1// SPDX-License-Identifier: GPL-2.0
2/*
3 * AMD Encrypted Register State Support
4 *
5 * Author: Joerg Roedel <jroedel@suse.de>
6 *
7 * This file is not compiled stand-alone. It contains code shared
8 * between the pre-decompression boot code and the running Linux kernel
9 * and is included directly into both code-bases.
10 */
11
12#include <asm/setup_data.h>
13
14#ifndef __BOOT_COMPRESSED
15#define error(v) pr_err(v)
16#define has_cpuflag(f) boot_cpu_has(f)
17#define sev_printk(fmt, ...) printk(fmt, ##__VA_ARGS__)
18#define sev_printk_rtl(fmt, ...) printk_ratelimited(fmt, ##__VA_ARGS__)
19#else
20#undef WARN
21#define WARN(condition, format...) (!!(condition))
22#define sev_printk(fmt, ...)
23#define sev_printk_rtl(fmt, ...)
24#endif
25
26/* I/O parameters for CPUID-related helpers */
27struct cpuid_leaf {
28 u32 fn;
29 u32 subfn;
30 u32 eax;
31 u32 ebx;
32 u32 ecx;
33 u32 edx;
34};
35
36/*
37 * Individual entries of the SNP CPUID table, as defined by the SNP
38 * Firmware ABI, Revision 0.9, Section 7.1, Table 14.
39 */
40struct snp_cpuid_fn {
41 u32 eax_in;
42 u32 ecx_in;
43 u64 xcr0_in;
44 u64 xss_in;
45 u32 eax;
46 u32 ebx;
47 u32 ecx;
48 u32 edx;
49 u64 __reserved;
50} __packed;
51
52/*
53 * SNP CPUID table, as defined by the SNP Firmware ABI, Revision 0.9,
54 * Section 8.14.2.6. Also noted there is the SNP firmware-enforced limit
55 * of 64 entries per CPUID table.
56 */
57#define SNP_CPUID_COUNT_MAX 64
58
59struct snp_cpuid_table {
60 u32 count;
61 u32 __reserved1;
62 u64 __reserved2;
63 struct snp_cpuid_fn fn[SNP_CPUID_COUNT_MAX];
64} __packed;
65
66/*
67 * Since feature negotiation related variables are set early in the boot
68 * process they must reside in the .data section so as not to be zeroed
69 * out when the .bss section is later cleared.
70 *
71 * GHCB protocol version negotiated with the hypervisor.
72 */
73static u16 ghcb_version __ro_after_init;
74
75/* Copy of the SNP firmware's CPUID page. */
76static struct snp_cpuid_table cpuid_table_copy __ro_after_init;
77
78/*
79 * These will be initialized based on CPUID table so that non-present
80 * all-zero leaves (for sparse tables) can be differentiated from
81 * invalid/out-of-range leaves. This is needed since all-zero leaves
82 * still need to be post-processed.
83 */
84static u32 cpuid_std_range_max __ro_after_init;
85static u32 cpuid_hyp_range_max __ro_after_init;
86static u32 cpuid_ext_range_max __ro_after_init;
87
88static bool __init sev_es_check_cpu_features(void)
89{
90 if (!has_cpuflag(X86_FEATURE_RDRAND)) {
91 error(m: "RDRAND instruction not supported - no trusted source of randomness available\n");
92 return false;
93 }
94
95 return true;
96}
97
98static void __head __noreturn
99sev_es_terminate(unsigned int set, unsigned int reason)
100{
101 u64 val = GHCB_MSR_TERM_REQ;
102
103 /* Tell the hypervisor what went wrong. */
104 val |= GHCB_SEV_TERM_REASON(set, reason);
105
106 /* Request Guest Termination from Hypervisor */
107 sev_es_wr_ghcb_msr(val);
108 VMGEXIT();
109
110 while (true)
111 asm volatile("hlt\n" : : : "memory");
112}
113
114/*
115 * The hypervisor features are available from GHCB version 2 onward.
