1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/clk/tegra/clk-emc.c
4 *
5 * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
6 *
7 * Author:
8 * Mikko Perttunen <mperttunen@nvidia.com>
9 */
10
11#include <linux/clk-provider.h>
12#include <linux/clk.h>
13#include <linux/clkdev.h>
14#include <linux/clk/tegra.h>
15#include <linux/delay.h>
16#include <linux/export.h>
17#include <linux/io.h>
18#include <linux/module.h>
19#include <linux/of_address.h>
20#include <linux/of_platform.h>
21#include <linux/platform_device.h>
22#include <linux/sort.h>
23#include <linux/string.h>
24
25#include <soc/tegra/fuse.h>
26
27#include "clk.h"
28
29#define CLK_SOURCE_EMC 0x19c
30
31#define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_SHIFT 0
32#define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK 0xff
33#define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(x) (((x) & CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK) << \
34 CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_SHIFT)
35
36#define CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT 29
37#define CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK 0x7
38#define CLK_SOURCE_EMC_EMC_2X_CLK_SRC(x) (((x) & CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK) << \
39 CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT)
40
41static const char * const emc_parent_clk_names[] = {
42 "pll_m", "pll_c", "pll_p", "clk_m", "pll_m_ud",
43 "pll_c2", "pll_c3", "pll_c_ud"
44};
45
46/*
47 * List of clock sources for various parents the EMC clock can have.
48 * When we change the timing to a timing with a parent that has the same
49 * clock source as the current parent, we must first change to a backup
50 * timing that has a different clock source.
51 */
52
53#define EMC_SRC_PLL_M 0
54#define EMC_SRC_PLL_C 1
55#define EMC_SRC_PLL_P 2
56#define EMC_SRC_CLK_M 3
57#define EMC_SRC_PLL_C2 4
58#define EMC_SRC_PLL_C3 5
59
60static const char emc_parent_clk_sources[] = {
61 EMC_SRC_PLL_M, EMC_SRC_PLL_C, EMC_SRC_PLL_P, EMC_SRC_CLK_M,
62 EMC_SRC_PLL_M, EMC_SRC_PLL_C2, EMC_SRC_PLL_C3, EMC_SRC_PLL_C
63};
64
65struct emc_timing {
66 unsigned long rate, parent_rate;
67 u8 parent_index;
68 struct clk *parent;
69 u32 ram_code;
70};
71
72struct tegra_clk_emc {
73 struct clk_hw hw;
74 void __iomem *clk_regs;
75 struct clk *prev_parent;
76 bool changing_timing;
77
78 struct device_node *emc_node;
79 struct tegra_emc *emc;
80
81 int num_timings;
82 struct emc_timing *timings;
83 spinlock_t *lock;
84
85 tegra124_emc_prepare_timing_change_cb *prepare_timing_change;
86 tegra124_emc_complete_timing_change_cb *complete_timing_change;
87};
88
89/* Common clock framework callback implementations */
90
91static unsigned long emc_recalc_rate(struct clk_hw *hw,
92 unsigned long parent_rate)
93{
94 struct tegra_clk_emc *tegra;
95 u32 val, div;
96
97 tegra = container_of(hw, struct tegra_clk_emc, hw);
98
99 /*
100 * CCF wrongly assumes that the parent won't change during set_rate,
101 * so get the parent rate explicitly.
102 */
103 parent_rate = clk_hw_get_rate(hw: clk_hw_get_parent(hw));
104
105 val = readl(addr: tegra->clk_regs + CLK_SOURCE_EMC);
106 div = val & CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK;
107
108 return parent_rate / (div + 2) * 2;
109}
110
111/*
112 * Rounds up unless no higher rate exists, in which case down. This way is
113 * safer since things have EMC rate floors. Also don't touch parent_rate
114 * since we don't want the CCF to play with our parent clocks.
