1// SPDX-License-Identifier: GPL-2.0-only
2/* Intel i7 core/Nehalem Memory Controller kernel module
3 *
4 * This driver supports the memory controllers found on the Intel
5 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
6 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
7 * and Westmere-EP.
8 *
9 * Copyright (c) 2009-2010 by:
10 * Mauro Carvalho Chehab
11 *
12 * Red Hat Inc. https://www.redhat.com
13 *
14 * Forked and adapted from the i5400_edac driver
15 *
16 * Based on the following public Intel datasheets:
17 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
18 * Datasheet, Volume 2:
19 * http://download.intel.com/design/processor/datashts/320835.pdf
20 * Intel Xeon Processor 5500 Series Datasheet Volume 2
21 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
22 * also available at:
23 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/pci.h>
29#include <linux/pci_ids.h>
30#include <linux/slab.h>
31#include <linux/delay.h>
32#include <linux/dmi.h>
33#include <linux/edac.h>
34#include <linux/mmzone.h>
35#include <linux/smp.h>
36#include <asm/mce.h>
37#include <asm/processor.h>
38#include <asm/div64.h>
39
40#include "edac_module.h"
41
42/* Static vars */
43static LIST_HEAD(i7core_edac_list);
44static DEFINE_MUTEX(i7core_edac_lock);
45static int probed;
46
47static int use_pci_fixup;
48module_param(use_pci_fixup, int, 0444);
49MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50/*
51 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
52 * registers start at bus 255, and are not reported by BIOS.
53 * We currently find devices with only 2 sockets. In order to support more QPI
54 * Quick Path Interconnect, just increment this number.
55 */
56#define MAX_SOCKET_BUSES 2
57
58
59/*
60 * Alter this version for the module when modifications are made
61 */
62#define I7CORE_REVISION " Ver: 1.0.0"
63#define EDAC_MOD_STR "i7core_edac"
64
65/*
66 * Debug macros
67 */
68#define i7core_printk(level, fmt, arg...) \
69 edac_printk(level, "i7core", fmt, ##arg)
70
71#define i7core_mc_printk(mci, level, fmt, arg...) \
72 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
73
74/*
75 * i7core Memory Controller Registers
76 */
77
78 /* OFFSETS for Device 0 Function 0 */
79
80#define MC_CFG_CONTROL 0x90
81 #define MC_CFG_UNLOCK 0x02
82 #define MC_CFG_LOCK 0x00
83
84 /* OFFSETS for Device 3 Function 0 */
85
86#define MC_CONTROL 0x48
87#define MC_STATUS 0x4c
88#define MC_MAX_DOD 0x64
89
90/*
91 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
92 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
93 */
94
95#define MC_TEST_ERR_RCV1 0x60
96 #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
97
98#define MC_TEST_ERR_RCV0 0x64
99 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
100 #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
101
102/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
103#define MC_SSRCONTROL 0x48
104 #define SSR_MODE_DISABLE 0x00
105 #define SSR_MODE_ENABLE 0x01
106 #define SSR_MODE_MASK 0x03
107
108#define MC_SCRUB_CONTROL 0x4c
109 #define STARTSCRUB (1 << 24)
110 #define SCRUBINTERVAL_MASK 0xffffff
111
112#define MC_COR_ECC_CNT_0 0x80
113#define MC_COR_ECC_CNT_1 0x84
114#define MC_COR_ECC_CNT_2 0x88
115#define MC_COR_ECC_CNT_3 0x8c
116#define MC_COR_ECC_CNT_4 0x90
117#define MC_COR_ECC_CNT_5 0x94
118
119#define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
120#define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
121
122
123 /* OFFSETS for Devices 4,5 and 6 Function 0 */
124
125#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
126 #define THREE_DIMMS_PRESENT (1 << 24)
127 #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
128 #define QUAD_RANK_PRESENT (1 << 22)
129 #define REGISTERED_DIMM (1 << 15)
130
131#define MC_CHANNEL_MAPPER 0x60
132 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
133 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
134
135#define MC_CHANNEL_RANK_PRESENT 0x7c
136 #define RANK_PRESENT_MASK 0xffff
137
138#define MC_CHANNEL_ADDR_MATCH 0xf0
139#define MC_CHANNEL_ERROR_MASK 0xf8
140#define MC_CHANNEL_ERROR_INJECT 0xfc
141 #define INJECT_ADDR_PARITY 0x10
142 #define INJECT_ECC 0x08
143 #define MASK_CACHELINE 0x06
144 #define MASK_FULL_CACHELINE 0x06
145 #define MASK_MSB32_CACHELINE 0x04
146 #define MASK_LSB32_CACHELINE 0x02
147 #define NO_MASK_CACHELINE 0x00
148 #define REPEAT_EN 0x01
149
150 /* OFFSETS for Devices 4,5 and 6 Function 1 */
151
152#define MC_DOD_CH_DIMM0 0x48
153#define MC_DOD_CH_DIMM1 0x4c
154#define MC_DOD_CH_DIMM2 0x50
155 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
