1/* Array prefetching.
2 Copyright (C) 2005-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "target.h"
25#include "rtl.h"
26#include "tree.h"
27#include "gimple.h"
28#include "predict.h"
29#include "tree-pass.h"
30#include "gimple-ssa.h"
31#include "optabs-query.h"
32#include "tree-pretty-print.h"
33#include "fold-const.h"
34#include "stor-layout.h"
35#include "gimplify.h"
36#include "gimple-iterator.h"
37#include "gimplify-me.h"
38#include "tree-ssa-loop-ivopts.h"
39#include "tree-ssa-loop-manip.h"
40#include "tree-ssa-loop-niter.h"
41#include "tree-ssa-loop.h"
42#include "ssa.h"
43#include "tree-into-ssa.h"
44#include "cfgloop.h"
45#include "tree-scalar-evolution.h"
46#include "langhooks.h"
47#include "tree-inline.h"
48#include "tree-data-ref.h"
49#include "diagnostic-core.h"
50#include "dbgcnt.h"
51
52/* This pass inserts prefetch instructions to optimize cache usage during
53 accesses to arrays in loops. It processes loops sequentially and:
54
55 1) Gathers all memory references in the single loop.
56 2) For each of the references it decides when it is profitable to prefetch
57 it. To do it, we evaluate the reuse among the accesses, and determines
58 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
59 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
60 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
61 iterations of the loop that are zero modulo PREFETCH_MOD). For example
62 (assuming cache line size is 64 bytes, char has size 1 byte and there
63 is no hardware sequential prefetch):
64
65 char *a;
66 for (i = 0; i < max; i++)
67 {
68 a[255] = ...; (0)
69 a[i] = ...; (1)
70 a[i + 64] = ...; (2)
71 a[16*i] = ...; (3)
72 a[187*i] = ...; (4)
73 a[187*i + 50] = ...; (5)
74 }
75
76 (0) obviously has PREFETCH_BEFORE 1
77 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
78 location 64 iterations before it, and PREFETCH_MOD 64 (since
79 it hits the same cache line otherwise).
80 (2) has PREFETCH_MOD 64
81 (3) has PREFETCH_MOD 4
82 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
83 the cache line accessed by (5) is the same with probability only
84 7/32.
85 (5) has PREFETCH_MOD 1 as well.
86
87 Additionally, we use data dependence analysis to determine for each
88 reference the distance till the first reuse; this information is used
89 to determine the temporality of the issued prefetch instruction.
90
91 3) We determine how much ahead we need to prefetch. The number of
92 iterations needed is time to fetch / time spent in one iteration of
93 the loop. The problem is that we do not know either of these values,
94 so we just make a heuristic guess based on a magic (possibly)
95 target-specific constant and size of the loop.
96
97 4) Determine which of the references we prefetch. We take into account
98 that there is a maximum number of simultaneous prefetches (provided
99 by machine description). We prefetch as many prefetches as possible
100 while still within this bound (starting with those with lowest
101 prefetch_mod, since they are responsible for most of the cache
102 misses).
103
104 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
105 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
106 prefetching nonaccessed memory.
107 TODO -- actually implement peeling.
108
109 6) We actually emit the prefetch instructions. ??? Perhaps emit the
110 prefetch instructions with guards in cases where 5) was not sufficient
111 to satisfy the constraints?
112
113 A cost model is implemented to determine whether or not prefetching is
114 profitable for a given loop. The cost model has three heuristics:
115
116 1. Function trip_count_to_ahead_ratio_too_small_p implements a
117 heuristic that determines whether or not the loop has too few
118 iterations (compared to ahead). Prefetching is not likely to be
119 beneficial if the trip count to ahead ratio is below a certain
120 minimum.
121
122 2. Function mem_ref_count_reasonable_p implements a heuristic that
123 determines whether the given loop has enough CPU ops that can be
124 overlapped with cache missing memory ops. If not, the loop
125 won't benefit from prefetching. In the implementation,
126 prefetching is not considered beneficial if the ratio between
127 the instruction count and the mem ref count is below a certain
128 minimum.
129
130 3. Function insn_to_prefetch_ratio_too_small_p implements a
131 heuristic that disables prefetching in a loop if the prefetching
132 cost is above a certain limit. The relative prefetching cost is
133 estimated by taking the ratio between the prefetch count and the
134 total intruction count (this models the I-cache cost).
135
136 The limits used in these heuristics are defined as parameters with
137 reasonable default values. Machine-specific default values will be
138 added later.
139
140 Some other TODO:
141 -- write and use more general reuse analysis (that could be also used
142 in other cache aimed loop optimizations)
143 -- make it behave sanely together with the prefetches given by user
144 (now we just ignore them; at the very least we should avoid
145 optimizing loops in that user put his own prefetches)
146 -- we assume cache line size alignment of arrays; this could be
147 improved. */
148
149/* Magic constants follow. These should be replaced by machine specific
150 numbers. */
151
152/* True if write can be prefetched by a read prefetch. */
153
154#ifndef WRITE_CAN_USE_READ_PREFETCH
155#define WRITE_CAN_USE_READ_PREFETCH 1
156#endif
157
158/* True if read can be prefetched by a write prefetch. */
159
160#ifndef READ_CAN_USE_WRITE_PREFETCH
161#define READ_CAN_USE_WRITE_PREFETCH 0
162#endif
163
164/* The size of the block loaded by a single prefetch. Usually, this is
165 the same as cache line size (at the moment, we only consider one level
166 of cache hierarchy). */
167
168#ifndef PREFETCH_BLOCK
169#define PREFETCH_BLOCK param_l1_cache_line_size
170#endif
171
172/* Do we have a forward hardware sequential prefetching? */
173
174#ifndef HAVE_FORWARD_PREFETCH
175#define HAVE_FORWARD_PREFETCH 0
176#endif
177
178/* Do we have a backward hardware sequential prefetching? */
179
180#ifndef HAVE_BACKWARD_PREFETCH
181#define HAVE_BACKWARD_PREFETCH 0
182#endif
183
184/* In some cases we are only able to determine that there is a certain
185 probability that the two accesses hit the same cache line. In this
186 case, we issue the prefetches for both of them if this probability
187 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
188
189#ifndef ACCEPTABLE_MISS_RATE
190#define ACCEPTABLE_MISS_RATE 50
191#endif
192
193#define L1_CACHE_SIZE_BYTES ((unsigned) (param_l1_cache_size * 1024))
194#define L2_CACHE_SIZE_BYTES ((unsigned) (param_l2_cache_size * 1024))
195
196/* We consider a memory access nontemporal if it is not reused sooner than
197 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
198 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
199 so that we use nontemporal prefetches e.g. if single memory location
200 is accessed several times in a single iteration of the loop. */
201#define NONTEMPORAL_FRACTION 16
202
203/* In case we have to emit a memory fence instruction after the loop that
204 uses nontemporal stores, this defines the builtin to use. */
205
206#ifndef FENCE_FOLLOWING_MOVNT
207#define FENCE_FOLLOWING_MOVNT NULL_TREE
208#endif
209
210/* It is not profitable to prefetch when the trip count is not at
211 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
212 For example, in a loop with a prefetch ahead distance of 10,
213 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
214 profitable to prefetch when the trip count is greater or equal to
215 40. In that case, 30 out of the 40 iterations will benefit from
216 prefetching. */
217
218#ifndef TRIP_COUNT_TO_AHEAD_RATIO
219#define TRIP_COUNT_TO_AHEAD_RATIO 4
220#endif
221
222/* The group of references between that reuse may occur. */
223
224struct mem_ref_group
225{
226 tree base; /* Base of the reference. */
227 tree step; /* Step of the reference. */
228 struct mem_ref *refs; /* References in the group. */
229 struct mem_ref_group *next; /* Next group of references. */
230 unsigned int uid; /* Group UID, used only for debugging. */
231};
232
233/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
234
235#define PREFETCH_ALL HOST_WIDE_INT_M1U
236
