1/* Tail merging for gimple.
2 Copyright (C) 2011-2024 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* Pass overview.
22
23
24 MOTIVATIONAL EXAMPLE
25
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29 {
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
34
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
53
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
62
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
75
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
84
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
92
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
97
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
104 }
105
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
108
109
110 CONTEXT
111
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
119
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
126
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
132
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
136
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
143
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
151
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
155
156
157 IMPLEMENTATION
158
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
165
166
167 LIMITATIONS/TODO
168
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
177
178
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
182
183
184 SWITCHES
185
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
187
188#include "config.h"
189#include "system.h"
190#include "coretypes.h"
191#include "backend.h"
192#include "tree.h"
193#include "gimple.h"
194#include "cfghooks.h"
195#include "tree-pass.h"
196#include "ssa.h"
197#include "fold-const.h"
198#include "trans-mem.h"
199#include "cfganal.h"
200#include "cfgcleanup.h"
201#include "gimple-iterator.h"
202#include "tree-cfg.h"
203#include "tree-into-ssa.h"
204#include "tree-ssa-sccvn.h"
205#include "cfgloop.h"
206#include "tree-eh.h"
207#include "tree-cfgcleanup.h"
208
209const int ignore_edge_flags = EDGE_DFS_BACK | EDGE_EXECUTABLE;
210
211/* Describes a group of bbs with the same successors. The successor bbs are
212 cached in succs, and the successor edge flags are cached in succ_flags.
213 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
214 it's marked in inverse.
215 Additionally, the hash value for the struct is cached in hashval, and
216 in_worklist indicates whether it's currently part of worklist. */
217
218struct same_succ : pointer_hash <same_succ>
219{
220 /* The bbs that have the same successor bbs. */
221 bitmap bbs;
222 /* The successor bbs. */
223 bitmap succs;
224 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
225 bb. */
226 bitmap inverse;
227 /* The edge flags for each of the successor bbs. */
228 vec<int> succ_flags;
229 /* Indicates whether the struct is currently in the worklist. */
230 bool in_worklist;
231 /* The hash value of the struct. */
232 hashval_t hashval;
233
234 /* hash_table support. */
235 static inline hashval_t hash (const same_succ *);
236 static int equal (const same_succ *, const same_succ *);
237 static void remove (same_succ *);
238};
239
240/* hash routine for hash_table support, returns hashval of E. */
241
242inline hashval_t
243same_succ::hash (const same_succ *e)
244{
245 return e->hashval;
246}
247
248/* A group of bbs where 1 bb from bbs can replace the other bbs. */
249
250struct bb_cluster
251{
252 /* The bbs in the cluster. */
253 bitmap bbs;
254 /* The preds of the bbs in the cluster. */
255 bitmap preds;
256 /* Index in all_clusters vector. */
257 int index;
258 /* The bb to replace the cluster with. */
259 basic_block rep_bb;
260};
261
262/* Per bb-info. */
263
264struct aux_bb_info
265{
266 /* The number of non-debug statements in the bb. */
267 int size;
268 /* The same_succ that this bb is a member of. */
269 same_succ *bb_same_succ;
270 /* The cluster that this bb is a member of. */
271 bb_cluster *cluster;
272 /* The vop state at the exit of a bb. This is shortlived data, used to
273 communicate data between update_block_by and update_vuses. */
274 tree vop_at_exit;
275 /* The bb that either contains or is dominated by the dependencies of the
276 bb. */
277 basic_block dep_bb;
278};
279
280/* Macros to access the fields of struct aux_bb_info. */
281
282#define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
283#define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
284#define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
285#define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
286#define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
287
288/* Valueization helper querying the VN lattice. */
289
290static tree
291tail_merge_valueize (tree name)
292{
293 if (TREE_CODE (name) == SSA_NAME
294 && has_VN_INFO (name))
295 {
296 tree tem = VN_INFO (name)->valnum;
297 if (tem != VN_TOP)
298 return tem;
299 }
300 return name;
301}
302
303/* Returns true if the only effect a statement STMT has, is to define locally
304 used SSA_NAMEs. */
305
306static bool
307stmt_local_def (gimple *stmt)
308{
309 basic_block bb, def_bb;
310 imm_use_iterator iter;
311 use_operand_p use_p;
312 tree val;
313 def_operand_p def_p;
314
315 if (gimple_vdef (g: stmt) != NULL_TREE
316 || gimple_has_side_effects (stmt)
317 || gimple_could_trap_p_1 (stmt, false, false)
318 || gimple_vuse (g: stmt) != NULL_TREE
319 /* Copied from tree-ssa-ifcombine.cc:bb_no_side_effects_p():
320 const calls don't match any of the above, yet they could
321 still have some side-effects - they could contain
322 gimple_could_trap_p statements, like floating point
323 exceptions or integer division by zero. See PR70586.
324 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
325 should handle this. */
326 || is_gimple_call (gs: stmt))
327 return false;
328
329 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
330 if (def_p == NULL)
331 return false;
332
333 val = DEF_FROM_PTR (def_p);
334 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
335 return false;
336
337 def_bb = gimple_bb (g: stmt);
338
339 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
340 {
341 if (is_gimple_debug (USE_STMT (use_p)))
342 continue;
343 bb = gimple_bb (USE_STMT (use_p));
344 if (bb == def_bb)
345 continue;
346
347 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
348 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
349 continue;
350
351 return false;
352 }
353
354 return true;
355}
356
357/* Let GSI skip forwards over local defs. */
358
359static void
360gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
361{
362 gimple *stmt;
363
364 while (true)
365 {
366 if (gsi_end_p (i: *gsi))
367 return;
368 stmt = gsi_stmt (i: *gsi);
369 if (!stmt_local_def (stmt))
370 return;
371 gsi_next_nondebug (i: gsi);
372 }
373}
374
375/* VAL1 and VAL2 are either:
376 - uses in BB1 and BB2, or
377 - phi alternatives for BB1 and BB2.