156 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
157 #define DIMM_PRESENT_MASK (1 << 9)
158 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
159 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
160 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
161 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
162 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
163 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
164 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
165 #define MC_DOD_NUMCOL_MASK 3
166 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
167
168#define MC_RANK_PRESENT 0x7c
169
170#define MC_SAG_CH_0 0x80
171#define MC_SAG_CH_1 0x84
172#define MC_SAG_CH_2 0x88
173#define MC_SAG_CH_3 0x8c
174#define MC_SAG_CH_4 0x90
175#define MC_SAG_CH_5 0x94
176#define MC_SAG_CH_6 0x98
177#define MC_SAG_CH_7 0x9c
178
179#define MC_RIR_LIMIT_CH_0 0x40
180#define MC_RIR_LIMIT_CH_1 0x44
181#define MC_RIR_LIMIT_CH_2 0x48
182#define MC_RIR_LIMIT_CH_3 0x4C
183#define MC_RIR_LIMIT_CH_4 0x50
184#define MC_RIR_LIMIT_CH_5 0x54
185#define MC_RIR_LIMIT_CH_6 0x58
186#define MC_RIR_LIMIT_CH_7 0x5C
187#define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
188
189#define MC_RIR_WAY_CH 0x80
190 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
191 #define MC_RIR_WAY_RANK_MASK 0x7
192
193/*
194 * i7core structs
195 */
196
197#define NUM_CHANS 3
198#define MAX_DIMMS 3 /* Max DIMMS per channel */
199#define MAX_MCR_FUNC 4
200#define MAX_CHAN_FUNC 3
201
202struct i7core_info {
203 u32 mc_control;
204 u32 mc_status;
205 u32 max_dod;
206 u32 ch_map;
207};
208
209
210struct i7core_inject {
211 int enable;
212
213 u32 section;
214 u32 type;
215 u32 eccmask;
216
217 /* Error address mask */
218 int channel, dimm, rank, bank, page, col;
219};
220
221struct i7core_channel {
222 bool is_3dimms_present;
223 bool is_single_4rank;
224 bool has_4rank;
225 u32 dimms;
226};
227
228struct pci_id_descr {
229 int dev;
230 int func;
231 int dev_id;
232 int optional;
233};
234
235struct pci_id_table {
236 const struct pci_id_descr *descr;
237 int n_devs;
238};
239
240struct i7core_dev {
241 struct list_head list;
242 u8 socket;
243 struct pci_dev **pdev;
244 int n_devs;
245 struct mem_ctl_info *mci;
246};
247
248struct i7core_pvt {
249 struct device *addrmatch_dev, *chancounts_dev;
250
251 struct pci_dev *pci_noncore;
252 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
253 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
254
255 struct i7core_dev *i7core_dev;
256
257 struct i7core_info info;
258 struct i7core_inject inject;
259 struct i7core_channel channel[NUM_CHANS];
260
261 int ce_count_available;
262
263 /* ECC corrected errors counts per udimm */
264 unsigned long udimm_ce_count[MAX_DIMMS];
265 int udimm_last_ce_count[MAX_DIMMS];
266 /* ECC corrected errors counts per rdimm */
267 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
268 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
269
270 bool is_registered, enable_scrub;
271
272 /* DCLK Frequency used for computing scrub rate */
273 int dclk_freq;
274
275 /* Struct to control EDAC polling */
276 struct edac_pci_ctl_info *i7core_pci;
277};
278
279#define PCI_DESCR(device, function, device_id) \
280 .dev = (device), \
281 .func = (function), \
282 .dev_id = (device_id)
283
284static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
285 /* Memory controller */
286 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
287 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
288 /* Exists only for RDIMM */
289 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
290 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
291
292 /* Channel 0 */
293 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
294 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
295 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
296 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
297
298 /* Channel 1 */
299 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
300 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
301 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
302 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
303
304 /* Channel 2 */
305 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
306 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
307 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
308 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
309
310 /* Generic Non-core registers */
311 /*
312 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
313 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