237/* Do not generate a prefetch if the unroll factor is significantly less
238 than what is required by the prefetch. This is to avoid redundant
239 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
240 2, prefetching requires unrolling the loop 16 times, but
241 the loop is actually unrolled twice. In this case (ratio = 8),
242 prefetching is not likely to be beneficial. */
243
244#ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
245#define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
246#endif
247
248/* Some of the prefetch computations have quadratic complexity. We want to
249 avoid huge compile times and, therefore, want to limit the amount of
250 memory references per loop where we consider prefetching. */
251
252#ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
253#define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
254#endif
255
256/* The memory reference. */
257
258struct mem_ref
259{
260 gimple *stmt; /* Statement in that the reference appears. */
261 tree mem; /* The reference. */
262 HOST_WIDE_INT delta; /* Constant offset of the reference. */
263 struct mem_ref_group *group; /* The group of references it belongs to. */
264 unsigned HOST_WIDE_INT prefetch_mod;
265 /* Prefetch only each PREFETCH_MOD-th
266 iteration. */
267 unsigned HOST_WIDE_INT prefetch_before;
268 /* Prefetch only first PREFETCH_BEFORE
269 iterations. */
270 unsigned reuse_distance; /* The amount of data accessed before the first
271 reuse of this value. */
272 struct mem_ref *next; /* The next reference in the group. */
273 unsigned int uid; /* Ref UID, used only for debugging. */
274 unsigned write_p : 1; /* Is it a write? */
275 unsigned independent_p : 1; /* True if the reference is independent on
276 all other references inside the loop. */
277 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
278 unsigned storent_p : 1; /* True if we changed the store to a
279 nontemporal one. */
280};
281
282/* Dumps information about memory reference */
283static void
284dump_mem_details (FILE *file, tree base, tree step,
285 HOST_WIDE_INT delta, bool write_p)
286{
287 fprintf (stream: file, format: "(base ");
288 print_generic_expr (file, base, TDF_SLIM);
289 fprintf (stream: file, format: ", step ");
290 if (cst_and_fits_in_hwi (step))
291 fprintf (stream: file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
292 else
293 print_generic_expr (file, step, TDF_SLIM);
294 fprintf (stream: file, format: ")\n");
295 fprintf (stream: file, format: " delta " HOST_WIDE_INT_PRINT_DEC "\n", delta);
296 fprintf (stream: file, format: " %s\n\n", write_p ? "write" : "read");
297}
298
299/* Dumps information about reference REF to FILE. */
300
301static void
302dump_mem_ref (FILE *file, struct mem_ref *ref)
303{
304 fprintf (stream: file, format: "reference %u:%u (", ref->group->uid, ref->uid);
305 print_generic_expr (file, ref->mem, TDF_SLIM);
306 fprintf (stream: file, format: ")\n");
307}
308
309/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
310 exist. */
311
312static struct mem_ref_group *
313find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
314{
315 /* Global count for setting struct mem_ref_group->uid. */
316 static unsigned int last_mem_ref_group_uid = 0;
317
318 struct mem_ref_group *group;
319
320 for (; *groups; groups = &(*groups)->next)
321 {
322 if (operand_equal_p ((*groups)->step, step, flags: 0)
323 && operand_equal_p ((*groups)->base, base, flags: 0))
324 return *groups;
325
326 /* If step is an integer constant, keep the list of groups sorted
327 by decreasing step. */
328 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
329 && int_cst_value ((*groups)->step) < int_cst_value (step))
330 break;
331 }
332
333 group = XNEW (struct mem_ref_group);
334 group->base = base;
335 group->step = step;
336 group->refs = NULL;
337 group->uid = ++last_mem_ref_group_uid;
338 group->next = *groups;
339 *groups = group;
340
341 return group;
342}
343
344/* Records a memory reference MEM in GROUP with offset DELTA and write status
345 WRITE_P. The reference occurs in statement STMT. */
346
347static void
348record_ref (struct mem_ref_group *group, gimple *stmt, tree mem,
349 HOST_WIDE_INT delta, bool write_p)
350{
351 unsigned int last_mem_ref_uid = 0;
352 struct mem_ref **aref;
353
354 /* Do not record the same address twice. */
355 for (aref = &group->refs; *aref; aref = &(*aref)->next)
356 {
357 last_mem_ref_uid = (*aref)->uid;
358
359 /* It does not have to be possible for write reference to reuse the read
360 prefetch, or vice versa. */
361 if (!WRITE_CAN_USE_READ_PREFETCH
362 && write_p
363 && !(*aref)->write_p)
364 continue;
365 if (!READ_CAN_USE_WRITE_PREFETCH
366 && !write_p
367 && (*aref)->write_p)
368 continue;
369
370 if ((*aref)->delta == delta)
371 return;
372 }
373
374 (*aref) = XNEW (struct mem_ref);
375 (*aref)->stmt = stmt;
376 (*aref)->mem = mem;
377 (*aref)->delta = delta;
378 (*aref)->write_p = write_p;
379 (*aref)->prefetch_before = PREFETCH_ALL;
380 (*aref)->prefetch_mod = 1;
381 (*aref)->reuse_distance = 0;
382 (*aref)->issue_prefetch_p = false;
383 (*aref)->group = group;
384 (*aref)->next = NULL;
385 (*aref)->independent_p = false;
386 (*aref)->storent_p = false;
387 (*aref)->uid = last_mem_ref_uid + 1;
388
389 if (dump_file && (dump_flags & TDF_DETAILS))
390 {
391 dump_mem_ref (file: dump_file, ref: *aref);
392
393 fprintf (stream: dump_file, format: " group %u ", group->uid);
394 dump_mem_details (file: dump_file, base: group->base, step: group->step, delta,
395 write_p);
396 }
397}
398
399/* Release memory references in GROUPS. */
400
401static void
402release_mem_refs (struct mem_ref_group *groups)
403{
404 struct mem_ref_group *next_g;
405 struct mem_ref *ref, *next_r;
406
407 for (; groups; groups = next_g)
408 {
409 next_g = groups->next;
410 for (ref = groups->refs; ref; ref = next_r)
411 {
412 next_r = ref->next;
413 free (ptr: ref);
414 }
415 free (ptr: groups);
416 }
417}
418
419/* A structure used to pass arguments to idx_analyze_ref. */
420
421struct ar_data
422{
423 class loop *loop; /* Loop of the reference. */
424 gimple *stmt; /* Statement of the reference. */
425 tree *step; /* Step of the memory reference. */
426 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
427};
428
429/* Analyzes a single INDEX of a memory reference to obtain information
430 described at analyze_ref. Callback for for_each_index. */
431
432static bool
433idx_analyze_ref (tree base, tree *index, void *data)
434{
435 struct ar_data *ar_data = (struct ar_data *) data;
436 tree ibase, step, stepsize;
437 HOST_WIDE_INT idelta = 0, imult = 1;
438 affine_iv iv;
439
440 if (!simple_iv (ar_data->loop, loop_containing_stmt (stmt: ar_data->stmt),
441 *index, &iv, true))
442 return false;
443 ibase = iv.base;
444 step = iv.step;
445
446 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
447 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
448 {
449 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
450 ibase = TREE_OPERAND (ibase, 0);
451 }
452 if (cst_and_fits_in_hwi (ibase))
453 {
454 idelta += int_cst_value (ibase);
455 ibase = build_int_cst (TREE_TYPE (ibase), 0);
456 }
457
458 if (TREE_CODE (base) == ARRAY_REF)
459 {
460 stepsize = array_ref_element_size (base);
461 if (!cst_and_fits_in_hwi (stepsize))
462 return false;
463 imult = int_cst_value (stepsize);
464 step = fold_build2 (MULT_EXPR, sizetype,
465 fold_convert (sizetype, step),
466 fold_convert (sizetype, stepsize));
467 idelta *= imult;
468 }
469
470 if (*ar_data->step == NULL_TREE)
471 *ar_data->step = step;
472 else
473 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
474 fold_convert (sizetype, *ar_data->step),
475 fold_convert (sizetype, step));
476 *ar_data->delta += idelta;
477 *index = ibase;
478
479 return true;
480}
481
482/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
483 STEP are integer constants and iter is number of iterations of LOOP. The
484 reference occurs in statement STMT. Strips nonaddressable component
485 references from REF_P. */
486
487static bool
488analyze_ref (class loop *loop, tree *ref_p, tree *base,
489 tree *step, HOST_WIDE_INT *delta,
490 gimple *stmt)
491{
492 struct ar_data ar_data;
493 tree off;
494 HOST_WIDE_INT bit_offset;
495 tree ref = *ref_p;
496
497 *step = NULL_TREE;
498 *delta = 0;
499
500 /* First strip off the component references. Ignore bitfields.