378 Return true if the uses have the same gvn value. */
379
380static bool
381gvn_uses_equal (tree val1, tree val2)
382{
383 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
384
385 if (val1 == val2)
386 return true;
387
388 if (tail_merge_valueize (name: val1) != tail_merge_valueize (name: val2))
389 return false;
390
391 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
392 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
393}
394
395/* Prints E to FILE. */
396
397static void
398same_succ_print (FILE *file, const same_succ *e)
399{
400 unsigned int i;
401 bitmap_print (file, e->bbs, "bbs:", "\n");
402 bitmap_print (file, e->succs, "succs:", "\n");
403 bitmap_print (file, e->inverse, "inverse:", "\n");
404 fprintf (stream: file, format: "flags:");
405 for (i = 0; i < e->succ_flags.length (); ++i)
406 fprintf (stream: file, format: " %x", e->succ_flags[i]);
407 fprintf (stream: file, format: "\n");
408}
409
410/* Prints same_succ VE to VFILE. */
411
412inline int
413ssa_same_succ_print_traverse (same_succ **pe, FILE *file)
414{
415 const same_succ *e = *pe;
416 same_succ_print (file, e);
417 return 1;
418}
419
420/* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
421
422static void
423update_dep_bb (basic_block use_bb, tree val)
424{
425 basic_block dep_bb;
426
427 /* Not a dep. */
428 if (TREE_CODE (val) != SSA_NAME)
429 return;
430
431 /* Skip use of global def. */
432 if (SSA_NAME_IS_DEFAULT_DEF (val))
433 return;
434
435 /* Skip use of local def. */
436 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
437 if (dep_bb == use_bb)
438 return;
439
440 if (BB_DEP_BB (use_bb) == NULL
441 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
442 BB_DEP_BB (use_bb) = dep_bb;
443}
444
445/* Update BB_DEP_BB, given the dependencies in STMT. */
446
447static void
448stmt_update_dep_bb (gimple *stmt)
449{
450 ssa_op_iter iter;
451 use_operand_p use;
452
453 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
454 update_dep_bb (use_bb: gimple_bb (g: stmt), USE_FROM_PTR (use));
455}
456
457/* Calculates hash value for same_succ VE. */
458
459static hashval_t
460same_succ_hash (const same_succ *e)
461{
462 inchash::hash hstate (bitmap_hash (e->succs));
463 int flags;
464 unsigned int i;
465 unsigned int first = bitmap_first_set_bit (e->bbs);
466 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
467 int size = 0;
468 gimple *stmt;
469 tree arg;
470 unsigned int s;
471 bitmap_iterator bs;
472
473 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
474 !gsi_end_p (i: gsi); gsi_next_nondebug (i: &gsi))
475 {
476 stmt = gsi_stmt (i: gsi);
477 if (is_gimple_debug (gs: stmt))
478 continue;
479
480 stmt_update_dep_bb (stmt);
481 if (stmt_local_def (stmt))
482 continue;
483 size++;
484
485 hstate.add_int (v: gimple_code (g: stmt));
486 if (is_gimple_assign (gs: stmt))
487 hstate.add_int (v: gimple_assign_rhs_code (gs: stmt));
488 if (!is_gimple_call (gs: stmt))
489 continue;
490 if (gimple_call_internal_p (gs: stmt))
491 hstate.add_int (v: gimple_call_internal_fn (gs: stmt));
492 else
493 {
494 inchash::add_expr (gimple_call_fn (gs: stmt), hstate);
495 if (gimple_call_chain (gs: stmt))
496 inchash::add_expr (gimple_call_chain (gs: stmt), hstate);
497 }
498 for (i = 0; i < gimple_call_num_args (gs: stmt); i++)
499 {
500 arg = gimple_call_arg (gs: stmt, index: i);
501 arg = tail_merge_valueize (name: arg);
502 inchash::add_expr (arg, hstate);
503 }
504 }
505
506 hstate.add_int (v: size);
507 BB_SIZE (bb) = size;
508
509 hstate.add_int (v: bb->loop_father->num);
510
511 for (i = 0; i < e->succ_flags.length (); ++i)
512 {
513 flags = e->succ_flags[i];
514 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
515 hstate.add_int (v: flags);
516 }
517
518 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
519 {
520 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
521 for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
522 !gsi_end_p (i: gsi);
523 gsi_next (i: &gsi))
524 {
525 gphi *phi = gsi.phi ();
526 tree lhs = gimple_phi_result (gs: phi);
527 tree val = gimple_phi_arg_def (gs: phi, index: n);
528
529 if (virtual_operand_p (op: lhs))
530 continue;
531 update_dep_bb (use_bb: bb, val);
532 }
533 }
534
535 return hstate.end ();
536}
537
538/* Returns true if E1 and E2 have 2 successors, and if the successor flags
539 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
540 the other edge flags. */
541
542static bool
543inverse_flags (const same_succ *e1, const same_succ *e2)
544{
545 int f1a, f1b, f2a, f2b;
546 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
547
548 if (e1->succ_flags.length () != 2)
549 return false;
550
551 f1a = e1->succ_flags[0];
552 f1b = e1->succ_flags[1];
553 f2a = e2->succ_flags[0];
554 f2b = e2->succ_flags[1];
555
556 if (f1a == f2a && f1b == f2b)
557 return false;
558
559 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
560}
561
562/* Compares SAME_SUCCs E1 and E2. */
563
564int
565same_succ::equal (const same_succ *e1, const same_succ *e2)
566{
567 unsigned int i, first1, first2;
568 gimple_stmt_iterator gsi1, gsi2;
569 gimple *s1, *s2;
570 basic_block bb1, bb2;
571
572 if (e1 == e2)
573 return 1;
574
575 if (e1->hashval != e2->hashval)
576 return 0;
577
578 if (e1->succ_flags.length () != e2->succ_flags.length ())
579 return 0;
580
581 if (!bitmap_equal_p (e1->succs, e2->succs))
582 return 0;
583
584 if (!inverse_flags (e1, e2))
585 {
586 for (i = 0; i < e1->succ_flags.length (); ++i)
587 if (e1->succ_flags[i] != e2->succ_flags[i])
588 return 0;
589 }
590
591 first1 = bitmap_first_set_bit (e1->bbs);
592 first2 = bitmap_first_set_bit (e2->bbs);
593
594 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
595 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
596
597 if (BB_SIZE (bb1) != BB_SIZE (bb2))
598 return 0;
599
600 if (bb1->loop_father != bb2->loop_father)
601 return 0;
