1/* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992-2024 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
4 Hacked by Michael Tiemann (tiemann@cygnus.com).
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22/* Instruction reorganization pass.
23
24 This pass runs after register allocation and final jump
25 optimization. It should be the last pass to run before peephole.
26 It serves primarily to fill delay slots of insns, typically branch
27 and call insns. Other insns typically involve more complicated
28 interactions of data dependencies and resource constraints, and
29 are better handled by scheduling before register allocation (by the
30 function `schedule_insns').
31
32 The Branch Penalty is the number of extra cycles that are needed to
33 execute a branch insn. On an ideal machine, branches take a single
34 cycle, and the Branch Penalty is 0. Several RISC machines approach
35 branch delays differently:
36
37 The MIPS has a single branch delay slot. Most insns
38 (except other branches) can be used to fill this slot. When the
39 slot is filled, two insns execute in two cycles, reducing the
40 branch penalty to zero.
41
42 The SPARC always has a branch delay slot, but its effects can be
43 annulled when the branch is not taken. This means that failing to
44 find other sources of insns, we can hoist an insn from the branch
45 target that would only be safe to execute knowing that the branch
46 is taken.
47
48 The HP-PA always has a branch delay slot. For unconditional branches
49 its effects can be annulled when the branch is taken. The effects
50 of the delay slot in a conditional branch can be nullified for forward
51 taken branches, or for untaken backward branches. This means
52 we can hoist insns from the fall-through path for forward branches or
53 steal insns from the target of backward branches.
54
55 The TMS320C3x and C4x have three branch delay slots. When the three
56 slots are filled, the branch penalty is zero. Most insns can fill the
57 delay slots except jump insns.
58
59 Three techniques for filling delay slots have been implemented so far:
60
61 (1) `fill_simple_delay_slots' is the simplest, most efficient way
62 to fill delay slots. This pass first looks for insns which come
63 from before the branch and which are safe to execute after the
64 branch. Then it searches after the insn requiring delay slots or,
65 in the case of a branch, for insns that are after the point at
66 which the branch merges into the fallthrough code, if such a point
67 exists. When such insns are found, the branch penalty decreases
68 and no code expansion takes place.
69
70 (2) `fill_eager_delay_slots' is more complicated: it is used for
71 scheduling conditional jumps, or for scheduling jumps which cannot
72 be filled using (1). A machine need not have annulled jumps to use
73 this strategy, but it helps (by keeping more options open).
74 `fill_eager_delay_slots' tries to guess the direction the branch
75 will go; if it guesses right 100% of the time, it can reduce the
76 branch penalty as much as `fill_simple_delay_slots' does. If it
77 guesses wrong 100% of the time, it might as well schedule nops. When
78 `fill_eager_delay_slots' takes insns from the fall-through path of
79 the jump, usually there is no code expansion; when it takes insns
80 from the branch target, there is code expansion if it is not the
81 only way to reach that target.
82
83 (3) `relax_delay_slots' uses a set of rules to simplify code that
84 has been reorganized by (1) and (2). It finds cases where
85 conditional test can be eliminated, jumps can be threaded, extra
86 insns can be eliminated, etc. It is the job of (1) and (2) to do a
87 good job of scheduling locally; `relax_delay_slots' takes care of
88 making the various individual schedules work well together. It is
89 especially tuned to handle the control flow interactions of branch
90 insns. It does nothing for insns with delay slots that do not
91 branch. */
92
93#include "config.h"
94#include "system.h"
95#include "coretypes.h"
96#include "backend.h"
97#include "target.h"
98#include "rtl.h"
99#include "tree.h"
100#include "predict.h"
101#include "memmodel.h"
102#include "tm_p.h"
103#include "expmed.h"
104#include "insn-config.h"
105#include "emit-rtl.h"
106#include "recog.h"
107#include "insn-attr.h"
108#include "resource.h"
109#include "tree-pass.h"
110
111
112/* First, some functions that were used before GCC got a control flow graph.
113 These functions are now only used here in reorg.cc, and have therefore
114 been moved here to avoid inadvertent misuse elsewhere in the compiler. */
115
116/* Return the last label to mark the same position as LABEL. Return LABEL
117 itself if it is null or any return rtx. */
118
119static rtx
120skip_consecutive_labels (rtx label_or_return)
121{
122 rtx_insn *insn;
123
124 if (label_or_return && ANY_RETURN_P (label_or_return))
125 return label_or_return;
126
127 rtx_insn *label = as_a <rtx_insn *> (p: label_or_return);
128
129 /* __builtin_unreachable can create a CODE_LABEL followed by a BARRIER.
130
131 Since reaching the CODE_LABEL is undefined behavior, we can return
132 any code label and we're OK at run time.
133
134 However, if we return a CODE_LABEL which leads to a shrink-wrapped
135 epilogue, but the path does not have a prologue, then we will trip
136 a sanity check in the dwarf2 cfi code which wants to verify that
137 the CFIs are all the same on the traces leading to the epilogue.
138
139 So we explicitly disallow looking through BARRIERS here. */
140 for (insn = label;
141 insn != 0 && !INSN_P (insn) && !BARRIER_P (insn);
142 insn = NEXT_INSN (insn))
143 if (LABEL_P (insn))
144 label = insn;
145
146 return label;
147}
148
149/* Insns which have delay slots that have not yet been filled. */
150
151static struct obstack unfilled_slots_obstack;
152static rtx *unfilled_firstobj;
153
154/* Define macros to refer to the first and last slot containing unfilled
155 insns. These are used because the list may move and its address
156 should be recomputed at each use. */
157
158#define unfilled_slots_base \
159 ((rtx_insn **) obstack_base (&unfilled_slots_obstack))
160
161#define unfilled_slots_next \
162 ((rtx_insn **) obstack_next_free (&unfilled_slots_obstack))
163
164/* Points to the label before the end of the function, or before a
165 return insn. */
166static rtx_code_label *function_return_label;
167/* Likewise for a simple_return. */
168static rtx_code_label *function_simple_return_label;
169
170/* Mapping between INSN_UID's and position in the code since INSN_UID's do
171 not always monotonically increase. */
172static int *uid_to_ruid;
173
174/* Highest valid index in `uid_to_ruid'. */
175static int max_uid;
176
177static bool stop_search_p (rtx_insn *, bool);
178static bool resource_conflicts_p (struct resources *, struct resources *);
179static bool insn_references_resource_p (rtx, struct resources *, bool);
180static bool insn_sets_resource_p (rtx, struct resources *, bool);
181static rtx_code_label *find_end_label (rtx);
182static rtx_insn *emit_delay_sequence (rtx_insn *, const vec<rtx_insn *> &,
183 int);
184static void add_to_delay_list (rtx_insn *, vec<rtx_insn *> *);
185static rtx_insn *delete_from_delay_slot (rtx_insn *);
186static void delete_scheduled_jump (rtx_insn *);
187static void note_delay_statistics (int, int);
188static int get_jump_flags (const rtx_insn *, rtx);
189static int mostly_true_jump (rtx);
190static rtx get_branch_condition (const rtx_insn *, rtx);
191static bool condition_dominates_p (rtx, const rtx_insn *);
192static bool redirect_with_delay_slots_safe_p (rtx_insn *, rtx, rtx);
193static bool redirect_with_delay_list_safe_p (rtx_insn *, rtx,
194 const vec<rtx_insn *> &);
195static bool check_annul_list_true_false (bool, const vec<rtx_insn *> &);
196static void steal_delay_list_from_target (rtx_insn *, rtx, rtx_sequence *,
197 vec<rtx_insn *> *,
198 struct resources *,
199 struct resources *,
200 struct resources *,
201 int, int *, bool *,
202 rtx *);
203static void steal_delay_list_from_fallthrough (rtx_insn *, rtx, rtx_sequence *,
204 vec<rtx_insn *> *,
205 struct resources *,
206 struct resources *,
207 struct resources *,
208 int, int *, bool *);
209static void try_merge_delay_insns (rtx_insn *, rtx_insn *);
210static rtx_insn *redundant_insn (rtx, rtx_insn *, const vec<rtx_insn *> &);
211static bool own_thread_p (rtx, rtx, bool);
212static void update_block (rtx_insn *, rtx_insn *);
213static bool reorg_redirect_jump (rtx_jump_insn *, rtx);
214static void update_reg_dead_notes (rtx_insn *, rtx_insn *);
215static void fix_reg_dead_note (rtx_insn *, rtx);
216static void update_reg_unused_notes (rtx_insn *, rtx);
217static void fill_simple_delay_slots (bool);
218static void fill_slots_from_thread (rtx_jump_insn *, rtx, rtx, rtx,
219 bool, bool, bool, int,
220 int *, vec<rtx_insn *> *);
221static void fill_eager_delay_slots (void);
222static void relax_delay_slots (rtx_insn *);
223static void make_return_insns (rtx_insn *);
224
225/* A wrapper around next_active_insn which takes care to return ret_rtx
226 unchanged. */
227
228static rtx
229first_active_target_insn (rtx insn)
230{
231 if (ANY_RETURN_P (insn))
232 return insn;
233 return next_active_insn (as_a <rtx_insn *> (p: insn));
234}
235
236/* Return true iff INSN is a simplejump, or any kind of return insn. */
237
238static bool
239simplejump_or_return_p (rtx insn)
240{
241 return (JUMP_P (insn)
242 && (simplejump_p (as_a <rtx_insn *> (p: insn))
243 || ANY_RETURN_P (PATTERN (insn))));
244}
245
246/* Return TRUE if this insn should stop the search for insn to fill delay
247 slots. LABELS_P indicates that labels should terminate the search.
248 In all cases, jumps terminate the search. */
249
250static bool
251stop_search_p (rtx_insn *insn, bool labels_p)
252{
253 if (insn == 0)
254 return true;
255
256 /* If the insn can throw an exception that is caught within the function,
257 it may effectively perform a jump from the viewpoint of the function.
258 Therefore act like for a jump. */
259 if (can_throw_internal (insn))
260 return true;
261
262 switch (GET_CODE (insn))
263 {
264 case NOTE:
265 case CALL_INSN:
266 case DEBUG_INSN:
267 return false;
268
269 case CODE_LABEL:
270 return labels_p;
271
272 case JUMP_INSN:
273 case BARRIER:
274 return true;
275
276 case INSN:
277 /* OK unless it contains a delay slot or is an `asm' insn of some type.
278 We don't know anything about these. */
279 return (GET_CODE (PATTERN (insn)) == SEQUENCE
280 || GET_CODE (PATTERN (insn)) == ASM_INPUT
281 || asm_noperands (PATTERN (insn)) >= 0);
282
283 default:
284 gcc_unreachable ();
285 }
286}
287
288/* Return TRUE if any resources are marked in both RES1 and RES2 or if either
289 resource set contains a volatile memory reference. Otherwise, return FALSE. */
290
291static bool
292resource_conflicts_p (struct resources *res1, struct resources *res2)
293{
294 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
295 || res1->volatil || res2->volatil)
296 return true;
297
298 return hard_reg_set_intersect_p (x: res1->regs, y: res2->regs);
299}
300
301/* Return TRUE if any resource marked in RES, a `struct resources', is
302 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
303 routine is using those resources.
304
305 We compute this by computing all the resources referenced by INSN and
306 seeing if this conflicts with RES. It might be faster to directly check
307 ourselves, and this is the way it used to work, but it means duplicating
308 a large block of complex code. */
309
310static bool
311insn_references_resource_p (rtx insn, struct resources *res,
312 bool include_delayed_effects)
313{
314 struct resources insn_res;
315
316 CLEAR_RESOURCE (&insn_res);
317 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
318 return resource_conflicts_p (res1: &insn_res, res2: res);
319}
320
321/* Return TRUE if INSN modifies resources that are marked in RES.
322 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
323 included. */
324
325static bool
326insn_sets_resource_p (rtx insn, struct resources *res,
327 bool include_delayed_effects)
328{
329 struct resources insn_sets;
330
331 CLEAR_RESOURCE (&insn_sets);
332 mark_set_resources (insn, &insn_sets, 0,
333 (include_delayed_effects
334 ? MARK_SRC_DEST_CALL
335 : MARK_SRC_DEST));
336 return resource_conflicts_p (res1: &insn_sets, res2: res);
337}
338
339/* Find a label at the end of the function or before a RETURN. If there
340 is none, try to make one. If that fails, returns 0.
341
342 The property of such a label is that it is placed just before the
343 epilogue or a bare RETURN insn, so that another bare RETURN can be
344 turned into a jump to the label unconditionally. In particular, the
345 label cannot be placed before a RETURN insn with a filled delay slot.
346
347 ??? There may be a problem with the current implementation. Suppose
348 we start with a bare RETURN insn and call find_end_label. It may set
349 function_return_label just before the RETURN. Suppose the machinery
350 is able to fill the delay slot of the RETURN insn afterwards. Then
351 function_return_label is no longer valid according to the property
352 described above and find_end_label will still return it unmodified.
353 Note that this is probably mitigated by the following observation:
354 once function_return_label is made, it is very likely the target of
355 a jump, so filling the delay slot of the RETURN will be much more
356 difficult.
357 KIND is either simple_return_rtx or ret_rtx, indicating which type of
358 return we're looking for. */
359
360static rtx_code_label *
361find_end_label (rtx kind)
362{
363 rtx_insn *insn;
364 rtx_code_label **plabel;
365
366 if (kind == ret_rtx)
367 plabel = &function_return_label;
368 else
369 {
370 gcc_assert (kind == simple_return_rtx);
371 plabel = &function_simple_return_label;
372 }
373
374 /* If we found one previously, return it. */
375 if (*plabel)
376 return *plabel;
377
378 /* Otherwise, see if there is a label at the end of the function. If there
379 is, it must be that RETURN insns aren't needed, so that is our return
380 label and we don't have to do anything else. */
381
382 insn = get_last_insn ();
383 while (NOTE_P (insn)
384 || (NONJUMP_INSN_P (insn)
385 && (GET_CODE (PATTERN (insn)) == USE
386 || GET_CODE (PATTERN (insn)) == CLOBBER)))
387 insn = PREV_INSN (insn);
388
389 /* When a target threads its epilogue we might already have a
390 suitable return insn. If so put a label before it for the
391 function_return_label. */
392 if (BARRIER_P (insn)
393 && JUMP_P (PREV_INSN (insn))
394 && PATTERN (insn: PREV_INSN (insn)) == kind)
395 {
396 rtx_insn *temp = PREV_INSN (insn: PREV_INSN (insn));
397 rtx_code_label *label = gen_label_rtx ();
398 LABEL_NUSES (label) = 0;
399
400 /* Put the label before any USE insns that may precede the RETURN
401 insn. */
402 while (GET_CODE (temp) == USE)
403 temp = PREV_INSN (insn: temp);
404
405 emit_label_after (label, temp);
406 *plabel = label;
407 }
408
409 else if (LABEL_P (insn))
410 *plabel = as_a <rtx_code_label *> (p: insn);
411 else
412 {
413 rtx_code_label *label = gen_label_rtx ();
414 LABEL_NUSES (label) = 0;
415 /* If the basic block reorder pass moves the return insn to
416 some other place try to locate it again and put our
417 function_return_label there. */
418 while (insn && ! (JUMP_P (insn) && (PATTERN (insn) == kind)))
419 insn = PREV_INSN (insn);
420 if (insn)
421 {
422 insn = PREV_INSN (insn);
423
424 /* Put the label before any USE insns that may precede the
425 RETURN insn. */
426 while (GET_CODE (insn) == USE)
427 insn = PREV_INSN (insn);
428
429 emit_label_after (label, insn);
430 }
431 else
432 {
433 if (targetm.have_epilogue () && ! targetm.have_return ())
434 /* The RETURN insn has its delay slot filled so we cannot
435 emit the label just before it. Since we already have
436 an epilogue and cannot emit a new RETURN, we cannot
437 emit the label at all. */
438 return NULL;
439
440 /* Otherwise, make a new label and emit a RETURN and BARRIER,
441 if needed. */
442 emit_label (label);
443 if (targetm.have_return ())
444 {
445 /* The return we make may have delay slots too. */
446 rtx_insn *pat = targetm.gen_return ();
447 rtx_insn *insn = emit_jump_insn (pat);
448 set_return_jump_label (insn);
449 emit_barrier ();
450 if (num_delay_slots (insn) > 0)
451 obstack_ptr_grow (&unfilled_slots_obstack, insn);
452 }
453 }
454 *plabel = label;
455 }
456
457 /* Show one additional use for this label so it won't go away until
458 we are done. */
459 ++LABEL_NUSES (*plabel);
460
461 return *plabel;
462}
463
464/* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
465 the pattern of INSN with the SEQUENCE.
