1/* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "target.h"
25#include "function.h"
26#include "rtl.h"
27#include "tree.h"
28#include "memmodel.h"
29#include "tm_p.h"
30#include "stringpool.h"
31#include "regs.h"
32#include "emit-rtl.h"
33#include "cgraph.h"
34#include "diagnostic-core.h"
35#include "fold-const.h"
36#include "stor-layout.h"
37#include "varasm.h"
38#include "print-tree.h"
39#include "langhooks.h"
40#include "tree-inline.h"
41#include "dumpfile.h"
42#include "gimplify.h"
43#include "attribs.h"
44#include "debug.h"
45#include "calls.h"
46
47/* Data type for the expressions representing sizes of data types.
48 It is the first integer type laid out. */
49tree sizetype_tab[(int) stk_type_kind_last];
50
51/* If nonzero, this is an upper limit on alignment of structure fields.
52 The value is measured in bits. */
53unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54
55static tree self_referential_size (tree);
56static void finalize_record_size (record_layout_info);
57static void finalize_type_size (tree);
58static void place_union_field (record_layout_info, tree);
59static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
60 HOST_WIDE_INT, tree);
61extern void debug_rli (record_layout_info);
62
63/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
64 to serve as the actual size-expression for a type or decl. */
65
66tree
67variable_size (tree size)
68{
69 /* Obviously. */
70 if (TREE_CONSTANT (size))
71 return size;
72
73 /* If the size is self-referential, we can't make a SAVE_EXPR (see
74 save_expr for the rationale). But we can do something else. */
75 if (CONTAINS_PLACEHOLDER_P (size))
76 return self_referential_size (size);
77
78 /* If we are in the global binding level, we can't make a SAVE_EXPR
79 since it may end up being shared across functions, so it is up
80 to the front-end to deal with this case. */
81 if (lang_hooks.decls.global_bindings_p ())
82 return size;
83
84 return save_expr (size);
85}
86
87/* An array of functions used for self-referential size computation. */
88static GTY(()) vec<tree, va_gc> *size_functions;
89
90/* Return true if T is a self-referential component reference. */
91
92static bool
93self_referential_component_ref_p (tree t)
94{
95 if (TREE_CODE (t) != COMPONENT_REF)
96 return false;
97
98 while (REFERENCE_CLASS_P (t))
99 t = TREE_OPERAND (t, 0);
100
101 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102}
103
104/* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
107
108static tree
109copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110{
111 enum tree_code code = TREE_CODE (*tp);
112
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
117 {
118 *walk_subtrees = 0;
119 return NULL_TREE;
120 }
121
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 {
126 *walk_subtrees = 0;
127 return NULL_TREE;
128 }
129
130 /* Default case: the component reference. */
131 else if (self_referential_component_ref_p (t: *tp))
132 {
133 *walk_subtrees = 0;
134 return NULL_TREE;
135 }
136
137 /* We're not supposed to have them in self-referential size trees
138 because we wouldn't properly control when they are evaluated.
139 However, not creating superfluous SAVE_EXPRs requires accurate
140 tracking of readonly-ness all the way down to here, which we
141 cannot always guarantee in practice. So punt in this case. */
142 else if (code == SAVE_EXPR)
143 return error_mark_node;
144
145 else if (code == STATEMENT_LIST)
146 gcc_unreachable ();
147
148 return copy_tree_r (tp, walk_subtrees, data);
149}
150
151/* Given a SIZE expression that is self-referential, return an equivalent
152 expression to serve as the actual size expression for a type. */
153
154static tree
155self_referential_size (tree size)
156{
157 static unsigned HOST_WIDE_INT fnno = 0;
158 vec<tree> self_refs = vNULL;
159 tree param_type_list = NULL, param_decl_list = NULL;
160 tree t, ref, return_type, fntype, fnname, fndecl;
161 unsigned int i;
162 char buf[128];
163 vec<tree, va_gc> *args = NULL;
164
165 /* Do not factor out simple operations. */
166 t = skip_simple_constant_arithmetic (size);
167 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
168 return size;
169
170 /* Collect the list of self-references in the expression. */
171 find_placeholder_in_expr (size, &self_refs);
172 gcc_assert (self_refs.length () > 0);
173
174 /* Obtain a private copy of the expression. */
175 t = size;
176 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
177 return size;
178 size = t;
179
180 /* Build the parameter and argument lists in parallel; also
181 substitute the former for the latter in the expression. */
182 vec_alloc (v&: args, nelems: self_refs.length ());
183 FOR_EACH_VEC_ELT (self_refs, i, ref)
184 {
185 tree subst, param_name, param_type, param_decl;
186
187 if (DECL_P (ref))
188 {
189 /* We shouldn't have true variables here. */
190 gcc_assert (TREE_READONLY (ref));
191 subst = ref;
192 }
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (TREE_CODE (ref) == ADDR_EXPR)
195 subst = ref;
196 /* Default case: the component reference. */
197 else
198 subst = TREE_OPERAND (ref, 1);
199
200 sprintf (s: buf, format: "p%d", i);
201 param_name = get_identifier (buf);
202 param_type = TREE_TYPE (ref);
203 param_decl
204 = build_decl (input_location, PARM_DECL, param_name, param_type);
205 DECL_ARG_TYPE (param_decl) = param_type;
206 DECL_ARTIFICIAL (param_decl) = 1;
207 TREE_READONLY (param_decl) = 1;
208
209 size = substitute_in_expr (size, subst, param_decl);
210
211 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
212 param_decl_list = chainon (param_decl, param_decl_list);
213 args->quick_push (obj: ref);
214 }
215
216 self_refs.release ();
217
218 /* Append 'void' to indicate that the number of parameters is fixed. */
219 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220
221 /* The 3 lists have been created in reverse order. */
222 param_type_list = nreverse (param_type_list);
223 param_decl_list = nreverse (param_decl_list);
224
225 /* Build the function type. */
226 return_type = TREE_TYPE (size);
227 fntype = build_function_type (return_type, param_type_list);
228
229 /* Build the function declaration. */
230 sprintf (s: buf, format: "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
231 fnname = get_file_function_name (buf);
232 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
233 for (t = param_decl_list; t; t = DECL_CHAIN (t))
234 DECL_CONTEXT (t) = fndecl;
235 DECL_ARGUMENTS (fndecl) = param_decl_list;
236 DECL_RESULT (fndecl)
237 = build_decl (input_location, RESULT_DECL, 0, return_type);
238 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239
240 /* The function has been created by the compiler and we don't
241 want to emit debug info for it. */
242 DECL_ARTIFICIAL (fndecl) = 1;
243 DECL_IGNORED_P (fndecl) = 1;
244
245 /* It is supposed to be "const" and never throw. */
246 TREE_READONLY (fndecl) = 1;
247 TREE_NOTHROW (fndecl) = 1;
248
249 /* We want it to be inlined when this is deemed profitable, as
250 well as discarded if every call has been integrated. */
251 DECL_DECLARED_INLINE_P (fndecl) = 1;
252
253 /* It is made up of a unique return statement. */
254 DECL_INITIAL (fndecl) = make_node (BLOCK);
255 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
256 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
257 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
258 TREE_STATIC (fndecl) = 1;
259
260 /* Put it onto the list of size functions. */
261 vec_safe_push (v&: size_functions, obj: fndecl);
262
263 /* Replace the original expression with a call to the size function. */
264 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265}
266
267/* Take, queue and compile all the size functions. It is essential that
268 the size functions be gimplified at the very end of the compilation
269 in order to guarantee transparent handling of self-referential sizes.
270 Otherwise the GENERIC inliner would not be able to inline them back
271 at each of their call sites, thus creating artificial non-constant
272 size expressions which would trigger nasty problems later on. */
273
274void
275finalize_size_functions (void)
276{
277 unsigned int i;
278 tree fndecl;
279
280 for (i = 0; size_functions && size_functions->iterate (ix: i, ptr: &fndecl); i++)
281 {
282 allocate_struct_function (fndecl, false);
283 set_cfun (NULL);
284 dump_function (phase: TDI_original, fn: fndecl);
285
286 /* As these functions are used to describe the layout of variable-length
287 structures, debug info generation needs their implementation. */
288 debug_hooks->size_function (fndecl);
289 gimplify_function_tree (fndecl);
290 cgraph_node::finalize_function (fndecl, false);
291 }
292
293 vec_free (v&: size_functions);
294}
295
296/* Return a machine mode of class MCLASS with SIZE bits of precision,
297 if one exists. The mode may have padding bits as well the SIZE
298 value bits. If LIMIT is nonzero, disregard modes wider than
299 MAX_FIXED_MODE_SIZE. */
300
301opt_machine_mode
302mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303{
304 machine_mode mode;
305 int i;
306
307 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
308 return opt_machine_mode ();
309
310 /* Get the first mode which has this size, in the specified class. */
311 FOR_EACH_MODE_IN_CLASS (mode, mclass)
312 if (known_eq (GET_MODE_PRECISION (mode), size))
313 return mode;
314
315 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
316 for (i = 0; i < NUM_INT_N_ENTS; i ++)
317 if (known_eq (int_n_data[i].bitsize, size)
318 && int_n_enabled_p[i])
319 return int_n_data[i].m;
320
321 return opt_machine_mode ();
322}
323
324/* Similar, except passed a tree node. */
325
326opt_machine_mode
327mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328{
329 unsigned HOST_WIDE_INT uhwi;
330 unsigned int ui;
331
332 if (!tree_fits_uhwi_p (size))
333 return opt_machine_mode ();
334 uhwi = tree_to_uhwi (size);
335 ui = uhwi;
336 if (uhwi != ui)
337 return opt_machine_mode ();
338 return mode_for_size (size: ui, mclass, limit);
339}
340
341/* Return the narrowest mode of class MCLASS that contains at least
342 SIZE bits. Abort if no such mode exists. */
343
344machine_mode
345smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346{
347 machine_mode mode = VOIDmode;
348 int i;
349
350 /* Get the first mode which has at least this size, in the
351 specified class. */
352 FOR_EACH_MODE_IN_CLASS (mode, mclass)
353 if (known_ge (GET_MODE_PRECISION (mode), size))
354 break;
355
356 gcc_assert (mode != VOIDmode);
357
358 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
359 for (i = 0; i < NUM_INT_N_ENTS; i ++)
360 if (known_ge (int_n_data[i].bitsize, size)
361 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
362 && int_n_enabled_p[i])
363 mode = int_n_data[i].m;
364
365 return mode;
366}
367
368/* Return an integer mode of exactly the same size as MODE, if one exists. */
369
370opt_scalar_int_mode
371int_mode_for_mode (machine_mode mode)
372{
373 switch (GET_MODE_CLASS (mode))
374 {
375 case MODE_INT:
376 case MODE_PARTIAL_INT:
377 return as_a <scalar_int_mode> (m: mode);
378
379 case MODE_COMPLEX_INT:
380 case MODE_COMPLEX_FLOAT:
381 case MODE_FLOAT:
382 case MODE_DECIMAL_FLOAT:
383 case MODE_FRACT:
384 case MODE_ACCUM:
385 case MODE_UFRACT:
386 case MODE_UACCUM:
387 case MODE_VECTOR_BOOL:
388 case MODE_VECTOR_INT:
389 case MODE_VECTOR_FLOAT:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 return int_mode_for_size (size: GET_MODE_BITSIZE (mode), limit: 0);
395
396 case MODE_OPAQUE:
397 return opt_scalar_int_mode ();
398
399 case MODE_RANDOM:
400 if (mode == BLKmode)
401 return opt_scalar_int_mode ();
402
403 /* fall through */
404
405 case MODE_CC:
406 default:
407 gcc_unreachable ();
408 }
409}
410
411/* Find a mode that can be used for efficient bitwise operations on MODE,
412 if one exists. */
413
414opt_machine_mode
415bitwise_mode_for_mode (machine_mode mode)
416{
417 /* Quick exit if we already have a suitable mode. */
418 scalar_int_mode int_mode;
419 if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
420 && GET_MODE_BITSIZE (mode: int_mode) <= MAX_FIXED_MODE_SIZE)
421 return int_mode;
422
423 /* Reuse the sanity checks from int_mode_for_mode. */
424 gcc_checking_assert ((int_mode_for_mode (mode), true));
425
426 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
427
428 /* Try to replace complex modes with complex modes. In general we
429 expect both components to be processed independently, so we only
430 care whether there is a register for the inner mode. */
431 if (COMPLEX_MODE_P (mode))
432 {
433 machine_mode trial = mode;
434 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
435 || mode_for_size (size: bitsize, mclass: MODE_COMPLEX_INT, limit: false).exists (mode: &trial))
436 && have_regs_of_mode[GET_MODE_INNER (trial)])
437 return trial;
438 }
439
440 /* Try to replace vector modes with vector modes. Also try using vector
441 modes if an integer mode would be too big. */
442 if (VECTOR_MODE_P (mode)
443 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
444 {
445 machine_mode trial = mode;
446 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
447 || mode_for_size (size: bitsize, mclass: MODE_VECTOR_INT, limit: 0).exists (mode: &trial))
448 && have_regs_of_mode[trial]
449 && targetm.vector_mode_supported_p (trial))
450 return trial;
451 }
452
453 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
454 return mode_for_size (size: bitsize, mclass: MODE_INT, limit: true);
455}
456
457/* Find a type that can be used for efficient bitwise operations on MODE.