602
603 gsi1 = gsi_start_nondebug_bb (bb: bb1);
604 gsi2 = gsi_start_nondebug_bb (bb: bb2);
605 gsi_advance_fw_nondebug_nonlocal (gsi: &gsi1);
606 gsi_advance_fw_nondebug_nonlocal (gsi: &gsi2);
607 while (!(gsi_end_p (i: gsi1) || gsi_end_p (i: gsi2)))
608 {
609 s1 = gsi_stmt (i: gsi1);
610 s2 = gsi_stmt (i: gsi2);
611 if (gimple_code (g: s1) != gimple_code (g: s2))
612 return 0;
613 if (is_gimple_call (gs: s1) && !gimple_call_same_target_p (s1, s2))
614 return 0;
615 gsi_next_nondebug (i: &gsi1);
616 gsi_next_nondebug (i: &gsi2);
617 gsi_advance_fw_nondebug_nonlocal (gsi: &gsi1);
618 gsi_advance_fw_nondebug_nonlocal (gsi: &gsi2);
619 }
620
621 return 1;
622}
623
624/* Alloc and init a new SAME_SUCC. */
625
626static same_succ *
627same_succ_alloc (void)
628{
629 same_succ *same = XNEW (struct same_succ);
630
631 same->bbs = BITMAP_ALLOC (NULL);
632 same->succs = BITMAP_ALLOC (NULL);
633 same->inverse = BITMAP_ALLOC (NULL);
634 same->succ_flags.create (nelems: 10);
635 same->in_worklist = false;
636
637 return same;
638}
639
640/* Delete same_succ E. */
641
642void
643same_succ::remove (same_succ *e)
644{
645 BITMAP_FREE (e->bbs);
646 BITMAP_FREE (e->succs);
647 BITMAP_FREE (e->inverse);
648 e->succ_flags.release ();
649
650 XDELETE (e);
651}
652
653/* Reset same_succ SAME. */
654
655static void
656same_succ_reset (same_succ *same)
657{
658 bitmap_clear (same->bbs);
659 bitmap_clear (same->succs);
660 bitmap_clear (same->inverse);
661 same->succ_flags.truncate (size: 0);
662}
663
664static hash_table<same_succ> *same_succ_htab;
665
666/* Array that is used to store the edge flags for a successor. */
667
668static int *same_succ_edge_flags;
669
670/* Bitmap that is used to mark bbs that are recently deleted. */
671
672static bitmap deleted_bbs;
673
674/* Bitmap that is used to mark predecessors of bbs that are
675 deleted. */
676
677static bitmap deleted_bb_preds;
678
679/* Prints same_succ_htab to stderr. */
680
681extern void debug_same_succ (void);
682DEBUG_FUNCTION void
683debug_same_succ ( void)
684{
685 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
686}
687
688
689/* Vector of bbs to process. */
690
691static vec<same_succ *> worklist;
692
693/* Prints worklist to FILE. */
694
695static void
696print_worklist (FILE *file)
697{
698 unsigned int i;
699 for (i = 0; i < worklist.length (); ++i)
700 same_succ_print (file, e: worklist[i]);
701}
702
703/* Adds SAME to worklist. */
704
705static void
706add_to_worklist (same_succ *same)
707{
708 if (same->in_worklist)
709 return;
710
711 if (bitmap_count_bits (same->bbs) < 2)
712 return;
713
714 same->in_worklist = true;
715 worklist.safe_push (obj: same);
716}
717
718/* Add BB to same_succ_htab. */
719
720static void
721find_same_succ_bb (basic_block bb, same_succ **same_p)
722{
723 unsigned int j;
724 bitmap_iterator bj;
725 same_succ *same = *same_p;
726 same_succ **slot;
727 edge_iterator ei;
728 edge e;
729
730 if (bb == NULL)
731 return;
732 bitmap_set_bit (same->bbs, bb->index);
733 FOR_EACH_EDGE (e, ei, bb->succs)
734 {
735 int index = e->dest->index;
736 bitmap_set_bit (same->succs, index);
737 same_succ_edge_flags[index] = (e->flags & ~ignore_edge_flags);
738 }
739 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
740 same->succ_flags.safe_push (obj: same_succ_edge_flags[j]);
741
742 same->hashval = same_succ_hash (e: same);
743
744 slot = same_succ_htab->find_slot_with_hash (comparable: same, hash: same->hashval, insert: INSERT);
745 if (*slot == NULL)
746 {
747 *slot = same;
748 BB_SAME_SUCC (bb) = same;
749 add_to_worklist (same);
750 *same_p = NULL;
751 }
752 else
753 {
754 bitmap_set_bit ((*slot)->bbs, bb->index);
755 BB_SAME_SUCC (bb) = *slot;
756 add_to_worklist (same: *slot);
757 if (inverse_flags (e1: same, e2: *slot))
758 bitmap_set_bit ((*slot)->inverse, bb->index);
759 same_succ_reset (same);
760 }
761}
762
763/* Find bbs with same successors. */
764
765static void
766find_same_succ (void)
767{
768 same_succ *same = same_succ_alloc ();
769 basic_block bb;
770
771 FOR_EACH_BB_FN (bb, cfun)
772 {
773 find_same_succ_bb (bb, same_p: &same);
774 if (same == NULL)
775 same = same_succ_alloc ();
776 }
777
778 same_succ::remove (e: same);
779}
780
781/* Initializes worklist administration. */
782
783static void
784init_worklist (void)
785{
786 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
787 same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun));
788 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
789 deleted_bbs = BITMAP_ALLOC (NULL);
790 deleted_bb_preds = BITMAP_ALLOC (NULL);
791 worklist.create (n_basic_blocks_for_fn (cfun));
792 find_same_succ ();
793
794 if (dump_file && (dump_flags & TDF_DETAILS))
795 {
796 fprintf (stream: dump_file, format: "initial worklist:\n");
797 print_worklist (file: dump_file);
798 }
799}
800
801/* Deletes worklist administration. */
802
803static void
804delete_worklist (void)
805{
806 free_aux_for_blocks ();
807 delete same_succ_htab;
808 same_succ_htab = NULL;
809 XDELETEVEC (same_succ_edge_flags);
810 same_succ_edge_flags = NULL;
811 BITMAP_FREE (deleted_bbs);
812 BITMAP_FREE (deleted_bb_preds);
813 worklist.release ();
814}
815
816/* Mark BB as deleted, and mark its predecessors. */
817
818static void
819mark_basic_block_deleted (basic_block bb)
820{
821 edge e;
822 edge_iterator ei;
823
824 bitmap_set_bit (deleted_bbs, bb->index);
825
826 FOR_EACH_EDGE (e, ei, bb->preds)
827 bitmap_set_bit (deleted_bb_preds, e->src->index);
828}
829
830/* Removes BB from its corresponding same_succ. */
831
832static void
833same_succ_flush_bb (basic_block bb)
834{
835 same_succ *same = BB_SAME_SUCC (bb);
836 if (! same)
837 return;
838
839 BB_SAME_SUCC (bb) = NULL;
840 if (bitmap_single_bit_set_p (same->bbs))
841 same_succ_htab->remove_elt_with_hash (comparable: same, hash: same->hashval);
842 else