466
467 Returns the insn containing the SEQUENCE that replaces INSN. */
468
469static rtx_insn *
470emit_delay_sequence (rtx_insn *insn, const vec<rtx_insn *> &list, int length)
471{
472 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
473 rtvec seqv = rtvec_alloc (length + 1);
474 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
475 rtx_insn *seq_insn = make_insn_raw (seq);
476
477 /* If DELAY_INSN has a location, use it for SEQ_INSN. If DELAY_INSN does
478 not have a location, but one of the delayed insns does, we pick up a
479 location from there later. */
480 INSN_LOCATION (insn: seq_insn) = INSN_LOCATION (insn);
481
482 /* Unlink INSN from the insn chain, so that we can put it into
483 the SEQUENCE. Remember where we want to emit SEQUENCE in AFTER. */
484 rtx_insn *after = PREV_INSN (insn);
485 remove_insn (insn);
486 SET_NEXT_INSN (insn) = SET_PREV_INSN (insn) = NULL;
487
488 /* Build our SEQUENCE and rebuild the insn chain. */
489 start_sequence ();
490 XVECEXP (seq, 0, 0) = emit_insn (insn);
491
492 unsigned int delay_insns = list.length ();
493 gcc_assert (delay_insns == (unsigned int) length);
494 for (unsigned int i = 0; i < delay_insns; i++)
495 {
496 rtx_insn *tem = list[i];
497 rtx note, next;
498
499 /* Show that this copy of the insn isn't deleted. */
500 tem->set_undeleted ();
501
502 /* Unlink insn from its original place, and re-emit it into
503 the sequence. */
504 SET_NEXT_INSN (tem) = SET_PREV_INSN (tem) = NULL;
505 XVECEXP (seq, 0, i + 1) = emit_insn (tem);
506
507 /* SPARC assembler, for instance, emit warning when debug info is output
508 into the delay slot. */
509 if (INSN_LOCATION (insn: tem) && !INSN_LOCATION (insn: seq_insn))
510 INSN_LOCATION (insn: seq_insn) = INSN_LOCATION (insn: tem);
511 INSN_LOCATION (insn: tem) = 0;
512
513 for (note = REG_NOTES (tem); note; note = next)
514 {
515 next = XEXP (note, 1);
516 switch (REG_NOTE_KIND (note))
517 {
518 case REG_DEAD:
519 /* Remove any REG_DEAD notes because we can't rely on them now
520 that the insn has been moved. */
521 remove_note (tem, note);
522 break;
523
524 case REG_LABEL_OPERAND:
525 case REG_LABEL_TARGET:
526 /* Keep the label reference count up to date. */
527 if (LABEL_P (XEXP (note, 0)))
528 LABEL_NUSES (XEXP (note, 0)) ++;
529 break;
530
531 default:
532 break;
533 }
534 }
535 }
536 end_sequence ();
537
538 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
539 add_insn_after (seq_insn, after, NULL);
540
541 return seq_insn;
542}
543
544/* Add INSN to DELAY_LIST and return the head of the new list. The list must
545 be in the order in which the insns are to be executed. */
546
547static void
548add_to_delay_list (rtx_insn *insn, vec<rtx_insn *> *delay_list)
549{
550 /* If INSN has its block number recorded, clear it since we may
551 be moving the insn to a new block. */
552 clear_hashed_info_for_insn (insn);
553
554 delay_list->safe_push (obj: insn);
555}
556
557/* Delete INSN from the delay slot of the insn that it is in, which may
558 produce an insn with no delay slots. Return the new insn. */
559
560static rtx_insn *
561delete_from_delay_slot (rtx_insn *insn)
562{
563 rtx_insn *trial, *seq_insn, *prev;
564 rtx_sequence *seq;
565 bool had_barrier = false;
566 int i;
567
568 /* We first must find the insn containing the SEQUENCE with INSN in its
569 delay slot. Do this by finding an insn, TRIAL, where
570 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
571
572 for (trial = insn;
573 PREV_INSN (insn: NEXT_INSN (insn: trial)) == trial;
574 trial = NEXT_INSN (insn: trial))
575 ;
576
577 seq_insn = PREV_INSN (insn: NEXT_INSN (insn: trial));
578 seq = as_a <rtx_sequence *> (p: PATTERN (insn: seq_insn));
579
580 if (NEXT_INSN (insn: seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
581 had_barrier = true;
582
583 /* Create a delay list consisting of all the insns other than the one
584 we are deleting (unless we were the only one). */
585 auto_vec<rtx_insn *, 5> delay_list;
586 if (seq->len () > 2)
587 for (i = 1; i < seq->len (); i++)
588 if (seq->insn (index: i) != insn)
589 add_to_delay_list (insn: seq->insn (index: i), delay_list: &delay_list);
590
591 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
592 list, and rebuild the delay list if non-empty. */
593 prev = PREV_INSN (insn: seq_insn);
594 trial = seq->insn (index: 0);
595 delete_related_insns (seq_insn);
596 add_insn_after (trial, prev, NULL);
597
598 /* If there was a barrier after the old SEQUENCE, remit it. */
599 if (had_barrier)
600 emit_barrier_after (trial);
601
602 /* If there are any delay insns, remit them. Otherwise clear the
603 annul flag. */
604 if (!delay_list.is_empty ())
605 trial = emit_delay_sequence (insn: trial, list: delay_list, XVECLEN (seq, 0) - 2);
606 else if (JUMP_P (trial))
607 INSN_ANNULLED_BRANCH_P (trial) = 0;
608
609 INSN_FROM_TARGET_P (insn) = 0;
610
611 /* Show we need to fill this insn again. */
612 obstack_ptr_grow (&unfilled_slots_obstack, trial);
613
614 return trial;
615}
616
617/* Delete INSN, a JUMP_INSN. */
618
619static void
620delete_scheduled_jump (rtx_insn *insn)
621{
622 delete_related_insns (insn);
623}
624
625/* Counters for delay-slot filling. */
626
627#define NUM_REORG_FUNCTIONS 2
628#define MAX_DELAY_HISTOGRAM 3
629#define MAX_REORG_PASSES 2
630
631static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
632
633static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
634
635static int reorg_pass_number;
636
637static void
638note_delay_statistics (int slots_filled, int index)
639{
640 num_insns_needing_delays[index][reorg_pass_number]++;
641 if (slots_filled > MAX_DELAY_HISTOGRAM)
642 slots_filled = MAX_DELAY_HISTOGRAM;
643 num_filled_delays[index][slots_filled][reorg_pass_number]++;
644}
645
646/* Optimize the following cases:
647
648 1. When a conditional branch skips over only one instruction,
649 use an annulling branch and put that insn in the delay slot.
650 Use either a branch that annuls when the condition if true or
651 invert the test with a branch that annuls when the condition is
652 false. This saves insns, since otherwise we must copy an insn
653 from the L1 target.
654
655 (orig) (skip) (otherwise)
656 Bcc.n L1 Bcc',a L1 Bcc,a L1'
657 insn insn insn2
658 L1: L1: L1:
659 insn2 insn2 insn2
660 insn3 insn3 L1':
661 insn3
662
663 2. When a conditional branch skips over only one instruction,
664 and after that, it unconditionally branches somewhere else,
665 perform the similar optimization. This saves executing the
666 second branch in the case where the inverted condition is true.
667
668 Bcc.n L1 Bcc',a L2
669 insn insn
670 L1: L1:
671 Bra L2 Bra L2
672
673 INSN is a JUMP_INSN.
674
675 This should be expanded to skip over N insns, where N is the number
676 of delay slots required. */
677
678static void
679optimize_skip (rtx_jump_insn *insn, vec<rtx_insn *> *delay_list)
680{
681 rtx_insn *trial = next_nonnote_insn (insn);
682 rtx_insn *next_trial = next_active_insn (trial);
683 int flags;
684
685 flags = get_jump_flags (insn, JUMP_LABEL (insn));
686
687 if (trial == 0
688 || !NONJUMP_INSN_P (trial)
689 || GET_CODE (PATTERN (trial)) == SEQUENCE
690 || recog_memoized (insn: trial) < 0
691 || (! eligible_for_annul_false (insn, 0, trial, flags)
692 && ! eligible_for_annul_true (insn, 0, trial, flags))
693 || RTX_FRAME_RELATED_P (trial)
694 || can_throw_internal (trial))
695 return;
696
697 /* There are two cases where we are just executing one insn (we assume
698 here that a branch requires only one insn; this should be generalized
699 at some point): Where the branch goes around a single insn or where
700 we have one insn followed by a branch to the same label we branch to.
701 In both of these cases, inverting the jump and annulling the delay
702 slot give the same effect in fewer insns. */
703 if (next_trial == next_active_insn (JUMP_LABEL_AS_INSN (insn))
704 || (next_trial != 0
705 && simplejump_or_return_p (insn: next_trial)
706 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)))
707 {
708 if (eligible_for_annul_false (insn, 0, trial, flags))
709 {
710 if (invert_jump (insn, JUMP_LABEL (insn), 1))
711 INSN_FROM_TARGET_P (trial) = 1;
712 else if (! eligible_for_annul_true (insn, 0, trial, flags))
713 return;
714 }
715
716 add_to_delay_list (insn: trial, delay_list);
717 next_trial = next_active_insn (trial);
718 update_block (trial, trial);
719 delete_related_insns (trial);
720
721 /* Also, if we are targeting an unconditional
722 branch, thread our jump to the target of that branch. Don't
723 change this into a RETURN here, because it may not accept what
724 we have in the delay slot. We'll fix this up later. */
725 if (next_trial && simplejump_or_return_p (insn: next_trial))
726 {
727 rtx target_label = JUMP_LABEL (next_trial);
728 if (ANY_RETURN_P (target_label))
729 target_label = find_end_label (kind: target_label);
730
731 if (target_label)
732 {
733 /* Recompute the flags based on TARGET_LABEL since threading
734 the jump to TARGET_LABEL may change the direction of the
735 jump (which may change the circumstances in which the
736 delay slot is nullified). */
737 flags = get_jump_flags (insn, target_label);
738 if (eligible_for_annul_true (insn, 0, trial, flags))
739 reorg_redirect_jump (insn, target_label);
740 }
741 }
742
743 INSN_ANNULLED_BRANCH_P (insn) = 1;
744 }
745}
746
747/* Encode and return branch direction and prediction information for
748 INSN assuming it will jump to LABEL.
749
750 Non conditional branches return no direction information and
751 are predicted as very likely taken. */
752
753static int
754get_jump_flags (const rtx_insn *insn, rtx label)
755{
756 int flags;
757
758 /* get_jump_flags can be passed any insn with delay slots, these may
759 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
760 direction information, and only if they are conditional jumps.
761
762 If LABEL is a return, then there is no way to determine the branch
763 direction. */
764 if (JUMP_P (insn)
765 && (condjump_p (insn) || condjump_in_parallel_p (insn))
766 && !ANY_RETURN_P (label)
767 && INSN_UID (insn) <= max_uid
768 && INSN_UID (insn: label) <= max_uid)
769 flags
770 = (uid_to_ruid[INSN_UID (insn: label)] > uid_to_ruid[INSN_UID (insn)])
771 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
772 /* No valid direction information. */
773 else
774 flags = 0;
775
776 return flags;
777}
778
779/* Return truth value of the statement that this branch
780 is mostly taken. If we think that the branch is extremely likely
781 to be taken, we return 2. If the branch is slightly more likely to be
782 taken, return 1. If the branch is slightly less likely to be taken,
783 return 0 and if the branch is highly unlikely to be taken, return -1. */
784
785static int
786mostly_true_jump (rtx jump_insn)
787{
788 /* If branch probabilities are available, then use that number since it
789 always gives a correct answer. */
790 rtx note = find_reg_note (jump_insn, REG_BR_PROB, 0);
791 if (note)
792 {
793 int prob = profile_probability::from_reg_br_prob_note (XINT (note, 0))
794 .to_reg_br_prob_base ();
795
796 if (prob >= REG_BR_PROB_BASE * 9 / 10)
797 return 2;
798 else if (prob >= REG_BR_PROB_BASE / 2)
799 return 1;
800 else if (prob >= REG_BR_PROB_BASE / 10)
801 return 0;
802 else
803 return -1;
804 }
805
806 /* If there is no note, assume branches are not taken.
807 This should be rare. */
808 return 0;
809}
810
811/* Return the condition under which INSN will branch to TARGET. If TARGET
812 is zero, return the condition under which INSN will return. If INSN is
813 an unconditional branch, return const_true_rtx. If INSN isn't a simple
814 type of jump, or it doesn't go to TARGET, return 0. */
815
816static rtx
817get_branch_condition (const rtx_insn *insn, rtx target)
818{
819 rtx pat = PATTERN (insn);
820 rtx src;
821
822 if (condjump_in_parallel_p (insn))
823 pat = XVECEXP (pat, 0, 0);
824
825 if (ANY_RETURN_P (pat) && pat == target)
826 return const_true_rtx;
827
828 if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
829 return 0;
830
831 src = SET_SRC (pat);
832 if (GET_CODE (src) == LABEL_REF && label_ref_label (ref: src) == target)
833 return const_true_rtx;
834
835 else if (GET_CODE (src) == IF_THEN_ELSE
836 && XEXP (src, 2) == pc_rtx
837 && ((GET_CODE (XEXP (src, 1)) == LABEL_REF
838 && label_ref_label (XEXP (src, 1)) == target)
839 || (ANY_RETURN_P (XEXP (src, 1)) && XEXP (src, 1) == target)))
840 return XEXP (src, 0);
841
842 else if (GET_CODE (src) == IF_THEN_ELSE
843 && XEXP (src, 1) == pc_rtx
844 && ((GET_CODE (XEXP (src, 2)) == LABEL_REF
845 && label_ref_label (XEXP (src, 2)) == target)
846 || (ANY_RETURN_P (XEXP (src, 2)) && XEXP (src, 2) == target)))
847 {
848 enum rtx_code rev;
849 rev = reversed_comparison_code (XEXP (src, 0), insn);
850 if (rev != UNKNOWN)
851 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
852 XEXP (XEXP (src, 0), 0),
853 XEXP (XEXP (src, 0), 1));
854 }
855
856 return 0;
857}
858
859/* Return true if CONDITION is more strict than the condition of
860 INSN, i.e., if INSN will always branch if CONDITION is true. */
861
862static bool
863condition_dominates_p (rtx condition, const rtx_insn *insn)
864{
865 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
866 enum rtx_code code = GET_CODE (condition);
867 enum rtx_code other_code;
868
869 if (rtx_equal_p (condition, other_condition)
870 || other_condition == const_true_rtx)
871 return true;
872
873 else if (condition == const_true_rtx || other_condition == 0)
874 return false;
875
876 other_code = GET_CODE (other_condition);
877 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
878 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
879 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
880 return false;
881
882 return comparison_dominates_p (code, other_code);
883}
884
885/* Return true if redirecting JUMP to NEWLABEL does not invalidate
886 any insns already in the delay slot of JUMP. */
887
888static bool
889redirect_with_delay_slots_safe_p (rtx_insn *jump, rtx newlabel, rtx seq)
890{
891 int flags, i;
892 rtx_sequence *pat = as_a <rtx_sequence *> (p: PATTERN (insn: seq));
893
894 /* Make sure all the delay slots of this jump would still
895 be valid after threading the jump. If they are still
896 valid, then return nonzero. */
897
898 flags = get_jump_flags (insn: jump, label: newlabel);
899 for (i = 1; i < pat->len (); i++)
900 if (! (
901#if ANNUL_IFFALSE_SLOTS
902 (INSN_ANNULLED_BRANCH_P (jump)
903 && INSN_FROM_TARGET_P (pat->insn (i)))
904 ? eligible_for_annul_false (jump, i - 1, pat->insn (i), flags) :
905#endif
906#if ANNUL_IFTRUE_SLOTS
907 (INSN_ANNULLED_BRANCH_P (jump)
908 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
909 ? eligible_for_annul_true (jump, i - 1, pat->insn (i), flags) :
910#endif
911 eligible_for_delay (jump, i - 1, pat->insn (index: i), flags)))
912 break;
913
914 return (i == pat->len ());
915}
916
917/* Return true if redirecting JUMP to NEWLABEL does not invalidate
918 any insns we wish to place in the delay slot of JUMP. */
919
920static bool
921redirect_with_delay_list_safe_p (rtx_insn *jump, rtx newlabel,
922 const vec<rtx_insn *> &delay_list)
923{
924 /* Make sure all the insns in DELAY_LIST would still be
925 valid after threading the jump. If they are still
926 valid, then return true. */
927
928 int flags = get_jump_flags (insn: jump, label: newlabel);
929 unsigned int delay_insns = delay_list.length ();
930 unsigned int i = 0;
931 for (; i < delay_insns; i++)
932 if (! (
933#if ANNUL_IFFALSE_SLOTS
934 (INSN_ANNULLED_BRANCH_P (jump)
935 && INSN_FROM_TARGET_P (delay_list[i]))
936 ? eligible_for_annul_false (jump, i, delay_list[i], flags) :
937#endif
938#if ANNUL_IFTRUE_SLOTS
939 (INSN_ANNULLED_BRANCH_P (jump)
940 && ! INSN_FROM_TARGET_P (delay_list[i]))
941 ? eligible_for_annul_true (jump, i, delay_list[i], flags) :
942#endif
943 eligible_for_delay (jump, i, delay_list[i], flags)))
944 break;
945
946 return i == delay_insns;
947}
948
949/* DELAY_LIST is a list of insns that have already been placed into delay
950 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
951 If not, return false; otherwise return true. */
952
953static bool
954check_annul_list_true_false (bool annul_true_p,
955 const vec<rtx_insn *> &delay_list)
956{
957 rtx_insn *trial;
958 unsigned int i;
959 FOR_EACH_VEC_ELT (delay_list, i, trial)
960 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
961 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
962 return false;
963
964 return true;
965}
966
967/* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
968 the condition tested by INSN is CONDITION and the resources shown in
969 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
970 from SEQ's delay list, in addition to whatever insns it may execute
971 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
972 needed while searching for delay slot insns. Return the concatenated
973 delay list if possible, otherwise, return 0.
974
975 SLOTS_TO_FILL is the total number of slots required by INSN, and
976 PSLOTS_FILLED points to the number filled so far (also the number of
977 insns in DELAY_LIST). It is updated with the number that have been
978 filled from the SEQUENCE, if any.
979
980 PANNUL_P points to a nonzero value if we already know that we need
981 to annul INSN. If this routine determines that annulling is needed,
982 it may set that value to true.
983
984 PNEW_THREAD points to a location that is to receive the place at which
985 execution should continue. */
986
987static void
988steal_delay_list_from_target (rtx_insn *insn, rtx condition, rtx_sequence *seq,
989 vec<rtx_insn *> *delay_list,
990 struct resources *sets,
991 struct resources *needed,
992 struct resources *other_needed,
993 int slots_to_fill, int *pslots_filled,
994 bool *pannul_p, rtx *pnew_thread)
995{
996 int slots_remaining = slots_to_fill - *pslots_filled;
997 int total_slots_filled = *pslots_filled;
998 auto_vec<rtx_insn *, 5> new_delay_list;
999 bool must_annul = *pannul_p;
1000 bool used_annul = false;
1001 int i;
1002 struct resources cc_set;
1003 rtx_insn **redundant;
1004
1005 /* We can't do anything if there are more delay slots in SEQ than we
1006 can handle, or if we don't know that it will be a taken branch.
1007 We know that it will be a taken branch if it is either an unconditional
1008 branch or a conditional branch with a stricter branch condition.
1009
1010 Also, exit if the branch has more than one set, since then it is computing
1011 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1012 ??? It may be possible to move other sets into INSN in addition to
1013 moving the instructions in the delay slots.