501 Also strip off the real and imagine parts of a complex, so that
502 they can have the same base. */
503 if (TREE_CODE (ref) == REALPART_EXPR
504 || TREE_CODE (ref) == IMAGPART_EXPR
505 || (TREE_CODE (ref) == COMPONENT_REF
506 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
507 {
508 if (TREE_CODE (ref) == IMAGPART_EXPR)
509 *delta += int_size_in_bytes (TREE_TYPE (ref));
510 ref = TREE_OPERAND (ref, 0);
511 }
512
513 *ref_p = ref;
514
515 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
516 {
517 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
518 bit_offset = TREE_INT_CST_LOW (off);
519 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
520
521 *delta += bit_offset / BITS_PER_UNIT;
522 }
523
524 *base = unshare_expr (ref);
525 ar_data.loop = loop;
526 ar_data.stmt = stmt;
527 ar_data.step = step;
528 ar_data.delta = delta;
529 return for_each_index (base, idx_analyze_ref, &ar_data);
530}
531
532/* Record a memory reference REF to the list REFS. The reference occurs in
533 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
534 reference was recorded, false otherwise. */
535
536static bool
537gather_memory_references_ref (class loop *loop, struct mem_ref_group **refs,
538 tree ref, bool write_p, gimple *stmt)
539{
540 tree base, step;
541 HOST_WIDE_INT delta;
542 struct mem_ref_group *agrp;
543
544 if (get_base_address (t: ref) == NULL)
545 return false;
546
547 if (!analyze_ref (loop, ref_p: &ref, base: &base, step: &step, delta: &delta, stmt))
548 return false;
549 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
550 if (step == NULL_TREE)
551 return false;
552
553 /* Stop if the address of BASE could not be taken. */
554 if (may_be_nonaddressable_p (expr: base))
555 return false;
556
557 /* Limit non-constant step prefetching only to the innermost loops and
558 only when the step is loop invariant in the entire loop nest. */
559 if (!cst_and_fits_in_hwi (step))
560 {
561 if (loop->inner != NULL)
562 {
563 if (dump_file && (dump_flags & TDF_DETAILS))
564 {
565 fprintf (stream: dump_file, format: "Memory expression %p\n",(void *) ref );
566 print_generic_expr (dump_file, ref, TDF_SLIM);
567 fprintf (stream: dump_file,format: ":");
568 dump_mem_details (file: dump_file, base, step, delta, write_p);
569 fprintf (stream: dump_file,
570 format: "Ignoring %p, non-constant step prefetching is "
571 "limited to inner most loops \n",
572 (void *) ref);
573 }
574 return false;
575 }
576 else
577 {
578 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
579 {
580 if (dump_file && (dump_flags & TDF_DETAILS))
581 {
582 fprintf (stream: dump_file, format: "Memory expression %p\n",(void *) ref );
583 print_generic_expr (dump_file, ref, TDF_SLIM);
584 fprintf (stream: dump_file,format: ":");
585 dump_mem_details (file: dump_file, base, step, delta, write_p);
586 fprintf (stream: dump_file,
587 format: "Not prefetching, ignoring %p due to "
588 "loop variant step\n",
589 (void *) ref);
590 }
591 return false;
592 }
593 }
594 }
595
596 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
597 are integer constants. */
598 agrp = find_or_create_group (groups: refs, base, step);
599 record_ref (group: agrp, stmt, mem: ref, delta, write_p);
600
601 return true;
602}
603
604/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
605 true if there are no other memory references inside the loop. */
606
607static struct mem_ref_group *
608gather_memory_references (class loop *loop, bool *no_other_refs, unsigned *ref_count)
609{
610 basic_block *body = get_loop_body_in_dom_order (loop);
611 basic_block bb;
612 unsigned i;
613 gimple_stmt_iterator bsi;
614 gimple *stmt;
615 tree lhs, rhs;
616 struct mem_ref_group *refs = NULL;
617
618 *no_other_refs = true;
619 *ref_count = 0;
620
621 /* Scan the loop body in order, so that the former references precede the
622 later ones. */
623 for (i = 0; i < loop->num_nodes; i++)
624 {
625 bb = body[i];
626 if (bb->loop_father != loop)
627 continue;
628
629 for (bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi); gsi_next (i: &bsi))
630 {
631 stmt = gsi_stmt (i: bsi);
632
633 if (gimple_code (g: stmt) != GIMPLE_ASSIGN)
634 {
635 if (gimple_vuse (g: stmt)
636 || (is_gimple_call (gs: stmt)
637 && !(gimple_call_flags (stmt) & ECF_CONST)))
638 *no_other_refs = false;
639 continue;
640 }
641
642 if (! gimple_vuse (g: stmt))
643 continue;
644
645 lhs = gimple_assign_lhs (gs: stmt);
646 rhs = gimple_assign_rhs1 (gs: stmt);
647
648 if (REFERENCE_CLASS_P (rhs))
649 {
650 *no_other_refs &= gather_memory_references_ref (loop, refs: &refs,
651 ref: rhs, write_p: false, stmt);
652 *ref_count += 1;
653 }
654 if (REFERENCE_CLASS_P (lhs))
655 {
656 *no_other_refs &= gather_memory_references_ref (loop, refs: &refs,
657 ref: lhs, write_p: true, stmt);
658 *ref_count += 1;
659 }
660 }
661 }
662 free (ptr: body);
663
664 return refs;
665}
666
667/* Prune the prefetch candidate REF using the self-reuse. */
668
669static void
670prune_ref_by_self_reuse (struct mem_ref *ref)
671{
672 HOST_WIDE_INT step;
673 bool backward;
674
675 /* If the step size is non constant, we cannot calculate prefetch_mod. */
676 if (!cst_and_fits_in_hwi (ref->group->step))
677 return;
678
679 step = int_cst_value (ref->group->step);
680
681 backward = step < 0;
682
683 if (step == 0)
684 {
685 /* Prefetch references to invariant address just once. */
686 ref->prefetch_before = 1;
687 return;
688 }
689
690 if (backward)
691 step = -step;
692
693 if (step > PREFETCH_BLOCK)
694 return;
695
696 if ((backward && HAVE_BACKWARD_PREFETCH)
697 || (!backward && HAVE_FORWARD_PREFETCH))
698 {
699 ref->prefetch_before = 1;
700 return;
701 }
702
703 ref->prefetch_mod = PREFETCH_BLOCK / step;
704}
705
706/* Divides X by BY, rounding down. */
707
708static HOST_WIDE_INT
709ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
710{
711 gcc_assert (by > 0);
712
713 if (x >= 0)
714 return x / (HOST_WIDE_INT) by;
715 else
716 return (x + (HOST_WIDE_INT) by - 1) / (HOST_WIDE_INT) by;
717}
718
719/* Given a CACHE_LINE_SIZE and two inductive memory references
720 with a common STEP greater than CACHE_LINE_SIZE and an address
721 difference DELTA, compute the probability that they will fall
722 in different cache lines. Return true if the computed miss rate
723 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
724 number of distinct iterations after which the pattern repeats itself.
725 ALIGN_UNIT is the unit of alignment in bytes. */
726
727static bool
728is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
729 HOST_WIDE_INT step, HOST_WIDE_INT delta,
730 unsigned HOST_WIDE_INT distinct_iters,
731 int align_unit)
732{
733 unsigned align, iter;
734 int total_positions, miss_positions, max_allowed_miss_positions;
735 int address1, address2, cache_line1, cache_line2;
736
737 /* It always misses if delta is greater than or equal to the cache
738 line size. */
739 if (delta >= (HOST_WIDE_INT) cache_line_size)
740 return false;
741
742 gcc_assert (align_unit > 0);
743
744 miss_positions = 0;
745 total_positions = (cache_line_size / align_unit) * distinct_iters;
746 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
747
748 /* Iterate through all possible alignments of the first
749 memory reference within its cache line. */
750 for (align = 0; align < cache_line_size; align += align_unit)
751
752 /* Iterate through all distinct iterations. */
753 for (iter = 0; iter < distinct_iters; iter++)
754 {
755 address1 = align + step * iter;
756 address2 = address1 + delta;
757 cache_line1 = address1 / cache_line_size;
758 cache_line2 = address2 / cache_line_size;
759 if (cache_line1 != cache_line2)
760 {
761 miss_positions += 1;
762 if (miss_positions > max_allowed_miss_positions)
763 return false;
764 }
765 }
766 return true;
767}
768
769/* Prune the prefetch candidate REF using the reuse with BY.