843 bitmap_clear_bit (same->bbs, bb->index);
844}
845
846/* Removes all bbs in BBS from their corresponding same_succ. */
847
848static void
849same_succ_flush_bbs (bitmap bbs)
850{
851 unsigned int i;
852 bitmap_iterator bi;
853
854 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
855 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
856}
857
858/* Release the last vdef in BB, either normal or phi result. */
859
860static void
861release_last_vdef (basic_block bb)
862{
863 for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
864 gsi_prev_nondebug (i: &i))
865 {
866 gimple *stmt = gsi_stmt (i);
867 if (gimple_vdef (g: stmt) == NULL_TREE)
868 continue;
869
870 mark_virtual_operand_for_renaming (gimple_vdef (g: stmt));
871 return;
872 }
873
874 for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
875 gsi_next (i: &i))
876 {
877 gphi *phi = i.phi ();
878 tree res = gimple_phi_result (gs: phi);
879
880 if (!virtual_operand_p (op: res))
881 continue;
882
883 mark_virtual_phi_result_for_renaming (phi);
884 return;
885 }
886}
887
888/* For deleted_bb_preds, find bbs with same successors. */
889
890static void
891update_worklist (void)
892{
893 unsigned int i;
894 bitmap_iterator bi;
895 basic_block bb;
896 same_succ *same;
897
898 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
899 bitmap_clear (deleted_bbs);
900
901 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
902 same_succ_flush_bbs (bbs: deleted_bb_preds);
903
904 same = same_succ_alloc ();
905 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
906 {
907 bb = BASIC_BLOCK_FOR_FN (cfun, i);
908 gcc_assert (bb != NULL);
909 find_same_succ_bb (bb, same_p: &same);
910 if (same == NULL)
911 same = same_succ_alloc ();
912 }
913 same_succ::remove (e: same);
914 bitmap_clear (deleted_bb_preds);
915}
916
917/* Prints cluster C to FILE. */
918
919static void
920print_cluster (FILE *file, bb_cluster *c)
921{
922 if (c == NULL)
923 return;
924 bitmap_print (file, c->bbs, "bbs:", "\n");
925 bitmap_print (file, c->preds, "preds:", "\n");
926}
927
928/* Prints cluster C to stderr. */
929
930extern void debug_cluster (bb_cluster *);
931DEBUG_FUNCTION void
932debug_cluster (bb_cluster *c)
933{
934 print_cluster (stderr, c);
935}
936
937/* Update C->rep_bb, given that BB is added to the cluster. */
938
939static void
940update_rep_bb (bb_cluster *c, basic_block bb)
941{
942 /* Initial. */
943 if (c->rep_bb == NULL)
944 {
945 c->rep_bb = bb;
946 return;
947 }
948
949 /* Current needs no deps, keep it. */
950 if (BB_DEP_BB (c->rep_bb) == NULL)
951 return;
952
953 /* Bb needs no deps, change rep_bb. */
954 if (BB_DEP_BB (bb) == NULL)
955 {
956 c->rep_bb = bb;
957 return;
958 }
959
960 /* Bb needs last deps earlier than current, change rep_bb. A potential
961 problem with this, is that the first deps might also be earlier, which
962 would mean we prefer longer lifetimes for the deps. To be able to check
963 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
964 BB_DEP_BB, which is really BB_LAST_DEP_BB.
965 The benefit of choosing the bb with last deps earlier, is that it can
966 potentially be used as replacement for more bbs. */
967 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
968 c->rep_bb = bb;
969}
970
971/* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
972
973static void
974add_bb_to_cluster (bb_cluster *c, basic_block bb)
975{
976 edge e;
977 edge_iterator ei;
978
979 bitmap_set_bit (c->bbs, bb->index);
980
981 FOR_EACH_EDGE (e, ei, bb->preds)
982 bitmap_set_bit (c->preds, e->src->index);
983
984 update_rep_bb (c, bb);
985}
986
987/* Allocate and init new cluster. */
988
989static bb_cluster *
990new_cluster (void)
991{
992 bb_cluster *c;
993 c = XCNEW (bb_cluster);
994 c->bbs = BITMAP_ALLOC (NULL);
995 c->preds = BITMAP_ALLOC (NULL);
996 c->rep_bb = NULL;
997 return c;
998}
999
1000/* Delete clusters. */
1001
1002static void
1003delete_cluster (bb_cluster *c)
1004{
1005 if (c == NULL)
1006 return;
1007 BITMAP_FREE (c->bbs);
1008 BITMAP_FREE (c->preds);
1009 XDELETE (c);
1010}
1011
1012
1013/* Array that contains all clusters. */
1014
1015static vec<bb_cluster *> all_clusters;
1016
1017/* Allocate all cluster vectors. */
1018
1019static void
1020alloc_cluster_vectors (void)
1021{
1022 all_clusters.create (n_basic_blocks_for_fn (cfun));
1023}
1024
1025/* Reset all cluster vectors. */
1026
1027static void
1028reset_cluster_vectors (void)
1029{
1030 unsigned int i;
1031 basic_block bb;
1032 for (i = 0; i < all_clusters.length (); ++i)
1033 delete_cluster (c: all_clusters[i]);
1034 all_clusters.truncate (size: 0);
1035 FOR_EACH_BB_FN (bb, cfun)
1036 BB_CLUSTER (bb) = NULL;
1037}
1038
1039/* Delete all cluster vectors. */
1040
1041static void
1042delete_cluster_vectors (void)
1043{
1044 unsigned int i;
1045 for (i = 0; i < all_clusters.length (); ++i)
1046 delete_cluster (c: all_clusters[i]);
1047 all_clusters.release ();
1048}
1049
1050/* Merge cluster C2 into C1. */
1051
1052static void
1053merge_clusters (bb_cluster *c1, bb_cluster *c2)
1054{
1055 bitmap_ior_into (c1->bbs, c2->bbs);
1056 bitmap_ior_into (c1->preds, c2->preds);
1057}
1058
1059/* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1060 all_clusters, or merge c with existing cluster. */
1061
1062static void
1063set_cluster (basic_block bb1, basic_block bb2)
1064{
1065 basic_block merge_bb, other_bb;
1066 bb_cluster *merge, *old, *c;
1067
1068 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1069 {
1070 c = new_cluster ();
1071 add_bb_to_cluster (c, bb: bb1);
1072 add_bb_to_cluster (c, bb: bb2);
1073 BB_CLUSTER (bb1) = c;
1074 BB_CLUSTER (bb2) = c;
1075 c->index = all_clusters.length ();
1076 all_clusters.safe_push (obj: c);
1077 }
1078 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1079 {
1080 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1081 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1082 merge = BB_CLUSTER (merge_bb);