116 */
117static u64 get_hv_features(void)
118{
119 u64 val;
120
121 if (ghcb_version < 2)
122 return 0;
123
124 sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ);
125 VMGEXIT();
126
127 val = sev_es_rd_ghcb_msr();
128 if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP)
129 return 0;
130
131 return GHCB_MSR_HV_FT_RESP_VAL(val);
132}
133
134static void snp_register_ghcb_early(unsigned long paddr)
135{
136 unsigned long pfn = paddr >> PAGE_SHIFT;
137 u64 val;
138
139 sev_es_wr_ghcb_msr(GHCB_MSR_REG_GPA_REQ_VAL(pfn));
140 VMGEXIT();
141
142 val = sev_es_rd_ghcb_msr();
143
144 /* If the response GPA is not ours then abort the guest */
145 if ((GHCB_RESP_CODE(val) != GHCB_MSR_REG_GPA_RESP) ||
146 (GHCB_MSR_REG_GPA_RESP_VAL(val) != pfn))
147 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_REGISTER);
148}
149
150static bool sev_es_negotiate_protocol(void)
151{
152 u64 val;
153
154 /* Do the GHCB protocol version negotiation */
155 sev_es_wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ);
156 VMGEXIT();
157 val = sev_es_rd_ghcb_msr();
158
159 if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP)
160 return false;
161
162 if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN ||
163 GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX)
164 return false;
165
166 ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val), GHCB_PROTOCOL_MAX);
167
168 return true;
169}
170
171static __always_inline void vc_ghcb_invalidate(struct ghcb *ghcb)
172{
173 ghcb->save.sw_exit_code = 0;
174 __builtin_memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
175}
176
177static bool vc_decoding_needed(unsigned long exit_code)
178{
179 /* Exceptions don't require to decode the instruction */
180 return !(exit_code >= SVM_EXIT_EXCP_BASE &&
181 exit_code <= SVM_EXIT_LAST_EXCP);
182}
183
184static enum es_result vc_init_em_ctxt(struct es_em_ctxt *ctxt,
185 struct pt_regs *regs,
186 unsigned long exit_code)
187{
188 enum es_result ret = ES_OK;
189
190 memset(s: ctxt, c: 0, n: sizeof(*ctxt));
191 ctxt->regs = regs;
192
193 if (vc_decoding_needed(exit_code))
194 ret = vc_decode_insn(ctxt);
195
196 return ret;
197}
198
199static void vc_finish_insn(struct es_em_ctxt *ctxt)
200{
201 ctxt->regs->ip += ctxt->insn.length;
202}
203
204static enum es_result verify_exception_info(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
205{
206 u32 ret;
207
208 ret = ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0);
209 if (!ret)
210 return ES_OK;
211
212 if (ret == 1) {
213 u64 info = ghcb->save.sw_exit_info_2;
214 unsigned long v = info & SVM_EVTINJ_VEC_MASK;
215
216 /* Check if exception information from hypervisor is sane. */
217 if ((info & SVM_EVTINJ_VALID) &&
218 ((v == X86_TRAP_GP) || (v == X86_TRAP_UD)) &&
219 ((info & SVM_EVTINJ_TYPE_MASK) == SVM_EVTINJ_TYPE_EXEPT)) {
220 ctxt->fi.vector = v;
221
222 if (info & SVM_EVTINJ_VALID_ERR)
223 ctxt->fi.error_code = info >> 32;
224
225 return ES_EXCEPTION;
226 }
227 }
228
229 return ES_VMM_ERROR;
230}
231
232static enum es_result sev_es_ghcb_hv_call(struct ghcb *ghcb,
233 struct es_em_ctxt *ctxt,
234 u64 exit_code, u64 exit_info_1,
235 u64 exit_info_2)
236{
237 /* Fill in protocol and format specifiers */
238 ghcb->protocol_version = ghcb_version;
239 ghcb->ghcb_usage = GHCB_DEFAULT_USAGE;
240
241 ghcb_set_sw_exit_code(ghcb, value: exit_code);
242 ghcb_set_sw_exit_info_1(ghcb, value: exit_info_1);
243 ghcb_set_sw_exit_info_2(ghcb, value: exit_info_2);
244
245 sev_es_wr_ghcb_msr(__pa(ghcb));
246 VMGEXIT();
247
248 return verify_exception_info(ghcb, ctxt);
249}
250
251static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg)
252{
253 u64 val;
254
255 sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx));
256 VMGEXIT();
257 val = sev_es_rd_ghcb_msr();
258 if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP)
259 return -EIO;
260
261 *reg = (val >> 32);
262
263 return 0;
264}
265
266static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf)
267{
268 int ret;
269
270 /*
271 * MSR protocol does not support fetching non-zero subfunctions, but is
272 * sufficient to handle current early-boot cases. Should that change,
273 * make sure to report an error rather than ignoring the index and
274 * grabbing random values. If this issue arises in the future, handling
275 * can be added here to use GHCB-page protocol for cases that occur late
276 * enough in boot that GHCB page is available.
277 */
278 if (cpuid_function_is_indexed(function: leaf->fn) && leaf->subfn)
279 return -EINVAL;
280
281 ret = __sev_cpuid_hv(fn: leaf->fn, GHCB_CPUID_REQ_EAX, reg: &leaf->eax);
282 ret = ret ? : __sev_cpuid_hv(fn: leaf->fn, GHCB_CPUID_REQ_EBX, reg: &leaf->ebx);
283 ret = ret ? : __sev_cpuid_hv(fn: leaf->fn, GHCB_CPUID_REQ_ECX, reg: &leaf->ecx);
284 ret = ret ? : __sev_cpuid_hv(fn: leaf->fn, GHCB_CPUID_REQ_EDX, reg: &leaf->edx);
285
286 return ret;
287}
288
289static int __sev_cpuid_hv_ghcb(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
290{
291 u32 cr4 = native_read_cr4();
292 int ret;
293
294 ghcb_set_rax(ghcb, value: leaf->fn);
295 ghcb_set_rcx(ghcb, value: leaf->subfn);
296
297 if (cr4 & X86_CR4_OSXSAVE)
298 /* Safe to read xcr0 */
299 ghcb_set_xcr0(ghcb, value: xgetbv(XCR_XFEATURE_ENABLED_MASK));
300 else
301 /* xgetbv will cause #UD - use reset value for xcr0 */
302 ghcb_set_xcr0(ghcb, value: 1);
303
304 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, exit_info_1: 0, exit_info_2: 0);
305 if (ret != ES_OK)
306 return ret;
307
308 if (!(ghcb_rax_is_valid(ghcb) &&
309 ghcb_rbx_is_valid(ghcb) &&
310 ghcb_rcx_is_valid(ghcb) &&
311 ghcb_rdx_is_valid(ghcb)))
312 return ES_VMM_ERROR;
313
314 leaf->eax = ghcb->save.rax;
315 leaf->ebx = ghcb->save.rbx;
316 leaf->ecx = ghcb->save.rcx;
317 leaf->edx = ghcb->save.rdx;
318
319 return ES_OK;
320}
321
322static int sev_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
323{
324 return ghcb ? __sev_cpuid_hv_ghcb(ghcb, ctxt, leaf)
325 : __sev_cpuid_hv_msr(leaf);
326}
327
328/*
329 * This may be called early while still running on the initial identity
330 * mapping. Use RIP-relative addressing to obtain the correct address
331 * while running with the initial identity mapping as well as the
332 * switch-over to kernel virtual addresses later.
