1/* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000-2024 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20/* This file contains the "reorder blocks" pass, which changes the control
21 flow of a function to encounter fewer branches; the "partition blocks"
22 pass, which divides the basic blocks into "hot" and "cold" partitions,
23 which are kept separate; and the "duplicate computed gotos" pass, which
24 duplicates blocks ending in an indirect jump.
25
26 There are two algorithms for "reorder blocks": the "simple" algorithm,
27 which just rearranges blocks, trying to minimize the number of executed
28 unconditional branches; and the "software trace cache" algorithm, which
29 also copies code, and in general tries a lot harder to have long linear
30 pieces of machine code executed. This algorithm is described next. */
31
32/* This (greedy) algorithm constructs traces in several rounds.
33 The construction starts from "seeds". The seed for the first round
34 is the entry point of the function. When there are more than one seed,
35 the one with the lowest key in the heap is selected first (see bb_to_key).
36 Then the algorithm repeatedly adds the most probable successor to the end
37 of a trace. Finally it connects the traces.
38
39 There are two parameters: Branch Threshold and Exec Threshold.
40 If the probability of an edge to a successor of the current basic block is
41 lower than Branch Threshold or its count is lower than Exec Threshold,
42 then the successor will be the seed in one of the next rounds.
43 Each round has these parameters lower than the previous one.
44 The last round has to have these parameters set to zero so that the
45 remaining blocks are picked up.
46
47 The algorithm selects the most probable successor from all unvisited
48 successors and successors that have been added to this trace.
49 The other successors (that has not been "sent" to the next round) will be
50 other seeds for this round and the secondary traces will start from them.
51 If the successor has not been visited in this trace, it is added to the
52 trace (however, there is some heuristic for simple branches).
53 If the successor has been visited in this trace, a loop has been found.
54 If the loop has many iterations, the loop is rotated so that the source
55 block of the most probable edge going out of the loop is the last block
56 of the trace.
57 If the loop has few iterations and there is no edge from the last block of
58 the loop going out of the loop, the loop header is duplicated.
59
60 When connecting traces, the algorithm first checks whether there is an edge
61 from the last block of a trace to the first block of another trace.
62 When there are still some unconnected traces it checks whether there exists
63 a basic block BB such that BB is a successor of the last block of a trace
64 and BB is a predecessor of the first block of another trace. In this case,
65 BB is duplicated, added at the end of the first trace and the traces are
66 connected through it.
67 The rest of traces are simply connected so there will be a jump to the
68 beginning of the rest of traces.
69
70 The above description is for the full algorithm, which is used when the
71 function is optimized for speed. When the function is optimized for size,
72 in order to reduce long jumps and connect more fallthru edges, the
73 algorithm is modified as follows:
74 (1) Break long traces to short ones. A trace is broken at a block that has
75 multiple predecessors/ successors during trace discovery. When connecting
76 traces, only connect Trace n with Trace n + 1. This change reduces most
77 long jumps compared with the above algorithm.
78 (2) Ignore the edge probability and count for fallthru edges.
79 (3) Keep the original order of blocks when there is no chance to fall
80 through. We rely on the results of cfg_cleanup.
81
82 To implement the change for code size optimization, block's index is
83 selected as the key and all traces are found in one round.
84
85 References:
86
87 "Software Trace Cache"
88 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
89 http://citeseer.nj.nec.com/15361.html
90
91*/
92
93#include "config.h"
94#include "system.h"
95#include "coretypes.h"
96#include "backend.h"
97#include "target.h"
98#include "rtl.h"
99#include "tree.h"
100#include "cfghooks.h"
101#include "df.h"
102#include "memmodel.h"
103#include "optabs.h"
104#include "regs.h"
105#include "emit-rtl.h"
106#include "output.h"
107#include "expr.h"
108#include "tree-pass.h"
109#include "cfgrtl.h"
110#include "cfganal.h"
111#include "cfgbuild.h"
112#include "cfgcleanup.h"
113#include "bb-reorder.h"
114#include "except.h"
115#include "alloc-pool.h"
116#include "fibonacci_heap.h"
117#include "stringpool.h"
118#include "attribs.h"
119#include "common/common-target.h"
120
121/* The number of rounds. In most cases there will only be 4 rounds, but
122 when partitioning hot and cold basic blocks into separate sections of
123 the object file there will be an extra round. */
124#define N_ROUNDS 5
125
126struct target_bb_reorder default_target_bb_reorder;
127#if SWITCHABLE_TARGET
128struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
129#endif
130
131#define uncond_jump_length \
132 (this_target_bb_reorder->x_uncond_jump_length)
133
134/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
135static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
136
137/* Exec thresholds in thousandths (per mille) of the count of bb 0. */
138static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
139
140/* If edge count is lower than DUPLICATION_THRESHOLD per mille of entry
141 block the edge destination is not duplicated while connecting traces. */
142#define DUPLICATION_THRESHOLD 100
143
144typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
145typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
146
147/* Structure to hold needed information for each basic block. */
148struct bbro_basic_block_data
149{
150 /* Which trace is the bb start of (-1 means it is not a start of any). */
151 int start_of_trace;
152
153 /* Which trace is the bb end of (-1 means it is not an end of any). */
154 int end_of_trace;
155
156 /* Which trace is the bb in? */
157 int in_trace;
158
159 /* Which trace was this bb visited in? */
160 int visited;
161
162 /* Cached maximum frequency of interesting incoming edges.
163 Minus one means not yet computed. */
164 int priority;
165
166 /* Which heap is BB in (if any)? */
167 bb_heap_t *heap;
168
169 /* Which heap node is BB in (if any)? */
170 bb_heap_node_t *node;
171};
172
173/* The current size of the following dynamic array. */
174static int array_size;
175
176/* The array which holds needed information for basic blocks. */
177static bbro_basic_block_data *bbd;
178
179/* To avoid frequent reallocation the size of arrays is greater than needed,
180 the number of elements is (not less than) 1.25 * size_wanted. */
181#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
182
183/* Free the memory and set the pointer to NULL. */
184#define FREE(P) (gcc_assert (P), free (P), P = 0)
185
186/* Structure for holding information about a trace. */
187struct trace
188{
189 /* First and last basic block of the trace. */
190 basic_block first, last;
191
192 /* The round of the STC creation which this trace was found in. */
193 int round;
194
195 /* The length (i.e. the number of basic blocks) of the trace. */
196 int length;
197};
198
199/* Maximum count of one of the entry blocks. */
200static profile_count max_entry_count;
201
202/* Local function prototypes. */
203static void find_traces_1_round (int, profile_count, struct trace *, int *,
204 int, bb_heap_t **, int);
205static basic_block copy_bb (basic_block, edge, basic_block, int);
206static long bb_to_key (basic_block);
207static bool better_edge_p (const_basic_block, const_edge, profile_probability,
208 profile_count, profile_probability, profile_count,
209 const_edge);
210static bool copy_bb_p (const_basic_block, int);
211
212/* Return the trace number in which BB was visited. */
213
214static int
215bb_visited_trace (const_basic_block bb)
216{
217 gcc_assert (bb->index < array_size);
218 return bbd[bb->index].visited;
219}
220
221/* This function marks BB that it was visited in trace number TRACE. */
222
223static void
224mark_bb_visited (basic_block bb, int trace)
225{
226 bbd[bb->index].visited = trace;
227 if (bbd[bb->index].heap)
228 {
229 bbd[bb->index].heap->delete_node (node: bbd[bb->index].node);
230 bbd[bb->index].heap = NULL;
231 bbd[bb->index].node = NULL;
232 }
233}
234
235/* Check to see if bb should be pushed into the next round of trace
236 collections or not. Reasons for pushing the block forward are 1).
237 If the block is cold, we are doing partitioning, and there will be
238 another round (cold partition blocks are not supposed to be
239 collected into traces until the very last round); or 2). There will
240 be another round, and the basic block is not "hot enough" for the
241 current round of trace collection. */
242
243static bool
244push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
245 profile_count count_th)
246{
247 bool there_exists_another_round;
248 bool block_not_hot_enough;
249
250 there_exists_another_round = round < number_of_rounds - 1;
251
252 block_not_hot_enough = (bb->count < count_th
253 || probably_never_executed_bb_p (cfun, bb));
254
255 if (there_exists_another_round
256 && block_not_hot_enough)
257 return true;
258 else
259 return false;
260}
261
262/* Find the traces for Software Trace Cache. Chain each trace through
263 RBI()->next. Store the number of traces to N_TRACES and description of
264 traces to TRACES. */
265
266static void
267find_traces (int *n_traces, struct trace *traces)
268{
269 int i;
270 int number_of_rounds;
271 edge e;
272 edge_iterator ei;
273 bb_heap_t *heap = new bb_heap_t (LONG_MIN);
274
275 /* Add one extra round of trace collection when partitioning hot/cold
276 basic blocks into separate sections. The last round is for all the
277 cold blocks (and ONLY the cold blocks). */
278
279 number_of_rounds = N_ROUNDS - 1;
280
281 /* Insert entry points of function into heap. */
282 max_entry_count = profile_count::zero ();
283 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
284 {
285 bbd[e->dest->index].heap = heap;
286 bbd[e->dest->index].node = heap->insert (key: bb_to_key (e->dest), data: e->dest);
287 if (e->dest->count > max_entry_count)
288 max_entry_count = e->dest->count;
289 }
290
291 /* Find the traces. */
292 for (i = 0; i < number_of_rounds; i++)
293 {
294 profile_count count_threshold;
295
296 if (dump_file)
297 fprintf (stream: dump_file, format: "STC - round %d\n", i + 1);
298
299 count_threshold = max_entry_count.apply_scale (num: exec_threshold[i], den: 1000);
300
301 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
302 count_threshold, traces, n_traces, i, &heap,
303 number_of_rounds);
304 }
305 delete heap;
306
307 if (dump_file)
308 {
309 for (i = 0; i < *n_traces; i++)
310 {
311 basic_block bb;
312 fprintf (stream: dump_file, format: "Trace %d (round %d): ", i + 1,
313 traces[i].round + 1);
314 for (bb = traces[i].first;
315 bb != traces[i].last;
316 bb = (basic_block) bb->aux)
317 {
318 fprintf (stream: dump_file, format: "%d [", bb->index);
319 bb->count.dump (f: dump_file);
320 fprintf (stream: dump_file, format: "] ");
321 }
322 fprintf (stream: dump_file, format: "%d [", bb->index);
323 bb->count.dump (f: dump_file);
324 fprintf (stream: dump_file, format: "]\n");
325 }
326 fflush (stream: dump_file);
327 }
328}
329
330/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
