1/* Interprocedural Identical Code Folding pass
2 Copyright (C) 2014-2024 Free Software Foundation, Inc.
3
4 Contributed by Jan Hubicka <hubicka@ucw.cz> and Martin Liska <mliska@suse.cz>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22/* Interprocedural Identical Code Folding for functions and
23 read-only variables.
24
25 The goal of this transformation is to discover functions and read-only
26 variables which do have exactly the same semantics.
27
28 In case of functions,
29 we could either create a virtual clone or do a simple function wrapper
30 that will call equivalent function. If the function is just locally visible,
31 all function calls can be redirected. For read-only variables, we create
32 aliases if possible.
33
34 Optimization pass arranges as follows:
35 1) All functions and read-only variables are visited and internal
36 data structure, either sem_function or sem_variables is created.
37 2) For every symbol from the previous step, VAR_DECL and FUNCTION_DECL are
38 saved and matched to corresponding sem_items.
39 3) These declaration are ignored for equality check and are solved
40 by Value Numbering algorithm published by Alpert, Zadeck in 1992.
41 4) We compute hash value for each symbol.
42 5) Congruence classes are created based on hash value. If hash value are
43 equal, equals function is called and symbols are deeply compared.
44 We must prove that all SSA names, declarations and other items
45 correspond.
46 6) Value Numbering is executed for these classes. At the end of the process
47 all symbol members in remaining classes can be merged.
48 7) Merge operation creates alias in case of read-only variables. For
49 callgraph node, we must decide if we can redirect local calls,
50 create an alias or a thunk.
51
52*/
53
54#include "config.h"
55#include "system.h"
56#include "coretypes.h"
57#include "backend.h"
58#include "target.h"
59#include "rtl.h"
60#include "tree.h"
61#include "gimple.h"
62#include "alloc-pool.h"
63#include "tree-pass.h"
64#include "ssa.h"
65#include "cgraph.h"
66#include "coverage.h"
67#include "gimple-pretty-print.h"
68#include "data-streamer.h"
69#include "tree-streamer.h"
70#include "fold-const.h"
71#include "calls.h"
72#include "varasm.h"
73#include "gimple-iterator.h"
74#include "tree-cfg.h"
75#include "symbol-summary.h"
76#include "sreal.h"
77#include "ipa-cp.h"
78#include "ipa-prop.h"
79#include "ipa-fnsummary.h"
80#include "except.h"
81#include "attribs.h"
82#include "print-tree.h"
83#include "ipa-utils.h"
84#include "tree-ssa-alias-compare.h"
85#include "ipa-icf-gimple.h"
86#include "fibonacci_heap.h"
87#include "ipa-icf.h"
88#include "stor-layout.h"
89#include "dbgcnt.h"
90#include "tree-vector-builder.h"
91#include "symtab-thunks.h"
92#include "alias.h"
93#include "asan.h"
94
95using namespace ipa_icf_gimple;
96
97namespace ipa_icf {
98
99/* Initialization and computation of symtab node hash, there data
100 are propagated later on. */
101
102static sem_item_optimizer *optimizer = NULL;
103
104/* Constructor. */
105
106symbol_compare_collection::symbol_compare_collection (symtab_node *node)
107{
108 m_references.create (nelems: 0);
109 m_interposables.create (nelems: 0);
110
111 ipa_ref *ref;
112
113 if (is_a <varpool_node *> (p: node) && DECL_VIRTUAL_P (node->decl))
114 return;
115
116 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
117 {
118 if (ref->address_matters_p ())
119 m_references.safe_push (obj: ref->referred);
120
121 if (ref->referred->get_availability () <= AVAIL_INTERPOSABLE)
122 {
123 if (ref->address_matters_p ())
124 m_references.safe_push (obj: ref->referred);
125 else
126 m_interposables.safe_push (obj: ref->referred);
127 }
128 }
129
130 if (is_a <cgraph_node *> (p: node))
131 {
132 cgraph_node *cnode = dyn_cast <cgraph_node *> (p: node);
133
134 for (cgraph_edge *e = cnode->callees; e; e = e->next_callee)
135 if (e->callee->get_availability () <= AVAIL_INTERPOSABLE)
136 m_interposables.safe_push (obj: e->callee);
137 }
138}
139
140/* Constructor for key value pair, where _ITEM is key and _INDEX is a target. */
141
142sem_usage_pair::sem_usage_pair (sem_item *_item, unsigned int _index)
143: item (_item), index (_index)
144{
145}
146
147sem_item::sem_item (sem_item_type _type, bitmap_obstack *stack)
148: type (_type), referenced_by_count (0), m_hash (-1), m_hash_set (false)
149{
150 setup (stack);
151}
152
153sem_item::sem_item (sem_item_type _type, symtab_node *_node,
154 bitmap_obstack *stack)
155: type (_type), node (_node), referenced_by_count (0), m_hash (-1),
156 m_hash_set (false)
157{
158 decl = node->decl;
159 setup (stack);
160}
161
162/* Add reference to a semantic TARGET. */
163
164void
165sem_item::add_reference (ref_map *refs,
166 sem_item *target)
167{
168 unsigned index = reference_count++;
169 bool existed;
170
171 sem_usage_pair *pair = new sem_usage_pair (target, index);
172 vec<sem_item *> &v = refs->get_or_insert (k: pair, existed: &existed);
173 if (existed)
174 delete pair;
175
176 v.safe_push (obj: this);
177 bitmap_set_bit (target->usage_index_bitmap, index);
178 refs_set.add (k: target->node);
179 ++target->referenced_by_count;
180}
181
182/* Initialize internal data structures. Bitmap STACK is used for
183 bitmap memory allocation process. */
184
185void
186sem_item::setup (bitmap_obstack *stack)
187{
188 gcc_checking_assert (node);
189
190 reference_count = 0;
191 tree_refs.create (nelems: 0);
192 usage_index_bitmap = BITMAP_ALLOC (obstack: stack);
193}
194
195sem_item::~sem_item ()
196{
197 tree_refs.release ();
198
199 BITMAP_FREE (usage_index_bitmap);
200}
201
202/* Dump function for debugging purpose. */
203
204DEBUG_FUNCTION void
205sem_item::dump (void)
206{
207 if (dump_file)
208 {
209 fprintf (stream: dump_file, format: "[%s] %s (tree:%p)\n", type == FUNC ? "func" : "var",
210 node->dump_name (), (void *) node->decl);
211 fprintf (stream: dump_file, format: " hash: %u\n", get_hash ());
212 }
213}
214
215/* Return true if target supports alias symbols. */
216
217bool
218sem_item::target_supports_symbol_aliases_p (void)
219{
220#if !defined (ASM_OUTPUT_DEF) || (!defined(ASM_OUTPUT_WEAK_ALIAS) && !defined (ASM_WEAKEN_DECL))
221 return false;
222#else
223 gcc_checking_assert (TARGET_SUPPORTS_ALIASES);
224 return true;
225#endif
226}
227
228void sem_item::set_hash (hashval_t hash)
229{
230 m_hash = hash;
231 m_hash_set = true;
232}
233
234hash_map<const_tree, hashval_t> sem_item::m_type_hash_cache;
235
236/* Semantic function constructor that uses STACK as bitmap memory stack. */
237
238sem_function::sem_function (bitmap_obstack *stack)
239 : sem_item (FUNC, stack), memory_access_types (), m_alias_sets_hash (0),
240 m_checker (NULL), m_compared_func (NULL)
241{
242 bb_sizes.create (nelems: 0);
243 bb_sorted.create (nelems: 0);
244}
245
246sem_function::sem_function (cgraph_node *node, bitmap_obstack *stack)
247 : sem_item (FUNC, node, stack), memory_access_types (),
248 m_alias_sets_hash (0), m_checker (NULL), m_compared_func (NULL)
249{
250 bb_sizes.create (nelems: 0);
251 bb_sorted.create (nelems: 0);
252}
253
254sem_function::~sem_function ()
255{
256 for (unsigned i = 0; i < bb_sorted.length (); i++)
257 delete (bb_sorted[i]);
258
259 bb_sizes.release ();
260 bb_sorted.release ();
261}
262
263/* Calculates hash value based on a BASIC_BLOCK. */
264
265hashval_t
266sem_function::get_bb_hash (const sem_bb *basic_block)
267{
268 inchash::hash hstate;
269
270 hstate.add_int (v: basic_block->nondbg_stmt_count);
271 hstate.add_int (v: basic_block->edge_count);
272
273 return hstate.end ();
274}
275
276/* References independent hash function. */
277
278hashval_t
279sem_function::get_hash (void)
280{
281 if (!m_hash_set)
282 {
283 inchash::hash hstate;
284 hstate.add_int (v: 177454); /* Random number for function type. */
285
286 hstate.add_int (v: arg_count);
287 hstate.add_int (v: cfg_checksum);
288 hstate.add_int (v: gcode_hash);
289
290 for (unsigned i = 0; i < bb_sorted.length (); i++)
291 hstate.merge_hash (other: get_bb_hash (basic_block: bb_sorted[i]));
292
293 for (unsigned i = 0; i < bb_sizes.length (); i++)
294 hstate.add_int (v: bb_sizes[i]);
295
296 /* Add common features of declaration itself. */
297 if (DECL_FUNCTION_SPECIFIC_TARGET (decl))
298 hstate.add_hwi
299 (v: cl_target_option_hash
300 (TREE_TARGET_OPTION (DECL_FUNCTION_SPECIFIC_TARGET (decl))));
301 if (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
302 hstate.add_hwi
303 (v: cl_optimization_hash
304 (TREE_OPTIMIZATION (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))));
305 hstate.add_flag (DECL_CXX_CONSTRUCTOR_P (decl));
306 hstate.add_flag (DECL_CXX_DESTRUCTOR_P (decl));
307
308 set_hash (hstate.end ());
309 }
310
311 return m_hash;
312}
313
314/* Compare properties of symbols N1 and N2 that does not affect semantics of
315 symbol itself but affects semantics of its references from USED_BY (which
316 may be NULL if it is unknown). If comparison is false, symbols
317 can still be merged but any symbols referring them can't.
318
319 If ADDRESS is true, do extra checking needed for IPA_REF_ADDR.
320
321 TODO: We can also split attributes to those that determine codegen of
322 a function body/variable constructor itself and those that are used when
323 referring to it. */
324
325bool
326sem_item::compare_referenced_symbol_properties (symtab_node *used_by,
327 symtab_node *n1,
328 symtab_node *n2,
329 bool address)
330{
331 if (is_a <cgraph_node *> (p: n1))
332 {
333 /* Inline properties matters: we do now want to merge uses of inline
334 function to uses of normal function because inline hint would be lost.
335 We however can merge inline function to noinline because the alias
336 will keep its DECL_DECLARED_INLINE flag.
337
338 Also ignore inline flag when optimizing for size or when function
339 is known to not be inlinable.
340
341 TODO: the optimize_size checks can also be assumed to be true if
342 unit has no !optimize_size functions. */
343
344 if ((!used_by || address || !is_a <cgraph_node *> (p: used_by)
345 || !opt_for_fn (used_by->decl, optimize_size))
346 && !opt_for_fn (n1->decl, optimize_size)
347 && n1->get_availability () > AVAIL_INTERPOSABLE
348 && (!DECL_UNINLINABLE (n1->decl) || !DECL_UNINLINABLE (n2->decl)))
349 {
350 if (DECL_DISREGARD_INLINE_LIMITS (n1->decl)
351 != DECL_DISREGARD_INLINE_LIMITS (n2->decl))
352 return return_false_with_msg
353 ("DECL_DISREGARD_INLINE_LIMITS are different");
354
355 if (DECL_DECLARED_INLINE_P (n1->decl)
356 != DECL_DECLARED_INLINE_P (n2->decl))
357 return return_false_with_msg ("inline attributes are different");
358 }
359
360 if (DECL_IS_OPERATOR_NEW_P (n1->decl)
361 != DECL_IS_OPERATOR_NEW_P (n2->decl))
362 return return_false_with_msg ("operator new flags are different");
363
364 if (DECL_IS_REPLACEABLE_OPERATOR (n1->decl)
365 != DECL_IS_REPLACEABLE_OPERATOR (n2->decl))
366 return return_false_with_msg ("replaceable operator flags are different");
367 }
368
369 /* Merging two definitions with a reference to equivalent vtables, but
370 belonging to a different type may result in ipa-polymorphic-call analysis
371 giving a wrong answer about the dynamic type of instance. */
372 if (is_a <varpool_node *> (p: n1))
373 {
374 if ((DECL_VIRTUAL_P (n1->decl) || DECL_VIRTUAL_P (n2->decl))
375 && (DECL_VIRTUAL_P (n1->decl) != DECL_VIRTUAL_P (n2->decl)
376 || !types_must_be_same_for_odr (DECL_CONTEXT (n1->decl),
377 DECL_CONTEXT (n2->decl)))
378 && (!used_by || !is_a <cgraph_node *> (p: used_by) || address
379 || opt_for_fn (used_by->decl, flag_devirtualize)))
380 return return_false_with_msg
381 ("references to virtual tables cannot be merged");
382
383 if (address && DECL_ALIGN (n1->decl) != DECL_ALIGN (n2->decl))
384 return return_false_with_msg ("alignment mismatch");
385
386 /* For functions we compare attributes in equals_wpa, because we do
387 not know what attributes may cause codegen differences, but for
388 variables just compare attributes for references - the codegen
389 for constructors is affected only by those attributes that we lower
390 to explicit representation (such as DECL_ALIGN or DECL_SECTION). */
391 if (!attribute_list_equal (DECL_ATTRIBUTES (n1->decl),
392 DECL_ATTRIBUTES (n2->decl)))
393 return return_false_with_msg ("different var decl attributes");
394 if (comp_type_attributes (TREE_TYPE (n1->decl),
395 TREE_TYPE (n2->decl)) != 1)
396 return return_false_with_msg ("different var type attributes");
397 }
398
399 /* When matching virtual tables, be sure to also match information
400 relevant for polymorphic call analysis. */
401 if (used_by && is_a <varpool_node *> (p: used_by)
402 && DECL_VIRTUAL_P (used_by->decl))
403 {
404 if (DECL_VIRTUAL_P (n1->decl) != DECL_VIRTUAL_P (n2->decl))
405 return return_false_with_msg ("virtual flag mismatch");
406 if (DECL_VIRTUAL_P (n1->decl) && is_a <cgraph_node *> (p: n1)
407 && (DECL_FINAL_P (n1->decl) != DECL_FINAL_P (n2->decl)))
408 return return_false_with_msg ("final flag mismatch");
409 }
410 return true;
411}
412
413/* Hash properties that are compared by compare_referenced_symbol_properties. */
414
415void
416sem_item::hash_referenced_symbol_properties (symtab_node *ref,
417 inchash::hash &hstate,
418 bool address)
419{
420 if (is_a <cgraph_node *> (p: ref))
421 {
422 if ((type != FUNC || address || !opt_for_fn (decl, optimize_size))
423 && !opt_for_fn (ref->decl, optimize_size)
424 && !DECL_UNINLINABLE (ref->decl))
425 {
426 hstate.add_flag (DECL_DISREGARD_INLINE_LIMITS (ref->decl));
427 hstate.add_flag (DECL_DECLARED_INLINE_P (ref->decl));
428 }
429 hstate.add_flag (DECL_IS_OPERATOR_NEW_P (ref->decl));
430 }
431 else if (is_a <varpool_node *> (p: ref))
432 {
433 hstate.add_flag (DECL_VIRTUAL_P (ref->decl));
434 if (address)
435 hstate.add_int (DECL_ALIGN (ref->decl));
436 }
437}
438
439
440/* For a given symbol table nodes N1 and N2, we check that FUNCTION_DECLs
441 point to a same function. Comparison can be skipped if IGNORED_NODES
442 contains these nodes. ADDRESS indicate if address is taken. */
443
444bool
445sem_item::compare_symbol_references (
446 hash_map <symtab_node *, sem_item *> &ignored_nodes,
447 symtab_node *n1, symtab_node *n2, bool address)
448{
449 enum availability avail1, avail2;
450
451 if (n1 == n2)
452 return true;
453
454 /* Never match variable and function. */
455 if (is_a <varpool_node *> (p: n1) != is_a <varpool_node *> (p: n2))
456 return false;
457
458 if (!compare_referenced_symbol_properties (used_by: node, n1, n2, address))
459 return false;
460 if (address && n1->equal_address_to (s2: n2) == 1)
461 return true;
462 if (!address && n1->semantically_equivalent_p (target: n2))
463 return true;
464
465 n1 = n1->ultimate_alias_target (availability: &avail1);
466 n2 = n2->ultimate_alias_target (availability: &avail2);
467
468 if (avail1 > AVAIL_INTERPOSABLE && ignored_nodes.get (k: n1)
469 && avail2 > AVAIL_INTERPOSABLE && ignored_nodes.get (k: n2))
470 return true;
471
472 return return_false_with_msg ("different references");
473}
474
475/* If cgraph edges E1 and E2 are indirect calls, verify that
476 ECF flags are the same. */
477
478bool sem_function::compare_edge_flags (cgraph_edge *e1, cgraph_edge *e2)
479{
480 if (e1->indirect_info && e2->indirect_info)
481 {
482 int e1_flags = e1->indirect_info->ecf_flags;
483 int e2_flags = e2->indirect_info->ecf_flags;
484
485 if (e1_flags != e2_flags)
486 return return_false_with_msg ("ICF flags are different");
487 }