1083 add_bb_to_cluster (c: merge, bb: other_bb);
1084 BB_CLUSTER (other_bb) = merge;
1085 }
1086 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1087 {
1088 unsigned int i;
1089 bitmap_iterator bi;
1090
1091 old = BB_CLUSTER (bb2);
1092 merge = BB_CLUSTER (bb1);
1093 merge_clusters (c1: merge, c2: old);
1094 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1095 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1096 all_clusters[old->index] = NULL;
1097 update_rep_bb (c: merge, bb: old->rep_bb);
1098 delete_cluster (c: old);
1099 }
1100 else
1101 gcc_unreachable ();
1102}
1103
1104/* Return true if gimple operands T1 and T2 have the same value. */
1105
1106static bool
1107gimple_operand_equal_value_p (tree t1, tree t2)
1108{
1109 if (t1 == t2)
1110 return true;
1111
1112 if (t1 == NULL_TREE
1113 || t2 == NULL_TREE)
1114 return false;
1115
1116 if (operand_equal_p (t1, t2, flags: OEP_MATCH_SIDE_EFFECTS))
1117 return true;
1118
1119 return gvn_uses_equal (val1: t1, val2: t2);
1120}
1121
1122/* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1123 gimple_bb (s2) are members of SAME_SUCC. */
1124
1125static bool
1126gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2)
1127{
1128 unsigned int i;
1129 tree lhs1, lhs2;
1130 basic_block bb1 = gimple_bb (g: s1), bb2 = gimple_bb (g: s2);
1131 tree t1, t2;
1132 bool inv_cond;
1133 enum tree_code code1, code2;
1134
1135 if (gimple_code (g: s1) != gimple_code (g: s2))
1136 return false;
1137
1138 switch (gimple_code (g: s1))
1139 {
1140 case GIMPLE_CALL:
1141 if (!gimple_call_same_target_p (s1, s2))
1142 return false;
1143
1144 t1 = gimple_call_chain (gs: s1);
1145 t2 = gimple_call_chain (gs: s2);
1146 if (!gimple_operand_equal_value_p (t1, t2))
1147 return false;
1148
1149 if (gimple_call_num_args (gs: s1) != gimple_call_num_args (gs: s2))
1150 return false;
1151
1152 for (i = 0; i < gimple_call_num_args (gs: s1); ++i)
1153 {
1154 t1 = gimple_call_arg (gs: s1, index: i);
1155 t2 = gimple_call_arg (gs: s2, index: i);
1156 if (!gimple_operand_equal_value_p (t1, t2))
1157 return false;
1158 }
1159
1160 lhs1 = gimple_get_lhs (s1);
1161 lhs2 = gimple_get_lhs (s2);
1162 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1163 return true;
1164 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1165 return false;
1166 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1167 return tail_merge_valueize (name: lhs1) == tail_merge_valueize (name: lhs2);
1168 return operand_equal_p (lhs1, lhs2, flags: 0);
1169
1170 case GIMPLE_ASSIGN:
1171 if (gimple_assign_rhs_code (gs: s1) != gimple_assign_rhs_code (gs: s2))
1172 return false;
1173
1174 lhs1 = gimple_get_lhs (s1);
1175 lhs2 = gimple_get_lhs (s2);
1176 if (TREE_CODE (lhs1) != SSA_NAME
1177 && TREE_CODE (lhs2) != SSA_NAME)
1178 return (operand_equal_p (lhs1, lhs2, flags: 0)
1179 && gimple_operand_equal_value_p (t1: gimple_assign_rhs1 (gs: s1),
1180 t2: gimple_assign_rhs1 (gs: s2)));
1181
1182 if (TREE_CODE (lhs1) != SSA_NAME
1183 || TREE_CODE (lhs2) != SSA_NAME)
1184 return false;
1185
1186 gcc_checking_assert (gimple_num_args (s1) == gimple_num_args (s2));
1187 for (i = 0; i < gimple_num_args (gs: s1); ++i)
1188 {
1189 t1 = gimple_arg (gs: s1, i);
1190 t2 = gimple_arg (gs: s2, i);
1191 if (!gimple_operand_equal_value_p (t1, t2))
1192 return false;
1193 }
1194 return true;
1195
1196 case GIMPLE_COND:
1197 t1 = gimple_cond_lhs (gs: s1);
1198 t2 = gimple_cond_lhs (gs: s2);
1199 if (!gimple_operand_equal_value_p (t1, t2))
1200 return false;
1201
1202 t1 = gimple_cond_rhs (gs: s1);
1203 t2 = gimple_cond_rhs (gs: s2);
1204 if (!gimple_operand_equal_value_p (t1, t2))
1205 return false;
1206
1207 code1 = gimple_cond_code (gs: s1);
1208 code2 = gimple_cond_code (gs: s2);
1209 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1210 != bitmap_bit_p (same_succ->inverse, bb2->index));
1211 if (inv_cond)
1212 {
1213 bool honor_nans = HONOR_NANS (t1);
1214 code2 = invert_tree_comparison (code2, honor_nans);
1215 }
1216 return code1 == code2;
1217
1218 default:
1219 return false;
1220 }
1221}
1222
1223/* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1224 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1225 processed statements. */
1226
1227static void
1228gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1229 bool *vuse_escaped)
1230{
1231 gimple *stmt;
1232 tree lvuse;
1233
1234 while (true)
1235 {
1236 if (gsi_end_p (i: *gsi))
1237 return;
1238 stmt = gsi_stmt (i: *gsi);
1239
1240 lvuse = gimple_vuse (g: stmt);
1241 if (lvuse != NULL_TREE)
1242 {
1243 *vuse = lvuse;
1244 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1245 *vuse_escaped = true;
1246 }
1247
1248 if (!stmt_local_def (stmt))
1249 return;
1250 gsi_prev_nondebug (i: gsi);
1251 }
1252}
1253
1254/* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
1255 STMT2 are allowed to be merged. */
1256
1257static bool
1258merge_stmts_p (gimple *stmt1, gimple *stmt2)
1259{
1260 /* What could be better than this here is to blacklist the bb
1261 containing the stmt, when encountering the stmt f.i. in
1262 same_succ_hash. */
1263 if (is_tm_ending (stmt1))
1264 return false;
1265
1266 /* Verify EH landing pads. */
1267 if (lookup_stmt_eh_lp_fn (cfun, stmt1) != lookup_stmt_eh_lp_fn (cfun, stmt2))
1268 return false;
1269
1270 if (is_gimple_call (gs: stmt1)
1271 && gimple_call_internal_p (gs: stmt1))
1272 switch (gimple_call_internal_fn (gs: stmt1))
1273 {
1274 case IFN_UBSAN_NULL:
1275 case IFN_UBSAN_BOUNDS:
1276 case IFN_UBSAN_VPTR:
1277 case IFN_UBSAN_CHECK_ADD:
1278 case IFN_UBSAN_CHECK_SUB:
1279 case IFN_UBSAN_CHECK_MUL:
1280 case IFN_UBSAN_OBJECT_SIZE:
1281 case IFN_UBSAN_PTR:
1282 case IFN_ASAN_CHECK:
1283 /* For these internal functions, gimple_location is an implicit
1284 parameter, which will be used explicitly after expansion.