331 (with sequential number TRACE_N). */
332
333static basic_block
334rotate_loop (edge back_edge, struct trace *trace, int trace_n)
335{
336 basic_block bb;
337
338 /* Information about the best end (end after rotation) of the loop. */
339 basic_block best_bb = NULL;
340 edge best_edge = NULL;
341 profile_count best_count = profile_count::uninitialized ();
342 /* The best edge is preferred when its destination is not visited yet
343 or is a start block of some trace. */
344 bool is_preferred = false;
345
346 /* Find the most frequent edge that goes out from current trace. */
347 bb = back_edge->dest;
348 do
349 {
350 edge e;
351 edge_iterator ei;
352
353 FOR_EACH_EDGE (e, ei, bb->succs)
354 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
355 && bb_visited_trace (bb: e->dest) != trace_n
356 && (e->flags & EDGE_CAN_FALLTHRU)
357 && !(e->flags & EDGE_COMPLEX))
358 {
359 if (is_preferred)
360 {
361 /* The best edge is preferred. */
362 if (!bb_visited_trace (bb: e->dest)
363 || bbd[e->dest->index].start_of_trace >= 0)
364 {
365 /* The current edge E is also preferred. */
366 if (e->count () > best_count)
367 {
368 best_count = e->count ();
369 best_edge = e;
370 best_bb = bb;
371 }
372 }
373 }
374 else
375 {
376 if (!bb_visited_trace (bb: e->dest)
377 || bbd[e->dest->index].start_of_trace >= 0)
378 {
379 /* The current edge E is preferred. */
380 is_preferred = true;
381 best_count = e->count ();
382 best_edge = e;
383 best_bb = bb;
384 }
385 else
386 {
387 if (!best_edge || e->count () > best_count)
388 {
389 best_count = e->count ();
390 best_edge = e;
391 best_bb = bb;
392 }
393 }
394 }
395 }
396 bb = (basic_block) bb->aux;
397 }
398 while (bb != back_edge->dest);
399
400 if (best_bb)
401 {
402 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
403 the trace. */
404 if (back_edge->dest == trace->first)
405 {
406 trace->first = (basic_block) best_bb->aux;
407 }
408 else
409 {
410 basic_block prev_bb;
411
412 for (prev_bb = trace->first;
413 prev_bb->aux != back_edge->dest;
414 prev_bb = (basic_block) prev_bb->aux)
415 ;
416 prev_bb->aux = best_bb->aux;
417
418 /* Try to get rid of uncond jump to cond jump. */
419 if (single_succ_p (bb: prev_bb))
420 {
421 basic_block header = single_succ (bb: prev_bb);
422
423 /* Duplicate HEADER if it is a small block containing cond jump
424 in the end. */
425 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
426 && !CROSSING_JUMP_P (BB_END (header)))
427 copy_bb (header, single_succ_edge (bb: prev_bb), prev_bb, trace_n);
428 }
429 }
430 }
431 else
432 {
433 /* We have not found suitable loop tail so do no rotation. */
434 best_bb = back_edge->src;
435 }
436 best_bb->aux = NULL;
437 return best_bb;
438}
439
440/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
441 not include basic blocks whose probability is lower than BRANCH_TH or whose
442 count is lower than EXEC_TH into traces (or whose count is lower than
443 COUNT_TH). Store the new traces into TRACES and modify the number of
444 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
445 The function expects starting basic blocks to be in *HEAP and will delete
446 *HEAP and store starting points for the next round into new *HEAP. */
447
448static void
449find_traces_1_round (int branch_th, profile_count count_th,
450 struct trace *traces, int *n_traces, int round,
451 bb_heap_t **heap, int number_of_rounds)
452{
453 /* Heap for discarded basic blocks which are possible starting points for
454 the next round. */
455 bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
456 bool for_size = optimize_function_for_size_p (cfun);
457
458 while (!(*heap)->empty ())
459 {
460 basic_block bb;
461 struct trace *trace;
462 edge best_edge, e;
463 long key;
464 edge_iterator ei;
465
466 bb = (*heap)->extract_min ();
467 bbd[bb->index].heap = NULL;
468 bbd[bb->index].node = NULL;
469
470 if (dump_file)
471 fprintf (stream: dump_file, format: "Getting bb %d\n", bb->index);
472
473 /* If the BB's count is too low, send BB to the next round. When
474 partitioning hot/cold blocks into separate sections, make sure all
475 the cold blocks (and ONLY the cold blocks) go into the (extra) final
476 round. When optimizing for size, do not push to next round. */
477
478 if (!for_size
479 && push_to_next_round_p (bb, round, number_of_rounds,
480 count_th))
481 {
482 int key = bb_to_key (bb);
483 bbd[bb->index].heap = new_heap;
484 bbd[bb->index].node = new_heap->insert (key, data: bb);
485
486 if (dump_file)
487 fprintf (stream: dump_file,
488 format: " Possible start point of next round: %d (key: %d)\n",
489 bb->index, key);
490 continue;
491 }
492
493 trace = traces + *n_traces;
494 trace->first = bb;
495 trace->round = round;
496 trace->length = 0;
497 bbd[bb->index].in_trace = *n_traces;
498 (*n_traces)++;
499
500 do
501 {
502 bool ends_in_call;
503
504 /* The probability and count of the best edge. */
505 profile_probability best_prob = profile_probability::uninitialized ();
506 profile_count best_count = profile_count::uninitialized ();
507
508 best_edge = NULL;
509 mark_bb_visited (bb, trace: *n_traces);
510 trace->length++;
511
512 if (dump_file)
513 fprintf (stream: dump_file, format: "Basic block %d was visited in trace %d\n",
514 bb->index, *n_traces);
515
516 ends_in_call = block_ends_with_call_p (bb);
517
518 /* Select the successor that will be placed after BB. */
519 FOR_EACH_EDGE (e, ei, bb->succs)
520 {
521 gcc_assert (!(e->flags & EDGE_FAKE));
522
523 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
524 continue;
525
526 if (bb_visited_trace (bb: e->dest)
527 && bb_visited_trace (bb: e->dest) != *n_traces)
528 continue;
529
530 /* If partitioning hot/cold basic blocks, don't consider edges
531 that cross section boundaries. */
532 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
533 continue;
534
535 profile_probability prob = e->probability;
536 profile_count count = e->dest->count;
537
538 /* The only sensible preference for a call instruction is the
539 fallthru edge. Don't bother selecting anything else. */
540 if (ends_in_call)
541 {
542 if (e->flags & EDGE_CAN_FALLTHRU)
543 {
544 best_edge = e;
545 best_prob = prob;
546 best_count = count;
547 }
548 continue;
549 }
550
551 /* Edge that cannot be fallthru or improbable or infrequent
552 successor (i.e. it is unsuitable successor). When optimizing
553 for size, ignore the probability and count. */
554 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
555 || !prob.initialized_p ()
556 || ((prob.to_reg_br_prob_base () < branch_th
557 || e->count () < count_th) && (!for_size)))
558 continue;
559
560 if (better_edge_p (bb, e, prob, count, best_prob, best_count,
561 best_edge))
562 {
563 best_edge = e;
564 best_prob = prob;
565 best_count = count;
566 }
567 }
568
569 /* If the best destination has multiple predecessors and can be
570 duplicated cheaper than a jump, don't allow it to be added to
571 a trace; we'll duplicate it when connecting the traces later.
572 However, we need to check that this duplication wouldn't leave
573 the best destination with only crossing predecessors, because
574 this would change its effective partition from hot to cold. */
575 if (best_edge
576 && EDGE_COUNT (best_edge->dest->preds) >= 2
577 && copy_bb_p (best_edge->dest, 0))
578 {
579 bool only_crossing_preds = true;
580 edge e;
581 edge_iterator ei;
582 FOR_EACH_EDGE (e, ei, best_edge->dest->preds)
583 if (e != best_edge && !(e->flags & EDGE_CROSSING))
584 {
585 only_crossing_preds = false;
586 break;
587 }
588 if (!only_crossing_preds)
589 best_edge = NULL;
590 }
591
592 /* If the best destination has multiple successors or predecessors,
593 don't allow it to be added when optimizing for size. This makes
594 sure predecessors with smaller index are handled before the best
595 destination. It breaks long trace and reduces long jumps.
596
597 Take if-then-else as an example.
598 A
599 / \
600 B C
601 \ /
602 D
603 If we do not remove the best edge B->D/C->D, the final order might
604 be A B D ... C. C is at the end of the program. If D's successors
605 and D are complicated, might need long jumps for A->C and C->D.
606 Similar issue for order: A C D ... B.
607
608 After removing the best edge, the final result will be ABCD/ ACBD.
609 It does not add jump compared with the previous order. But it
610 reduces the possibility of long jumps. */
611 if (best_edge && for_size
612 && (EDGE_COUNT (best_edge->dest->succs) > 1
613 || EDGE_COUNT (best_edge->dest->preds) > 1))
614 best_edge = NULL;
615
616 /* Add all non-selected successors to the heaps. */
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 {
619 if (e == best_edge
620 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
621 || bb_visited_trace (bb: e->dest))
622 continue;
623
624 key = bb_to_key (e->dest);
625
626 if (bbd[e->dest->index].heap)
627 {
628 /* E->DEST is already in some heap. */
629 if (key != bbd[e->dest->index].node->get_key ())
630 {
631 if (dump_file)
632 {
633 fprintf (stream: dump_file,
634 format: "Changing key for bb %d from %ld to %ld.\n",
635 e->dest->index,
636 (long) bbd[e->dest->index].node->get_key (),
637 key);
638 }
639 bbd[e->dest->index].heap->replace_key
640 (node: bbd[e->dest->index].node, key);
641 }
642 }
643 else
644 {
645 bb_heap_t *which_heap = *heap;
646
647 profile_probability prob = e->probability;
648
649 if (!(e->flags & EDGE_CAN_FALLTHRU)
650 || (e->flags & EDGE_COMPLEX)
651 || !prob.initialized_p ()
652 || prob.to_reg_br_prob_base () < branch_th
653 || e->count () < count_th)
654 {
655 /* When partitioning hot/cold basic blocks, make sure
656 the cold blocks (and only the cold blocks) all get
657 pushed to the last round of trace collection. When
658 optimizing for size, do not push to next round. */
659
660 if (!for_size && push_to_next_round_p (bb: e->dest, round,
661 number_of_rounds,
662 count_th))
663 which_heap = new_heap;
664 }
665
666 bbd[e->dest->index].heap = which_heap;
667 bbd[e->dest->index].node = which_heap->insert (key, data: e->dest);
668
669 if (dump_file)
670 {
671 fprintf (stream: dump_file,
672 format: " Possible start of %s round: %d (key: %ld)\n",
673 (which_heap == new_heap) ? "next" : "this",
674 e->dest->index, (long) key);
675 }
676
677 }
678 }
679
680 if (best_edge) /* Suitable successor was found. */
681 {
682 if (bb_visited_trace (bb: best_edge->dest) == *n_traces)
683 {
684 /* We do nothing with one basic block loops. */
685 if (best_edge->dest != bb)
686 {
687 if (best_edge->count ()
688 > best_edge->dest->count.apply_scale (num: 4, den: 5))
689 {
690 /* The loop has at least 4 iterations. If the loop
691 header is not the first block of the function
692 we can rotate the loop. */
693
694 if (best_edge->dest
695 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
696 {
697 if (dump_file)
698 {
699 fprintf (stream: dump_file,
700 format: "Rotating loop %d - %d\n",
701 best_edge->dest->index, bb->index);
702 }
703 bb->aux = best_edge->dest;
704 bbd[best_edge->dest->index].in_trace =
705 (*n_traces) - 1;
706 bb = rotate_loop (back_edge: best_edge, trace, trace_n: *n_traces);
707 }
708 }
709 else
710 {
711 /* The loop has less than 4 iterations. */
712
713 if (single_succ_p (bb)
714 && copy_bb_p (best_edge->dest,
715 optimize_edge_for_speed_p
716 (best_edge)))
717 {
718 bb = copy_bb (best_edge->dest, best_edge, bb,
719 *n_traces);
720 trace->length++;
721 }
722 }
723 }
724
725 /* Terminate the trace. */
726 break;
727 }
728 else
729 {
730 /* Check for a situation
731
732 A
733 /|
734 B |
735 \|
736 C
737
738 where
739 AB->count () + BC->count () >= AC->count ().
740 (i.e. 2 * B->count >= AC->count )