488 else if (e1->indirect_info || e2->indirect_info)
489 return false;
490
491 return true;
492}
493
494/* Return true if parameter I may be used. */
495
496bool
497sem_function::param_used_p (unsigned int i)
498{
499 if (ipa_node_params_sum == NULL)
500 return true;
501
502 ipa_node_params *parms_info = ipa_node_params_sum->get (node: get_node ());
503
504 if (!parms_info || vec_safe_length (v: parms_info->descriptors) <= i)
505 return true;
506
507 return ipa_is_param_used (info: parms_info, i);
508}
509
510/* Perform additional check needed to match types function parameters that are
511 used. Unlike for normal decls it matters if type is TYPE_RESTRICT and we
512 make an assumption that REFERENCE_TYPE parameters are always non-NULL. */
513
514bool
515sem_function::compatible_parm_types_p (tree parm1, tree parm2)
516{
517 /* Be sure that parameters are TBAA compatible. */
518 if (!func_checker::compatible_types_p (t1: parm1, t2: parm2))
519 return return_false_with_msg ("parameter type is not compatible");
520
521 if (POINTER_TYPE_P (parm1)
522 && (TYPE_RESTRICT (parm1) != TYPE_RESTRICT (parm2)))
523 return return_false_with_msg ("argument restrict flag mismatch");
524
525 /* nonnull_arg_p implies non-zero range to REFERENCE types. */
526 if (POINTER_TYPE_P (parm1)
527 && TREE_CODE (parm1) != TREE_CODE (parm2)
528 && opt_for_fn (decl, flag_delete_null_pointer_checks))
529 return return_false_with_msg ("pointer wrt reference mismatch");
530
531 return true;
532}
533
534/* Fast equality function based on knowledge known in WPA. */
535
536bool
537sem_function::equals_wpa (sem_item *item,
538 hash_map <symtab_node *, sem_item *> &ignored_nodes)
539{
540 gcc_assert (item->type == FUNC);
541 cgraph_node *cnode = dyn_cast <cgraph_node *> (p: node);
542 cgraph_node *cnode2 = dyn_cast <cgraph_node *> (p: item->node);
543
544 m_compared_func = static_cast<sem_function *> (item);
545
546 if (cnode->thunk != cnode2->thunk)
547 return return_false_with_msg ("thunk mismatch");
548 if (cnode->former_thunk_p () != cnode2->former_thunk_p ())
549 return return_false_with_msg ("former_thunk_p mismatch");
550
551 if ((cnode->thunk || cnode->former_thunk_p ())
552 && thunk_info::get (node: cnode) != thunk_info::get (node: cnode2))
553 return return_false_with_msg ("thunk_info mismatch");
554
555 /* Compare special function DECL attributes. */
556 if (DECL_FUNCTION_PERSONALITY (decl)
557 != DECL_FUNCTION_PERSONALITY (item->decl))
558 return return_false_with_msg ("function personalities are different");
559
560 if (DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl)
561 != DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (item->decl))
562 return return_false_with_msg ("instrument function entry exit "
563 "attributes are different");
564
565 if (DECL_NO_LIMIT_STACK (decl) != DECL_NO_LIMIT_STACK (item->decl))
566 return return_false_with_msg ("no stack limit attributes are different");
567
568 if (DECL_CXX_CONSTRUCTOR_P (decl) != DECL_CXX_CONSTRUCTOR_P (item->decl))
569 return return_false_with_msg ("DECL_CXX_CONSTRUCTOR mismatch");
570
571 if (DECL_CXX_DESTRUCTOR_P (decl) != DECL_CXX_DESTRUCTOR_P (item->decl))
572 return return_false_with_msg ("DECL_CXX_DESTRUCTOR mismatch");
573
574 /* TODO: pure/const flags mostly matters only for references, except for
575 the fact that codegen takes LOOPING flag as a hint that loops are
576 finite. We may arrange the code to always pick leader that has least
577 specified flags and then this can go into comparing symbol properties. */
578 if (flags_from_decl_or_type (decl) != flags_from_decl_or_type (item->decl))
579 return return_false_with_msg ("decl_or_type flags are different");
580
581 /* Do not match polymorphic constructors of different types. They calls
582 type memory location for ipa-polymorphic-call and we do not want
583 it to get confused by wrong type. */
584 if (DECL_CXX_CONSTRUCTOR_P (decl)
585 && opt_for_fn (decl, flag_devirtualize)
586 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE)
587 {
588 if (TREE_CODE (TREE_TYPE (item->decl)) != METHOD_TYPE)
589 return return_false_with_msg ("DECL_CXX_CONSTRUCTOR type mismatch");
590 else if (!func_checker::compatible_polymorphic_types_p
591 (TYPE_METHOD_BASETYPE (TREE_TYPE (decl)),
592 TYPE_METHOD_BASETYPE (TREE_TYPE (item->decl)), compare_ptr: false))
593 return return_false_with_msg ("ctor polymorphic type mismatch");
594 }
595
596 /* Checking function TARGET and OPTIMIZATION flags. */
597 cl_target_option *tar1 = target_opts_for_fn (fndecl: decl);
598 cl_target_option *tar2 = target_opts_for_fn (fndecl: item->decl);
599
600 if (tar1 != tar2 && !cl_target_option_eq (tar1, tar2))
601 {
602 if (dump_file && (dump_flags & TDF_DETAILS))
603 {
604 fprintf (stream: dump_file, format: "target flags difference");
605 cl_target_option_print_diff (dump_file, 2, ptr1: tar1, ptr2: tar2);
606 }
607
608 return return_false_with_msg ("Target flags are different");
609 }
610
611 cl_optimization *opt1 = opts_for_fn (fndecl: decl);
612 cl_optimization *opt2 = opts_for_fn (fndecl: item->decl);
613
614 if (opt1 != opt2 && !cl_optimization_option_eq (ptr1: opt1, ptr2: opt2))
615 {
616 if (dump_file && (dump_flags & TDF_DETAILS))
617 {
618 fprintf (stream: dump_file, format: "optimization flags difference");
619 cl_optimization_print_diff (dump_file, 2, ptr1: opt1, ptr2: opt2);
620 }
621
622 return return_false_with_msg ("optimization flags are different");
623 }
624
625 /* Result type checking. */
626 if (!func_checker::compatible_types_p
627 (TREE_TYPE (TREE_TYPE (decl)),
628 TREE_TYPE (TREE_TYPE (m_compared_func->decl))))
629 return return_false_with_msg ("result types are different");
630
631 /* Checking types of arguments. */
632 tree list1 = TYPE_ARG_TYPES (TREE_TYPE (decl)),
633 list2 = TYPE_ARG_TYPES (TREE_TYPE (m_compared_func->decl));
634 for (unsigned i = 0; list1 && list2;
635 list1 = TREE_CHAIN (list1), list2 = TREE_CHAIN (list2), i++)
636 {
637 tree parm1 = TREE_VALUE (list1);
638 tree parm2 = TREE_VALUE (list2);
639
640 /* This guard is here for function pointer with attributes (pr59927.c). */
641 if (!parm1 || !parm2)
642 return return_false_with_msg ("NULL argument type");
643
644 /* Verify that types are compatible to ensure that both functions
645 have same calling conventions. */
646 if (!types_compatible_p (type1: parm1, type2: parm2))
647 return return_false_with_msg ("parameter types are not compatible");
648
649 if (!param_used_p (i))
650 continue;
651
652 /* Perform additional checks for used parameters. */
653 if (!compatible_parm_types_p (parm1, parm2))
654 return false;
655 }
656
657 if (list1 || list2)
658 return return_false_with_msg ("Mismatched number of parameters");
659
660 if (node->num_references () != item->node->num_references ())
661 return return_false_with_msg ("different number of references");
662
663 /* Checking function attributes.
664 This is quadratic in number of attributes */
665 if (comp_type_attributes (TREE_TYPE (decl),
666 TREE_TYPE (item->decl)) != 1)
667 return return_false_with_msg ("different type attributes");
668 if (!attribute_list_equal (DECL_ATTRIBUTES (decl),
669 DECL_ATTRIBUTES (item->decl)))
670 return return_false_with_msg ("different decl attributes");
671
672 /* The type of THIS pointer type memory location for
673 ipa-polymorphic-call-analysis. */
674 if (opt_for_fn (decl, flag_devirtualize)
675 && (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
676 || TREE_CODE (TREE_TYPE (item->decl)) == METHOD_TYPE)
677 && param_used_p (i: 0)
678 && compare_polymorphic_p ())
679 {
680 if (TREE_CODE (TREE_TYPE (decl)) != TREE_CODE (TREE_TYPE (item->decl)))
681 return return_false_with_msg ("METHOD_TYPE and FUNCTION_TYPE mismatch");
682 if (!func_checker::compatible_polymorphic_types_p
683 (TYPE_METHOD_BASETYPE (TREE_TYPE (decl)),
684 TYPE_METHOD_BASETYPE (TREE_TYPE (item->decl)), compare_ptr: false))
685 return return_false_with_msg ("THIS pointer ODR type mismatch");
686 }
687
688 ipa_ref *ref = NULL, *ref2 = NULL;
689 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
690 {
691 item->node->iterate_reference (i, ref&: ref2);
692
693 if (ref->use != ref2->use)
694 return return_false_with_msg ("reference use mismatch");
695
696 if (!compare_symbol_references (ignored_nodes, n1: ref->referred,
697 n2: ref2->referred,
698 address: ref->address_matters_p ()))
699 return false;
700 }
701
702 cgraph_edge *e1 = dyn_cast <cgraph_node *> (p: node)->callees;
703 cgraph_edge *e2 = dyn_cast <cgraph_node *> (p: item->node)->callees;
704
705 while (e1 && e2)
706 {
707 if (!compare_symbol_references (ignored_nodes, n1: e1->callee,
708 n2: e2->callee, address: false))
709 return false;
710 if (!compare_edge_flags (e1, e2))
711 return false;
712
713 e1 = e1->next_callee;
714 e2 = e2->next_callee;
715 }
716
717 if (e1 || e2)
718 return return_false_with_msg ("different number of calls");
719
720 e1 = dyn_cast <cgraph_node *> (p: node)->indirect_calls;
721 e2 = dyn_cast <cgraph_node *> (p: item->node)->indirect_calls;
722
723 while (e1 && e2)
724 {
725 if (!compare_edge_flags (e1, e2))
726 return false;
727
728 e1 = e1->next_callee;
729 e2 = e2->next_callee;
730 }
731
732 if (e1 || e2)
733 return return_false_with_msg ("different number of indirect calls");
734
735 return true;
736}
737
738/* Update hash by address sensitive references. We iterate over all
739 sensitive references (address_matters_p) and we hash ultimate alias
740 target of these nodes, which can improve a semantic item hash.
741
742 Also hash in referenced symbols properties. This can be done at any time
743 (as the properties should not change), but it is convenient to do it here
744 while we walk the references anyway. */
745
746void
747sem_item::update_hash_by_addr_refs (hash_map <symtab_node *,
748 sem_item *> &m_symtab_node_map)
749{
750 ipa_ref* ref;
751 inchash::hash hstate (get_hash ());
752
753 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
754 {
755 hstate.add_int (v: ref->use);
756 hash_referenced_symbol_properties (ref: ref->referred, hstate,
757 address: ref->use == IPA_REF_ADDR);
758 if (ref->address_matters_p () || !m_symtab_node_map.get (k: ref->referred))
759 hstate.add_int (v: ref->referred->ultimate_alias_target ()->order);
760 }
761
762 if (is_a <cgraph_node *> (p: node))
763 {
764 for (cgraph_edge *e = dyn_cast <cgraph_node *> (p: node)->callers; e;
765 e = e->next_caller)
766 {
767 sem_item **result = m_symtab_node_map.get (k: e->callee);
768 hash_referenced_symbol_properties (ref: e->callee, hstate, address: false);
769 if (!result)
770 hstate.add_int (v: e->callee->ultimate_alias_target ()->order);
771 }
772 }
773
774 set_hash (hstate.end ());
775}
776
777/* Update hash by computed local hash values taken from different
778 semantic items.
779 TODO: stronger SCC based hashing would be desirable here. */
780
781void
782sem_item::update_hash_by_local_refs (hash_map <symtab_node *,
783 sem_item *> &m_symtab_node_map)
784{
785 ipa_ref* ref;
786 inchash::hash state (get_hash ());
787
788 for (unsigned j = 0; node->iterate_reference (i: j, ref); j++)
789 {
790 sem_item **result = m_symtab_node_map.get (k: ref->referring);
791 if (result)
792 state.merge_hash (other: (*result)->get_hash ());
793 }
794
795 if (type == FUNC)
796 {
797 for (cgraph_edge *e = dyn_cast <cgraph_node *> (p: node)->callees; e;
798 e = e->next_callee)
799 {
800 sem_item **result = m_symtab_node_map.get (k: e->caller);
801 if (result)
802 state.merge_hash (other: (*result)->get_hash ());
803 }
804 }
805
806 global_hash = state.end ();
807}
808
809/* Returns true if the item equals to ITEM given as argument. */
810
811bool
812sem_function::equals (sem_item *item,
813 hash_map <symtab_node *, sem_item *> &)
814{
815 gcc_assert (item->type == FUNC);
816 bool eq = equals_private (item);
817
818 if (m_checker != NULL)
819 {
820 delete m_checker;
821 m_checker = NULL;
822 }
823
824 if (dump_file && (dump_flags & TDF_DETAILS))
825 fprintf (stream: dump_file,
826 format: "Equals called for: %s:%s with result: %s\n\n",
827 node->dump_name (),
828 item->node->dump_name (),
829 eq ? "true" : "false");
830
831 return eq;
832}
833
834/* Processes function equality comparison. */
835
836bool
837sem_function::equals_private (sem_item *item)
838{
839 if (item->type != FUNC)
840 return false;
841
842 basic_block bb1, bb2;
843 edge e1, e2;
844 edge_iterator ei1, ei2;
845 bool result = true;
846 tree arg1, arg2;
847
848 m_compared_func = static_cast<sem_function *> (item);
849
850 gcc_assert (decl != item->decl);
851
852 if (bb_sorted.length () != m_compared_func->bb_sorted.length ()
853 || edge_count != m_compared_func->edge_count
854 || cfg_checksum != m_compared_func->cfg_checksum)
855 return return_false ();
856
857 m_checker = new func_checker (decl, m_compared_func->decl,
858 false,
859 opt_for_fn (m_compared_func->decl,
860 flag_strict_aliasing),
861 &refs_set,
862 &m_compared_func->refs_set);
863 arg1 = DECL_ARGUMENTS (decl);
864 arg2 = DECL_ARGUMENTS (m_compared_func->decl);
865 for (unsigned i = 0;
866 arg1 && arg2; arg1 = DECL_CHAIN (arg1), arg2 = DECL_CHAIN (arg2), i++)
867 {
868 if (!types_compatible_p (TREE_TYPE (arg1), TREE_TYPE (arg2)))
869 return return_false_with_msg ("argument types are not compatible");
870 if (!param_used_p (i))
871 continue;
872 /* Perform additional checks for used parameters. */
873 if (!compatible_parm_types_p (TREE_TYPE (arg1), TREE_TYPE (arg2)))
874 return false;
875 if (!m_checker->compare_decl (t1: arg1, t2: arg2))
876 return return_false ();
877 }
878 if (arg1 || arg2)
879 return return_false_with_msg ("Mismatched number of arguments");
880
881 if (!dyn_cast <cgraph_node *> (p: node)->has_gimple_body_p ())
882 return true;
883
884 /* Fill-up label dictionary. */
885 for (unsigned i = 0; i < bb_sorted.length (); ++i)
886 {
887 m_checker->parse_labels (bb: bb_sorted[i]);
888 m_checker->parse_labels (bb: m_compared_func->bb_sorted[i]);
889 }
890
891 /* Checking all basic blocks. */
892 for (unsigned i = 0; i < bb_sorted.length (); ++i)
893 if(!m_checker->compare_bb (bb1: bb_sorted[i], bb2: m_compared_func->bb_sorted[i]))
894 return return_false ();
895
896 auto_vec <int> bb_dict;
897
898 /* Basic block edges check. */
899 for (unsigned i = 0; i < bb_sorted.length (); ++i)
900 {
901 bb1 = bb_sorted[i]->bb;
902 bb2 = m_compared_func->bb_sorted[i]->bb;
903
904 ei2 = ei_start (bb2->preds);
905
906 for (ei1 = ei_start (bb1->preds); ei_cond (ei: ei1, p: &e1); ei_next (i: &ei1))
907 {
908 ei_cond (ei: ei2, p: &e2);
909
910 if (e1->flags != e2->flags)
911 return return_false_with_msg ("flags comparison returns false");
912
913 if (!bb_dict_test (bb_dict: &bb_dict, source: e1->src->index, target: e2->src->index))
914 return return_false_with_msg ("edge comparison returns false");
915
916 if (!bb_dict_test (bb_dict: &bb_dict, source: e1->dest->index, target: e2->dest->index))
917 return return_false_with_msg ("BB comparison returns false");
918
919 if (!m_checker->compare_edge (e1, e2))
920 return return_false_with_msg ("edge comparison returns false");
921
922 ei_next (i: &ei2);
923 }
924 }
925
926 /* Basic block PHI nodes comparison. */
927 for (unsigned i = 0; i < bb_sorted.length (); i++)
928 if (!compare_phi_node (bb1: bb_sorted[i]->bb, bb2: m_compared_func->bb_sorted[i]->bb))
929 return return_false_with_msg ("PHI node comparison returns false");
930
931 return result;
932}
933
934/* Set LOCAL_P of NODE to true if DATA is non-NULL.