1014
1015 We cannot steal the delay list if one of the instructions in the
1016 current delay_list modifies the condition codes and the jump in the
1017 sequence is a conditional jump. We cannot do this because we cannot
1018 change the direction of the jump because the condition codes
1019 will effect the direction of the jump in the sequence. */
1020
1021 CLEAR_RESOURCE (&cc_set);
1022
1023 rtx_insn *trial;
1024 FOR_EACH_VEC_ELT (*delay_list, i, trial)
1025 {
1026 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1027 if (insn_references_resource_p (insn: seq->insn (index: 0), res: &cc_set, include_delayed_effects: false))
1028 return;
1029 }
1030
1031 if (XVECLEN (seq, 0) - 1 > slots_remaining
1032 || ! condition_dominates_p (condition, insn: seq->insn (index: 0))
1033 || ! single_set (insn: seq->insn (index: 0)))
1034 return;
1035
1036 /* On some targets, branches with delay slots can have a limited
1037 displacement. Give the back end a chance to tell us we can't do
1038 this. */
1039 if (! targetm.can_follow_jump (insn, seq->insn (index: 0)))
1040 return;
1041
1042 redundant = XALLOCAVEC (rtx_insn *, XVECLEN (seq, 0));
1043 for (i = 1; i < seq->len (); i++)
1044 {
1045 rtx_insn *trial = seq->insn (index: i);
1046 int flags;
1047
1048 if (insn_references_resource_p (insn: trial, res: sets, include_delayed_effects: false)
1049 || insn_sets_resource_p (insn: trial, res: needed, include_delayed_effects: false)
1050 || insn_sets_resource_p (insn: trial, res: sets, include_delayed_effects: false)
1051 /* If TRIAL is from the fallthrough code of an annulled branch insn
1052 in SEQ, we cannot use it. */
1053 || (INSN_ANNULLED_BRANCH_P (seq->insn (0))
1054 && ! INSN_FROM_TARGET_P (trial)))
1055 return;
1056
1057 /* If this insn was already done (usually in a previous delay slot),
1058 pretend we put it in our delay slot. */
1059 redundant[i] = redundant_insn (trial, insn, new_delay_list);
1060 if (redundant[i])
1061 continue;
1062
1063 /* We will end up re-vectoring this branch, so compute flags
1064 based on jumping to the new label. */
1065 flags = get_jump_flags (insn, JUMP_LABEL (seq->insn (0)));
1066
1067 if (! must_annul
1068 && ((condition == const_true_rtx
1069 || (! insn_sets_resource_p (insn: trial, res: other_needed, include_delayed_effects: false)
1070 && ! may_trap_or_fault_p (PATTERN (insn: trial)))))
1071 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1072 : (must_annul || (delay_list->is_empty () && new_delay_list.is_empty ()))
1073 && (must_annul = true,
1074 check_annul_list_true_false (annul_true_p: false, delay_list: *delay_list)
1075 && check_annul_list_true_false (annul_true_p: false, delay_list: new_delay_list)
1076 && eligible_for_annul_false (insn, total_slots_filled,
1077 trial, flags)))
1078 {
1079 if (must_annul)
1080 {
1081 /* Frame related instructions cannot go into annulled delay
1082 slots, it messes up the dwarf info. */
1083 if (RTX_FRAME_RELATED_P (trial))
1084 return;
1085 used_annul = true;
1086 }
1087 rtx_insn *temp = copy_delay_slot_insn (trial);
1088 INSN_FROM_TARGET_P (temp) = 1;
1089 add_to_delay_list (insn: temp, delay_list: &new_delay_list);
1090 total_slots_filled++;
1091
1092 if (--slots_remaining == 0)
1093 break;
1094 }
1095 else
1096 return;
1097 }
1098
1099 /* Record the effect of the instructions that were redundant and which
1100 we therefore decided not to copy. */
1101 for (i = 1; i < seq->len (); i++)
1102 if (redundant[i])
1103 {
1104 fix_reg_dead_note (redundant[i], insn);
1105 update_block (seq->insn (index: i), insn);
1106 }
1107
1108 /* Show the place to which we will be branching. */
1109 *pnew_thread = first_active_target_insn (JUMP_LABEL (seq->insn (0)));
1110
1111 /* Add any new insns to the delay list and update the count of the
1112 number of slots filled. */
1113 *pslots_filled = total_slots_filled;
1114 if (used_annul)
1115 *pannul_p = true;
1116
1117 rtx_insn *temp;
1118 FOR_EACH_VEC_ELT (new_delay_list, i, temp)
1119 add_to_delay_list (insn: temp, delay_list);
1120}
1121
1122/* Similar to steal_delay_list_from_target except that SEQ is on the
1123 fallthrough path of INSN. Here we only do something if the delay insn
1124 of SEQ is an unconditional branch. In that case we steal its delay slot
1125 for INSN since unconditional branches are much easier to fill. */
1126
1127static void
1128steal_delay_list_from_fallthrough (rtx_insn *insn, rtx condition,
1129 rtx_sequence *seq,
1130 vec<rtx_insn *> *delay_list,
1131 struct resources *sets,
1132 struct resources *needed,
1133 struct resources *other_needed,
1134 int slots_to_fill, int *pslots_filled,
1135 bool *pannul_p)
1136{
1137 int i;
1138 int flags;
1139 bool must_annul = *pannul_p;
1140 bool used_annul = false;
1141
1142 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1143
1144 /* We can't do anything if SEQ's delay insn isn't an
1145 unconditional branch. */
1146
1147 if (! simplejump_or_return_p (insn: seq->insn (index: 0)))
1148 return;
1149
1150 for (i = 1; i < seq->len (); i++)
1151 {
1152 rtx_insn *trial = seq->insn (index: i);
1153 rtx_insn *prior_insn;
1154
1155 if (insn_references_resource_p (insn: trial, res: sets, include_delayed_effects: false)
1156 || insn_sets_resource_p (insn: trial, res: needed, include_delayed_effects: false)
1157 || insn_sets_resource_p (insn: trial, res: sets, include_delayed_effects: false))
1158 break;
1159
1160 /* If this insn was already done, we don't need it. */
1161 if ((prior_insn = redundant_insn (trial, insn, *delay_list)))
1162 {
1163 fix_reg_dead_note (prior_insn, insn);
1164 update_block (trial, insn);
1165 delete_from_delay_slot (insn: trial);
1166 continue;
1167 }
1168
1169 if (! must_annul
1170 && ((condition == const_true_rtx
1171 || (! insn_sets_resource_p (insn: trial, res: other_needed, include_delayed_effects: false)
1172 && ! may_trap_or_fault_p (PATTERN (insn: trial)))))
1173 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1174 : (must_annul || delay_list->is_empty ()) && (must_annul = true,
1175 check_annul_list_true_false (annul_true_p: true, delay_list: *delay_list)
1176 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1177 {
1178 if (must_annul)
1179 used_annul = true;
1180 delete_from_delay_slot (insn: trial);
1181 add_to_delay_list (insn: trial, delay_list);
1182
1183 if (++(*pslots_filled) == slots_to_fill)
1184 break;
1185 }
1186 else
1187 break;
1188 }
1189
1190 if (used_annul)
1191 *pannul_p = true;
1192}
1193
1194/* Try merging insns starting at THREAD which match exactly the insns in
1195 INSN's delay list.
1196
1197 If all insns were matched and the insn was previously annulling, the
1198 annul bit will be cleared.
1199
1200 For each insn that is merged, if the branch is or will be non-annulling,
1201 we delete the merged insn. */
1202
1203static void
1204try_merge_delay_insns (rtx_insn *insn, rtx_insn *thread)
1205{
1206 rtx_insn *trial, *next_trial;
1207 rtx_insn *delay_insn = as_a <rtx_insn *> (XVECEXP (PATTERN (insn), 0, 0));
1208 bool annul_p = JUMP_P (delay_insn) && INSN_ANNULLED_BRANCH_P (delay_insn);
1209 int slot_number = 1;
1210 int num_slots = XVECLEN (PATTERN (insn), 0);
1211 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1212 struct resources set, needed, modified;
1213 auto_vec<std::pair<rtx_insn *, bool>, 10> merged_insns;
1214 int flags;
1215
1216 flags = get_jump_flags (insn: delay_insn, JUMP_LABEL (delay_insn));
1217
1218 CLEAR_RESOURCE (&needed);
1219 CLEAR_RESOURCE (&set);
1220
1221 /* If this is not an annulling branch, take into account anything needed in
1222 INSN's delay slot. This prevents two increments from being incorrectly
1223 folded into one. If we are annulling, this would be the correct
1224 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1225 will essentially disable this optimization. This method is somewhat of
1226 a kludge, but I don't see a better way.) */
1227 if (! annul_p)
1228 for (int i = 1; i < num_slots; i++)
1229 if (XVECEXP (PATTERN (insn), 0, i))
1230 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
1231 true);
1232
1233 for (trial = thread; !stop_search_p (insn: trial, labels_p: true); trial = next_trial)
1234 {
1235 rtx pat = PATTERN (insn: trial);
1236 rtx oldtrial = trial;
1237
1238 next_trial = next_nonnote_insn (trial);
1239
1240 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1241 if (NONJUMP_INSN_P (trial)
1242 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1243 continue;
1244
1245 if (GET_CODE (next_to_match) == GET_CODE (trial)
1246 && ! insn_references_resource_p (insn: trial, res: &set, include_delayed_effects: true)
1247 && ! insn_sets_resource_p (insn: trial, res: &set, include_delayed_effects: true)
1248 && ! insn_sets_resource_p (insn: trial, res: &needed, include_delayed_effects: true)
1249 && (trial = try_split (pat, trial, 0)) != 0
1250 /* Update next_trial, in case try_split succeeded. */
1251 && (next_trial = next_nonnote_insn (trial))
1252 /* Likewise THREAD. */
1253 && (thread = oldtrial == thread ? trial : thread)
1254 && rtx_equal_p (PATTERN (insn: next_to_match), PATTERN (insn: trial))
1255 /* Have to test this condition if annul condition is different
1256 from (and less restrictive than) non-annulling one. */
1257 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1258 {
1259
1260 if (! annul_p)
1261 {
1262 update_block (trial, thread);
1263 if (trial == thread)
1264 thread = next_active_insn (thread);
1265
1266 delete_related_insns (trial);
1267 INSN_FROM_TARGET_P (next_to_match) = 0;
1268 }
1269 else
1270 merged_insns.safe_push (obj: std::pair<rtx_insn *, bool> (trial, false));
1271
1272 if (++slot_number == num_slots)
1273 break;
1274
1275 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1276 }
1277
1278 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1279 mark_referenced_resources (trial, &needed, true);
1280 }
1281
1282 /* See if we stopped on a filled insn. If we did, try to see if its
1283 delay slots match. */
1284 if (slot_number != num_slots
1285 && trial && NONJUMP_INSN_P (trial)
1286 && GET_CODE (PATTERN (trial)) == SEQUENCE
1287 && !(JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
1288 && INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0))))
1289 {
1290 rtx_sequence *pat = as_a <rtx_sequence *> (p: PATTERN (insn: trial));
1291 rtx filled_insn = XVECEXP (pat, 0, 0);
1292
1293 /* Account for resources set/needed by the filled insn. */
1294 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1295 mark_referenced_resources (filled_insn, &needed, true);
1296
1297 for (int i = 1; i < pat->len (); i++)
1298 {
1299 rtx_insn *dtrial = pat->insn (index: i);
1300
1301 CLEAR_RESOURCE (&modified);
1302 /* Account for resources set by the insn following NEXT_TO_MATCH
1303 inside INSN's delay list. */
1304 for (int j = 1; slot_number + j < num_slots; j++)
1305 mark_set_resources (XVECEXP (PATTERN (insn), 0, slot_number + j),
1306 &modified, 0, MARK_SRC_DEST_CALL);
1307 /* Account for resources set by the insn before DTRIAL and inside
1308 TRIAL's delay list. */
1309 for (int j = 1; j < i; j++)
1310 mark_set_resources (XVECEXP (pat, 0, j),
1311 &modified, 0, MARK_SRC_DEST_CALL);
1312 if (! insn_references_resource_p (insn: dtrial, res: &set, include_delayed_effects: true)
1313 && ! insn_sets_resource_p (insn: dtrial, res: &set, include_delayed_effects: true)
1314 && ! insn_sets_resource_p (insn: dtrial, res: &needed, include_delayed_effects: true)
1315 && rtx_equal_p (PATTERN (insn: next_to_match), PATTERN (insn: dtrial))
1316 /* Check that DTRIAL and NEXT_TO_MATCH does not reference a
1317 resource modified between them (only dtrial is checked because
1318 next_to_match and dtrial shall to be equal in order to hit
1319 this line) */
1320 && ! insn_references_resource_p (insn: dtrial, res: &modified, include_delayed_effects: true)
1321 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1322 {
1323 if (! annul_p)
1324 {
1325 rtx_insn *new_rtx;
1326
1327 update_block (dtrial, thread);
1328 new_rtx = delete_from_delay_slot (insn: dtrial);
1329 if (thread->deleted ())
1330 thread = new_rtx;
1331 INSN_FROM_TARGET_P (next_to_match) = 0;
1332 }
1333 else
1334 merged_insns.safe_push (obj: std::pair<rtx_insn *, bool> (dtrial,
1335 true));
1336
1337 if (++slot_number == num_slots)
1338 break;
1339
1340 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1341 }
1342 else
1343 {
1344 /* Keep track of the set/referenced resources for the delay
1345 slots of any trial insns we encounter. */
1346 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1347 mark_referenced_resources (dtrial, &needed, true);
1348 }
1349 }
1350 }
1351
1352 /* If all insns in the delay slot have been matched and we were previously
1353 annulling the branch, we need not any more. In that case delete all the
1354 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1355 the delay list so that we know that it isn't only being used at the
1356 target. */
1357 if (slot_number == num_slots && annul_p)
1358 {
1359 unsigned int len = merged_insns.length ();
1360 for (unsigned int i = len - 1; i < len; i--)
1361 if (merged_insns[i].second)
1362 {
1363 update_block (merged_insns[i].first, thread);
1364 rtx_insn *new_rtx = delete_from_delay_slot (insn: merged_insns[i].first);
1365 if (thread->deleted ())
1366 thread = new_rtx;
1367 }
1368 else
1369 {
1370 update_block (merged_insns[i].first, thread);
1371 delete_related_insns (merged_insns[i].first);
1372 }
1373
1374 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1375
1376 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1377 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1378 }
1379}
1380
1381/* See if INSN is redundant with an insn in front of TARGET. Often this
1382 is called when INSN is a candidate for a delay slot of TARGET.
1383 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1384 of INSN. Often INSN will be redundant with an insn in a delay slot of
1385 some previous insn. This happens when we have a series of branches to the
1386 same label; in that case the first insn at the target might want to go
1387 into each of the delay slots.
1388
1389 If we are not careful, this routine can take up a significant fraction
1390 of the total compilation time (4%), but only wins rarely. Hence we
1391 speed this routine up by making two passes. The first pass goes back
1392 until it hits a label and sees if it finds an insn with an identical
1393 pattern. Only in this (relatively rare) event does it check for
1394 data conflicts.
1395
1396 We do not split insns we encounter. This could cause us not to find a
1397 redundant insn, but the cost of splitting seems greater than the possible
1398 gain in rare cases. */
1399
1400static rtx_insn *
1401redundant_insn (rtx insn, rtx_insn *target, const vec<rtx_insn *> &delay_list)
1402{
1403 rtx target_main = target;
1404 rtx ipat = PATTERN (insn);
1405 rtx_insn *trial;
1406 rtx pat;
1407 struct resources needed, set;
1408 int i;
1409 unsigned insns_to_search;
1410
1411 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1412 are allowed to not actually assign to such a register. */
1413 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1414 return 0;
1415
1416 /* Scan backwards looking for a match. */
1417 for (trial = PREV_INSN (insn: target),
1418 insns_to_search = param_max_delay_slot_insn_search;
1419 trial && insns_to_search > 0;
1420 trial = PREV_INSN (insn: trial))
1421 {
1422 /* (use (insn))s can come immediately after a barrier if the
1423 label that used to precede them has been deleted as dead.
