrInfo::RegSubRegPair &RHS) {
2277 return RegInfo::isEqual(LHS: LHS.Reg, RHS: RHS.Reg) &&
2278 RegInfo::isEqual(LHS: LHS.SubReg, RHS: RHS.SubReg);
2279 }
2280};
2281
2282} // end namespace llvm
2283
2284#endif // LLVM_CODEGEN_TARGETINSTRINFO_H
2285

source code of llvm/include/llvm/CodeGen/TargetInstrInfo.h