935 Helper for call_for_symbol_thunks_and_aliases. */
936
937static bool
938set_local (cgraph_node *node, void *data)
939{
940 node->local = data != NULL;
941 return false;
942}
943
944/* TREE_ADDRESSABLE of NODE to true.
945 Helper for call_for_symbol_thunks_and_aliases. */
946
947static bool
948set_addressable (varpool_node *node, void *)
949{
950 TREE_ADDRESSABLE (node->decl) = 1;
951 return false;
952}
953
954/* Clear DECL_RTL of NODE.
955 Helper for call_for_symbol_thunks_and_aliases. */
956
957static bool
958clear_decl_rtl (symtab_node *node, void *)
959{
960 SET_DECL_RTL (node->decl, NULL);
961 return false;
962}
963
964/* Redirect all callers of N and its aliases to TO. Remove aliases if
965 possible. Return number of redirections made. */
966
967static int
968redirect_all_callers (cgraph_node *n, cgraph_node *to)
969{
970 int nredirected = 0;
971 ipa_ref *ref;
972 cgraph_edge *e = n->callers;
973
974 while (e)
975 {
976 /* Redirecting thunks to interposable symbols or symbols in other sections
977 may not be supported by target output code. Play safe for now and
978 punt on redirection. */
979 if (!e->caller->thunk)
980 {
981 struct cgraph_edge *nexte = e->next_caller;
982 e->redirect_callee (n: to);
983 e = nexte;
984 nredirected++;
985 }
986 else
987 e = e->next_callee;
988 }
989 for (unsigned i = 0; n->iterate_direct_aliases (i, ref);)
990 {
991 bool removed = false;
992 cgraph_node *n_alias = dyn_cast <cgraph_node *> (p: ref->referring);
993
994 if ((DECL_COMDAT_GROUP (n->decl)
995 && (DECL_COMDAT_GROUP (n->decl)
996 == DECL_COMDAT_GROUP (n_alias->decl)))
997 || (n_alias->get_availability () > AVAIL_INTERPOSABLE
998 && n->get_availability () > AVAIL_INTERPOSABLE))
999 {
1000 nredirected += redirect_all_callers (n: n_alias, to);
1001 if (n_alias->can_remove_if_no_direct_calls_p ()
1002 && !n_alias->call_for_symbol_and_aliases (callback: cgraph_node::has_thunk_p,
1003 NULL, include_overwritable: true)
1004 && !n_alias->has_aliases_p ())
1005 n_alias->remove ();
1006 }
1007 if (!removed)
1008 i++;
1009 }
1010 return nredirected;
1011}
1012
1013/* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
1014 be applied. */
1015
1016bool
1017sem_function::merge (sem_item *alias_item)
1018{
1019 gcc_assert (alias_item->type == FUNC);
1020
1021 sem_function *alias_func = static_cast<sem_function *> (alias_item);
1022
1023 cgraph_node *original = get_node ();
1024 cgraph_node *local_original = NULL;
1025 cgraph_node *alias = alias_func->get_node ();
1026
1027 bool create_wrapper = false;
1028 bool create_alias = false;
1029 bool redirect_callers = false;
1030 bool remove = false;
1031
1032 bool original_discardable = false;
1033 bool original_discarded = false;
1034
1035 bool original_address_matters = original->address_matters_p ();
1036 bool alias_address_matters = alias->address_matters_p ();
1037
1038 AUTO_DUMP_SCOPE ("merge",
1039 dump_user_location_t::from_function_decl (decl));
1040
1041 if (DECL_EXTERNAL (alias->decl))
1042 {
1043 if (dump_enabled_p ())
1044 dump_printf (MSG_MISSED_OPTIMIZATION,
1045 "Not unifying; alias is external.\n");
1046 return false;
1047 }
1048
1049 if (DECL_NO_INLINE_WARNING_P (original->decl)
1050 != DECL_NO_INLINE_WARNING_P (alias->decl))
1051 {
1052 if (dump_enabled_p ())
1053 dump_printf (MSG_MISSED_OPTIMIZATION,
1054 "Not unifying; DECL_NO_INLINE_WARNING mismatch.\n");
1055 return false;
1056 }
1057
1058 /* Do not attempt to mix functions from different user sections;
1059 we do not know what user intends with those. */
1060 if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
1061 || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
1062 && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
1063 {
1064 if (dump_enabled_p ())
1065 dump_printf (MSG_MISSED_OPTIMIZATION,
1066 "Not unifying; "
1067 "original and alias are in different sections.\n");
1068 return false;
1069 }
1070
1071 if (!original->in_same_comdat_group_p (target: alias)
1072 || original->comdat_local_p ())
1073 {
1074 if (dump_enabled_p ())
1075 dump_printf (MSG_MISSED_OPTIMIZATION,
1076 "Not unifying; alias nor wrapper cannot be created; "
1077 "across comdat group boundary\n");
1078 return false;
1079 }
1080
1081 /* See if original is in a section that can be discarded if the main
1082 symbol is not used. */
1083
1084 if (original->can_be_discarded_p ())
1085 original_discardable = true;
1086 /* Also consider case where we have resolution info and we know that
1087 original's definition is not going to be used. In this case we cannot
1088 create alias to original. */
1089 if (node->resolution != LDPR_UNKNOWN
1090 && !decl_binds_to_current_def_p (node->decl))
1091 original_discardable = original_discarded = true;
1092
1093 /* Creating a symtab alias is the optimal way to merge.
1094 It however cannot be used in the following cases:
1095
1096 1) if ORIGINAL and ALIAS may be possibly compared for address equality.
1097 2) if ORIGINAL is in a section that may be discarded by linker or if
1098 it is an external functions where we cannot create an alias
1099 (ORIGINAL_DISCARDABLE)
1100 3) if target do not support symbol aliases.
1101 4) original and alias lie in different comdat groups.
1102
1103 If we cannot produce alias, we will turn ALIAS into WRAPPER of ORIGINAL
1104 and/or redirect all callers from ALIAS to ORIGINAL. */
1105 if ((original_address_matters && alias_address_matters)
1106 || (original_discardable
1107 && (!DECL_COMDAT_GROUP (alias->decl)
1108 || (DECL_COMDAT_GROUP (alias->decl)
1109 != DECL_COMDAT_GROUP (original->decl))))
1110 || original_discarded
1111 || !sem_item::target_supports_symbol_aliases_p ()
1112 || DECL_COMDAT_GROUP (alias->decl) != DECL_COMDAT_GROUP (original->decl))
1113 {
1114 /* First see if we can produce wrapper. */
1115
1116 /* Symbol properties that matter for references must be preserved.
1117 TODO: We can produce wrapper, but we need to produce alias of ORIGINAL
1118 with proper properties. */
1119 if (!sem_item::compare_referenced_symbol_properties (NULL, n1: original, n2: alias,
1120 address: alias->address_taken))
1121 {
1122 if (dump_enabled_p ())
1123 dump_printf (MSG_MISSED_OPTIMIZATION,
1124 "Wrapper cannot be created because referenced symbol "
1125 "properties mismatch\n");
1126 }
1127 /* Do not turn function in one comdat group into wrapper to another
1128 comdat group. Other compiler producing the body of the
1129 another comdat group may make opposite decision and with unfortunate
1130 linker choices this may close a loop. */
1131 else if (DECL_COMDAT_GROUP (original->decl)
1132 && DECL_COMDAT_GROUP (alias->decl)
1133 && (DECL_COMDAT_GROUP (alias->decl)
1134 != DECL_COMDAT_GROUP (original->decl)))
1135 {
1136 if (dump_enabled_p ())
1137 dump_printf (MSG_MISSED_OPTIMIZATION,
1138 "Wrapper cannot be created because of COMDAT\n");
1139 }
1140 else if (DECL_STATIC_CHAIN (alias->decl)
1141 || DECL_STATIC_CHAIN (original->decl))
1142 {
1143 if (dump_enabled_p ())
1144 dump_printf (MSG_MISSED_OPTIMIZATION,
1145 "Cannot create wrapper of nested function.\n");
1146 }
1147 /* TODO: We can also deal with variadic functions never calling
1148 VA_START. */
1149 else if (stdarg_p (TREE_TYPE (alias->decl)))
1150 {
1151 if (dump_enabled_p ())
1152 dump_printf (MSG_MISSED_OPTIMIZATION,
1153 "cannot create wrapper of stdarg function.\n");
1154 }
1155 else if (ipa_fn_summaries
1156 && ipa_size_summaries->get (node: alias) != NULL
1157 && ipa_size_summaries->get (node: alias)->self_size <= 2)
1158 {
1159 if (dump_enabled_p ())
1160 dump_printf (MSG_MISSED_OPTIMIZATION, "Wrapper creation is not "
1161 "profitable (function is too small).\n");
1162 }
1163 /* If user paid attention to mark function noinline, assume it is
1164 somewhat special and do not try to turn it into a wrapper that
1165 cannot be undone by inliner. */
1166 else if (lookup_attribute (attr_name: "noinline", DECL_ATTRIBUTES (alias->decl)))
1167 {
1168 if (dump_enabled_p ())
1169 dump_printf (MSG_MISSED_OPTIMIZATION,
1170 "Wrappers are not created for noinline.\n");
1171 }
1172 else
1173 create_wrapper = true;
1174
1175 /* We can redirect local calls in the case both alias and original
1176 are not interposable. */
1177 redirect_callers
1178 = alias->get_availability () > AVAIL_INTERPOSABLE
1179 && original->get_availability () > AVAIL_INTERPOSABLE;
1180 /* TODO: We can redirect, but we need to produce alias of ORIGINAL
1181 with proper properties. */
1182 if (!sem_item::compare_referenced_symbol_properties (NULL, n1: original, n2: alias,
1183 address: alias->address_taken))
1184 redirect_callers = false;
1185
1186 if (!redirect_callers && !create_wrapper)
1187 {
1188 if (dump_enabled_p ())
1189 dump_printf (MSG_MISSED_OPTIMIZATION,
1190 "Not unifying; cannot redirect callers nor "
1191 "produce wrapper\n");
1192 return false;
1193 }
1194
1195 /* Work out the symbol the wrapper should call.
1196 If ORIGINAL is interposable, we need to call a local alias.
1197 Also produce local alias (if possible) as an optimization.
1198
1199 Local aliases cannot be created inside comdat groups because that
1200 prevents inlining. */
1201 if (!original_discardable && !original->get_comdat_group ())
1202 {
1203 local_original
1204 = dyn_cast <cgraph_node *> (p: original->noninterposable_alias ());
1205 if (!local_original
1206 && original->get_availability () > AVAIL_INTERPOSABLE)
1207 local_original = original;
1208 }
1209 /* If we cannot use local alias, fallback to the original
1210 when possible. */
1211 else if (original->get_availability () > AVAIL_INTERPOSABLE)
1212 local_original = original;
1213
1214 /* If original is COMDAT local, we cannot really redirect calls outside
1215 of its comdat group to it. */
1216 if (original->comdat_local_p ())
1217 redirect_callers = false;
1218 if (!local_original)
1219 {
1220 if (dump_enabled_p ())
1221 dump_printf (MSG_MISSED_OPTIMIZATION,
1222 "Not unifying; cannot produce local alias.\n");
1223 return false;
1224 }
1225
1226 if (!redirect_callers && !create_wrapper)
1227 {
1228 if (dump_enabled_p ())
1229 dump_printf (MSG_MISSED_OPTIMIZATION,
1230 "Not unifying; "
1231 "cannot redirect callers nor produce a wrapper\n");
1232 return false;
1233 }
1234 if (!create_wrapper
1235 && !alias->call_for_symbol_and_aliases (callback: cgraph_node::has_thunk_p,
1236 NULL, include_overwritable: true)
1237 && !alias->can_remove_if_no_direct_calls_p ())
1238 {
1239 if (dump_enabled_p ())
1240 dump_printf (MSG_MISSED_OPTIMIZATION,
1241 "Not unifying; cannot make wrapper and "
1242 "function has other uses than direct calls\n");
1243 return false;
1244 }
1245 }
1246 else
1247 create_alias = true;
1248
1249 if (redirect_callers)
1250 {
1251 int nredirected = redirect_all_callers (n: alias, to: local_original);
1252
1253 if (nredirected)
1254 {
1255 alias->icf_merged = true;
1256 local_original->icf_merged = true;
1257
1258 if (dump_enabled_p ())
1259 dump_printf (MSG_NOTE,
1260 "%i local calls have been "
1261 "redirected.\n", nredirected);
1262 }
1263
1264 /* If all callers was redirected, do not produce wrapper. */
1265 if (alias->can_remove_if_no_direct_calls_p ()
1266 && !DECL_VIRTUAL_P (alias->decl)
1267 && !alias->has_aliases_p ())
1268 {
1269 create_wrapper = false;
1270 remove = true;
1271 }
1272 gcc_assert (!create_alias);
1273 }
1274 else if (create_alias)
1275 {
1276 alias->icf_merged = true;
1277
1278 /* Remove the function's body. */
1279 ipa_merge_profiles (dst: original, src: alias);
1280 symtab->call_cgraph_removal_hooks (node: alias);
1281 alias->release_body (keep_arguments: true);
1282 alias->reset ();
1283 /* Notice global symbol possibly produced RTL. */
1284 ((symtab_node *)alias)->call_for_symbol_and_aliases (callback: clear_decl_rtl,
1285 NULL, include_overwritable: true);
1286
1287 /* Create the alias. */
1288 cgraph_node::create_alias (alias: alias_func->decl, target: decl);
1289 alias->resolve_alias (target: original);
1290
1291 original->call_for_symbol_thunks_and_aliases
1292 (callback: set_local, data: (void *)(size_t) original->local_p (), include_overwritable: true);
1293
1294 if (dump_enabled_p ())
1295 dump_printf (MSG_OPTIMIZED_LOCATIONS,
1296 "Unified; Function alias has been created.\n");
1297 }
1298 if (create_wrapper)
1299 {
1300 gcc_assert (!create_alias);
1301 alias->icf_merged = true;
1302 symtab->call_cgraph_removal_hooks (node: alias);
1303 local_original->icf_merged = true;
1304
1305 /* FIXME update local_original counts. */
1306 ipa_merge_profiles (dst: original, src: alias, preserve_body: true);
1307 alias->create_wrapper (target: local_original);
1308 symtab->call_cgraph_insertion_hooks (node: alias);
1309
1310 if (dump_enabled_p ())
1311 dump_printf (MSG_OPTIMIZED_LOCATIONS,
1312 "Unified; Wrapper has been created.\n");
1313 }
1314
1315 /* It's possible that redirection can hit thunks that block
1316 redirection opportunities. */
1317 gcc_assert (alias->icf_merged || remove || redirect_callers);
1318 original->icf_merged = true;
1319
1320 /* We use merged flag to track cases where COMDAT function is known to be
1321 compatible its callers. If we merged in non-COMDAT, we need to give up
1322 on this optimization. */
1323 if (original->merged_comdat && !alias->merged_comdat)
1324 {
1325 if (dump_enabled_p ())
1326 dump_printf (MSG_NOTE, "Dropping merged_comdat flag.\n");
1327 if (local_original)
1328 local_original->merged_comdat = false;
1329 original->merged_comdat = false;
1330 }
1331
1332 if (remove)
1333 {
1334 ipa_merge_profiles (dst: original, src: alias);
1335 alias->release_body ();
1336 alias->reset ();
1337 alias->body_removed = true;
1338 alias->icf_merged = true;
1339 if (dump_enabled_p ())
1340 dump_printf (MSG_OPTIMIZED_LOCATIONS,
1341 "Unified; Function body was removed.\n");
1342 }
1343
1344 return true;
1345}
1346
1347/* Semantic item initialization function. */
1348
1349void
1350sem_function::init (ipa_icf_gimple::func_checker *checker)
1351{