1424 See delete_related_insns. */
1425 if (LABEL_P (trial) || BARRIER_P (trial))
1426 return 0;
1427
1428 if (!INSN_P (trial))
1429 continue;
1430 --insns_to_search;
1431
1432 pat = PATTERN (insn: trial);
1433 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1434 continue;
1435
1436 if (GET_CODE (trial) == DEBUG_INSN)
1437 continue;
1438
1439 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: pat))
1440 {
1441 /* Stop for a CALL and its delay slots because it is difficult to
1442 track its resource needs correctly. */
1443 if (CALL_P (seq->element (0)))
1444 return 0;
1445
1446 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1447 slots because it is difficult to track its resource needs
1448 correctly. */
1449
1450 if (INSN_SETS_ARE_DELAYED (seq->insn (0)))
1451 return 0;
1452
1453 if (INSN_REFERENCES_ARE_DELAYED (seq->insn (0)))
1454 return 0;
1455
1456 /* See if any of the insns in the delay slot match, updating
1457 resource requirements as we go. */
1458 for (i = seq->len () - 1; i > 0; i--)
1459 if (GET_CODE (seq->element (i)) == GET_CODE (insn)
1460 && rtx_equal_p (PATTERN (insn: seq->element (index: i)), ipat)
1461 && ! find_reg_note (seq->element (index: i), REG_UNUSED, NULL_RTX))
1462 break;
1463
1464 /* If found a match, exit this loop early. */
1465 if (i > 0)
1466 break;
1467 }
1468
1469 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1470 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1471 break;
1472 }
1473
1474 /* If we didn't find an insn that matches, return 0. */
1475 if (trial == 0)
1476 return 0;
1477
1478 /* See what resources this insn sets and needs. If they overlap, it
1479 can't be redundant. */
1480
1481 CLEAR_RESOURCE (&needed);
1482 CLEAR_RESOURCE (&set);
1483 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1484 mark_referenced_resources (insn, &needed, true);
1485
1486 /* If TARGET is a SEQUENCE, get the main insn. */
1487 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1488 target_main = XVECEXP (PATTERN (target), 0, 0);
1489
1490 if (resource_conflicts_p (res1: &needed, res2: &set)
1491 /* The insn requiring the delay may not set anything needed or set by
1492 INSN. */
1493 || insn_sets_resource_p (insn: target_main, res: &needed, include_delayed_effects: true)
1494 || insn_sets_resource_p (insn: target_main, res: &set, include_delayed_effects: true))
1495 return 0;
1496
1497 /* Insns we pass may not set either NEEDED or SET, so merge them for
1498 simpler tests. */
1499 needed.memory |= set.memory;
1500 needed.regs |= set.regs;
1501
1502 /* This insn isn't redundant if it conflicts with an insn that either is
1503 or will be in a delay slot of TARGET. */
1504
1505 unsigned int j;
1506 rtx_insn *temp;
1507 FOR_EACH_VEC_ELT (delay_list, j, temp)
1508 if (insn_sets_resource_p (insn: temp, res: &needed, include_delayed_effects: true))
1509 return 0;
1510
1511 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1512 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1513 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), res: &needed,
1514 include_delayed_effects: true))
1515 return 0;
1516
1517 /* Scan backwards until we reach a label or an insn that uses something
1518 INSN sets or sets something insn uses or sets. */
1519
1520 for (trial = PREV_INSN (insn: target),
1521 insns_to_search = param_max_delay_slot_insn_search;
1522 trial && !LABEL_P (trial) && insns_to_search > 0;
1523 trial = PREV_INSN (insn: trial))
1524 {
1525 if (!INSN_P (trial))
1526 continue;
1527 --insns_to_search;
1528
1529 pat = PATTERN (insn: trial);
1530 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1531 continue;
1532
1533 if (GET_CODE (trial) == DEBUG_INSN)
1534 continue;
1535
1536 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: pat))
1537 {
1538 bool annul_p = false;
1539 rtx_insn *control = seq->insn (index: 0);
1540
1541 /* If this is a CALL_INSN and its delay slots, it is hard to track
1542 the resource needs properly, so give up. */
1543 if (CALL_P (control))
1544 return 0;
1545
1546 /* If this is an INSN or JUMP_INSN with delayed effects, it
1547 is hard to track the resource needs properly, so give up. */
1548
1549 if (INSN_SETS_ARE_DELAYED (control))
1550 return 0;
1551
1552 if (INSN_REFERENCES_ARE_DELAYED (control))
1553 return 0;
1554
1555 if (JUMP_P (control))
1556 annul_p = INSN_ANNULLED_BRANCH_P (control);
1557
1558 /* See if any of the insns in the delay slot match, updating
1559 resource requirements as we go. */
1560 for (i = seq->len () - 1; i > 0; i--)
1561 {
1562 rtx_insn *candidate = seq->insn (index: i);
1563
1564 /* If an insn will be annulled if the branch is false, it isn't
1565 considered as a possible duplicate insn. */
1566 if (rtx_equal_p (PATTERN (insn: candidate), ipat)
1567 && ! (annul_p && INSN_FROM_TARGET_P (candidate)))
1568 {
1569 /* Show that this insn will be used in the sequel. */
1570 INSN_FROM_TARGET_P (candidate) = 0;
1571 return candidate;
1572 }
1573
1574 /* Unless this is an annulled insn from the target of a branch,
1575 we must stop if it sets anything needed or set by INSN. */
1576 if ((!annul_p || !INSN_FROM_TARGET_P (candidate))
1577 && insn_sets_resource_p (insn: candidate, res: &needed, include_delayed_effects: true))
1578 return 0;
1579 }
1580
1581 /* If the insn requiring the delay slot conflicts with INSN, we
1582 must stop. */
1583 if (insn_sets_resource_p (insn: control, res: &needed, include_delayed_effects: true))
1584 return 0;
1585 }
1586 else
1587 {
1588 /* See if TRIAL is the same as INSN. */
1589 pat = PATTERN (insn: trial);
1590 if (rtx_equal_p (pat, ipat))
1591 return trial;
1592
1593 /* Can't go any further if TRIAL conflicts with INSN. */
1594 if (insn_sets_resource_p (insn: trial, res: &needed, include_delayed_effects: true))
1595 return 0;
1596 }
1597 }
1598
1599 return 0;
1600}
1601
1602/* Return true if THREAD can only be executed in one way. If LABEL is nonzero,
1603 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1604 is true, we are allowed to fall into this thread; otherwise, we are not.
1605
1606 If LABEL is used more than one or we pass a label other than LABEL before
1607 finding an active insn, we do not own this thread. */
1608
1609static bool
1610own_thread_p (rtx thread, rtx label, bool allow_fallthrough)
1611{
1612 rtx_insn *active_insn;
1613 rtx_insn *insn;
1614
1615 /* We don't own the function end. */
1616 if (thread == 0 || ANY_RETURN_P (thread))
1617 return false;
1618
1619 /* We have a non-NULL insn. */
1620 rtx_insn *thread_insn = as_a <rtx_insn *> (p: thread);
1621
1622 /* Get the first active insn, or THREAD_INSN, if it is an active insn. */
1623 active_insn = next_active_insn (PREV_INSN (insn: thread_insn));
1624
1625 for (insn = thread_insn; insn != active_insn; insn = NEXT_INSN (insn))
1626 if (LABEL_P (insn)
1627 && (insn != label || LABEL_NUSES (insn) != 1))
1628 return false;
1629
1630 if (allow_fallthrough)
1631 return true;
1632
1633 /* Ensure that we reach a BARRIER before any insn or label. */
1634 for (insn = prev_nonnote_insn (thread_insn);
1635 insn == 0 || !BARRIER_P (insn);
1636 insn = prev_nonnote_insn (insn))
1637 if (insn == 0
1638 || LABEL_P (insn)
1639 || (NONJUMP_INSN_P (insn)
1640 && GET_CODE (PATTERN (insn)) != USE
1641 && GET_CODE (PATTERN (insn)) != CLOBBER))
1642 return false;
1643
1644 return true;
1645}
1646
1647/* Called when INSN is being moved from a location near the target of a jump.
1648 We leave a marker of the form (use (INSN)) immediately in front of WHERE
1649 for mark_target_live_regs. These markers will be deleted at the end.
1650
1651 We used to try to update the live status of registers if WHERE is at
1652 the start of a basic block, but that can't work since we may remove a
1653 BARRIER in relax_delay_slots. */
1654
1655static void
1656update_block (rtx_insn *insn, rtx_insn *where)
1657{
1658 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1659
1660 /* INSN might be making a value live in a block where it didn't use to
1661 be. So recompute liveness information for this block. */
1662 incr_ticks_for_insn (insn);
1663}
1664
1665/* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1666 the basic block containing the jump. */
1667
1668static bool
1669reorg_redirect_jump (rtx_jump_insn *jump, rtx nlabel)
1670{
1671 incr_ticks_for_insn (jump);
1672 return redirect_jump (jump, nlabel, 1);
1673}
1674
1675/* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1676 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1677 that reference values used in INSN. If we find one, then we move the
1678 REG_DEAD note to INSN.
1679
1680 This is needed to handle the case where a later insn (after INSN) has a
1681 REG_DEAD note for a register used by INSN, and this later insn subsequently
1682 gets moved before a CODE_LABEL because it is a redundant insn. In this
1683 case, mark_target_live_regs may be confused into thinking the register
1684 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1685
1686static void
1687update_reg_dead_notes (rtx_insn *insn, rtx_insn *delayed_insn)
1688{
1689 rtx link, next;
1690 rtx_insn *p;
1691
1692 for (p = next_nonnote_insn (insn); p != delayed_insn;
1693 p = next_nonnote_insn (p))
1694 for (link = REG_NOTES (p); link; link = next)
1695 {
1696 next = XEXP (link, 1);
1697
1698 if (REG_NOTE_KIND (link) != REG_DEAD
1699 || !REG_P (XEXP (link, 0)))
1700 continue;
1701
1702 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1703 {
1704 /* Move the REG_DEAD note from P to INSN. */
1705 remove_note (p, link);
1706 XEXP (link, 1) = REG_NOTES (insn);
1707 REG_NOTES (insn) = link;
1708 }
1709 }
1710}
1711
1712/* Called when an insn redundant with start_insn is deleted. If there
1713 is a REG_DEAD note for the target of start_insn between start_insn
1714 and stop_insn, then the REG_DEAD note needs to be deleted since the
1715 value no longer dies there.
1716
1717 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1718 confused into thinking the register is dead. */
1719
1720static void
1721fix_reg_dead_note (rtx_insn *start_insn, rtx stop_insn)
1722{
1723 rtx link, next;
1724 rtx_insn *p;
1725
1726 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1727 p = next_nonnote_insn (p))
1728 for (link = REG_NOTES (p); link; link = next)
1729 {
1730 next = XEXP (link, 1);
1731
1732 if (REG_NOTE_KIND (link) != REG_DEAD
1733 || !REG_P (XEXP (link, 0)))
1734 continue;
1735
1736 if (reg_set_p (XEXP (link, 0), PATTERN (insn: start_insn)))
1737 {
1738 remove_note (p, link);
1739 return;
1740 }
1741 }
1742}
1743
1744/* Delete any REG_UNUSED notes that exist on INSN but not on OTHER_INSN.
1745
1746 This handles the case of udivmodXi4 instructions which optimize their
1747 output depending on whether any REG_UNUSED notes are present. We must
1748 make sure that INSN calculates as many results as OTHER_INSN does. */
1749
1750static void
1751update_reg_unused_notes (rtx_insn *insn, rtx other_insn)
1752{
1753 rtx link, next;
1754
1755 for (link = REG_NOTES (insn); link; link = next)
1756 {
1757 next = XEXP (link, 1);
1758
1759 if (REG_NOTE_KIND (link) != REG_UNUSED
1760 || !REG_P (XEXP (link, 0)))
1761 continue;
1762
1763 if (!find_regno_note (other_insn, REG_UNUSED, REGNO (XEXP (link, 0))))
1764 remove_note (insn, link);
1765 }
1766}
1767
1768static vec <rtx> sibling_labels;
1769
1770/* Return the label before INSN, or put a new label there. If SIBLING is
1771 non-zero, it is another label associated with the new label (if any),
1772 typically the former target of the jump that will be redirected to
1773 the new label. */
1774
1775static rtx_insn *
1776get_label_before (rtx_insn *insn, rtx sibling)
1777{
1778 rtx_insn *label;
1779
1780 /* Find an existing label at this point
1781 or make a new one if there is none. */
1782 label = prev_nonnote_insn (insn);
1783
1784 if (label == 0 || !LABEL_P (label))
1785 {
1786 rtx_insn *prev = PREV_INSN (insn);
1787
1788 label = gen_label_rtx ();
1789 emit_label_after (label, prev);
1790 LABEL_NUSES (label) = 0;
1791 if (sibling)
1792 {
1793 sibling_labels.safe_push (obj: label);
1794 sibling_labels.safe_push (obj: sibling);
1795 }
1796 }
1797 return label;
1798}
1799
1800/* Scan a function looking for insns that need a delay slot and find insns to
1801 put into the delay slot.
1802
1803 NON_JUMPS_P is true if we are to only try to fill non-jump insns (such
1804 as calls). We do these first since we don't want jump insns (that are
1805 easier to fill) to get the only insns that could be used for non-jump insns.
1806 When it is zero, only try to fill JUMP_INSNs.
1807
1808 When slots are filled in this manner, the insns (including the
1809 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
1810 it is possible to tell whether a delay slot has really been filled
1811 or not. `final' knows how to deal with this, by communicating
1812 through FINAL_SEQUENCE. */
1813
1814static void
1815fill_simple_delay_slots (bool non_jumps_p)
1816{
1817 rtx_insn *insn, *trial, *next_trial;
1818 rtx pat;
1819 int i;
1820 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
1821 struct resources needed, set;
1822 int slots_to_fill, slots_filled;
1823 auto_vec<rtx_insn *, 5> delay_list;
1824
1825 for (i = 0; i < num_unfilled_slots; i++)
1826 {
1827 int flags;
1828 /* Get the next insn to fill. If it has already had any slots assigned,
1829 we can't do anything with it. Maybe we'll improve this later. */
1830
1831 insn = unfilled_slots_base[i];
1832 if (insn == 0
1833 || insn->deleted ()
1834 || (NONJUMP_INSN_P (insn)
1835 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1836 || (JUMP_P (insn) && non_jumps_p)
1837 || (!JUMP_P (insn) && ! non_jumps_p))
1838 continue;
1839
1840 /* It may have been that this insn used to need delay slots, but
1841 now doesn't; ignore in that case. This can happen, for example,
1842 on the HP PA RISC, where the number of delay slots depends on
1843 what insns are nearby. */
1844 slots_to_fill = num_delay_slots (insn);
1845
1846 /* Some machine description have defined instructions to have
1847 delay slots only in certain circumstances which may depend on
1848 nearby insns (which change due to reorg's actions).
1849
1850 For example, the PA port normally has delay slots for unconditional
1851 jumps.
1852
1853 However, the PA port claims such jumps do not have a delay slot
1854 if they are immediate successors of certain CALL_INSNs. This
1855 allows the port to favor filling the delay slot of the call with
1856 the unconditional jump. */
1857 if (slots_to_fill == 0)
1858 continue;
1859
1860 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
1861 says how many. After initialization, first try optimizing
1862
1863 call _foo call _foo
1864 nop add %o7,.-L1,%o7
1865 b,a L1
1866 nop
1867
1868 If this case applies, the delay slot of the call is filled with
1869 the unconditional jump. This is done first to avoid having the
1870 delay slot of the call filled in the backward scan. Also, since
1871 the unconditional jump is likely to also have a delay slot, that
1872 insn must exist when it is subsequently scanned.
1873
1874 This is tried on each insn with delay slots as some machines
1875 have insns which perform calls, but are not represented as
1876 CALL_INSNs. */
1877
1878 slots_filled = 0;
1879 delay_list.truncate (size: 0);
1880
1881 if (JUMP_P (insn))
1882 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1883 else
1884 flags = get_jump_flags (insn, NULL_RTX);
1885
1886 if ((trial = next_active_insn (insn))
1887 && JUMP_P (trial)
1888 && simplejump_p (trial)
1889 && eligible_for_delay (insn, slots_filled, trial, flags)
1890 && no_labels_between_p (insn, trial)
1891 && ! can_throw_internal (trial))
1892 {
1893 rtx_insn **tmp;
1894 slots_filled++;
1895 add_to_delay_list (insn: trial, delay_list: &delay_list);
1896
1897 /* TRIAL may have had its delay slot filled, then unfilled. When
1898 the delay slot is unfilled, TRIAL is placed back on the unfilled
1899 slots obstack. Unfortunately, it is placed on the end of the
1900 obstack, not in its original location. Therefore, we must search
1901 from entry i + 1 to the end of the unfilled slots obstack to
1902 try and find TRIAL. */
1903 tmp = &unfilled_slots_base[i + 1];
1904 while (*tmp != trial && tmp != unfilled_slots_next)
1905 tmp++;
1906
1907 /* Remove the unconditional jump from consideration for delay slot
1908 filling and unthread it. */
1909 if (*tmp == trial)
1910 *tmp = 0;
1911 {
1912 rtx_insn *next = NEXT_INSN (insn: trial);
1913 rtx_insn *prev = PREV_INSN (insn: trial);
1914 if (prev)
1915 SET_NEXT_INSN (prev) = next;
1916 if (next)
1917 SET_PREV_INSN (next) = prev;
1918 }
1919 }
1920
1921 /* Now, scan backwards from the insn to search for a potential
1922 delay-slot candidate. Stop searching when a label or jump is hit.
1923
1924 For each candidate, if it is to go into the delay slot (moved
1925 forward in execution sequence), it must not need or set any resources
1926 that were set by later insns and must not set any resources that
1927 are needed for those insns.
1928
1929 The delay slot insn itself sets resources unless it is a call
1930 (in which case the called routine, not the insn itself, is doing
1931 the setting). */
1932
1933 if (slots_filled < slots_to_fill)
1934 {
1935 /* If the flags register is dead after the insn, then we want to be
1936 able to accept a candidate that clobbers it. For this purpose,
1937 we need to filter the flags register during life analysis, so
1938 that it doesn't create RAW and WAW dependencies, while still
1939 creating the necessary WAR dependencies. */
1940 bool filter_flags
1941 = (slots_to_fill == 1
1942 && targetm.flags_regnum != INVALID_REGNUM
1943 && find_regno_note (insn, REG_DEAD, targetm.flags_regnum));
1944 struct resources fset;
1945 CLEAR_RESOURCE (&needed);
1946 CLEAR_RESOURCE (&set);
1947 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
1948 if (filter_flags)
1949 {
1950 CLEAR_RESOURCE (&fset);
1951 mark_set_resources (insn, &fset, 0, MARK_SRC_DEST);
1952 }
1953 mark_referenced_resources (insn, &needed, false);
1954
1955 for (trial = prev_nonnote_insn (insn); ! stop_search_p (insn: trial, labels_p: true);
1956 trial = next_trial)
1957 {
1958 next_trial = prev_nonnote_insn (trial);
1959
1960 /* This must be an INSN or CALL_INSN. */
1961 pat = PATTERN (insn: trial);
1962
1963 /* Stand-alone USE and CLOBBER are just for flow. */
1964 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1965 continue;
1966
1967 /* And DEBUG_INSNs never go into delay slots. */
1968 if (GET_CODE (trial) == DEBUG_INSN)
1969 continue;
1970
1971 /* Check for resource conflict first, to avoid unnecessary
1972 splitting. */
1973 if (! insn_references_resource_p (insn: trial, res: &set, include_delayed_effects: true)
1974 && ! insn_sets_resource_p (insn: trial,
1975 res: filter_flags ? &fset : &set,
1976 include_delayed_effects: true)
1977 && ! insn_sets_resource_p (insn: trial, res: &needed, include_delayed_effects: true)
1978 && ! can_throw_internal (trial))
1979 {
1980 trial = try_split (pat, trial, 1);
1981 next_trial = prev_nonnote_insn (trial);
1982 if (eligible_for_delay (insn, slots_filled, trial, flags))
1983 {
1984 /* In this case, we are searching backward, so if we
1985 find insns to put on the delay list, we want
1986 to put them at the head, rather than the
1987 tail, of the list. */
1988
1989 update_reg_dead_notes (insn: trial, delayed_insn: insn);
1990 delay_list.safe_insert (ix: 0, obj: trial);
1991 update_block (insn: trial, where: trial);
1992 delete_related_insns (trial);
1993 if (slots_to_fill == ++slots_filled)
1994 break;
1995 continue;
1996 }
1997 }
1998
1999 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2000 if (filter_flags)
2001 {
2002 mark_set_resources (trial, &fset, 0, MARK_SRC_DEST_CALL);
2003 /* If the flags register is set, then it doesn't create RAW
2004 dependencies any longer and it also doesn't create WAW
2005 dependencies since it's dead after the original insn. */
2006 if (TEST_HARD_REG_BIT (set: fset.regs, bit: targetm.flags_regnum))
2007 {
2008 CLEAR_HARD_REG_BIT (set&: needed.regs, bit: targetm.flags_regnum);
2009 CLEAR_HARD_REG_BIT (set&: fset.regs, bit: targetm.flags_regnum);
2010 }
2011 }
2012 mark_referenced_resources (trial, &needed, true);
2013 }
2014 }
2015
2016 /* If all needed slots haven't been filled, we come here. */
2017
2018 /* Try to optimize case of jumping around a single insn. */
2019 if ((ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
2020 && slots_filled != slots_to_fill
2021 && delay_list.is_empty ()
2022 && JUMP_P (insn)
2023 && (condjump_p (insn) || condjump_in_parallel_p (insn))
2024 && !ANY_RETURN_P (JUMP_LABEL (insn)))
2025 {
2026 optimize_skip (insn: as_a <rtx_jump_insn *> (p: insn), delay_list: &delay_list);
2027 if (!delay_list.is_empty ())
2028 slots_filled += 1;
2029 }
2030
2031 /* Try to get insns from beyond the insn needing the delay slot.