333 */
334static const struct snp_cpuid_table *snp_cpuid_get_table(void)
335{
336 return &RIP_REL_REF(cpuid_table_copy);
337}
338
339/*
340 * The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of
341 * XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0
342 * and 1 based on the corresponding features enabled by a particular
343 * combination of XCR0 and XSS registers so that a guest can look up the
344 * version corresponding to the features currently enabled in its XCR0/XSS
345 * registers. The only values that differ between these versions/table
346 * entries is the enabled XSAVE area size advertised via EBX.
347 *
348 * While hypervisors may choose to make use of this support, it is more
349 * robust/secure for a guest to simply find the entry corresponding to the
350 * base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the
351 * XSAVE area size using subfunctions 2 through 64, as documented in APM
352 * Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here.
353 *
354 * Since base/legacy XSAVE area size is documented as 0x240, use that value
355 * directly rather than relying on the base size in the CPUID table.
356 *
357 * Return: XSAVE area size on success, 0 otherwise.
358 */
359static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted)
360{
361 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
362 u64 xfeatures_found = 0;
363 u32 xsave_size = 0x240;
364 int i;
365
366 for (i = 0; i < cpuid_table->count; i++) {
367 const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
368
369 if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64))
370 continue;
371 if (!(xfeatures_en & (BIT_ULL(e->ecx_in))))
372 continue;
373 if (xfeatures_found & (BIT_ULL(e->ecx_in)))
374 continue;
375
376 xfeatures_found |= (BIT_ULL(e->ecx_in));
377
378 if (compacted)
379 xsave_size += e->eax;
380 else
381 xsave_size = max(xsave_size, e->eax + e->ebx);
382 }
383
384 /*
385 * Either the guest set unsupported XCR0/XSS bits, or the corresponding
386 * entries in the CPUID table were not present. This is not a valid
387 * state to be in.
388 */
389 if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2)))
390 return 0;
391
392 return xsave_size;
393}
394
395static bool __head
396snp_cpuid_get_validated_func(struct cpuid_leaf *leaf)
397{
398 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
399 int i;
400
401 for (i = 0; i < cpuid_table->count; i++) {
402 const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
403
404 if (e->eax_in != leaf->fn)
405 continue;
406
407 if (cpuid_function_is_indexed(function: leaf->fn) && e->ecx_in != leaf->subfn)
408 continue;
409
410 /*
411 * For 0xD subfunctions 0 and 1, only use the entry corresponding
412 * to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0).
413 * See the comments above snp_cpuid_calc_xsave_size() for more
414 * details.
415 */
416 if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1))
417 if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in)
418 continue;
419
420 leaf->eax = e->eax;
421 leaf->ebx = e->ebx;
422 leaf->ecx = e->ecx;
423 leaf->edx = e->edx;
424
425 return true;
426 }
427
428 return false;
429}
430
431static void snp_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
432{
433 if (sev_cpuid_hv(ghcb, ctxt, leaf))
434 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV);
435}
436
437static int snp_cpuid_postprocess(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
438 struct cpuid_leaf *leaf)
439{
440 struct cpuid_leaf leaf_hv = *leaf;
441
442 switch (leaf->fn) {
443 case 0x1:
444 snp_cpuid_hv(ghcb, ctxt, leaf: &leaf_hv);
445
446 /* initial APIC ID */
447 leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0));
448 /* APIC enabled bit */
449 leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9));
450
451 /* OSXSAVE enabled bit */
452 if (native_read_cr4() & X86_CR4_OSXSAVE)
453 leaf->ecx |= BIT(27);
454 break;
455 case 0x7:
456 /* OSPKE enabled bit */
457 leaf->ecx &= ~BIT(4);
458 if (native_read_cr4() & X86_CR4_PKE)
459 leaf->ecx |= BIT(4);
460 break;
461 case 0xB:
462 leaf_hv.subfn = 0;
463 snp_cpuid_hv(ghcb, ctxt, leaf: &leaf_hv);
464
465 /* extended APIC ID */
466 leaf->edx = leaf_hv.edx;
467 break;
468 case 0xD: {
469 bool compacted = false;
470 u64 xcr0 = 1, xss = 0;
471 u32 xsave_size;
472
473 if (leaf->subfn != 0 && leaf->subfn != 1)
474 return 0;
475
476 if (native_read_cr4() & X86_CR4_OSXSAVE)
477 xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
478 if (leaf->subfn == 1) {
479 /* Get XSS value if XSAVES is enabled. */
480 if (leaf->eax & BIT(3)) {
481 unsigned long lo, hi;
482
483 asm volatile("rdmsr" : "=a" (lo), "=d" (hi)
484 : "c" (MSR_IA32_XSS));
485 xss = (hi << 32) | lo;
486 }
487
488 /*
489 * The PPR and APM aren't clear on what size should be
490 * encoded in 0xD:0x1:EBX when compaction is not enabled
491 * by either XSAVEC (feature bit 1) or XSAVES (feature
492 * bit 3) since SNP-capable hardware has these feature
493 * bits fixed as 1. KVM sets it to 0 in this case, but
494 * to avoid this becoming an issue it's safer to simply
495 * treat this as unsupported for SNP guests.