458 Return null if no such mode exists. */
459
460tree
461bitwise_type_for_mode (machine_mode mode)
462{
463 if (!bitwise_mode_for_mode (mode).exists (mode: &mode))
464 return NULL_TREE;
465
466 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467 tree inner_type = build_nonstandard_integer_type (inner_size, true);
468
469 if (VECTOR_MODE_P (mode))
470 return build_vector_type_for_mode (inner_type, mode);
471
472 if (COMPLEX_MODE_P (mode))
473 return build_complex_type (inner_type);
474
475 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476 return inner_type;
477}
478
479/* Find a mode that can be used for efficient bitwise operations on SIZE
480 bits, if one exists. */
481
482opt_machine_mode
483bitwise_mode_for_size (poly_uint64 size)
484{
485 if (known_le (size, (unsigned int) MAX_FIXED_MODE_SIZE))
486 return mode_for_size (size, mclass: MODE_INT, limit: true);
487
488 machine_mode mode, ret = VOIDmode;
489 FOR_EACH_MODE_FROM (mode, MIN_MODE_VECTOR_INT)
490 if (known_eq (GET_MODE_BITSIZE (mode), size)
491 && (ret == VOIDmode || GET_MODE_INNER (mode) == QImode)
492 && have_regs_of_mode[mode]
493 && targetm.vector_mode_supported_p (mode))
494 {
495 if (GET_MODE_INNER (mode) == QImode)
496 return mode;
497 else if (ret == VOIDmode)
498 ret = mode;
499 }
500 if (ret != VOIDmode)
501 return ret;
502 return opt_machine_mode ();
503}
504
505/* Find a mode that is suitable for representing a vector with NUNITS
506 elements of mode INNERMODE, if one exists. The returned mode can be
507 either an integer mode or a vector mode. */
508
509opt_machine_mode
510mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
511{
512 machine_mode mode;
513
514 /* First, look for a supported vector type. */
515 if (SCALAR_FLOAT_MODE_P (innermode))
516 mode = MIN_MODE_VECTOR_FLOAT;
517 else if (SCALAR_FRACT_MODE_P (innermode))
518 mode = MIN_MODE_VECTOR_FRACT;
519 else if (SCALAR_UFRACT_MODE_P (innermode))
520 mode = MIN_MODE_VECTOR_UFRACT;
521 else if (SCALAR_ACCUM_MODE_P (innermode))
522 mode = MIN_MODE_VECTOR_ACCUM;
523 else if (SCALAR_UACCUM_MODE_P (innermode))
524 mode = MIN_MODE_VECTOR_UACCUM;
525 else
526 mode = MIN_MODE_VECTOR_INT;
527
528 /* Only check the broader vector_mode_supported_any_target_p here.
529 We'll filter through target-specific availability and
530 vector_mode_supported_p later in vector_type_mode. */
531 FOR_EACH_MODE_FROM (mode, mode)
532 if (known_eq (GET_MODE_NUNITS (mode), nunits)
533 && GET_MODE_INNER (mode) == innermode
534 && targetm.vector_mode_supported_any_target_p (mode))
535 return mode;
536
537 /* For integers, try mapping it to a same-sized scalar mode. */
538 if (GET_MODE_CLASS (innermode) == MODE_INT)
539 {
540 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (mode: innermode);
541 if (int_mode_for_size (size: nbits, limit: 0).exists (mode: &mode)
542 && have_regs_of_mode[mode])
543 return mode;
544 }
545
546 return opt_machine_mode ();
547}
548
549/* If a piece of code is using vector mode VECTOR_MODE and also wants
550 to operate on elements of mode ELEMENT_MODE, return the vector mode
551 it should use for those elements. If NUNITS is nonzero, ensure that
552 the mode has exactly NUNITS elements, otherwise pick whichever vector
553 size pairs the most naturally with VECTOR_MODE; this may mean choosing
554 a mode with a different size and/or number of elements, depending on
555 what the target prefers. Return an empty opt_machine_mode if there
556 is no supported vector mode with the required properties.
557
558 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
559 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
560
561opt_machine_mode
562related_vector_mode (machine_mode vector_mode, scalar_mode element_mode,
563 poly_uint64 nunits)
564{
565 gcc_assert (VECTOR_MODE_P (vector_mode));
566 return targetm.vectorize.related_mode (vector_mode, element_mode, nunits);
567}
568
569/* If a piece of code is using vector mode VECTOR_MODE and also wants
570 to operate on integer vectors with the same element size and number
571 of elements, return the vector mode it should use. Return an empty
572 opt_machine_mode if there is no supported vector mode with the
573 required properties.
574
575 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
576 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
577
578opt_machine_mode
579related_int_vector_mode (machine_mode vector_mode)
580{
581 gcc_assert (VECTOR_MODE_P (vector_mode));
582 scalar_int_mode int_mode;
583 if (int_mode_for_mode (GET_MODE_INNER (vector_mode)).exists (mode: &int_mode))
584 return related_vector_mode (vector_mode, element_mode: int_mode,
585 nunits: GET_MODE_NUNITS (mode: vector_mode));
586 return opt_machine_mode ();
587}
588
589/* Return the alignment of MODE. This will be bounded by 1 and
590 BIGGEST_ALIGNMENT. */
591
592unsigned int
593get_mode_alignment (machine_mode mode)
594{
595 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
596}
597
598/* Return the natural mode of an array, given that it is SIZE bytes in
599 total and has elements of type ELEM_TYPE. */
600
601static machine_mode
602mode_for_array (tree elem_type, tree size)
603{
604 tree elem_size;
605 poly_uint64 int_size, int_elem_size;
606 unsigned HOST_WIDE_INT num_elems;
607 bool limit_p;
608
609 /* One-element arrays get the component type's mode. */
610 elem_size = TYPE_SIZE (elem_type);
611 if (simple_cst_equal (size, elem_size))
612 return TYPE_MODE (elem_type);
613
614 limit_p = true;
615 if (poly_int_tree_p (t: size, value: &int_size)
616 && poly_int_tree_p (t: elem_size, value: &int_elem_size)
617 && maybe_ne (a: int_elem_size, b: 0U)
618 && constant_multiple_p (a: int_size, b: int_elem_size, multiple: &num_elems))
619 {
620 machine_mode elem_mode = TYPE_MODE (elem_type);
621 machine_mode mode;
622 if (targetm.array_mode (elem_mode, num_elems).exists (mode: &mode))
623 return mode;
624 if (targetm.array_mode_supported_p (elem_mode, num_elems))
625 limit_p = false;
626 }
627 return mode_for_size_tree (size, mclass: MODE_INT, limit: limit_p).else_blk ();
628}
629
630/* Subroutine of layout_decl: Force alignment required for the data type.
631 But if the decl itself wants greater alignment, don't override that. */
632
633static inline void
634do_type_align (tree type, tree decl)
635{
636 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
637 {
638 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
639 if (TREE_CODE (decl) == FIELD_DECL)
640 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
641 }
642 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
643 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
644}
645
646/* Set the size, mode and alignment of a ..._DECL node.
647 TYPE_DECL does need this for C++.
648 Note that LABEL_DECL and CONST_DECL nodes do not need this,
649 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
650 Don't call layout_decl for them.
651
652 KNOWN_ALIGN is the amount of alignment we can assume this
653 decl has with no special effort. It is relevant only for FIELD_DECLs
654 and depends on the previous fields.
655 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
656 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
657 the record will be aligned to suit. */
658
659void
660layout_decl (tree decl, unsigned int known_align)
661{
662 tree type = TREE_TYPE (decl);
663 enum tree_code code = TREE_CODE (decl);
664 rtx rtl = NULL_RTX;
665 location_t loc = DECL_SOURCE_LOCATION (decl);
666
667 if (code == CONST_DECL)
668 return;
669
670 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
671 || code == TYPE_DECL || code == FIELD_DECL);
672
673 rtl = DECL_RTL_IF_SET (decl);
674
675 if (type == error_mark_node)
676 type = void_type_node;
677
678 /* Usually the size and mode come from the data type without change,
679 however, the front-end may set the explicit width of the field, so its
680 size may not be the same as the size of its type. This happens with
681 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
682 also happens with other fields. For example, the C++ front-end creates
683 zero-sized fields corresponding to empty base classes, and depends on
684 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
685 size in bytes from the size in bits. If we have already set the mode,
686 don't set it again since we can be called twice for FIELD_DECLs. */
687
688 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
689 if (DECL_MODE (decl) == VOIDmode)
690 SET_DECL_MODE (decl, TYPE_MODE (type));
691
692 if (DECL_SIZE (decl) == 0)
693 {
694 DECL_SIZE (decl) = TYPE_SIZE (type);
695 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
696 }
697 else if (DECL_SIZE_UNIT (decl) == 0)
698 DECL_SIZE_UNIT (decl)
699 = fold_convert_loc (loc, sizetype,
700 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
701 bitsize_unit_node));
702
703 if (code != FIELD_DECL)
704 /* For non-fields, update the alignment from the type. */
705 do_type_align (type, decl);
706 else
707 /* For fields, it's a bit more complicated... */
708 {
709 bool old_user_align = DECL_USER_ALIGN (decl);
710 bool zero_bitfield = false;
711 bool packed_p = DECL_PACKED (decl);
712 unsigned int mfa;
713
714 if (DECL_BIT_FIELD (decl))
715 {
716 DECL_BIT_FIELD_TYPE (decl) = type;
717
718 /* A zero-length bit-field affects the alignment of the next
719 field. In essence such bit-fields are not influenced by
720 any packing due to #pragma pack or attribute packed. */
721 if (integer_zerop (DECL_SIZE (decl))
722 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
723 {
724 zero_bitfield = true;
725 packed_p = false;
726 if (PCC_BITFIELD_TYPE_MATTERS)
727 do_type_align (type, decl);
728 else
729 {
730#ifdef EMPTY_FIELD_BOUNDARY
731 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
732 {
733 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
734 DECL_USER_ALIGN (decl) = 0;
735 }
736#endif
737 }
738 }
739
740 /* See if we can use an ordinary integer mode for a bit-field.
741 Conditions are: a fixed size that is correct for another mode,
742 occupying a complete byte or bytes on proper boundary. */
743 if (TYPE_SIZE (type) != 0
744 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
745 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
746 {
747 machine_mode xmode;
748 if (mode_for_size_tree (DECL_SIZE (decl),
749 mclass: MODE_INT, limit: 1).exists (mode: &xmode))
750 {
751 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
752 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
753 && (known_align == 0 || known_align >= xalign))
754 {
755 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
756 SET_DECL_MODE (decl, xmode);
757 DECL_BIT_FIELD (decl) = 0;
758 }
759 }
760 }
761
762 /* Turn off DECL_BIT_FIELD if we won't need it set. */
763 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
764 && known_align >= TYPE_ALIGN (type)
765 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
766 DECL_BIT_FIELD (decl) = 0;
767 }
768 else if (packed_p && DECL_USER_ALIGN (decl))
769 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
770 round up; we'll reduce it again below. We want packing to
771 supersede USER_ALIGN inherited from the type, but defer to
772 alignment explicitly specified on the field decl. */;
773 else
774 do_type_align (type, decl);
775
776 /* If the field is packed and not explicitly aligned, give it the
777 minimum alignment. Note that do_type_align may set
778 DECL_USER_ALIGN, so we need to check old_user_align instead. */
779 if (packed_p
780 && !old_user_align)
781 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
782
783 if (! packed_p && ! DECL_USER_ALIGN (decl))
784 {
785 /* Some targets (i.e. i386, VMS) limit struct field alignment
786 to a lower boundary than alignment of variables unless
787 it was overridden by attribute aligned. */
788#ifdef BIGGEST_FIELD_ALIGNMENT
789 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
790 (unsigned) BIGGEST_FIELD_ALIGNMENT));
791#endif
792#ifdef ADJUST_FIELD_ALIGN
793 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
794 DECL_ALIGN (decl)));
795#endif
796 }
797
798 if (zero_bitfield)
799 mfa = initial_max_fld_align * BITS_PER_UNIT;
800 else
801 mfa = maximum_field_alignment;
802 /* Should this be controlled by DECL_USER_ALIGN, too? */
803 if (mfa != 0)
804 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
805 }
806
807 /* Evaluate nonconstant size only once, either now or as soon as safe. */
808 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
809 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
810 if (DECL_SIZE_UNIT (decl) != 0
811 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
812 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
813
814 /* If requested, warn about definitions of large data objects. */
815 if ((code == PARM_DECL || (code == VAR_DECL && !DECL_NONLOCAL_FRAME (decl)))
816 && !DECL_EXTERNAL (decl))
817 {
818 tree size = DECL_SIZE_UNIT (decl);
819
820 if (size != 0 && TREE_CODE (size) == INTEGER_CST)
821 {
822 /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
823 as if PTRDIFF_MAX had been specified, with the value
824 being that on the target rather than the host. */
825 unsigned HOST_WIDE_INT max_size = warn_larger_than_size;
826 if (max_size == HOST_WIDE_INT_MAX)
827 max_size = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
828
829 if (compare_tree_int (size, max_size) > 0)
830 warning (OPT_Wlarger_than_, "size of %q+D %E bytes exceeds "
831 "maximum object size %wu",
832 decl, size, max_size);
833 }
834 }
835
836 /* If the RTL was already set, update its mode and mem attributes. */
837 if (rtl)
838 {
839 PUT_MODE (x: rtl, DECL_MODE (decl));
840 SET_DECL_RTL (decl, 0);
841 if (MEM_P (rtl))
842 set_mem_attributes (rtl, decl, 1);
843 SET_DECL_RTL (decl, rtl);
844 }
845}
846
847/* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
848 results of a previous call to layout_decl and calls it again. */
849
850void
851relayout_decl (tree decl)
852{
853 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
854 SET_DECL_MODE (decl, VOIDmode);
855 if (!DECL_USER_ALIGN (decl))
856 SET_DECL_ALIGN (decl, 0);
857 if (DECL_RTL_SET_P (decl))
858 SET_DECL_RTL (decl, 0);
859
860 layout_decl (decl, known_align: 0);
861}
862
863/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
864 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
865 is to be passed to all other layout functions for this record. It is the
866 responsibility of the caller to call `free' for the storage returned.