770 If BY_IS_BEFORE is true, BY is before REF in the loop. */
771
772static void
773prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
774 bool by_is_before)
775{
776 HOST_WIDE_INT step;
777 bool backward;
778 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
779 HOST_WIDE_INT delta = delta_b - delta_r;
780 HOST_WIDE_INT hit_from;
781 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
782 HOST_WIDE_INT reduced_step;
783 unsigned HOST_WIDE_INT reduced_prefetch_block;
784 tree ref_type;
785 int align_unit;
786
787 /* If the step is non constant we cannot calculate prefetch_before. */
788 if (!cst_and_fits_in_hwi (ref->group->step)) {
789 return;
790 }
791
792 step = int_cst_value (ref->group->step);
793
794 backward = step < 0;
795
796
797 if (delta == 0)
798 {
799 /* If the references has the same address, only prefetch the
800 former. */
801 if (by_is_before)
802 ref->prefetch_before = 0;
803
804 return;
805 }
806
807 if (!step)
808 {
809 /* If the reference addresses are invariant and fall into the
810 same cache line, prefetch just the first one. */
811 if (!by_is_before)
812 return;
813
814 if (ddown (x: ref->delta, PREFETCH_BLOCK)
815 != ddown (x: by->delta, PREFETCH_BLOCK))
816 return;
817
818 ref->prefetch_before = 0;
819 return;
820 }
821
822 /* Only prune the reference that is behind in the array. */
823 if (backward)
824 {
825 if (delta > 0)
826 return;
827
828 /* Transform the data so that we may assume that the accesses
829 are forward. */
830 delta = - delta;
831 step = -step;
832 delta_r = PREFETCH_BLOCK - 1 - delta_r;
833 delta_b = PREFETCH_BLOCK - 1 - delta_b;
834 }
835 else
836 {
837 if (delta < 0)
838 return;
839 }
840
841 /* Check whether the two references are likely to hit the same cache
842 line, and how distant the iterations in that it occurs are from
843 each other. */
844
845 if (step <= PREFETCH_BLOCK)
846 {
847 /* The accesses are sure to meet. Let us check when. */
848 hit_from = ddown (x: delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
849 prefetch_before = (hit_from - delta_r + step - 1) / step;
850
851 /* Do not reduce prefetch_before if we meet beyond cache size. */
852 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
853 prefetch_before = PREFETCH_ALL;
854 if (prefetch_before < ref->prefetch_before)
855 ref->prefetch_before = prefetch_before;
856
857 return;
858 }
859
860 /* A more complicated case with step > prefetch_block. First reduce
861 the ratio between the step and the cache line size to its simplest
862 terms. The resulting denominator will then represent the number of
863 distinct iterations after which each address will go back to its
864 initial location within the cache line. This computation assumes
865 that PREFETCH_BLOCK is a power of two. */
866 prefetch_block = PREFETCH_BLOCK;
867 reduced_prefetch_block = prefetch_block;
868 reduced_step = step;
869 while ((reduced_step & 1) == 0
870 && reduced_prefetch_block > 1)
871 {
872 reduced_step >>= 1;
873 reduced_prefetch_block >>= 1;
874 }
875
876 prefetch_before = delta / step;
877 delta %= step;
878 ref_type = TREE_TYPE (ref->mem);
879 align_unit = TYPE_ALIGN (ref_type) / 8;
880 if (is_miss_rate_acceptable (cache_line_size: prefetch_block, step, delta,
881 distinct_iters: reduced_prefetch_block, align_unit))
882 {
883 /* Do not reduce prefetch_before if we meet beyond cache size. */
884 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
885 prefetch_before = PREFETCH_ALL;
886 if (prefetch_before < ref->prefetch_before)
887 ref->prefetch_before = prefetch_before;
888
889 return;
890 }
891
892 /* Try also the following iteration. */
893 prefetch_before++;
894 delta = step - delta;
895 if (is_miss_rate_acceptable (cache_line_size: prefetch_block, step, delta,
896 distinct_iters: reduced_prefetch_block, align_unit))
897 {
898 if (prefetch_before < ref->prefetch_before)
899 ref->prefetch_before = prefetch_before;
900
901 return;
902 }
903
904 /* The ref probably does not reuse by. */
905 return;
906}
907
908/* Prune the prefetch candidate REF using the reuses with other references
909 in REFS. */
910
911static void
912prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
913{
914 struct mem_ref *prune_by;
915 bool before = true;
916
917 prune_ref_by_self_reuse (ref);
918
919 for (prune_by = refs; prune_by; prune_by = prune_by->next)
920 {
921 if (prune_by == ref)
922 {
923 before = false;
924 continue;
925 }
926
927 if (!WRITE_CAN_USE_READ_PREFETCH
928 && ref->write_p
929 && !prune_by->write_p)
930 continue;
931 if (!READ_CAN_USE_WRITE_PREFETCH
932 && !ref->write_p
933 && prune_by->write_p)
934 continue;
935
936 prune_ref_by_group_reuse (ref, by: prune_by, by_is_before: before);
937 }
938}
939
940/* Prune the prefetch candidates in GROUP using the reuse analysis. */
941
942static void
943prune_group_by_reuse (struct mem_ref_group *group)
944{
945 struct mem_ref *ref_pruned;
946
947 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
948 {
949 prune_ref_by_reuse (ref: ref_pruned, refs: group->refs);
950
951 if (dump_file && (dump_flags & TDF_DETAILS))
952 {
953 dump_mem_ref (file: dump_file, ref: ref_pruned);
954
955 if (ref_pruned->prefetch_before == PREFETCH_ALL
956 && ref_pruned->prefetch_mod == 1)
957 fprintf (stream: dump_file, format: " no restrictions");
958 else if (ref_pruned->prefetch_before == 0)
959 fprintf (stream: dump_file, format: " do not prefetch");
960 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
961 fprintf (stream: dump_file, format: " prefetch once");
962 else
963 {
964 if (ref_pruned->prefetch_before != PREFETCH_ALL)
965 {
966 fprintf (stream: dump_file, format: " prefetch before ");
967 fprintf (stream: dump_file, HOST_WIDE_INT_PRINT_DEC,
968 ref_pruned->prefetch_before);
969 }
970 if (ref_pruned->prefetch_mod != 1)
971 {
972 fprintf (stream: dump_file, format: " prefetch mod ");
973 fprintf (stream: dump_file, HOST_WIDE_INT_PRINT_DEC,
974 ref_pruned->prefetch_mod);
975 }
976 }
977 fprintf (stream: dump_file, format: "\n");
978 }
979 }
980}
981
982/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
983
984static void
985prune_by_reuse (struct mem_ref_group *groups)
986{
987 for (; groups; groups = groups->next)
988 prune_group_by_reuse (group: groups);
989}
990
991/* Returns true if we should issue prefetch for REF. */
992
993static bool
994should_issue_prefetch_p (struct mem_ref *ref)
995{
996 /* Do we want to issue prefetches for non-constant strides? */
997 if (!cst_and_fits_in_hwi (ref->group->step)
998 && param_prefetch_dynamic_strides == 0)
999 {
1000 if (dump_file && (dump_flags & TDF_DETAILS))
1001 fprintf (stream: dump_file,
1002 format: "Skipping non-constant step for reference %u:%u\n",
1003 ref->group->uid, ref->uid);
1004 return false;
1005 }
1006
1007 /* Some processors may have a hardware prefetcher that may conflict with
1008 prefetch hints for a range of strides. Make sure we don't issue
1009 prefetches for such cases if the stride is within this particular
1010 range. */
1011 if (cst_and_fits_in_hwi (ref->group->step)
1012 && abs_hwi (x: int_cst_value (ref->group->step))
1013 < (HOST_WIDE_INT) param_prefetch_minimum_stride)
1014 {
1015 if (dump_file && (dump_flags & TDF_DETAILS))
1016 fprintf (stream: dump_file,
1017 format: "Step for reference %u:%u (" HOST_WIDE_INT_PRINT_DEC
1018 ") is less than the mininum required stride of %d\n",
1019 ref->group->uid, ref->uid, int_cst_value (ref->group->step),
1020 param_prefetch_minimum_stride);
1021 return false;
1022 }
1023
1024 /* For now do not issue prefetches for only first few of the
1025 iterations. */
1026 if (ref->prefetch_before != PREFETCH_ALL)
1027 {
1028 if (dump_file && (dump_flags & TDF_DETAILS))
1029 fprintf (stream: dump_file, format: "Ignoring reference %u:%u due to prefetch_before\n",
1030 ref->group->uid, ref->uid);
1031 return false;
1032 }
1033
1034 /* Do not prefetch nontemporal stores. */
1035 if (ref->storent_p)
1036 {
1037 if (dump_file && (dump_flags & TDF_DETAILS))
1038 fprintf (stream: dump_file, format: "Ignoring nontemporal store reference %u:%u\n", ref->group->uid, ref->uid);
1039 return false;
1040 }
1041
1042 return true;
1043}
1044
1045/* Decide which of the prefetch candidates in GROUPS to prefetch.