314 * the probing code needs to test for the other address in case of
315 * failure of this one
316 */
317 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
318
319};
320
321static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
322 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
323 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
324 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
325
326 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
327 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
328 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
329 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
330
331 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
332 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
333 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
334 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
335
336 /*
337 * This is the PCI device has an alternate address on some
338 * processors like Core i7 860
339 */
340 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
341};
342
343static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
344 /* Memory controller */
345 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
346 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
347 /* Exists only for RDIMM */
348 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
349 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
350
351 /* Channel 0 */
352 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
353 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
354 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
355 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
356
357 /* Channel 1 */
358 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
359 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
360 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
361 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
362
363 /* Channel 2 */
364 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
365 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
366 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
367 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
368
369 /* Generic Non-core registers */
370 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
371
372};
373
374#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
375static const struct pci_id_table pci_dev_table[] = {
376 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
377 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
378 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
379 { NULL, }
380};
381
382/*
383 * pci_device_id table for which devices we are looking for
384 */
385static const struct pci_device_id i7core_pci_tbl[] = {
386 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
387 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
388 { 0, }
389};
390
391/****************************************************************************
392 Ancillary status routines
393 ****************************************************************************/
394
395 /* MC_CONTROL bits */
396#define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
397#define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
398
399 /* MC_STATUS bits */
400#define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
401#define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
402
403 /* MC_MAX_DOD read functions */
404static inline int numdimms(u32 dimms)
405{
406 return (dimms & 0x3) + 1;
407}
408
409static inline int numrank(u32 rank)
410{
411 static const int ranks[] = { 1, 2, 4, -EINVAL };
412
413 return ranks[rank & 0x3];
414}
415
416static inline int numbank(u32 bank)
417{
418 static const int banks[] = { 4, 8, 16, -EINVAL };
419
420 return banks[bank & 0x3];
421}
422
423static inline int numrow(u32 row)
424{
425 static const int rows[] = {
426 1 << 12, 1 << 13, 1 << 14, 1 << 15,
427 1 << 16, -EINVAL, -EINVAL, -EINVAL,
428 };
429
430 return rows[row & 0x7];
431}
432
433static inline int numcol(u32 col)
434{
435 static const int cols[] = {
436 1 << 10, 1 << 11, 1 << 12, -EINVAL,
437 };
438 return cols[col & 0x3];
439}
440
441static struct i7core_dev *get_i7core_dev(u8 socket)
442{
443 struct i7core_dev *i7core_dev;
444
445 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
446 if (i7core_dev->socket == socket)
447 return i7core_dev;
448 }
449
450 return NULL;
451}
452
453static struct i7core_dev *alloc_i7core_dev(u8 socket,
454 const struct pci_id_table *table)
455{
456 struct i7core_dev *i7core_dev;
457