115 */
116static int emc_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
117{
118 struct tegra_clk_emc *tegra;
119 u8 ram_code = tegra_read_ram_code();
120 struct emc_timing *timing = NULL;
121 int i, k, t;
122
123 tegra = container_of(hw, struct tegra_clk_emc, hw);
124
125 for (k = 0; k < tegra->num_timings; k++) {
126 if (tegra->timings[k].ram_code == ram_code)
127 break;
128 }
129
130 for (t = k; t < tegra->num_timings; t++) {
131 if (tegra->timings[t].ram_code != ram_code)
132 break;
133 }
134
135 for (i = k; i < t; i++) {
136 timing = tegra->timings + i;
137
138 if (timing->rate < req->rate && i != t - 1)
139 continue;
140
141 if (timing->rate > req->max_rate) {
142 i = max(i, k + 1);
143 req->rate = tegra->timings[i - 1].rate;
144 return 0;
145 }
146
147 if (timing->rate < req->min_rate)
148 continue;
149
150 req->rate = timing->rate;
151 return 0;
152 }
153
154 if (timing) {
155 req->rate = timing->rate;
156 return 0;
157 }
158
159 req->rate = clk_hw_get_rate(hw);
160 return 0;
161}
162
163static u8 emc_get_parent(struct clk_hw *hw)
164{
165 struct tegra_clk_emc *tegra;
166 u32 val;
167
168 tegra = container_of(hw, struct tegra_clk_emc, hw);
169
170 val = readl(addr: tegra->clk_regs + CLK_SOURCE_EMC);
171
172 return (val >> CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT)
173 & CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK;
174}
175
176static struct tegra_emc *emc_ensure_emc_driver(struct tegra_clk_emc *tegra)
177{
178 struct platform_device *pdev;
179
180 if (tegra->emc)
181 return tegra->emc;
182
183 if (!tegra->prepare_timing_change || !tegra->complete_timing_change)
184 return NULL;
185
186 if (!tegra->emc_node)
187 return NULL;
188
189 pdev = of_find_device_by_node(np: tegra->emc_node);
190 if (!pdev) {
191 pr_err("%s: could not get external memory controller\n",
192 __func__);
193 return NULL;
194 }
195
196 of_node_put(node: tegra->emc_node);
197 tegra->emc_node = NULL;
198
199 tegra->emc = platform_get_drvdata(pdev);
200 if (!tegra->emc) {
201 put_device(dev: &pdev->dev);
202 pr_err("%s: cannot find EMC driver\n", __func__);
203 return NULL;
204 }
205
206 return tegra->emc;
207}
208
209static int emc_set_timing(struct tegra_clk_emc *tegra,
210 struct emc_timing *timing)
211{
212 int err;
213 u8 div;
214 u32 car_value;
215 unsigned long flags = 0;
216 struct tegra_emc *emc = emc_ensure_emc_driver(tegra);
217
218 if (!emc)
219 return -ENOENT;
220
221 pr_debug("going to rate %ld prate %ld p %s\n", timing->rate,
222 timing->parent_rate, __clk_get_name(timing->parent));
223
224 if (emc_get_parent(hw: &tegra->hw) == timing->parent_index &&
225 clk_get_rate(clk: timing->parent) != timing->parent_rate) {
226 WARN_ONCE(1, "parent %s rate mismatch %lu %lu\n",
227 __clk_get_name(timing->parent),
228 clk_get_rate(timing->parent),
229 timing->parent_rate);
230 return -EINVAL;
231 }
232
233 tegra->changing_timing = true;
234
235 err = clk_set_rate(clk: timing->parent, rate: timing->parent_rate);
236 if (err) {
237 pr_err("cannot change parent %s rate to %ld: %d\n",
238 __clk_get_name(timing->parent), timing->parent_rate,
239 err);
240
241 return err;
242 }
243
244 err = clk_prepare_enable(clk: timing->parent);
245 if (err) {
246 pr_err("cannot enable parent clock: %d\n", err);
247 return err;
248 }
249
250 div = timing->parent_rate / (timing->rate / 2) - 2;
251
252 err = tegra->prepare_timing_change(emc, timing->rate);
253 if (err) {
254 clk_disable_unprepare(clk: timing->parent);
255 return err;
256 }
257
258 spin_lock_irqsave(tegra->lock, flags);
259
260 car_value = readl(addr: tegra->clk_regs + CLK_SOURCE_EMC);
261
262 car_value &= ~CLK_SOURCE_EMC_EMC_2X_CLK_SRC(~0);
263 car_value |= CLK_SOURCE_EMC_EMC_2X_CLK_SRC(timing->parent_index);
264
265 car_value &= ~CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(~0);
266 car_value |= CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(div);
267
268 writel(val: car_value, addr: tegra->clk_regs + CLK_SOURCE_EMC);
269
270 spin_unlock_irqrestore(lock: tegra->lock, flags);
271
272 tegra->complete_timing_change(emc, timing->rate);
273
274 clk_hw_reparent(hw: &tegra->hw, new_parent: __clk_get_hw(clk: timing->parent));
275 clk_disable_unprepare(clk: tegra->prev_parent);
276
277 tegra->prev_parent = timing->parent;
278 tegra->changing_timing = false;
279
280 return 0;
281}
282
283/*
284 * Get backup timing to use as an intermediate step when a change between
285 * two timings with the same clock source has been requested. First try to
286 * find a timing with a higher clock rate to avoid a rate below any set rate
287 * floors. If that is not possible, find a lower rate.