741 Best ordering is then A B C.
742
743 When optimizing for size, A B C is always the best order.
744
745 This situation is created for example by:
746
747 if (A) B;
748 C;
749
750 */
751
752 FOR_EACH_EDGE (e, ei, bb->succs)
753 if (e != best_edge
754 && (e->flags & EDGE_CAN_FALLTHRU)
755 && !(e->flags & EDGE_COMPLEX)
756 && !bb_visited_trace (bb: e->dest)
757 && single_pred_p (bb: e->dest)
758 && !(e->flags & EDGE_CROSSING)
759 && single_succ_p (bb: e->dest)
760 && (single_succ_edge (bb: e->dest)->flags
761 & EDGE_CAN_FALLTHRU)
762 && !(single_succ_edge (bb: e->dest)->flags & EDGE_COMPLEX)
763 && single_succ (bb: e->dest) == best_edge->dest
764 && (e->dest->count * 2
765 >= best_edge->count () || for_size))
766 {
767 best_edge = e;
768 if (dump_file)
769 fprintf (stream: dump_file, format: "Selecting BB %d\n",
770 best_edge->dest->index);
771 break;
772 }
773
774 bb->aux = best_edge->dest;
775 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
776 bb = best_edge->dest;
777 }
778 }
779 }
780 while (best_edge);
781 trace->last = bb;
782 bbd[trace->first->index].start_of_trace = *n_traces - 1;
783 if (bbd[trace->last->index].end_of_trace != *n_traces - 1)
784 {
785 bbd[trace->last->index].end_of_trace = *n_traces - 1;
786 /* Update the cached maximum frequency for interesting predecessor
787 edges for successors of the new trace end. */
788 FOR_EACH_EDGE (e, ei, trace->last->succs)
789 if (EDGE_FREQUENCY (e) > bbd[e->dest->index].priority)
790 bbd[e->dest->index].priority = EDGE_FREQUENCY (e);
791 }
792
793 /* The trace is terminated so we have to recount the keys in heap
794 (some block can have a lower key because now one of its predecessors
795 is an end of the trace). */
796 FOR_EACH_EDGE (e, ei, bb->succs)
797 {
798 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
799 || bb_visited_trace (bb: e->dest))
800 continue;
801
802 if (bbd[e->dest->index].heap)
803 {
804 key = bb_to_key (e->dest);
805 if (key != bbd[e->dest->index].node->get_key ())
806 {
807 if (dump_file)
808 {
809 fprintf (stream: dump_file,
810 format: "Changing key for bb %d from %ld to %ld.\n",
811 e->dest->index,
812 (long) bbd[e->dest->index].node->get_key (), key);
813 }
814 bbd[e->dest->index].heap->replace_key
815 (node: bbd[e->dest->index].node, key);
816 }
817 }
818 }
819 }
820
821 delete (*heap);
822
823 /* "Return" the new heap. */
824 *heap = new_heap;
825}
826
827/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
828 it to trace after BB, mark OLD_BB visited and update pass' data structures
829 (TRACE is a number of trace which OLD_BB is duplicated to). */
830
831static basic_block
832copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
833{
834 basic_block new_bb;
835
836 new_bb = duplicate_block (old_bb, e, bb);
837 BB_COPY_PARTITION (new_bb, old_bb);
838
839 gcc_assert (e->dest == new_bb);
840
841 if (dump_file)
842 fprintf (stream: dump_file,
843 format: "Duplicated bb %d (created bb %d)\n",
844 old_bb->index, new_bb->index);
845
846 if (new_bb->index >= array_size
847 || last_basic_block_for_fn (cfun) > array_size)
848 {
849 int i;
850 int new_size;
851
852 new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
853 new_size = GET_ARRAY_SIZE (new_size);
854 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
855 for (i = array_size; i < new_size; i++)
856 {
857 bbd[i].start_of_trace = -1;
858 bbd[i].end_of_trace = -1;
859 bbd[i].in_trace = -1;
860 bbd[i].visited = 0;
861 bbd[i].priority = -1;
862 bbd[i].heap = NULL;
863 bbd[i].node = NULL;
864 }
865 array_size = new_size;
866
867 if (dump_file)
868 {
869 fprintf (stream: dump_file,
870 format: "Growing the dynamic array to %d elements.\n",
871 array_size);
872 }
873 }
874
875 gcc_assert (!bb_visited_trace (e->dest));
876 mark_bb_visited (bb: new_bb, trace);
877 new_bb->aux = bb->aux;
878 bb->aux = new_bb;
879
880 bbd[new_bb->index].in_trace = trace;
881
882 return new_bb;
883}
884
885/* Compute and return the key (for the heap) of the basic block BB. */
886
887static long
888bb_to_key (basic_block bb)
889{
890 edge e;
891 edge_iterator ei;
892
893 /* Use index as key to align with its original order. */
894 if (optimize_function_for_size_p (cfun))
895 return bb->index;
896
897 /* Do not start in probably never executed blocks. */
898
899 if (BB_PARTITION (bb) == BB_COLD_PARTITION
900 || probably_never_executed_bb_p (cfun, bb))
901 return BB_FREQ_MAX;
902
903 /* Prefer blocks whose predecessor is an end of some trace
904 or whose predecessor edge is EDGE_DFS_BACK. */
905 int priority = bbd[bb->index].priority;
906 if (priority == -1)
907 {
908 priority = 0;
909 FOR_EACH_EDGE (e, ei, bb->preds)
910 {
911 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
912 && bbd[e->src->index].end_of_trace >= 0)
913 || (e->flags & EDGE_DFS_BACK))
914 {
915 int edge_freq = EDGE_FREQUENCY (e);
916
917 if (edge_freq > priority)
918 priority = edge_freq;
919 }
920 }
921 bbd[bb->index].priority = priority;
922 }
923
924 if (priority)
925 /* The block with priority should have significantly lower key. */
926 return -(100 * BB_FREQ_MAX + 100 * priority + bb->count.to_frequency (cfun));
927
928 return -bb->count.to_frequency (cfun);
929}
930
931/* Return true when the edge E from basic block BB is better than the temporary
932 best edge (details are in function). The probability of edge E is PROB. The
933 count of the successor is COUNT. The current best probability is
934 BEST_PROB, the best count is BEST_COUNT.
935 The edge is considered to be equivalent when PROB does not differ much from
936 BEST_PROB; similarly for count. */
937
938static bool
939better_edge_p (const_basic_block bb, const_edge e, profile_probability prob,
940 profile_count count, profile_probability best_prob,
941 profile_count best_count, const_edge cur_best_edge)
942{
943 bool is_better_edge;
944
945 /* The BEST_* values do not have to be best, but can be a bit smaller than
946 maximum values. */
947 profile_probability diff_prob = best_prob / 10;
948
949 /* The smaller one is better to keep the original order. */
950 if (optimize_function_for_size_p (cfun))
951 return !cur_best_edge
952 || cur_best_edge->dest->index > e->dest->index;
953
954 /* Those edges are so expensive that continuing a trace is not useful
955 performance wise. */
956 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
957 return false;
958
959 if (prob > best_prob + diff_prob
960 || (!best_prob.initialized_p ()
961 && prob > profile_probability::guessed_never ()))
962 /* The edge has higher probability than the temporary best edge. */
963 is_better_edge = true;
964 else if (prob < best_prob - diff_prob)
965 /* The edge has lower probability than the temporary best edge. */
966 is_better_edge = false;
967 else
968 {
969 profile_count diff_count = best_count / 10;
970 if (count < best_count - diff_count
971 || (!best_count.initialized_p ()
972 && count.nonzero_p ()))
973 /* The edge and the temporary best edge have almost equivalent
974 probabilities. The higher countuency of a successor now means
975 that there is another edge going into that successor.
976 This successor has lower countuency so it is better. */
977 is_better_edge = true;
978 else if (count > best_count + diff_count)
979 /* This successor has higher countuency so it is worse. */
980 is_better_edge = false;
981 else if (e->dest->prev_bb == bb)
982 /* The edges have equivalent probabilities and the successors
983 have equivalent frequencies. Select the previous successor. */
984 is_better_edge = true;
985 else
986 is_better_edge = false;
987 }
988
989 return is_better_edge;
990}
991
992/* Return true when the edge E is better than the temporary best edge
993 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
994 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
995 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
996 TRACES record the information about traces.
997 When optimizing for size, the edge with smaller index is better.
998 When optimizing for speed, the edge with bigger probability or longer trace
999 is better. */
1000
1001static bool
1002connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
1003 const_edge cur_best_edge, struct trace *traces)
1004{
1005 int e_index;
1006 int b_index;
1007 bool is_better_edge;
1008
1009 if (!cur_best_edge)
1010 return true;
1011
1012 if (optimize_function_for_size_p (cfun))
1013 {
1014 e_index = src_index_p ? e->src->index : e->dest->index;
1015 b_index = src_index_p ? cur_best_edge->src->index
1016 : cur_best_edge->dest->index;
1017 /* The smaller one is better to keep the original order. */
1018 return b_index > e_index;
1019 }
1020
1021 if (src_index_p)
1022 {
1023 e_index = e->src->index;
1024
1025 /* We are looking for predecessor, so probabilities are not that
1026 informative. We do not want to connect A to B because A has
1027 only one successor (probability is 100%) while there is edge
1028 A' to B where probability is 90% but which is much more frequent. */
1029 if (e->count () > cur_best_edge->count ())
1030 /* The edge has higher probability than the temporary best edge. */
1031 is_better_edge = true;
1032 else if (e->count () < cur_best_edge->count ())
1033 /* The edge has lower probability than the temporary best edge. */
1034 is_better_edge = false;
1035 else if (e->probability > cur_best_edge->probability)
1036 /* The edge has higher probability than the temporary best edge. */
1037 is_better_edge = true;
1038 else if (e->probability < cur_best_edge->probability)
1039 /* The edge has lower probability than the temporary best edge. */
1040 is_better_edge = false;
1041 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1042 /* The edge and the temporary best edge have equivalent probabilities.
1043 The edge with longer trace is better. */
1044 is_better_edge = true;
1045 else
1046 is_better_edge = false;
1047 }
1048 else
1049 {
1050 e_index = e->dest->index;
1051
1052 if (e->probability > cur_best_edge->probability)
1053 /* The edge has higher probability than the temporary best edge. */
1054 is_better_edge = true;
1055 else if (e->probability < cur_best_edge->probability)
1056 /* The edge has lower probability than the temporary best edge. */
1057 is_better_edge = false;
1058 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1059 /* The edge and the temporary best edge have equivalent probabilities.
1060 The edge with longer trace is better. */
1061 is_better_edge = true;
1062 else
1063 is_better_edge = false;
1064 }
1065
1066 return is_better_edge;
1067}
1068
1069/* Connect traces in array TRACES, N_TRACES is the count of traces. */
1070
1071static void
1072connect_traces (int n_traces, struct trace *traces)
1073{
1074 int i;
1075 bool *connected;
1076 bool two_passes;
1077 int last_trace;
1078 int current_pass;
1079 int current_partition;
1080 profile_count count_threshold;
1081 bool for_size = optimize_function_for_size_p (cfun);
1082
1083 count_threshold = max_entry_count.apply_scale (DUPLICATION_THRESHOLD, den: 1000);
1084
1085 connected = XCNEWVEC (bool, n_traces);
1086 last_trace = -1;
1087 current_pass = 1;
1088 current_partition = BB_PARTITION (traces[0].first);
1089 two_passes = false;
1090
1091 if (crtl->has_bb_partition)
1092 for (i = 0; i < n_traces && !two_passes; i++)
1093 if (BB_PARTITION (traces[0].first)
1094 != BB_PARTITION (traces[i].first))
1095 two_passes = true;
1096
1097 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1098 {
1099 int t = i;
1100 int t2;
1101 edge e, best;
1102 int best_len;
1103
1104 if (i >= n_traces)
1105 {
1106 gcc_assert (two_passes && current_pass == 1);
1107 i = 0;
1108 t = i;
1109 current_pass = 2;
1110 if (current_partition == BB_HOT_PARTITION)
1111 current_partition = BB_COLD_PARTITION;
1112 else
1113 current_partition = BB_HOT_PARTITION;
1114 }
1115
1116 if (connected[t])
1117 continue;
1118
1119 if (two_passes
1120 && BB_PARTITION (traces[t].first) != current_partition)
1121 continue;
1122
1123 connected[t] = true;
1124
1125 /* Find the predecessor traces. */
1126 for (t2 = t; t2 > 0;)
1127 {
1128 edge_iterator ei;
1129 best = NULL;
1130 best_len = 0;
1131 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1132 {
1133 int si = e->src->index;
1134
1135 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1136 && (e->flags & EDGE_CAN_FALLTHRU)
1137 && !(e->flags & EDGE_COMPLEX)
1138 && bbd[si].end_of_trace >= 0
1139 && !connected[bbd[si].end_of_trace]
1140 && (BB_PARTITION (e->src) == current_partition)
1141 && connect_better_edge_p (e, src_index_p: true, best_len, cur_best_edge: best, traces))
1142 {
1143 best = e;
1144 best_len = traces[bbd[si].end_of_trace].length;
1145 }
1146 }
1147 if (best)
1148 {
1149 best->src->aux = best->dest;
1150 t2 = bbd[best->src->index].end_of_trace;
1151 connected[t2] = true;
1152
1153 if (dump_file)
1154 {
1155 fprintf (stream: dump_file, format: "Connection: %d %d\n",
1156 best->src->index, best->dest->index);
1157 }
1158 }
1159 else
1160 break;
1161 }
1162
1163 if (last_trace >= 0)
1164 traces[last_trace].last->aux = traces[t2].first;
1165 last_trace = t;
1166
1167 /* Find the successor traces. */
1168 while (1)
1169 {
1170 /* Find the continuation of the chain. */
1171 edge_iterator ei;
1172 best = NULL;
1173 best_len = 0;
1174 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1175 {
1176 int di = e->dest->index;
1177
1178 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1179 && (e->flags & EDGE_CAN_FALLTHRU)
1180 && !(e->flags & EDGE_COMPLEX)
1181 && bbd[di].start_of_trace >= 0
1182 && !connected[bbd[di].start_of_trace]
1183 && (BB_PARTITION (e->dest) == current_partition)
1184 && connect_better_edge_p (e, src_index_p: false, best_len, cur_best_edge: best, traces))
1185 {
1186 best = e;
1187 best_len = traces[bbd[di].start_of_trace].length;
1188 }
1189 }
1190
1191 if (for_size)
1192 {
1193 if (!best)
1194 /* Stop finding the successor traces. */
1195 break;
1196
1197 /* It is OK to connect block n with block n + 1 or a block
1198 before n. For others, only connect to the loop header. */
1199 if (best->dest->index > (traces[t].last->index + 1))
1200 {
1201 int count = EDGE_COUNT (best->dest->preds);
1202
1203 FOR_EACH_EDGE (e, ei, best->dest->preds)
1204 if (e->flags & EDGE_DFS_BACK)
1205 count--;
1206
1207 /* If dest has multiple predecessors, skip it. We expect
1208 that one predecessor with smaller index connects with it
1209 later. */
1210 if (count != 1)
1211 break;
1212 }
1213
1214 /* Only connect Trace n with Trace n + 1. It is conservative
1215 to keep the order as close as possible to the original order.