458 i7core_dev = kzalloc(size: sizeof(*i7core_dev), GFP_KERNEL);
459 if (!i7core_dev)
460 return NULL;
461
462 i7core_dev->pdev = kcalloc(n: table->n_devs, size: sizeof(*i7core_dev->pdev),
463 GFP_KERNEL);
464 if (!i7core_dev->pdev) {
465 kfree(objp: i7core_dev);
466 return NULL;
467 }
468
469 i7core_dev->socket = socket;
470 i7core_dev->n_devs = table->n_devs;
471 list_add_tail(new: &i7core_dev->list, head: &i7core_edac_list);
472
473 return i7core_dev;
474}
475
476static void free_i7core_dev(struct i7core_dev *i7core_dev)
477{
478 list_del(entry: &i7core_dev->list);
479 kfree(objp: i7core_dev->pdev);
480 kfree(objp: i7core_dev);
481}
482
483/****************************************************************************
484 Memory check routines
485 ****************************************************************************/
486
487static int get_dimm_config(struct mem_ctl_info *mci)
488{
489 struct i7core_pvt *pvt = mci->pvt_info;
490 struct pci_dev *pdev;
491 int i, j;
492 enum edac_type mode;
493 enum mem_type mtype;
494 struct dimm_info *dimm;
495
496 /* Get data from the MC register, function 0 */
497 pdev = pvt->pci_mcr[0];
498 if (!pdev)
499 return -ENODEV;
500
501 /* Device 3 function 0 reads */
502 pci_read_config_dword(dev: pdev, MC_CONTROL, val: &pvt->info.mc_control);
503 pci_read_config_dword(dev: pdev, MC_STATUS, val: &pvt->info.mc_status);
504 pci_read_config_dword(dev: pdev, MC_MAX_DOD, val: &pvt->info.max_dod);
505 pci_read_config_dword(dev: pdev, MC_CHANNEL_MAPPER, val: &pvt->info.ch_map);
506
507 edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
508 pvt->i7core_dev->socket, pvt->info.mc_control,
509 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
510
511 if (ECC_ENABLED(pvt)) {
512 edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
513 if (ECCx8(pvt))
514 mode = EDAC_S8ECD8ED;
515 else
516 mode = EDAC_S4ECD4ED;
517 } else {
518 edac_dbg(0, "ECC disabled\n");
519 mode = EDAC_NONE;
520 }
521
522 /* FIXME: need to handle the error codes */
523 edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
524 numdimms(pvt->info.max_dod),
525 numrank(pvt->info.max_dod >> 2),
526 numbank(pvt->info.max_dod >> 4),
527 numrow(pvt->info.max_dod >> 6),
528 numcol(pvt->info.max_dod >> 9));
529
530 for (i = 0; i < NUM_CHANS; i++) {
531 u32 data, dimm_dod[3], value[8];
532
533 if (!pvt->pci_ch[i][0])
534 continue;
535
536 if (!CH_ACTIVE(pvt, i)) {
537 edac_dbg(0, "Channel %i is not active\n", i);
538 continue;
539 }
540 if (CH_DISABLED(pvt, i)) {
541 edac_dbg(0, "Channel %i is disabled\n", i);
542 continue;
543 }
544
545 /* Devices 4-6 function 0 */
546 pci_read_config_dword(dev: pvt->pci_ch[i][0],
547 MC_CHANNEL_DIMM_INIT_PARAMS, val: &data);
548
549
550 if (data & THREE_DIMMS_PRESENT)
551 pvt->channel[i].is_3dimms_present = true;
552
553 if (data & SINGLE_QUAD_RANK_PRESENT)
554 pvt->channel[i].is_single_4rank = true;
555
556 if (data & QUAD_RANK_PRESENT)
557 pvt->channel[i].has_4rank = true;
558
559 if (data & REGISTERED_DIMM)
560 mtype = MEM_RDDR3;
561 else
562 mtype = MEM_DDR3;
563
564 /* Devices 4-6 function 1 */
565 pci_read_config_dword(dev: pvt->pci_ch[i][1],
566 MC_DOD_CH_DIMM0, val: &dimm_dod[0]);
567 pci_read_config_dword(dev: pvt->pci_ch[i][1],
568 MC_DOD_CH_DIMM1, val: &dimm_dod[1]);
569 pci_read_config_dword(dev: pvt->pci_ch[i][1],
570 MC_DOD_CH_DIMM2, val: &dimm_dod[2]);
571
572 edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
573 i,
574 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
575 data,
576 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
577 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
578 pvt->channel[i].has_4rank ? "HAS_4R " : "",
579 (data & REGISTERED_DIMM) ? 'R' : 'U');
580
581 for (j = 0; j < 3; j++) {
582 u32 banks, ranks, rows, cols;
583 u32 size, npages;
584
585 if (!DIMM_PRESENT(dimm_dod[j]))
586 continue;
587
588 dimm = edac_get_dimm(mci, layer0: i, layer1: j, layer2: 0);
589 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
590 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
591 rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
592 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
593
594 /* DDR3 has 8 I/O banks */
595 size = (rows * cols * banks * ranks) >> (20 - 3);
596
597 edac_dbg(0, "\tdimm %d %d MiB offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
598 j, size,
599 RANKOFFSET(dimm_dod[j]),
600 banks, ranks, rows, cols);
601
602 npages = MiB_TO_PAGES(size);
603
604 dimm->nr_pages = npages;
605
606 switch (banks) {
607 case 4:
608 dimm->dtype = DEV_X4;
609 break;
610 case 8:
611 dimm->dtype = DEV_X8;