1046 AHEAD is the number of iterations to prefetch ahead (which corresponds
1047 to the number of simultaneous instances of one prefetch running at a
1048 time). UNROLL_FACTOR is the factor by that the loop is going to be
1049 unrolled. Returns true if there is anything to prefetch. */
1050
1051static bool
1052schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1053 unsigned ahead)
1054{
1055 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1056 unsigned slots_per_prefetch;
1057 struct mem_ref *ref;
1058 bool any = false;
1059
1060 /* At most param_simultaneous_prefetches should be running
1061 at the same time. */
1062 remaining_prefetch_slots = param_simultaneous_prefetches;
1063
1064 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1065 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1066 it will need a prefetch slot. */
1067 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1068 if (dump_file && (dump_flags & TDF_DETAILS))
1069 fprintf (stream: dump_file, format: "Each prefetch instruction takes %u prefetch slots.\n",
1070 slots_per_prefetch);
1071
1072 /* For now we just take memory references one by one and issue
1073 prefetches for as many as possible. The groups are sorted
1074 starting with the largest step, since the references with
1075 large step are more likely to cause many cache misses. */
1076
1077 for (; groups; groups = groups->next)
1078 for (ref = groups->refs; ref; ref = ref->next)
1079 {
1080 if (!should_issue_prefetch_p (ref))
1081 continue;
1082
1083 /* The loop is far from being sufficiently unrolled for this
1084 prefetch. Do not generate prefetch to avoid many redudant
1085 prefetches. */
1086 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1087 continue;
1088
1089 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1090 and we unroll the loop UNROLL_FACTOR times, we need to insert
1091 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1092 iteration. */
1093 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1094 / ref->prefetch_mod);
1095 prefetch_slots = n_prefetches * slots_per_prefetch;
1096
1097 /* If more than half of the prefetches would be lost anyway, do not
1098 issue the prefetch. */
1099 if (2 * remaining_prefetch_slots < prefetch_slots)
1100 continue;
1101
1102 /* Stop prefetching if debug counter is activated. */
1103 if (!dbg_cnt (index: prefetch))
1104 continue;
1105
1106 ref->issue_prefetch_p = true;
1107 if (dump_file && (dump_flags & TDF_DETAILS))
1108 fprintf (stream: dump_file, format: "Decided to issue prefetch for reference %u:%u\n",
1109 ref->group->uid, ref->uid);
1110
1111 if (remaining_prefetch_slots <= prefetch_slots)
1112 return true;
1113 remaining_prefetch_slots -= prefetch_slots;
1114 any = true;
1115 }
1116
1117 return any;
1118}
1119
1120/* Return TRUE if no prefetch is going to be generated in the given
1121 GROUPS. */
1122
1123static bool
1124nothing_to_prefetch_p (struct mem_ref_group *groups)
1125{
1126 struct mem_ref *ref;
1127
1128 for (; groups; groups = groups->next)
1129 for (ref = groups->refs; ref; ref = ref->next)
1130 if (should_issue_prefetch_p (ref))
1131 return false;
1132
1133 return true;
1134}
1135
1136/* Estimate the number of prefetches in the given GROUPS.
1137 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1138
1139static int
1140estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1141{
1142 struct mem_ref *ref;
1143 unsigned n_prefetches;
1144 int prefetch_count = 0;
1145
1146 for (; groups; groups = groups->next)
1147 for (ref = groups->refs; ref; ref = ref->next)
1148 if (should_issue_prefetch_p (ref))
1149 {
1150 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1151 / ref->prefetch_mod);
1152 prefetch_count += n_prefetches;
1153 }
1154
1155 return prefetch_count;
1156}
1157
1158/* Issue prefetches for the reference REF into loop as decided before.
1159 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1160 is the factor by which LOOP was unrolled. */
1161
1162static void
1163issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1164{
1165 HOST_WIDE_INT delta;
1166 tree addr, addr_base, write_p, local, forward;
1167 gcall *prefetch;
1168 gimple_stmt_iterator bsi;
1169 unsigned n_prefetches, ap;
1170 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1171
1172 if (dump_file && (dump_flags & TDF_DETAILS))
1173 fprintf (stream: dump_file, format: "Issued%s prefetch for reference %u:%u.\n",
1174 nontemporal ? " nontemporal" : "",
1175 ref->group->uid, ref->uid);
1176
1177 bsi = gsi_for_stmt (ref->stmt);
1178
1179 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1180 / ref->prefetch_mod);
1181 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1182 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1183 true, NULL, true, GSI_SAME_STMT);
1184 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1185 local = nontemporal ? integer_zero_node : integer_three_node;
1186
1187 for (ap = 0; ap < n_prefetches; ap++)
1188 {
1189 if (cst_and_fits_in_hwi (ref->group->step))
1190 {
1191 /* Determine the address to prefetch. */
1192 delta = (ahead + ap * ref->prefetch_mod) *
1193 int_cst_value (ref->group->step);
1194 addr = fold_build_pointer_plus_hwi (addr_base, delta);
1195 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1196 NULL, true, GSI_SAME_STMT);
1197 }
1198 else
1199 {
1200 /* The step size is non-constant but loop-invariant. We use the
1201 heuristic to simply prefetch ahead iterations ahead. */
1202 forward = fold_build2 (MULT_EXPR, sizetype,
1203 fold_convert (sizetype, ref->group->step),
1204 fold_convert (sizetype, size_int (ahead)));
1205 addr = fold_build_pointer_plus (addr_base, forward);
1206 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1207 NULL, true, GSI_SAME_STMT);
1208 }
1209
1210 if (addr_base != addr
1211 && TREE_CODE (addr_base) == SSA_NAME
1212 && TREE_CODE (addr) == SSA_NAME)
1213 {
1214 duplicate_ssa_name_ptr_info (addr, SSA_NAME_PTR_INFO (addr_base));
1215 /* As this isn't a plain copy we have to reset alignment
1216 information. */
1217 if (SSA_NAME_PTR_INFO (addr))
1218 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr));
1219 }
1220
1221 /* Create the prefetch instruction. */
1222 prefetch = gimple_build_call (builtin_decl_explicit (fncode: BUILT_IN_PREFETCH),
1223 3, addr, write_p, local);
1224 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1225 }
1226}
1227
1228/* Issue prefetches for the references in GROUPS into loop as decided before.
1229 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1230 factor by that LOOP was unrolled. */
1231
1232static void
1233issue_prefetches (struct mem_ref_group *groups,
1234 unsigned unroll_factor, unsigned ahead)
1235{
1236 struct mem_ref *ref;
1237
1238 for (; groups; groups = groups->next)
1239 for (ref = groups->refs; ref; ref = ref->next)
1240 if (ref->issue_prefetch_p)
1241 issue_prefetch_ref (ref, unroll_factor, ahead);
1242}
1243
1244/* Returns true if REF is a memory write for that a nontemporal store insn
1245 can be used. */
1246
1247static bool
1248nontemporal_store_p (struct mem_ref *ref)
1249{
1250 machine_mode mode;
1251 enum insn_code code;
1252
1253 /* REF must be a write that is not reused. We require it to be independent
1254 on all other memory references in the loop, as the nontemporal stores may
1255 be reordered with respect to other memory references. */
1256 if (!ref->write_p
1257 || !ref->independent_p
1258 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1259 return false;
1260
1261 /* Check that we have the storent instruction for the mode. */
1262 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1263 if (mode == BLKmode)
1264 return false;
1265
1266 code = optab_handler (op: storent_optab, mode);
1267 return code != CODE_FOR_nothing;
1268}
1269
1270/* If REF is a nontemporal store, we mark the corresponding modify statement
1271 and return true. Otherwise, we return false. */
1272
1273static bool
1274mark_nontemporal_store (struct mem_ref *ref)
1275{
1276 if (!nontemporal_store_p (ref))
1277 return false;
1278
1279 if (dump_file && (dump_flags & TDF_DETAILS))
1280 fprintf (stream: dump_file, format: "Marked reference %u:%u as a nontemporal store.\n",
1281 ref->group->uid, ref->uid);
1282
1283 gimple_assign_set_nontemporal_move (gs: ref->stmt, nontemporal: true);
1284 ref->storent_p = true;
1285
1286 return true;
1287}
1288
1289/* Issue a memory fence instruction after LOOP. */
1290
1291static void
1292emit_mfence_after_loop (class loop *loop)
1293{
1294 auto_vec<edge> exits = get_loop_exit_edges (loop);
1295 edge exit;
1296 gcall *call;
1297 gimple_stmt_iterator bsi;
1298 unsigned i;
1299
1300 FOR_EACH_VEC_ELT (exits, i, exit)
1301 {
1302 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1303
1304 if (!single_pred_p (bb: exit->dest)
1305 /* If possible, we prefer not to insert the fence on other paths
1306 in cfg. */
1307 && !(exit->flags & EDGE_ABNORMAL))
1308 split_loop_exit_edge (exit);
1309 bsi = gsi_after_labels (bb: exit->dest);
1310
1311 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1312 }
1313}
1314
1315/* Returns true if we can use storent in loop, false otherwise. */
1316
1317static bool
1318may_use_storent_in_loop_p (class loop *loop)
1319{
1320 bool ret = true;
1321
1322 if (loop->inner != NULL)
1323 return false;
1324
1325 /* If we must issue a mfence insn after using storent, check that there
1326 is a suitable place for it at each of the loop exits. */
1327 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1328 {
1329 auto_vec<edge> exits = get_loop_exit_edges (loop);
1330 unsigned i;
1331 edge exit;
1332