867 Note that garbage collection is not permitted until we finish laying
868 out the record. */
869
870record_layout_info
871start_record_layout (tree t)
872{
873 record_layout_info rli = XNEW (struct record_layout_info_s);
874
875 rli->t = t;
876
877 /* If the type has a minimum specified alignment (via an attribute
878 declaration, for example) use it -- otherwise, start with a
879 one-byte alignment. */
880 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
881 rli->unpacked_align = rli->record_align;
882 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
883
884#ifdef STRUCTURE_SIZE_BOUNDARY
885 /* Packed structures don't need to have minimum size. */
886 if (! TYPE_PACKED (t))
887 {
888 unsigned tmp;
889
890 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
891 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
892 if (maximum_field_alignment != 0)
893 tmp = MIN (tmp, maximum_field_alignment);
894 rli->record_align = MAX (rli->record_align, tmp);
895 }
896#endif
897
898 rli->offset = size_zero_node;
899 rli->bitpos = bitsize_zero_node;
900 rli->prev_field = 0;
901 rli->pending_statics = 0;
902 rli->packed_maybe_necessary = 0;
903 rli->remaining_in_alignment = 0;
904
905 return rli;
906}
907
908/* Fold sizetype value X to bitsizetype, given that X represents a type
909 size or offset. */
910
911static tree
912bits_from_bytes (tree x)
913{
914 if (POLY_INT_CST_P (x))
915 /* The runtime calculation isn't allowed to overflow sizetype;
916 increasing the runtime values must always increase the size
917 or offset of the object. This means that the object imposes
918 a maximum value on the runtime parameters, but we don't record
919 what that is. */
920 return build_poly_int_cst
921 (bitsizetype,
922 poly_wide_int::from (a: poly_int_cst_value (x),
923 TYPE_PRECISION (bitsizetype),
924 TYPE_SIGN (TREE_TYPE (x))));
925 x = fold_convert (bitsizetype, x);
926 gcc_checking_assert (x);
927 return x;
928}
929
930/* Return the combined bit position for the byte offset OFFSET and the
931 bit position BITPOS.
932
933 These functions operate on byte and bit positions present in FIELD_DECLs
934 and assume that these expressions result in no (intermediate) overflow.
935 This assumption is necessary to fold the expressions as much as possible,
936 so as to avoid creating artificially variable-sized types in languages
937 supporting variable-sized types like Ada. */
938
939tree
940bit_from_pos (tree offset, tree bitpos)
941{
942 return size_binop (PLUS_EXPR, bitpos,
943 size_binop (MULT_EXPR, bits_from_bytes (offset),
944 bitsize_unit_node));
945}
946
947/* Return the combined truncated byte position for the byte offset OFFSET and
948 the bit position BITPOS. */
949
950tree
951byte_from_pos (tree offset, tree bitpos)
952{
953 tree bytepos;
954 if (TREE_CODE (bitpos) == MULT_EXPR
955 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
956 bytepos = TREE_OPERAND (bitpos, 0);
957 else
958 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
959 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
960}
961
962/* Split the bit position POS into a byte offset *POFFSET and a bit
963 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
964
965void
966pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
967 tree pos)
968{
969 tree toff_align = bitsize_int (off_align);
970 if (TREE_CODE (pos) == MULT_EXPR
971 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
972 {
973 *poffset = size_binop (MULT_EXPR,
974 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
975 size_int (off_align / BITS_PER_UNIT));
976 *pbitpos = bitsize_zero_node;
977 }
978 else
979 {
980 *poffset = size_binop (MULT_EXPR,
981 fold_convert (sizetype,
982 size_binop (FLOOR_DIV_EXPR, pos,
983 toff_align)),
984 size_int (off_align / BITS_PER_UNIT));
985 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
986 }
987}
988
989/* Given a pointer to bit and byte offsets and an offset alignment,
990 normalize the offsets so they are within the alignment. */
991
992void
993normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
994{
995 /* If the bit position is now larger than it should be, adjust it
996 downwards. */
997 if (compare_tree_int (*pbitpos, off_align) >= 0)
998 {
999 tree offset, bitpos;
1000 pos_from_bit (poffset: &offset, pbitpos: &bitpos, off_align, pos: *pbitpos);
1001 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
1002 *pbitpos = bitpos;
1003 }
1004}
1005
1006/* Print debugging information about the information in RLI. */
1007
1008DEBUG_FUNCTION void
1009debug_rli (record_layout_info rli)
1010{
1011 print_node_brief (stderr, "type", rli->t, 0);
1012 print_node_brief (stderr, "\noffset", rli->offset, 0);
1013 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
1014
1015 fprintf (stderr, format: "\naligns: rec = %u, unpack = %u, off = %u\n",
1016 rli->record_align, rli->unpacked_align,
1017 rli->offset_align);
1018
1019 /* The ms_struct code is the only that uses this. */
1020 if (targetm.ms_bitfield_layout_p (rli->t))
1021 fprintf (stderr, format: "remaining in alignment = %u\n", rli->remaining_in_alignment);
1022
1023 if (rli->packed_maybe_necessary)
1024 fprintf (stderr, format: "packed may be necessary\n");
1025
1026 if (!vec_safe_is_empty (v: rli->pending_statics))
1027 {
1028 fprintf (stderr, format: "pending statics:\n");
1029 debug (ptr: rli->pending_statics);
1030 }
1031}
1032
1033/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
1034 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
1035
1036void
1037normalize_rli (record_layout_info rli)
1038{
1039 normalize_offset (poffset: &rli->offset, pbitpos: &rli->bitpos, off_align: rli->offset_align);
1040}
1041
1042/* Returns the size in bytes allocated so far. */
1043
1044tree
1045rli_size_unit_so_far (record_layout_info rli)
1046{
1047 return byte_from_pos (offset: rli->offset, bitpos: rli->bitpos);
1048}
1049
1050/* Returns the size in bits allocated so far. */
1051
1052tree
1053rli_size_so_far (record_layout_info rli)
1054{
1055 return bit_from_pos (offset: rli->offset, bitpos: rli->bitpos);
1056}
1057
1058/* FIELD is about to be added to RLI->T. The alignment (in bits) of
1059 the next available location within the record is given by KNOWN_ALIGN.
1060 Update the variable alignment fields in RLI, and return the alignment
1061 to give the FIELD. */
1062
1063unsigned int
1064update_alignment_for_field (record_layout_info rli, tree field,
1065 unsigned int known_align)
1066{
1067 /* The alignment required for FIELD. */
1068 unsigned int desired_align;
1069 /* The type of this field. */
1070 tree type = TREE_TYPE (field);
1071 /* True if the field was explicitly aligned by the user. */
1072 bool user_align;
1073 bool is_bitfield;
1074
1075 /* Do not attempt to align an ERROR_MARK node */
1076 if (TREE_CODE (type) == ERROR_MARK)
1077 return 0;
1078
1079 /* Lay out the field so we know what alignment it needs. */
1080 layout_decl (decl: field, known_align);
1081 desired_align = DECL_ALIGN (field);
1082 user_align = DECL_USER_ALIGN (field);
1083
1084 is_bitfield = (type != error_mark_node
1085 && DECL_BIT_FIELD_TYPE (field)
1086 && ! integer_zerop (TYPE_SIZE (type)));
1087
1088 /* Record must have at least as much alignment as any field.
1089 Otherwise, the alignment of the field within the record is
1090 meaningless. */
1091 if (targetm.ms_bitfield_layout_p (rli->t))
1092 {
1093 /* Here, the alignment of the underlying type of a bitfield can
1094 affect the alignment of a record; even a zero-sized field
1095 can do this. The alignment should be to the alignment of
1096 the type, except that for zero-size bitfields this only
1097 applies if there was an immediately prior, nonzero-size
1098 bitfield. (That's the way it is, experimentally.) */
1099 if (!is_bitfield
1100 || ((DECL_SIZE (field) == NULL_TREE
1101 || !integer_zerop (DECL_SIZE (field)))
1102 ? !DECL_PACKED (field)
1103 : (rli->prev_field
1104 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1105 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1106 {
1107 unsigned int type_align = TYPE_ALIGN (type);
1108 if (!is_bitfield && DECL_PACKED (field))
1109 type_align = desired_align;
1110 else
1111 type_align = MAX (type_align, desired_align);
1112 if (maximum_field_alignment != 0)
1113 type_align = MIN (type_align, maximum_field_alignment);
1114 rli->record_align = MAX (rli->record_align, type_align);
1115 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1116 }
1117 }
1118 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1119 {
1120 /* Named bit-fields cause the entire structure to have the
1121 alignment implied by their type. Some targets also apply the same
1122 rules to unnamed bitfields. */
1123 if (DECL_NAME (field) != 0
1124 || targetm.align_anon_bitfield ())
1125 {
1126 unsigned int type_align = TYPE_ALIGN (type);
1127
1128#ifdef ADJUST_FIELD_ALIGN
1129 if (! TYPE_USER_ALIGN (type))
1130 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1131#endif
1132
1133 /* Targets might chose to handle unnamed and hence possibly
1134 zero-width bitfield. Those are not influenced by #pragmas
1135 or packed attributes. */
1136 if (integer_zerop (DECL_SIZE (field)))
1137 {
1138 if (initial_max_fld_align)
1139 type_align = MIN (type_align,
1140 initial_max_fld_align * BITS_PER_UNIT);
1141 }
1142 else if (maximum_field_alignment != 0)
1143 type_align = MIN (type_align, maximum_field_alignment);
1144 else if (DECL_PACKED (field))
1145 type_align = MIN (type_align, BITS_PER_UNIT);
1146
1147 /* The alignment of the record is increased to the maximum
1148 of the current alignment, the alignment indicated on the
1149 field (i.e., the alignment specified by an __aligned__
1150 attribute), and the alignment indicated by the type of
1151 the field. */
1152 rli->record_align = MAX (rli->record_align, desired_align);
1153 rli->record_align = MAX (rli->record_align, type_align);
1154
1155 if (warn_packed)
1156 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1157 user_align |= TYPE_USER_ALIGN (type);
1158 }
1159 }
1160 else
1161 {
1162 rli->record_align = MAX (rli->record_align, desired_align);
1163 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1164 }
1165
1166 TYPE_USER_ALIGN (rli->t) |= user_align;
1167
1168 return desired_align;
1169}
1170
1171/* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1172 the field alignment of FIELD or FIELD isn't aligned. */
1173
1174static void
1175handle_warn_if_not_align (tree field, unsigned int record_align)
1176{
1177 tree type = TREE_TYPE (field);
1178
1179 if (type == error_mark_node)
1180 return;
1181
1182 unsigned int warn_if_not_align = 0;
1183
1184 int opt_w = 0;
1185
1186 if (warn_if_not_aligned)
1187 {
1188 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1189 if (!warn_if_not_align)
1190 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1191 if (warn_if_not_align)
1192 opt_w = OPT_Wif_not_aligned;
1193 }
1194
1195 if (!warn_if_not_align
1196 && warn_packed_not_aligned
1197 && lookup_attribute (attr_name: "aligned", TYPE_ATTRIBUTES (type)))
1198 {
1199 warn_if_not_align = TYPE_ALIGN (type);
1200 opt_w = OPT_Wpacked_not_aligned;
1201 }
1202
1203 if (!warn_if_not_align)
1204 return;
1205
1206 tree context = DECL_CONTEXT (field);
1207
1208 warn_if_not_align /= BITS_PER_UNIT;
1209 record_align /= BITS_PER_UNIT;
1210 if ((record_align % warn_if_not_align) != 0)
1211 warning (opt_w, "alignment %u of %qT is less than %u",
1212 record_align, context, warn_if_not_align);
1213
1214 tree off = byte_position (field);
1215 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1216 {
1217 if (TREE_CODE (off) == INTEGER_CST)
1218 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1219 field, off, context, warn_if_not_align);
1220 else
1221 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1222 field, off, context, warn_if_not_align);
1223 }
1224}
1225
1226/* Called from place_field to handle unions. */
1227
1228static void
1229place_union_field (record_layout_info rli, tree field)
1230{
1231 update_alignment_for_field (rli, field, /*known_align=*/0);
1232
1233 DECL_FIELD_OFFSET (field) = size_zero_node;
1234 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1235 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1236 handle_warn_if_not_align (field, record_align: rli->record_align);
1237
1238 /* If this is an ERROR_MARK return *after* having set the
1239 field at the start of the union. This helps when parsing
1240 invalid fields. */
1241 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1242 return;
1243
1244 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1245 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1246 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1247
1248 /* We assume the union's size will be a multiple of a byte so we don't
1249 bother with BITPOS. */
1250 if (TREE_CODE (rli->t) == UNION_TYPE)
1251 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1252 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1253 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1254 DECL_SIZE_UNIT (field), rli->offset);
1255}
1256
1257/* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1258 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1259 units of alignment than the underlying TYPE. */
1260static int
1261excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1262 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1263{
1264 /* Note that the calculation of OFFSET might overflow; we calculate it so
1265 that we still get the right result as long as ALIGN is a power of two. */
1266 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1267
1268 offset = offset % align;
1269 return ((offset + size + align - 1) / align
1270 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1271}
1272
1273/* RLI contains information about the layout of a RECORD_TYPE. FIELD
1274 is a FIELD_DECL to be added after those fields already present in
1275 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1276 callers that desire that behavior must manually perform that step.) */
1277
1278void
1279place_field (record_layout_info rli, tree field)
1280{
1281 /* The alignment required for FIELD. */
1282 unsigned int desired_align;
1283 /* The alignment FIELD would have if we just dropped it into the
1284 record as it presently stands. */
1285 unsigned int known_align;
1286 unsigned int actual_align;
1287 /* The type of this field. */
1288 tree type = TREE_TYPE (field);
1289
1290 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1291
1292 /* If FIELD is static, then treat it like a separate variable, not
1293 really like a structure field. If it is a FUNCTION_DECL, it's a
1294 method. In both cases, all we do is lay out the decl, and we do
1295 it *after* the record is laid out. */
1296 if (VAR_P (field))
1297 {
1298 vec_safe_push (v&: rli->pending_statics, obj: field);
1299 return;
1300 }
1301
1302 /* Enumerators and enum types which are local to this class need not
1303 be laid out. Likewise for initialized constant fields. */
1304 else if (TREE_CODE (field) != FIELD_DECL)
1305 return;
1306
1307 /* Unions are laid out very differently than records, so split
1308 that code off to another function. */
1309 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1310 {
1311 place_union_field (rli, field);
1312 return;
1313 }
1314
1315 else if (TREE_CODE (type) == ERROR_MARK)
1316 {
1317 /* Place this field at the current allocation position, so we
1318 maintain monotonicity. */
1319 DECL_FIELD_OFFSET (field) = rli->offset;
1320 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1321 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1322 handle_warn_if_not_align (field, record_align: rli->record_align);
1323 return;
1324 }
1325
1326 if (AGGREGATE_TYPE_P (type)
1327 && TYPE_TYPELESS_STORAGE (type))
1328 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1329
1330 /* Work out the known alignment so far. Note that A & (-A) is the
1331 value of the least-significant bit in A that is one. */
1332 if (! integer_zerop (rli->bitpos))
1333 known_align = least_bit_hwi (x: tree_to_uhwi (rli->bitpos));
1334 else if (integer_zerop (rli->offset))
1335 known_align = 0;
1336 else if (tree_fits_uhwi_p (rli->offset))
1337 known_align = (BITS_PER_UNIT
1338 * least_bit_hwi (x: tree_to_uhwi (rli->offset)));
1339 else
1340 known_align = rli->offset_align;
1341
1342 desired_align = update_alignment_for_field (rli, field, known_align);
1343 if (known_align == 0)
1344 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1345
1346 if (warn_packed && DECL_PACKED (field))
1347 {
1348 if (known_align >= TYPE_ALIGN (type))
1349 {
1350 if (TYPE_ALIGN (type) > desired_align)
1351 {
1352 if (STRICT_ALIGNMENT)
1353 warning (OPT_Wattributes, "packed attribute causes "
1354 "inefficient alignment for %q+D", field);
1355 /* Don't warn if DECL_PACKED was set by the type. */
1356 else if (!TYPE_PACKED (rli->t))
1357 warning (OPT_Wattributes, "packed attribute is "
1358 "unnecessary for %q+D", field);
1359 }
1360 }
1361 else
1362 rli->packed_maybe_necessary = 1;
1363 }
1364
1365 /* Does this field automatically have alignment it needs by virtue
1366 of the fields that precede it and the record's own alignment? */
1367 if (known_align < desired_align
1368 && (! targetm.ms_bitfield_layout_p (rli->t)
1369 || rli->prev_field == NULL))
1370 {
1371 /* No, we need to skip space before this field.