496 */
497 if (!(leaf->eax & (BIT(1) | BIT(3))))
498 return -EINVAL;
499
500 compacted = true;
501 }
502
503 xsave_size = snp_cpuid_calc_xsave_size(xfeatures_en: xcr0 | xss, compacted);
504 if (!xsave_size)
505 return -EINVAL;
506
507 leaf->ebx = xsave_size;
508 }
509 break;
510 case 0x8000001E:
511 snp_cpuid_hv(ghcb, ctxt, leaf: &leaf_hv);
512
513 /* extended APIC ID */
514 leaf->eax = leaf_hv.eax;
515 /* compute ID */
516 leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0));
517 /* node ID */
518 leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0));
519 break;
520 default:
521 /* No fix-ups needed, use values as-is. */
522 break;
523 }
524
525 return 0;
526}
527
528/*
529 * Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value
530 * should be treated as fatal by caller.
531 */
532static int __head
533snp_cpuid(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
534{
535 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
536
537 if (!cpuid_table->count)
538 return -EOPNOTSUPP;
539
540 if (!snp_cpuid_get_validated_func(leaf)) {
541 /*
542 * Some hypervisors will avoid keeping track of CPUID entries
543 * where all values are zero, since they can be handled the
544 * same as out-of-range values (all-zero). This is useful here
545 * as well as it allows virtually all guest configurations to
546 * work using a single SNP CPUID table.
547 *
548 * To allow for this, there is a need to distinguish between
549 * out-of-range entries and in-range zero entries, since the
550 * CPUID table entries are only a template that may need to be
551 * augmented with additional values for things like
552 * CPU-specific information during post-processing. So if it's
553 * not in the table, set the values to zero. Then, if they are
554 * within a valid CPUID range, proceed with post-processing
555 * using zeros as the initial values. Otherwise, skip
556 * post-processing and just return zeros immediately.
557 */
558 leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0;
559
560 /* Skip post-processing for out-of-range zero leafs. */
561 if (!(leaf->fn <= RIP_REL_REF(cpuid_std_range_max) ||
562 (leaf->fn >= 0x40000000 && leaf->fn <= RIP_REL_REF(cpuid_hyp_range_max)) ||
563 (leaf->fn >= 0x80000000 && leaf->fn <= RIP_REL_REF(cpuid_ext_range_max))))
564 return 0;
565 }
566
567 return snp_cpuid_postprocess(ghcb, ctxt, leaf);
568}
569
570/*
571 * Boot VC Handler - This is the first VC handler during boot, there is no GHCB
572 * page yet, so it only supports the MSR based communication with the
573 * hypervisor and only the CPUID exit-code.
574 */
575void __head do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code)
576{
577 unsigned int subfn = lower_bits(val: regs->cx, bits: 32);
578 unsigned int fn = lower_bits(val: regs->ax, bits: 32);
579 u16 opcode = *(unsigned short *)regs->ip;
580 struct cpuid_leaf leaf;
581 int ret;
582
583 /* Only CPUID is supported via MSR protocol */
584 if (exit_code != SVM_EXIT_CPUID)
585 goto fail;
586
587 /* Is it really a CPUID insn? */
588 if (opcode != 0xa20f)
589 goto fail;
590
591 leaf.fn = fn;
592 leaf.subfn = subfn;
593
594 ret = snp_cpuid(NULL, NULL, leaf: &leaf);
595 if (!ret)
596 goto cpuid_done;
597
598 if (ret != -EOPNOTSUPP)
599 goto fail;
600
601 if (__sev_cpuid_hv_msr(leaf: &leaf))
602 goto fail;
603
604cpuid_done:
605 regs->ax = leaf.eax;
606 regs->bx = leaf.ebx;
607 regs->cx = leaf.ecx;
608 regs->dx = leaf.edx;
609
610 /*
611 * This is a VC handler and the #VC is only raised when SEV-ES is
612 * active, which means SEV must be active too. Do sanity checks on the
613 * CPUID results to make sure the hypervisor does not trick the kernel
614 * into the no-sev path. This could map sensitive data unencrypted and
615 * make it accessible to the hypervisor.
616 *
617 * In particular, check for:
618 * - Availability of CPUID leaf 0x8000001f
619 * - SEV CPUID bit.
620 *
621 * The hypervisor might still report the wrong C-bit position, but this
622 * can't be checked here.