612 break;
613 case 16:
614 dimm->dtype = DEV_X16;
615 break;
616 default:
617 dimm->dtype = DEV_UNKNOWN;
618 }
619
620 snprintf(buf: dimm->label, size: sizeof(dimm->label),
621 fmt: "CPU#%uChannel#%u_DIMM#%u",
622 pvt->i7core_dev->socket, i, j);
623 dimm->grain = 8;
624 dimm->edac_mode = mode;
625 dimm->mtype = mtype;
626 }
627
628 pci_read_config_dword(dev: pdev, MC_SAG_CH_0, val: &value[0]);
629 pci_read_config_dword(dev: pdev, MC_SAG_CH_1, val: &value[1]);
630 pci_read_config_dword(dev: pdev, MC_SAG_CH_2, val: &value[2]);
631 pci_read_config_dword(dev: pdev, MC_SAG_CH_3, val: &value[3]);
632 pci_read_config_dword(dev: pdev, MC_SAG_CH_4, val: &value[4]);
633 pci_read_config_dword(dev: pdev, MC_SAG_CH_5, val: &value[5]);
634 pci_read_config_dword(dev: pdev, MC_SAG_CH_6, val: &value[6]);
635 pci_read_config_dword(dev: pdev, MC_SAG_CH_7, val: &value[7]);
636 edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
637 for (j = 0; j < 8; j++)
638 edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
639 (value[j] >> 27) & 0x1,
640 (value[j] >> 24) & 0x7,
641 (value[j] & ((1 << 24) - 1)));
642 }
643
644 return 0;
645}
646
647/****************************************************************************
648 Error insertion routines
649 ****************************************************************************/
650
651#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
652
653/* The i7core has independent error injection features per channel.
654 However, to have a simpler code, we don't allow enabling error injection
655 on more than one channel.
656 Also, since a change at an inject parameter will be applied only at enable,
657 we're disabling error injection on all write calls to the sysfs nodes that
658 controls the error code injection.
659 */
660static int disable_inject(const struct mem_ctl_info *mci)
661{
662 struct i7core_pvt *pvt = mci->pvt_info;
663
664 pvt->inject.enable = 0;
665
666 if (!pvt->pci_ch[pvt->inject.channel][0])
667 return -ENODEV;
668
669 pci_write_config_dword(dev: pvt->pci_ch[pvt->inject.channel][0],
670 MC_CHANNEL_ERROR_INJECT, val: 0);
671
672 return 0;
673}
674
675/*
676 * i7core inject inject.section
677 *
678 * accept and store error injection inject.section value
679 * bit 0 - refers to the lower 32-byte half cacheline
680 * bit 1 - refers to the upper 32-byte half cacheline
681 */
682static ssize_t i7core_inject_section_store(struct device *dev,
683 struct device_attribute *mattr,
684 const char *data, size_t count)
685{
686 struct mem_ctl_info *mci = to_mci(dev);
687 struct i7core_pvt *pvt = mci->pvt_info;
688 unsigned long value;
689 int rc;
690
691 if (pvt->inject.enable)
692 disable_inject(mci);
693
694 rc = kstrtoul(s: data, base: 10, res: &value);
695 if ((rc < 0) || (value > 3))
696 return -EIO;
697
698 pvt->inject.section = (u32) value;
699 return count;
700}
701
702static ssize_t i7core_inject_section_show(struct device *dev,
703 struct device_attribute *mattr,
704 char *data)
705{
706 struct mem_ctl_info *mci = to_mci(dev);
707 struct i7core_pvt *pvt = mci->pvt_info;
708 return sprintf(buf: data, fmt: "0x%08x\n", pvt->inject.section);
709}
710
711/*
712 * i7core inject.type
713 *
714 * accept and store error injection inject.section value
715 * bit 0 - repeat enable - Enable error repetition
716 * bit 1 - inject ECC error
717 * bit 2 - inject parity error
718 */
719static ssize_t i7core_inject_type_store(struct device *dev,
720 struct device_attribute *mattr,
721 const char *data, size_t count)
722{
723 struct mem_ctl_info *mci = to_mci(dev);
724 struct i7core_pvt *pvt = mci->pvt_info;
725 unsigned long value;
726 int rc;
727
728 if (pvt->inject.enable)
729 disable_inject(mci);
730
731 rc = kstrtoul(s: data, base: 10, res: &value);
732 if ((rc < 0) || (value > 7))
733 return -EIO;
734
735 pvt->inject.type = (u32) value;
736 return count;
737}
738
739static ssize_t i7core_inject_type_show(struct device *dev,
740 struct device_attribute *mattr,
741 char *data)
742{
743 struct mem_ctl_info *mci = to_mci(dev);
744 struct i7core_pvt *pvt = mci->pvt_info;
745
746 return sprintf(buf: data, fmt: "0x%08x\n", pvt->inject.type);
747}
748
749/*
750 * i7core_inject_inject.eccmask_store
751 *
752 * The type of error (UE/CE) will depend on the inject.eccmask value:
753 * Any bits set to a 1 will flip the corresponding ECC bit
754 * Correctable errors can be injected by flipping 1 bit or the bits within
755 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
756 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
757 * uncorrectable error to be injected.