2032 These insns can neither set or reference resources set in insns being
2033 skipped, cannot set resources in the insn being skipped, and, if this
2034 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2035 call might not return).
2036
2037 There used to be code which continued past the target label if
2038 we saw all uses of the target label. This code did not work,
2039 because it failed to account for some instructions which were
2040 both annulled and marked as from the target. This can happen as a
2041 result of optimize_skip. Since this code was redundant with
2042 fill_eager_delay_slots anyways, it was just deleted. */
2043
2044 if (slots_filled != slots_to_fill
2045 /* If this instruction could throw an exception which is
2046 caught in the same function, then it's not safe to fill
2047 the delay slot with an instruction from beyond this
2048 point. For example, consider:
2049
2050 int i = 2;
2051
2052 try {
2053 f();
2054 i = 3;
2055 } catch (...) {}
2056
2057 return i;
2058
2059 Even though `i' is a local variable, we must be sure not
2060 to put `i = 3' in the delay slot if `f' might throw an
2061 exception.
2062
2063 Presumably, we should also check to see if we could get
2064 back to this function via `setjmp'. */
2065 && ! can_throw_internal (insn)
2066 && !JUMP_P (insn))
2067 {
2068 bool maybe_never = false;
2069 rtx pat, trial_delay;
2070
2071 CLEAR_RESOURCE (&needed);
2072 CLEAR_RESOURCE (&set);
2073 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2074 mark_referenced_resources (insn, &needed, true);
2075
2076 if (CALL_P (insn))
2077 maybe_never = true;
2078
2079 for (trial = next_nonnote_insn (insn); !stop_search_p (insn: trial, labels_p: true);
2080 trial = next_trial)
2081 {
2082 next_trial = next_nonnote_insn (trial);
2083
2084 /* This must be an INSN or CALL_INSN. */
2085 pat = PATTERN (insn: trial);
2086
2087 /* Stand-alone USE and CLOBBER are just for flow. */
2088 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2089 continue;
2090
2091 /* And DEBUG_INSNs do not go in delay slots. */
2092 if (GET_CODE (trial) == DEBUG_INSN)
2093 continue;
2094
2095 /* If this already has filled delay slots, get the insn needing
2096 the delay slots. */
2097 if (GET_CODE (pat) == SEQUENCE)
2098 trial_delay = XVECEXP (pat, 0, 0);
2099 else
2100 trial_delay = trial;
2101
2102 /* Stop our search when seeing a jump. */
2103 if (JUMP_P (trial_delay))
2104 break;
2105
2106 /* See if we have a resource problem before we try to split. */
2107 if (GET_CODE (pat) != SEQUENCE
2108 && ! insn_references_resource_p (insn: trial, res: &set, include_delayed_effects: true)
2109 && ! insn_sets_resource_p (insn: trial, res: &set, include_delayed_effects: true)
2110 && ! insn_sets_resource_p (insn: trial, res: &needed, include_delayed_effects: true)
2111 && ! (maybe_never && may_trap_or_fault_p (pat))
2112 && (trial = try_split (pat, trial, 0))
2113 && eligible_for_delay (insn, slots_filled, trial, flags)
2114 && ! can_throw_internal (trial))
2115 {
2116 next_trial = next_nonnote_insn (trial);
2117 add_to_delay_list (insn: trial, delay_list: &delay_list);
2118
2119 delete_related_insns (trial);
2120 if (slots_to_fill == ++slots_filled)
2121 break;
2122 continue;
2123 }
2124
2125 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2126 mark_referenced_resources (trial, &needed, true);
2127
2128 /* Ensure we don't put insns between the setting of cc and the
2129 comparison by moving a setting of cc into an earlier delay
2130 slot since these insns could clobber the condition code. */
2131 set.cc = 1;
2132
2133 /* If this is a call, we might not get here. */
2134 if (CALL_P (trial_delay))
2135 maybe_never = true;
2136 }
2137
2138 /* If there are slots left to fill and our search was stopped by an
2139 unconditional branch, try the insn at the branch target. We can
2140 redirect the branch if it works.
2141
2142 Don't do this if the insn at the branch target is a branch. */
2143 if (slots_to_fill != slots_filled
2144 && trial
2145 && jump_to_label_p (trial)
2146 && simplejump_p (trial)
2147 && (next_trial = next_active_insn (JUMP_LABEL_AS_INSN (insn: trial))) != 0
2148 && ! (NONJUMP_INSN_P (next_trial)
2149 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2150 && !JUMP_P (next_trial)
2151 && ! insn_references_resource_p (insn: next_trial, res: &set, include_delayed_effects: true)
2152 && ! insn_sets_resource_p (insn: next_trial, res: &set, include_delayed_effects: true)
2153 && ! insn_sets_resource_p (insn: next_trial, res: &needed, include_delayed_effects: true)
2154 && ! (maybe_never && may_trap_or_fault_p (PATTERN (insn: next_trial)))
2155 && (next_trial = try_split (PATTERN (insn: next_trial), next_trial, 0))
2156 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2157 && ! can_throw_internal (trial))
2158 {
2159 /* See comment in relax_delay_slots about necessity of using
2160 next_real_nondebug_insn here. */
2161 rtx_insn *new_label = next_real_nondebug_insn (next_trial);
2162
2163 if (new_label != 0)
2164 new_label = get_label_before (insn: new_label, JUMP_LABEL (trial));
2165 else
2166 new_label = find_end_label (kind: simple_return_rtx);
2167
2168 if (new_label)
2169 {
2170 add_to_delay_list (insn: copy_delay_slot_insn (next_trial),
2171 delay_list: &delay_list);
2172 slots_filled++;
2173 reorg_redirect_jump (jump: as_a <rtx_jump_insn *> (p: trial),
2174 nlabel: new_label);
2175 }
2176 }
2177 }
2178
2179 /* If this is an unconditional jump, then try to get insns from the
2180 target of the jump. */
2181 rtx_jump_insn *jump_insn;
2182 if ((jump_insn = dyn_cast <rtx_jump_insn *> (p: insn))
2183 && simplejump_p (jump_insn)
2184 && slots_filled != slots_to_fill)
2185 fill_slots_from_thread (jump_insn, const_true_rtx,
2186 next_active_insn (JUMP_LABEL_AS_INSN (insn)),
2187 NULL, 1, 1, own_thread_p (JUMP_LABEL (insn),
2188 JUMP_LABEL (insn), allow_fallthrough: false),
2189 slots_to_fill, &slots_filled, &delay_list);
2190
2191 if (!delay_list.is_empty ())
2192 unfilled_slots_base[i]
2193 = emit_delay_sequence (insn, list: delay_list, length: slots_filled);
2194
2195 if (slots_to_fill == slots_filled)
2196 unfilled_slots_base[i] = 0;
2197
2198 note_delay_statistics (slots_filled, index: 0);
2199 }
2200}
2201
2202/* Follow any unconditional jump at LABEL, for the purpose of redirecting JUMP;
2203 return the ultimate label reached by any such chain of jumps.
2204 Return a suitable return rtx if the chain ultimately leads to a
2205 return instruction.
2206 If LABEL is not followed by a jump, return LABEL.
2207 If the chain loops or we can't find end, return LABEL,
2208 since that tells caller to avoid changing the insn.
2209 If the returned label is obtained by following a crossing jump,
2210 set *CROSSING to true, otherwise set it to false. */
2211
2212static rtx
2213follow_jumps (rtx label, rtx_insn *jump, bool *crossing)
2214{
2215 rtx_insn *insn;
2216 rtx_insn *next;
2217 int depth;
2218
2219 *crossing = false;
2220 if (ANY_RETURN_P (label))
2221 return label;
2222
2223 rtx_insn *value = as_a <rtx_insn *> (p: label);
2224
2225 for (depth = 0;
2226 (depth < 10
2227 && (insn = next_active_insn (value)) != 0
2228 && JUMP_P (insn)
2229 && JUMP_LABEL (insn) != NULL_RTX
2230 && ((any_uncondjump_p (insn) && onlyjump_p (insn))
2231 || ANY_RETURN_P (PATTERN (insn)))
2232 && (next = NEXT_INSN (insn))
2233 && BARRIER_P (next));
2234 depth++)
2235 {
2236 rtx this_label_or_return = JUMP_LABEL (insn);
2237
2238 /* If we have found a cycle, make the insn jump to itself. */
2239 if (this_label_or_return == label)
2240 return label;
2241
2242 /* Cannot follow returns and cannot look through tablejumps. */
2243 if (ANY_RETURN_P (this_label_or_return))
2244 return this_label_or_return;
2245
2246 rtx_insn *this_label = as_a <rtx_insn *> (p: this_label_or_return);
2247 if (NEXT_INSN (insn: this_label)
2248 && JUMP_TABLE_DATA_P (NEXT_INSN (this_label)))
2249 break;
2250
2251 if (!targetm.can_follow_jump (jump, insn))
2252 break;
2253 if (!*crossing)
2254 *crossing = CROSSING_JUMP_P (jump);
2255 value = this_label;
2256 }
2257 if (depth == 10)
2258 return label;
2259 return value;
2260}
2261
2262/* Try to find insns to place in delay slots.
2263
2264 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2265 or is an unconditional branch if CONDITION is const_true_rtx.
2266 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2267
2268 THREAD is a flow-of-control, either the insns to be executed if the
2269 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2270
2271 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2272 to see if any potential delay slot insns set things needed there.
2273
2274 LIKELY is true if it is extremely likely that the branch will be
2275 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2276 end of a loop back up to the top.
2277
2278 OWN_THREAD is true if we are the only user of the thread, i.e. it is
2279 the target of the jump when we are the only jump going there.
2280
2281 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2282 case, we can only take insns from the head of the thread for our delay
2283 slot. We then adjust the jump to point after the insns we have taken. */
2284
2285static void
2286fill_slots_from_thread (rtx_jump_insn *insn, rtx condition,
2287 rtx thread_or_return, rtx opposite_thread, bool likely,
2288 bool thread_if_true, bool own_thread, int slots_to_fill,
2289 int *pslots_filled, vec<rtx_insn *> *delay_list)
2290{
2291 rtx new_thread;
2292 struct resources opposite_needed, set, needed;
2293 rtx_insn *trial;
2294 bool lose = false;
2295 bool must_annul = false;
2296 int flags;
2297
2298 /* Validate our arguments. */
2299 gcc_assert (condition != const_true_rtx || thread_if_true);
2300 gcc_assert (own_thread || thread_if_true);
2301
2302 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2303
2304 /* If our thread is the end of subroutine, we can't get any delay
2305 insns from that. */
2306 if (thread_or_return == NULL_RTX || ANY_RETURN_P (thread_or_return))
2307 return;
2308
2309 rtx_insn *thread = as_a <rtx_insn *> (p: thread_or_return);
2310
2311 /* If this is an unconditional branch, nothing is needed at the
2312 opposite thread. Otherwise, compute what is needed there. */
2313 if (condition == const_true_rtx)
2314 CLEAR_RESOURCE (&opposite_needed);
2315 else
2316 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2317
2318 /* If the insn at THREAD can be split, do it here to avoid having to
2319 update THREAD and NEW_THREAD if it is done in the loop below. Also
2320 initialize NEW_THREAD. */
2321
2322 new_thread = thread = try_split (PATTERN (insn: thread), thread, 0);
2323
2324 /* Scan insns at THREAD. We are looking for an insn that can be removed
2325 from THREAD (it neither sets nor references resources that were set
2326 ahead of it and it doesn't set anything needs by the insns ahead of
2327 it) and that either can be placed in an annulling insn or aren't
2328 needed at OPPOSITE_THREAD. */
2329
2330 CLEAR_RESOURCE (&needed);
2331 CLEAR_RESOURCE (&set);
2332
2333 /* Handle the flags register specially, to be able to accept a
2334 candidate that clobbers it. See also fill_simple_delay_slots. */
2335 bool filter_flags
2336 = (slots_to_fill == 1
2337 && targetm.flags_regnum != INVALID_REGNUM
2338 && find_regno_note (insn, REG_DEAD, targetm.flags_regnum));
2339 struct resources fset;
2340 struct resources flags_res;
2341 if (filter_flags)
2342 {
2343 CLEAR_RESOURCE (&fset);
2344 CLEAR_RESOURCE (&flags_res);
2345 SET_HARD_REG_BIT (set&: flags_res.regs, bit: targetm.flags_regnum);
2346 }
2347
2348 /* If we do not own this thread, we must stop as soon as we find
2349 something that we can't put in a delay slot, since all we can do
2350 is branch into THREAD at a later point. Therefore, labels stop
2351 the search if this is not the `true' thread. */
2352
2353 for (trial = thread;
2354 ! stop_search_p (insn: trial, labels_p: ! thread_if_true) && (! lose || own_thread);
2355 trial = next_nonnote_insn (trial))
2356 {
2357 rtx pat, old_trial;
2358
2359 /* If we have passed a label, we no longer own this thread. */
2360 if (LABEL_P (trial))
2361 {
2362 own_thread = 0;
2363 continue;
2364 }
2365
2366 pat = PATTERN (insn: trial);
2367 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2368 continue;
2369
2370 if (GET_CODE (trial) == DEBUG_INSN)
2371 continue;
2372
2373 /* If TRIAL conflicts with the insns ahead of it, we lose. */
2374 if (! insn_references_resource_p (insn: trial, res: &set, include_delayed_effects: true)
2375 && ! insn_sets_resource_p (insn: trial, res: filter_flags ? &fset : &set, include_delayed_effects: true)
2376 && ! insn_sets_resource_p (insn: trial, res: &needed, include_delayed_effects: true)
2377 /* If we're handling sets to the flags register specially, we
2378 only allow an insn into a delay-slot, if it either:
2379 - doesn't set the flags register,
2380 - the "set" of the flags register isn't used (clobbered),
2381 - insns between the delay-slot insn and the trial-insn
2382 as accounted in "set", have not affected the flags register. */
2383 && (! filter_flags
2384 || ! insn_sets_resource_p (insn: trial, res: &flags_res, include_delayed_effects: true)
2385 || find_regno_note (trial, REG_UNUSED, targetm.flags_regnum)
2386 || ! TEST_HARD_REG_BIT (set: set.regs, bit: targetm.flags_regnum))
2387 && ! can_throw_internal (trial))
2388 {
2389 rtx_insn *prior_insn;
2390
2391 /* If TRIAL is redundant with some insn before INSN, we don't
2392 actually need to add it to the delay list; we can merely pretend
2393 we did. */
2394 if ((prior_insn = redundant_insn (insn: trial, target: insn, delay_list: *delay_list)))
2395 {
2396 fix_reg_dead_note (start_insn: prior_insn, stop_insn: insn);
2397 if (own_thread)
2398 {
2399 update_block (insn: trial, where: thread);
2400 if (trial == thread)
2401 {
2402 thread = next_active_insn (thread);
2403 if (new_thread == trial)
2404 new_thread = thread;
2405 }
2406
2407 delete_related_insns (trial);
2408 }
2409 else
2410 {
2411 update_reg_unused_notes (insn: prior_insn, other_insn: trial);
2412 new_thread = next_active_insn (trial);
2413 }
2414
2415 continue;
2416 }
2417
2418 /* There are two ways we can win: If TRIAL doesn't set anything
2419 needed at the opposite thread and can't trap, or if it can
2420 go into an annulled delay slot. But we want neither to copy
2421 nor to speculate frame-related insns. */
2422 if (!must_annul
2423 && ((condition == const_true_rtx
2424 && (own_thread || !RTX_FRAME_RELATED_P (trial)))
2425 || (! insn_sets_resource_p (insn: trial, res: &opposite_needed, include_delayed_effects: true)
2426 && ! may_trap_or_fault_p (pat)
2427 && ! RTX_FRAME_RELATED_P (trial))))
2428 {
2429 old_trial = trial;
2430 trial = try_split (pat, trial, 0);
2431 if (new_thread == old_trial)
2432 new_thread = trial;
2433 if (thread == old_trial)
2434 thread = trial;
2435 pat = PATTERN (insn: trial);
2436 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2437 goto winner;
2438 }
2439 else if (!RTX_FRAME_RELATED_P (trial)
2440 && ((ANNUL_IFTRUE_SLOTS && ! thread_if_true)
2441 || (ANNUL_IFFALSE_SLOTS && thread_if_true)))
2442 {
2443 old_trial = trial;
2444 trial = try_split (pat, trial, 0);
2445 if (new_thread == old_trial)
2446 new_thread = trial;
2447 if (thread == old_trial)
2448 thread = trial;
2449 pat = PATTERN (insn: trial);
2450 if ((must_annul || delay_list->is_empty ()) && (thread_if_true
2451 ? check_annul_list_true_false (annul_true_p: false, delay_list: *delay_list)
2452 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2453 : check_annul_list_true_false (annul_true_p: true, delay_list: *delay_list)
2454 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2455 {
2456 rtx_insn *temp;
2457
2458 must_annul = true;
2459 winner:
2460
2461 /* If we own this thread, delete the insn. If this is the
2462 destination of a branch, show that a basic block status
2463 may have been updated. In any case, mark the new
2464 starting point of this thread. */
2465 if (own_thread)
2466 {
2467 rtx note;
2468
2469 update_block (insn: trial, where: thread);
2470 if (trial == thread)
2471 {
2472 thread = next_active_insn (thread);
2473 if (new_thread == trial)
2474 new_thread = thread;
2475 }
2476
2477 /* We are moving this insn, not deleting it. We must
2478 temporarily increment the use count on any referenced
2479 label lest it be deleted by delete_related_insns. */
2480 for (note = REG_NOTES (trial);
2481 note != NULL_RTX;
2482 note = XEXP (note, 1))
2483 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2484 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2485 {
2486 /* REG_LABEL_OPERAND could be
2487 NOTE_INSN_DELETED_LABEL too. */
2488 if (LABEL_P (XEXP (note, 0)))
2489 LABEL_NUSES (XEXP (note, 0))++;
2490 else
2491 gcc_assert (REG_NOTE_KIND (note)
2492 == REG_LABEL_OPERAND);
2493 }
2494 if (jump_to_label_p (trial))
2495 LABEL_NUSES (JUMP_LABEL (trial))++;
2496
2497 delete_related_insns (trial);
2498
2499 for (note = REG_NOTES (trial);
2500 note != NULL_RTX;
2501 note = XEXP (note, 1))
2502 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2503 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2504 {
2505 /* REG_LABEL_OPERAND could be
2506 NOTE_INSN_DELETED_LABEL too. */
2507 if (LABEL_P (XEXP (note, 0)))
2508 LABEL_NUSES (XEXP (note, 0))--;
2509 else
2510 gcc_assert (REG_NOTE_KIND (note)
2511 == REG_LABEL_OPERAND);
2512 }
2513 if (jump_to_label_p (trial))
2514 LABEL_NUSES (JUMP_LABEL (trial))--;
2515 }
2516 else
2517 new_thread = next_active_insn (trial);
2518
2519 temp = own_thread ? trial : copy_delay_slot_insn (trial);
2520 if (thread_if_true)
2521 INSN_FROM_TARGET_P (temp) = 1;
2522
2523 add_to_delay_list (insn: temp, delay_list);
2524
2525 if (slots_to_fill == ++(*pslots_filled))
2526 {
2527 /* Even though we have filled all the slots, we
2528 may be branching to a location that has a
2529 redundant insn. Skip any if so. */
2530 while (new_thread && ! own_thread
2531 && ! insn_sets_resource_p (insn: new_thread, res: &set, include_delayed_effects: true)
2532 && ! insn_sets_resource_p (insn: new_thread, res: &needed,
2533 include_delayed_effects: true)
2534 && ! insn_references_resource_p (insn: new_thread,
2535 res: &set, include_delayed_effects: true)
2536 && (prior_insn
2537 = redundant_insn (insn: new_thread, target: insn,
2538 delay_list: *delay_list)))
2539 {
2540 /* We know we do not own the thread, so no need
2541 to call update_block and delete_insn. */
2542 fix_reg_dead_note (start_insn: prior_insn, stop_insn: insn);
2543 update_reg_unused_notes (insn: prior_insn, other_insn: new_thread);
2544 new_thread
2545 = next_active_insn (as_a<rtx_insn *> (p: new_thread));
2546 }
2547 break;
2548 }
2549
2550 continue;
2551 }
2552 }
2553 }
2554
2555 /* This insn can't go into a delay slot. */
2556 lose = true;
2557 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2558 mark_referenced_resources (trial, &needed, true);
2559 if (filter_flags)
2560 {
2561 mark_set_resources (trial, &fset, 0, MARK_SRC_DEST_CALL);
2562
2563 /* Groups of flags-register setters with users should not
2564 affect opportunities to move flags-register-setting insns
2565 (clobbers) into the delay-slot. */
2566 CLEAR_HARD_REG_BIT (set&: needed.regs, bit: targetm.flags_regnum);
2567 CLEAR_HARD_REG_BIT (set&: fset.regs, bit: targetm.flags_regnum);
2568 }
2569
2570 /* Ensure we don't put insns between the setting of cc and the comparison
2571 by moving a setting of cc into an earlier delay slot since these insns
2572 could clobber the condition code. */
2573 set.cc = 1;
2574
2575 /* If this insn is a register-register copy and the next insn has
2576 a use of our destination, change it to use our source. That way,
2577 it will become a candidate for our delay slot the next time
2578 through this loop. This case occurs commonly in loops that
2579 scan a list.