623 */
624
625 if (fn == 0x80000000 && (regs->ax < 0x8000001f))
626 /* SEV leaf check */
627 goto fail;
628 else if ((fn == 0x8000001f && !(regs->ax & BIT(1))))
629 /* SEV bit */
630 goto fail;
631
632 /* Skip over the CPUID two-byte opcode */
633 regs->ip += 2;
634
635 return;
636
637fail:
638 /* Terminate the guest */
639 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
640}
641
642static enum es_result vc_insn_string_check(struct es_em_ctxt *ctxt,
643 unsigned long address,
644 bool write)
645{
646 if (user_mode(regs: ctxt->regs) && fault_in_kernel_space(address)) {
647 ctxt->fi.vector = X86_TRAP_PF;
648 ctxt->fi.error_code = X86_PF_USER;
649 ctxt->fi.cr2 = address;
650 if (write)
651 ctxt->fi.error_code |= X86_PF_WRITE;
652
653 return ES_EXCEPTION;
654 }
655
656 return ES_OK;
657}
658
659static enum es_result vc_insn_string_read(struct es_em_ctxt *ctxt,
660 void *src, char *buf,
661 unsigned int data_size,
662 unsigned int count,
663 bool backwards)
664{
665 int i, b = backwards ? -1 : 1;
666 unsigned long address = (unsigned long)src;
667 enum es_result ret;
668
669 ret = vc_insn_string_check(ctxt, address, write: false);
670 if (ret != ES_OK)
671 return ret;
672
673 for (i = 0; i < count; i++) {
674 void *s = src + (i * data_size * b);
675 char *d = buf + (i * data_size);
676
677 ret = vc_read_mem(ctxt, src: s, buf: d, size: data_size);
678 if (ret != ES_OK)
679 break;
680 }
681
682 return ret;
683}
684
685static enum es_result vc_insn_string_write(struct es_em_ctxt *ctxt,
686 void *dst, char *buf,
687 unsigned int data_size,
688 unsigned int count,
689 bool backwards)
690{
691 int i, s = backwards ? -1 : 1;
692 unsigned long address = (unsigned long)dst;
693 enum es_result ret;
694
695 ret = vc_insn_string_check(ctxt, address, write: true);
696 if (ret != ES_OK)
697 return ret;
698
699 for (i = 0; i < count; i++) {
700 void *d = dst + (i * data_size * s);
701 char *b = buf + (i * data_size);
702
703 ret = vc_write_mem(ctxt, dst: d, buf: b, size: data_size);
704 if (ret != ES_OK)
705 break;
706 }
707
708 return ret;
709}
710
711#define IOIO_TYPE_STR BIT(2)
712#define IOIO_TYPE_IN 1
713#define IOIO_TYPE_INS (IOIO_TYPE_IN | IOIO_TYPE_STR)
714#define IOIO_TYPE_OUT 0
715#define IOIO_TYPE_OUTS (IOIO_TYPE_OUT | IOIO_TYPE_STR)
716
717#define IOIO_REP BIT(3)
718
719#define IOIO_ADDR_64 BIT(9)
720#define IOIO_ADDR_32 BIT(8)
721#define IOIO_ADDR_16 BIT(7)
722
723#define IOIO_DATA_32 BIT(6)
724#define IOIO_DATA_16 BIT(5)
725#define IOIO_DATA_8 BIT(4)
726
727#define IOIO_SEG_ES (0 << 10)
728#define IOIO_SEG_DS (3 << 10)
729
730static enum es_result vc_ioio_exitinfo(struct es_em_ctxt *ctxt, u64 *exitinfo)
731{
732 struct insn *insn = &ctxt->insn;
733 size_t size;
734 u64 port;
735
736 *exitinfo = 0;
737
738 switch (insn->opcode.bytes[0]) {
739 /* INS opcodes */
740 case 0x6c:
741 case 0x6d:
742 *exitinfo |= IOIO_TYPE_INS;
743 *exitinfo |= IOIO_SEG_ES;
744 port = ctxt->regs->dx & 0xffff;
745 break;
746
747 /* OUTS opcodes */
748 case 0x6e:
749 case 0x6f:
750 *exitinfo |= IOIO_TYPE_OUTS;
751 *exitinfo |= IOIO_SEG_DS;
752 port = ctxt->regs->dx & 0xffff;
753 break;
754
755 /* IN immediate opcodes */
756 case 0xe4:
757 case 0xe5:
758 *exitinfo |= IOIO_TYPE_IN;
759 port = (u8)insn->immediate.value & 0xffff;
760 break;
761
762 /* OUT immediate opcodes */
763 case 0xe6:
764 case 0xe7:
765 *exitinfo |= IOIO_TYPE_OUT;
766 port = (u8)insn->immediate.value & 0xffff;
767 break;
768
769 /* IN register opcodes */
770 case 0xec:
771 case 0xed:
772 *exitinfo |= IOIO_TYPE_IN;
773 port = ctxt->regs->dx & 0xffff;
774 break;
775
776 /* OUT register opcodes */
777 case 0xee:
778 case 0xef:
779 *exitinfo |= IOIO_TYPE_OUT;
780 port = ctxt->regs->dx & 0xffff;
781 break;
782
783 default:
784 return ES_DECODE_FAILED;
785 }
786
787 *exitinfo |= port << 16;
788
789 switch (insn->opcode.bytes[0]) {
790 case 0x6c:
791 case 0x6e:
792 case 0xe4:
793 case 0xe6:
794 case 0xec:
795 case 0xee:
796 /* Single byte opcodes */
797 *exitinfo |= IOIO_DATA_8;
798 size = 1;
799 break;
800 default:
801 /* Length determined by instruction parsing */
802 *exitinfo |= (insn->opnd_bytes == 2) ? IOIO_DATA_16
803 : IOIO_DATA_32;
804 size = (insn->opnd_bytes == 2) ? 2 : 4;
805 }
806
807 switch (insn->addr_bytes) {
808 case 2:
809 *exitinfo |= IOIO_ADDR_16;
810 break;
811 case 4:
812 *exitinfo |= IOIO_ADDR_32;
813 break;
814 case 8:
815 *exitinfo |= IOIO_ADDR_64;
816 break;
817 }
818
819 if (insn_has_rep_prefix(insn))
820 *exitinfo |= IOIO_REP;
821
822 return vc_ioio_check(ctxt, port: (u16)port, size);
823}
824
825static enum es_result vc_handle_ioio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
826{
827 struct pt_regs *regs = ctxt->regs;
828 u64 exit_info_1, exit_info_2;
829 enum es_result ret;
830
831 ret = vc_ioio_exitinfo(ctxt, exitinfo: &exit_info_1);
832 if (ret != ES_OK)
833 return ret;
834
835 if (exit_info_1 & IOIO_TYPE_STR) {
836
837 /* (REP) INS/OUTS */
838
839 bool df = ((regs->flags & X86_EFLAGS_DF) == X86_EFLAGS_DF);
840 unsigned int io_bytes, exit_bytes;
841 unsigned int ghcb_count, op_count;
842 unsigned long es_base;
843 u64 sw_scratch;
844
845 /*
846 * For the string variants with rep prefix the amount of in/out
847 * operations per #VC exception is limited so that the kernel
848 * has a chance to take interrupts and re-schedule while the
849 * instruction is emulated.