1216 It also helps to reduce long jumps. */
1217 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1218 break;
1219
1220 if (dump_file)
1221 fprintf (stream: dump_file, format: "Connection: %d %d\n",
1222 best->src->index, best->dest->index);
1223
1224 t = bbd[best->dest->index].start_of_trace;
1225 traces[last_trace].last->aux = traces[t].first;
1226 connected[t] = true;
1227 last_trace = t;
1228 }
1229 else if (best)
1230 {
1231 if (dump_file)
1232 {
1233 fprintf (stream: dump_file, format: "Connection: %d %d\n",
1234 best->src->index, best->dest->index);
1235 }
1236 t = bbd[best->dest->index].start_of_trace;
1237 traces[last_trace].last->aux = traces[t].first;
1238 connected[t] = true;
1239 last_trace = t;
1240 }
1241 else
1242 {
1243 /* Try to connect the traces by duplication of 1 block. */
1244 edge e2;
1245 basic_block next_bb = NULL;
1246 bool try_copy = false;
1247
1248 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1249 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1250 && (e->flags & EDGE_CAN_FALLTHRU)
1251 && !(e->flags & EDGE_COMPLEX)
1252 && (!best || e->probability > best->probability))
1253 {
1254 edge_iterator ei;
1255 edge best2 = NULL;
1256 int best2_len = 0;
1257
1258 /* If the destination is a start of a trace which is only
1259 one block long, then no need to search the successor
1260 blocks of the trace. Accept it. */
1261 if (bbd[e->dest->index].start_of_trace >= 0
1262 && traces[bbd[e->dest->index].start_of_trace].length
1263 == 1)
1264 {
1265 best = e;
1266 try_copy = true;
1267 continue;
1268 }
1269
1270 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1271 {
1272 int di = e2->dest->index;
1273
1274 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1275 || ((e2->flags & EDGE_CAN_FALLTHRU)
1276 && !(e2->flags & EDGE_COMPLEX)
1277 && bbd[di].start_of_trace >= 0
1278 && !connected[bbd[di].start_of_trace]
1279 && BB_PARTITION (e2->dest) == current_partition
1280 && e2->count () >= count_threshold
1281 && (!best2
1282 || e2->probability > best2->probability
1283 || (e2->probability == best2->probability
1284 && traces[bbd[di].start_of_trace].length
1285 > best2_len))))
1286 {
1287 best = e;
1288 best2 = e2;
1289 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1290 best2_len = traces[bbd[di].start_of_trace].length;
1291 else
1292 best2_len = INT_MAX;
1293 next_bb = e2->dest;
1294 try_copy = true;
1295 }
1296 }
1297 }
1298
1299 /* Copy tiny blocks always; copy larger blocks only when the
1300 edge is traversed frequently enough. */
1301 if (try_copy
1302 && BB_PARTITION (best->src) == BB_PARTITION (best->dest)
1303 && copy_bb_p (best->dest,
1304 optimize_edge_for_speed_p (best)
1305 && (!best->count ().initialized_p ()
1306 || best->count () >= count_threshold)))
1307 {
1308 basic_block new_bb;
1309
1310 if (dump_file)
1311 {
1312 fprintf (stream: dump_file, format: "Connection: %d %d ",
1313 traces[t].last->index, best->dest->index);
1314 if (!next_bb)
1315 fputc (c: '\n', stream: dump_file);
1316 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1317 fprintf (stream: dump_file, format: "exit\n");
1318 else
1319 fprintf (stream: dump_file, format: "%d\n", next_bb->index);
1320 }
1321
1322 new_bb = copy_bb (old_bb: best->dest, e: best, bb: traces[t].last, trace: t);
1323 traces[t].last = new_bb;
1324 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1325 {
1326 t = bbd[next_bb->index].start_of_trace;
1327 traces[last_trace].last->aux = traces[t].first;
1328 connected[t] = true;
1329 last_trace = t;
1330 }
1331 else
1332 break; /* Stop finding the successor traces. */
1333 }
1334 else
1335 break; /* Stop finding the successor traces. */
1336 }
1337 }
1338 }
1339
1340 if (dump_file)
1341 {
1342 basic_block bb;
1343
1344 fprintf (stream: dump_file, format: "Final order:\n");
1345 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1346 fprintf (stream: dump_file, format: "%d ", bb->index);
1347 fprintf (stream: dump_file, format: "\n");
1348 fflush (stream: dump_file);
1349 }
1350
1351 FREE (connected);
1352}
1353
1354/* Return true when BB can and should be copied. CODE_MAY_GROW is true
1355 when code size is allowed to grow by duplication. */
1356
1357static bool
1358copy_bb_p (const_basic_block bb, int code_may_grow)
1359{
1360 unsigned int size = 0;
1361 unsigned int max_size = uncond_jump_length;
1362 rtx_insn *insn;
1363
1364 if (EDGE_COUNT (bb->preds) < 2)
1365 return false;
1366 if (!can_duplicate_block_p (bb))
1367 return false;
1368
1369 /* Avoid duplicating blocks which have many successors (PR/13430). */
1370 if (EDGE_COUNT (bb->succs) > 8)
1371 return false;
1372
1373 if (code_may_grow && optimize_bb_for_speed_p (bb))
1374 max_size *= param_max_grow_copy_bb_insns;
1375
1376 FOR_BB_INSNS (bb, insn)
1377 {
1378 if (INSN_P (insn))
1379 {
1380 size += get_attr_min_length (insn);
1381 if (size > max_size)
1382 break;
1383 }
1384 }
1385
1386 if (size <= max_size)
1387 return true;
1388
1389 if (dump_file)
1390 {
1391 fprintf (stream: dump_file,
1392 format: "Block %d can't be copied because its size = %u.\n",
1393 bb->index, size);
1394 }
1395
1396 return false;
1397}
1398
1399/* Return the length of unconditional jump instruction. */
1400
1401int
1402get_uncond_jump_length (void)
1403{
1404 unsigned int length;
1405
1406 start_sequence ();
1407 rtx_code_label *label = emit_label (gen_label_rtx ());
1408 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (label));
1409 length = get_attr_min_length (jump);
1410 end_sequence ();
1411
1412 gcc_assert (length < INT_MAX);
1413 return length;
1414}
1415
1416/* Create a forwarder block to OLD_BB starting with NEW_LABEL and in the
1417 other partition wrt OLD_BB. */
1418
1419static basic_block
1420create_eh_forwarder_block (rtx_code_label *new_label, basic_block old_bb)
1421{
1422 /* Split OLD_BB, so that EH pads have always only incoming EH edges,
1423 bb_has_eh_pred bbs are treated specially by DF infrastructure. */
1424 old_bb = split_block_after_labels (old_bb)->dest;
1425
1426 /* Put the new label and a jump in the new basic block. */
1427 rtx_insn *label = emit_label (new_label);
1428 rtx_code_label *old_label = block_label (old_bb);
1429 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (old_label));
1430 JUMP_LABEL (jump) = old_label;
1431
1432 /* Create the new basic block and put it in last position. */
1433 basic_block last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1434 basic_block new_bb = create_basic_block (label, jump, last_bb);
1435 new_bb->aux = last_bb->aux;
1436 new_bb->count = old_bb->count;
1437 last_bb->aux = new_bb;
1438
1439 emit_barrier_after_bb (bb: new_bb);
1440
1441 make_single_succ_edge (new_bb, old_bb, 0);
1442
1443 /* Make sure the new basic block is in the other partition. */
1444 unsigned new_partition = BB_PARTITION (old_bb);
1445 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1446 BB_SET_PARTITION (new_bb, new_partition);
1447
1448 return new_bb;
1449}
1450
1451/* The common landing pad in block OLD_BB has edges from both partitions.
1452 Add a new landing pad that will just jump to the old one and split the
1453 edges so that no EH edge crosses partitions. */
1454
1455static void
1456sjlj_fix_up_crossing_landing_pad (basic_block old_bb)
1457{
1458 const unsigned lp_len = cfun->eh->lp_array->length ();
1459 edge_iterator ei;
1460 edge e;
1461
1462 /* Generate the new common landing-pad label. */
1463 rtx_code_label *new_label = gen_label_rtx ();
1464 LABEL_PRESERVE_P (new_label) = 1;
1465
1466 /* Create the forwarder block. */
1467 basic_block new_bb = create_eh_forwarder_block (new_label, old_bb);
1468
1469 /* Create the map from old to new lp index and initialize it. */
1470 unsigned *index_map = (unsigned *) alloca (lp_len * sizeof (unsigned));
1471 memset (s: index_map, c: 0, n: lp_len * sizeof (unsigned));
1472
1473 /* Fix up the edges. */
1474 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (i: ei)) != NULL; )
1475 if (e->src != new_bb && BB_PARTITION (e->src) == BB_PARTITION (new_bb))
1476 {
1477 rtx_insn *insn = BB_END (e->src);
1478 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1479
1480 gcc_assert (note != NULL);
1481 const unsigned old_index = INTVAL (XEXP (note, 0));
1482
1483 /* Generate the new landing-pad structure. */
1484 if (index_map[old_index] == 0)
1485 {
1486 eh_landing_pad old_lp = (*cfun->eh->lp_array)[old_index];
1487 eh_landing_pad new_lp = gen_eh_landing_pad (old_lp->region);
1488 new_lp->post_landing_pad = old_lp->post_landing_pad;
1489 new_lp->landing_pad = new_label;
1490 index_map[old_index] = new_lp->index;
1491 }
1492 XEXP (note, 0) = GEN_INT (index_map[old_index]);
1493
1494 /* Adjust the edge to the new destination. */
1495 redirect_edge_succ (e, new_bb);
1496 }
1497 else
1498 ei_next (i: &ei);
1499}
1500
1501/* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1502 Add a new landing pad that will just jump to the old one and split the
1503 edges so that no EH edge crosses partitions. */
1504
1505static void
1506dw2_fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1507{
1508 eh_landing_pad new_lp;
1509 edge_iterator ei;
1510 edge e;
1511
1512 /* Generate the new landing-pad structure. */
1513 new_lp = gen_eh_landing_pad (old_lp->region);
1514 new_lp->post_landing_pad = old_lp->post_landing_pad;
1515 new_lp->landing_pad = gen_label_rtx ();
1516 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1517
1518 /* Create the forwarder block. */
1519 basic_block new_bb = create_eh_forwarder_block (new_label: new_lp->landing_pad, old_bb);
1520
1521 /* Fix up the edges. */
1522 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (i: ei)) != NULL; )
1523 if (e->src != new_bb && BB_PARTITION (e->src) == BB_PARTITION (new_bb))
1524 {
1525 rtx_insn *insn = BB_END (e->src);
1526 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1527
1528 gcc_assert (note != NULL);
1529 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1530 XEXP (note, 0) = GEN_INT (new_lp->index);
1531
1532 /* Adjust the edge to the new destination. */
1533 redirect_edge_succ (e, new_bb);
1534 }
1535 else
1536 ei_next (i: &ei);
1537}
1538
1539
1540/* Ensure that all hot bbs are included in a hot path through the
1541 procedure. This is done by calling this function twice, once
1542 with WALK_UP true (to look for paths from the entry to hot bbs) and
1543 once with WALK_UP false (to look for paths from hot bbs to the exit).
1544 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1545 to BBS_IN_HOT_PARTITION. */
1546
1547static unsigned int
1548sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1549 vec<basic_block> *bbs_in_hot_partition)
1550{
1551 /* Callers check this. */
1552 gcc_checking_assert (cold_bb_count);
1553
1554 /* Keep examining hot bbs while we still have some left to check
1555 and there are remaining cold bbs. */
1556 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1557 while (! hot_bbs_to_check.is_empty ()
1558 && cold_bb_count)
1559 {
1560 basic_block bb = hot_bbs_to_check.pop ();
1561 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1562 edge e;
1563 edge_iterator ei;
1564 profile_probability highest_probability
1565 = profile_probability::uninitialized ();
1566 profile_count highest_count = profile_count::uninitialized ();
1567 bool found = false;
1568
1569 /* Walk the preds/succs and check if there is at least one already
1570 marked hot. Keep track of the most frequent pred/succ so that we
1571 can mark it hot if we don't find one. */
1572 FOR_EACH_EDGE (e, ei, edges)
1573 {
1574 basic_block reach_bb = walk_up ? e->src : e->dest;
1575
1576 if (e->flags & EDGE_DFS_BACK)
1577 continue;
1578
1579 /* Do not expect profile insanities when profile was not adjusted. */
1580 if (e->probability == profile_probability::never ()
1581 || e->count () == profile_count::zero ())
1582 continue;
1583
1584 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1585 {
1586 found = true;
1587 break;
1588 }
1589 /* The following loop will look for the hottest edge via
1590 the edge count, if it is non-zero, then fallback to
1591 the edge probability. */
1592 if (!(e->count () > highest_count))
1593 highest_count = e->count ();
1594 if (!highest_probability.initialized_p ()
1595 || e->probability > highest_probability)
1596 highest_probability = e->probability;
1597 }
1598
1599 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1600 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1601 then the most frequent pred (or succ) needs to be adjusted. In the
1602 case where multiple preds/succs have the same frequency (e.g. a
1603 50-50 branch), then both will be adjusted. */
1604 if (found)
1605 continue;
1606
1607 FOR_EACH_EDGE (e, ei, edges)
1608 {
1609 if (e->flags & EDGE_DFS_BACK)
1610 continue;
1611 /* Do not expect profile insanities when profile was not adjusted. */
1612 if (e->probability == profile_probability::never ()
1613 || e->count () == profile_count::zero ())
1614 continue;
1615 /* Select the hottest edge using the edge count, if it is non-zero,
1616 then fallback to the edge probability. */
1617 if (highest_count.initialized_p ())
1618 {
1619 if (!(e->count () >= highest_count))
1620 continue;
1621 }
1622 else if (!(e->probability >= highest_probability))
1623 continue;
1624
1625 basic_block reach_bb = walk_up ? e->src : e->dest;
1626
1627 /* We have a hot bb with an immediate dominator that is cold.