288 */
289static struct emc_timing *get_backup_timing(struct tegra_clk_emc *tegra,
290 int timing_index)
291{
292 int i;
293 u32 ram_code = tegra_read_ram_code();
294 struct emc_timing *timing;
295
296 for (i = timing_index+1; i < tegra->num_timings; i++) {
297 timing = tegra->timings + i;
298 if (timing->ram_code != ram_code)
299 break;
300
301 if (emc_parent_clk_sources[timing->parent_index] !=
302 emc_parent_clk_sources[
303 tegra->timings[timing_index].parent_index])
304 return timing;
305 }
306
307 for (i = timing_index-1; i >= 0; --i) {
308 timing = tegra->timings + i;
309 if (timing->ram_code != ram_code)
310 break;
311
312 if (emc_parent_clk_sources[timing->parent_index] !=
313 emc_parent_clk_sources[
314 tegra->timings[timing_index].parent_index])
315 return timing;
316 }
317
318 return NULL;
319}
320
321static int emc_set_rate(struct clk_hw *hw, unsigned long rate,
322 unsigned long parent_rate)
323{
324 struct tegra_clk_emc *tegra;
325 struct emc_timing *timing = NULL;
326 int i, err;
327 u32 ram_code = tegra_read_ram_code();
328
329 tegra = container_of(hw, struct tegra_clk_emc, hw);
330
331 if (clk_hw_get_rate(hw) == rate)
332 return 0;
333
334 /*
335 * When emc_set_timing changes the parent rate, CCF will propagate
336 * that downward to us, so ignore any set_rate calls while a rate
337 * change is already going on.
338 */
339 if (tegra->changing_timing)
340 return 0;
341
342 for (i = 0; i < tegra->num_timings; i++) {
343 if (tegra->timings[i].rate == rate &&
344 tegra->timings[i].ram_code == ram_code) {
345 timing = tegra->timings + i;
346 break;
347 }
348 }
349
350 if (!timing) {
351 pr_err("cannot switch to rate %ld without emc table\n", rate);
352 return -EINVAL;
353 }
354
355 if (emc_parent_clk_sources[emc_get_parent(hw)] ==
356 emc_parent_clk_sources[timing->parent_index] &&
357 clk_get_rate(clk: timing->parent) != timing->parent_rate) {
358 /*
359 * Parent clock source not changed but parent rate has changed,
360 * need to temporarily switch to another parent
361 */
362
363 struct emc_timing *backup_timing;
364
365 backup_timing = get_backup_timing(tegra, timing_index: i);
366 if (!backup_timing) {
367 pr_err("cannot find backup timing\n");
368 return -EINVAL;
369 }
370
371 pr_debug("using %ld as backup rate when going to %ld\n",
372 backup_timing->rate, rate);
373
374 err = emc_set_timing(tegra, timing: backup_timing);
375 if (err) {
376 pr_err("cannot set backup timing: %d\n", err);
377 return err;
378 }
379 }
380
381 return emc_set_timing(tegra, timing);
382}
383
384/* Initialization and deinitialization */
385
386static int load_one_timing_from_dt(struct tegra_clk_emc *tegra,
387 struct emc_timing *timing,
388 struct device_node *node)
389{
390 int err, i;
391 u32 tmp;
392
393 err = of_property_read_u32(np: node, propname: "clock-frequency", out_value: &tmp);
394 if (err) {
395 pr_err("timing %pOF: failed to read rate\n", node);
396 return err;
397 }
398
399 timing->rate = tmp;
400
401 err = of_property_read_u32(np: node, propname: "nvidia,parent-clock-frequency", out_value: &tmp);
402 if (err) {
403 pr_err("timing %pOF: failed to read parent rate\n", node);
404 return err;
405 }
406
407 timing->parent_rate = tmp;
408
409 timing->parent = of_clk_get_by_name(np: node, name: "emc-parent");
410 if (IS_ERR(ptr: timing->parent)) {
411 pr_err("timing %pOF: failed to get parent clock\n", node);
412 return PTR_ERR(ptr: timing->parent);
413 }
414
415 timing->parent_index = 0xff;
416 i = match_string(array: emc_parent_clk_names, ARRAY_SIZE(emc_parent_clk_names),
417 string: __clk_get_name(clk: timing->parent));
418 if (i < 0) {
419 pr_err("timing %pOF: %s is not a valid parent\n",
420 node, __clk_get_name(timing->parent));
421 clk_put(clk: timing->parent);
422 return -EINVAL;
423 }
424
425 timing->parent_index = i;
426 return 0;
427}
428
429static int cmp_timings(const void *_a, const void *_b)
430{
431 const struct emc_timing *a = _a;
432 const struct emc_timing *b = _b;
433
434 if (a->rate < b->rate)
435 return -1;