1352 m_checker = checker;
1353 if (in_lto_p)
1354 get_node ()->get_untransformed_body ();
1355
1356 tree fndecl = node->decl;
1357 function *func = DECL_STRUCT_FUNCTION (fndecl);
1358
1359 gcc_assert (func);
1360 gcc_assert (SSANAMES (func));
1361
1362 ssa_names_size = SSANAMES (func)->length ();
1363 node = node;
1364
1365 decl = fndecl;
1366 region_tree = func->eh->region_tree;
1367
1368 /* iterating all function arguments. */
1369 arg_count = count_formal_params (fndecl);
1370
1371 edge_count = n_edges_for_fn (func);
1372 cgraph_node *cnode = dyn_cast <cgraph_node *> (p: node);
1373 if (!cnode->thunk)
1374 {
1375 cfg_checksum = coverage_compute_cfg_checksum (fn: func);
1376
1377 inchash::hash hstate;
1378
1379 basic_block bb;
1380 FOR_EACH_BB_FN (bb, func)
1381 {
1382 unsigned nondbg_stmt_count = 0;
1383
1384 edge e;
1385 for (edge_iterator ei = ei_start (bb->preds); ei_cond (ei, p: &e);
1386 ei_next (i: &ei))
1387 cfg_checksum = iterative_hash_host_wide_int (val: e->flags,
1388 val2: cfg_checksum);
1389
1390 /* TODO: We should be able to match PHIs with different order of
1391 parameters. This needs to be also updated in
1392 sem_function::compare_phi_node. */
1393 gphi_iterator si;
1394 for (si = gsi_start_nonvirtual_phis (bb); !gsi_end_p (i: si);
1395 gsi_next_nonvirtual_phi (i: &si))
1396 {
1397 hstate.add_int (v: GIMPLE_PHI);
1398 gphi *phi = si.phi ();
1399 m_checker->hash_operand (gimple_phi_result (gs: phi), hstate, flags: 0,
1400 access: func_checker::OP_NORMAL);
1401 hstate.add_int (v: gimple_phi_num_args (gs: phi));
1402 for (unsigned int i = 0; i < gimple_phi_num_args (gs: phi); i++)
1403 m_checker->hash_operand (gimple_phi_arg_def (gs: phi, index: i),
1404 hstate, flags: 0, access: func_checker::OP_NORMAL);
1405 }
1406
1407 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi);
1408 gsi_next (i: &gsi))
1409 {
1410 gimple *stmt = gsi_stmt (i: gsi);
1411
1412 if (gimple_code (g: stmt) != GIMPLE_DEBUG
1413 && gimple_code (g: stmt) != GIMPLE_PREDICT)
1414 {
1415 hash_stmt (stmt, inchash&: hstate);
1416 nondbg_stmt_count++;
1417 }
1418 }
1419
1420 hstate.commit_flag ();
1421 gcode_hash = hstate.end ();
1422 bb_sizes.safe_push (obj: nondbg_stmt_count);
1423
1424 /* Inserting basic block to hash table. */
1425 sem_bb *semantic_bb = new sem_bb (bb, nondbg_stmt_count,
1426 EDGE_COUNT (bb->preds)
1427 + EDGE_COUNT (bb->succs));
1428
1429 bb_sorted.safe_push (obj: semantic_bb);
1430 }
1431 }
1432 else
1433 {
1434 cfg_checksum = 0;
1435 gcode_hash = thunk_info::get (node: cnode)->hash ();
1436 }
1437
1438 m_checker = NULL;
1439}
1440
1441/* Improve accumulated hash for HSTATE based on a gimple statement STMT. */
1442
1443void
1444sem_function::hash_stmt (gimple *stmt, inchash::hash &hstate)
1445{
1446 enum gimple_code code = gimple_code (g: stmt);
1447
1448 hstate.add_int (v: code);
1449
1450 switch (code)
1451 {
1452 case GIMPLE_SWITCH:
1453 m_checker->hash_operand (gimple_switch_index (gs: as_a <gswitch *> (p: stmt)),
1454 hstate, flags: 0, access: func_checker::OP_NORMAL);
1455 break;
1456 case GIMPLE_ASSIGN:
1457 hstate.add_int (v: gimple_assign_rhs_code (gs: stmt));
1458 /* fall through */
1459 case GIMPLE_CALL:
1460 case GIMPLE_ASM:
1461 case GIMPLE_COND:
1462 case GIMPLE_GOTO:
1463 case GIMPLE_RETURN:
1464 {
1465 func_checker::operand_access_type_map map (5);
1466 func_checker::classify_operands (stmt, map: &map);
1467
1468 /* All these statements are equivalent if their operands are. */
1469 for (unsigned i = 0; i < gimple_num_ops (gs: stmt); ++i)
1470 {
1471 func_checker::operand_access_type
1472 access_type = func_checker::get_operand_access_type
1473 (map: &map, gimple_op (gs: stmt, i));
1474 m_checker->hash_operand (gimple_op (gs: stmt, i), hstate, flags: 0,
1475 access: access_type);
1476 /* For memory accesses when hasing for LTO stremaing record
1477 base and ref alias ptr types so we can compare them at WPA
1478 time without having to read actual function body. */
1479 if (access_type == func_checker::OP_MEMORY
1480 && lto_streaming_expected_p ()
1481 && flag_strict_aliasing)
1482 {
1483 ao_ref ref;
1484
1485 ao_ref_init (&ref, gimple_op (gs: stmt, i));
1486 tree t = ao_ref_alias_ptr_type (&ref);
1487 if (!variably_modified_type_p (t, NULL_TREE))
1488 memory_access_types.safe_push (obj: t);
1489 t = ao_ref_base_alias_ptr_type (&ref);
1490 if (!variably_modified_type_p (t, NULL_TREE))
1491 memory_access_types.safe_push (obj: t);
1492 }
1493 }
1494 /* Consider nocf_check attribute in hash as it affects code
1495 generation. */
1496 if (code == GIMPLE_CALL
1497 && flag_cf_protection & CF_BRANCH)
1498 hstate.add_flag (flag: gimple_call_nocf_check_p (gs: as_a <gcall *> (p: stmt)));
1499 }
1500 break;
1501 default:
1502 break;
1503 }
1504}
1505
1506
1507/* Return true if polymorphic comparison must be processed. */
1508
1509bool
1510sem_function::compare_polymorphic_p (void)
1511{
1512 struct cgraph_edge *e;
1513
1514 if (!opt_for_fn (get_node ()->decl, flag_devirtualize))
1515 return false;
1516 if (get_node ()->indirect_calls != NULL)
1517 return true;
1518 /* TODO: We can do simple propagation determining what calls may lead to
1519 a polymorphic call. */
1520 for (e = get_node ()->callees; e; e = e->next_callee)
1521 if (e->callee->definition
1522 && opt_for_fn (e->callee->decl, flag_devirtualize))
1523 return true;
1524 return false;
1525}
1526
1527/* For a given call graph NODE, the function constructs new
1528 semantic function item. */
1529
1530sem_function *
1531sem_function::parse (cgraph_node *node, bitmap_obstack *stack,
1532 func_checker *checker)
1533{
1534 tree fndecl = node->decl;
1535 function *func = DECL_STRUCT_FUNCTION (fndecl);
1536
1537 if (!func || (!node->has_gimple_body_p () && !node->thunk))
1538 return NULL;
1539
1540 if (lookup_attribute_by_prefix (attr_name: "omp ", DECL_ATTRIBUTES (node->decl)) != NULL)
1541 return NULL;
1542
1543 if (lookup_attribute_by_prefix (attr_name: "oacc ",
1544 DECL_ATTRIBUTES (node->decl)) != NULL)
1545 return NULL;
1546
1547 /* PR ipa/70306. */
1548 if (DECL_STATIC_CONSTRUCTOR (node->decl)
1549 || DECL_STATIC_DESTRUCTOR (node->decl))
1550 return NULL;
1551
1552 sem_function *f = new sem_function (node, stack);
1553 f->init (checker);
1554
1555 return f;
1556}
1557
1558/* For given basic blocks BB1 and BB2 (from functions FUNC1 and FUNC),
1559 return true if phi nodes are semantically equivalent in these blocks . */
1560
1561bool
1562sem_function::compare_phi_node (basic_block bb1, basic_block bb2)
1563{
1564 gphi_iterator si1, si2;
1565 gphi *phi1, *phi2;
1566 unsigned size1, size2, i;
1567 tree t1, t2;
1568 edge e1, e2;
1569
1570 gcc_assert (bb1 != NULL);
1571 gcc_assert (bb2 != NULL);
1572
1573 si2 = gsi_start_nonvirtual_phis (bb: bb2);
1574 for (si1 = gsi_start_nonvirtual_phis (bb: bb1); !gsi_end_p (i: si1);
1575 gsi_next_nonvirtual_phi (i: &si1))
1576 {
1577 if (gsi_end_p (i: si1) && gsi_end_p (i: si2))
1578 break;
1579
1580 if (gsi_end_p (i: si1) || gsi_end_p (i: si2))
1581 return return_false();
1582
1583 phi1 = si1.phi ();
1584 phi2 = si2.phi ();
1585
1586 tree phi_result1 = gimple_phi_result (gs: phi1);
1587 tree phi_result2 = gimple_phi_result (gs: phi2);
1588
1589 if (!m_checker->compare_operand (t1: phi_result1, t2: phi_result2,
1590 type: func_checker::OP_NORMAL))
1591 return return_false_with_msg ("PHI results are different");
1592
1593 size1 = gimple_phi_num_args (gs: phi1);
1594 size2 = gimple_phi_num_args (gs: phi2);
1595
1596 if (size1 != size2)
1597 return return_false ();
1598
1599 /* TODO: We should be able to match PHIs with different order of
1600 parameters. This needs to be also updated in sem_function::init. */
1601 for (i = 0; i < size1; ++i)
1602 {
1603 t1 = gimple_phi_arg (gs: phi1, index: i)->def;
1604 t2 = gimple_phi_arg (gs: phi2, index: i)->def;
1605
1606 if (!m_checker->compare_operand (t1, t2, type: func_checker::OP_NORMAL))
1607 return return_false ();
1608
1609 e1 = gimple_phi_arg_edge (phi: phi1, i);
1610 e2 = gimple_phi_arg_edge (phi: phi2, i);
1611
1612 if (!m_checker->compare_edge (e1, e2))
1613 return return_false ();
1614 }
1615
1616 gsi_next_nonvirtual_phi (i: &si2);
1617 }
1618
1619 return true;
1620}
1621
1622/* Basic blocks dictionary BB_DICT returns true if SOURCE index BB
1623 corresponds to TARGET. */
1624
1625bool
1626sem_function::bb_dict_test (vec<int> *bb_dict, int source, int target)
1627{
1628 source++;
1629 target++;
1630
1631 if (bb_dict->length () <= (unsigned)source)
1632 bb_dict->safe_grow_cleared (len: source + 1, exact: true);
1633
1634 if ((*bb_dict)[source] == 0)
1635 {
1636 (*bb_dict)[source] = target;
1637 return true;
1638 }
1639 else
1640 return (*bb_dict)[source] == target;
1641}
1642
1643sem_variable::sem_variable (bitmap_obstack *stack): sem_item (VAR, stack)
1644{
1645}
1646
1647sem_variable::sem_variable (varpool_node *node, bitmap_obstack *stack)
1648: sem_item (VAR, node, stack)
1649{
1650 gcc_checking_assert (node);
1651 gcc_checking_assert (get_node ());
1652}
1653
1654/* Fast equality function based on knowledge known in WPA. */
1655
1656bool
1657sem_variable::equals_wpa (sem_item *item,
1658 hash_map <symtab_node *, sem_item *> &ignored_nodes)
1659{
1660 gcc_assert (item->type == VAR);
1661
1662 if (node->num_references () != item->node->num_references ())
1663 return return_false_with_msg ("different number of references");
1664
1665 if (DECL_TLS_MODEL (decl) || DECL_TLS_MODEL (item->decl))
1666 return return_false_with_msg ("TLS model");
1667
1668 /* DECL_ALIGN is safe to merge, because we will always chose the largest
1669 alignment out of all aliases. */
1670
1671 if (DECL_VIRTUAL_P (decl) != DECL_VIRTUAL_P (item->decl))
1672 return return_false_with_msg ("Virtual flag mismatch");
1673
1674 if (DECL_SIZE (decl) != DECL_SIZE (item->decl)
1675 && ((!DECL_SIZE (decl) || !DECL_SIZE (item->decl))
1676 || !operand_equal_p (DECL_SIZE (decl),
1677 DECL_SIZE (item->decl), flags: OEP_ONLY_CONST)))
1678 return return_false_with_msg ("size mismatch");
1679
1680 /* Do not attempt to mix data from different user sections;
1681 we do not know what user intends with those. */
1682 if (((DECL_SECTION_NAME (decl) && !node->implicit_section)
1683 || (DECL_SECTION_NAME (item->decl) && !item->node->implicit_section))
1684 && DECL_SECTION_NAME (decl) != DECL_SECTION_NAME (item->decl))
1685 return return_false_with_msg ("user section mismatch");
1686
1687 if (DECL_IN_TEXT_SECTION (decl) != DECL_IN_TEXT_SECTION (item->decl))
1688 return return_false_with_msg ("text section");
1689
1690 if (TYPE_ADDR_SPACE (TREE_TYPE (decl))
1691 != TYPE_ADDR_SPACE (TREE_TYPE (item->decl)))
1692 return return_false_with_msg ("address-space");
1693
1694 ipa_ref *ref = NULL, *ref2 = NULL;
1695 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
1696 {
1697 item->node->iterate_reference (i, ref&: ref2);
1698
1699 if (ref->use != ref2->use)
1700 return return_false_with_msg ("reference use mismatch");
1701
1702 if (!compare_symbol_references (ignored_nodes,
1703 n1: ref->referred, n2: ref2->referred,
1704 address: ref->address_matters_p ()))
1705 return false;
1706 }
1707
1708 return true;
1709}
1710
1711/* Returns true if the item equals to ITEM given as argument. */
1712
1713bool
1714sem_variable::equals (sem_item *item,
1715 hash_map <symtab_node *, sem_item *> &)
1716{
1717 gcc_assert (item->type == VAR);
1718 bool ret;
1719
1720 if (DECL_INITIAL (decl) == error_mark_node && in_lto_p)
1721 dyn_cast <varpool_node *>(p: node)->get_constructor ();
1722 if (DECL_INITIAL (item->decl) == error_mark_node && in_lto_p)
1723 dyn_cast <varpool_node *>(p: item->node)->get_constructor ();
1724
1725 /* As seen in PR ipa/65303 we have to compare variables types. */
1726 if (!func_checker::compatible_types_p (TREE_TYPE (decl),
1727 TREE_TYPE (item->decl)))
1728 return return_false_with_msg ("variables types are different");
1729
1730 ret = sem_variable::equals (DECL_INITIAL (decl),
1731 DECL_INITIAL (item->node->decl));
1732 if (dump_file && (dump_flags & TDF_DETAILS))
1733 fprintf (stream: dump_file,
1734 format: "Equals called for vars: %s:%s with result: %s\n\n",
1735 node->dump_name (), item->node->dump_name (),
1736 ret ? "true" : "false");
1737
1738 return ret;
1739}
1740
1741/* Compares trees T1 and T2 for semantic equality. */
1742
1743bool
1744sem_variable::equals (tree t1, tree t2)
1745{
1746 if (!t1 || !t2)
1747 return return_with_debug (t1 == t2);
1748 if (t1 == t2)
1749 return true;
1750 tree_code tc1 = TREE_CODE (t1);
1751 tree_code tc2 = TREE_CODE (t2);
1752
1753 if (tc1 != tc2)
1754 return return_false_with_msg ("TREE_CODE mismatch");
1755
1756 switch (tc1)
1757 {
1758 case CONSTRUCTOR:
1759 {
1760 vec<constructor_elt, va_gc> *v1, *v2;
1761 unsigned HOST_WIDE_INT idx;
1762
1763 enum tree_code typecode = TREE_CODE (TREE_TYPE (t1));
1764 if (typecode != TREE_CODE (TREE_TYPE (t2)))
1765 return return_false_with_msg ("constructor type mismatch");
1766
1767 if (typecode == ARRAY_TYPE)
1768 {
1769 HOST_WIDE_INT size_1 = int_size_in_bytes (TREE_TYPE (t1));
1770 /* For arrays, check that the sizes all match. */
1771 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2))
1772 || size_1 == -1
1773 || size_1 != int_size_in_bytes (TREE_TYPE (t2)))
1774 return return_false_with_msg ("constructor array size mismatch");
1775 }
1776 else if (!func_checker::compatible_types_p (TREE_TYPE (t1),
1777 TREE_TYPE (t2)))
1778 return return_false_with_msg ("constructor type incompatible");
1779
1780 v1 = CONSTRUCTOR_ELTS (t1);
1781 v2 = CONSTRUCTOR_ELTS (t2);
1782 if (vec_safe_length (v: v1) != vec_safe_length (v: v2))
1783 return return_false_with_msg ("constructor number of elts mismatch");
1784
1785 for (idx = 0; idx < vec_safe_length (v: v1); ++idx)
1786 {
1787 constructor_elt *c1 = &(*v1)[idx];
1788 constructor_elt *c2 = &(*v2)[idx];
1789
1790 /* Check that each value is the same... */
1791 if (!sem_variable::equals (t1: c1->value, t2: c2->value))
