1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3#include <linux/init.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/pci.h>
7#include <linux/io-64-nonatomic-lo-hi.h>
8#include <linux/dmaengine.h>
9#include <linux/delay.h>
10#include <linux/iommu.h>
11#include <linux/sched/mm.h>
12#include <uapi/linux/idxd.h>
13#include "../dmaengine.h"
14#include "idxd.h"
15#include "registers.h"
16
17enum irq_work_type {
18 IRQ_WORK_NORMAL = 0,
19 IRQ_WORK_PROCESS_FAULT,
20};
21
22struct idxd_resubmit {
23 struct work_struct work;
24 struct idxd_desc *desc;
25};
26
27struct idxd_int_handle_revoke {
28 struct work_struct work;
29 struct idxd_device *idxd;
30};
31
32static void idxd_device_reinit(struct work_struct *work)
33{
34 struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35 struct device *dev = &idxd->pdev->dev;
36 int rc, i;
37
38 idxd_device_reset(idxd);
39 rc = idxd_device_config(idxd);
40 if (rc < 0)
41 goto out;
42
43 rc = idxd_device_enable(idxd);
44 if (rc < 0)
45 goto out;
46
47 for (i = 0; i < idxd->max_wqs; i++) {
48 if (test_bit(i, idxd->wq_enable_map)) {
49 struct idxd_wq *wq = idxd->wqs[i];
50
51 rc = idxd_wq_enable(wq);
52 if (rc < 0) {
53 clear_bit(nr: i, addr: idxd->wq_enable_map);
54 dev_warn(dev, "Unable to re-enable wq %s\n",
55 dev_name(wq_confdev(wq)));
56 }
57 }
58 }
59
60 return;
61
62 out:
63 idxd_device_clear_state(idxd);
64}
65
66/*
67 * The function sends a drain descriptor for the interrupt handle. The drain ensures
68 * all descriptors with this interrupt handle is flushed and the interrupt
69 * will allow the cleanup of the outstanding descriptors.
70 */
71static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
72{
73 struct idxd_wq *wq = ie_to_wq(ie);
74 struct idxd_device *idxd = wq->idxd;
75 struct device *dev = &idxd->pdev->dev;
76 struct dsa_hw_desc desc = {};
77 void __iomem *portal;
78 int rc;
79
80 /* Issue a simple drain operation with interrupt but no completion record */
81 desc.flags = IDXD_OP_FLAG_RCI;
82 desc.opcode = DSA_OPCODE_DRAIN;
83 desc.priv = 1;
84
85 if (ie->pasid != IOMMU_PASID_INVALID)
86 desc.pasid = ie->pasid;
87 desc.int_handle = ie->int_handle;
88 portal = idxd_wq_portal_addr(wq);
89
90 /*
91 * The wmb() makes sure that the descriptor is all there before we
92 * issue.
93 */
94 wmb();
95 if (wq_dedicated(wq)) {
96 iosubmit_cmds512(dst: portal, src: &desc, count: 1);
97 } else {
98 rc = idxd_enqcmds(wq, portal, desc: &desc);
99 /* This should not fail unless hardware failed. */
100 if (rc < 0)
101 dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
102 }
103}
104
105static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
106{
107 LIST_HEAD(flist);
108 struct idxd_desc *d, *t;
109 struct llist_node *head;
110
111 spin_lock(lock: &ie->list_lock);
112 head = llist_del_all(head: &ie->pending_llist);
113 if (head) {
114 llist_for_each_entry_safe(d, t, head, llnode)
115 list_add_tail(new: &d->list, head: &ie->work_list);
116 }
117
118 list_for_each_entry_safe(d, t, &ie->work_list, list) {
119 if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
120 list_move_tail(list: &d->list, head: &flist);
121 }
122 spin_unlock(lock: &ie->list_lock);
123
124 list_for_each_entry_safe(d, t, &flist, list) {
125 list_del(entry: &d->list);
126 idxd_desc_complete(desc: d, comp_type: IDXD_COMPLETE_ABORT, free_desc: true);
127 }
128}
129
130static void idxd_int_handle_revoke(struct work_struct *work)
131{
132 struct idxd_int_handle_revoke *revoke =
133 container_of(work, struct idxd_int_handle_revoke, work);
134 struct idxd_device *idxd = revoke->idxd;
135 struct pci_dev *pdev = idxd->pdev;
136 struct device *dev = &pdev->dev;
137 int i, new_handle, rc;
138
139 if (!idxd->request_int_handles) {
140 kfree(objp: revoke);
141 dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
142 return;
143 }
144
145 /*
146 * The loop attempts to acquire new interrupt handle for all interrupt
147 * vectors that supports a handle. If a new interrupt handle is acquired and the
148 * wq is kernel type, the driver will kill the percpu_ref to pause all
149 * ongoing descriptor submissions. The interrupt handle is then changed.