1628 The dominator needs to be re-marked hot. */
1629 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1630 if (dump_file)
1631 fprintf (stream: dump_file, format: "Promoting bb %i to hot partition to sanitize "
1632 "profile of bb %i in %s walk\n", reach_bb->index,
1633 bb->index, walk_up ? "backward" : "forward");
1634 cold_bb_count--;
1635
1636 /* Now we need to examine newly-hot reach_bb to see if it is also
1637 dominated by a cold bb. */
1638 bbs_in_hot_partition->safe_push (obj: reach_bb);
1639 hot_bbs_to_check.safe_push (obj: reach_bb);
1640 }
1641 }
1642 hot_bbs_to_check.release ();
1643
1644 return cold_bb_count;
1645}
1646
1647
1648/* Find the basic blocks that are rarely executed and need to be moved to
1649 a separate section of the .o file (to cut down on paging and improve
1650 cache locality). Return a vector of all edges that cross. */
1651
1652static vec<edge>
1653find_rarely_executed_basic_blocks_and_crossing_edges (void)
1654{
1655 vec<edge> crossing_edges = vNULL;
1656 basic_block bb;
1657 edge e;
1658 edge_iterator ei;
1659 unsigned int cold_bb_count = 0;
1660 auto_vec<basic_block> bbs_in_hot_partition;
1661
1662 propagate_unlikely_bbs_forward ();
1663
1664 /* Mark which partition (hot/cold) each basic block belongs in. */
1665 FOR_EACH_BB_FN (bb, cfun)
1666 {
1667 bool cold_bb = false;
1668
1669 if (probably_never_executed_bb_p (cfun, bb))
1670 {
1671 cold_bb = true;
1672
1673 /* Handle profile insanities created by upstream optimizations
1674 by also checking the incoming edge weights. If there is a non-cold
1675 incoming edge, conservatively prevent this block from being split
1676 into the cold section. */
1677 if (!bb->count.precise_p ())
1678 FOR_EACH_EDGE (e, ei, bb->preds)
1679 if (!probably_never_executed_edge_p (cfun, e))
1680 {
1681 cold_bb = false;
1682 break;
1683 }
1684 }
1685 if (cold_bb)
1686 {
1687 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1688 cold_bb_count++;
1689 }
1690 else
1691 {
1692 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1693 bbs_in_hot_partition.safe_push (obj: bb);
1694 }
1695 }
1696
1697 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1698 Several different possibilities may include cold bbs along all paths
1699 to/from a hot bb. One is that there are edge weight insanities
1700 due to optimization phases that do not properly update basic block profile
1701 counts. The second is that the entry of the function may not be hot, because
1702 it is entered fewer times than the number of profile training runs, but there
1703 is a loop inside the function that causes blocks within the function to be
1704 above the threshold for hotness. This is fixed by walking up from hot bbs
1705 to the entry block, and then down from hot bbs to the exit, performing
1706 partitioning fixups as necessary. */
1707 if (cold_bb_count)
1708 {
1709 mark_dfs_back_edges ();
1710 cold_bb_count = sanitize_hot_paths (walk_up: true, cold_bb_count,
1711 bbs_in_hot_partition: &bbs_in_hot_partition);
1712 if (cold_bb_count)
1713 sanitize_hot_paths (walk_up: false, cold_bb_count, bbs_in_hot_partition: &bbs_in_hot_partition);
1714
1715 hash_set <basic_block> set;
1716 find_bbs_reachable_by_hot_paths (&set);
1717 FOR_EACH_BB_FN (bb, cfun)
1718 if (!set.contains (k: bb))
1719 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1720 }
1721
1722 /* The format of .gcc_except_table does not allow landing pads to
1723 be in a different partition as the throw. Fix this by either
1724 moving the landing pads or inserting forwarder landing pads. */
1725 if (cfun->eh->lp_array)
1726 {
1727 const bool sjlj
1728 = (targetm_common.except_unwind_info (&global_options) == UI_SJLJ);
1729 unsigned i;
1730 eh_landing_pad lp;
1731
1732 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1733 {
1734 bool all_same, all_diff;
1735
1736 if (lp == NULL
1737 || lp->landing_pad == NULL_RTX
1738 || !LABEL_P (lp->landing_pad))
1739 continue;
1740
1741 all_same = all_diff = true;
1742 bb = BLOCK_FOR_INSN (insn: lp->landing_pad);
1743 FOR_EACH_EDGE (e, ei, bb->preds)
1744 {
1745 gcc_assert (e->flags & EDGE_EH);
1746 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1747 all_diff = false;
1748 else
1749 all_same = false;
1750 }
1751
1752 if (all_same)
1753 ;
1754 else if (all_diff)
1755 {
1756 int which = BB_PARTITION (bb);
1757 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1758 BB_SET_PARTITION (bb, which);
1759 }
1760 else if (sjlj)
1761 sjlj_fix_up_crossing_landing_pad (old_bb: bb);
1762 else
1763 dw2_fix_up_crossing_landing_pad (old_lp: lp, old_bb: bb);
1764
1765 /* There is a single, common landing pad in SJLJ mode. */
1766 if (sjlj)
1767 break;
1768 }
1769 }
1770
1771 /* Mark every edge that crosses between sections. */
1772 FOR_EACH_BB_FN (bb, cfun)
1773 FOR_EACH_EDGE (e, ei, bb->succs)
1774 {
1775 unsigned int flags = e->flags;
1776
1777 /* We should never have EDGE_CROSSING set yet. */
1778 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1779
1780 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1781 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1782 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1783 {
1784 crossing_edges.safe_push (obj: e);
1785 flags |= EDGE_CROSSING;
1786 }
1787
1788 /* Now that we've split eh edges as appropriate, allow landing pads
1789 to be merged with the post-landing pads. */
1790 flags &= ~EDGE_PRESERVE;
1791
1792 e->flags = flags;
1793 }
1794
1795 return crossing_edges;
1796}
1797
1798/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1799
1800static void
1801set_edge_can_fallthru_flag (void)
1802{
1803 basic_block bb;
1804
1805 FOR_EACH_BB_FN (bb, cfun)
1806 {
1807 edge e;
1808 edge_iterator ei;
1809
1810 FOR_EACH_EDGE (e, ei, bb->succs)
1811 {
1812 e->flags &= ~EDGE_CAN_FALLTHRU;
1813
1814 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1815 if (e->flags & EDGE_FALLTHRU)
1816 e->flags |= EDGE_CAN_FALLTHRU;
1817 }
1818
1819 /* If the BB ends with an invertible condjump all (2) edges are
1820 CAN_FALLTHRU edges. */
1821 if (EDGE_COUNT (bb->succs) != 2)
1822 continue;
1823 if (!any_condjump_p (BB_END (bb)))
1824 continue;
1825
1826 rtx_jump_insn *bb_end_jump = as_a <rtx_jump_insn *> (BB_END (bb));
1827 if (!invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0))
1828 continue;
1829 invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0);
1830 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1831 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1832 }
1833}
1834
1835/* If any destination of a crossing edge does not have a label, add label;
1836 Convert any easy fall-through crossing edges to unconditional jumps. */
1837
1838static void
1839add_labels_and_missing_jumps (vec<edge> crossing_edges)
1840{
1841 size_t i;
1842 edge e;
1843
1844 FOR_EACH_VEC_ELT (crossing_edges, i, e)
1845 {
1846 basic_block src = e->src;
1847 basic_block dest = e->dest;
1848 rtx_jump_insn *new_jump;
1849
1850 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1851 continue;
1852
1853 /* Make sure dest has a label. */
1854 rtx_code_label *label = block_label (dest);
1855
1856 /* Nothing to do for non-fallthru edges. */
1857 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1858 continue;
1859 if ((e->flags & EDGE_FALLTHRU) == 0)
1860 continue;
1861
1862 /* If the block does not end with a control flow insn, then we
1863 can trivially add a jump to the end to fixup the crossing.
1864 Otherwise the jump will have to go in a new bb, which will
1865 be handled by fix_up_fall_thru_edges function. */
1866 if (control_flow_insn_p (BB_END (src)))
1867 continue;
1868
1869 /* Make sure there's only one successor. */
1870 gcc_assert (single_succ_p (src));
1871
1872 new_jump = emit_jump_insn_after (targetm.gen_jump (label), BB_END (src));
1873 BB_END (src) = new_jump;
1874 JUMP_LABEL (new_jump) = label;
1875 LABEL_NUSES (label) += 1;
1876
1877 emit_barrier_after_bb (bb: src);
1878
1879 /* Mark edge as non-fallthru. */
1880 e->flags &= ~EDGE_FALLTHRU;
1881 }
1882}
1883
1884/* Find any bb's where the fall-through edge is a crossing edge (note that
1885 these bb's must also contain a conditional jump or end with a call
1886 instruction; we've already dealt with fall-through edges for blocks
1887 that didn't have a conditional jump or didn't end with call instruction
1888 in the call to add_labels_and_missing_jumps). Convert the fall-through
1889 edge to non-crossing edge by inserting a new bb to fall-through into.
1890 The new bb will contain an unconditional jump (crossing edge) to the
1891 original fall through destination. */
1892
1893static void
1894fix_up_fall_thru_edges (void)
1895{
1896 basic_block cur_bb;
1897
1898 FOR_EACH_BB_FN (cur_bb, cfun)
1899 {
1900 edge succ1;
1901 edge succ2;
1902 edge fall_thru = NULL;
1903 edge cond_jump = NULL;
1904
1905 fall_thru = NULL;
1906 if (EDGE_COUNT (cur_bb->succs) > 0)
1907 succ1 = EDGE_SUCC (cur_bb, 0);
1908 else
1909 succ1 = NULL;
1910
1911 if (EDGE_COUNT (cur_bb->succs) > 1)
1912 succ2 = EDGE_SUCC (cur_bb, 1);
1913 else
1914 succ2 = NULL;
1915
1916 /* Find the fall-through edge. */
1917
1918 if (succ1
1919 && (succ1->flags & EDGE_FALLTHRU))
1920 {
1921 fall_thru = succ1;
1922 cond_jump = succ2;
1923 }
1924 else if (succ2
1925 && (succ2->flags & EDGE_FALLTHRU))
1926 {
1927 fall_thru = succ2;
1928 cond_jump = succ1;
1929 }
1930 else if (succ2 && EDGE_COUNT (cur_bb->succs) > 2)
1931 fall_thru = find_fallthru_edge (edges: cur_bb->succs);
1932
1933 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1934 {
1935 /* Check to see if the fall-thru edge is a crossing edge. */
1936
1937 if (fall_thru->flags & EDGE_CROSSING)
1938 {
1939 /* The fall_thru edge crosses; now check the cond jump edge, if
1940 it exists. */
1941
1942 bool cond_jump_crosses = true;
1943 int invert_worked = 0;
1944 rtx_insn *old_jump = BB_END (cur_bb);
1945
1946 /* Find the jump instruction, if there is one. */
1947
1948 if (cond_jump)
1949 {
1950 if (!(cond_jump->flags & EDGE_CROSSING))
1951 cond_jump_crosses = false;
1952
1953 /* We know the fall-thru edge crosses; if the cond
1954 jump edge does NOT cross, and its destination is the
1955 next block in the bb order, invert the jump
1956 (i.e. fix it so the fall through does not cross and
1957 the cond jump does). */
1958
1959 if (!cond_jump_crosses)
1960 {
1961 /* Find label in fall_thru block. We've already added
1962 any missing labels, so there must be one. */
1963
1964 rtx_code_label *fall_thru_label
1965 = block_label (fall_thru->dest);
1966
1967 if (old_jump && fall_thru_label)
1968 {
1969 rtx_jump_insn *old_jump_insn
1970 = dyn_cast <rtx_jump_insn *> (p: old_jump);
1971 if (old_jump_insn)
1972 invert_worked = invert_jump (old_jump_insn,
1973 fall_thru_label, 0);
1974 }
1975
1976 if (invert_worked)
1977 {
1978 fall_thru->flags &= ~EDGE_FALLTHRU;
1979 cond_jump->flags |= EDGE_FALLTHRU;
1980 update_br_prob_note (cur_bb);
1981 std::swap (a&: fall_thru, b&: cond_jump);
1982 cond_jump->flags |= EDGE_CROSSING;
1983 fall_thru->flags &= ~EDGE_CROSSING;
1984 }
1985 }
1986 }
1987
1988 if (cond_jump_crosses || !invert_worked)
1989 {
1990 /* This is the case where both edges out of the basic
1991 block are crossing edges. Here we will fix up the
1992 fall through edge. The jump edge will be taken care
1993 of later. The EDGE_CROSSING flag of fall_thru edge
1994 is unset before the call to force_nonfallthru
1995 function because if a new basic-block is created
1996 this edge remains in the current section boundary
1997 while the edge between new_bb and the fall_thru->dest
1998 becomes EDGE_CROSSING. */
1999
2000 fall_thru->flags &= ~EDGE_CROSSING;
2001 unsigned old_count = EDGE_COUNT (cur_bb->succs);
2002 basic_block new_bb = force_nonfallthru (fall_thru);
2003
2004 if (new_bb)
2005 {
2006 new_bb->aux = cur_bb->aux;
2007 cur_bb->aux = new_bb;
2008
2009 /* This is done by force_nonfallthru_and_redirect. */
2010 gcc_assert (BB_PARTITION (new_bb)
2011 == BB_PARTITION (cur_bb));
2012
2013 edge e = single_succ_edge (bb: new_bb);
2014 e->flags |= EDGE_CROSSING;
2015 if (EDGE_COUNT (cur_bb->succs) > old_count)
2016 {
2017 /* If asm goto has a crossing fallthrough edge
2018 and at least one of the labels to the same bb,
2019 force_nonfallthru can result in the fallthrough
2020 edge being redirected and a new edge added for the
2021 label or more labels to e->dest. As we've
2022 temporarily cleared EDGE_CROSSING flag on the
2023 fallthrough edge, we need to restore it again.