1792 return false;
1793 /* ... and that they apply to the same fields! */
1794 if (!sem_variable::equals (t1: c1->index, t2: c2->index))
1795 return false;
1796 }
1797 return true;
1798 }
1799 case MEM_REF:
1800 {
1801 tree x1 = TREE_OPERAND (t1, 0);
1802 tree x2 = TREE_OPERAND (t2, 0);
1803 tree y1 = TREE_OPERAND (t1, 1);
1804 tree y2 = TREE_OPERAND (t2, 1);
1805
1806 if (!func_checker::compatible_types_p (TREE_TYPE (x1), TREE_TYPE (x2)))
1807 return return_false ();
1808
1809 /* Type of the offset on MEM_REF does not matter. */
1810 return return_with_debug (sem_variable::equals (x1, x2)
1811 && known_eq (wi::to_poly_offset (y1),
1812 wi::to_poly_offset (y2)));
1813 }
1814 case ADDR_EXPR:
1815 case FDESC_EXPR:
1816 {
1817 tree op1 = TREE_OPERAND (t1, 0);
1818 tree op2 = TREE_OPERAND (t2, 0);
1819 return sem_variable::equals (t1: op1, t2: op2);
1820 }
1821 /* References to other vars/decls are compared using ipa-ref. */
1822 case FUNCTION_DECL:
1823 case VAR_DECL:
1824 if (decl_in_symtab_p (decl: t1) && decl_in_symtab_p (decl: t2))
1825 return true;
1826 return return_false_with_msg ("Declaration mismatch");
1827 case CONST_DECL:
1828 /* TODO: We can check CONST_DECL by its DECL_INITIAL, but for that we
1829 need to process its VAR/FUNCTION references without relying on ipa-ref
1830 compare. */
1831 case FIELD_DECL:
1832 case LABEL_DECL:
1833 return return_false_with_msg ("Declaration mismatch");
1834 case INTEGER_CST:
1835 /* Integer constants are the same only if the same width of type. */
1836 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
1837 return return_false_with_msg ("INTEGER_CST precision mismatch");
1838 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
1839 return return_false_with_msg ("INTEGER_CST mode mismatch");
1840 return return_with_debug (tree_int_cst_equal (t1, t2));
1841 case STRING_CST:
1842 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
1843 return return_false_with_msg ("STRING_CST mode mismatch");
1844 if (TREE_STRING_LENGTH (t1) != TREE_STRING_LENGTH (t2))
1845 return return_false_with_msg ("STRING_CST length mismatch");
1846 if (memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
1847 TREE_STRING_LENGTH (t1)))
1848 return return_false_with_msg ("STRING_CST mismatch");
1849 return true;
1850 case FIXED_CST:
1851 /* Fixed constants are the same only if the same width of type. */
1852 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
1853 return return_false_with_msg ("FIXED_CST precision mismatch");
1854
1855 return return_with_debug (FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
1856 TREE_FIXED_CST (t2)));
1857 case COMPLEX_CST:
1858 return (sem_variable::equals (TREE_REALPART (t1), TREE_REALPART (t2))
1859 && sem_variable::equals (TREE_IMAGPART (t1), TREE_IMAGPART (t2)));
1860 case REAL_CST:
1861 /* Real constants are the same only if the same width of type. */
1862 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
1863 return return_false_with_msg ("REAL_CST precision mismatch");
1864 return return_with_debug (real_identical (&TREE_REAL_CST (t1),
1865 &TREE_REAL_CST (t2)));
1866 case VECTOR_CST:
1867 {
1868 if (maybe_ne (VECTOR_CST_NELTS (t1), VECTOR_CST_NELTS (t2)))
1869 return return_false_with_msg ("VECTOR_CST nelts mismatch");
1870
1871 unsigned int count
1872 = tree_vector_builder::binary_encoded_nelts (vec1: t1, vec2: t2);
1873 for (unsigned int i = 0; i < count; ++i)
1874 if (!sem_variable::equals (VECTOR_CST_ENCODED_ELT (t1, i),
1875 VECTOR_CST_ENCODED_ELT (t2, i)))
1876 return false;
1877
1878 return true;
1879 }
1880 case ARRAY_REF:
1881 case ARRAY_RANGE_REF:
1882 {
1883 tree x1 = TREE_OPERAND (t1, 0);
1884 tree x2 = TREE_OPERAND (t2, 0);
1885 tree y1 = TREE_OPERAND (t1, 1);
1886 tree y2 = TREE_OPERAND (t2, 1);
1887
1888 if (!sem_variable::equals (t1: x1, t2: x2) || !sem_variable::equals (t1: y1, t2: y2))
1889 return false;
1890 if (!sem_variable::equals (t1: array_ref_low_bound (t1),
1891 t2: array_ref_low_bound (t2)))
1892 return false;
1893 if (!sem_variable::equals (t1: array_ref_element_size (t1),
1894 t2: array_ref_element_size (t2)))
1895 return false;
1896 return true;
1897 }
1898
1899 case COMPONENT_REF:
1900 case POINTER_PLUS_EXPR:
1901 case PLUS_EXPR:
1902 case MINUS_EXPR:
1903 case RANGE_EXPR:
1904 {
1905 tree x1 = TREE_OPERAND (t1, 0);
1906 tree x2 = TREE_OPERAND (t2, 0);
1907 tree y1 = TREE_OPERAND (t1, 1);
1908 tree y2 = TREE_OPERAND (t2, 1);
1909
1910 return sem_variable::equals (t1: x1, t2: x2) && sem_variable::equals (t1: y1, t2: y2);
1911 }
1912
1913 CASE_CONVERT:
1914 case VIEW_CONVERT_EXPR:
1915 if (!func_checker::compatible_types_p (TREE_TYPE (t1), TREE_TYPE (t2)))
1916 return return_false ();
1917 return sem_variable::equals (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1918 case ERROR_MARK:
1919 return return_false_with_msg ("ERROR_MARK");
1920 default:
1921 return return_false_with_msg ("Unknown TREE code reached");
1922 }
1923}
1924
1925/* Parser function that visits a varpool NODE. */
1926
1927sem_variable *
1928sem_variable::parse (varpool_node *node, bitmap_obstack *stack,
1929 func_checker *checker)
1930{
1931 if (TREE_THIS_VOLATILE (node->decl) || DECL_HARD_REGISTER (node->decl)
1932 || node->alias)
1933 return NULL;
1934
1935 sem_variable *v = new sem_variable (node, stack);
1936 v->init (checker);
1937
1938 return v;
1939}
1940
1941/* Semantic variable initialization function. */
1942
1943void
1944sem_variable::init (ipa_icf_gimple::func_checker *checker)
1945{
1946 decl = get_node ()->decl;
1947
1948 /* All WPA streamed in symbols should have their hashes computed at compile
1949 time. At this point, the constructor may not be in memory at all.
1950 DECL_INITIAL (decl) would be error_mark_node in that case. */
1951 if (!m_hash_set)
1952 {
1953 gcc_assert (!node->lto_file_data);
1954 inchash::hash hstate;
1955 hstate.add_int (v: 456346417);
1956 checker->hash_operand (DECL_INITIAL (decl), hstate, flags: 0);
1957 set_hash (hstate.end ());
1958 }
1959}
1960
1961/* References independent hash function. */
1962
1963hashval_t
1964sem_variable::get_hash (void)
1965{
1966 gcc_checking_assert (m_hash_set);
1967 return m_hash;
1968}
1969
1970/* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
1971 be applied. */
1972
1973bool
1974sem_variable::merge (sem_item *alias_item)
1975{
1976 gcc_assert (alias_item->type == VAR);
1977
1978 AUTO_DUMP_SCOPE ("merge",
1979 dump_user_location_t::from_function_decl (decl));
1980 if (!sem_item::target_supports_symbol_aliases_p ())
1981 {
1982 if (dump_enabled_p ())
1983 dump_printf (MSG_MISSED_OPTIMIZATION, "Not unifying; "
1984 "Symbol aliases are not supported by target\n");
1985 return false;
1986 }
1987
1988 if (DECL_EXTERNAL (alias_item->decl))
1989 {
1990 if (dump_enabled_p ())
1991 dump_printf (MSG_MISSED_OPTIMIZATION,
1992 "Not unifying; alias is external.\n");
1993 return false;
1994 }
1995
1996 sem_variable *alias_var = static_cast<sem_variable *> (alias_item);
1997
1998 varpool_node *original = get_node ();
1999 varpool_node *alias = alias_var->get_node ();
2000 bool original_discardable = false;
2001
2002 bool alias_address_matters = alias->address_matters_p ();
2003
2004 /* See if original is in a section that can be discarded if the main
2005 symbol is not used.
2006 Also consider case where we have resolution info and we know that
2007 original's definition is not going to be used. In this case we cannot
2008 create alias to original. */
2009 if (original->can_be_discarded_p ()
2010 || (node->resolution != LDPR_UNKNOWN
2011 && !decl_binds_to_current_def_p (node->decl)))
2012 original_discardable = true;
2013
2014 gcc_assert (!TREE_ASM_WRITTEN (alias->decl));
2015
2016 /* Constant pool machinery is not quite ready for aliases.
2017 TODO: varasm code contains logic for merging DECL_IN_CONSTANT_POOL.
2018 For LTO merging does not happen that is an important missing feature.
2019 We can enable merging with LTO if the DECL_IN_CONSTANT_POOL
2020 flag is dropped and non-local symbol name is assigned. */
2021 if (DECL_IN_CONSTANT_POOL (alias->decl)
2022 || DECL_IN_CONSTANT_POOL (original->decl))
2023 {
2024 if (dump_enabled_p ())
2025 dump_printf (MSG_MISSED_OPTIMIZATION,
2026 "Not unifying; constant pool variables.\n");
2027 return false;
2028 }
2029
2030 /* Do not attempt to mix functions from different user sections;
2031 we do not know what user intends with those. */
2032 if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
2033 || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
2034 && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
2035 {
2036 if (dump_enabled_p ())
2037 dump_printf (MSG_MISSED_OPTIMIZATION,
2038 "Not unifying; "
2039 "original and alias are in different sections.\n");
2040 return false;
2041 }
2042
2043 /* We cannot merge if address comparison matters. */
2044 if (alias_address_matters && flag_merge_constants < 2)
2045 {
2046 if (dump_enabled_p ())
2047 dump_printf (MSG_MISSED_OPTIMIZATION,
2048 "Not unifying; address of original may be compared.\n");
2049 return false;
2050 }
2051
2052 if (DECL_ALIGN (original->decl) != DECL_ALIGN (alias->decl)
2053 && (sanitize_flags_p (flag: SANITIZE_ADDRESS, fn: original->decl)
2054 || sanitize_flags_p (flag: SANITIZE_ADDRESS, fn: alias->decl)))
2055 {
2056 if (dump_enabled_p ())
2057 dump_printf (MSG_MISSED_OPTIMIZATION,
2058 "Not unifying; "
2059 "ASAN requires equal alignments for original and alias\n");
2060
2061 return false;
2062 }
2063
2064 if (DECL_ALIGN (original->decl) < DECL_ALIGN (alias->decl))
2065 {
2066 if (dump_enabled_p ())
2067 dump_printf (MSG_MISSED_OPTIMIZATION,
2068 "Not unifying; "
2069 "original and alias have incompatible alignments\n");
2070
2071 return false;
2072 }
2073
2074 if (DECL_COMDAT_GROUP (original->decl) != DECL_COMDAT_GROUP (alias->decl))
2075 {
2076 if (dump_enabled_p ())
2077 dump_printf (MSG_MISSED_OPTIMIZATION,
2078 "Not unifying; alias cannot be created; "
2079 "across comdat group boundary\n");
2080
2081 return false;
2082 }
2083
2084 if (original_discardable)
2085 {
2086 if (dump_enabled_p ())
2087 dump_printf (MSG_MISSED_OPTIMIZATION,
2088 "Not unifying; alias cannot be created; "
2089 "target is discardable\n");
2090
2091 return false;
2092 }
2093 else
2094 {
2095 gcc_assert (!original->alias);
2096 gcc_assert (!alias->alias);
2097
2098 alias->analyzed = false;
2099
2100 DECL_INITIAL (alias->decl) = NULL;
2101 ((symtab_node *)alias)->call_for_symbol_and_aliases (callback: clear_decl_rtl,
2102 NULL, include_overwritable: true);
2103 alias->remove_all_references ();
2104 if (TREE_ADDRESSABLE (alias->decl))
2105 original->call_for_symbol_and_aliases (callback: set_addressable, NULL, include_overwritable: true);
2106
2107 varpool_node::create_alias (alias_var->decl, decl);
2108 alias->resolve_alias (target: original);
2109
2110 if (dump_enabled_p ())
2111 dump_printf (MSG_OPTIMIZED_LOCATIONS,
2112 "Unified; Variable alias has been created.\n");
2113
2114 return true;
2115 }
2116}
2117
2118/* Dump symbol to FILE. */
2119
2120void
2121sem_variable::dump_to_file (FILE *file)
2122{
2123 gcc_assert (file);
2124
2125 print_node (file, "", decl, 0);
2126 fprintf (stream: file, format: "\n\n");
2127}
2128
2129unsigned int sem_item_optimizer::class_id = 0;
2130
2131sem_item_optimizer::sem_item_optimizer ()
2132: worklist (0), m_classes (0), m_classes_count (0), m_cgraph_node_hooks (NULL),
2133 m_varpool_node_hooks (NULL), m_merged_variables (), m_references ()
2134{
2135 m_items.create (nelems: 0);
2136 bitmap_obstack_initialize (&m_bmstack);
2137}
2138
2139sem_item_optimizer::~sem_item_optimizer ()
2140{
2141 for (unsigned int i = 0; i < m_items.length (); i++)
2142 delete m_items[i];
2143
2144
2145 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
2146 it != m_classes.end (); ++it)
2147 {
2148 for (unsigned int i = 0; i < (*it)->classes.length (); i++)
2149 delete (*it)->classes[i];
2150
2151 (*it)->classes.release ();
2152 free (ptr: *it);
2153 }
2154
2155 m_items.release ();
2156
2157 bitmap_obstack_release (&m_bmstack);
2158 m_merged_variables.release ();
2159}
2160
2161/* Write IPA ICF summary for symbols. */
2162
2163void
2164sem_item_optimizer::write_summary (void)
2165{
2166 unsigned int count = 0;
2167
2168 output_block *ob = create_output_block (LTO_section_ipa_icf);
2169 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
2170 ob->symbol = NULL;
2171
2172 /* Calculate number of symbols to be serialized. */
2173 for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
2174 !lsei_end_p (lsei);
2175 lsei_next_in_partition (lsei: &lsei))
2176 {
2177 symtab_node *node = lsei_node (lsei);
2178
2179 if (m_symtab_node_map.get (k: node))
2180 count++;
2181 }
2182
2183 streamer_write_uhwi (ob, count);
2184
2185 /* Process all of the symbols. */
2186 for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
2187 !lsei_end_p (lsei);
2188 lsei_next_in_partition (lsei: &lsei))
2189 {
2190 symtab_node *node = lsei_node (lsei);
2191
2192 sem_item **item = m_symtab_node_map.get (k: node);
2193
2194 if (item && *item)
2195 {
2196 int node_ref = lto_symtab_encoder_encode (encoder, node);
2197 streamer_write_uhwi_stream (ob->main_stream, node_ref);
2198
2199 streamer_write_uhwi (ob, (*item)->get_hash ());
2200
2201 if ((*item)->type == FUNC)
2202 {
2203 sem_function *fn = static_cast<sem_function *> (*item);
2204 streamer_write_uhwi (ob, fn->memory_access_types.length ());
2205 for (unsigned i = 0; i < fn->memory_access_types.length (); i++)
2206 stream_write_tree (ob, fn->memory_access_types[i], true);
2207 }
2208 }
2209 }
2210
2211 streamer_write_char_stream (obs: ob->main_stream, c: 0);
2212 produce_asm (ob, NULL);
2213 destroy_output_block (ob);
2214}
2215
2216/* Reads a section from LTO stream file FILE_DATA. Input block for DATA
2217 contains LEN bytes. */
2218
2219void
2220sem_item_optimizer::read_section (lto_file_decl_data *file_data,