2580
2581 We could check for more complex cases than those tested below,
2582 but it doesn't seem worth it. It might also be a good idea to try
2583 to swap the two insns. That might do better.
2584
2585 We can't do this if the next insn modifies our destination, because
2586 that would make the replacement into the insn invalid. We also can't
2587 do this if it modifies our source, because it might be an earlyclobber
2588 operand. This latter test also prevents updating the contents of
2589 a PRE_INC. We also can't do this if there's overlap of source and
2590 destination. Overlap may happen for larger-than-register-size modes. */
2591
2592 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2593 && REG_P (SET_SRC (pat))
2594 && REG_P (SET_DEST (pat))
2595 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2596 {
2597 rtx_insn *next = next_nonnote_insn (trial);
2598
2599 if (next && NONJUMP_INSN_P (next)
2600 && GET_CODE (PATTERN (next)) != USE
2601 && ! reg_set_p (SET_DEST (pat), next)
2602 && ! reg_set_p (SET_SRC (pat), next)
2603 && reg_referenced_p (SET_DEST (pat), PATTERN (insn: next))
2604 && ! modified_in_p (SET_DEST (pat), next))
2605 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2606 }
2607 }
2608
2609 /* If we stopped on a branch insn that has delay slots, see if we can
2610 steal some of the insns in those slots. */
2611 if (trial && NONJUMP_INSN_P (trial)
2612 && GET_CODE (PATTERN (trial)) == SEQUENCE
2613 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2614 {
2615 rtx_sequence *sequence = as_a <rtx_sequence *> (p: PATTERN (insn: trial));
2616 /* If this is the `true' thread, we will want to follow the jump,
2617 so we can only do this if we have taken everything up to here. */
2618 if (thread_if_true && trial == new_thread)
2619 {
2620 steal_delay_list_from_target (insn, condition, seq: sequence,
2621 delay_list, sets: &set, needed: &needed,
2622 other_needed: &opposite_needed, slots_to_fill,
2623 pslots_filled, pannul_p: &must_annul,
2624 pnew_thread: &new_thread);
2625 /* If we owned the thread and are told that it branched
2626 elsewhere, make sure we own the thread at the new location. */
2627 if (own_thread && trial != new_thread)
2628 own_thread = own_thread_p (thread: new_thread, label: new_thread, allow_fallthrough: false);
2629 }
2630 else if (! thread_if_true)
2631 steal_delay_list_from_fallthrough (insn, condition, seq: sequence,
2632 delay_list, sets: &set, needed: &needed,
2633 other_needed: &opposite_needed, slots_to_fill,
2634 pslots_filled, pannul_p: &must_annul);
2635 }
2636
2637 /* If we haven't found anything for this delay slot and it is very
2638 likely that the branch will be taken, see if the insn at our target
2639 increments or decrements a register with an increment that does not
2640 depend on the destination register. If so, try to place the opposite
2641 arithmetic insn after the jump insn and put the arithmetic insn in the
2642 delay slot. If we can't do this, return. */
2643 if (delay_list->is_empty () && likely
2644 && new_thread
2645 && !ANY_RETURN_P (new_thread)
2646 && NONJUMP_INSN_P (new_thread)
2647 && !RTX_FRAME_RELATED_P (new_thread)
2648 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2649 && asm_noperands (PATTERN (insn: new_thread)) < 0)
2650 {
2651 rtx dest;
2652 rtx src;
2653
2654 /* We know "new_thread" is an insn due to NONJUMP_INSN_P (new_thread)
2655 above. */
2656 trial = as_a <rtx_insn *> (p: new_thread);
2657 rtx pat = PATTERN (insn: trial);
2658
2659 if (!NONJUMP_INSN_P (trial)
2660 || GET_CODE (pat) != SET
2661 || ! eligible_for_delay (insn, 0, trial, flags)
2662 || can_throw_internal (trial))
2663 return;
2664
2665 dest = SET_DEST (pat), src = SET_SRC (pat);
2666 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2667 && rtx_equal_p (XEXP (src, 0), dest)
2668 && (!FLOAT_MODE_P (GET_MODE (src))
2669 || flag_unsafe_math_optimizations)
2670 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2671 && ! side_effects_p (pat))
2672 {
2673 rtx other = XEXP (src, 1);
2674 rtx new_arith;
2675 rtx_insn *ninsn;
2676
2677 /* If this is a constant adjustment, use the same code with
2678 the negated constant. Otherwise, reverse the sense of the
2679 arithmetic. */
2680 if (CONST_INT_P (other))
2681 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2682 negate_rtx (GET_MODE (src), other));
2683 else
2684 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2685 GET_MODE (src), dest, other);
2686
2687 ninsn = emit_insn_after (gen_rtx_SET (dest, new_arith), insn);
2688
2689 if (recog_memoized (insn: ninsn) < 0
2690 || (extract_insn (ninsn),
2691 !constrain_operands (1, get_preferred_alternatives (ninsn))))
2692 {
2693 delete_related_insns (ninsn);
2694 return;
2695 }
2696
2697 if (own_thread)
2698 {
2699 update_block (insn: trial, where: thread);
2700 if (trial == thread)
2701 {
2702 thread = next_active_insn (thread);
2703 if (new_thread == trial)
2704 new_thread = thread;
2705 }
2706 delete_related_insns (trial);
2707 }
2708 else
2709 new_thread = next_active_insn (trial);
2710
2711 ninsn = own_thread ? trial : copy_delay_slot_insn (trial);
2712 if (thread_if_true)
2713 INSN_FROM_TARGET_P (ninsn) = 1;
2714
2715 add_to_delay_list (insn: ninsn, delay_list);
2716 (*pslots_filled)++;
2717 }
2718 }
2719
2720 if (!delay_list->is_empty () && must_annul)
2721 INSN_ANNULLED_BRANCH_P (insn) = 1;
2722
2723 /* If we are to branch into the middle of this thread, find an appropriate
2724 label or make a new one if none, and redirect INSN to it. If we hit the
2725 end of the function, use the end-of-function label. */
2726 if (new_thread != thread)
2727 {
2728 rtx label;
2729 bool crossing = false;
2730
2731 gcc_assert (thread_if_true);
2732
2733 if (new_thread
2734 && simplejump_or_return_p (insn: new_thread)
2735 && redirect_with_delay_list_safe_p (jump: insn,
2736 JUMP_LABEL (new_thread),
2737 delay_list: *delay_list))
2738 new_thread = follow_jumps (JUMP_LABEL (new_thread), jump: insn, crossing: &crossing);
2739
2740 if (!new_thread)
2741 label = find_end_label (kind: simple_return_rtx);
2742 else if (ANY_RETURN_P (new_thread))
2743 label = find_end_label (kind: new_thread);
2744 else if (LABEL_P (new_thread))
2745 label = new_thread;
2746 else
2747 label = get_label_before (insn: as_a <rtx_insn *> (p: new_thread),
2748 JUMP_LABEL (insn));
2749
2750 if (label)
2751 {
2752 reorg_redirect_jump (jump: insn, nlabel: label);
2753 if (crossing)
2754 CROSSING_JUMP_P (insn) = 1;
2755 }
2756 }
2757}
2758
2759/* Make another attempt to find insns to place in delay slots.
2760
2761 We previously looked for insns located in front of the delay insn
2762 and, for non-jump delay insns, located behind the delay insn.
2763
2764 Here only try to schedule jump insns and try to move insns from either
2765 the target or the following insns into the delay slot. If annulling is
2766 supported, we will be likely to do this. Otherwise, we can do this only
2767 if safe. */
2768
2769static void
2770fill_eager_delay_slots (void)
2771{
2772 rtx_insn *insn;
2773 int i;
2774 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2775
2776 for (i = 0; i < num_unfilled_slots; i++)
2777 {
2778 rtx condition;
2779 rtx target_label, insn_at_target;
2780 rtx_insn *fallthrough_insn;
2781 auto_vec<rtx_insn *, 5> delay_list;
2782 rtx_jump_insn *jump_insn;
2783 bool own_target;
2784 bool own_fallthrough;
2785 int prediction, slots_to_fill, slots_filled;
2786
2787 insn = unfilled_slots_base[i];
2788 if (insn == 0
2789 || insn->deleted ()
2790 || ! (jump_insn = dyn_cast <rtx_jump_insn *> (p: insn))
2791 || ! (condjump_p (jump_insn) || condjump_in_parallel_p (jump_insn)))
2792 continue;
2793
2794 slots_to_fill = num_delay_slots (jump_insn);
2795 /* Some machine description have defined instructions to have
2796 delay slots only in certain circumstances which may depend on
2797 nearby insns (which change due to reorg's actions).
2798
2799 For example, the PA port normally has delay slots for unconditional
2800 jumps.
2801
2802 However, the PA port claims such jumps do not have a delay slot
2803 if they are immediate successors of certain CALL_INSNs. This
2804 allows the port to favor filling the delay slot of the call with
2805 the unconditional jump. */
2806 if (slots_to_fill == 0)
2807 continue;
2808
2809 slots_filled = 0;
2810 target_label = JUMP_LABEL (jump_insn);
2811 condition = get_branch_condition (insn: jump_insn, target: target_label);
2812
2813 if (condition == 0)
2814 continue;
2815
2816 /* Get the next active fallthrough and target insns and see if we own
2817 them. Then see whether the branch is likely true. We don't need
2818 to do a lot of this for unconditional branches. */
2819
2820 insn_at_target = first_active_target_insn (insn: target_label);
2821 own_target = own_thread_p (thread: target_label, label: target_label, allow_fallthrough: false);
2822
2823 if (condition == const_true_rtx)
2824 {
2825 own_fallthrough = false;
2826 fallthrough_insn = 0;
2827 prediction = 2;
2828 }
2829 else
2830 {
2831 fallthrough_insn = next_active_insn (jump_insn);
2832 own_fallthrough = own_thread_p (thread: NEXT_INSN (insn: jump_insn),
2833 NULL_RTX, allow_fallthrough: true);
2834 prediction = mostly_true_jump (jump_insn);
2835 }
2836
2837 /* If this insn is expected to branch, first try to get insns from our
2838 target, then our fallthrough insns. If it is not expected to branch,
2839 try the other order. */
2840
2841 if (prediction > 0)
2842 {
2843 fill_slots_from_thread (insn: jump_insn, condition, thread_or_return: insn_at_target,
2844 opposite_thread: fallthrough_insn, likely: prediction == 2, thread_if_true: true,
2845 own_thread: own_target, slots_to_fill,
2846 pslots_filled: &slots_filled, delay_list: &delay_list);
2847
2848 if (delay_list.is_empty () && own_fallthrough)
2849 {
2850 /* Even though we didn't find anything for delay slots,
2851 we might have found a redundant insn which we deleted
2852 from the thread that was filled. So we have to recompute
2853 the next insn at the target. */
2854 target_label = JUMP_LABEL (jump_insn);
2855 insn_at_target = first_active_target_insn (insn: target_label);
2856
2857 fill_slots_from_thread (insn: jump_insn, condition, thread_or_return: fallthrough_insn,
2858 opposite_thread: insn_at_target, likely: false, thread_if_true: false,
2859 own_thread: own_fallthrough, slots_to_fill,
2860 pslots_filled: &slots_filled, delay_list: &delay_list);
2861 }
2862 }
2863 else
2864 {
2865 if (own_fallthrough)
2866 fill_slots_from_thread (insn: jump_insn, condition, thread_or_return: fallthrough_insn,
2867 opposite_thread: insn_at_target, likely: false, thread_if_true: false,
2868 own_thread: own_fallthrough, slots_to_fill,
2869 pslots_filled: &slots_filled, delay_list: &delay_list);
2870
2871 if (delay_list.is_empty ())
2872 fill_slots_from_thread (insn: jump_insn, condition, thread_or_return: insn_at_target,
2873 opposite_thread: next_active_insn (insn), likely: false, thread_if_true: true,
2874 own_thread: own_target, slots_to_fill,
2875 pslots_filled: &slots_filled, delay_list: &delay_list);
2876 }
2877
2878 if (!delay_list.is_empty ())
2879 unfilled_slots_base[i]
2880 = emit_delay_sequence (insn: jump_insn, list: delay_list, length: slots_filled);
2881
2882 if (slots_to_fill == slots_filled)
2883 unfilled_slots_base[i] = 0;
2884
2885 note_delay_statistics (slots_filled, index: 1);
2886 }
2887}
2888
2889static void delete_computation (rtx_insn *insn);
2890
2891/* Recursively delete prior insns that compute the value (used only by INSN
2892 which the caller is deleting) stored in the register mentioned by NOTE
2893 which is a REG_DEAD note associated with INSN. */
2894
2895static void
2896delete_prior_computation (rtx note, rtx_insn *insn)
2897{
2898 rtx_insn *our_prev;
2899 rtx reg = XEXP (note, 0);
2900
2901 for (our_prev = prev_nonnote_insn (insn);
2902 our_prev && (NONJUMP_INSN_P (our_prev)
2903 || CALL_P (our_prev));
2904 our_prev = prev_nonnote_insn (our_prev))
2905 {
2906 rtx pat = PATTERN (insn: our_prev);
2907
2908 /* If we reach a CALL which is not calling a const function
2909 or the callee pops the arguments, then give up. */
2910 if (CALL_P (our_prev)
2911 && (! RTL_CONST_CALL_P (our_prev)
2912 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2913 break;
2914
2915 /* If we reach a SEQUENCE, it is too complex to try to
2916 do anything with it, so give up. We can be run during
2917 and after reorg, so SEQUENCE rtl can legitimately show
2918 up here. */
2919 if (GET_CODE (pat) == SEQUENCE)
2920 break;
2921
2922 if (GET_CODE (pat) == USE
2923 && NONJUMP_INSN_P (XEXP (pat, 0)))
2924 /* reorg creates USEs that look like this. We leave them
2925 alone because reorg needs them for its own purposes. */
2926 break;
2927
2928 if (reg_set_p (reg, pat))
2929 {
2930 if (side_effects_p (pat) && !CALL_P (our_prev))
2931 break;
2932
2933 if (GET_CODE (pat) == PARALLEL)
2934 {
2935 /* If we find a SET of something else, we can't
2936 delete the insn. */
2937
2938 int i;
2939
2940 for (i = 0; i < XVECLEN (pat, 0); i++)
2941 {
2942 rtx part = XVECEXP (pat, 0, i);
2943
2944 if (GET_CODE (part) == SET
2945 && SET_DEST (part) != reg)
2946 break;
2947 }
2948
2949 if (i == XVECLEN (pat, 0))
2950 delete_computation (insn: our_prev);
2951 }
2952 else if (GET_CODE (pat) == SET
2953 && REG_P (SET_DEST (pat)))
2954 {
2955 int dest_regno = REGNO (SET_DEST (pat));
2956 int dest_endregno = END_REGNO (SET_DEST (pat));
2957 int regno = REGNO (reg);
2958 int endregno = END_REGNO (x: reg);
2959
2960 if (dest_regno >= regno
2961 && dest_endregno <= endregno)
2962 delete_computation (insn: our_prev);
2963
2964 /* We may have a multi-word hard register and some, but not
2965 all, of the words of the register are needed in subsequent
2966 insns. Write REG_UNUSED notes for those parts that were not
2967 needed. */
2968 else if (dest_regno <= regno
2969 && dest_endregno >= endregno)