150 * After change, the percpu_ref is revived and all the pending submissions
151 * are woken to try again. A drain is sent to for the interrupt handle
152 * at the end to make sure all invalid int handle descriptors are processed.
153 */
154 for (i = 1; i < idxd->irq_cnt; i++) {
155 struct idxd_irq_entry *ie = idxd_get_ie(idxd, idx: i);
156 struct idxd_wq *wq = ie_to_wq(ie);
157
158 if (ie->int_handle == INVALID_INT_HANDLE)
159 continue;
160
161 rc = idxd_device_request_int_handle(idxd, idx: i, handle: &new_handle, irq_type: IDXD_IRQ_MSIX);
162 if (rc < 0) {
163 dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
164 /*
165 * Failed to acquire new interrupt handle. Kill the WQ
166 * and release all the pending submitters. The submitters will
167 * get error return code and handle appropriately.
168 */
169 ie->int_handle = INVALID_INT_HANDLE;
170 idxd_wq_quiesce(wq);
171 idxd_abort_invalid_int_handle_descs(ie);
172 continue;
173 }
174
175 /* No change in interrupt handle, nothing needs to be done */
176 if (ie->int_handle == new_handle)
177 continue;
178
179 if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
180 /*
181 * All the MSIX interrupts are allocated at once during probe.
182 * Therefore we need to update all interrupts even if the WQ
183 * isn't supporting interrupt operations.
184 */
185 ie->int_handle = new_handle;
186 continue;
187 }
188
189 mutex_lock(&wq->wq_lock);
190 reinit_completion(x: &wq->wq_resurrect);
191
192 /* Kill percpu_ref to pause additional descriptor submissions */
193 percpu_ref_kill(ref: &wq->wq_active);
194
195 /* Wait for all submitters quiesce before we change interrupt handle */
196 wait_for_completion(&wq->wq_dead);
197
198 ie->int_handle = new_handle;
199
200 /* Revive percpu ref and wake up all the waiting submitters */
201 percpu_ref_reinit(ref: &wq->wq_active);
202 complete_all(&wq->wq_resurrect);
203 mutex_unlock(lock: &wq->wq_lock);
204
205 /*
206 * The delay here is to wait for all possible MOVDIR64B that
207 * are issued before percpu_ref_kill() has happened to have
208 * reached the PCIe domain before the drain is issued. The driver
209 * needs to ensure that the drain descriptor issued does not pass
210 * all the other issued descriptors that contain the invalid
211 * interrupt handle in order to ensure that the drain descriptor
212 * interrupt will allow the cleanup of all the descriptors with
213 * invalid interrupt handle.
214 */
215 if (wq_dedicated(wq))
216 udelay(100);
217 idxd_int_handle_revoke_drain(ie);
218 }
219 kfree(objp: revoke);
220}
221
222static void idxd_evl_fault_work(struct work_struct *work)
223{
224 struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
225 struct idxd_wq *wq = fault->wq;
226 struct idxd_device *idxd = wq->idxd;
227 struct device *dev = &idxd->pdev->dev;
228 struct idxd_evl *evl = idxd->evl;
229 struct __evl_entry *entry_head = fault->entry;
230 void *cr = (void *)entry_head + idxd->data->evl_cr_off;
231 int cr_size = idxd->data->compl_size;
232 u8 *status = (u8 *)cr + idxd->data->cr_status_off;
233 u8 *result = (u8 *)cr + idxd->data->cr_result_off;
234 int copied, copy_size;
235 bool *bf;
236
237 switch (fault->status) {
238 case DSA_COMP_CRA_XLAT:
239 if (entry_head->batch && entry_head->first_err_in_batch)
240 evl->batch_fail[entry_head->batch_id] = false;
241
242 copy_size = cr_size;
243 idxd_user_counter_increment(wq, pasid: entry_head->pasid, index: COUNTER_FAULTS);
244 break;
245 case DSA_COMP_BATCH_EVL_ERR:
246 bf = &evl->batch_fail[entry_head->batch_id];
247
248 copy_size = entry_head->rcr || *bf ? cr_size : 0;
249 if (*bf) {
250 if (*status == DSA_COMP_SUCCESS)
251 *status = DSA_COMP_BATCH_FAIL;
252 *result = 1;
253 *bf = false;
254 }
255 idxd_user_counter_increment(wq, pasid: entry_head->pasid, index: COUNTER_FAULTS);
256 break;
257 case DSA_COMP_DRAIN_EVL:
258 copy_size = cr_size;
259 break;
260 default:
261 copy_size = 0;
262 dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
263 break;
264 }
265
266 if (copy_size == 0)
267 return;
268
269 /*
270 * Copy completion record to fault_addr in user address space
271 * that is found by wq and PASID.