850 */
851 io_bytes = (exit_info_1 >> 4) & 0x7;
852 ghcb_count = sizeof(ghcb->shared_buffer) / io_bytes;
853
854 op_count = (exit_info_1 & IOIO_REP) ? regs->cx : 1;
855 exit_info_2 = min(op_count, ghcb_count);
856 exit_bytes = exit_info_2 * io_bytes;
857
858 es_base = insn_get_seg_base(regs: ctxt->regs, INAT_SEG_REG_ES);
859
860 /* Read bytes of OUTS into the shared buffer */
861 if (!(exit_info_1 & IOIO_TYPE_IN)) {
862 ret = vc_insn_string_read(ctxt,
863 src: (void *)(es_base + regs->si),
864 buf: ghcb->shared_buffer, data_size: io_bytes,
865 count: exit_info_2, backwards: df);
866 if (ret)
867 return ret;
868 }
869
870 /*
871 * Issue an VMGEXIT to the HV to consume the bytes from the
872 * shared buffer or to have it write them into the shared buffer
873 * depending on the instruction: OUTS or INS.
874 */
875 sw_scratch = __pa(ghcb) + offsetof(struct ghcb, shared_buffer);
876 ghcb_set_sw_scratch(ghcb, value: sw_scratch);
877 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO,
878 exit_info_1, exit_info_2);
879 if (ret != ES_OK)
880 return ret;
881
882 /* Read bytes from shared buffer into the guest's destination. */
883 if (exit_info_1 & IOIO_TYPE_IN) {
884 ret = vc_insn_string_write(ctxt,
885 dst: (void *)(es_base + regs->di),
886 buf: ghcb->shared_buffer, data_size: io_bytes,
887 count: exit_info_2, backwards: df);
888 if (ret)
889 return ret;
890
891 if (df)
892 regs->di -= exit_bytes;
893 else
894 regs->di += exit_bytes;
895 } else {
896 if (df)
897 regs->si -= exit_bytes;
898 else
899 regs->si += exit_bytes;
900 }
901
902 if (exit_info_1 & IOIO_REP)
903 regs->cx -= exit_info_2;
904
905 ret = regs->cx ? ES_RETRY : ES_OK;
906
907 } else {
908
909 /* IN/OUT into/from rAX */
910
911 int bits = (exit_info_1 & 0x70) >> 1;
912 u64 rax = 0;
913
914 if (!(exit_info_1 & IOIO_TYPE_IN))
915 rax = lower_bits(val: regs->ax, bits);
916
917 ghcb_set_rax(ghcb, value: rax);
918
919 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, exit_info_1, exit_info_2: 0);
920 if (ret != ES_OK)
921 return ret;
922
923 if (exit_info_1 & IOIO_TYPE_IN) {
924 if (!ghcb_rax_is_valid(ghcb))
925 return ES_VMM_ERROR;
926 regs->ax = lower_bits(val: ghcb->save.rax, bits);
927 }
928 }
929
930 return ret;
931}
932
933static int vc_handle_cpuid_snp(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
934{
935 struct pt_regs *regs = ctxt->regs;
936 struct cpuid_leaf leaf;
937 int ret;
938
939 leaf.fn = regs->ax;
940 leaf.subfn = regs->cx;
941 ret = snp_cpuid(ghcb, ctxt, leaf: &leaf);
942 if (!ret) {
943 regs->ax = leaf.eax;
944 regs->bx = leaf.ebx;
945 regs->cx = leaf.ecx;
946 regs->dx = leaf.edx;
947 }
948
949 return ret;
950}
951
952static enum es_result vc_handle_cpuid(struct ghcb *ghcb,
953 struct es_em_ctxt *ctxt)
954{
955 struct pt_regs *regs = ctxt->regs;
956 u32 cr4 = native_read_cr4();
957 enum es_result ret;
958 int snp_cpuid_ret;
959
960 snp_cpuid_ret = vc_handle_cpuid_snp(ghcb, ctxt);
961 if (!snp_cpuid_ret)
962 return ES_OK;
963 if (snp_cpuid_ret != -EOPNOTSUPP)
964 return ES_VMM_ERROR;
965
966 ghcb_set_rax(ghcb, value: regs->ax);
967 ghcb_set_rcx(ghcb, value: regs->cx);
968
969 if (cr4 & X86_CR4_OSXSAVE)
970 /* Safe to read xcr0 */
971 ghcb_set_xcr0(ghcb, value: xgetbv(XCR_XFEATURE_ENABLED_MASK));
972 else
973 /* xgetbv will cause #GP - use reset value for xcr0 */
974 ghcb_set_xcr0(ghcb, value: 1);
975
976 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, exit_info_1: 0, exit_info_2: 0);
977 if (ret != ES_OK)
978 return ret;
979
980 if (!(ghcb_rax_is_valid(ghcb) &&
981 ghcb_rbx_is_valid(ghcb) &&
982 ghcb_rcx_is_valid(ghcb) &&
983 ghcb_rdx_is_valid(ghcb)))
984 return ES_VMM_ERROR;
985
986 regs->ax = ghcb->save.rax;
987 regs->bx = ghcb->save.rbx;
988 regs->cx = ghcb->save.rcx;
989 regs->dx = ghcb->save.rdx;
990
991 return ES_OK;
992}
993
994static enum es_result vc_handle_rdtsc(struct ghcb *ghcb,
995 struct es_em_ctxt *ctxt,
996 unsigned long exit_code)
997{
998 bool rdtscp = (exit_code == SVM_EXIT_RDTSCP);
999 enum es_result ret;
1000
1001 ret = sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1: 0, exit_info_2: 0);
1002 if (ret != ES_OK)
1003 return ret;
1004
1005 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb) &&