2970 {
2971 int i;
2972
2973 add_reg_note (our_prev, REG_UNUSED, reg);
2974
2975 for (i = dest_regno; i < dest_endregno; i++)
2976 if (! find_regno_note (our_prev, REG_UNUSED, i))
2977 break;
2978
2979 if (i == dest_endregno)
2980 delete_computation (insn: our_prev);
2981 }
2982 }
2983
2984 break;
2985 }
2986
2987 /* If PAT references the register that dies here, it is an
2988 additional use. Hence any prior SET isn't dead. However, this
2989 insn becomes the new place for the REG_DEAD note. */
2990 if (reg_overlap_mentioned_p (reg, pat))
2991 {
2992 XEXP (note, 1) = REG_NOTES (our_prev);
2993 REG_NOTES (our_prev) = note;
2994 break;
2995 }
2996 }
2997}
2998
2999/* Delete INSN and recursively delete insns that compute values used only
3000 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3001
3002 Look at all our REG_DEAD notes. If a previous insn does nothing other
3003 than set a register that dies in this insn, we can delete that insn
3004 as well. */
3005
3006static void
3007delete_computation (rtx_insn *insn)
3008{
3009 rtx note, next;
3010
3011 for (note = REG_NOTES (insn); note; note = next)
3012 {
3013 next = XEXP (note, 1);
3014
3015 if (REG_NOTE_KIND (note) != REG_DEAD
3016 /* Verify that the REG_NOTE is legitimate. */
3017 || !REG_P (XEXP (note, 0)))
3018 continue;
3019
3020 delete_prior_computation (note, insn);
3021 }
3022
3023 delete_related_insns (insn);
3024}
3025
3026/* If all INSN does is set the pc, delete it,
3027 and delete the insn that set the condition codes for it
3028 if that's what the previous thing was. */
3029
3030static void
3031delete_jump (rtx_insn *insn)
3032{
3033 rtx set = single_set (insn);
3034
3035 if (set && GET_CODE (SET_DEST (set)) == PC)
3036 delete_computation (insn);
3037}
3038
3039static rtx_insn *
3040label_before_next_insn (rtx_insn *x, rtx scan_limit)
3041{
3042 rtx_insn *insn = next_active_insn (x);
3043 while (insn)
3044 {
3045 insn = PREV_INSN (insn);
3046 if (insn == scan_limit || insn == NULL_RTX)
3047 return NULL;
3048 if (LABEL_P (insn))
3049 break;
3050 }
3051 return insn;
3052}
3053
3054/* Return TRUE if there is a NOTE_INSN_SWITCH_TEXT_SECTIONS note in between
3055 BEG and END. */
3056
3057static bool
3058switch_text_sections_between_p (const rtx_insn *beg, const rtx_insn *end)
3059{
3060 const rtx_insn *p;
3061 for (p = beg; p != end; p = NEXT_INSN (insn: p))
3062 if (NOTE_P (p) && NOTE_KIND (p) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
3063 return true;
3064 return false;
3065}
3066
3067
3068/* Once we have tried two ways to fill a delay slot, make a pass over the
3069 code to try to improve the results and to do such things as more jump
3070 threading. */
3071
3072static void
3073relax_delay_slots (rtx_insn *first)
3074{
3075 rtx_insn *insn, *next;
3076 rtx_sequence *pat;
3077 rtx_insn *delay_insn;
3078 rtx target_label;
3079
3080 /* Look at every JUMP_INSN and see if we can improve it. */
3081 for (insn = first; insn; insn = next)
3082 {
3083 rtx_insn *other, *prior_insn;
3084 bool crossing;
3085
3086 next = next_active_insn (insn);
3087
3088 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3089 the next insn, or jumps to a label that is not the last of a
3090 group of consecutive labels. */
3091 if (is_a <rtx_jump_insn *> (p: insn)
3092 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3093 && !ANY_RETURN_P (target_label = JUMP_LABEL (insn)))
3094 {
3095 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (p: insn);
3096 target_label
3097 = skip_consecutive_labels (label_or_return: follow_jumps (label: target_label, jump: jump_insn,
3098 crossing: &crossing));
3099 if (ANY_RETURN_P (target_label))
3100 target_label = find_end_label (kind: target_label);
3101
3102 if (target_label
3103 && next_active_insn (as_a<rtx_insn *> (p: target_label)) == next
3104 && ! condjump_in_parallel_p (jump_insn)
3105 && ! (next && switch_text_sections_between_p (beg: jump_insn, end: next)))
3106 {
3107 rtx_insn *direct_label = as_a<rtx_insn *> (JUMP_LABEL (insn));
3108 rtx_insn *prev = prev_nonnote_insn (direct_label);
3109
3110 /* If the insn jumps over a BARRIER and is the only way to reach
3111 its target, then we need to delete the BARRIER before the jump
3112 because, otherwise, the target may end up being considered as
3113 unreachable and thus also deleted. */
3114 if (BARRIER_P (prev) && LABEL_NUSES (direct_label) == 1)
3115 {
3116 delete_related_insns (prev);
3117
3118 /* We have just removed a BARRIER, which means that the block
3119 number of the next insns has effectively been changed (see
3120 find_basic_block in resource.cc), so clear it. */
3121 clear_hashed_info_until_next_barrier (direct_label);
3122 }
3123
3124 delete_jump (insn: jump_insn);
3125 continue;
3126 }
3127
3128 if (target_label && target_label != JUMP_LABEL (jump_insn))
3129 {
3130 reorg_redirect_jump (jump: jump_insn, nlabel: target_label);
3131 if (crossing)
3132 CROSSING_JUMP_P (jump_insn) = 1;
3133 }
3134
3135 /* See if this jump conditionally branches around an unconditional
3136 jump. If so, invert this jump and point it to the target of the
3137 second jump. Check if it's possible on the target. */
3138 if (next && simplejump_or_return_p (insn: next)
3139 && any_condjump_p (jump_insn)
3140 && target_label
3141 && (next_active_insn (as_a<rtx_insn *> (p: target_label))
3142 == next_active_insn (next))
3143 && no_labels_between_p (jump_insn, next)
3144 && targetm.can_follow_jump (jump_insn, next))
3145 {
3146 rtx label = JUMP_LABEL (next);
3147
3148 /* Be careful how we do this to avoid deleting code or
3149 labels that are momentarily dead. See similar optimization
3150 in jump.cc.
3151
3152 We also need to ensure we properly handle the case when
3153 invert_jump fails. */
3154
3155 ++LABEL_NUSES (target_label);
3156 if (!ANY_RETURN_P (label))
3157 ++LABEL_NUSES (label);
3158
3159 if (invert_jump (jump_insn, label, 1))
3160 {
3161 rtx_insn *from = delete_related_insns (next);
3162
3163 /* We have just removed a BARRIER, which means that the block
3164 number of the next insns has effectively been changed (see
3165 find_basic_block in resource.cc), so clear it. */
3166 if (from)
3167 clear_hashed_info_until_next_barrier (from);
3168
3169 next = jump_insn;
3170 }
3171
3172 if (!ANY_RETURN_P (label))
3173 --LABEL_NUSES (label);
3174
3175 if (--LABEL_NUSES (target_label) == 0)
3176 delete_related_insns (target_label);
3177
3178 continue;
3179 }
3180 }
3181
3182 /* If this is an unconditional jump and the previous insn is a
3183 conditional jump, try reversing the condition of the previous
3184 insn and swapping our targets. The next pass might be able to
3185 fill the slots.
3186
3187 Don't do this if we expect the conditional branch to be true, because
3188 we would then be making the more common case longer. */
3189
3190 if (simplejump_or_return_p (insn)
3191 && (other = prev_active_insn (insn)) != 0
3192 && any_condjump_p (other)
3193 && no_labels_between_p (other, insn)
3194 && mostly_true_jump (jump_insn: other) < 0)
3195 {
3196 rtx other_target = JUMP_LABEL (other);
3197 target_label = JUMP_LABEL (insn);
3198
3199 if (invert_jump (as_a <rtx_jump_insn *> (p: other), target_label, 0))
3200 reorg_redirect_jump (jump: as_a <rtx_jump_insn *> (p: insn), nlabel: other_target);
3201 }
3202
3203 /* Now look only at cases where we have a filled delay slot. */
3204 if (!NONJUMP_INSN_P (insn) || GET_CODE (PATTERN (insn)) != SEQUENCE)
3205 continue;
3206
3207 pat = as_a <rtx_sequence *> (p: PATTERN (insn));
3208 delay_insn = pat->insn (index: 0);
3209
3210 /* See if the first insn in the delay slot is redundant with some
3211 previous insn. Remove it from the delay slot if so; then set up
3212 to reprocess this insn. */
3213 if ((prior_insn = redundant_insn (insn: pat->insn (index: 1), target: delay_insn, delay_list: vNULL)))
3214 {
3215 fix_reg_dead_note (start_insn: prior_insn, stop_insn: insn);
3216 update_block (insn: pat->insn (index: 1), where: insn);
3217 delete_from_delay_slot (insn: pat->insn (index: 1));
3218 next = prev_active_insn (next);
3219 continue;
3220 }
3221
3222 /* See if we have a RETURN insn with a filled delay slot followed
3223 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3224 the first RETURN (but not its delay insn). This gives the same
3225 effect in fewer instructions.
3226
3227 Only do so if optimizing for size since this results in slower, but
3228 smaller code. */
3229 if (optimize_function_for_size_p (cfun)
3230 && ANY_RETURN_P (PATTERN (delay_insn))
3231 && next
3232 && JUMP_P (next)
3233 && PATTERN (insn: next) == PATTERN (insn: delay_insn))
3234 {
3235 rtx_insn *after;
3236 int i;
3237
3238 /* Delete the RETURN and just execute the delay list insns.
3239
3240 We do this by deleting the INSN containing the SEQUENCE, then
3241 re-emitting the insns separately, and then deleting the RETURN.
3242 This allows the count of the jump target to be properly
3243 decremented.
3244
3245 Note that we need to change the INSN_UID of the re-emitted insns
3246 since it is used to hash the insns for mark_target_live_regs and
3247 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3248
3249 Clear the from target bit, since these insns are no longer
3250 in delay slots. */
3251 for (i = 0; i < XVECLEN (pat, 0); i++)
3252 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3253
3254 rtx_insn *prev = PREV_INSN (insn);
3255 delete_related_insns (insn);
3256 gcc_assert (GET_CODE (pat) == SEQUENCE);
3257 add_insn_after (delay_insn, prev, NULL);
3258 after = delay_insn;
3259 for (i = 1; i < pat->len (); i++)
3260 after = emit_copy_of_insn_after (pat->insn (index: i), after);
3261 delete_scheduled_jump (insn: delay_insn);
3262 continue;
3263 }
3264
3265 /* Now look only at the cases where we have a filled JUMP_INSN. */
3266 rtx_jump_insn *delay_jump_insn =
3267 dyn_cast <rtx_jump_insn *> (p: delay_insn);
3268 if (! delay_jump_insn || !(condjump_p (delay_jump_insn)
3269 || condjump_in_parallel_p (delay_jump_insn)))
3270 continue;
3271
3272 target_label = JUMP_LABEL (delay_jump_insn);
3273 if (target_label && ANY_RETURN_P (target_label))
3274 continue;
3275
3276 /* If this jump goes to another unconditional jump, thread it, but
3277 don't convert a jump into a RETURN here. */
3278 rtx trial = skip_consecutive_labels (label_or_return: follow_jumps (label: target_label,
3279 jump: delay_jump_insn,
3280 crossing: &crossing));
3281 if (ANY_RETURN_P (trial))
3282 trial = find_end_label (kind: trial);
3283
3284 if (trial && trial != target_label
3285 && redirect_with_delay_slots_safe_p (jump: delay_jump_insn, newlabel: trial, seq: insn))
3286 {
3287 reorg_redirect_jump (jump: delay_jump_insn, nlabel: trial);
3288 target_label = trial;
3289 if (crossing)
3290 CROSSING_JUMP_P (delay_jump_insn) = 1;
3291 }
3292
3293 /* If the first insn at TARGET_LABEL is redundant with a previous
3294 insn, redirect the jump to the following insn and process again.
3295 We use next_real_nondebug_insn instead of next_active_insn so we
3296 don't skip USE-markers, or we'll end up with incorrect
3297 liveness info. */
3298 trial = next_real_nondebug_insn (target_label);
3299 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3300 && redundant_insn (insn: trial, target: insn, delay_list: vNULL)
3301 && ! can_throw_internal (trial))
3302 {
3303 /* Figure out where to emit the special USE insn so we don't
3304 later incorrectly compute register live/death info. */
3305 rtx_insn *tmp = next_active_insn (as_a<rtx_insn *> (p: trial));
3306 if (tmp == 0)
3307 tmp = find_end_label (kind: simple_return_rtx);
3308
3309 if (tmp)
3310 {
3311 /* Insert the special USE insn and update dataflow info.
3312 We know "trial" is an insn here as it is the output of
3313 next_real_nondebug_insn () above. */
3314 update_block (insn: as_a <rtx_insn *> (p: trial), where: tmp);
3315
3316 /* Now emit a label before the special USE insn, and
3317 redirect our jump to the new label. */
3318 target_label = get_label_before (insn: PREV_INSN (insn: tmp), sibling: target_label);
3319 reorg_redirect_jump (jump: delay_jump_insn, nlabel: target_label);
3320 next = insn;
3321 continue;
3322 }
3323 }
3324
3325 /* Similarly, if it is an unconditional jump with one insn in its
3326 delay list and that insn is redundant, thread the jump. */
3327 rtx_sequence *trial_seq =
3328 trial ? dyn_cast <rtx_sequence *> (p: PATTERN (insn: trial)) : NULL;
3329 if (trial_seq
3330 && trial_seq->len () == 2
3331 && JUMP_P (trial_seq->insn (0))
3332 && simplejump_or_return_p (insn: trial_seq->insn (index: 0))
3333 && redundant_insn (insn: trial_seq->insn (index: 1), target: insn, delay_list: vNULL))
3334 {
3335 rtx temp_label = JUMP_LABEL (trial_seq->insn (0));
3336 if (ANY_RETURN_P (temp_label))
3337 temp_label = find_end_label (kind: temp_label);
3338
3339 if (temp_label
3340 && redirect_with_delay_slots_safe_p (jump: delay_jump_insn,
3341 newlabel: temp_label, seq: insn))
3342 {
3343 update_block (insn: trial_seq->insn (index: 1), where: insn);
3344 reorg_redirect_jump (jump: delay_jump_insn, nlabel: temp_label);
3345 next = insn;
3346 continue;
3347 }
3348 }
3349
3350 /* See if we have a simple (conditional) jump that is useless. */
3351 if (!CROSSING_JUMP_P (delay_jump_insn)
3352 && !INSN_ANNULLED_BRANCH_P (delay_jump_insn)
3353 && !condjump_in_parallel_p (delay_jump_insn)
3354 && prev_active_insn (as_a<rtx_insn *> (p: target_label)) == insn
3355 && !BARRIER_P (prev_nonnote_insn (as_a<rtx_insn *> (target_label))))
3356 {
3357 rtx_insn *after;
3358 int i;
3359
3360 /* All this insn does is execute its delay list and jump to the
3361 following insn. So delete the jump and just execute the delay
3362 list insns.
3363
3364 We do this by deleting the INSN containing the SEQUENCE, then
3365 re-emitting the insns separately, and then deleting the jump.
3366 This allows the count of the jump target to be properly
3367 decremented.