272 */
273 copied = idxd_copy_cr(wq, pasid: entry_head->pasid, addr: entry_head->fault_addr,
274 buf: cr, len: copy_size);
275 /*
276 * The task that triggered the page fault is unknown currently
277 * because multiple threads may share the user address
278 * space or the task exits already before this fault.
279 * So if the copy fails, SIGSEGV can not be sent to the task.
280 * Just print an error for the failure. The user application
281 * waiting for the completion record will time out on this
282 * failure.
283 */
284 switch (fault->status) {
285 case DSA_COMP_CRA_XLAT:
286 if (copied != copy_size) {
287 idxd_user_counter_increment(wq, pasid: entry_head->pasid, index: COUNTER_FAULT_FAILS);
288 dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
289 copy_size, copied);
290 if (entry_head->batch)
291 evl->batch_fail[entry_head->batch_id] = true;
292 }
293 break;
294 case DSA_COMP_BATCH_EVL_ERR:
295 if (copied != copy_size) {
296 idxd_user_counter_increment(wq, pasid: entry_head->pasid, index: COUNTER_FAULT_FAILS);
297 dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
298 copy_size, copied);
299 }
300 break;
301 case DSA_COMP_DRAIN_EVL:
302 if (copied != copy_size)
303 dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
304 copy_size, copied);
305 break;
306 }
307
308 kmem_cache_free(s: idxd->evl_cache, objp: fault);
309}
310
311static void process_evl_entry(struct idxd_device *idxd,
312 struct __evl_entry *entry_head, unsigned int index)
313{
314 struct device *dev = &idxd->pdev->dev;
315 struct idxd_evl *evl = idxd->evl;
316 u8 status;
317
318 if (test_bit(index, evl->bmap)) {
319 clear_bit(nr: index, addr: evl->bmap);
320 } else {
321 status = DSA_COMP_STATUS(entry_head->error);
322
323 if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
324 status == DSA_COMP_BATCH_EVL_ERR) {
325 struct idxd_evl_fault *fault;
326 int ent_size = evl_ent_size(idxd);
327
328 if (entry_head->rci)
329 dev_dbg(dev, "Completion Int Req set, ignoring!\n");
330
331 if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
332 return;
333
334 fault = kmem_cache_alloc(cachep: idxd->evl_cache, GFP_ATOMIC);
335 if (fault) {
336 struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
337
338 fault->wq = wq;
339 fault->status = status;
340 memcpy(&fault->entry, entry_head, ent_size);
341 INIT_WORK(&fault->work, idxd_evl_fault_work);
342 queue_work(wq: wq->wq, work: &fault->work);
343 } else {
344 dev_warn(dev, "Failed to service fault work.\n");
345 }
346 } else {
347 dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
348 status, entry_head->operation,
349 entry_head->fault_addr);
350 }
351 }
352}
353
354static void process_evl_entries(struct idxd_device *idxd)
355{
356 union evl_status_reg evl_status;
357 unsigned int h, t;
358 struct idxd_evl *evl = idxd->evl;
359 struct __evl_entry *entry_head;
360 unsigned int ent_size = evl_ent_size(idxd);
361 u32 size;
362
363 evl_status.bits = 0;
364 evl_status.int_pending = 1;
365
366 spin_lock(lock: &evl->lock);
367 /* Clear interrupt pending bit */
368 iowrite32(evl_status.bits_upper32,
369 idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
370 evl_status.bits = ioread64(addr: idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
371 t = evl_status.tail;
372 h = evl_status.head;
373 size = idxd->evl->size;
374
375 while (h != t) {
376 entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
377 process_evl_entry(idxd, entry_head, index: h);
378 h = (h + 1) % size;
379 }
380
381 evl_status.head = h;
382 iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
383 spin_unlock(lock: &evl->lock);
384}
385
386irqreturn_t idxd_misc_thread(int vec, void *data)
387{
388 struct idxd_irq_entry *irq_entry = data;
389 struct idxd_device *idxd = ie_to_idxd(ie: irq_entry);
390 struct device *dev = &idxd->pdev->dev;