1372 Bump the cumulative size to multiple of field alignment. */
1373
1374 if (!targetm.ms_bitfield_layout_p (rli->t)
1375 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION
1376 && !TYPE_ARTIFICIAL (rli->t))
1377 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1378
1379 /* If the alignment is still within offset_align, just align
1380 the bit position. */
1381 if (desired_align < rli->offset_align)
1382 rli->bitpos = round_up (rli->bitpos, desired_align);
1383 else
1384 {
1385 /* First adjust OFFSET by the partial bits, then align. */
1386 rli->offset
1387 = size_binop (PLUS_EXPR, rli->offset,
1388 fold_convert (sizetype,
1389 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1390 bitsize_unit_node)));
1391 rli->bitpos = bitsize_zero_node;
1392
1393 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1394 }
1395
1396 if (! TREE_CONSTANT (rli->offset))
1397 rli->offset_align = desired_align;
1398 }
1399
1400 /* Handle compatibility with PCC. Note that if the record has any
1401 variable-sized fields, we need not worry about compatibility. */
1402 if (PCC_BITFIELD_TYPE_MATTERS
1403 && ! targetm.ms_bitfield_layout_p (rli->t)
1404 && TREE_CODE (field) == FIELD_DECL
1405 && type != error_mark_node
1406 && DECL_BIT_FIELD (field)
1407 && (! DECL_PACKED (field)
1408 /* Enter for these packed fields only to issue a warning. */
1409 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1410 && maximum_field_alignment == 0
1411 && ! integer_zerop (DECL_SIZE (field))
1412 && tree_fits_uhwi_p (DECL_SIZE (field))
1413 && tree_fits_uhwi_p (rli->offset)
1414 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1415 {
1416 unsigned int type_align = TYPE_ALIGN (type);
1417 tree dsize = DECL_SIZE (field);
1418 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1419 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1420 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1421
1422#ifdef ADJUST_FIELD_ALIGN
1423 if (! TYPE_USER_ALIGN (type))
1424 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1425#endif
1426
1427 /* A bit field may not span more units of alignment of its type
1428 than its type itself. Advance to next boundary if necessary. */
1429 if (excess_unit_span (byte_offset: offset, bit_offset, size: field_size, align: type_align, type))
1430 {
1431 if (DECL_PACKED (field))
1432 {
1433 if (warn_packed_bitfield_compat == 1)
1434 inform
1435 (input_location,
1436 "offset of packed bit-field %qD has changed in GCC 4.4",
1437 field);
1438 }
1439 else
1440 rli->bitpos = round_up (rli->bitpos, type_align);
1441 }
1442
1443 if (! DECL_PACKED (field))
1444 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1445
1446 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1447 TYPE_WARN_IF_NOT_ALIGN (type));
1448 }
1449
1450#ifdef BITFIELD_NBYTES_LIMITED
1451 if (BITFIELD_NBYTES_LIMITED
1452 && ! targetm.ms_bitfield_layout_p (rli->t)
1453 && TREE_CODE (field) == FIELD_DECL
1454 && type != error_mark_node
1455 && DECL_BIT_FIELD_TYPE (field)
1456 && ! DECL_PACKED (field)
1457 && ! integer_zerop (DECL_SIZE (field))
1458 && tree_fits_uhwi_p (DECL_SIZE (field))
1459 && tree_fits_uhwi_p (rli->offset)
1460 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1461 {
1462 unsigned int type_align = TYPE_ALIGN (type);
1463 tree dsize = DECL_SIZE (field);
1464 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1465 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1466 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1467
1468#ifdef ADJUST_FIELD_ALIGN
1469 if (! TYPE_USER_ALIGN (type))
1470 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1471#endif
1472
1473 if (maximum_field_alignment != 0)
1474 type_align = MIN (type_align, maximum_field_alignment);
1475 /* ??? This test is opposite the test in the containing if
1476 statement, so this code is unreachable currently. */
1477 else if (DECL_PACKED (field))
1478 type_align = MIN (type_align, BITS_PER_UNIT);
1479
1480 /* A bit field may not span the unit of alignment of its type.
1481 Advance to next boundary if necessary. */
1482 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1483 rli->bitpos = round_up (rli->bitpos, type_align);
1484
1485 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1486 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1487 TYPE_WARN_IF_NOT_ALIGN (type));
1488 }
1489#endif
1490
1491 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1492 A subtlety:
1493 When a bit field is inserted into a packed record, the whole
1494 size of the underlying type is used by one or more same-size
1495 adjacent bitfields. (That is, if its long:3, 32 bits is
1496 used in the record, and any additional adjacent long bitfields are
1497 packed into the same chunk of 32 bits. However, if the size
1498 changes, a new field of that size is allocated.) In an unpacked
1499 record, this is the same as using alignment, but not equivalent
1500 when packing.
1501
1502 Note: for compatibility, we use the type size, not the type alignment
1503 to determine alignment, since that matches the documentation */
1504
1505 if (targetm.ms_bitfield_layout_p (rli->t))
1506 {
1507 tree prev_saved = rli->prev_field;
1508 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1509
1510 /* This is a bitfield if it exists. */
1511 if (rli->prev_field)
1512 {
1513 bool realign_p = known_align < desired_align;
1514
1515 /* If both are bitfields, nonzero, and the same size, this is
1516 the middle of a run. Zero declared size fields are special
1517 and handled as "end of run". (Note: it's nonzero declared
1518 size, but equal type sizes!) (Since we know that both
1519 the current and previous fields are bitfields by the
1520 time we check it, DECL_SIZE must be present for both.) */
1521 if (DECL_BIT_FIELD_TYPE (field)
1522 && !integer_zerop (DECL_SIZE (field))
1523 && !integer_zerop (DECL_SIZE (rli->prev_field))
1524 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1525 && tree_fits_uhwi_p (TYPE_SIZE (type))
1526 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1527 {
1528 /* We're in the middle of a run of equal type size fields; make
1529 sure we realign if we run out of bits. (Not decl size,
1530 type size!) */
1531 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1532
1533 if (rli->remaining_in_alignment < bitsize)
1534 {
1535 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1536
1537 /* out of bits; bump up to next 'word'. */
1538 rli->bitpos
1539 = size_binop (PLUS_EXPR, rli->bitpos,
1540 bitsize_int (rli->remaining_in_alignment));
1541 rli->prev_field = field;
1542 if (typesize < bitsize)
1543 rli->remaining_in_alignment = 0;
1544 else
1545 rli->remaining_in_alignment = typesize - bitsize;
1546 }
1547 else
1548 {
1549 rli->remaining_in_alignment -= bitsize;
1550 realign_p = false;
1551 }
1552 }
1553 else
1554 {
1555 /* End of a run: if leaving a run of bitfields of the same type
1556 size, we have to "use up" the rest of the bits of the type
1557 size.
1558
1559 Compute the new position as the sum of the size for the prior
1560 type and where we first started working on that type.
1561 Note: since the beginning of the field was aligned then
1562 of course the end will be too. No round needed. */
1563
1564 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1565 {
1566 rli->bitpos
1567 = size_binop (PLUS_EXPR, rli->bitpos,
1568 bitsize_int (rli->remaining_in_alignment));
1569 }
1570 else
1571 /* We "use up" size zero fields; the code below should behave
1572 as if the prior field was not a bitfield. */
1573 prev_saved = NULL;
1574
1575 /* Cause a new bitfield to be captured, either this time (if
1576 currently a bitfield) or next time we see one. */
1577 if (!DECL_BIT_FIELD_TYPE (field)
1578 || integer_zerop (DECL_SIZE (field)))
1579 rli->prev_field = NULL;
1580 }
1581
1582 /* Does this field automatically have alignment it needs by virtue
1583 of the fields that precede it and the record's own alignment? */
1584 if (realign_p)
1585 {
1586 /* If the alignment is still within offset_align, just align
1587 the bit position. */
1588 if (desired_align < rli->offset_align)
1589 rli->bitpos = round_up (rli->bitpos, desired_align);
1590 else
1591 {
1592 /* First adjust OFFSET by the partial bits, then align. */
1593 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1594 bitsize_unit_node);
1595 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1596 fold_convert (sizetype, d));
1597 rli->bitpos = bitsize_zero_node;
1598
1599 rli->offset = round_up (rli->offset,
1600 desired_align / BITS_PER_UNIT);
1601 }
1602
1603 if (! TREE_CONSTANT (rli->offset))
1604 rli->offset_align = desired_align;
1605 }
1606
1607 normalize_rli (rli);
1608 }
1609
1610 /* If we're starting a new run of same type size bitfields
1611 (or a run of non-bitfields), set up the "first of the run"
1612 fields.
1613
1614 That is, if the current field is not a bitfield, or if there
1615 was a prior bitfield the type sizes differ, or if there wasn't
1616 a prior bitfield the size of the current field is nonzero.