1006 (!rdtscp || ghcb_rcx_is_valid(ghcb))))
1007 return ES_VMM_ERROR;
1008
1009 ctxt->regs->ax = ghcb->save.rax;
1010 ctxt->regs->dx = ghcb->save.rdx;
1011 if (rdtscp)
1012 ctxt->regs->cx = ghcb->save.rcx;
1013
1014 return ES_OK;
1015}
1016
1017struct cc_setup_data {
1018 struct setup_data header;
1019 u32 cc_blob_address;
1020};
1021
1022/*
1023 * Search for a Confidential Computing blob passed in as a setup_data entry
1024 * via the Linux Boot Protocol.
1025 */
1026static __head
1027struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp)
1028{
1029 struct cc_setup_data *sd = NULL;
1030 struct setup_data *hdr;
1031
1032 hdr = (struct setup_data *)bp->hdr.setup_data;
1033
1034 while (hdr) {
1035 if (hdr->type == SETUP_CC_BLOB) {
1036 sd = (struct cc_setup_data *)hdr;
1037 return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address;
1038 }
1039 hdr = (struct setup_data *)hdr->next;
1040 }
1041
1042 return NULL;
1043}
1044
1045/*
1046 * Initialize the kernel's copy of the SNP CPUID table, and set up the
1047 * pointer that will be used to access it.
1048 *
1049 * Maintaining a direct mapping of the SNP CPUID table used by firmware would
1050 * be possible as an alternative, but the approach is brittle since the
1051 * mapping needs to be updated in sync with all the changes to virtual memory
1052 * layout and related mapping facilities throughout the boot process.
1053 */
1054static void __head setup_cpuid_table(const struct cc_blob_sev_info *cc_info)
1055{
1056 const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table;
1057 int i;
1058
1059 if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE)
1060 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
1061
1062 cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys;
1063 if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX)
1064 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
1065
1066 cpuid_table = snp_cpuid_get_table();
1067 memcpy(to: (void *)cpuid_table, from: cpuid_table_fw, len: sizeof(*cpuid_table));
1068
1069 /* Initialize CPUID ranges for range-checking. */
1070 for (i = 0; i < cpuid_table->count; i++) {
1071 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
1072
1073 if (fn->eax_in == 0x0)
1074 RIP_REL_REF(cpuid_std_range_max) = fn->eax;
1075 else if (fn->eax_in == 0x40000000)
1076 RIP_REL_REF(cpuid_hyp_range_max) = fn->eax;
1077 else if (fn->eax_in == 0x80000000)
1078 RIP_REL_REF(cpuid_ext_range_max) = fn->eax;
1079 }
1080}
1081
1082static void pvalidate_pages(struct snp_psc_desc *desc)
1083{
1084 struct psc_entry *e;
1085 unsigned long vaddr;
1086 unsigned int size;
1087 unsigned int i;
1088 bool validate;
1089 int rc;
1090
1091 for (i = 0; i <= desc->hdr.end_entry; i++) {
1092 e = &desc->entries[i];
1093
1094 vaddr = (unsigned long)pfn_to_kaddr(pfn: e->gfn);
1095 size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
1096 validate = e->operation == SNP_PAGE_STATE_PRIVATE;
1097
1098 rc = pvalidate(vaddr, rmp_psize: size, validate);
1099 if (rc == PVALIDATE_FAIL_SIZEMISMATCH && size == RMP_PG_SIZE_2M) {
1100 unsigned long vaddr_end = vaddr + PMD_SIZE;
1101
1102 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) {
1103 rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
1104 if (rc)
1105 break;
1106 }
1107 }
1108
1109 if (rc) {
1110 WARN(1, "Failed to validate address 0x%lx ret %d", vaddr, rc);
1111 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
1112 }
1113 }
1114}
1115
1116static int vmgexit_psc(struct ghcb *ghcb, struct snp_psc_desc *desc)
1117{
1118 int cur_entry, end_entry, ret = 0;
1119 struct snp_psc_desc *data;
1120 struct es_em_ctxt ctxt;
1121
1122 vc_ghcb_invalidate(ghcb);
1123
1124 /* Copy the input desc into GHCB shared buffer */
1125 data = (struct snp_psc_desc *)ghcb->shared_buffer;
1126 memcpy(to: ghcb->shared_buffer, from: desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
1127
1128 /*
1129 * As per the GHCB specification, the hypervisor can resume the guest
1130 * before processing all the entries. Check whether all the entries
1131 * are processed. If not, then keep retrying. Note, the hypervisor
1132 * will update the data memory directly to indicate the status, so
1133 * reference the data->hdr everywhere.