1285 Merging these statements may cause confusing line numbers in
1286 sanitizer messages. */
1287 return gimple_location (g: stmt1) == gimple_location (g: stmt2);
1288 default:
1289 break;
1290 }
1291
1292 return true;
1293}
1294
1295/* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1296 clusters them. */
1297
1298static void
1299find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2)
1300{
1301 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb: bb1);
1302 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb: bb2);
1303 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1304 bool vuse_escaped = false;
1305
1306 gsi_advance_bw_nondebug_nonlocal (gsi: &gsi1, vuse: &vuse1, vuse_escaped: &vuse_escaped);
1307 gsi_advance_bw_nondebug_nonlocal (gsi: &gsi2, vuse: &vuse2, vuse_escaped: &vuse_escaped);
1308
1309 while (!gsi_end_p (i: gsi1) && !gsi_end_p (i: gsi2))
1310 {
1311 gimple *stmt1 = gsi_stmt (i: gsi1);
1312 gimple *stmt2 = gsi_stmt (i: gsi2);
1313
1314 if (gimple_code (g: stmt1) == GIMPLE_LABEL
1315 && gimple_code (g: stmt2) == GIMPLE_LABEL)
1316 break;
1317
1318 if (!gimple_equal_p (same_succ, s1: stmt1, s2: stmt2))
1319 return;
1320
1321 if (!merge_stmts_p (stmt1, stmt2))
1322 return;
1323
1324 gsi_prev_nondebug (i: &gsi1);
1325 gsi_prev_nondebug (i: &gsi2);
1326 gsi_advance_bw_nondebug_nonlocal (gsi: &gsi1, vuse: &vuse1, vuse_escaped: &vuse_escaped);
1327 gsi_advance_bw_nondebug_nonlocal (gsi: &gsi2, vuse: &vuse2, vuse_escaped: &vuse_escaped);
1328 }
1329
1330 while (!gsi_end_p (i: gsi1) && gimple_code (g: gsi_stmt (i: gsi1)) == GIMPLE_LABEL)
1331 {
1332 tree label = gimple_label_label (gs: as_a <glabel *> (p: gsi_stmt (i: gsi1)));
1333 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1334 return;
1335 gsi_prev (i: &gsi1);
1336 }
1337 while (!gsi_end_p (i: gsi2) && gimple_code (g: gsi_stmt (i: gsi2)) == GIMPLE_LABEL)
1338 {
1339 tree label = gimple_label_label (gs: as_a <glabel *> (p: gsi_stmt (i: gsi2)));
1340 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1341 return;
1342 gsi_prev (i: &gsi2);
1343 }
1344 if (!(gsi_end_p (i: gsi1) && gsi_end_p (i: gsi2)))
1345 return;
1346
1347 /* If the incoming vuses are not the same, and the vuse escaped into an
1348 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1349 which potentially means the semantics of one of the blocks will be changed.
1350 TODO: make this check more precise. */
1351 if (vuse_escaped && vuse1 != vuse2)
1352 return;
1353
1354 if (dump_file)
1355 fprintf (stream: dump_file, format: "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1356 bb1->index, bb2->index);
1357
1358 set_cluster (bb1, bb2);
1359}
1360
1361/* Returns whether for all phis in DEST the phi alternatives for E1 and
1362 E2 are equal. */
1363
1364static bool
1365same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1366{
1367 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1368 gphi_iterator gsi;
1369
1370 for (gsi = gsi_start_phis (dest); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1371 {
1372 gphi *phi = gsi.phi ();
1373 tree lhs = gimple_phi_result (gs: phi);
1374 tree val1 = gimple_phi_arg_def (gs: phi, index: n1);
1375 tree val2 = gimple_phi_arg_def (gs: phi, index: n2);
1376
1377 if (virtual_operand_p (op: lhs))
1378 continue;
1379
1380 if (operand_equal_for_phi_arg_p (val1, val2))
1381 continue;
1382 if (gvn_uses_equal (val1, val2))
1383 continue;
1384
1385 return false;
1386 }
1387
1388 return true;
1389}
1390
1391/* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1392 phi alternatives for BB1 and BB2 are equal. */
1393
1394static bool
1395same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2)
1396{
1397 unsigned int s;
1398 bitmap_iterator bs;
1399 edge e1, e2;
1400 basic_block succ;
1401
1402 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1403 {
1404 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1405 e1 = find_edge (bb1, succ);
1406 e2 = find_edge (bb2, succ);
1407 if (e1->flags & EDGE_COMPLEX
1408 || e2->flags & EDGE_COMPLEX)
1409 return false;
1410
1411 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1412 the same value. */
1413 if (!same_phi_alternatives_1 (dest: succ, e1, e2))
1414 return false;
1415 }
1416
1417 return true;
1418}
1419
1420/* Return true if BB has non-vop phis. */
1421
1422static bool
1423bb_has_non_vop_phi (basic_block bb)
1424{
1425 gimple_seq phis = phi_nodes (bb);
1426 gimple *phi;
1427
1428 if (phis == NULL)
1429 return false;
1430
1431 if (!gimple_seq_singleton_p (seq: phis))
1432 return true;
1433
1434 phi = gimple_seq_first_stmt (s: phis);
1435 return !virtual_operand_p (op: gimple_phi_result (gs: phi));
1436}
1437
1438/* Returns true if redirecting the incoming edges of FROM to TO maintains the