1617
1618 Note: we must be sure to test ONLY the type size if there was
1619 a prior bitfield and ONLY for the current field being zero if
1620 there wasn't. */
1621
1622 if (!DECL_BIT_FIELD_TYPE (field)
1623 || (prev_saved != NULL
1624 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1625 : !integer_zerop (DECL_SIZE (field))))
1626 {
1627 /* Never smaller than a byte for compatibility. */
1628 unsigned int type_align = BITS_PER_UNIT;
1629
1630 /* (When not a bitfield), we could be seeing a flex array (with
1631 no DECL_SIZE). Since we won't be using remaining_in_alignment
1632 until we see a bitfield (and come by here again) we just skip
1633 calculating it. */
1634 if (DECL_SIZE (field) != NULL
1635 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1636 && tree_fits_uhwi_p (DECL_SIZE (field)))
1637 {
1638 unsigned HOST_WIDE_INT bitsize
1639 = tree_to_uhwi (DECL_SIZE (field));
1640 unsigned HOST_WIDE_INT typesize
1641 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1642
1643 if (typesize < bitsize)
1644 rli->remaining_in_alignment = 0;
1645 else
1646 rli->remaining_in_alignment = typesize - bitsize;
1647 }
1648
1649 /* Now align (conventionally) for the new type. */
1650 if (! DECL_PACKED (field))
1651 type_align = TYPE_ALIGN (TREE_TYPE (field));
1652
1653 if (maximum_field_alignment != 0)
1654 type_align = MIN (type_align, maximum_field_alignment);
1655
1656 rli->bitpos = round_up (rli->bitpos, type_align);
1657
1658 /* If we really aligned, don't allow subsequent bitfields
1659 to undo that. */
1660 rli->prev_field = NULL;
1661 }
1662 }
1663
1664 /* Offset so far becomes the position of this field after normalizing. */
1665 normalize_rli (rli);
1666 DECL_FIELD_OFFSET (field) = rli->offset;
1667 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1668 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1669 handle_warn_if_not_align (field, record_align: rli->record_align);
1670
1671 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1672 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1673 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1674
1675 /* If this field ended up more aligned than we thought it would be (we
1676 approximate this by seeing if its position changed), lay out the field
1677 again; perhaps we can use an integral mode for it now. */
1678 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1679 actual_align = least_bit_hwi (x: tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1680 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1681 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1682 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1683 actual_align = (BITS_PER_UNIT
1684 * least_bit_hwi (x: tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1685 else
1686 actual_align = DECL_OFFSET_ALIGN (field);
1687 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1688 store / extract bit field operations will check the alignment of the
1689 record against the mode of bit fields. */
1690
1691 if (known_align != actual_align)
1692 layout_decl (decl: field, known_align: actual_align);
1693
1694 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1695 rli->prev_field = field;
1696
1697 /* Now add size of this field to the size of the record. If the size is
1698 not constant, treat the field as being a multiple of bytes and just
1699 adjust the offset, resetting the bit position. Otherwise, apportion the
1700 size amongst the bit position and offset. First handle the case of an
1701 unspecified size, which can happen when we have an invalid nested struct
1702 definition, such as struct j { struct j { int i; } }. The error message
1703 is printed in finish_struct. */
1704 if (DECL_SIZE (field) == 0)
1705 /* Do nothing. */;
1706 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1707 || TREE_OVERFLOW (DECL_SIZE (field)))
1708 {
1709 rli->offset
1710 = size_binop (PLUS_EXPR, rli->offset,
1711 fold_convert (sizetype,
1712 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1713 bitsize_unit_node)));
1714 rli->offset
1715 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1716 rli->bitpos = bitsize_zero_node;
1717 rli->offset_align = MIN (rli->offset_align, desired_align);
1718
1719 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1720 bitsize_int (rli->offset_align)))
1721 {
1722 tree type = strip_array_types (TREE_TYPE (field));
1723 /* The above adjusts offset_align just based on the start of the
1724 field. The field might not have a size that is a multiple of
1725 that offset_align though. If the field is an array of fixed
1726 sized elements, assume there can be any multiple of those
1727 sizes. If it is a variable length aggregate or array of
1728 variable length aggregates, assume worst that the end is
1729 just BITS_PER_UNIT aligned. */
1730 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1731 {
1732 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1733 {
1734 unsigned HOST_WIDE_INT sz
1735 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1736 rli->offset_align = MIN (rli->offset_align, sz);
1737 }
1738 }
1739 else
1740 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1741 }
1742 }
1743 else if (targetm.ms_bitfield_layout_p (rli->t))
1744 {
1745 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1746
1747 /* If FIELD is the last field and doesn't end at the full length
1748 of the type then pad the struct out to the full length of the
1749 last type. */
1750 if (DECL_BIT_FIELD_TYPE (field)
1751 && !integer_zerop (DECL_SIZE (field)))
1752 {
1753 /* We have to scan, because non-field DECLS are also here. */
1754 tree probe = field;
1755 while ((probe = DECL_CHAIN (probe)))
1756 if (TREE_CODE (probe) == FIELD_DECL)
1757 break;
1758 if (!probe)
1759 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1760 bitsize_int (rli->remaining_in_alignment));
1761 }
1762
1763 normalize_rli (rli);
1764 }
1765 else
1766 {
1767 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1768 normalize_rli (rli);
1769 }
1770}
1771
1772/* Assuming that all the fields have been laid out, this function uses
1773 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1774 indicated by RLI. */
1775
1776static void
1777finalize_record_size (record_layout_info rli)
1778{
1779 tree unpadded_size, unpadded_size_unit;
1780
1781 /* Now we want just byte and bit offsets, so set the offset alignment
1782 to be a byte and then normalize. */
1783 rli->offset_align = BITS_PER_UNIT;
1784 normalize_rli (rli);
1785
1786 /* Determine the desired alignment. */
1787#ifdef ROUND_TYPE_ALIGN
1788 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1789 rli->record_align));
1790#else
1791 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1792#endif
1793
1794 /* Compute the size so far. Be sure to allow for extra bits in the
1795 size in bytes. We have guaranteed above that it will be no more
1796 than a single byte. */
1797 unpadded_size = rli_size_so_far (rli);
1798 unpadded_size_unit = rli_size_unit_so_far (rli);
1799 if (! integer_zerop (rli->bitpos))
1800 unpadded_size_unit
1801 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1802
1803 /* Round the size up to be a multiple of the required alignment. */
1804 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1805 TYPE_SIZE_UNIT (rli->t)
1806 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1807
1808 if (TREE_CONSTANT (unpadded_size)
1809 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1810 && input_location != BUILTINS_LOCATION
1811 && !TYPE_ARTIFICIAL (rli->t))
1812 {
1813 tree pad_size
1814 = size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (rli->t), unpadded_size_unit);
1815 warning (OPT_Wpadded,
1816 "padding struct size to alignment boundary with %E bytes", pad_size);
1817 }
1818
1819 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1820 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1821 && TREE_CONSTANT (unpadded_size))
1822 {
1823 tree unpacked_size;
1824
1825#ifdef ROUND_TYPE_ALIGN
1826 rli->unpacked_align
1827 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1828#else
1829 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1830#endif
1831
1832 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1833 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1834 {
1835 if (TYPE_NAME (rli->t))
1836 {
1837 tree name;
1838
1839 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1840 name = TYPE_NAME (rli->t);
1841 else
1842 name = DECL_NAME (TYPE_NAME (rli->t));
1843
1844 if (STRICT_ALIGNMENT)
1845 warning (OPT_Wpacked, "packed attribute causes inefficient "
1846 "alignment for %qE", name);
1847 else
1848 warning (OPT_Wpacked,
1849 "packed attribute is unnecessary for %qE", name);
1850 }
1851 else
1852 {
1853 if (STRICT_ALIGNMENT)
1854 warning (OPT_Wpacked,
1855 "packed attribute causes inefficient alignment");
1856 else
1857 warning (OPT_Wpacked, "packed attribute is unnecessary");
1858 }
1859 }
1860 }
1861}
1862
1863/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1864
1865void
1866compute_record_mode (tree type)
1867{
1868 tree field;
1869 machine_mode mode = VOIDmode;
1870
1871 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1872 However, if possible, we use a mode that fits in a register
1873 instead, in order to allow for better optimization down the
1874 line. */
1875 SET_TYPE_MODE (type, BLKmode);
1876
1877 poly_uint64 type_size;
1878 if (!poly_int_tree_p (TYPE_SIZE (type), value: &type_size))
1879 return;
1880
1881 /* A record which has any BLKmode members must itself be
1882 BLKmode; it can't go in a register. Unless the member is
1883 BLKmode only because it isn't aligned. */
1884 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1885 {
1886 if (TREE_CODE (field) != FIELD_DECL)
1887 continue;
1888
1889 poly_uint64 field_size;
1890 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1891 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1892 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1893 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1894 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1895 || !tree_fits_poly_uint64_p (bit_position (field))
1896 || DECL_SIZE (field) == 0
1897 || !poly_int_tree_p (DECL_SIZE (field), value: &field_size))
1898 return;
1899
1900 /* If this field is the whole struct, remember its mode so
1901 that, say, we can put a double in a class into a DF
1902 register instead of forcing it to live in the stack. */
1903 if (known_eq (field_size, type_size)
1904 /* Partial int types (e.g. __int20) may have TYPE_SIZE equal to
1905 wider types (e.g. int32), despite precision being less. Ensure
1906 that the TYPE_MODE of the struct does not get set to the partial
1907 int mode if there is a wider type also in the struct. */
1908 && known_gt (GET_MODE_PRECISION (DECL_MODE (field)),
1909 GET_MODE_PRECISION (mode)))
1910 mode = DECL_MODE (field);
1911
1912 /* With some targets, it is sub-optimal to access an aligned
1913 BLKmode structure as a scalar. */
1914 if (targetm.member_type_forces_blk (field, mode))
1915 return;
1916 }
1917
1918 /* If we only have one real field; use its mode if that mode's size
1919 matches the type's size. This generally only applies to RECORD_TYPE.
1920 For UNION_TYPE, if the widest field is MODE_INT then use that mode.
1921 If the widest field is MODE_PARTIAL_INT, and the union will be passed
1922 by reference, then use that mode. */
1923 if ((TREE_CODE (type) == RECORD_TYPE
1924 || (TREE_CODE (type) == UNION_TYPE
1925 && (GET_MODE_CLASS (mode) == MODE_INT
1926 || (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
1927 && (targetm.calls.pass_by_reference
1928 (pack_cumulative_args (arg: 0),
1929 function_arg_info (type, mode, /*named=*/false)))))))
1930 && mode != VOIDmode
1931 && known_eq (GET_MODE_BITSIZE (mode), type_size))
1932 ;
1933 else
1934 mode = mode_for_size_tree (TYPE_SIZE (type), mclass: MODE_INT, limit: 1).else_blk ();
1935
1936 /* If structure's known alignment is less than what the scalar
1937 mode would need, and it matters, then stick with BLKmode. */
1938 if (mode != BLKmode
1939 && STRICT_ALIGNMENT
1940 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1941 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1942 {
1943 /* If this is the only reason this type is BLKmode, then
1944 don't force containing types to be BLKmode. */
1945 TYPE_NO_FORCE_BLK (type) = 1;
1946 mode = BLKmode;
1947 }
1948
1949 SET_TYPE_MODE (type, mode);
1950}
1951
1952/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1953 out. */
1954
1955static void
1956finalize_type_size (tree type)
1957{
1958 /* Normally, use the alignment corresponding to the mode chosen.
1959 However, where strict alignment is not required, avoid
1960 over-aligning structures, since most compilers do not do this
1961 alignment. */
1962 bool tua_cleared_p = false;
1963 if (TYPE_MODE (type) != BLKmode
1964 && TYPE_MODE (type) != VOIDmode
1965 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1966 {
1967 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1968
1969 /* Don't override a larger alignment requirement coming from a user
1970 alignment of one of the fields. */
1971 if (mode_align >= TYPE_ALIGN (type))
1972 {
1973 SET_TYPE_ALIGN (type, mode_align);
1974 /* Remember that we're about to reset this flag. */
1975 tua_cleared_p = TYPE_USER_ALIGN (type);
1976 TYPE_USER_ALIGN (type) = false;
1977 }
1978 }
1979
1980 /* Do machine-dependent extra alignment. */
1981#ifdef ROUND_TYPE_ALIGN
1982 SET_TYPE_ALIGN (type,
1983 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1984#endif
1985
1986 /* If we failed to find a simple way to calculate the unit size
1987 of the type, find it by division. */
1988 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1989 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1990 result will fit in sizetype. We will get more efficient code using
1991 sizetype, so we force a conversion. */
1992 TYPE_SIZE_UNIT (type)
1993 = fold_convert (sizetype,
1994 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1995 bitsize_unit_node));
1996
1997 if (TYPE_SIZE (type) != 0)
1998 {
1999 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
2000 TYPE_SIZE_UNIT (type)
2001 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
2002 }
2003
2004 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
2005 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2006 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
2007 if (TYPE_SIZE_UNIT (type) != 0
2008 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
2009 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
2010
2011 /* Handle empty records as per the x86-64 psABI. */
2012 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
2013
2014 /* Also layout any other variants of the type. */
2015 if (TYPE_NEXT_VARIANT (type)
2016 || type != TYPE_MAIN_VARIANT (type))
2017 {
2018 tree variant;
2019 /* Record layout info of this variant. */
2020 tree size = TYPE_SIZE (type);
2021 tree size_unit = TYPE_SIZE_UNIT (type);
2022 unsigned int align = TYPE_ALIGN (type);
2023 unsigned int precision = TYPE_PRECISION (type);
2024 unsigned int user_align = TYPE_USER_ALIGN (type);
2025 machine_mode mode = TYPE_MODE (type);
2026 bool empty_p = TYPE_EMPTY_P (type);
2027 bool typeless = AGGREGATE_TYPE_P (type) && TYPE_TYPELESS_STORAGE (type);
2028
2029 /* Copy it into all variants. */
2030 for (variant = TYPE_MAIN_VARIANT (type);
2031 variant != NULL_TREE;
2032 variant = TYPE_NEXT_VARIANT (variant))
2033 {
2034 TYPE_SIZE (variant) = size;
2035 TYPE_SIZE_UNIT (variant) = size_unit;
2036 unsigned valign = align;
2037 if (TYPE_USER_ALIGN (variant))
2038 {
2039 valign = MAX (valign, TYPE_ALIGN (variant));
2040 /* If we reset TYPE_USER_ALIGN on the main variant, we might
2041 need to reset it on the variants too. TYPE_MODE will be set
2042 to MODE in this variant, so we can use that. */
2043 if (tua_cleared_p && GET_MODE_ALIGNMENT (mode) >= valign)
2044 TYPE_USER_ALIGN (variant) = false;
2045 }
2046 else
2047 TYPE_USER_ALIGN (variant) = user_align;
2048 SET_TYPE_ALIGN (variant, valign);
2049 TYPE_PRECISION (variant) = precision;
2050 SET_TYPE_MODE (variant, mode);
2051 TYPE_EMPTY_P (variant) = empty_p;
2052 if (AGGREGATE_TYPE_P (variant))
2053 TYPE_TYPELESS_STORAGE (variant) = typeless;
2054 }
2055 }
2056}
2057
2058/* Return a new underlying object for a bitfield started with FIELD. */
2059
2060static tree
2061start_bitfield_representative (tree field)
2062{
2063 tree repr = make_node (FIELD_DECL);
2064 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
2065 /* Force the representative to begin at a BITS_PER_UNIT aligned
2066 boundary - C++ may use tail-padding of a base object to
2067 continue packing bits so the bitfield region does not start
2068 at bit zero (see g++.dg/abi/bitfield5.C for example).