391 union gensts_reg gensts;
392 u32 val = 0;
393 int i;
394 bool err = false;
395 u32 cause;
396
397 cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
398 if (!cause)
399 return IRQ_NONE;
400
401 iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
402
403 if (cause & IDXD_INTC_HALT_STATE)
404 goto halt;
405
406 if (cause & IDXD_INTC_ERR) {
407 spin_lock(lock: &idxd->dev_lock);
408 for (i = 0; i < 4; i++)
409 idxd->sw_err.bits[i] = ioread64(addr: idxd->reg_base +
410 IDXD_SWERR_OFFSET + i * sizeof(u64));
411
412 iowrite64(val: idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
413 addr: idxd->reg_base + IDXD_SWERR_OFFSET);
414
415 if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
416 int id = idxd->sw_err.wq_idx;
417 struct idxd_wq *wq = idxd->wqs[id];
418
419 if (wq->type == IDXD_WQT_USER)
420 wake_up_interruptible(&wq->err_queue);
421 } else {
422 int i;
423
424 for (i = 0; i < idxd->max_wqs; i++) {
425 struct idxd_wq *wq = idxd->wqs[i];
426
427 if (wq->type == IDXD_WQT_USER)
428 wake_up_interruptible(&wq->err_queue);
429 }
430 }
431
432 spin_unlock(lock: &idxd->dev_lock);
433 val |= IDXD_INTC_ERR;
434
435 for (i = 0; i < 4; i++)
436 dev_warn_ratelimited(dev, "err[%d]: %#16.16llx\n",
437 i, idxd->sw_err.bits[i]);
438 err = true;
439 }
440
441 if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
442 struct idxd_int_handle_revoke *revoke;
443
444 val |= IDXD_INTC_INT_HANDLE_REVOKED;
445
446 revoke = kzalloc(size: sizeof(*revoke), GFP_ATOMIC);
447 if (revoke) {
448 revoke->idxd = idxd;
449 INIT_WORK(&revoke->work, idxd_int_handle_revoke);
450 queue_work(wq: idxd->wq, work: &revoke->work);
451
452 } else {
453 dev_err(dev, "Failed to allocate work for int handle revoke\n");
454 idxd_wqs_quiesce(idxd);
455 }
456 }
457
458 if (cause & IDXD_INTC_CMD) {
459 val |= IDXD_INTC_CMD;
460 complete(idxd->cmd_done);
461 }
462
463 if (cause & IDXD_INTC_OCCUPY) {
464 /* Driver does not utilize occupancy interrupt */
465 val |= IDXD_INTC_OCCUPY;
466 }
467
468 if (cause & IDXD_INTC_PERFMON_OVFL) {
469 val |= IDXD_INTC_PERFMON_OVFL;
470 perfmon_counter_overflow(idxd);
471 }
472
473 if (cause & IDXD_INTC_EVL) {
474 val |= IDXD_INTC_EVL;
475 process_evl_entries(idxd);
476 }
477
478 val ^= cause;
479 if (val)
480 dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
481 val);
482
483 if (!err)
484 goto out;
485
486halt:
487 gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
488 if (gensts.state == IDXD_DEVICE_STATE_HALT) {
489 idxd->state = IDXD_DEV_HALTED;
490 if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
491 /*
492 * If we need a software reset, we will throw the work
493 * on a system workqueue in order to allow interrupts
494 * for the device command completions.
495 */
496 INIT_WORK(&idxd->work, idxd_device_reinit);
497 queue_work(wq: idxd->wq, work: &idxd->work);
498 } else {
499 idxd->state = IDXD_DEV_HALTED;
500 idxd_wqs_quiesce(idxd);
501 idxd_wqs_unmap_portal(idxd);
502 idxd_device_clear_state(idxd);
503 dev_err(&idxd->pdev->dev,
504 "idxd halted, need %s.\n",
505 gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
506 "FLR" : "system reset");
507 }
508 }
509
510out:
511 return IRQ_HANDLED;
512}
513
514static void idxd_int_handle_resubmit_work(struct work_struct *work)
515{
516 struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
517 struct idxd_desc *desc = irw->desc;
518 struct idxd_wq *wq = desc->wq;
519 int rc;
520
521 desc->completion->status = 0;
522 rc = idxd_submit_desc(wq, desc);
523 if (rc < 0) {
524 dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
525 desc->id, wq->id);
526 /*
527 * If the error is not -EAGAIN, it means the submission failed due to wq
528 * has been killed instead of ENQCMDS failure. Here the driver needs to
529 * notify the submitter of the failure by reporting abort status.