1333 FOR_EACH_VEC_ELT (exits, i, exit)
1334 if ((exit->flags & EDGE_ABNORMAL)
1335 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1336 ret = false;
1337 }
1338
1339 return ret;
1340}
1341
1342/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1343 references in the loop. Returns whether we inserted any mfence call. */
1344
1345static bool
1346mark_nontemporal_stores (class loop *loop, struct mem_ref_group *groups)
1347{
1348 struct mem_ref *ref;
1349 bool any = false;
1350
1351 if (!may_use_storent_in_loop_p (loop))
1352 return false;
1353
1354 for (; groups; groups = groups->next)
1355 for (ref = groups->refs; ref; ref = ref->next)
1356 any |= mark_nontemporal_store (ref);
1357
1358 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1359 {
1360 emit_mfence_after_loop (loop);
1361 return true;
1362 }
1363 return false;
1364}
1365
1366/* Determines whether we can profitably unroll LOOP FACTOR times, and if
1367 this is the case, fill in DESC by the description of number of
1368 iterations. */
1369
1370static bool
1371should_unroll_loop_p (class loop *loop, class tree_niter_desc *desc,
1372 unsigned factor)
1373{
1374 if (!can_unroll_loop_p (loop, factor, niter: desc))
1375 return false;
1376
1377 /* We only consider loops without control flow for unrolling. This is not
1378 a hard restriction -- tree_unroll_loop works with arbitrary loops
1379 as well; but the unrolling/prefetching is usually more profitable for
1380 loops consisting of a single basic block, and we want to limit the
1381 code growth. */
1382 if (loop->num_nodes > 2)
1383 return false;
1384
1385 return true;
1386}
1387
1388/* Determine the coefficient by that unroll LOOP, from the information
1389 contained in the list of memory references REFS. Description of
1390 number of iterations of LOOP is stored to DESC. NINSNS is the number of
1391 insns of the LOOP. EST_NITER is the estimated number of iterations of
1392 the loop, or -1 if no estimate is available. */
1393
1394static unsigned
1395determine_unroll_factor (class loop *loop, struct mem_ref_group *refs,
1396 unsigned ninsns, class tree_niter_desc *desc,
1397 HOST_WIDE_INT est_niter)
1398{
1399 unsigned upper_bound;
1400 unsigned nfactor, factor, mod_constraint;
1401 struct mem_ref_group *agp;
1402 struct mem_ref *ref;
1403
1404 /* First check whether the loop is not too large to unroll. We ignore
1405 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1406 from unrolling them enough to make exactly one cache line covered by each
1407 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1408 us from unrolling the loops too many times in cases where we only expect
1409 gains from better scheduling and decreasing loop overhead, which is not
1410 the case here. */
1411 upper_bound = param_max_unrolled_insns / ninsns;
1412
1413 /* If we unrolled the loop more times than it iterates, the unrolled version
1414 of the loop would be never entered. */
1415 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1416 upper_bound = est_niter;
1417
1418 if (upper_bound <= 1)
1419 return 1;
1420
1421 /* Choose the factor so that we may prefetch each cache just once,
1422 but bound the unrolling by UPPER_BOUND. */
1423 factor = 1;
1424 for (agp = refs; agp; agp = agp->next)
1425 for (ref = agp->refs; ref; ref = ref->next)
1426 if (should_issue_prefetch_p (ref))
1427 {
1428 mod_constraint = ref->prefetch_mod;
1429 nfactor = least_common_multiple (mod_constraint, factor);
1430 if (nfactor <= upper_bound)
1431 factor = nfactor;
1432 }
1433
1434 if (!should_unroll_loop_p (loop, desc, factor))
1435 return 1;
1436
1437 return factor;
1438}
1439
1440/* Returns the total volume of the memory references REFS, taking into account
1441 reuses in the innermost loop and cache line size. TODO -- we should also
1442 take into account reuses across the iterations of the loops in the loop
1443 nest. */
1444
1445static unsigned
1446volume_of_references (struct mem_ref_group *refs)
1447{
1448 unsigned volume = 0;
1449 struct mem_ref_group *gr;
1450 struct mem_ref *ref;
1451
1452 for (gr = refs; gr; gr = gr->next)
1453 for (ref = gr->refs; ref; ref = ref->next)
1454 {
1455 /* Almost always reuses another value? */
1456 if (ref->prefetch_before != PREFETCH_ALL)
1457 continue;
1458
1459 /* If several iterations access the same cache line, use the size of
1460 the line divided by this number. Otherwise, a cache line is
1461 accessed in each iteration. TODO -- in the latter case, we should
1462 take the size of the reference into account, rounding it up on cache
1463 line size multiple. */
1464 volume += param_l1_cache_line_size / ref->prefetch_mod;
1465 }
1466 return volume;
1467}
1468
1469/* Returns the volume of memory references accessed across VEC iterations of
1470 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1471 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1472
1473static unsigned
1474volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1475{
1476 unsigned i;
1477
1478 for (i = 0; i < n; i++)
1479 if (vec[i] != 0)
1480 break;
1481
1482 if (i == n)
1483 return 0;
1484
1485 gcc_assert (vec[i] > 0);
1486
1487 /* We ignore the parts of the distance vector in subloops, since usually
1488 the numbers of iterations are much smaller. */
1489 return loop_sizes[i] * vec[i];
1490}
1491
1492/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1493 at the position corresponding to the loop of the step. N is the depth
1494 of the considered loop nest, and, LOOP is its innermost loop. */
1495
1496static void
1497add_subscript_strides (tree access_fn, unsigned stride,
1498 HOST_WIDE_INT *strides, unsigned n, class loop *loop)
1499{
1500 class loop *aloop;
1501 tree step;
1502 HOST_WIDE_INT astep;
1503 unsigned min_depth = loop_depth (loop) - n;
1504
1505 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1506 {
1507 aloop = get_chrec_loop (chrec: access_fn);
1508 step = CHREC_RIGHT (access_fn);
1509 access_fn = CHREC_LEFT (access_fn);
1510
1511 if ((unsigned) loop_depth (loop: aloop) <= min_depth)
1512 continue;
1513
1514 if (tree_fits_shwi_p (step))
1515 astep = tree_to_shwi (step);
1516 else
1517 astep = param_l1_cache_line_size;
1518
1519 strides[n - 1 - loop_depth (loop) + loop_depth (loop: aloop)] += astep * stride;
1520
1521 }
1522}
1523
1524/* Returns the volume of memory references accessed between two consecutive
1525 self-reuses of the reference DR. We consider the subscripts of DR in N
1526 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1527 loops. LOOP is the innermost loop of the current loop nest. */
1528
1529static unsigned
1530self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1531 class loop *loop)
1532{
1533 tree stride, access_fn;
1534 HOST_WIDE_INT *strides, astride;
1535 vec<tree> access_fns;
1536 tree ref = DR_REF (dr);
1537 unsigned i, ret = ~0u;
1538
1539 /* In the following example:
1540
1541 for (i = 0; i < N; i++)
1542 for (j = 0; j < N; j++)
1543 use (a[j][i]);
1544 the same cache line is accessed each N steps (except if the change from
1545 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1546 we cannot rely purely on the results of the data dependence analysis.
1547
1548 Instead, we compute the stride of the reference in each loop, and consider
1549 the innermost loop in that the stride is less than cache size. */
1550
1551 strides = XCNEWVEC (HOST_WIDE_INT, n);
1552 access_fns = DR_ACCESS_FNS (dr);
1553
1554 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1555 {
1556 /* Keep track of the reference corresponding to the subscript, so that we
1557 know its stride. */
1558 while (handled_component_p (t: ref) && TREE_CODE (ref) != ARRAY_REF)
1559 ref = TREE_OPERAND (ref, 0);
1560
1561 if (TREE_CODE (ref) == ARRAY_REF)
1562 {
1563 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1564 if (tree_fits_uhwi_p (stride))
1565 astride = tree_to_uhwi (stride);
1566 else
1567 astride = param_l1_cache_line_size;
1568
1569 ref = TREE_OPERAND (ref, 0);
1570 }
1571 else
1572 astride = 1;
1573
1574 add_subscript_strides (access_fn, stride: astride, strides, n, loop);
1575 }
1576
1577 for (i = n; i-- > 0; )
1578 {
1579 unsigned HOST_WIDE_INT s;
1580
1581 s = strides[i] < 0 ? -strides[i] : strides[i];
1582
1583 if (s < (unsigned) param_l1_cache_line_size
1584 && (loop_sizes[i]
1585 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1586 {
1587 ret = loop_sizes[i];
1588 break;
1589 }
1590 }
1591
1592 free (ptr: strides);
1593 return ret;
1594}
1595
1596/* Determines the distance till the first reuse of each reference in REFS
1597 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1598 memory references in the loop. Return false if the analysis fails. */
1599
1600static bool
1601determine_loop_nest_reuse (class loop *loop, struct mem_ref_group *refs,
1602 bool no_other_refs)
1603{
1604 class loop *nest, *aloop;
1605 vec<data_reference_p> datarefs = vNULL;
1606 vec<ddr_p> dependences = vNULL;
1607 struct mem_ref_group *gr;
1608 struct mem_ref *ref, *refb;
1609 auto_vec<loop_p> vloops;
1610 unsigned *loop_data_size;
1611 unsigned i, j, n;
1612 unsigned volume, dist, adist;
1613 HOST_WIDE_INT vol;
1614 data_reference_p dr;
1615 ddr_p dep;
1616
1617 if (loop->inner)
1618 return true;
1619
1620 /* Find the outermost loop of the loop nest of loop (we require that
1621 there are no sibling loops inside the nest). */
1622 nest = loop;
1623 while (1)
1624 {
1625 aloop = loop_outer (loop: nest);
1626
1627 if (aloop == current_loops->tree_root
1628 || aloop->inner->next)
1629 break;
1630
1631 nest = aloop;
1632 }
1633
1634 /* For each loop, determine the amount of data accessed in each iteration.