2069 Unallocated bits may happen for other reasons as well,
2070 for example Ada which allows explicit bit-granular structure layout. */
2071 DECL_FIELD_BIT_OFFSET (repr)
2072 = size_binop (BIT_AND_EXPR,
2073 DECL_FIELD_BIT_OFFSET (field),
2074 bitsize_int (~(BITS_PER_UNIT - 1)));
2075 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
2076 DECL_SIZE (repr) = DECL_SIZE (field);
2077 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
2078 DECL_PACKED (repr) = DECL_PACKED (field);
2079 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
2080 /* There are no indirect accesses to this field. If we introduce
2081 some then they have to use the record alias set. This makes
2082 sure to properly conflict with [indirect] accesses to addressable
2083 fields of the bitfield group. */
2084 DECL_NONADDRESSABLE_P (repr) = 1;
2085 return repr;
2086}
2087
2088/* Finish up a bitfield group that was started by creating the underlying
2089 object REPR with the last field in the bitfield group FIELD. */
2090
2091static void
2092finish_bitfield_representative (tree repr, tree field)
2093{
2094 unsigned HOST_WIDE_INT bitsize, maxbitsize;
2095 tree nextf, size;
2096
2097 size = size_diffop (DECL_FIELD_OFFSET (field),
2098 DECL_FIELD_OFFSET (repr));
2099 while (TREE_CODE (size) == COMPOUND_EXPR)
2100 size = TREE_OPERAND (size, 1);
2101 gcc_assert (tree_fits_uhwi_p (size));
2102 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2103 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2104 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2105 + tree_to_uhwi (DECL_SIZE (field)));
2106
2107 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2108 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2109
2110 /* Now nothing tells us how to pad out bitsize ... */
2111 if (TREE_CODE (DECL_CONTEXT (field)) == RECORD_TYPE)
2112 {
2113 nextf = DECL_CHAIN (field);
2114 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2115 nextf = DECL_CHAIN (nextf);
2116 }
2117 else
2118 nextf = NULL_TREE;
2119 if (nextf)
2120 {
2121 tree maxsize;
2122 /* If there was an error, the field may be not laid out
2123 correctly. Don't bother to do anything. */
2124 if (TREE_TYPE (nextf) == error_mark_node)
2125 {
2126 TREE_TYPE (repr) = error_mark_node;
2127 return;
2128 }
2129 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2130 DECL_FIELD_OFFSET (repr));
2131 if (tree_fits_uhwi_p (maxsize))
2132 {
2133 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2134 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2135 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2136 /* If the group ends within a bitfield nextf does not need to be
2137 aligned to BITS_PER_UNIT. Thus round up. */
2138 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2139 }
2140 else
2141 maxbitsize = bitsize;
2142 }
2143 else
2144 {
2145 /* Note that if the C++ FE sets up tail-padding to be re-used it
2146 creates a as-base variant of the type with TYPE_SIZE adjusted
2147 accordingly. So it is safe to include tail-padding here. */
2148 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2149 (DECL_CONTEXT (field));
2150 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2151 /* We cannot generally rely on maxsize to fold to an integer constant,
2152 so use bitsize as fallback for this case. */
2153 if (tree_fits_uhwi_p (maxsize))
2154 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2155 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2156 else
2157 maxbitsize = bitsize;
2158 }
2159
2160 /* Only if we don't artificially break up the representative in
2161 the middle of a large bitfield with different possibly
2162 overlapping representatives. And all representatives start
2163 at byte offset. */
2164 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2165
2166 /* Find the smallest nice mode to use. */
2167 opt_scalar_int_mode mode_iter;
2168 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2169 if (GET_MODE_BITSIZE (mode: mode_iter.require ()) >= bitsize)
2170 break;
2171
2172 scalar_int_mode mode;
2173 if (!mode_iter.exists (mode: &mode)
2174 || GET_MODE_BITSIZE (mode) > maxbitsize
2175 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2176 {
2177 if (TREE_CODE (TREE_TYPE (field)) == BITINT_TYPE)
2178 {
2179 struct bitint_info info;
2180 unsigned prec = TYPE_PRECISION (TREE_TYPE (field));
2181 bool ok = targetm.c.bitint_type_info (prec, &info);
2182 gcc_assert (ok);
2183 scalar_int_mode limb_mode
2184 = as_a <scalar_int_mode> (m: info.abi_limb_mode);
2185 unsigned lprec = GET_MODE_PRECISION (mode: limb_mode);
2186 if (prec > lprec)
2187 {
2188 /* For middle/large/huge _BitInt prefer bitsize being a multiple
2189 of limb precision. */
2190 unsigned HOST_WIDE_INT bsz = CEIL (bitsize, lprec) * lprec;
2191 if (bsz <= maxbitsize)
2192 bitsize = bsz;
2193 }
2194 }
2195 /* We really want a BLKmode representative only as a last resort,
2196 considering the member b in
2197 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2198 Otherwise we simply want to split the representative up
2199 allowing for overlaps within the bitfield region as required for
2200 struct { int a : 7; int b : 7;
2201 int c : 10; int d; } __attribute__((packed));
2202 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2203 DECL_SIZE (repr) = bitsize_int (bitsize);
2204 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2205 SET_DECL_MODE (repr, BLKmode);
2206 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2207 bitsize / BITS_PER_UNIT);
2208 }
2209 else
2210 {
2211 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2212 DECL_SIZE (repr) = bitsize_int (modesize);
2213 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2214 SET_DECL_MODE (repr, mode);
2215 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2216 }
2217
2218 /* Remember whether the bitfield group is at the end of the
2219 structure or not. */
2220 DECL_CHAIN (repr) = nextf;
2221}
2222
2223/* Compute and set FIELD_DECLs for the underlying objects we should
2224 use for bitfield access for the structure T. */
2225
2226void
2227finish_bitfield_layout (tree t)
2228{
2229 tree field, prev;
2230 tree repr = NULL_TREE;
2231
2232 if (TREE_CODE (t) == QUAL_UNION_TYPE)
2233 return;
2234
2235 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2236 field; field = DECL_CHAIN (field))
2237 {
2238 if (TREE_CODE (field) != FIELD_DECL)
2239 continue;
2240
2241 /* In the C++ memory model, consecutive bit fields in a structure are
2242 considered one memory location and updating a memory location
2243 may not store into adjacent memory locations. */
2244 if (!repr
2245 && DECL_BIT_FIELD_TYPE (field))
2246 {
2247 /* Start new representative. */
2248 repr = start_bitfield_representative (field);
2249 }
2250 else if (repr
2251 && ! DECL_BIT_FIELD_TYPE (field))
2252 {
2253 /* Finish off new representative. */
2254 finish_bitfield_representative (repr, field: prev);
2255 repr = NULL_TREE;
2256 }
2257 else if (DECL_BIT_FIELD_TYPE (field))
2258 {
2259 gcc_assert (repr != NULL_TREE);
2260
2261 /* Zero-size bitfields finish off a representative and
2262 do not have a representative themselves. This is
2263 required by the C++ memory model. */
2264 if (integer_zerop (DECL_SIZE (field)))
2265 {
2266 finish_bitfield_representative (repr, field: prev);
2267 repr = NULL_TREE;
2268 }
2269
2270 /* We assume that either DECL_FIELD_OFFSET of the representative
2271 and each bitfield member is a constant or they are equal.
2272 This is because we need to be able to compute the bit-offset
2273 of each field relative to the representative in get_bit_range
2274 during RTL expansion.
2275 If these constraints are not met, simply force a new
2276 representative to be generated. That will at most
2277 generate worse code but still maintain correctness with
2278 respect to the C++ memory model. */
2279 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2280 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2281 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2282 DECL_FIELD_OFFSET (field), flags: 0)))
2283 {
2284 finish_bitfield_representative (repr, field: prev);
2285 repr = start_bitfield_representative (field);
2286 }
2287 }
2288 else
2289 continue;
2290
2291 if (repr)
2292 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2293
2294 if (TREE_CODE (t) == RECORD_TYPE)
2295 prev = field;
2296 else if (repr)
2297 {
2298 finish_bitfield_representative (repr, field);
2299 repr = NULL_TREE;
2300 }
2301 }
2302
2303 if (repr)
2304 finish_bitfield_representative (repr, field: prev);
2305}
2306
2307/* Do all of the work required to layout the type indicated by RLI,
2308 once the fields have been laid out. This function will call `free'
2309 for RLI, unless FREE_P is false. Passing a value other than false
2310 for FREE_P is bad practice; this option only exists to support the
2311 G++ 3.2 ABI. */
2312
2313void
2314finish_record_layout (record_layout_info rli, int free_p)
2315{
2316 tree variant;
2317
2318 /* Compute the final size. */
2319 finalize_record_size (rli);
2320
2321 /* Compute the TYPE_MODE for the record. */
2322 compute_record_mode (type: rli->t);
2323
2324 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2325 finalize_type_size (type: rli->t);
2326
2327 /* Compute bitfield representatives. */
2328 finish_bitfield_layout (t: rli->t);
2329
2330 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2331 With C++ templates, it is too early to do this when the attribute
2332 is being parsed. */
2333 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2334 variant = TYPE_NEXT_VARIANT (variant))
2335 {
2336 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2337 TYPE_REVERSE_STORAGE_ORDER (variant)
2338 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2339 }
2340
2341 /* Lay out any static members. This is done now because their type
2342 may use the record's type. */
2343 while (!vec_safe_is_empty (v: rli->pending_statics))
2344 layout_decl (decl: rli->pending_statics->pop (), known_align: 0);
2345
2346 /* Clean up. */
2347 if (free_p)
2348 {
2349 vec_free (v&: rli->pending_statics);
2350 free (ptr: rli);
2351 }
2352}
2353
2354
2355/* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2356 NAME, its fields are chained in reverse on FIELDS.
2357
2358 If ALIGN_TYPE is non-null, it is given the same alignment as
2359 ALIGN_TYPE. */
2360
2361void
2362finish_builtin_struct (tree type, const char *name, tree fields,
2363 tree align_type)
2364{
2365 tree tail, next;
2366
2367 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2368 {
2369 DECL_FIELD_CONTEXT (fields) = type;
2370 next = DECL_CHAIN (fields);
2371 DECL_CHAIN (fields) = tail;
2372 }
2373 TYPE_FIELDS (type) = tail;
2374
2375 if (align_type)
2376 {
2377 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2378 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2379 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2380 TYPE_WARN_IF_NOT_ALIGN (align_type));
2381 }
2382
2383 layout_type (type);
2384#if 0 /* not yet, should get fixed properly later */
2385 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2386#else
2387 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2388 TYPE_DECL, get_identifier (name), type);
2389#endif
2390 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2391 layout_decl (TYPE_NAME (type), known_align: 0);
2392}
2393
2394/* Calculate the mode, size, and alignment for TYPE.
2395 For an array type, calculate the element separation as well.
2396 Record TYPE on the chain of permanent or temporary types
2397 so that dbxout will find out about it.
2398
2399 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2400 layout_type does nothing on such a type.