1134 *
1135 * The strategy here is to wait for the hypervisor to change the page
1136 * state in the RMP table before guest accesses the memory pages. If the
1137 * page state change was not successful, then later memory access will
1138 * result in a crash.
1139 */
1140 cur_entry = data->hdr.cur_entry;
1141 end_entry = data->hdr.end_entry;
1142
1143 while (data->hdr.cur_entry <= data->hdr.end_entry) {
1144 ghcb_set_sw_scratch(ghcb, value: (u64)__pa(data));
1145
1146 /* This will advance the shared buffer data points to. */
1147 ret = sev_es_ghcb_hv_call(ghcb, ctxt: &ctxt, SVM_VMGEXIT_PSC, exit_info_1: 0, exit_info_2: 0);
1148
1149 /*
1150 * Page State Change VMGEXIT can pass error code through
1151 * exit_info_2.
1152 */
1153 if (WARN(ret || ghcb->save.sw_exit_info_2,
1154 "SNP: PSC failed ret=%d exit_info_2=%llx\n",
1155 ret, ghcb->save.sw_exit_info_2)) {
1156 ret = 1;
1157 goto out;
1158 }
1159
1160 /* Verify that reserved bit is not set */
1161 if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
1162 ret = 1;
1163 goto out;
1164 }
1165
1166 /*
1167 * Sanity check that entry processing is not going backwards.
1168 * This will happen only if hypervisor is tricking us.
1169 */
1170 if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
1171"SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
1172 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
1173 ret = 1;
1174 goto out;
1175 }
1176 }
1177
1178out:
1179 return ret;
1180}
1181
1182static enum es_result vc_check_opcode_bytes(struct es_em_ctxt *ctxt,
1183 unsigned long exit_code)
1184{
1185 unsigned int opcode = (unsigned int)ctxt->insn.opcode.value;
1186 u8 modrm = ctxt->insn.modrm.value;
1187
1188 switch (exit_code) {
1189
1190 case SVM_EXIT_IOIO:
1191 case SVM_EXIT_NPF:
1192 /* handled separately */
1193 return ES_OK;
1194
1195 case SVM_EXIT_CPUID:
1196 if (opcode == 0xa20f)
1197 return ES_OK;
1198 break;
1199
1200 case SVM_EXIT_INVD:
1201 if (opcode == 0x080f)
1202 return ES_OK;
1203 break;
1204
1205 case SVM_EXIT_MONITOR:
1206 if (opcode == 0x010f && modrm == 0xc8)
1207 return ES_OK;
1208 break;
1209
1210 case SVM_EXIT_MWAIT:
1211 if (opcode == 0x010f && modrm == 0xc9)
1212 return ES_OK;
1213 break;
1214
1215 case SVM_EXIT_MSR:
1216 /* RDMSR */
1217 if (opcode == 0x320f ||
1218 /* WRMSR */
1219 opcode == 0x300f)
1220 return ES_OK;
1221 break;
1222
1223 case SVM_EXIT_RDPMC:
1224 if (opcode == 0x330f)
1225 return ES_OK;
1226 break;
1227
1228 case SVM_EXIT_RDTSC:
1229 if (opcode == 0x310f)
1230 return ES_OK;
1231 break;
1232
1233 case SVM_EXIT_RDTSCP:
1234 if (opcode == 0x010f && modrm == 0xf9)
1235 return ES_OK;
1236 break;
1237
1238 case SVM_EXIT_READ_DR7:
1239 if (opcode == 0x210f &&
1240 X86_MODRM_REG(ctxt->insn.modrm.value) == 7)
1241 return ES_OK;
1242 break;
1243
1244 case SVM_EXIT_VMMCALL:
1245 if (opcode == 0x010f && modrm == 0xd9)
1246 return ES_OK;
1247
1248 break;
1249
1250 case SVM_EXIT_WRITE_DR7:
1251 if (opcode == 0x230f &&
1252 X86_MODRM_REG(ctxt->insn.modrm.value) == 7)
1253 return ES_OK;
1254 break;
1255
1256 case SVM_EXIT_WBINVD:
1257 if (opcode == 0x90f)
1258 return ES_OK;
1259 break;
1260
1261 default:
1262 break;
1263 }
1264
1265 sev_printk(KERN_ERR "Wrong/unhandled opcode bytes: 0x%x, exit_code: 0x%lx, rIP: 0x%lx\n",
1266 opcode, exit_code, ctxt->regs->ip);
1267
1268 return ES_UNSUPPORTED;
1269}
1270

source code of linux/arch/x86/kernel/sev-shared.c