530 *
531 * -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
532 * abort.
533 */
534 if (rc != -EAGAIN) {
535 desc->completion->status = IDXD_COMP_DESC_ABORT;
536 idxd_desc_complete(desc, comp_type: IDXD_COMPLETE_ABORT, free_desc: false);
537 }
538 idxd_free_desc(wq, desc);
539 }
540 kfree(objp: irw);
541}
542
543bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
544{
545 struct idxd_wq *wq = desc->wq;
546 struct idxd_device *idxd = wq->idxd;
547 struct idxd_resubmit *irw;
548
549 irw = kzalloc(size: sizeof(*irw), GFP_KERNEL);
550 if (!irw)
551 return false;
552
553 irw->desc = desc;
554 INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
555 queue_work(wq: idxd->wq, work: &irw->work);
556 return true;
557}
558
559static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
560{
561 struct idxd_desc *desc, *t;
562 struct llist_node *head;
563
564 head = llist_del_all(head: &irq_entry->pending_llist);
565 if (!head)
566 return;
567
568 llist_for_each_entry_safe(desc, t, head, llnode) {
569 u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
570
571 if (status) {
572 /*
573 * Check against the original status as ABORT is software defined
574 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
575 */
576 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
577 idxd_desc_complete(desc, comp_type: IDXD_COMPLETE_ABORT, free_desc: true);
578 continue;
579 }
580
581 idxd_desc_complete(desc, comp_type: IDXD_COMPLETE_NORMAL, free_desc: true);
582 } else {
583 spin_lock(lock: &irq_entry->list_lock);
584 list_add_tail(new: &desc->list,
585 head: &irq_entry->work_list);
586 spin_unlock(lock: &irq_entry->list_lock);
587 }
588 }
589}
590
591static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
592{
593 LIST_HEAD(flist);
594 struct idxd_desc *desc, *n;
595
596 /*
597 * This lock protects list corruption from access of list outside of the irq handler
598 * thread.
599 */
600 spin_lock(lock: &irq_entry->list_lock);
601 if (list_empty(head: &irq_entry->work_list)) {
602 spin_unlock(lock: &irq_entry->list_lock);
603 return;
604 }
605
606 list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
607 if (desc->completion->status) {
608 list_move_tail(list: &desc->list, head: &flist);
609 }
610 }
611
612 spin_unlock(lock: &irq_entry->list_lock);
613
614 list_for_each_entry(desc, &flist, list) {
615 /*
616 * Check against the original status as ABORT is software defined
617 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
618 */
619 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
620 idxd_desc_complete(desc, comp_type: IDXD_COMPLETE_ABORT, free_desc: true);
621 continue;
622 }
623
624 idxd_desc_complete(desc, comp_type: IDXD_COMPLETE_NORMAL, free_desc: true);
625 }
626}
627
628irqreturn_t idxd_wq_thread(int irq, void *data)
629{
630 struct idxd_irq_entry *irq_entry = data;
631
632 /*
633 * There are two lists we are processing. The pending_llist is where
634 * submmiter adds all the submitted descriptor after sending it to
635 * the workqueue. It's a lockless singly linked list. The work_list
636 * is the common linux double linked list. We are in a scenario of
637 * multiple producers and a single consumer. The producers are all
638 * the kernel submitters of descriptors, and the consumer is the
639 * kernel irq handler thread for the msix vector when using threaded
640 * irq. To work with the restrictions of llist to remain lockless,
641 * we are doing the following steps:
642 * 1. Iterate through the work_list and process any completed
643 * descriptor. Delete the completed entries during iteration.
644 * 2. llist_del_all() from the pending list.
645 * 3. Iterate through the llist that was deleted from the pending list
646 * and process the completed entries.
647 * 4. If the entry is still waiting on hardware, list_add_tail() to
648 * the work_list.
649 */
650 irq_process_work_list(irq_entry);
651 irq_process_pending_llist(irq_entry);
652
653 return IRQ_HANDLED;
654}
655

source code of linux/drivers/dma/idxd/irq.c