2401
2402 If the type is incomplete, its TYPE_SIZE remains zero. */
2403
2404void
2405layout_type (tree type)
2406{
2407 gcc_assert (type);
2408
2409 if (type == error_mark_node)
2410 return;
2411
2412 /* We don't want finalize_type_size to copy an alignment attribute to
2413 variants that don't have it. */
2414 type = TYPE_MAIN_VARIANT (type);
2415
2416 /* Do nothing if type has been laid out before. */
2417 if (TYPE_SIZE (type))
2418 return;
2419
2420 switch (TREE_CODE (type))
2421 {
2422 case LANG_TYPE:
2423 /* This kind of type is the responsibility
2424 of the language-specific code. */
2425 gcc_unreachable ();
2426
2427 case BOOLEAN_TYPE:
2428 case INTEGER_TYPE:
2429 case ENUMERAL_TYPE:
2430 {
2431 scalar_int_mode mode
2432 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2433 SET_TYPE_MODE (type, mode);
2434 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2435 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2436 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2437 break;
2438 }
2439
2440 case BITINT_TYPE:
2441 {
2442 struct bitint_info info;
2443 int cnt;
2444 bool ok = targetm.c.bitint_type_info (TYPE_PRECISION (type), &info);
2445 gcc_assert (ok);
2446 scalar_int_mode limb_mode
2447 = as_a <scalar_int_mode> (m: info.abi_limb_mode);
2448 if (TYPE_PRECISION (type) <= GET_MODE_PRECISION (mode: limb_mode))
2449 {
2450 SET_TYPE_MODE (type, limb_mode);
2451 gcc_assert (info.abi_limb_mode == info.limb_mode);
2452 cnt = 1;
2453 }
2454 else
2455 {
2456 SET_TYPE_MODE (type, BLKmode);
2457 cnt = CEIL (TYPE_PRECISION (type), GET_MODE_PRECISION (limb_mode));
2458 gcc_assert (info.abi_limb_mode == info.limb_mode
2459 || !info.big_endian == !WORDS_BIG_ENDIAN);
2460 }
2461 TYPE_SIZE (type) = bitsize_int (cnt * GET_MODE_BITSIZE (limb_mode));
2462 TYPE_SIZE_UNIT (type) = size_int (cnt * GET_MODE_SIZE (limb_mode));
2463 SET_TYPE_ALIGN (type, GET_MODE_ALIGNMENT (limb_mode));
2464 if (cnt > 1)
2465 {
2466 /* Use same mode as compute_record_mode would use for a structure
2467 containing cnt limb_mode elements. */
2468 machine_mode mode = mode_for_size_tree (TYPE_SIZE (type),
2469 mclass: MODE_INT, limit: 1).else_blk ();
2470 if (mode == BLKmode)
2471 break;
2472 finalize_type_size (type);
2473 SET_TYPE_MODE (type, mode);
2474 if (STRICT_ALIGNMENT
2475 && !(TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
2476 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
2477 {
2478 /* If this is the only reason this type is BLKmode, then
2479 don't force containing types to be BLKmode. */
2480 TYPE_NO_FORCE_BLK (type) = 1;
2481 SET_TYPE_MODE (type, BLKmode);
2482 }
2483 if (TYPE_NEXT_VARIANT (type) || type != TYPE_MAIN_VARIANT (type))
2484 for (tree variant = TYPE_MAIN_VARIANT (type);
2485 variant != NULL_TREE;
2486 variant = TYPE_NEXT_VARIANT (variant))
2487 {
2488 SET_TYPE_MODE (variant, mode);
2489 if (STRICT_ALIGNMENT
2490 && !(TYPE_ALIGN (variant) >= BIGGEST_ALIGNMENT
2491 || (TYPE_ALIGN (variant)
2492 >= GET_MODE_ALIGNMENT (mode))))
2493 {
2494 TYPE_NO_FORCE_BLK (variant) = 1;
2495 SET_TYPE_MODE (variant, BLKmode);
2496 }
2497 }
2498 return;
2499 }
2500 break;
2501 }
2502
2503 case REAL_TYPE:
2504 {
2505 /* Allow the caller to choose the type mode, which is how decimal
2506 floats are distinguished from binary ones. */
2507 if (TYPE_MODE (type) == VOIDmode)
2508 SET_TYPE_MODE
2509 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2510 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2511 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2512 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2513 break;
2514 }
2515
2516 case FIXED_POINT_TYPE:
2517 {
2518 /* TYPE_MODE (type) has been set already. */
2519 scalar_mode mode = SCALAR_TYPE_MODE (type);
2520 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2521 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2522 break;
2523 }
2524
2525 case COMPLEX_TYPE:
2526 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2527 if (TYPE_MODE (TREE_TYPE (type)) == BLKmode)
2528 {
2529 gcc_checking_assert (TREE_CODE (TREE_TYPE (type)) == BITINT_TYPE);
2530 SET_TYPE_MODE (type, BLKmode);
2531 TYPE_SIZE (type)
2532 = int_const_binop (MULT_EXPR, TYPE_SIZE (TREE_TYPE (type)),
2533 bitsize_int (2));
2534 TYPE_SIZE_UNIT (type)
2535 = int_const_binop (MULT_EXPR, TYPE_SIZE_UNIT (TREE_TYPE (type)),
2536 bitsize_int (2));
2537 break;
2538 }
2539 SET_TYPE_MODE (type,
2540 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2541
2542 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2543 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2544 break;
2545
2546 case VECTOR_TYPE:
2547 {
2548 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (node: type);
2549 tree innertype = TREE_TYPE (type);
2550
2551 /* Find an appropriate mode for the vector type. */
2552 if (TYPE_MODE (type) == VOIDmode)
2553 SET_TYPE_MODE (type,
2554 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2555 nunits).else_blk ());
2556
2557 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2558 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2559 /* Several boolean vector elements may fit in a single unit. */
2560 if (VECTOR_BOOLEAN_TYPE_P (type)
2561 && type->type_common.mode != BLKmode)
2562 TYPE_SIZE_UNIT (type)
2563 = size_int (GET_MODE_SIZE (type->type_common.mode));
2564 else
2565 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2566 TYPE_SIZE_UNIT (innertype),
2567 size_int (nunits));
2568 TYPE_SIZE (type) = int_const_binop
2569 (MULT_EXPR,
2570 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2571 bitsize_int (BITS_PER_UNIT));
2572
2573 /* For vector types, we do not default to the mode's alignment.
2574 Instead, query a target hook, defaulting to natural alignment.
2575 This prevents ABI changes depending on whether or not native
2576 vector modes are supported. */
2577 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2578
2579 /* However, if the underlying mode requires a bigger alignment than
2580 what the target hook provides, we cannot use the mode. For now,
2581 simply reject that case. */
2582 gcc_assert (TYPE_ALIGN (type)
2583 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2584 break;
2585 }
2586
2587 case VOID_TYPE:
2588 /* This is an incomplete type and so doesn't have a size. */
2589 SET_TYPE_ALIGN (type, 1);
2590 TYPE_USER_ALIGN (type) = 0;
2591 SET_TYPE_MODE (type, VOIDmode);
2592 break;
2593
2594 case OFFSET_TYPE:
2595 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2596 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2597 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2598 integral, which may be an __intN. */
2599 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2600 TYPE_PRECISION (type) = POINTER_SIZE;
2601 break;
2602
2603 case FUNCTION_TYPE:
2604 case METHOD_TYPE:
2605 /* It's hard to see what the mode and size of a function ought to
2606 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2607 make it consistent with that. */
2608 SET_TYPE_MODE (type,
2609 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2610 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2611 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2612 break;
2613
2614 case POINTER_TYPE:
2615 case REFERENCE_TYPE:
2616 {
2617 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2618 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2619 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2620 TYPE_UNSIGNED (type) = 1;
2621 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2622 }
2623 break;
2624
2625 case ARRAY_TYPE:
2626 {
2627 tree index = TYPE_DOMAIN (type);
2628 tree element = TREE_TYPE (type);
2629
2630 /* We need to know both bounds in order to compute the size. */
2631 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2632 && TYPE_SIZE (element))
2633 {
2634 tree ub = TYPE_MAX_VALUE (index);
2635 tree lb = TYPE_MIN_VALUE (index);
2636 tree element_size = TYPE_SIZE (element);
2637 tree length;
2638
2639 /* Make sure that an array of zero-sized element is zero-sized
2640 regardless of its extent. */
2641 if (integer_zerop (element_size))
2642 length = size_zero_node;
2643
2644 /* The computation should happen in the original signedness so
2645 that (possible) negative values are handled appropriately
2646 when determining overflow. */
2647 else
2648 {
2649 /* ??? When it is obvious that the range is signed
2650 represent it using ssizetype. */
2651 if (TREE_CODE (lb) == INTEGER_CST
2652 && TREE_CODE (ub) == INTEGER_CST
2653 && TYPE_UNSIGNED (TREE_TYPE (lb))
2654 && tree_int_cst_lt (t1: ub, t2: lb))
2655 {
2656 lb = wide_int_to_tree (ssizetype,
2657 cst: offset_int::from (x: wi::to_wide (t: lb),
2658 sgn: SIGNED));
2659 ub = wide_int_to_tree (ssizetype,
2660 cst: offset_int::from (x: wi::to_wide (t: ub),
2661 sgn: SIGNED));
2662 }
2663 length
2664 = fold_convert (sizetype,
2665 size_binop (PLUS_EXPR,
2666 build_int_cst (TREE_TYPE (lb), 1),
2667 size_binop (MINUS_EXPR, ub, lb)));
2668 }
2669
2670 /* ??? We have no way to distinguish a null-sized array from an
2671 array spanning the whole sizetype range, so we arbitrarily
2672 decide that [0, -1] is the only valid representation. */
2673 if (integer_zerop (length)
2674 && TREE_OVERFLOW (length)
2675 && integer_zerop (lb))
2676 length = size_zero_node;
2677
2678 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2679 bits_from_bytes (length));
2680
2681 /* If we know the size of the element, calculate the total size
2682 directly, rather than do some division thing below. This
2683 optimization helps Fortran assumed-size arrays (where the
2684 size of the array is determined at runtime) substantially. */
2685 if (TYPE_SIZE_UNIT (element))
2686 TYPE_SIZE_UNIT (type)
2687 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2688 }
2689
2690 /* Now round the alignment and size,
2691 using machine-dependent criteria if any. */
2692
2693 unsigned align = TYPE_ALIGN (element);
2694 if (TYPE_USER_ALIGN (type))
2695 align = MAX (align, TYPE_ALIGN (type));
2696 else
2697 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2698 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2699 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2700 TYPE_WARN_IF_NOT_ALIGN (element));
2701#ifdef ROUND_TYPE_ALIGN
2702 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2703#else
2704 align = MAX (align, BITS_PER_UNIT);
2705#endif
2706 SET_TYPE_ALIGN (type, align);
2707 SET_TYPE_MODE (type, BLKmode);
2708 if (TYPE_SIZE (type) != 0
2709 && ! targetm.member_type_forces_blk (type, VOIDmode)
2710 /* BLKmode elements force BLKmode aggregate;
2711 else extract/store fields may lose. */
2712 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2713 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2714 {
2715 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2716 TYPE_SIZE (type)));
2717 if (TYPE_MODE (type) != BLKmode
2718 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2719 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2720 {
2721 TYPE_NO_FORCE_BLK (type) = 1;
2722 SET_TYPE_MODE (type, BLKmode);
2723 }
2724 }
2725 if (AGGREGATE_TYPE_P (element))
2726 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2727 /* When the element size is constant, check that it is at least as
2728 large as the element alignment. */
2729 if (TYPE_SIZE_UNIT (element)
2730 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2731 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2732 TYPE_ALIGN_UNIT. */
2733 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2734 && !integer_zerop (TYPE_SIZE_UNIT (element)))
2735 {
2736 if (compare_tree_int (TYPE_SIZE_UNIT (element),
2737 TYPE_ALIGN_UNIT (element)) < 0)
2738 error ("alignment of array elements is greater than "
2739 "element size");
2740 else if (TYPE_ALIGN_UNIT (element) > 1
2741 && (wi::zext (x: wi::to_wide (TYPE_SIZE_UNIT (element)),
2742 offset: ffs_hwi (TYPE_ALIGN_UNIT (element)) - 1)
2743 != 0))
2744 error ("size of array element is not a multiple of its "
2745 "alignment");
2746 }
2747 break;
2748 }
2749
2750 case RECORD_TYPE:
2751 case UNION_TYPE:
2752 case QUAL_UNION_TYPE:
2753 {
2754 tree field;
2755 record_layout_info rli;
2756
2757 /* Initialize the layout information. */
2758 rli = start_record_layout (t: type);
2759
2760 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2761 in the reverse order in building the COND_EXPR that denotes
2762 its size. We reverse them again later. */
2763 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2764 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2765
2766 /* Place all the fields. */
2767 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2768 place_field (rli, field);
2769
2770 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2771 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2772
2773 /* Finish laying out the record. */
2774 finish_record_layout (rli, /*free_p=*/true);
2775 }
2776 break;
2777
2778 default:
2779 gcc_unreachable ();
2780 }
2781
2782 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2783 records and unions, finish_record_layout already called this
2784 function. */
2785 if (!RECORD_OR_UNION_TYPE_P (type))
2786 finalize_type_size (type);
2787
2788 /* We should never see alias sets on incomplete aggregates. And we
2789 should not call layout_type on not incomplete aggregates. */
2790 if (AGGREGATE_TYPE_P (type))
2791 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2792}
2793
2794/* Return the least alignment required for type TYPE. */
2795
2796unsigned int
2797min_align_of_type (tree type)
2798{
2799 unsigned int align = TYPE_ALIGN (type);
2800 if (!TYPE_USER_ALIGN (type))
2801 {
2802 align = MIN (align, BIGGEST_ALIGNMENT);
2803#ifdef BIGGEST_FIELD_ALIGNMENT
2804 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2805#endif
2806 unsigned int field_align = align;
2807#ifdef ADJUST_FIELD_ALIGN
2808 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2809#endif
2810 align = MIN (align, field_align);
2811 }
2812 return align / BITS_PER_UNIT;
2813}
2814
2815/* Create and return a type for signed integers of PRECISION bits. */
2816
2817tree
2818make_signed_type (int precision)
2819{
2820 tree type = make_node (INTEGER_TYPE);
2821
2822 TYPE_PRECISION (type) = precision;
2823
2824 fixup_signed_type (type);
2825 return type;
2826}
2827
2828/* Create and return a type for unsigned integers of PRECISION bits. */
2829
2830tree
2831make_unsigned_type (int precision)
2832{
2833 tree type = make_node (INTEGER_TYPE);
2834
2835 TYPE_PRECISION (type) = precision;
2836
2837 fixup_unsigned_type (type);
2838 return type;
2839}
2840