2221 const char *data, size_t len)
2222{
2223 const lto_function_header *header
2224 = (const lto_function_header *) data;
2225 const int cfg_offset = sizeof (lto_function_header);
2226 const int main_offset = cfg_offset + header->cfg_size;
2227 const int string_offset = main_offset + header->main_size;
2228 data_in *data_in;
2229 unsigned int i;
2230 unsigned int count;
2231
2232 lto_input_block ib_main ((const char *) data + main_offset, 0,
2233 header->main_size, file_data);
2234
2235 data_in
2236 = lto_data_in_create (file_data, (const char *) data + string_offset,
2237 header->string_size, vNULL);
2238
2239 count = streamer_read_uhwi (&ib_main);
2240
2241 for (i = 0; i < count; i++)
2242 {
2243 unsigned int index;
2244 symtab_node *node;
2245 lto_symtab_encoder_t encoder;
2246
2247 index = streamer_read_uhwi (&ib_main);
2248 encoder = file_data->symtab_node_encoder;
2249 node = lto_symtab_encoder_deref (encoder, ref: index);
2250
2251 hashval_t hash = streamer_read_uhwi (&ib_main);
2252 gcc_assert (node->definition);
2253
2254 if (is_a<cgraph_node *> (p: node))
2255 {
2256 cgraph_node *cnode = dyn_cast <cgraph_node *> (p: node);
2257
2258 sem_function *fn = new sem_function (cnode, &m_bmstack);
2259 unsigned count = streamer_read_uhwi (&ib_main);
2260 inchash::hash hstate (0);
2261 if (flag_incremental_link == INCREMENTAL_LINK_LTO)
2262 fn->memory_access_types.reserve_exact (nelems: count);
2263 for (unsigned i = 0; i < count; i++)
2264 {
2265 tree type = stream_read_tree (&ib_main, data_in);
2266 hstate.add_int (v: get_deref_alias_set (type));
2267 if (flag_incremental_link == INCREMENTAL_LINK_LTO)
2268 fn->memory_access_types.quick_push (obj: type);
2269 }
2270 fn->m_alias_sets_hash = hstate.end ();
2271 fn->set_hash (hash);
2272 m_items.safe_push (obj: fn);
2273 }
2274 else
2275 {
2276 varpool_node *vnode = dyn_cast <varpool_node *> (p: node);
2277
2278 sem_variable *var = new sem_variable (vnode, &m_bmstack);
2279 var->set_hash (hash);
2280 m_items.safe_push (obj: var);
2281 }
2282 }
2283
2284 lto_free_section_data (file_data, LTO_section_ipa_icf, NULL, data,
2285 len);
2286 lto_data_in_delete (data_in);
2287}
2288
2289/* Read IPA ICF summary for symbols. */
2290
2291void
2292sem_item_optimizer::read_summary (void)
2293{
2294 lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
2295 lto_file_decl_data *file_data;
2296 unsigned int j = 0;
2297
2298 while ((file_data = file_data_vec[j++]))
2299 {
2300 size_t len;
2301 const char *data
2302 = lto_get_summary_section_data (file_data, LTO_section_ipa_icf, &len);
2303 if (data)
2304 read_section (file_data, data, len);
2305 }
2306}
2307
2308/* Register callgraph and varpool hooks. */
2309
2310void
2311sem_item_optimizer::register_hooks (void)
2312{
2313 if (!m_cgraph_node_hooks)
2314 m_cgraph_node_hooks = symtab->add_cgraph_removal_hook
2315 (hook: &sem_item_optimizer::cgraph_removal_hook, data: this);
2316
2317 if (!m_varpool_node_hooks)
2318 m_varpool_node_hooks = symtab->add_varpool_removal_hook
2319 (hook: &sem_item_optimizer::varpool_removal_hook, data: this);
2320}
2321
2322/* Unregister callgraph and varpool hooks. */
2323
2324void
2325sem_item_optimizer::unregister_hooks (void)
2326{
2327 if (m_cgraph_node_hooks)
2328 symtab->remove_cgraph_removal_hook (entry: m_cgraph_node_hooks);
2329
2330 if (m_varpool_node_hooks)
2331 symtab->remove_varpool_removal_hook (entry: m_varpool_node_hooks);
2332}
2333
2334/* Adds a CLS to hashtable associated by hash value. */
2335
2336void
2337sem_item_optimizer::add_class (congruence_class *cls)
2338{
2339 gcc_assert (cls->members.length ());
2340
2341 congruence_class_group *group
2342 = get_group_by_hash (hash: cls->members[0]->get_hash (),
2343 type: cls->members[0]->type);
2344 group->classes.safe_push (obj: cls);
2345}
2346
2347/* Gets a congruence class group based on given HASH value and TYPE. */
2348
2349congruence_class_group *
2350sem_item_optimizer::get_group_by_hash (hashval_t hash, sem_item_type type)
2351{
2352 congruence_class_group *item = XNEW (congruence_class_group);
2353 item->hash = hash;
2354 item->type = type;
2355
2356 congruence_class_group **slot = m_classes.find_slot (value: item, insert: INSERT);
2357
2358 if (*slot)
2359 free (ptr: item);
2360 else
2361 {
2362 item->classes.create (nelems: 1);
2363 *slot = item;
2364 }
2365
2366 return *slot;
2367}
2368
2369/* Callgraph removal hook called for a NODE with a custom DATA. */
2370
2371void
2372sem_item_optimizer::cgraph_removal_hook (cgraph_node *node, void *data)
2373{
2374 sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
2375 optimizer->remove_symtab_node (node);
2376}
2377
2378/* Varpool removal hook called for a NODE with a custom DATA. */
2379
2380void
2381sem_item_optimizer::varpool_removal_hook (varpool_node *node, void *data)
2382{
2383 sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
2384 optimizer->remove_symtab_node (node);
2385}
2386
2387/* Remove symtab NODE triggered by symtab removal hooks. */
2388
2389void
2390sem_item_optimizer::remove_symtab_node (symtab_node *node)
2391{
2392 gcc_assert (m_classes.is_empty ());
2393
2394 m_removed_items_set.add (k: node);
2395}
2396
2397void
2398sem_item_optimizer::remove_item (sem_item *item)
2399{
2400 if (m_symtab_node_map.get (k: item->node))
2401 m_symtab_node_map.remove (k: item->node);
2402 delete item;
2403}
2404
2405/* Removes all callgraph and varpool nodes that are marked by symtab
2406 as deleted. */
2407
2408void
2409sem_item_optimizer::filter_removed_items (void)
2410{
2411 auto_vec <sem_item *> filtered;
2412
2413 for (unsigned int i = 0; i < m_items.length(); i++)
2414 {
2415 sem_item *item = m_items[i];
2416
2417 if (m_removed_items_set.contains (k: item->node))
2418 {
2419 remove_item (item);
2420 continue;
2421 }
2422
2423 if (item->type == FUNC)
2424 {
2425 cgraph_node *cnode = static_cast <sem_function *>(item)->get_node ();
2426
2427 if (in_lto_p && (cnode->alias || cnode->body_removed))
2428 remove_item (item);
2429 else
2430 filtered.safe_push (obj: item);
2431 }
2432 else /* VAR. */
2433 {
2434 if (!flag_ipa_icf_variables)
2435 remove_item (item);
2436 else
2437 {
2438 /* Filter out non-readonly variables. */
2439 tree decl = item->decl;
2440 varpool_node *vnode = static_cast <sem_variable *>(item)->get_node ();
2441 if (!TREE_READONLY (decl) || vnode->body_removed)
2442 remove_item (item);
2443 else
2444 filtered.safe_push (obj: item);
2445 }
2446 }
2447 }
2448
2449 /* Clean-up of released semantic items. */
2450
2451 m_items.release ();
2452 for (unsigned int i = 0; i < filtered.length(); i++)
2453 m_items.safe_push (obj: filtered[i]);
2454}
2455
2456/* Optimizer entry point which returns true in case it processes
2457 a merge operation. True is returned if there's a merge operation
2458 processed. */
2459
2460bool
2461sem_item_optimizer::execute (void)
2462{
2463 filter_removed_items ();
2464 unregister_hooks ();
2465
2466 build_graph ();
2467 update_hash_by_addr_refs ();
2468 update_hash_by_memory_access_type ();
2469 build_hash_based_classes ();
2470
2471 if (dump_file)
2472 fprintf (stream: dump_file, format: "Dump after hash based groups\n");
2473 dump_cong_classes ();
2474
2475 subdivide_classes_by_equality (in_wpa: true);
2476
2477 if (dump_file)
2478 fprintf (stream: dump_file, format: "Dump after WPA based types groups\n");
2479
2480 dump_cong_classes ();
2481
2482 process_cong_reduction ();
2483 checking_verify_classes ();
2484
2485 if (dump_file)
2486 fprintf (stream: dump_file, format: "Dump after callgraph-based congruence reduction\n");
2487
2488 dump_cong_classes ();
2489
2490 unsigned int loaded_symbols = parse_nonsingleton_classes ();
2491 subdivide_classes_by_equality ();
2492
2493 if (dump_file)
2494 fprintf (stream: dump_file, format: "Dump after full equality comparison of groups\n");
2495
2496 dump_cong_classes ();
2497
2498 unsigned int prev_class_count = m_classes_count;
2499
2500 process_cong_reduction ();
2501 dump_cong_classes ();
2502 checking_verify_classes ();
2503 bool merged_p = merge_classes (prev_class_count, loaded_symbols);
2504
2505 if (dump_file && (dump_flags & TDF_DETAILS))
2506 symtab->dump (f: dump_file);
2507
2508 return merged_p;
2509}
2510
2511/* Function responsible for visiting all potential functions and
2512 read-only variables that can be merged. */
2513
2514void
2515sem_item_optimizer::parse_funcs_and_vars (void)
2516{
2517 cgraph_node *cnode;
2518
2519 /* Create dummy func_checker for hashing purpose. */
2520 func_checker checker;
2521
2522 if (flag_ipa_icf_functions)
2523 FOR_EACH_DEFINED_FUNCTION (cnode)
2524 {
2525 sem_function *f = sem_function::parse (node: cnode, stack: &m_bmstack, checker: &checker);
2526 if (f)
2527 {
2528 m_items.safe_push (obj: f);
2529 m_symtab_node_map.put (k: cnode, v: f);
2530 }
2531 }
2532
2533 varpool_node *vnode;
2534
2535 if (flag_ipa_icf_variables)
2536 FOR_EACH_DEFINED_VARIABLE (vnode)
2537 {
2538 sem_variable *v = sem_variable::parse (node: vnode, stack: &m_bmstack, checker: &checker);
2539
2540 if (v)
2541 {
2542 m_items.safe_push (obj: v);
2543 m_symtab_node_map.put (k: vnode, v);
2544 }
2545 }
2546}
2547
2548/* Makes pairing between a congruence class CLS and semantic ITEM. */
2549
2550void
2551sem_item_optimizer::add_item_to_class (congruence_class *cls, sem_item *item)
2552{
2553 item->index_in_class = cls->members.length ();
2554 cls->members.safe_push (obj: item);
2555 cls->referenced_by_count += item->referenced_by_count;
2556 item->cls = cls;
2557}
2558
2559/* For each semantic item, append hash values of references. */
2560
2561void
2562sem_item_optimizer::update_hash_by_addr_refs ()
2563{
2564 /* First, append to hash sensitive references and class type if it need to
2565 be matched for ODR. */
2566 for (unsigned i = 0; i < m_items.length (); i++)
2567 {
2568 m_items[i]->update_hash_by_addr_refs (m_symtab_node_map);
2569 if (m_items[i]->type == FUNC)
2570 {
2571 if (TREE_CODE (TREE_TYPE (m_items[i]->decl)) == METHOD_TYPE
2572 && contains_polymorphic_type_p
2573 (TYPE_METHOD_BASETYPE (TREE_TYPE (m_items[i]->decl)))
2574 && (DECL_CXX_CONSTRUCTOR_P (m_items[i]->decl)
2575 || (static_cast<sem_function *> (m_items[i])->param_used_p (i: 0)
2576 && static_cast<sem_function *> (m_items[i])
2577 ->compare_polymorphic_p ())))
2578 {
2579 tree class_type
2580 = TYPE_METHOD_BASETYPE (TREE_TYPE (m_items[i]->decl));
2581 inchash::hash hstate (m_items[i]->get_hash ());
2582
2583 /* Hash ODR types by mangled name if it is defined.
2584 If not we know that type is anonymous of free_lang_data
2585 was not run and in that case type main variants are
2586 unique. */
2587 if (TYPE_NAME (class_type)
2588 && DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (class_type))
2589 && !type_in_anonymous_namespace_p
2590 (t: class_type))
2591 hstate.add_hwi
2592 (IDENTIFIER_HASH_VALUE
2593 (DECL_ASSEMBLER_NAME (TYPE_NAME (class_type))));
2594 else
2595 {
2596 gcc_checking_assert
2597 (!in_lto_p
2598 || type_in_anonymous_namespace_p (class_type));
2599 hstate.add_hwi (TYPE_UID (TYPE_MAIN_VARIANT (class_type)));
2600 }
2601
2602 m_items[i]->set_hash (hstate.end ());
2603 }
2604 }
2605 }
2606
2607 /* Once all symbols have enhanced hash value, we can append
2608 hash values of symbols that are seen by IPA ICF and are
2609 references by a semantic item. Newly computed values
2610 are saved to global_hash member variable. */
2611 for (unsigned i = 0; i < m_items.length (); i++)
2612 m_items[i]->update_hash_by_local_refs (m_symtab_node_map);
2613
2614 /* Global hash value replace current hash values. */
2615 for (unsigned i = 0; i < m_items.length (); i++)
2616 m_items[i]->set_hash (m_items[i]->global_hash);
2617}
2618
2619void
2620sem_item_optimizer::update_hash_by_memory_access_type ()
2621{
2622 for (unsigned i = 0; i < m_items.length (); i++)
2623 {
2624 if (m_items[i]->type == FUNC)
2625 {
2626 sem_function *fn = static_cast<sem_function *> (m_items[i]);
2627 inchash::hash hstate (fn->get_hash ());
2628 hstate.add_int (v: fn->m_alias_sets_hash);
2629 fn->set_hash (hstate.end ());
2630 }
2631 }
2632}
2633
2634/* Congruence classes are built by hash value. */
2635
2636void
2637sem_item_optimizer::build_hash_based_classes (void)
2638{
2639 for (unsigned i = 0; i < m_items.length (); i++)
2640 {
2641 sem_item *item = m_items[i];
2642
2643 congruence_class_group *group
2644 = get_group_by_hash (hash: item->get_hash (), type: item->type);
2645
2646 if (!group->classes.length ())
2647 {
2648 m_classes_count++;
2649 group->classes.safe_push (obj: new congruence_class (class_id++));
2650 }
2651
2652 add_item_to_class (cls: group->classes[0], item);
2653 }
2654}
2655
2656/* Build references according to call graph. */
2657
2658void
2659sem_item_optimizer::build_graph (void)
2660{
2661 for (unsigned i = 0; i < m_items.length (); i++)
2662 {
2663 sem_item *item = m_items[i];
2664 m_symtab_node_map.put (k: item->node, v: item);
2665
2666 /* Initialize hash values if we are not in LTO mode. */
2667 if (!in_lto_p)
2668 item->get_hash ();
2669 }
2670
2671 for (unsigned i = 0; i < m_items.length (); i++)
2672 {
2673 sem_item *item = m_items[i];
2674
2675 if (item->type == FUNC)
2676 {
2677 cgraph_node *cnode = dyn_cast <cgraph_node *> (p: item->node);
2678
2679 cgraph_edge *e = cnode->callees;
2680 while (e)
2681 {
2682 sem_item **slot = m_symtab_node_map.get
2683 (k: e->callee->ultimate_alias_target ());
2684 if (slot)
2685 item->add_reference (refs: &m_references, target: *slot);
2686
2687 e = e->next_callee;
2688 }
2689 }
2690
2691 ipa_ref *ref = NULL;
2692 for (unsigned i = 0; item->node->iterate_reference (i, ref); i++)
2693 {
2694 sem_item **slot = m_symtab_node_map.get
2695 (k: ref->referred->ultimate_alias_target ());
2696 if (slot)
2697 item->add_reference (refs: &m_references, target: *slot);
2698 }
2699 }
2700}
2701
2702/* Semantic items in classes having more than one element and initialized.