2024 See PR108596. */
2025 rtx_insn *j = BB_END (cur_bb);
2026 gcc_checking_assert (JUMP_P (j)
2027 && (asm_noperands (PATTERN (j))
2028 > 0));
2029 edge e2 = find_edge (cur_bb, e->dest);
2030 if (e2)
2031 e2->flags |= EDGE_CROSSING;
2032 }
2033 }
2034 else
2035 {
2036 /* If a new basic-block was not created; restore
2037 the EDGE_CROSSING flag. */
2038 fall_thru->flags |= EDGE_CROSSING;
2039 }
2040
2041 /* Add barrier after new jump */
2042 emit_barrier_after_bb (bb: new_bb ? new_bb : cur_bb);
2043 }
2044 }
2045 }
2046 }
2047}
2048
2049/* This function checks the destination block of a "crossing jump" to
2050 see if it has any crossing predecessors that begin with a code label
2051 and end with an unconditional jump. If so, it returns that predecessor
2052 block. (This is to avoid creating lots of new basic blocks that all
2053 contain unconditional jumps to the same destination). */
2054
2055static basic_block
2056find_jump_block (basic_block jump_dest)
2057{
2058 basic_block source_bb = NULL;
2059 edge e;
2060 rtx_insn *insn;
2061 edge_iterator ei;
2062
2063 FOR_EACH_EDGE (e, ei, jump_dest->preds)
2064 if (e->flags & EDGE_CROSSING)
2065 {
2066 basic_block src = e->src;
2067
2068 /* Check each predecessor to see if it has a label, and contains
2069 only one executable instruction, which is an unconditional jump.
2070 If so, we can use it. */
2071
2072 if (LABEL_P (BB_HEAD (src)))
2073 for (insn = BB_HEAD (src);
2074 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
2075 insn = NEXT_INSN (insn))
2076 {
2077 if (INSN_P (insn)
2078 && insn == BB_END (src)
2079 && JUMP_P (insn)
2080 && !any_condjump_p (insn))
2081 {
2082 source_bb = src;
2083 break;
2084 }
2085 }
2086
2087 if (source_bb)
2088 break;
2089 }
2090
2091 return source_bb;
2092}
2093
2094/* Find all BB's with conditional jumps that are crossing edges;
2095 insert a new bb and make the conditional jump branch to the new
2096 bb instead (make the new bb same color so conditional branch won't
2097 be a 'crossing' edge). Insert an unconditional jump from the
2098 new bb to the original destination of the conditional jump. */
2099
2100static void
2101fix_crossing_conditional_branches (void)
2102{
2103 basic_block cur_bb;
2104 basic_block new_bb;
2105 basic_block dest;
2106 edge succ1;
2107 edge succ2;
2108 edge crossing_edge;
2109 edge new_edge;
2110 rtx set_src;
2111 rtx old_label = NULL_RTX;
2112 rtx_code_label *new_label;
2113
2114 FOR_EACH_BB_FN (cur_bb, cfun)
2115 {
2116 crossing_edge = NULL;
2117 if (EDGE_COUNT (cur_bb->succs) > 0)
2118 succ1 = EDGE_SUCC (cur_bb, 0);
2119 else
2120 succ1 = NULL;
2121
2122 if (EDGE_COUNT (cur_bb->succs) > 1)
2123 succ2 = EDGE_SUCC (cur_bb, 1);
2124 else
2125 succ2 = NULL;
2126
2127 /* We already took care of fall-through edges, so only one successor
2128 can be a crossing edge. */
2129
2130 if (succ1 && (succ1->flags & EDGE_CROSSING))
2131 crossing_edge = succ1;
2132 else if (succ2 && (succ2->flags & EDGE_CROSSING))
2133 crossing_edge = succ2;
2134
2135 if (crossing_edge)
2136 {
2137 rtx_insn *old_jump = BB_END (cur_bb);
2138
2139 /* Check to make sure the jump instruction is a
2140 conditional jump. */
2141
2142 set_src = NULL_RTX;
2143
2144 if (any_condjump_p (old_jump))
2145 {
2146 if (GET_CODE (PATTERN (old_jump)) == SET)
2147 set_src = SET_SRC (PATTERN (old_jump));
2148 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2149 {
2150 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2151 if (GET_CODE (set_src) == SET)
2152 set_src = SET_SRC (set_src);
2153 else
2154 set_src = NULL_RTX;
2155 }
2156 }
2157
2158 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2159 {
2160 rtx_jump_insn *old_jump_insn =
2161 as_a <rtx_jump_insn *> (p: old_jump);
2162
2163 if (GET_CODE (XEXP (set_src, 1)) == PC)
2164 old_label = XEXP (set_src, 2);
2165 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2166 old_label = XEXP (set_src, 1);
2167
2168 /* Check to see if new bb for jumping to that dest has
2169 already been created; if so, use it; if not, create
2170 a new one. */
2171
2172 new_bb = find_jump_block (jump_dest: crossing_edge->dest);
2173
2174 if (new_bb)
2175 new_label = block_label (new_bb);
2176 else
2177 {
2178 basic_block last_bb;
2179 rtx_code_label *old_jump_target;
2180 rtx_jump_insn *new_jump;
2181
2182 /* Create new basic block to be dest for
2183 conditional jump. */
2184
2185 /* Put appropriate instructions in new bb. */
2186
2187 new_label = gen_label_rtx ();
2188 emit_label (new_label);
2189
2190 gcc_assert (GET_CODE (old_label) == LABEL_REF);
2191 old_jump_target = old_jump_insn->jump_target ();
2192 new_jump = as_a <rtx_jump_insn *>
2193 (p: emit_jump_insn (targetm.gen_jump (old_jump_target)));
2194 new_jump->set_jump_target (old_jump_target);
2195
2196 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2197 new_bb = create_basic_block (new_label, new_jump, last_bb);
2198 new_bb->aux = last_bb->aux;
2199 last_bb->aux = new_bb;
2200
2201 emit_barrier_after_bb (bb: new_bb);
2202
2203 /* Make sure new bb is in same partition as source
2204 of conditional branch. */
2205 BB_COPY_PARTITION (new_bb, cur_bb);
2206 }
2207
2208 /* Make old jump branch to new bb. */
2209
2210 redirect_jump (old_jump_insn, new_label, 0);
2211
2212 /* Remove crossing_edge as predecessor of 'dest'. */
2213
2214 dest = crossing_edge->dest;
2215
2216 redirect_edge_succ (crossing_edge, new_bb);
2217
2218 /* Make a new edge from new_bb to old dest; new edge
2219 will be a successor for new_bb and a predecessor
2220 for 'dest'. */
2221
2222 if (EDGE_COUNT (new_bb->succs) == 0)
2223 new_edge = make_single_succ_edge (new_bb, dest, 0);
2224 else
2225 new_edge = EDGE_SUCC (new_bb, 0);
2226
2227 crossing_edge->flags &= ~EDGE_CROSSING;
2228 new_edge->flags |= EDGE_CROSSING;
2229 }
2230 }
2231 }
2232}
2233
2234/* Find any unconditional branches that cross between hot and cold
2235 sections. Convert them into indirect jumps instead. */
2236
2237static void
2238fix_crossing_unconditional_branches (void)
2239{
2240 basic_block cur_bb;
2241 rtx_insn *last_insn;
2242 rtx label;
2243 rtx label_addr;
2244 rtx_insn *indirect_jump_sequence;
2245 rtx_insn *jump_insn = NULL;
2246 rtx new_reg;
2247 rtx_insn *cur_insn;
2248 edge succ;
2249
2250 FOR_EACH_BB_FN (cur_bb, cfun)
2251 {
2252 last_insn = BB_END (cur_bb);
2253
2254 if (EDGE_COUNT (cur_bb->succs) < 1)
2255 continue;
2256
2257 succ = EDGE_SUCC (cur_bb, 0);
2258
2259 /* Check to see if bb ends in a crossing (unconditional) jump. At
2260 this point, no crossing jumps should be conditional. */
2261
2262 if (JUMP_P (last_insn)
2263 && (succ->flags & EDGE_CROSSING))
2264 {
2265 gcc_assert (!any_condjump_p (last_insn));
2266
2267 /* Make sure the jump is not already an indirect or table jump. */
2268
2269 if (!computed_jump_p (last_insn)
2270 && !tablejump_p (last_insn, NULL, NULL)
2271 && asm_noperands (PATTERN (insn: last_insn)) < 0)
2272 {
2273 /* We have found a "crossing" unconditional branch. Now
2274 we must convert it to an indirect jump. First create
2275 reference of label, as target for jump. */
2276
2277 label = JUMP_LABEL (last_insn);
2278 label_addr = gen_rtx_LABEL_REF (Pmode, label);
2279 LABEL_NUSES (label) += 1;
2280
2281 /* Get a register to use for the indirect jump. */
2282
2283 new_reg = gen_reg_rtx (Pmode);
2284
2285 /* Generate indirect the jump sequence. */
2286
2287 start_sequence ();
2288 emit_move_insn (new_reg, label_addr);
2289 emit_indirect_jump (new_reg);
2290 indirect_jump_sequence = get_insns ();
2291 end_sequence ();
2292
2293 /* Make sure every instruction in the new jump sequence has
2294 its basic block set to be cur_bb. */
2295
2296 for (cur_insn = indirect_jump_sequence; cur_insn;
2297 cur_insn = NEXT_INSN (insn: cur_insn))
2298 {
2299 if (!BARRIER_P (cur_insn))
2300 BLOCK_FOR_INSN (insn: cur_insn) = cur_bb;
2301 if (JUMP_P (cur_insn))
2302 jump_insn = cur_insn;
2303 }
2304
2305 /* Insert the new (indirect) jump sequence immediately before
2306 the unconditional jump, then delete the unconditional jump. */
2307
2308 emit_insn_before (indirect_jump_sequence, last_insn);
2309 delete_insn (last_insn);
2310
2311 JUMP_LABEL (jump_insn) = label;
2312 LABEL_NUSES (label)++;
2313
2314 /* Make BB_END for cur_bb be the jump instruction (NOT the
2315 barrier instruction at the end of the sequence...). */
2316
2317 BB_END (cur_bb) = jump_insn;
2318 }
2319 }
2320 }
2321}
2322
2323/* Update CROSSING_JUMP_P flags on all jump insns. */
2324
2325static void
2326update_crossing_jump_flags (void)
2327{
2328 basic_block bb;
2329 edge e;
2330 edge_iterator ei;
2331
2332 FOR_EACH_BB_FN (bb, cfun)
2333 FOR_EACH_EDGE (e, ei, bb->succs)
2334 if (e->flags & EDGE_CROSSING)
2335 {
2336 if (JUMP_P (BB_END (bb)))
2337 CROSSING_JUMP_P (BB_END (bb)) = 1;
2338 break;
2339 }
2340}
2341
2342/* Reorder basic blocks using the software trace cache (STC) algorithm. */
2343
2344static void
2345reorder_basic_blocks_software_trace_cache (void)
2346{
2347 if (dump_file)
2348 fprintf (stream: dump_file, format: "\nReordering with the STC algorithm.\n\n");
2349
2350 int n_traces;
2351 int i;
2352 struct trace *traces;
2353
2354 /* We are estimating the length of uncond jump insn only once since the code
2355 for getting the insn length always returns the minimal length now. */
2356 if (uncond_jump_length == 0)
2357 uncond_jump_length = get_uncond_jump_length ();
2358
2359 /* We need to know some information for each basic block. */
2360 array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2361 bbd = XNEWVEC (bbro_basic_block_data, array_size);
2362 for (i = 0; i < array_size; i++)
2363 {
2364 bbd[i].start_of_trace = -1;
2365 bbd[i].end_of_trace = -1;
2366 bbd[i].in_trace = -1;
2367 bbd[i].visited = 0;
2368 bbd[i].priority = -1;
2369 bbd[i].heap = NULL;
2370 bbd[i].node = NULL;
2371 }
2372
2373 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2374 n_traces = 0;
2375 find_traces (n_traces: &n_traces, traces);
2376 connect_traces (n_traces, traces);
2377 FREE (traces);
2378 FREE (bbd);
2379}
2380
2381/* Order edges by execution frequency, higher first. */
2382
2383static int
2384edge_order (const void *ve1, const void *ve2)
2385{
2386 edge e1 = *(const edge *) ve1;
2387 edge e2 = *(const edge *) ve2;
2388 profile_count c1 = e1->count ();
2389 profile_count c2 = e2->count ();
2390 /* Since profile_count::operator< does not establish a strict weak order
2391 in presence of uninitialized counts, use 'max': this makes them appear
2392 as if having execution frequency less than any initialized count. */
2393 profile_count m = c1.max (other: c2);
2394 return (m == c2) - (m == c1);
2395}
2396
2397/* Reorder basic blocks using the "simple" algorithm. This tries to
2398 maximize the dynamic number of branches that are fallthrough, without
2399 copying instructions. The algorithm is greedy, looking at the most
2400 frequently executed branch first. */
2401
2402static void
2403reorder_basic_blocks_simple (void)
2404{
2405 if (dump_file)
2406 fprintf (stream: dump_file, format: "\nReordering with the \"simple\" algorithm.\n\n");
2407
2408 edge *edges = new edge[2 * n_basic_blocks_for_fn (cfun)];
2409
2410 /* First, collect all edges that can be optimized by reordering blocks:
2411 simple jumps and conditional jumps, as well as the function entry edge. */
2412
2413 int n = 0;
2414 edges[n++] = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2415
2416 basic_block bb;
2417 FOR_EACH_BB_FN (bb, cfun)
2418 {
2419 rtx_insn *end = BB_END (bb);
2420
2421 if (computed_jump_p (end) || tablejump_p (end, NULL, NULL))
2422 continue;
2423
2424 /* We cannot optimize asm goto. */
2425 if (JUMP_P (end) && extract_asm_operands (end))
2426 continue;
2427
2428 if (single_succ_p (bb))
2429 edges[n++] = EDGE_SUCC (bb, 0);
2430 else if (any_condjump_p (end))
2431 {
2432 edge e0 = EDGE_SUCC (bb, 0);
2433 edge e1 = EDGE_SUCC (bb, 1);
2434 /* When optimizing for size it is best to keep the original
2435 fallthrough edges. */
2436 if (e1->flags & EDGE_FALLTHRU)
2437 std::swap (a&: e0, b&: e1);
2438 edges[n++] = e0;
2439 edges[n++] = e1;
2440 }
2441 }
2442
2443 /* Sort the edges, the most desirable first. When optimizing for size
2444 all edges are equally desirable. */
2445
2446 if (optimize_function_for_speed_p (cfun))
2447 gcc_stablesort (edges, n, sizeof *edges, edge_order);
2448
2449 /* Now decide which of those edges to make fallthrough edges. We set
2450 BB_VISITED if a block already has a fallthrough successor assigned
2451 to it. We make ->AUX of an endpoint point to the opposite endpoint
2452 of a sequence of blocks that fall through, and ->AUX will be NULL
2453 for a block that is in such a sequence but not an endpoint anymore.