2841/* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2842 and SATP. */
2843
2844tree
2845make_fract_type (int precision, int unsignedp, int satp)
2846{
2847 tree type = make_node (FIXED_POINT_TYPE);
2848
2849 TYPE_PRECISION (type) = precision;
2850
2851 if (satp)
2852 TYPE_SATURATING (type) = 1;
2853
2854 /* Lay out the type: set its alignment, size, etc. */
2855 TYPE_UNSIGNED (type) = unsignedp;
2856 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2857 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2858 layout_type (type);
2859
2860 return type;
2861}
2862
2863/* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2864 and SATP. */
2865
2866tree
2867make_accum_type (int precision, int unsignedp, int satp)
2868{
2869 tree type = make_node (FIXED_POINT_TYPE);
2870
2871 TYPE_PRECISION (type) = precision;
2872
2873 if (satp)
2874 TYPE_SATURATING (type) = 1;
2875
2876 /* Lay out the type: set its alignment, size, etc. */
2877 TYPE_UNSIGNED (type) = unsignedp;
2878 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2879 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2880 layout_type (type);
2881
2882 return type;
2883}
2884
2885/* Initialize sizetypes so layout_type can use them. */
2886
2887void
2888initialize_sizetypes (void)
2889{
2890 int precision, bprecision;
2891
2892 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2893 if (strcmp (SIZETYPE, s2: "unsigned int") == 0)
2894 precision = INT_TYPE_SIZE;
2895 else if (strcmp (SIZETYPE, s2: "long unsigned int") == 0)
2896 precision = LONG_TYPE_SIZE;
2897 else if (strcmp (SIZETYPE, s2: "long long unsigned int") == 0)
2898 precision = LONG_LONG_TYPE_SIZE;
2899 else if (strcmp (SIZETYPE, s2: "short unsigned int") == 0)
2900 precision = SHORT_TYPE_SIZE;
2901 else
2902 {
2903 int i;
2904
2905 precision = -1;
2906 for (i = 0; i < NUM_INT_N_ENTS; i++)
2907 if (int_n_enabled_p[i])
2908 {
2909 char name[50], altname[50];
2910 sprintf (s: name, format: "__int%d unsigned", int_n_data[i].bitsize);
2911 sprintf (s: altname, format: "__int%d__ unsigned", int_n_data[i].bitsize);
2912
2913 if (strcmp (s1: name, SIZETYPE) == 0
2914 || strcmp (s1: altname, SIZETYPE) == 0)
2915 {
2916 precision = int_n_data[i].bitsize;
2917 }
2918 }
2919 if (precision == -1)
2920 gcc_unreachable ();
2921 }
2922
2923 bprecision
2924 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2925 bprecision = GET_MODE_PRECISION (mode: smallest_int_mode_for_size (size: bprecision));
2926 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2927 bprecision = HOST_BITS_PER_DOUBLE_INT;
2928
2929 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2930 sizetype = make_node (INTEGER_TYPE);
2931 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2932 TYPE_PRECISION (sizetype) = precision;
2933 TYPE_UNSIGNED (sizetype) = 1;
2934 bitsizetype = make_node (INTEGER_TYPE);
2935 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2936 TYPE_PRECISION (bitsizetype) = bprecision;
2937 TYPE_UNSIGNED (bitsizetype) = 1;
2938
2939 /* Now layout both types manually. */
2940 scalar_int_mode mode = smallest_int_mode_for_size (size: precision);
2941 SET_TYPE_MODE (sizetype, mode);
2942 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2943 TYPE_SIZE (sizetype) = bitsize_int (precision);
2944 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2945 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2946
2947 mode = smallest_int_mode_for_size (size: bprecision);
2948 SET_TYPE_MODE (bitsizetype, mode);
2949 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2950 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2951 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2952 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2953
2954 /* Create the signed variants of *sizetype. */
2955 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2956 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2957 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2958 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2959}
2960
2961/* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2962 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2963 for TYPE, based on the PRECISION and whether or not the TYPE
2964 IS_UNSIGNED. PRECISION need not correspond to a width supported
2965 natively by the hardware; for example, on a machine with 8-bit,
2966 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2967 61. */
2968
2969void
2970set_min_and_max_values_for_integral_type (tree type,
2971 int precision,
2972 signop sgn)
2973{
2974 /* For bitfields with zero width we end up creating integer types
2975 with zero precision. Don't assign any minimum/maximum values
2976 to those types, they don't have any valid value. */
2977 if (precision < 1)
2978 return;
2979
2980 gcc_assert (precision <= WIDE_INT_MAX_PRECISION);
2981
2982 TYPE_MIN_VALUE (type)
2983 = wide_int_to_tree (type, cst: wi::min_value (precision, sgn));
2984 TYPE_MAX_VALUE (type)
2985 = wide_int_to_tree (type, cst: wi::max_value (precision, sgn));
2986}
2987
2988/* Set the extreme values of TYPE based on its precision in bits,
2989 then lay it out. Used when make_signed_type won't do
2990 because the tree code is not INTEGER_TYPE. */
2991
2992void
2993fixup_signed_type (tree type)
2994{
2995 int precision = TYPE_PRECISION (type);
2996
2997 set_min_and_max_values_for_integral_type (type, precision, sgn: SIGNED);
2998
2999 /* Lay out the type: set its alignment, size, etc. */
3000 layout_type (type);
3001}
3002
3003/* Set the extreme values of TYPE based on its precision in bits,
3004 then lay it out. This is used both in `make_unsigned_type'
3005 and for enumeral types. */
3006
3007void
3008fixup_unsigned_type (tree type)
3009{
3010 int precision = TYPE_PRECISION (type);
3011
3012 TYPE_UNSIGNED (type) = 1;
3013
3014 set_min_and_max_values_for_integral_type (type, precision, sgn: UNSIGNED);
3015
3016 /* Lay out the type: set its alignment, size, etc. */
3017 layout_type (type);
3018}
3019
3020/* Construct an iterator for a bitfield that spans BITSIZE bits,
3021 starting at BITPOS.
3022
3023 BITREGION_START is the bit position of the first bit in this
3024 sequence of bit fields. BITREGION_END is the last bit in this
3025 sequence. If these two fields are non-zero, we should restrict the
3026 memory access to that range. Otherwise, we are allowed to touch
3027 any adjacent non bit-fields.
3028
3029 ALIGN is the alignment of the underlying object in bits.
3030 VOLATILEP says whether the bitfield is volatile. */
3031
3032bit_field_mode_iterator
3033::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3034 poly_int64 bitregion_start,
3035 poly_int64 bitregion_end,
3036 unsigned int align, bool volatilep)
3037: m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
3038 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
3039 m_bitregion_end (bitregion_end), m_align (align),
3040 m_volatilep (volatilep), m_count (0)
3041{
3042 if (known_eq (m_bitregion_end, 0))
3043 {
3044 /* We can assume that any aligned chunk of ALIGN bits that overlaps
3045 the bitfield is mapped and won't trap, provided that ALIGN isn't
3046 too large. The cap is the biggest required alignment for data,
3047 or at least the word size. And force one such chunk at least. */
3048 unsigned HOST_WIDE_INT units
3049 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
3050 if (bitsize <= 0)
3051 bitsize = 1;
3052 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
3053 m_bitregion_end = end - end % units - 1;
3054 }
3055}
3056
3057/* Calls to this function return successively larger modes that can be used
3058 to represent the bitfield. Return true if another bitfield mode is
3059 available, storing it in *OUT_MODE if so. */
3060
3061bool
3062bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
3063{
3064 scalar_int_mode mode;
3065 for (; m_mode.exists (mode: &mode); m_mode = GET_MODE_WIDER_MODE (m: mode))
3066 {
3067 unsigned int unit = GET_MODE_BITSIZE (mode);
3068
3069 /* Skip modes that don't have full precision. */
3070 if (unit != GET_MODE_PRECISION (mode))
3071 continue;
3072
3073 /* Stop if the mode is too wide to handle efficiently. */
3074 if (unit > MAX_FIXED_MODE_SIZE)
3075 break;
3076
3077 /* Don't deliver more than one multiword mode; the smallest one
3078 should be used. */
3079 if (m_count > 0 && unit > BITS_PER_WORD)
3080 break;
3081
3082 /* Skip modes that are too small. */
3083 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
3084 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
3085 if (subend > unit)
3086 continue;
3087
3088 /* Stop if the mode goes outside the bitregion. */
3089 HOST_WIDE_INT start = m_bitpos - substart;
3090 if (maybe_ne (a: m_bitregion_start, b: 0)
3091 && maybe_lt (a: start, b: m_bitregion_start))
3092 break;
3093 HOST_WIDE_INT end = start + unit;
3094 if (maybe_gt (end, m_bitregion_end + 1))
3095 break;
3096
3097 /* Stop if the mode requires too much alignment. */
3098 if (GET_MODE_ALIGNMENT (mode) > m_align
3099 && targetm.slow_unaligned_access (mode, m_align))
3100 break;
3101
3102 *out_mode = mode;
3103 m_mode = GET_MODE_WIDER_MODE (m: mode);
3104 m_count++;
3105 return true;
3106 }
3107 return false;
3108}
3109
3110/* Return true if smaller modes are generally preferred for this kind
3111 of bitfield. */
3112
3113bool
3114bit_field_mode_iterator::prefer_smaller_modes ()
3115{
3116 return (m_volatilep
3117 ? targetm.narrow_volatile_bitfield ()
3118 : !SLOW_BYTE_ACCESS);
3119}
3120
3121/* Find the best machine mode to use when referencing a bit field of length
3122 BITSIZE bits starting at BITPOS.
3123
3124 BITREGION_START is the bit position of the first bit in this
3125 sequence of bit fields. BITREGION_END is the last bit in this
3126 sequence. If these two fields are non-zero, we should restrict the
3127 memory access to that range. Otherwise, we are allowed to touch
3128 any adjacent non bit-fields.
3129
3130 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
3131 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
3132 doesn't want to apply a specific limit.
3133
3134 If no mode meets all these conditions, we return VOIDmode.
3135
3136 The underlying object is known to be aligned to a boundary of ALIGN bits.
3137
3138 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
3139 smallest mode meeting these conditions.
3140
3141 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
3142 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
3143 all the conditions.
3144
3145 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
3146 decide which of the above modes should be used. */
3147
3148bool
3149get_best_mode (int bitsize, int bitpos,
3150 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
3151 unsigned int align,
3152 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
3153 scalar_int_mode *best_mode)
3154{
3155 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
3156 bitregion_end, align, volatilep);
3157 scalar_int_mode mode;
3158 bool found = false;
3159 while (iter.next_mode (out_mode: &mode)
3160 /* ??? For historical reasons, reject modes that would normally
3161 receive greater alignment, even if unaligned accesses are
3162 acceptable. This has both advantages and disadvantages.
3163 Removing this check means that something like:
3164
3165 struct s { unsigned int x; unsigned int y; };
3166 int f (struct s *s) { return s->x == 0 && s->y == 0; }
3167
3168 can be implemented using a single load and compare on
3169 64-bit machines that have no alignment restrictions.
3170 For example, on powerpc64-linux-gnu, we would generate:
3171
3172 ld 3,0(3)
3173 cntlzd 3,3
3174 srdi 3,3,6
3175 blr
3176
3177 rather than:
3178
3179 lwz 9,0(3)
3180 cmpwi 7,9,0
3181 bne 7,.L3
3182 lwz 3,4(3)
3183 cntlzw 3,3
3184 srwi 3,3,5
3185 extsw 3,3
3186 blr
3187 .p2align 4,,15
3188 .L3:
3189 li 3,0
3190 blr
3191
3192 However, accessing more than one field can make life harder
3193 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
3194 has a series of unsigned short copies followed by a series of
3195 unsigned short comparisons. With this check, both the copies
3196 and comparisons remain 16-bit accesses and FRE is able
3197 to eliminate the latter. Without the check, the comparisons
3198 can be done using 2 64-bit operations, which FRE isn't able
3199 to handle in the same way.
3200
3201 Either way, it would probably be worth disabling this check
3202 during expand. One particular example where removing the
3203 check would help is the get_best_mode call in store_bit_field.
3204 If we are given a memory bitregion of 128 bits that is aligned
3205 to a 64-bit boundary, and the bitfield we want to modify is
3206 in the second half of the bitregion, this check causes
3207 store_bitfield to turn the memory into a 64-bit reference
3208 to the _first_ half of the region. We later use
3209 adjust_bitfield_address to get a reference to the correct half,
3210 but doing so looks to adjust_bitfield_address as though we are
3211 moving past the end of the original object, so it drops the
3212 associated MEM_EXPR and MEM_OFFSET. Removing the check
3213 causes store_bit_field to keep a 128-bit memory reference,
3214 so that the final bitfield reference still has a MEM_EXPR
3215 and MEM_OFFSET. */
3216 && GET_MODE_ALIGNMENT (mode) <= align
3217 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3218 {
3219 *best_mode = mode;
3220 found = true;
3221 if (iter.prefer_smaller_modes ())
3222 break;
3223 }
3224
3225 return found;
3226}
3227
3228/* Gets minimal and maximal values for MODE (signed or unsigned depending on
3229 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3230
3231void
3232get_mode_bounds (scalar_int_mode mode, int sign,
3233 scalar_int_mode target_mode,
3234 rtx *mmin, rtx *mmax)
3235{
3236 unsigned size = GET_MODE_PRECISION (mode);
3237 unsigned HOST_WIDE_INT min_val, max_val;
3238
3239 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3240
3241 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3242 if (mode == BImode)
3243 {
3244 if (STORE_FLAG_VALUE < 0)
3245 {
3246 min_val = STORE_FLAG_VALUE;
3247 max_val = 0;
3248 }
3249 else
3250 {
3251 min_val = 0;
3252 max_val = STORE_FLAG_VALUE;
3253 }
3254 }
3255 else if (sign)
3256 {
3257 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3258 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3259 }
3260 else
3261 {
3262 min_val = 0;
3263 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3264 }
3265
3266 *mmin = gen_int_mode (min_val, target_mode);
3267 *mmax = gen_int_mode (max_val, target_mode);
3268}
3269
3270#include "gt-stor-layout.h"
3271

source code of gcc/stor-layout.cc