2703 In case of WPA, we load function body. */
2704
2705unsigned int
2706sem_item_optimizer::parse_nonsingleton_classes (void)
2707{
2708 unsigned int counter = 0;
2709
2710 /* Create dummy func_checker for hashing purpose. */
2711 func_checker checker;
2712
2713 for (unsigned i = 0; i < m_items.length (); i++)
2714 if (m_items[i]->cls->members.length () > 1)
2715 {
2716 m_items[i]->init (&checker);
2717 ++counter;
2718 }
2719
2720 if (dump_file)
2721 {
2722 float f = m_items.length () ? 100.0f * counter / m_items.length () : 0.0f;
2723 fprintf (stream: dump_file, format: "Init called for %u items (%.2f%%).\n", counter, f);
2724 }
2725
2726 return counter;
2727}
2728
2729/* Equality function for semantic items is used to subdivide existing
2730 classes. If IN_WPA, fast equality function is invoked. */
2731
2732void
2733sem_item_optimizer::subdivide_classes_by_equality (bool in_wpa)
2734{
2735 for (hash_table <congruence_class_hash>::iterator it = m_classes.begin ();
2736 it != m_classes.end (); ++it)
2737 {
2738 unsigned int class_count = (*it)->classes.length ();
2739
2740 for (unsigned i = 0; i < class_count; i++)
2741 {
2742 congruence_class *c = (*it)->classes[i];
2743
2744 if (c->members.length() > 1)
2745 {
2746 auto_vec <sem_item *> new_vector;
2747
2748 sem_item *first = c->members[0];
2749 new_vector.safe_push (obj: first);
2750
2751 unsigned class_split_first = (*it)->classes.length ();
2752
2753 for (unsigned j = 1; j < c->members.length (); j++)
2754 {
2755 sem_item *item = c->members[j];
2756
2757 bool equals
2758 = in_wpa ? first->equals_wpa (item, ignored_nodes&: m_symtab_node_map)
2759 : first->equals (item, ignored_nodes&: m_symtab_node_map);
2760
2761 if (equals)
2762 new_vector.safe_push (obj: item);
2763 else
2764 {
2765 bool integrated = false;
2766
2767 for (unsigned k = class_split_first;
2768 k < (*it)->classes.length (); k++)
2769 {
2770 sem_item *x = (*it)->classes[k]->members[0];
2771 bool equals
2772 = in_wpa ? x->equals_wpa (item, ignored_nodes&: m_symtab_node_map)
2773 : x->equals (item, ignored_nodes&: m_symtab_node_map);
2774
2775 if (equals)
2776 {
2777 integrated = true;
2778 add_item_to_class (cls: (*it)->classes[k], item);
2779
2780 break;
2781 }
2782 }
2783
2784 if (!integrated)
2785 {
2786 congruence_class *c
2787 = new congruence_class (class_id++);
2788 m_classes_count++;
2789 add_item_to_class (cls: c, item);
2790
2791 (*it)->classes.safe_push (obj: c);
2792 }
2793 }
2794 }
2795
2796 // We replace newly created new_vector for the class we've just
2797 // splitted.
2798 c->members.release ();
2799 c->members.create (nelems: new_vector.length ());
2800
2801 for (unsigned int j = 0; j < new_vector.length (); j++)
2802 add_item_to_class (cls: c, item: new_vector[j]);
2803 }
2804 }
2805 }
2806
2807 checking_verify_classes ();
2808}
2809
2810/* Subdivide classes by address references that members of the class
2811 reference. Example can be a pair of functions that have an address
2812 taken from a function. If these addresses are different the class
2813 is split. */
2814
2815unsigned
2816sem_item_optimizer::subdivide_classes_by_sensitive_refs ()
2817{
2818 typedef hash_map <symbol_compare_hash, vec <sem_item *> > subdivide_hash_map;
2819
2820 unsigned newly_created_classes = 0;
2821
2822 for (hash_table <congruence_class_hash>::iterator it = m_classes.begin ();
2823 it != m_classes.end (); ++it)
2824 {
2825 unsigned int class_count = (*it)->classes.length ();
2826 auto_vec<congruence_class *> new_classes;
2827
2828 for (unsigned i = 0; i < class_count; i++)
2829 {
2830 congruence_class *c = (*it)->classes[i];
2831
2832 if (c->members.length() > 1)
2833 {
2834 subdivide_hash_map split_map;
2835
2836 for (unsigned j = 0; j < c->members.length (); j++)
2837 {
2838 sem_item *source_node = c->members[j];
2839
2840 symbol_compare_collection *collection
2841 = new symbol_compare_collection (source_node->node);
2842
2843 bool existed;
2844 vec <sem_item *> *slot
2845 = &split_map.get_or_insert (k: collection, existed: &existed);
2846 gcc_checking_assert (slot);
2847
2848 slot->safe_push (obj: source_node);
2849
2850 if (existed)
2851 delete collection;
2852 }
2853
2854 /* If the map contains more than one key, we have to split
2855 the map appropriately. */
2856 if (split_map.elements () != 1)
2857 {
2858 bool first_class = true;
2859
2860 for (subdivide_hash_map::iterator it2 = split_map.begin ();
2861 it2 != split_map.end (); ++it2)
2862 {
2863 congruence_class *new_cls;
2864 new_cls = new congruence_class (class_id++);
2865
2866 for (unsigned k = 0; k < (*it2).second.length (); k++)
2867 add_item_to_class (cls: new_cls, item: (*it2).second[k]);
2868
2869 worklist_push (cls: new_cls);
2870 newly_created_classes++;
2871
2872 if (first_class)
2873 {
2874 (*it)->classes[i] = new_cls;
2875 first_class = false;
2876 }
2877 else
2878 {
2879 new_classes.safe_push (obj: new_cls);
2880 m_classes_count++;
2881 }
2882 }
2883 }
2884
2885 /* Release memory. */
2886 for (subdivide_hash_map::iterator it2 = split_map.begin ();
2887 it2 != split_map.end (); ++it2)
2888 {
2889 delete (*it2).first;
2890 (*it2).second.release ();
2891 }
2892 }
2893 }
2894
2895 for (unsigned i = 0; i < new_classes.length (); i++)
2896 (*it)->classes.safe_push (obj: new_classes[i]);
2897 }
2898
2899 return newly_created_classes;
2900}
2901
2902/* Verify congruence classes, if checking is enabled. */
2903
2904void
2905sem_item_optimizer::checking_verify_classes (void)
2906{
2907 if (flag_checking)
2908 verify_classes ();
2909}
2910
2911/* Verify congruence classes. */
2912
2913void
2914sem_item_optimizer::verify_classes (void)
2915{
2916 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
2917 it != m_classes.end (); ++it)
2918 {
2919 for (unsigned int i = 0; i < (*it)->classes.length (); i++)
2920 {
2921 congruence_class *cls = (*it)->classes[i];
2922
2923 gcc_assert (cls);
2924 gcc_assert (cls->members.length () > 0);
2925
2926 for (unsigned int j = 0; j < cls->members.length (); j++)
2927 {
2928 sem_item *item = cls->members[j];
2929
2930 gcc_assert (item);
2931 gcc_assert (item->cls == cls);
2932 }
2933 }
2934 }
2935}
2936
2937/* Disposes split map traverse function. CLS_PTR is pointer to congruence
2938 class, BSLOT is bitmap slot we want to release. DATA is mandatory,
2939 but unused argument. */
2940
2941bool
2942sem_item_optimizer::release_split_map (congruence_class * const &,
2943 bitmap const &b, traverse_split_pair *)
2944{
2945 bitmap bmp = b;
2946
2947 BITMAP_FREE (bmp);
2948
2949 return true;
2950}
2951
2952/* Process split operation for a class given as pointer CLS_PTR,
2953 where bitmap B splits congruence class members. DATA is used
2954 as argument of split pair. */
2955
2956bool
2957sem_item_optimizer::traverse_congruence_split (congruence_class * const &cls,
2958 bitmap const &b,
2959 traverse_split_pair *pair)
2960{
2961 sem_item_optimizer *optimizer = pair->optimizer;
2962 const congruence_class *splitter_cls = pair->cls;
2963
2964 /* If counted bits are greater than zero and less than the number of members
2965 a group will be splitted. */
2966 unsigned popcount = bitmap_count_bits (b);
2967
2968 if (popcount > 0 && popcount < cls->members.length ())
2969 {
2970 auto_vec <congruence_class *, 2> newclasses;
2971 newclasses.quick_push (obj: new congruence_class (class_id++));
2972 newclasses.quick_push (obj: new congruence_class (class_id++));
2973
2974 for (unsigned int i = 0; i < cls->members.length (); i++)
2975 {
2976 int target = bitmap_bit_p (b, i);
2977 congruence_class *tc = newclasses[target];
2978
2979 add_item_to_class (cls: tc, item: cls->members[i]);
2980 }
2981
2982 if (flag_checking)
2983 {
2984 for (unsigned int i = 0; i < 2; i++)
2985 gcc_assert (newclasses[i]->members.length ());
2986 }
2987
2988 if (splitter_cls == cls)
2989 optimizer->splitter_class_removed = true;
2990
2991 /* Remove old class from worklist if presented. */
2992 bool in_worklist = cls->in_worklist;
2993
2994 if (in_worklist)
2995 cls->in_worklist = false;
2996
2997 congruence_class_group g;
2998 g.hash = cls->members[0]->get_hash ();
2999 g.type = cls->members[0]->type;
3000
3001 congruence_class_group *slot = optimizer->m_classes.find (value: &g);
3002
3003 for (unsigned int i = 0; i < slot->classes.length (); i++)
3004 if (slot->classes[i] == cls)
3005 {
3006 slot->classes.ordered_remove (ix: i);
3007 break;
3008 }
3009
3010 /* New class will be inserted and integrated to work list. */
3011 for (unsigned int i = 0; i < 2; i++)
3012 optimizer->add_class (cls: newclasses[i]);
3013
3014 /* Two classes replace one, so that increment just by one. */
3015 optimizer->m_classes_count++;
3016
3017 /* If OLD class was presented in the worklist, we remove the class
3018 and replace it will both newly created classes. */
3019 if (in_worklist)
3020 for (unsigned int i = 0; i < 2; i++)
3021 optimizer->worklist_push (cls: newclasses[i]);
3022 else /* Just smaller class is inserted. */
3023 {
3024 unsigned int smaller_index
3025 = (newclasses[0]->members.length ()
3026 < newclasses[1]->members.length ()
3027 ? 0 : 1);
3028 optimizer->worklist_push (cls: newclasses[smaller_index]);
3029 }
3030
3031 if (dump_file && (dump_flags & TDF_DETAILS))
3032 {
3033 fprintf (stream: dump_file, format: " congruence class splitted:\n");
3034 cls->dump (file: dump_file, indent: 4);
3035
3036 fprintf (stream: dump_file, format: " newly created groups:\n");
3037 for (unsigned int i = 0; i < 2; i++)
3038 newclasses[i]->dump (file: dump_file, indent: 4);
3039 }
3040
3041 /* Release class if not presented in work list. */
3042 if (!in_worklist)
3043 delete cls;
3044
3045 return true;
3046 }
3047
3048 return false;
3049}
3050
3051/* Compare function for sorting pairs in do_congruence_step_f. */
3052
3053int
3054sem_item_optimizer::sort_congruence_split (const void *a_, const void *b_)
3055{
3056 const std::pair<congruence_class *, bitmap> *a
3057 = (const std::pair<congruence_class *, bitmap> *)a_;
3058 const std::pair<congruence_class *, bitmap> *b
3059 = (const std::pair<congruence_class *, bitmap> *)b_;
3060 if (a->first->id < b->first->id)
3061 return -1;
3062 else if (a->first->id > b->first->id)
3063 return 1;
3064 return 0;
3065}
3066
3067/* Tests if a class CLS used as INDEXth splits any congruence classes.
3068 Bitmap stack BMSTACK is used for bitmap allocation. */
3069
3070bool
3071sem_item_optimizer::do_congruence_step_for_index (congruence_class *cls,
3072 unsigned int index)
3073{
3074 hash_map <congruence_class *, bitmap> split_map;
3075
3076 for (unsigned int i = 0; i < cls->members.length (); i++)
3077 {
3078 sem_item *item = cls->members[i];
3079 sem_usage_pair needle (item, index);
3080 vec<sem_item *> *callers = m_references.get (k: &needle);
3081 if (callers == NULL)
3082 continue;
3083
3084 for (unsigned int j = 0; j < callers->length (); j++)
3085 {
3086 sem_item *caller = (*callers)[j];
3087 if (caller->cls->members.length () < 2)
3088 continue;
3089 bitmap *slot = split_map.get (k: caller->cls);
3090 bitmap b;
3091
3092 if(!slot)
3093 {
3094 b = BITMAP_ALLOC (obstack: &m_bmstack);
3095 split_map.put (k: caller->cls, v: b);
3096 }
3097 else
3098 b = *slot;
3099
3100 gcc_checking_assert (caller->cls);
3101 gcc_checking_assert (caller->index_in_class
3102 < caller->cls->members.length ());
3103
3104 bitmap_set_bit (b, caller->index_in_class);
3105 }
3106 }
3107
3108 auto_vec<std::pair<congruence_class *, bitmap> > to_split;
3109 to_split.reserve_exact (nelems: split_map.elements ());
3110 for (hash_map <congruence_class *, bitmap>::iterator i = split_map.begin ();
3111 i != split_map.end (); ++i)
3112 to_split.safe_push (obj: *i);
3113 to_split.qsort (sort_congruence_split);
3114
3115 traverse_split_pair pair;
3116 pair.optimizer = this;
3117 pair.cls = cls;
3118
3119 splitter_class_removed = false;
3120 bool r = false;
3121 for (unsigned i = 0; i < to_split.length (); ++i)
3122 r |= traverse_congruence_split (cls: to_split[i].first, b: to_split[i].second,
3123 pair: &pair);
3124
3125 /* Bitmap clean-up. */
3126 split_map.traverse <traverse_split_pair *,
3127 sem_item_optimizer::release_split_map> (NULL);
3128
3129 return r;
3130}
3131
3132/* Every usage of a congruence class CLS is a candidate that can split the
3133 collection of classes. Bitmap stack BMSTACK is used for bitmap
3134 allocation. */
3135
3136void
3137sem_item_optimizer::do_congruence_step (congruence_class *cls)
3138{
3139 bitmap_iterator bi;
3140 unsigned int i;
3141
3142 bitmap usage = BITMAP_ALLOC (obstack: &m_bmstack);
3143
3144 for (unsigned int i = 0; i < cls->members.length (); i++)
3145 bitmap_ior_into (usage, cls->members[i]->usage_index_bitmap);
3146
3147 EXECUTE_IF_SET_IN_BITMAP (usage, 0, i, bi)
3148 {
3149 if (dump_file && (dump_flags & TDF_DETAILS))
3150 fprintf (stream: dump_file, format: " processing congruence step for class: %u "
3151 "(%u items, %u references), index: %u\n", cls->id,
3152 cls->referenced_by_count, cls->members.length (), i);
3153 do_congruence_step_for_index (cls, index: i);
3154
3155 if (splitter_class_removed)
3156 break;
3157 }
3158
3159 BITMAP_FREE (usage);
3160}
3161
3162/* Adds a newly created congruence class CLS to worklist. */
3163
3164void
3165sem_item_optimizer::worklist_push (congruence_class *cls)
3166{
3167 /* Return if the class CLS is already presented in work list. */
3168 if (cls->in_worklist)
3169 return;
3170
3171 cls->in_worklist = true;
3172 worklist.insert (key: cls->referenced_by_count, data: cls);
3173}
3174
3175/* Pops a class from worklist. */
3176
3177congruence_class *
3178sem_item_optimizer::worklist_pop (void)
3179{
3180 congruence_class *cls;
3181
3182 while (!worklist.empty ())
3183 {
3184 cls = worklist.extract_min ();
3185 if (cls->in_worklist)
3186 {
3187 cls->in_worklist = false;
3188
3189 return cls;
3190 }
3191 else
3192 {
3193 /* Work list item was already intended to be removed.