436 else if (a->rate == b->rate)
437 return 0;
438 else
439 return 1;
440}
441
442static int load_timings_from_dt(struct tegra_clk_emc *tegra,
443 struct device_node *node,
444 u32 ram_code)
445{
446 struct emc_timing *timings_ptr;
447 struct device_node *child;
448 int child_count = of_get_child_count(np: node);
449 int i = 0, err;
450 size_t size;
451
452 size = (tegra->num_timings + child_count) * sizeof(struct emc_timing);
453
454 tegra->timings = krealloc(objp: tegra->timings, new_size: size, GFP_KERNEL);
455 if (!tegra->timings)
456 return -ENOMEM;
457
458 timings_ptr = tegra->timings + tegra->num_timings;
459 tegra->num_timings += child_count;
460
461 for_each_child_of_node(node, child) {
462 struct emc_timing *timing = timings_ptr + (i++);
463
464 err = load_one_timing_from_dt(tegra, timing, node: child);
465 if (err) {
466 of_node_put(node: child);
467 kfree(objp: tegra->timings);
468 return err;
469 }
470
471 timing->ram_code = ram_code;
472 }
473
474 sort(base: timings_ptr, num: child_count, size: sizeof(struct emc_timing),
475 cmp_func: cmp_timings, NULL);
476
477 return 0;
478}
479
480static const struct clk_ops tegra_clk_emc_ops = {
481 .recalc_rate = emc_recalc_rate,
482 .determine_rate = emc_determine_rate,
483 .set_rate = emc_set_rate,
484 .get_parent = emc_get_parent,
485};
486
487struct clk *tegra124_clk_register_emc(void __iomem *base, struct device_node *np,
488 spinlock_t *lock)
489{
490 struct tegra_clk_emc *tegra;
491 struct clk_init_data init;
492 struct device_node *node;
493 u32 node_ram_code;
494 struct clk *clk;
495 int err;
496
497 tegra = kcalloc(n: 1, size: sizeof(*tegra), GFP_KERNEL);
498 if (!tegra)
499 return ERR_PTR(error: -ENOMEM);
500
501 tegra->clk_regs = base;
502 tegra->lock = lock;
503
504 tegra->num_timings = 0;
505
506 for_each_child_of_node(np, node) {
507 err = of_property_read_u32(np: node, propname: "nvidia,ram-code",
508 out_value: &node_ram_code);
509 if (err)
510 continue;
511
512 /*
513 * Store timings for all ram codes as we cannot read the
514 * fuses until the apbmisc driver is loaded.
515 */
516 err = load_timings_from_dt(tegra, node, ram_code: node_ram_code);
517 if (err) {
518 of_node_put(node);
519 kfree(objp: tegra);
520 return ERR_PTR(error: err);
521 }
522 }
523
524 if (tegra->num_timings == 0)
525 pr_warn("%s: no memory timings registered\n", __func__);
526
527 tegra->emc_node = of_parse_phandle(np,
528 phandle_name: "nvidia,external-memory-controller", index: 0);
529 if (!tegra->emc_node)
530 pr_warn("%s: couldn't find node for EMC driver\n", __func__);
531
532 init.name = "emc";
533 init.ops = &tegra_clk_emc_ops;
534 init.flags = CLK_IS_CRITICAL;
535 init.parent_names = emc_parent_clk_names;
536 init.num_parents = ARRAY_SIZE(emc_parent_clk_names);
537
538 tegra->hw.init = &init;
539
540 clk = clk_register(NULL, hw: &tegra->hw);
541 if (IS_ERR(ptr: clk))
542 return clk;
543
544 tegra->prev_parent = clk_hw_get_parent_by_index(
545 hw: &tegra->hw, index: emc_get_parent(hw: &tegra->hw))->clk;
546 tegra->changing_timing = false;
547
548 /* Allow debugging tools to see the EMC clock */
549 clk_register_clkdev(clk, "emc", "tegra-clk-debug");
550
551 return clk;
552};
553
554void tegra124_clk_set_emc_callbacks(tegra124_emc_prepare_timing_change_cb *prep_cb,
555 tegra124_emc_complete_timing_change_cb *complete_cb)
556{
557 struct clk *clk = __clk_lookup(name: "emc");
558 struct tegra_clk_emc *tegra;
559 struct clk_hw *hw;
560
561 if (clk) {
562 hw = __clk_get_hw(clk);
563 tegra = container_of(hw, struct tegra_clk_emc, hw);
564
565 tegra->prepare_timing_change = prep_cb;
566 tegra->complete_timing_change = complete_cb;
567 }
568}
569EXPORT_SYMBOL_GPL(tegra124_clk_set_emc_callbacks);
570
571bool tegra124_clk_emc_driver_available(struct clk_hw *hw)
572{
573 struct tegra_clk_emc *tegra = container_of(hw, struct tegra_clk_emc, hw);
574
575 return tegra->prepare_timing_change && tegra->complete_timing_change;
576}
577

source code of linux/drivers/clk/tegra/clk-tegra124-emc.c