1635 We use this to estimate whether the reference is evicted from the
1636 cache before its reuse. */
1637 find_loop_nest (nest, &vloops);
1638 n = vloops.length ();
1639 loop_data_size = XNEWVEC (unsigned, n);
1640 volume = volume_of_references (refs);
1641 i = n;
1642 while (i-- != 0)
1643 {
1644 loop_data_size[i] = volume;
1645 /* Bound the volume by the L2 cache size, since above this bound,
1646 all dependence distances are equivalent. */
1647 if (volume > L2_CACHE_SIZE_BYTES)
1648 continue;
1649
1650 aloop = vloops[i];
1651 vol = estimated_stmt_executions_int (aloop);
1652 if (vol == -1)
1653 vol = expected_loop_iterations (aloop);
1654 volume *= vol;
1655 }
1656
1657 /* Prepare the references in the form suitable for data dependence
1658 analysis. We ignore unanalyzable data references (the results
1659 are used just as a heuristics to estimate temporality of the
1660 references, hence we do not need to worry about correctness). */
1661 for (gr = refs; gr; gr = gr->next)
1662 for (ref = gr->refs; ref; ref = ref->next)
1663 {
1664 dr = create_data_ref (loop_preheader_edge (nest),
1665 loop_containing_stmt (stmt: ref->stmt),
1666 ref->mem, ref->stmt, !ref->write_p, false);
1667
1668 if (dr)
1669 {
1670 ref->reuse_distance = volume;
1671 dr->aux = ref;
1672 datarefs.safe_push (obj: dr);
1673 }
1674 else
1675 no_other_refs = false;
1676 }
1677
1678 FOR_EACH_VEC_ELT (datarefs, i, dr)
1679 {
1680 dist = self_reuse_distance (dr, loop_sizes: loop_data_size, n, loop);
1681 ref = (struct mem_ref *) dr->aux;
1682 if (ref->reuse_distance > dist)
1683 ref->reuse_distance = dist;
1684
1685 if (no_other_refs)
1686 ref->independent_p = true;
1687 }
1688
1689 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1690 return false;
1691
1692 FOR_EACH_VEC_ELT (dependences, i, dep)
1693 {
1694 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1695 continue;
1696
1697 ref = (struct mem_ref *) DDR_A (dep)->aux;
1698 refb = (struct mem_ref *) DDR_B (dep)->aux;
1699
1700 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1701 || DDR_COULD_BE_INDEPENDENT_P (dep)
1702 || DDR_NUM_DIST_VECTS (dep) == 0)
1703 {
1704 /* If the dependence cannot be analyzed, assume that there might be
1705 a reuse. */
1706 dist = 0;
1707
1708 ref->independent_p = false;
1709 refb->independent_p = false;
1710 }
1711 else
1712 {
1713 /* The distance vectors are normalized to be always lexicographically
1714 positive, hence we cannot tell just from them whether DDR_A comes
1715 before DDR_B or vice versa. However, it is not important,
1716 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1717 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1718 in cache (and marking it as nontemporal would not affect
1719 anything). */
1720
1721 dist = volume;
1722 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1723 {
1724 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1725 loop_sizes: loop_data_size, n);
1726
1727 /* If this is a dependence in the innermost loop (i.e., the
1728 distances in all superloops are zero) and it is not
1729 the trivial self-dependence with distance zero, record that
1730 the references are not completely independent. */
1731 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), size: n - 1)
1732 && (ref != refb
1733 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1734 {
1735 ref->independent_p = false;
1736 refb->independent_p = false;
1737 }
1738
1739 /* Ignore accesses closer than
1740 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1741 so that we use nontemporal prefetches e.g. if single memory
1742 location is accessed several times in a single iteration of
1743 the loop. */
1744 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1745 continue;
1746
1747 if (adist < dist)
1748 dist = adist;
1749 }
1750 }
1751
1752 if (ref->reuse_distance > dist)
1753 ref->reuse_distance = dist;
1754 if (refb->reuse_distance > dist)
1755 refb->reuse_distance = dist;
1756 }
1757
1758 free_dependence_relations (dependences);
1759 free_data_refs (datarefs);
1760 free (ptr: loop_data_size);
1761
1762 if (dump_file && (dump_flags & TDF_DETAILS))
1763 {
1764 fprintf (stream: dump_file, format: "Reuse distances:\n");
1765 for (gr = refs; gr; gr = gr->next)
1766 for (ref = gr->refs; ref; ref = ref->next)
1767 fprintf (stream: dump_file, format: " reference %u:%u distance %u\n",
1768 ref->group->uid, ref->uid, ref->reuse_distance);
1769 }
1770
1771 return true;
1772}
1773
1774/* Determine whether or not the trip count to ahead ratio is too small based
1775 on prefitablility consideration.
1776 AHEAD: the iteration ahead distance,
1777 EST_NITER: the estimated trip count. */
1778
1779static bool
1780trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1781{
1782 /* Assume trip count to ahead ratio is big enough if the trip count could not
1783 be estimated at compile time. */
1784 if (est_niter < 0)
1785 return false;
1786
1787 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1788 {
1789 if (dump_file && (dump_flags & TDF_DETAILS))
1790 fprintf (stream: dump_file,
1791 format: "Not prefetching -- loop estimated to roll only %d times\n",
1792 (int) est_niter);
1793 return true;
1794 }
1795
1796 return false;
1797}
1798
1799/* Determine whether or not the number of memory references in the loop is
1800 reasonable based on the profitablity and compilation time considerations.
1801 NINSNS: estimated number of instructions in the loop,
1802 MEM_REF_COUNT: total number of memory references in the loop. */
1803
1804static bool
1805mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1806{
1807 int insn_to_mem_ratio;
1808
1809 if (mem_ref_count == 0)
1810 return false;
1811
1812 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1813 (compute_all_dependences) have high costs based on quadratic complexity.
1814 To avoid huge compilation time, we give up prefetching if mem_ref_count
1815 is too large. */
1816 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1817 return false;
1818
1819 /* Prefetching improves performance by overlapping cache missing
1820 memory accesses with CPU operations. If the loop does not have
1821 enough CPU operations to overlap with memory operations, prefetching
1822 won't give a significant benefit. One approximate way of checking
1823 this is to require the ratio of instructions to memory references to
1824 be above a certain limit. This approximation works well in practice.
1825 TODO: Implement a more precise computation by estimating the time
1826 for each CPU or memory op in the loop. Time estimates for memory ops
1827 should account for cache misses. */
1828 insn_to_mem_ratio = ninsns / mem_ref_count;
1829
1830 if (insn_to_mem_ratio < param_prefetch_min_insn_to_mem_ratio)
1831 {
1832 if (dump_file && (dump_flags & TDF_DETAILS))
1833 fprintf (stream: dump_file,
1834 format: "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1835 insn_to_mem_ratio);
1836 return false;
1837 }
1838
1839 return true;
1840}
1841
1842/* Determine whether or not the instruction to prefetch ratio in the loop is
1843 too small based on the profitablity consideration.
1844 NINSNS: estimated number of instructions in the loop,
1845 PREFETCH_COUNT: an estimate of the number of prefetches,
1846 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1847
1848static bool
1849insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1850 unsigned unroll_factor)
1851{
1852 int insn_to_prefetch_ratio;
1853
1854 /* Prefetching most likely causes performance degradation when the instruction
1855 to prefetch ratio is too small. Too many prefetch instructions in a loop
1856 may reduce the I-cache performance.