1439 invariant that uses in FROM are dominates by their defs. */
1440
1441static bool
1442deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1443{
1444 basic_block cd, dep_bb = BB_DEP_BB (to);
1445 edge_iterator ei;
1446 edge e;
1447
1448 if (dep_bb == NULL)
1449 return true;
1450
1451 bitmap from_preds = BITMAP_ALLOC (NULL);
1452 FOR_EACH_EDGE (e, ei, from->preds)
1453 bitmap_set_bit (from_preds, e->src->index);
1454 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1455 BITMAP_FREE (from_preds);
1456
1457 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1458}
1459
1460/* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1461 replacement bb) and vice versa maintains the invariant that uses in the
1462 replacement are dominates by their defs. */
1463
1464static bool
1465deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1466{
1467 if (BB_CLUSTER (bb1) != NULL)
1468 bb1 = BB_CLUSTER (bb1)->rep_bb;
1469
1470 if (BB_CLUSTER (bb2) != NULL)
1471 bb2 = BB_CLUSTER (bb2)->rep_bb;
1472
1473 return (deps_ok_for_redirect_from_bb_to_bb (from: bb1, to: bb2)
1474 && deps_ok_for_redirect_from_bb_to_bb (from: bb2, to: bb1));
1475}
1476
1477/* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1478
1479static void
1480find_clusters_1 (same_succ *same_succ)
1481{
1482 basic_block bb1, bb2;
1483 unsigned int i, j;
1484 bitmap_iterator bi, bj;
1485 int nr_comparisons;
1486 int max_comparisons = param_max_tail_merge_comparisons;
1487
1488 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1489 {
1490 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1491
1492 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1493 phi-nodes in bb1 and bb2, with the same alternatives for the same
1494 preds. */
1495 if (bb_has_non_vop_phi (bb: bb1) || bb_has_eh_pred (bb: bb1)
1496 || bb_has_abnormal_pred (bb: bb1))
1497 continue;
1498
1499 nr_comparisons = 0;
1500 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1501 {
1502 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1503
1504 if (bb_has_non_vop_phi (bb: bb2) || bb_has_eh_pred (bb: bb2)
1505 || bb_has_abnormal_pred (bb: bb2))
1506 continue;
1507
1508 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1509 continue;
1510
1511 /* Limit quadratic behavior. */
1512 nr_comparisons++;
1513 if (nr_comparisons > max_comparisons)
1514 break;
1515
1516 /* This is a conservative dependency check. We could test more
1517 precise for allowed replacement direction. */
1518 if (!deps_ok_for_redirect (bb1, bb2))
1519 continue;
1520
1521 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1522 continue;
1523
1524 find_duplicate (same_succ, bb1, bb2);
1525 }
1526 }
1527}
1528
1529/* Find clusters of bbs which can be merged. */
1530
1531static void
1532find_clusters (void)
1533{
1534 same_succ *same;
1535
1536 while (!worklist.is_empty ())
1537 {
1538 same = worklist.pop ();
1539 same->in_worklist = false;
1540 if (dump_file && (dump_flags & TDF_DETAILS))
1541 {
1542 fprintf (stream: dump_file, format: "processing worklist entry\n");
1543 same_succ_print (file: dump_file, e: same);
1544 }
1545 find_clusters_1 (same_succ: same);
1546 }
1547}
1548
1549/* Returns the vop phi of BB, if any. */
1550
1551static gphi *
1552vop_phi (basic_block bb)
1553{
1554 gphi *stmt;
1555 gphi_iterator gsi;
1556 for (gsi = gsi_start_phis (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1557 {
1558 stmt = gsi.phi ();
1559 if (! virtual_operand_p (op: gimple_phi_result (gs: stmt)))
1560 continue;
1561 return stmt;
1562 }
1563 return NULL;
1564}
1565
1566/* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1567
1568static void
1569replace_block_by (basic_block bb1, basic_block bb2)
1570{
1571 edge pred_edge;
1572 unsigned int i;
1573 gphi *bb2_phi;
1574
1575 bb2_phi = vop_phi (bb: bb2);
1576
1577 /* Mark the basic block as deleted. */
1578 mark_basic_block_deleted (bb: bb1);
1579
1580 /* Redirect the incoming edges of bb1 to bb2. */
1581 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1582 {
1583 pred_edge = EDGE_PRED (bb1, i - 1);
1584 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1585 gcc_assert (pred_edge != NULL);
1586
1587 if (bb2_phi == NULL)
1588 continue;
1589
1590 /* The phi might have run out of capacity when the redirect added an
1591 argument, which means it could have been replaced. Refresh it. */
1592 bb2_phi = vop_phi (bb: bb2);
1593
1594 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1595 pred_edge, UNKNOWN_LOCATION);
1596 }
1597
1598
1599 /* Merge the outgoing edge counts from bb1 onto bb2. */
1600 edge e1, e2;
1601 edge_iterator ei;
1602
1603 if (bb2->count.initialized_p ())
1604 FOR_EACH_EDGE (e1, ei, bb1->succs)
1605 {
1606 e2 = find_edge (bb2, e1->dest);
1607 gcc_assert (e2);
1608
1609 /* If probabilities are same, we are done.