3194 The only reason for doing it is to split a class.
3195 Thus, the class CLS is deleted. */
3196 delete cls;
3197 }
3198 }
3199
3200 return NULL;
3201}
3202
3203/* Iterative congruence reduction function. */
3204
3205void
3206sem_item_optimizer::process_cong_reduction (void)
3207{
3208 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3209 it != m_classes.end (); ++it)
3210 for (unsigned i = 0; i < (*it)->classes.length (); i++)
3211 if ((*it)->classes[i]->is_class_used ())
3212 worklist_push (cls: (*it)->classes[i]);
3213
3214 if (dump_file)
3215 fprintf (stream: dump_file, format: "Worklist has been filled with: "
3216 HOST_SIZE_T_PRINT_UNSIGNED "\n",
3217 (fmt_size_t) worklist.nodes ());
3218
3219 if (dump_file && (dump_flags & TDF_DETAILS))
3220 fprintf (stream: dump_file, format: "Congruence class reduction\n");
3221
3222 congruence_class *cls;
3223
3224 /* Process complete congruence reduction. */
3225 while ((cls = worklist_pop ()) != NULL)
3226 do_congruence_step (cls);
3227
3228 /* Subdivide newly created classes according to references. */
3229 unsigned new_classes = subdivide_classes_by_sensitive_refs ();
3230
3231 if (dump_file)
3232 fprintf (stream: dump_file, format: "Address reference subdivision created: %u "
3233 "new classes.\n", new_classes);
3234}
3235
3236/* Debug function prints all informations about congruence classes. */
3237
3238void
3239sem_item_optimizer::dump_cong_classes (void)
3240{
3241 if (!dump_file)
3242 return;
3243
3244 /* Histogram calculation. */
3245 unsigned int max_index = 0;
3246 unsigned int single_element_classes = 0;
3247 unsigned int* histogram = XCNEWVEC (unsigned int, m_items.length () + 1);
3248
3249 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3250 it != m_classes.end (); ++it)
3251 for (unsigned i = 0; i < (*it)->classes.length (); i++)
3252 {
3253 unsigned int c = (*it)->classes[i]->members.length ();
3254 histogram[c]++;
3255
3256 if (c > max_index)
3257 max_index = c;
3258
3259 if (c == 1)
3260 ++single_element_classes;
3261 }
3262
3263 fprintf (stream: dump_file,
3264 format: "Congruence classes: " HOST_SIZE_T_PRINT_UNSIGNED " with total: "
3265 "%u items (in a non-singular class: %u)\n",
3266 (fmt_size_t) m_classes.elements (),
3267 m_items.length (), m_items.length () - single_element_classes);
3268 fprintf (stream: dump_file,
3269 format: "Class size histogram [number of members]: number of classes\n");
3270 for (unsigned int i = 0; i <= max_index; i++)
3271 if (histogram[i])
3272 fprintf (stream: dump_file, format: "%6u: %6u\n", i, histogram[i]);
3273
3274 if (dump_flags & TDF_DETAILS)
3275 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3276 it != m_classes.end (); ++it)
3277 {
3278 fprintf (stream: dump_file, format: " group: with %u classes:\n",
3279 (*it)->classes.length ());
3280
3281 for (unsigned i = 0; i < (*it)->classes.length (); i++)
3282 {
3283 (*it)->classes[i]->dump (file: dump_file, indent: 4);
3284
3285 if (i < (*it)->classes.length () - 1)
3286 fprintf (stream: dump_file, format: " ");
3287 }
3288 }
3289
3290 free (ptr: histogram);
3291}
3292
3293/* Sort pair of sem_items A and B by DECL_UID. */
3294
3295static int
3296sort_sem_items_by_decl_uid (const void *a, const void *b)
3297{
3298 const sem_item *i1 = *(const sem_item * const *)a;
3299 const sem_item *i2 = *(const sem_item * const *)b;
3300
3301 int uid1 = DECL_UID (i1->decl);
3302 int uid2 = DECL_UID (i2->decl);
3303 return uid1 - uid2;
3304}
3305
3306/* Sort pair of congruence_classes A and B by DECL_UID of the first member. */
3307
3308static int
3309sort_congruence_classes_by_decl_uid (const void *a, const void *b)
3310{
3311 const congruence_class *c1 = *(const congruence_class * const *)a;
3312 const congruence_class *c2 = *(const congruence_class * const *)b;
3313
3314 int uid1 = DECL_UID (c1->members[0]->decl);
3315 int uid2 = DECL_UID (c2->members[0]->decl);
3316 return uid1 - uid2;
3317}
3318
3319/* Sort pair of congruence_class_groups A and B by
3320 DECL_UID of the first member of a first group. */
3321
3322static int
3323sort_congruence_class_groups_by_decl_uid (const void *a, const void *b)
3324{
3325 const std::pair<congruence_class_group *, int> *g1
3326 = (const std::pair<congruence_class_group *, int> *) a;
3327 const std::pair<congruence_class_group *, int> *g2
3328 = (const std::pair<congruence_class_group *, int> *) b;
3329 return g1->second - g2->second;
3330}
3331
3332/* After reduction is done, we can declare all items in a group
3333 to be equal. PREV_CLASS_COUNT is start number of classes
3334 before reduction. True is returned if there's a merge operation
3335 processed. LOADED_SYMBOLS is number of symbols that were loaded
3336 in WPA. */
3337
3338bool
3339sem_item_optimizer::merge_classes (unsigned int prev_class_count,
3340 unsigned int loaded_symbols)
3341{
3342 unsigned int item_count = m_items.length ();
3343 unsigned int class_count = m_classes_count;
3344 unsigned int equal_items = item_count - class_count;
3345
3346 unsigned int non_singular_classes_count = 0;
3347 unsigned int non_singular_classes_sum = 0;
3348
3349 bool merged_p = false;
3350
3351 /* PR lto/78211
3352 Sort functions in congruence classes by DECL_UID and do the same
3353 for the classes to not to break -fcompare-debug. */
3354
3355 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3356 it != m_classes.end (); ++it)
3357 {
3358 for (unsigned int i = 0; i < (*it)->classes.length (); i++)
3359 {
3360 congruence_class *c = (*it)->classes[i];
3361 c->members.qsort (sort_sem_items_by_decl_uid);
3362 }
3363
3364 (*it)->classes.qsort (sort_congruence_classes_by_decl_uid);
3365 }
3366
3367 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3368 it != m_classes.end (); ++it)
3369 for (unsigned int i = 0; i < (*it)->classes.length (); i++)
3370 {
3371 congruence_class *c = (*it)->classes[i];
3372 if (c->members.length () > 1)
3373 {
3374 non_singular_classes_count++;
3375 non_singular_classes_sum += c->members.length ();
3376 }
3377 }
3378
3379 auto_vec<std::pair<congruence_class_group *, int> > classes (
3380 m_classes.elements ());
3381 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3382 it != m_classes.end (); ++it)
3383 {
3384 int uid = DECL_UID ((*it)->classes[0]->members[0]->decl);
3385 classes.quick_push (obj: std::pair<congruence_class_group *, int> (*it, uid));
3386 }
3387
3388 classes.qsort (sort_congruence_class_groups_by_decl_uid);
3389
3390 if (dump_file)
3391 {
3392 fprintf (stream: dump_file, format: "\nItem count: %u\n", item_count);
3393 fprintf (stream: dump_file, format: "Congruent classes before: %u, after: %u\n",
3394 prev_class_count, class_count);
3395 fprintf (stream: dump_file, format: "Average class size before: %.2f, after: %.2f\n",
3396 prev_class_count ? 1.0f * item_count / prev_class_count : 0.0f,
3397 class_count ? 1.0f * item_count / class_count : 0.0f);
3398 fprintf (stream: dump_file, format: "Average non-singular class size: %.2f, count: %u\n",
3399 non_singular_classes_count ? 1.0f * non_singular_classes_sum /
3400 non_singular_classes_count : 0.0f,
3401 non_singular_classes_count);
3402 fprintf (stream: dump_file, format: "Equal symbols: %u\n", equal_items);
3403 unsigned total = equal_items + non_singular_classes_count;
3404 fprintf (stream: dump_file, format: "Totally needed symbols: %u"
3405 ", fraction of loaded symbols: %.2f%%\n\n", total,
3406 loaded_symbols ? 100.0f * total / loaded_symbols: 0.0f);
3407 }
3408
3409 unsigned int l;
3410 std::pair<congruence_class_group *, int> *it;
3411 FOR_EACH_VEC_ELT (classes, l, it)
3412 for (unsigned int i = 0; i < it->first->classes.length (); i++)
3413 {
3414 congruence_class *c = it->first->classes[i];
3415
3416 if (c->members.length () == 1)
3417 continue;
3418
3419 sem_item *source = c->members[0];
3420 bool this_merged_p = false;
3421
3422 if (DECL_NAME (source->decl)
3423 && MAIN_NAME_P (DECL_NAME (source->decl)))
3424 /* If merge via wrappers, picking main as the target can be
3425 problematic. */
3426 source = c->members[1];
3427
3428 for (unsigned int j = 0; j < c->members.length (); j++)
3429 {
3430 sem_item *alias = c->members[j];
3431
3432 if (alias == source)
3433 continue;
3434
3435 dump_user_location_t loc
3436 = dump_user_location_t::from_function_decl (fndecl: source->decl);
3437 if (dump_enabled_p ())
3438 {
3439 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
3440 "Semantic equality hit:%s->%s\n",
3441 source->node->dump_name (),
3442 alias->node->dump_name ());
3443 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
3444 "Assembler symbol names:%s->%s\n",
3445 source->node->dump_asm_name (),
3446 alias->node->dump_asm_name ());
3447 }
3448
3449 if (lookup_attribute (attr_name: "no_icf", DECL_ATTRIBUTES (alias->decl))
3450 || lookup_attribute (attr_name: "no_icf", DECL_ATTRIBUTES (source->decl)))
3451 {
3452 if (dump_enabled_p ())
3453 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
3454 "Merge operation is skipped due to no_icf "
3455 "attribute.\n");
3456 continue;
3457 }
3458
3459 if (dump_file && (dump_flags & TDF_DETAILS))
3460 {
3461 source->dump_to_file (file: dump_file);
3462 alias->dump_to_file (file: dump_file);
3463 }
3464
3465 if (dbg_cnt (index: merged_ipa_icf))
3466 {
3467 bool merged = source->merge (alias_item: alias);
3468 this_merged_p |= merged;
3469
3470 if (merged && alias->type == VAR)
3471 {
3472 symtab_pair p = symtab_pair (source->node, alias->node);
3473 m_merged_variables.safe_push (obj: p);
3474 }
3475 }
3476 }
3477
3478 merged_p |= this_merged_p;
3479 if (this_merged_p
3480 && source->type == FUNC
3481 && (!flag_wpa || flag_checking))
3482 {
3483 unsigned i;
3484 tree name;
3485 FOR_EACH_SSA_NAME (i, name, DECL_STRUCT_FUNCTION (source->decl))
3486 {
3487 /* We need to either merge or reset SSA_NAME_*_INFO.
3488 For merging we don't preserve the mapping between
3489 original and alias SSA_NAMEs from successful equals
3490 calls. */
3491 if (POINTER_TYPE_P (TREE_TYPE (name)))
3492 {
3493 if (SSA_NAME_PTR_INFO (name))
3494 {
3495 gcc_checking_assert (!flag_wpa);
3496 SSA_NAME_PTR_INFO (name) = NULL;
3497 }
3498 }
3499 else if (SSA_NAME_RANGE_INFO (name))
3500 {
3501 gcc_checking_assert (!flag_wpa);
3502 SSA_NAME_RANGE_INFO (name) = NULL;
3503 }
3504 }
3505 }
3506 }
3507
3508 if (!m_merged_variables.is_empty ())
3509 fixup_points_to_sets ();
3510
3511 return merged_p;
3512}
3513
3514/* Fixup points to set PT. */
3515
3516void
3517sem_item_optimizer::fixup_pt_set (struct pt_solution *pt)
3518{
3519 if (pt->vars == NULL)
3520 return;
3521
3522 unsigned i;
3523 symtab_pair *item;
3524 FOR_EACH_VEC_ELT (m_merged_variables, i, item)
3525 if (bitmap_bit_p (pt->vars, DECL_UID (item->second->decl)))
3526 bitmap_set_bit (pt->vars, DECL_UID (item->first->decl));
3527}
3528
3529/* Set all points-to UIDs of aliases pointing to node N as UID. */
3530
3531static void
3532set_alias_uids (symtab_node *n, int uid)
3533{
3534 ipa_ref *ref;
3535 FOR_EACH_ALIAS (n, ref)
3536 {
3537 if (dump_file)
3538 fprintf (stream: dump_file, format: " Setting points-to UID of [%s] as %d\n",
3539 ref->referring->dump_asm_name (), uid);
3540
3541 SET_DECL_PT_UID (ref->referring->decl, uid);
3542 set_alias_uids (n: ref->referring, uid);
3543 }
3544}
3545
3546/* Fixup points to analysis info. */
3547
3548void
3549sem_item_optimizer::fixup_points_to_sets (void)
3550{
3551 /* TODO: remove in GCC 9 and trigger PTA re-creation after IPA passes. */
3552 cgraph_node *cnode;
3553
3554 FOR_EACH_DEFINED_FUNCTION (cnode)
3555 {
3556 tree name;
3557 unsigned i;
3558 function *fn = DECL_STRUCT_FUNCTION (cnode->decl);
3559 if (!gimple_in_ssa_p (fun: fn))
3560 continue;
3561
3562 FOR_EACH_SSA_NAME (i, name, fn)
3563 if (POINTER_TYPE_P (TREE_TYPE (name))
3564 && SSA_NAME_PTR_INFO (name))
3565 fixup_pt_set (pt: &SSA_NAME_PTR_INFO (name)->pt);
3566 fixup_pt_set (pt: &fn->gimple_df->escaped);
3567 fixup_pt_set (pt: &fn->gimple_df->escaped_return);
3568
3569 /* The above gets us to 99% I guess, at least catching the
3570 address compares. Below also gets us aliasing correct
3571 but as said we're giving leeway to the situation with
3572 readonly vars anyway, so ... */
3573 basic_block bb;
3574 FOR_EACH_BB_FN (bb, fn)
3575 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi);
3576 gsi_next (i: &gsi))
3577 {
3578 gcall *call = dyn_cast<gcall *> (p: gsi_stmt (i: gsi));
3579 if (call)
3580 {
3581 fixup_pt_set (pt: gimple_call_use_set (call_stmt: call));
3582 fixup_pt_set (pt: gimple_call_clobber_set (call_stmt: call));
3583 }
3584 }
3585 }
3586
3587 unsigned i;
3588 symtab_pair *item;
3589 FOR_EACH_VEC_ELT (m_merged_variables, i, item)
3590 set_alias_uids (n: item->first, DECL_UID (item->first->decl));
3591}
3592
3593/* Dump function prints all class members to a FILE with an INDENT. */
3594
3595void
3596congruence_class::dump (FILE *file, unsigned int indent) const
3597{
3598 FPRINTF_SPACES (file, indent, "class with id: %u, hash: %u, items: %u\n",
3599 id, members[0]->get_hash (), members.length ());
3600
3601 FPUTS_SPACES (file, indent + 2, "");
3602 for (unsigned i = 0; i < members.length (); i++)
3603 fprintf (stream: file, format: "%s ", members[i]->node->dump_asm_name ());
3604
3605 fprintf (stream: file, format: "\n");
3606}
3607
3608/* Returns true if there's a member that is used from another group. */
3609
3610bool
3611congruence_class::is_class_used (void)
3612{
3613 for (unsigned int i = 0; i < members.length (); i++)
3614 if (members[i]->referenced_by_count)
3615 return true;
3616
3617 return false;
3618}
3619
3620/* Generate pass summary for IPA ICF pass. */
3621
3622static void
3623ipa_icf_generate_summary (void)
3624{
3625 if (!optimizer)
3626 optimizer = new sem_item_optimizer ();
3627
3628 optimizer->register_hooks ();
3629 optimizer->parse_funcs_and_vars ();
3630}
3631
3632/* Write pass summary for IPA ICF pass. */
3633
3634static void
3635ipa_icf_write_summary (void)
3636{
3637 gcc_assert (optimizer);
3638
3639 optimizer->write_summary ();
3640}
3641
3642/* Read pass summary for IPA ICF pass. */
3643
3644static void
3645ipa_icf_read_summary (void)
3646{
3647 if (!optimizer)
3648 optimizer = new sem_item_optimizer ();
3649
3650 optimizer->read_summary ();
3651 optimizer->register_hooks ();
3652}
3653
3654/* Semantic equality execution function. */
3655
3656static unsigned int
3657ipa_icf_driver (void)
3658{
3659 gcc_assert (optimizer);
3660
3661 bool merged_p = optimizer->execute ();
3662
3663 delete optimizer;
3664 optimizer = NULL;
3665
3666 return merged_p ? TODO_remove_functions : 0;
3667}
3668
3669const pass_data pass_data_ipa_icf =
3670{
3671 .type: IPA_PASS, /* type */
3672 .name: "icf", /* name */
3673 .optinfo_flags: OPTGROUP_IPA, /* optinfo_flags */
3674 .tv_id: TV_IPA_ICF, /* tv_id */
3675 .properties_required: 0, /* properties_required */
3676 .properties_provided: 0, /* properties_provided */
3677 .properties_destroyed: 0, /* properties_destroyed */
3678 .todo_flags_start: 0, /* todo_flags_start */
3679 .todo_flags_finish: 0, /* todo_flags_finish */
3680};
3681
3682class pass_ipa_icf : public ipa_opt_pass_d
3683{
3684public:
3685 pass_ipa_icf (gcc::context *ctxt)
3686 : ipa_opt_pass_d (pass_data_ipa_icf, ctxt,
3687 ipa_icf_generate_summary, /* generate_summary */
3688 ipa_icf_write_summary, /* write_summary */
3689 ipa_icf_read_summary, /* read_summary */
3690 NULL, /*
3691 write_optimization_summary */
3692 NULL, /*
3693 read_optimization_summary */
3694 NULL, /* stmt_fixup */
3695 0, /* function_transform_todo_flags_start */
3696 NULL, /* function_transform */
3697 NULL) /* variable_transform */
3698 {}
3699
3700 /* opt_pass methods: */
3701 bool gate (function *) final override
3702 {
3703 return in_lto_p || flag_ipa_icf_variables || flag_ipa_icf_functions;
3704 }
3705
3706 unsigned int execute (function *) final override
3707 {
3708 return ipa_icf_driver();
3709 }
3710}; // class pass_ipa_icf
3711
3712} // ipa_icf namespace
3713
3714ipa_opt_pass_d *
3715make_pass_ipa_icf (gcc::context *ctxt)
3716{
3717 return new ipa_icf::pass_ipa_icf (ctxt);
3718}
3719
3720/* Reset all state within ipa-icf.cc so that we can rerun the compiler
3721 within the same process. For use by toplev::finalize. */
3722
3723void
3724ipa_icf_cc_finalize (void)
3725{
3726 ipa_icf::optimizer = NULL;
3727}
3728

source code of gcc/ipa-icf.cc