3368
3369 Note that we need to change the INSN_UID of the re-emitted insns
3370 since it is used to hash the insns for mark_target_live_regs and
3371 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3372
3373 Clear the from target bit, since these insns are no longer
3374 in delay slots. */
3375 for (i = 0; i < XVECLEN (pat, 0); i++)
3376 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3377
3378 rtx_insn *prev = PREV_INSN (insn);
3379 delete_related_insns (insn);
3380 gcc_assert (GET_CODE (pat) == SEQUENCE);
3381 add_insn_after (delay_jump_insn, prev, NULL);
3382 after = delay_jump_insn;
3383 for (i = 1; i < pat->len (); i++)
3384 after = emit_copy_of_insn_after (pat->insn (index: i), after);
3385 delete_scheduled_jump (insn: delay_jump_insn);
3386 continue;
3387 }
3388
3389 /* See if this is an unconditional jump around a single insn which is
3390 identical to the one in its delay slot. In this case, we can just
3391 delete the branch and the insn in its delay slot. */
3392 if (next && NONJUMP_INSN_P (next)
3393 && label_before_next_insn (x: next, scan_limit: insn) == target_label
3394 && simplejump_p (insn)
3395 && XVECLEN (pat, 0) == 2
3396 && rtx_equal_p (PATTERN (insn: next), PATTERN (insn: pat->insn (index: 1))))
3397 {
3398 delete_related_insns (insn);
3399 continue;
3400 }
3401
3402 /* See if this jump (with its delay slots) conditionally branches
3403 around an unconditional jump (without delay slots). If so, invert
3404 this jump and point it to the target of the second jump. We cannot
3405 do this for annulled jumps, though. Again, don't convert a jump to
3406 a RETURN here. */
3407 if (! INSN_ANNULLED_BRANCH_P (delay_jump_insn)
3408 && any_condjump_p (delay_jump_insn)
3409 && next && simplejump_or_return_p (insn: next)
3410 && (next_active_insn (as_a<rtx_insn *> (p: target_label))
3411 == next_active_insn (next))
3412 && no_labels_between_p (insn, next))
3413 {
3414 rtx label = JUMP_LABEL (next);
3415 rtx old_label = JUMP_LABEL (delay_jump_insn);
3416
3417 if (ANY_RETURN_P (label))
3418 label = find_end_label (kind: label);
3419
3420 /* find_end_label can generate a new label. Check this first. */
3421 if (label
3422 && no_labels_between_p (insn, next)
3423 && redirect_with_delay_slots_safe_p (jump: delay_jump_insn,
3424 newlabel: label, seq: insn))
3425 {
3426 /* Be careful how we do this to avoid deleting code or labels
3427 that are momentarily dead. See similar optimization in
3428 jump.cc */
3429 if (old_label)
3430 ++LABEL_NUSES (old_label);
3431
3432 if (invert_jump (delay_jump_insn, label, 1))
3433 {
3434 /* Must update the INSN_FROM_TARGET_P bits now that
3435 the branch is reversed, so that mark_target_live_regs
3436 will handle the delay slot insn correctly. */
3437 for (int i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3438 {
3439 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3440 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3441 }
3442
3443 /* We have just removed a BARRIER, which means that the block
3444 number of the next insns has effectively been changed (see
3445 find_basic_block in resource.cc), so clear it. */
3446 rtx_insn *from = delete_related_insns (next);
3447 if (from)
3448 clear_hashed_info_until_next_barrier (from);
3449
3450 next = insn;
3451 }
3452
3453 if (old_label && --LABEL_NUSES (old_label) == 0)
3454 delete_related_insns (old_label);
3455 continue;
3456 }
3457 }
3458
3459 /* If we own the thread opposite the way this insn branches, see if we
3460 can merge its delay slots with following insns. */
3461 if (INSN_FROM_TARGET_P (pat->insn (1))
3462 && own_thread_p (thread: NEXT_INSN (insn), label: 0, allow_fallthrough: true))
3463 try_merge_delay_insns (insn, thread: next);
3464 else if (! INSN_FROM_TARGET_P (pat->insn (1))
3465 && own_thread_p (thread: target_label, label: target_label, allow_fallthrough: false))
3466 try_merge_delay_insns (insn,
3467 thread: next_active_insn (as_a<rtx_insn *> (p: target_label)));
3468
3469 /* If we get here, we haven't deleted INSN. But we may have deleted
3470 NEXT, so recompute it. */
3471 next = next_active_insn (insn);
3472 }
3473}
3474
3475
3476/* Look for filled jumps to the end of function label. We can try to convert
3477 them into RETURN insns if the insns in the delay slot are valid for the
3478 RETURN as well. */
3479
3480static void
3481make_return_insns (rtx_insn *first)
3482{
3483 rtx_insn *insn;
3484 rtx_jump_insn *jump_insn;
3485 rtx real_return_label = function_return_label;
3486 rtx real_simple_return_label = function_simple_return_label;
3487 int slots, i;
3488
3489 /* See if there is a RETURN insn in the function other than the one we
3490 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3491 into a RETURN to jump to it. */
3492 for (insn = first; insn; insn = NEXT_INSN (insn))
3493 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
3494 {
3495 rtx t = get_label_before (insn, NULL_RTX);
3496 if (PATTERN (insn) == ret_rtx)
3497 real_return_label = t;
3498 else
3499 real_simple_return_label = t;
3500 break;
3501 }
3502
3503 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3504 was equal to END_OF_FUNCTION_LABEL. */
3505 if (real_return_label)
3506 LABEL_NUSES (real_return_label)++;
3507 if (real_simple_return_label)
3508 LABEL_NUSES (real_simple_return_label)++;
3509
3510 /* Clear the list of insns to fill so we can use it. */
3511 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3512
3513 for (insn = first; insn; insn = NEXT_INSN (insn))
3514 {
3515 int flags;
3516 rtx kind, real_label;
3517
3518 /* Only look at filled JUMP_INSNs that go to the end of function
3519 label. */
3520 if (!NONJUMP_INSN_P (insn))
3521 continue;
3522
3523 if (GET_CODE (PATTERN (insn)) != SEQUENCE)
3524 continue;
3525
3526 rtx_sequence *pat = as_a <rtx_sequence *> (p: PATTERN (insn));
3527
3528 if (!jump_to_label_p (pat->insn (index: 0)))
3529 continue;
3530
3531 if (JUMP_LABEL (pat->insn (0)) == function_return_label)
3532 {
3533 kind = ret_rtx;
3534 real_label = real_return_label;
3535 }
3536 else if (JUMP_LABEL (pat->insn (0)) == function_simple_return_label)
3537 {
3538 kind = simple_return_rtx;
3539 real_label = real_simple_return_label;
3540 }
3541 else
3542 continue;
3543
3544 jump_insn = as_a <rtx_jump_insn *> (p: pat->insn (index: 0));
3545
3546 /* If we can't make the jump into a RETURN, try to redirect it to the best
3547 RETURN and go on to the next insn. */
3548 if (!reorg_redirect_jump (jump: jump_insn, nlabel: kind))
3549 {
3550 /* Make sure redirecting the jump will not invalidate the delay
3551 slot insns. */
3552 if (redirect_with_delay_slots_safe_p (jump: jump_insn, newlabel: real_label, seq: insn))
3553 reorg_redirect_jump (jump: jump_insn, nlabel: real_label);
3554 continue;
3555 }
3556
3557 /* See if this RETURN can accept the insns current in its delay slot.
3558 It can if it has more or an equal number of slots and the contents
3559 of each is valid. */
3560
3561 flags = get_jump_flags (insn: jump_insn, JUMP_LABEL (jump_insn));
3562 slots = num_delay_slots (jump_insn);
3563 if (slots >= XVECLEN (pat, 0) - 1)
3564 {
3565 for (i = 1; i < XVECLEN (pat, 0); i++)
3566 if (! (
3567#if ANNUL_IFFALSE_SLOTS
3568 (INSN_ANNULLED_BRANCH_P (jump_insn)
3569 && INSN_FROM_TARGET_P (pat->insn (i)))
3570 ? eligible_for_annul_false (jump_insn, i - 1,
3571 pat->insn (i), flags) :
3572#endif
3573#if ANNUL_IFTRUE_SLOTS
3574 (INSN_ANNULLED_BRANCH_P (jump_insn)
3575 && ! INSN_FROM_TARGET_P (pat->insn (i)))
3576 ? eligible_for_annul_true (jump_insn, i - 1,
3577 pat->insn (i), flags) :
3578#endif
3579 eligible_for_delay (jump_insn, i - 1,
3580 pat->insn (index: i), flags)))
3581 break;
3582 }
3583 else
3584 i = 0;
3585
3586 if (i == XVECLEN (pat, 0))
3587 continue;
3588
3589 /* We have to do something with this insn. If it is an unconditional
3590 RETURN, delete the SEQUENCE and output the individual insns,
3591 followed by the RETURN. Then set things up so we try to find
3592 insns for its delay slots, if it needs some. */
3593 if (ANY_RETURN_P (PATTERN (jump_insn)))
3594 {
3595 rtx_insn *after = PREV_INSN (insn);
3596
3597 delete_related_insns (insn);
3598 insn = jump_insn;
3599 for (i = 1; i < pat->len (); i++)
3600 after = emit_copy_of_insn_after (pat->insn (index: i), after);
3601 add_insn_after (insn, after, NULL);
3602 emit_barrier_after (insn);
3603
3604 if (slots)
3605 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3606 }
3607 else
3608 /* It is probably more efficient to keep this with its current
3609 delay slot as a branch to a RETURN. */
3610 reorg_redirect_jump (jump: jump_insn, nlabel: real_label);
3611 }
3612
3613 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3614 new delay slots we have created. */
3615 if (real_return_label != NULL_RTX && --LABEL_NUSES (real_return_label) == 0)
3616 delete_related_insns (real_return_label);
3617 if (real_simple_return_label != NULL_RTX
3618 && --LABEL_NUSES (real_simple_return_label) == 0)
3619 delete_related_insns (real_simple_return_label);
3620
3621 fill_simple_delay_slots (non_jumps_p: true);
3622 fill_simple_delay_slots (non_jumps_p: false);
3623}
3624
3625/* Try to find insns to place in delay slots. */
3626
3627static void
3628dbr_schedule (rtx_insn *first)
3629{
3630 rtx_insn *insn, *next, *epilogue_insn = 0;
3631 bool need_return_insns;
3632 int i;
3633
3634 /* If the current function has no insns other than the prologue and
3635 epilogue, then do not try to fill any delay slots. */
3636 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3637 return;
3638
3639 /* Find the highest INSN_UID and allocate and initialize our map from
3640 INSN_UID's to position in code. */
3641 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3642 {
3643 if (INSN_UID (insn) > max_uid)
3644 max_uid = INSN_UID (insn);
3645 if (NOTE_P (insn)
3646 && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3647 epilogue_insn = insn;
3648 }
3649
3650 uid_to_ruid = XNEWVEC (int, max_uid + 1);
3651 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3652 uid_to_ruid[INSN_UID (insn)] = i;
3653
3654 /* Initialize the list of insns that need filling. */
3655 if (unfilled_firstobj == 0)
3656 {
3657 gcc_obstack_init (&unfilled_slots_obstack);
3658 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3659 }
3660
3661 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3662 {
3663 rtx target;
3664
3665 /* Skip vector tables. We can't get attributes for them. */
3666 if (JUMP_TABLE_DATA_P (insn))
3667 continue;
3668
3669 if (JUMP_P (insn))
3670 INSN_ANNULLED_BRANCH_P (insn) = 0;
3671 INSN_FROM_TARGET_P (insn) = 0;
3672
3673 if (num_delay_slots (insn) > 0)
3674 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3675
3676 /* Ensure all jumps go to the last of a set of consecutive labels. */
3677 if (JUMP_P (insn)
3678 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3679 && !ANY_RETURN_P (JUMP_LABEL (insn))
3680 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3681 != JUMP_LABEL (insn)))
3682 redirect_jump (as_a <rtx_jump_insn *> (p: insn), target, 1);
3683 }
3684
3685 init_resource_info (epilogue_insn);
3686
3687 /* Show we haven't computed an end-of-function label yet. */
3688 function_return_label = function_simple_return_label = NULL;
3689
3690 /* Initialize the statistics for this function. */
3691 memset (s: num_insns_needing_delays, c: 0, n: sizeof num_insns_needing_delays);
3692 memset (s: num_filled_delays, c: 0, n: sizeof num_filled_delays);
3693
3694 /* Now do the delay slot filling. Try everything twice in case earlier
3695 changes make more slots fillable. */
3696
3697 for (reorg_pass_number = 0;
3698 reorg_pass_number < MAX_REORG_PASSES;
3699 reorg_pass_number++)
3700 {
3701 fill_simple_delay_slots (non_jumps_p: true);
3702 fill_simple_delay_slots (non_jumps_p: false);
3703 if (!targetm.no_speculation_in_delay_slots_p ())
3704 fill_eager_delay_slots ();
3705 relax_delay_slots (first);
3706 }
3707
3708 /* If we made an end of function label, indicate that it is now
3709 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3710 If it is now unused, delete it. */
3711 if (function_return_label && --LABEL_NUSES (function_return_label) == 0)
3712 delete_related_insns (function_return_label);
3713 if (function_simple_return_label
3714 && --LABEL_NUSES (function_simple_return_label) == 0)
3715 delete_related_insns (function_simple_return_label);
3716
3717 need_return_insns = false;
3718 need_return_insns |= targetm.have_return () && function_return_label != 0;
3719 need_return_insns |= (targetm.have_simple_return ()
3720 && function_simple_return_label != 0);
3721 if (need_return_insns)
3722 make_return_insns (first);
3723
3724 /* Delete any USE insns made by update_block; subsequent passes don't need
3725 them or know how to deal with them. */
3726 for (insn = first; insn; insn = next)
3727 {
3728 next = NEXT_INSN (insn);
3729
3730 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3731 && INSN_P (XEXP (PATTERN (insn), 0)))
3732 next = delete_related_insns (insn);
3733 }
3734
3735 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3736
3737 /* It is not clear why the line below is needed, but it does seem to be. */
3738 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3739
3740 if (dump_file)
3741 {
3742 int i, j, need_comma;
3743 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3744 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3745
3746 for (reorg_pass_number = 0;
3747 reorg_pass_number < MAX_REORG_PASSES;
3748 reorg_pass_number++)
3749 {
3750 fprintf (stream: dump_file, format: ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3751 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3752 {
3753 need_comma = 0;
3754 fprintf (stream: dump_file, format: ";; Reorg function #%d\n", i);
3755
3756 fprintf (stream: dump_file, format: ";; %d insns needing delay slots\n;; ",
3757 num_insns_needing_delays[i][reorg_pass_number]);
3758
3759 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3760 if (num_filled_delays[i][j][reorg_pass_number])
3761 {
3762 if (need_comma)
3763 fprintf (stream: dump_file, format: ", ");
3764 need_comma = 1;
3765 fprintf (stream: dump_file, format: "%d got %d delays",
3766 num_filled_delays[i][j][reorg_pass_number], j);
3767 }
3768 fprintf (stream: dump_file, format: "\n");
3769 }
3770 }
3771 memset (s: total_delay_slots, c: 0, n: sizeof total_delay_slots);
3772 memset (s: total_annul_slots, c: 0, n: sizeof total_annul_slots);
3773 for (insn = first; insn; insn = NEXT_INSN (insn))
3774 {
3775 if (! insn->deleted ()
3776 && NONJUMP_INSN_P (insn)
3777 && GET_CODE (PATTERN (insn)) != USE
3778 && GET_CODE (PATTERN (insn)) != CLOBBER)
3779 {
3780 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3781 {
3782 rtx control;
3783 j = XVECLEN (PATTERN (insn), 0) - 1;
3784 if (j > MAX_DELAY_HISTOGRAM)
3785 j = MAX_DELAY_HISTOGRAM;
3786 control = XVECEXP (PATTERN (insn), 0, 0);
3787 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
3788 total_annul_slots[j]++;
3789 else
3790 total_delay_slots[j]++;
3791 }
3792 else if (num_delay_slots (insn) > 0)
3793 total_delay_slots[0]++;
3794 }
3795 }
3796 fprintf (stream: dump_file, format: ";; Reorg totals: ");
3797 need_comma = 0;
3798 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3799 {
3800 if (total_delay_slots[j])
3801 {
3802 if (need_comma)
3803 fprintf (stream: dump_file, format: ", ");
3804 need_comma = 1;
3805 fprintf (stream: dump_file, format: "%d got %d delays", total_delay_slots[j], j);
3806 }
3807 }
3808 fprintf (stream: dump_file, format: "\n");
3809
3810 if (ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
3811 {
3812 fprintf (stream: dump_file, format: ";; Reorg annuls: ");
3813 need_comma = 0;
3814 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3815 {
3816 if (total_annul_slots[j])
3817 {
3818 if (need_comma)
3819 fprintf (stream: dump_file, format: ", ");
3820 need_comma = 1;
3821 fprintf (stream: dump_file, format: "%d got %d delays", total_annul_slots[j], j);
3822 }
3823 }
3824 fprintf (stream: dump_file, format: "\n");
3825 }
3826
3827 fprintf (stream: dump_file, format: "\n");
3828 }
3829
3830 if (!sibling_labels.is_empty ())
3831 {
3832 update_alignments (sibling_labels);
3833 sibling_labels.release ();
3834 }
3835
3836 free_resource_info ();
3837 free (ptr: uid_to_ruid);
3838 crtl->dbr_scheduled_p = true;
3839}
3840
3841/* Run delay slot optimization. */
3842static void
3843rest_of_handle_delay_slots (void)
3844{
3845 if (DELAY_SLOTS)
3846 dbr_schedule (first: get_insns ());
3847}
3848
3849namespace {
3850
3851const pass_data pass_data_delay_slots =
3852{
3853 .type: RTL_PASS, /* type */
3854 .name: "dbr", /* name */
3855 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3856 .tv_id: TV_DBR_SCHED, /* tv_id */
3857 .properties_required: 0, /* properties_required */
3858 .properties_provided: 0, /* properties_provided */
3859 .properties_destroyed: 0, /* properties_destroyed */
3860 .todo_flags_start: 0, /* todo_flags_start */
3861 .todo_flags_finish: 0, /* todo_flags_finish */
3862};
3863
3864class pass_delay_slots : public rtl_opt_pass
3865{
3866public:
3867 pass_delay_slots (gcc::context *ctxt)
3868 : rtl_opt_pass (pass_data_delay_slots, ctxt)
3869 {}
3870
3871 /* opt_pass methods: */
3872 bool gate (function *) final override;
3873 unsigned int execute (function *) final override
3874 {
3875 rest_of_handle_delay_slots ();
3876 return 0;
3877 }
3878
3879}; // class pass_delay_slots
3880
3881bool
3882pass_delay_slots::gate (function *)
3883{
3884 /* At -O0 dataflow info isn't updated after RA. */
3885 if (DELAY_SLOTS)
3886 return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
3887
3888 return false;
3889}
3890
3891} // anon namespace
3892
3893rtl_opt_pass *
3894make_pass_delay_slots (gcc::context *ctxt)
3895{
3896 return new pass_delay_slots (ctxt);
3897}
3898
3899/* Machine dependent reorg pass. */
3900
3901namespace {
3902
3903const pass_data pass_data_machine_reorg =
3904{
3905 .type: RTL_PASS, /* type */
3906 .name: "mach", /* name */
3907 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3908 .tv_id: TV_MACH_DEP, /* tv_id */
3909 .properties_required: 0, /* properties_required */
3910 .properties_provided: 0, /* properties_provided */
3911 .properties_destroyed: 0, /* properties_destroyed */
3912 .todo_flags_start: 0, /* todo_flags_start */
3913 .todo_flags_finish: 0, /* todo_flags_finish */
3914};
3915
3916class pass_machine_reorg : public rtl_opt_pass
3917{
3918public:
3919 pass_machine_reorg (gcc::context *ctxt)
3920 : rtl_opt_pass (pass_data_machine_reorg, ctxt)
3921 {}
3922
3923 /* opt_pass methods: */
3924 bool gate (function *) final override
3925 {
3926 return targetm.machine_dependent_reorg != 0;
3927 }
3928
3929 unsigned int execute (function *) final override
3930 {
3931 targetm.machine_dependent_reorg ();
3932 return 0;
3933 }
3934
3935}; // class pass_machine_reorg
3936
3937} // anon namespace
3938
3939rtl_opt_pass *
3940make_pass_machine_reorg (gcc::context *ctxt)
3941{
3942 return new pass_machine_reorg (ctxt);
3943}
3944

source code of gcc/reorg.cc