1610 If counts are nonzero we can distribute accordingly. In remaining
1611 cases just average the values and hope for the best. */
1612 e2->probability = e1->probability.combine_with_count
1613 (count1: bb1->count, other: e2->probability, count2: bb2->count);
1614 }
1615 bb2->count += bb1->count;
1616
1617 /* Move over any user labels from bb1 after the bb2 labels. */
1618 gimple_stmt_iterator gsi1 = gsi_start_bb (bb: bb1);
1619 if (!gsi_end_p (i: gsi1) && gimple_code (g: gsi_stmt (i: gsi1)) == GIMPLE_LABEL)
1620 {
1621 gimple_stmt_iterator gsi2 = gsi_after_labels (bb: bb2);
1622 while (!gsi_end_p (i: gsi1)
1623 && gimple_code (g: gsi_stmt (i: gsi1)) == GIMPLE_LABEL)
1624 {
1625 tree label = gimple_label_label (gs: as_a <glabel *> (p: gsi_stmt (i: gsi1)));
1626 gcc_assert (!DECL_NONLOCAL (label) && !FORCED_LABEL (label));
1627 if (DECL_ARTIFICIAL (label))
1628 gsi_next (i: &gsi1);
1629 else
1630 gsi_move_before (&gsi1, &gsi2);
1631 }
1632 }
1633
1634 /* Clear range info from all stmts in BB2 -- this transformation
1635 could make them out of date. */
1636 reset_flow_sensitive_info_in_bb (bb2);
1637
1638 /* Do updates that use bb1, before deleting bb1. */
1639 release_last_vdef (bb: bb1);
1640 same_succ_flush_bb (bb: bb1);
1641
1642 delete_basic_block (bb1);
1643}
1644
1645/* Bbs for which update_debug_stmt need to be called. */
1646
1647static bitmap update_bbs;
1648
1649/* For each cluster in all_clusters, merge all cluster->bbs. Returns
1650 number of bbs removed. */
1651
1652static int
1653apply_clusters (void)
1654{
1655 basic_block bb1, bb2;
1656 bb_cluster *c;
1657 unsigned int i, j;
1658 bitmap_iterator bj;
1659 int nr_bbs_removed = 0;
1660
1661 for (i = 0; i < all_clusters.length (); ++i)
1662 {
1663 c = all_clusters[i];
1664 if (c == NULL)
1665 continue;
1666
1667 bb2 = c->rep_bb;
1668 bitmap_set_bit (update_bbs, bb2->index);
1669
1670 bitmap_clear_bit (c->bbs, bb2->index);
1671 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1672 {
1673 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1674 bitmap_clear_bit (update_bbs, bb1->index);
1675
1676 replace_block_by (bb1, bb2);
1677 nr_bbs_removed++;
1678 }
1679 }
1680
1681 return nr_bbs_removed;
1682}
1683
1684/* Resets debug statement STMT if it has uses that are not dominated by their
1685 defs. */
1686
1687static void
1688update_debug_stmt (gimple *stmt)
1689{
1690 use_operand_p use_p;
1691 ssa_op_iter oi;
1692 basic_block bbuse;
1693
1694 if (!gimple_debug_bind_p (s: stmt))
1695 return;
1696
1697 bbuse = gimple_bb (g: stmt);
1698 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1699 {
1700 tree name = USE_FROM_PTR (use_p);
1701 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1702 basic_block bbdef = gimple_bb (g: def_stmt);
1703 if (bbdef == NULL || bbuse == bbdef
1704 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1705 continue;
1706
1707 gimple_debug_bind_reset_value (dbg: stmt);
1708 update_stmt (s: stmt);
1709 break;
1710 }
1711}
1712
1713/* Resets all debug statements that have uses that are not
1714 dominated by their defs. */
1715
1716static void
1717update_debug_stmts (void)
1718{
1719 basic_block bb;
1720 bitmap_iterator bi;
1721 unsigned int i;
1722
1723 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1724 {
1725 gimple *stmt;
1726 gimple_stmt_iterator gsi;
1727
1728 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1729 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1730 {
1731 stmt = gsi_stmt (i: gsi);
1732 if (!is_gimple_debug (gs: stmt))
1733 continue;
1734 update_debug_stmt (stmt);
1735 }
1736 }
1737}
1738
1739/* Runs tail merge optimization. */
1740
1741unsigned int
1742tail_merge_optimize (bool need_crit_edge_split)
1743{
1744 int nr_bbs_removed_total = 0;
1745 int nr_bbs_removed;
1746 bool loop_entered = false;
1747 int iteration_nr = 0;
1748 int max_iterations = param_max_tail_merge_iterations;
1749
1750 if (!flag_tree_tail_merge
1751 || max_iterations == 0)
1752 return 0;
1753
1754 timevar_push (tv: TV_TREE_TAIL_MERGE);
1755
1756 /* Re-split critical edges when PRE did a CFG cleanup. */
1757 if (need_crit_edge_split)
1758 split_edges_for_insertion ();
1759
1760 if (!dom_info_available_p (CDI_DOMINATORS))
1761 {
1762 /* PRE can leave us with unreachable blocks, remove them now. */
1763 delete_unreachable_blocks ();
1764 calculate_dominance_info (CDI_DOMINATORS);
1765 }
1766 init_worklist ();
1767
1768 while (!worklist.is_empty ())
1769 {
1770 if (!loop_entered)
1771 {
1772 loop_entered = true;
1773 alloc_cluster_vectors ();
1774 update_bbs = BITMAP_ALLOC (NULL);
1775 }
1776 else
1777 reset_cluster_vectors ();
1778
1779 iteration_nr++;
1780 if (dump_file && (dump_flags & TDF_DETAILS))
1781 fprintf (stream: dump_file, format: "worklist iteration #%d\n", iteration_nr);
1782
1783 find_clusters ();
1784 gcc_assert (worklist.is_empty ());
1785 if (all_clusters.is_empty ())
1786 break;
1787
1788 nr_bbs_removed = apply_clusters ();
1789 nr_bbs_removed_total += nr_bbs_removed;
1790 if (nr_bbs_removed == 0)
1791 break;
1792
1793 free_dominance_info (CDI_DOMINATORS);
1794
1795 if (iteration_nr == max_iterations)
1796 break;
1797
1798 calculate_dominance_info (CDI_DOMINATORS);
1799 update_worklist ();
1800 }
1801
1802 if (dump_file && (dump_flags & TDF_DETAILS))
1803 fprintf (stream: dump_file, format: "htab collision / search: %f\n",
1804 same_succ_htab->collisions ());
1805
1806 if (nr_bbs_removed_total > 0)
1807 {
1808 if (MAY_HAVE_DEBUG_BIND_STMTS)
1809 {
1810 calculate_dominance_info (CDI_DOMINATORS);
1811 update_debug_stmts ();
1812 }
1813
1814 if (dump_file && (dump_flags & TDF_DETAILS))
1815 {
1816 fprintf (stream: dump_file, format: "Before TODOs.\n");
1817 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1818 }
1819
1820 mark_virtual_operands_for_renaming (cfun);
1821 }
1822
1823 delete_worklist ();
1824 if (loop_entered)
1825 {
1826 delete_cluster_vectors ();
1827 BITMAP_FREE (update_bbs);
1828 }
1829
1830 timevar_pop (tv: TV_TREE_TAIL_MERGE);
1831
1832 return 0;
1833}
1834

source code of gcc/tree-ssa-tail-merge.cc