2454
2455 To start with, everything points to itself, nothing is assigned yet. */
2456
2457 FOR_ALL_BB_FN (bb, cfun)
2458 {
2459 bb->aux = bb;
2460 bb->flags &= ~BB_VISITED;
2461 }
2462
2463 EXIT_BLOCK_PTR_FOR_FN (cfun)->aux = 0;
2464
2465 /* Now for all edges, the most desirable first, see if that edge can
2466 connect two sequences. If it can, update AUX and BB_VISITED; if it
2467 cannot, zero out the edge in the table. */
2468
2469 for (int j = 0; j < n; j++)
2470 {
2471 edge e = edges[j];
2472
2473 basic_block tail_a = e->src;
2474 basic_block head_b = e->dest;
2475 basic_block head_a = (basic_block) tail_a->aux;
2476 basic_block tail_b = (basic_block) head_b->aux;
2477
2478 /* An edge cannot connect two sequences if:
2479 - it crosses partitions;
2480 - its src is not a current endpoint;
2481 - its dest is not a current endpoint;
2482 - or, it would create a loop. */
2483
2484 if (e->flags & EDGE_CROSSING
2485 || tail_a->flags & BB_VISITED
2486 || !tail_b
2487 || (!(head_b->flags & BB_VISITED) && head_b != tail_b)
2488 || tail_a == tail_b)
2489 {
2490 edges[j] = 0;
2491 continue;
2492 }
2493
2494 tail_a->aux = 0;
2495 head_b->aux = 0;
2496 head_a->aux = tail_b;
2497 tail_b->aux = head_a;
2498 tail_a->flags |= BB_VISITED;
2499 }
2500
2501 /* Put the pieces together, in the same order that the start blocks of
2502 the sequences already had. The hot/cold partitioning gives a little
2503 complication: as a first pass only do this for blocks in the same
2504 partition as the start block, and (if there is anything left to do)
2505 in a second pass handle the other partition. */
2506
2507 basic_block last_tail = (basic_block) ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2508
2509 int current_partition
2510 = BB_PARTITION (last_tail == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2511 ? EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
2512 : last_tail);
2513 bool need_another_pass = true;
2514
2515 for (int pass = 0; pass < 2 && need_another_pass; pass++)
2516 {
2517 need_another_pass = false;
2518
2519 FOR_EACH_BB_FN (bb, cfun)
2520 if ((bb->flags & BB_VISITED && bb->aux) || bb->aux == bb)
2521 {
2522 if (BB_PARTITION (bb) != current_partition)
2523 {
2524 need_another_pass = true;
2525 continue;
2526 }
2527
2528 last_tail->aux = bb;
2529 last_tail = (basic_block) bb->aux;
2530 }
2531
2532 current_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
2533 }
2534
2535 last_tail->aux = 0;
2536
2537 /* Finally, link all the chosen fallthrough edges. */
2538
2539 for (int j = 0; j < n; j++)
2540 if (edges[j])
2541 edges[j]->src->aux = edges[j]->dest;
2542
2543 delete[] edges;
2544
2545 /* If the entry edge no longer falls through we have to make a new
2546 block so it can do so again. */
2547
2548 edge e = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2549 if (e->dest != ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux)
2550 {
2551 force_nonfallthru (e);
2552 e->src->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2553 }
2554}
2555
2556/* Reorder basic blocks. The main entry point to this file. */
2557
2558static void
2559reorder_basic_blocks (void)
2560{
2561 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2562
2563 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2564 return;
2565
2566 set_edge_can_fallthru_flag ();
2567 mark_dfs_back_edges ();
2568
2569 switch (flag_reorder_blocks_algorithm)
2570 {
2571 case REORDER_BLOCKS_ALGORITHM_SIMPLE:
2572 reorder_basic_blocks_simple ();
2573 break;
2574
2575 case REORDER_BLOCKS_ALGORITHM_STC:
2576 reorder_basic_blocks_software_trace_cache ();
2577 break;
2578
2579 default:
2580 gcc_unreachable ();
2581 }
2582
2583 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2584
2585 if (dump_file)
2586 {
2587 if (dump_flags & TDF_DETAILS)
2588 dump_reg_info (dump_file);
2589 dump_flow_info (dump_file, dump_flags);
2590 }
2591
2592 /* Signal that rtl_verify_flow_info_1 can now verify that there
2593 is at most one switch between hot/cold sections. */
2594 crtl->bb_reorder_complete = true;
2595}
2596
2597/* Determine which partition the first basic block in the function
2598 belongs to, then find the first basic block in the current function
2599 that belongs to a different section, and insert a
2600 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2601 instruction stream. When writing out the assembly code,
2602 encountering this note will make the compiler switch between the
2603 hot and cold text sections. */
2604
2605void
2606insert_section_boundary_note (void)
2607{
2608 basic_block bb;
2609 bool switched_sections = false;
2610 int current_partition = 0;
2611
2612 if (!crtl->has_bb_partition)
2613 return;
2614
2615 FOR_EACH_BB_FN (bb, cfun)
2616 {
2617 if (!current_partition)
2618 current_partition = BB_PARTITION (bb);
2619 if (BB_PARTITION (bb) != current_partition)
2620 {
2621 gcc_assert (!switched_sections);
2622 switched_sections = true;
2623 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2624 current_partition = BB_PARTITION (bb);
2625 }
2626 }
2627
2628 /* Make sure crtl->has_bb_partition matches reality even if bbpart finds
2629 some hot and some cold basic blocks, but later one of those kinds is
2630 optimized away. */
2631 crtl->has_bb_partition = switched_sections;
2632}
2633
2634namespace {
2635
2636const pass_data pass_data_reorder_blocks =
2637{
2638 .type: RTL_PASS, /* type */
2639 .name: "bbro", /* name */
2640 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2641 .tv_id: TV_REORDER_BLOCKS, /* tv_id */
2642 .properties_required: 0, /* properties_required */
2643 .properties_provided: 0, /* properties_provided */
2644 .properties_destroyed: 0, /* properties_destroyed */
2645 .todo_flags_start: 0, /* todo_flags_start */
2646 .todo_flags_finish: 0, /* todo_flags_finish */
2647};
2648
2649class pass_reorder_blocks : public rtl_opt_pass
2650{
2651public:
2652 pass_reorder_blocks (gcc::context *ctxt)
2653 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2654 {}
2655
2656 /* opt_pass methods: */
2657 bool gate (function *) final override
2658 {
2659 if (targetm.cannot_modify_jumps_p ())
2660 return false;
2661 return (optimize > 0
2662 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2663 }
2664
2665 unsigned int execute (function *) final override;
2666
2667}; // class pass_reorder_blocks
2668
2669unsigned int
2670pass_reorder_blocks::execute (function *fun)
2671{
2672 basic_block bb;
2673
2674 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2675 splitting possibly introduced more crossjumping opportunities. */
2676 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2677
2678 reorder_basic_blocks ();
2679 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_NO_PARTITIONING);
2680
2681 FOR_EACH_BB_FN (bb, fun)
2682 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2683 bb->aux = bb->next_bb;
2684 cfg_layout_finalize ();
2685
2686 FOR_EACH_BB_FN (bb, fun)
2687 df_recompute_luids (bb);
2688 return 0;
2689}
2690
2691} // anon namespace
2692
2693rtl_opt_pass *
2694make_pass_reorder_blocks (gcc::context *ctxt)
2695{
2696 return new pass_reorder_blocks (ctxt);
2697}
2698
2699/* Duplicate a block (that we already know ends in a computed jump) into its
2700 predecessors, where possible. Return whether anything is changed. */
2701static bool
2702maybe_duplicate_computed_goto (basic_block bb, int max_size)
2703{
2704 /* Make sure that the block is small enough. */
2705 rtx_insn *insn;
2706 FOR_BB_INSNS (bb, insn)
2707 if (INSN_P (insn))
2708 {
2709 max_size -= get_attr_min_length (insn);
2710 if (max_size < 0)
2711 return false;
2712 }
2713
2714 bool changed = false;
2715 edge e;
2716 edge_iterator ei;
2717 for (ei = ei_start (bb->preds); (e = ei_safe_edge (i: ei)); )
2718 {
2719 basic_block pred = e->src;
2720
2721 /* Do not duplicate BB into PRED if we cannot merge a copy of BB
2722 with PRED. */
2723 if (!single_succ_p (bb: pred)
2724 || e->flags & EDGE_COMPLEX
2725 || pred->index < NUM_FIXED_BLOCKS
2726 || (JUMP_P (BB_END (pred)) && !simplejump_p (BB_END (pred)))
2727 || (JUMP_P (BB_END (pred)) && CROSSING_JUMP_P (BB_END (pred))))
2728 {
2729 ei_next (i: &ei);
2730 continue;
2731 }
2732
2733 if (dump_file)
2734 fprintf (stream: dump_file, format: "Duplicating computed goto bb %d into bb %d\n",
2735 bb->index, e->src->index);
2736
2737 /* Remember if PRED can be duplicated; if so, the copy of BB merged
2738 with PRED can be duplicated as well. */
2739 bool can_dup_more = can_duplicate_block_p (pred);
2740
2741 /* Make a copy of BB, merge it into PRED. */
2742 basic_block copy = duplicate_block (bb, e, NULL);
2743 emit_barrier_after_bb (bb: copy);
2744 reorder_insns_nobb (BB_HEAD (copy), BB_END (copy), BB_END (pred));
2745 merge_blocks (pred, copy);
2746
2747 changed = true;
2748
2749 /* Try to merge the resulting merged PRED into further predecessors. */
2750 if (can_dup_more)
2751 maybe_duplicate_computed_goto (bb: pred, max_size);
2752 }
2753
2754 return changed;
2755}
2756
2757/* Duplicate the blocks containing computed gotos. This basically unfactors
2758 computed gotos that were factored early on in the compilation process to
2759 speed up edge based data flow. We used to not unfactor them again, which
2760 can seriously pessimize code with many computed jumps in the source code,
2761 such as interpreters. See e.g. PR15242. */
2762static void
2763duplicate_computed_gotos (function *fun)
2764{
2765 /* We are estimating the length of uncond jump insn only once
2766 since the code for getting the insn length always returns
2767 the minimal length now. */
2768 if (uncond_jump_length == 0)
2769 uncond_jump_length = get_uncond_jump_length ();
2770
2771 /* Never copy a block larger than this. */
2772 int max_size
2773 = uncond_jump_length * param_max_goto_duplication_insns;
2774
2775 bool changed = false;
2776
2777 /* Try to duplicate all blocks that end in a computed jump and that
2778 can be duplicated at all. */
2779 basic_block bb;
2780 FOR_EACH_BB_FN (bb, fun)
2781 if (computed_jump_p (BB_END (bb)) && can_duplicate_block_p (bb))
2782 changed |= maybe_duplicate_computed_goto (bb, max_size);
2783
2784 /* Some blocks may have become unreachable. */
2785 if (changed)
2786 cleanup_cfg (0);
2787
2788 /* Duplicating blocks will redirect edges and may cause hot blocks
2789 previously reached by both hot and cold blocks to become dominated
2790 only by cold blocks. */
2791 if (changed)
2792 fixup_partitions ();
2793}
2794
2795namespace {
2796
2797const pass_data pass_data_duplicate_computed_gotos =
2798{
2799 .type: RTL_PASS, /* type */
2800 .name: "compgotos", /* name */
2801 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2802 .tv_id: TV_REORDER_BLOCKS, /* tv_id */
2803 .properties_required: 0, /* properties_required */
2804 .properties_provided: 0, /* properties_provided */
2805 .properties_destroyed: 0, /* properties_destroyed */
2806 .todo_flags_start: 0, /* todo_flags_start */
2807 .todo_flags_finish: 0, /* todo_flags_finish */
2808};
2809
2810class pass_duplicate_computed_gotos : public rtl_opt_pass
2811{
2812public:
2813 pass_duplicate_computed_gotos (gcc::context *ctxt)
2814 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2815 {}