1857 (unroll_factor * ninsns) is used to estimate the number of instructions in
1858 the unrolled loop. This implementation is a bit simplistic -- the number
1859 of issued prefetch instructions is also affected by unrolling. So,
1860 prefetch_mod and the unroll factor should be taken into account when
1861 determining prefetch_count. Also, the number of insns of the unrolled
1862 loop will usually be significantly smaller than the number of insns of the
1863 original loop * unroll_factor (at least the induction variable increases
1864 and the exit branches will get eliminated), so it might be better to use
1865 tree_estimate_loop_size + estimated_unrolled_size. */
1866 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1867 if (insn_to_prefetch_ratio < param_min_insn_to_prefetch_ratio)
1868 {
1869 if (dump_file && (dump_flags & TDF_DETAILS))
1870 fprintf (stream: dump_file,
1871 format: "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1872 insn_to_prefetch_ratio);
1873 return true;
1874 }
1875
1876 return false;
1877}
1878
1879
1880/* Issue prefetch instructions for array references in LOOP. Returns
1881 true if the LOOP was unrolled and updates NEED_LC_SSA_UPDATE if we need
1882 to update SSA for virtual operands and LC SSA for a split edge. */
1883
1884static bool
1885loop_prefetch_arrays (class loop *loop, bool &need_lc_ssa_update)
1886{
1887 struct mem_ref_group *refs;
1888 unsigned ahead, ninsns, time, unroll_factor;
1889 HOST_WIDE_INT est_niter;
1890 class tree_niter_desc desc;
1891 bool unrolled = false, no_other_refs;
1892 unsigned prefetch_count;
1893 unsigned mem_ref_count;
1894
1895 if (optimize_loop_nest_for_size_p (loop))
1896 {
1897 if (dump_file && (dump_flags & TDF_DETAILS))
1898 fprintf (stream: dump_file, format: " ignored (cold area)\n");
1899 return false;
1900 }
1901
1902 /* FIXME: the time should be weighted by the probabilities of the blocks in
1903 the loop body. */
1904 time = tree_num_loop_insns (loop, &eni_time_weights);
1905 if (time == 0)
1906 return false;
1907
1908 ahead = (param_prefetch_latency + time - 1) / time;
1909 est_niter = estimated_stmt_executions_int (loop);
1910 if (est_niter == -1)
1911 est_niter = likely_max_stmt_executions_int (loop);
1912
1913 /* Prefetching is not likely to be profitable if the trip count to ahead
1914 ratio is too small. */
1915 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1916 return false;
1917
1918 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1919
1920 /* Step 1: gather the memory references. */
1921 refs = gather_memory_references (loop, no_other_refs: &no_other_refs, ref_count: &mem_ref_count);
1922
1923 /* Give up prefetching if the number of memory references in the
1924 loop is not reasonable based on profitablity and compilation time
1925 considerations. */
1926 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1927 goto fail;
1928
1929 /* Step 2: estimate the reuse effects. */
1930 prune_by_reuse (groups: refs);
1931
1932 if (nothing_to_prefetch_p (groups: refs))
1933 goto fail;
1934
1935 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1936 goto fail;
1937
1938 /* Step 3: determine unroll factor. */
1939 unroll_factor = determine_unroll_factor (loop, refs, ninsns, desc: &desc,
1940 est_niter);
1941
1942 /* Estimate prefetch count for the unrolled loop. */
1943 prefetch_count = estimate_prefetch_count (groups: refs, unroll_factor);
1944 if (prefetch_count == 0)
1945 goto fail;
1946
1947 if (dump_file && (dump_flags & TDF_DETAILS))
1948 fprintf (stream: dump_file, format: "Ahead %d, unroll factor %d, trip count "
1949 HOST_WIDE_INT_PRINT_DEC "\n"
1950 "insn count %d, mem ref count %d, prefetch count %d\n",
1951 ahead, unroll_factor, est_niter,
1952 ninsns, mem_ref_count, prefetch_count);
1953
1954 /* Prefetching is not likely to be profitable if the instruction to prefetch
1955 ratio is too small. */
1956 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1957 unroll_factor))
1958 goto fail;
1959
1960 need_lc_ssa_update |= mark_nontemporal_stores (loop, groups: refs);
1961
1962 /* Step 4: what to prefetch? */
1963 if (!schedule_prefetches (groups: refs, unroll_factor, ahead))
1964 goto fail;
1965
1966 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1967 iterations so that we do not issue superfluous prefetches. */
1968 if (unroll_factor != 1)
1969 {
1970 tree_unroll_loop (loop, unroll_factor, &desc);
1971 unrolled = true;
1972 }
1973
1974 /* Step 6: issue the prefetches. */
1975 issue_prefetches (groups: refs, unroll_factor, ahead);
1976
1977fail:
1978 release_mem_refs (groups: refs);
1979 return unrolled;
1980}
1981
1982/* Issue prefetch instructions for array references in loops. */
1983
1984unsigned int
1985tree_ssa_prefetch_arrays (void)
1986{
1987 bool unrolled = false;
1988 bool need_lc_ssa_update = false;
1989 int todo_flags = 0;
1990
1991 if (!targetm.have_prefetch ()
1992 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1993 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1994 of processor costs and i486 does not have prefetch, but
1995 -march=pentium4 causes targetm.have_prefetch to be true. Ugh. */
1996 || PREFETCH_BLOCK == 0)
1997 return 0;
1998
1999 if (dump_file && (dump_flags & TDF_DETAILS))
2000 {
2001 fprintf (stream: dump_file, format: "Prefetching parameters:\n");
2002 fprintf (stream: dump_file, format: " simultaneous prefetches: %d\n",
2003 param_simultaneous_prefetches);
2004 fprintf (stream: dump_file, format: " prefetch latency: %d\n", param_prefetch_latency);
2005 fprintf (stream: dump_file, format: " prefetch block size: %d\n", PREFETCH_BLOCK);
2006 fprintf (stream: dump_file, format: " L1 cache size: %d lines, %d kB\n",
2007 L1_CACHE_SIZE_BYTES / param_l1_cache_line_size,
2008 param_l1_cache_size);
2009 fprintf (stream: dump_file, format: " L1 cache line size: %d\n",
2010 param_l1_cache_line_size);
2011 fprintf (stream: dump_file, format: " L2 cache size: %d kB\n", param_l2_cache_size);
2012 fprintf (stream: dump_file, format: " min insn-to-prefetch ratio: %d \n",
2013 param_min_insn_to_prefetch_ratio);
2014 fprintf (stream: dump_file, format: " min insn-to-mem ratio: %d \n",
2015 param_prefetch_min_insn_to_mem_ratio);
2016 fprintf (stream: dump_file, format: "\n");
2017 }
2018
2019 initialize_original_copy_tables ();
2020
2021 if (!builtin_decl_explicit_p (fncode: BUILT_IN_PREFETCH))
2022 {
2023 tree type = build_function_type_list (void_type_node,
2024 const_ptr_type_node, NULL_TREE);
2025 tree decl = add_builtin_function (name: "__builtin_prefetch", type,
2026 function_code: BUILT_IN_PREFETCH, cl: BUILT_IN_NORMAL,
2027 NULL, NULL_TREE);
2028 DECL_IS_NOVOPS (decl) = true;
2029 set_builtin_decl (fncode: BUILT_IN_PREFETCH, decl, implicit_p: false);
2030 }
2031
2032 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
2033 {
2034 if (dump_file && (dump_flags & TDF_DETAILS))
2035 fprintf (stream: dump_file, format: "Processing loop %d:\n", loop->num);
2036
2037 unrolled |= loop_prefetch_arrays (loop, need_lc_ssa_update);
2038
2039 if (dump_file && (dump_flags & TDF_DETAILS))
2040 fprintf (stream: dump_file, format: "\n\n");
2041 }
2042
2043 if (need_lc_ssa_update)
2044 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa_only_virtuals);
2045
2046 if (unrolled)
2047 {
2048 scev_reset ();
2049 todo_flags |= TODO_cleanup_cfg;
2050 }
2051
2052 free_original_copy_tables ();
2053 return todo_flags;
2054}
2055
2056/* Prefetching. */
2057
2058namespace {
2059
2060const pass_data pass_data_loop_prefetch =
2061{
2062 .type: GIMPLE_PASS, /* type */
2063 .name: "aprefetch", /* name */
2064 .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */
2065 .tv_id: TV_TREE_PREFETCH, /* tv_id */
2066 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
2067 .properties_provided: 0, /* properties_provided */
2068 .properties_destroyed: 0, /* properties_destroyed */
2069 .todo_flags_start: 0, /* todo_flags_start */
2070 .todo_flags_finish: 0, /* todo_flags_finish */
2071};
2072
2073class pass_loop_prefetch : public gimple_opt_pass
2074{
2075public:
2076 pass_loop_prefetch (gcc::context *ctxt)
2077 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2078 {}
2079
2080 /* opt_pass methods: */
2081 bool gate (function *) final override
2082 {
2083 return flag_prefetch_loop_arrays > 0;
2084 }
2085 unsigned int execute (function *) final override;
2086
2087}; // class pass_loop_prefetch
2088
2089unsigned int
2090pass_loop_prefetch::execute (function *fun)
2091{
2092 if (number_of_loops (fn: fun) <= 1)
2093 return 0;
2094
2095 if ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) != 0)
2096 {
2097 static bool warned = false;
2098
2099 if (!warned)
2100 {
2101 warning (OPT_Wdisabled_optimization,
2102 "%<l1-cache-size%> parameter is not a power of two %d",
2103 PREFETCH_BLOCK);
2104 warned = true;
2105 }
2106 return 0;
2107 }
2108
2109 return tree_ssa_prefetch_arrays ();
2110}
2111
2112} // anon namespace
2113
2114gimple_opt_pass *
2115make_pass_loop_prefetch (gcc::context *ctxt)
2116{
2117 return new pass_loop_prefetch (ctxt);
2118}
2119
2120
2121

source code of gcc/tree-ssa-loop-prefetch.cc