2816
2817 /* opt_pass methods: */
2818 bool gate (function *) final override;
2819 unsigned int execute (function *) final override;
2820
2821}; // class pass_duplicate_computed_gotos
2822
2823bool
2824pass_duplicate_computed_gotos::gate (function *fun)
2825{
2826 if (targetm.cannot_modify_jumps_p ())
2827 return false;
2828 return (optimize > 0
2829 && flag_expensive_optimizations
2830 && ! optimize_function_for_size_p (fun));
2831}
2832
2833unsigned int
2834pass_duplicate_computed_gotos::execute (function *fun)
2835{
2836 duplicate_computed_gotos (fun);
2837
2838 return 0;
2839}
2840
2841} // anon namespace
2842
2843rtl_opt_pass *
2844make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2845{
2846 return new pass_duplicate_computed_gotos (ctxt);
2847}
2848
2849/* This function is the main 'entrance' for the optimization that
2850 partitions hot and cold basic blocks into separate sections of the
2851 .o file (to improve performance and cache locality). Ideally it
2852 would be called after all optimizations that rearrange the CFG have
2853 been called. However part of this optimization may introduce new
2854 register usage, so it must be called before register allocation has
2855 occurred. This means that this optimization is actually called
2856 well before the optimization that reorders basic blocks (see
2857 function above).
2858
2859 This optimization checks the feedback information to determine
2860 which basic blocks are hot/cold, updates flags on the basic blocks
2861 to indicate which section they belong in. This information is
2862 later used for writing out sections in the .o file. Because hot
2863 and cold sections can be arbitrarily large (within the bounds of
2864 memory), far beyond the size of a single function, it is necessary
2865 to fix up all edges that cross section boundaries, to make sure the
2866 instructions used can actually span the required distance. The
2867 fixes are described below.
2868
2869 Fall-through edges must be changed into jumps; it is not safe or
2870 legal to fall through across a section boundary. Whenever a
2871 fall-through edge crossing a section boundary is encountered, a new
2872 basic block is inserted (in the same section as the fall-through
2873 source), and the fall through edge is redirected to the new basic
2874 block. The new basic block contains an unconditional jump to the
2875 original fall-through target. (If the unconditional jump is
2876 insufficient to cross section boundaries, that is dealt with a
2877 little later, see below).
2878
2879 In order to deal with architectures that have short conditional
2880 branches (which cannot span all of memory) we take any conditional
2881 jump that attempts to cross a section boundary and add a level of
2882 indirection: it becomes a conditional jump to a new basic block, in
2883 the same section. The new basic block contains an unconditional
2884 jump to the original target, in the other section.
2885
2886 For those architectures whose unconditional branch is also
2887 incapable of reaching all of memory, those unconditional jumps are
2888 converted into indirect jumps, through a register.
2889
2890 IMPORTANT NOTE: This optimization causes some messy interactions
2891 with the cfg cleanup optimizations; those optimizations want to
2892 merge blocks wherever possible, and to collapse indirect jump
2893 sequences (change "A jumps to B jumps to C" directly into "A jumps
2894 to C"). Those optimizations can undo the jump fixes that
2895 partitioning is required to make (see above), in order to ensure
2896 that jumps attempting to cross section boundaries are really able
2897 to cover whatever distance the jump requires (on many architectures
2898 conditional or unconditional jumps are not able to reach all of
2899 memory). Therefore tests have to be inserted into each such
2900 optimization to make sure that it does not undo stuff necessary to
2901 cross partition boundaries. This would be much less of a problem
2902 if we could perform this optimization later in the compilation, but
2903 unfortunately the fact that we may need to create indirect jumps
2904 (through registers) requires that this optimization be performed
2905 before register allocation.
2906
2907 Hot and cold basic blocks are partitioned and put in separate
2908 sections of the .o file, to reduce paging and improve cache
2909 performance (hopefully). This can result in bits of code from the
2910 same function being widely separated in the .o file. However this
2911 is not obvious to the current bb structure. Therefore we must take
2912 care to ensure that: 1). There are no fall_thru edges that cross
2913 between sections; 2). For those architectures which have "short"
2914 conditional branches, all conditional branches that attempt to
2915 cross between sections are converted to unconditional branches;
2916 and, 3). For those architectures which have "short" unconditional
2917 branches, all unconditional branches that attempt to cross between
2918 sections are converted to indirect jumps.
2919
2920 The code for fixing up fall_thru edges that cross between hot and
2921 cold basic blocks does so by creating new basic blocks containing
2922 unconditional branches to the appropriate label in the "other"
2923 section. The new basic block is then put in the same (hot or cold)
2924 section as the original conditional branch, and the fall_thru edge
2925 is modified to fall into the new basic block instead. By adding
2926 this level of indirection we end up with only unconditional branches
2927 crossing between hot and cold sections.
2928
2929 Conditional branches are dealt with by adding a level of indirection.
2930 A new basic block is added in the same (hot/cold) section as the
2931 conditional branch, and the conditional branch is retargeted to the
2932 new basic block. The new basic block contains an unconditional branch
2933 to the original target of the conditional branch (in the other section).
2934
2935 Unconditional branches are dealt with by converting them into
2936 indirect jumps. */
2937
2938namespace {
2939
2940const pass_data pass_data_partition_blocks =
2941{
2942 .type: RTL_PASS, /* type */
2943 .name: "bbpart", /* name */
2944 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2945 .tv_id: TV_REORDER_BLOCKS, /* tv_id */
2946 PROP_cfglayout, /* properties_required */
2947 .properties_provided: 0, /* properties_provided */
2948 .properties_destroyed: 0, /* properties_destroyed */
2949 .todo_flags_start: 0, /* todo_flags_start */
2950 .todo_flags_finish: 0, /* todo_flags_finish */
2951};
2952
2953class pass_partition_blocks : public rtl_opt_pass
2954{
2955public:
2956 pass_partition_blocks (gcc::context *ctxt)
2957 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2958 {}
2959
2960 /* opt_pass methods: */
2961 bool gate (function *) final override;
2962 unsigned int execute (function *) final override;
2963
2964}; // class pass_partition_blocks
2965
2966bool
2967pass_partition_blocks::gate (function *fun)
2968{
2969 /* The optimization to partition hot/cold basic blocks into separate
2970 sections of the .o file does not work well with linkonce or with
2971 user defined section attributes or with naked attribute. Don't call
2972 it if either case arises. */
2973 return (flag_reorder_blocks_and_partition
2974 && optimize
2975 /* See pass_reorder_blocks::gate. We should not partition if
2976 we are going to omit the reordering. */
2977 && optimize_function_for_speed_p (fun)
2978 && !DECL_COMDAT_GROUP (current_function_decl)
2979 && !lookup_attribute (attr_name: "section", DECL_ATTRIBUTES (fun->decl))
2980 && !lookup_attribute (attr_name: "naked", DECL_ATTRIBUTES (fun->decl))
2981 /* Workaround a bug in GDB where read_partial_die doesn't cope
2982 with DIEs with DW_AT_ranges, see PR81115. */
2983 && !(in_lto_p && MAIN_NAME_P (DECL_NAME (fun->decl))));
2984}
2985
2986unsigned
2987pass_partition_blocks::execute (function *fun)
2988{
2989 vec<edge> crossing_edges;
2990
2991 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2992 return 0;
2993
2994 df_set_flags (DF_DEFER_INSN_RESCAN);
2995
2996 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2997 if (!crossing_edges.exists ())
2998 /* Make sure to process deferred rescans and clear changeable df flags. */
2999 return TODO_df_finish;
3000
3001 crtl->has_bb_partition = true;
3002
3003 /* Make sure the source of any crossing edge ends in a jump and the
3004 destination of any crossing edge has a label. */
3005 add_labels_and_missing_jumps (crossing_edges);
3006
3007 /* Convert all crossing fall_thru edges to non-crossing fall
3008 thrus to unconditional jumps (that jump to the original fall
3009 through dest). */
3010 fix_up_fall_thru_edges ();
3011
3012 /* If the architecture does not have conditional branches that can
3013 span all of memory, convert crossing conditional branches into
3014 crossing unconditional branches. */
3015 if (!HAS_LONG_COND_BRANCH)
3016 fix_crossing_conditional_branches ();
3017
3018 /* If the architecture does not have unconditional branches that
3019 can span all of memory, convert crossing unconditional branches
3020 into indirect jumps. Since adding an indirect jump also adds
3021 a new register usage, update the register usage information as
3022 well. */
3023 if (!HAS_LONG_UNCOND_BRANCH)
3024 fix_crossing_unconditional_branches ();
3025
3026 update_crossing_jump_flags ();
3027
3028 /* Clear bb->aux fields that the above routines were using. */
3029 clear_aux_for_blocks ();
3030
3031 crossing_edges.release ();
3032
3033 /* ??? FIXME: DF generates the bb info for a block immediately.
3034 And by immediately, I mean *during* creation of the block.
3035
3036 #0 df_bb_refs_collect
3037 #1 in df_bb_refs_record
3038 #2 in create_basic_block_structure
3039
3040 Which means that the bb_has_eh_pred test in df_bb_refs_collect
3041 will *always* fail, because no edges can have been added to the
3042 block yet. Which of course means we don't add the right
3043 artificial refs, which means we fail df_verify (much) later.
3044
3045 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
3046 that we also shouldn't grab data from the new blocks those new
3047 insns are in either. In this way one can create the block, link
3048 it up properly, and have everything Just Work later, when deferred
3049 insns are processed.
3050
3051 In the meantime, we have no other option but to throw away all
3052 of the DF data and recompute it all. */
3053 if (fun->eh->lp_array)
3054 {
3055 df_finish_pass (true);
3056 df_scan_alloc (NULL);
3057 df_scan_blocks ();
3058 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
3059 data. We blindly generated all of them when creating the new
3060 landing pad. Delete those assignments we don't use. */
3061 df_set_flags (DF_LR_RUN_DCE);
3062 df_analyze ();
3063 }
3064
3065 /* Make sure to process deferred rescans and clear changeable df flags. */
3066 return TODO_df_finish;
3067}
3068
3069} // anon namespace
3070
3071rtl_opt_pass *
3072make_pass_partition_blocks (gcc::context *ctxt)
3073{
3074 return new pass_partition_blocks (ctxt);
3075}
3076

source code of gcc/bb-reorder.cc