758 */
759static ssize_t i7core_inject_eccmask_store(struct device *dev,
760 struct device_attribute *mattr,
761 const char *data, size_t count)
762{
763 struct mem_ctl_info *mci = to_mci(dev);
764 struct i7core_pvt *pvt = mci->pvt_info;
765 unsigned long value;
766 int rc;
767
768 if (pvt->inject.enable)
769 disable_inject(mci);
770
771 rc = kstrtoul(s: data, base: 10, res: &value);
772 if (rc < 0)
773 return -EIO;
774
775 pvt->inject.eccmask = (u32) value;
776 return count;
777}
778
779static ssize_t i7core_inject_eccmask_show(struct device *dev,
780 struct device_attribute *mattr,
781 char *data)
782{
783 struct mem_ctl_info *mci = to_mci(dev);
784 struct i7core_pvt *pvt = mci->pvt_info;
785
786 return sprintf(buf: data, fmt: "0x%08x\n", pvt->inject.eccmask);
787}
788
789/*
790 * i7core_addrmatch
791 *
792 * The type of error (UE/CE) will depend on the inject.eccmask value:
793 * Any bits set to a 1 will flip the corresponding ECC bit
794 * Correctable errors can be injected by flipping 1 bit or the bits within
795 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
796 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
797 * uncorrectable error to be injected.
798 */
799
800#define DECLARE_ADDR_MATCH(param, limit) \
801static ssize_t i7core_inject_store_##param( \
802 struct device *dev, \
803 struct device_attribute *mattr, \
804 const char *data, size_t count) \
805{ \
806 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
807 struct i7core_pvt *pvt; \
808 long value; \
809 int rc; \
810 \
811 edac_dbg(1, "\n"); \
812 pvt = mci->pvt_info; \
813 \
814 if (pvt->inject.enable) \
815 disable_inject(mci); \
816 \
817 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
818 value = -1; \
819 else { \
820 rc = kstrtoul(data, 10, &value); \
821 if ((rc < 0) || (value >= limit)) \
822 return -EIO; \
823 } \
824 \
825 pvt->inject.param = value; \
826 \
827 return count; \
828} \
829 \
830static ssize_t i7core_inject_show_##param( \
831 struct device *dev, \
832 struct device_attribute *mattr, \
833 char *data) \
834{ \
835 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
836 struct i7core_pvt *pvt; \
837 \
838 pvt = mci->pvt_info; \
839 edac_dbg(1, "pvt=%p\n", pvt); \
840 if (pvt->inject.param < 0) \
841 return sprintf(data, "any\n"); \
842 else \
843 return sprintf(data, "%d\n", pvt->inject.param);\
844}
845
846#define ATTR_ADDR_MATCH(param) \
847 static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \
848 i7core_inject_show_##param, \
849 i7core_inject_store_##param)
850
851DECLARE_ADDR_MATCH(channel, 3);
852DECLARE_ADDR_MATCH(dimm, 3);
853DECLARE_ADDR_MATCH(rank, 4);
854DECLARE_ADDR_MATCH(bank, 32);
855DECLARE_ADDR_MATCH(page, 0x10000);
856DECLARE_ADDR_MATCH(col, 0x4000);
857
858ATTR_ADDR_MATCH(channel);
859ATTR_ADDR_MATCH(dimm);
860ATTR_ADDR_MATCH(rank);
861ATTR_ADDR_MATCH(bank);
862ATTR_ADDR_MATCH(page);
863ATTR_ADDR_MATCH(col);
864
865static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
866{
867 u32 read;
868 int count;
869
870 edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
871 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
872 where, val);
873
874 for (count = 0; count < 10; count++) {
875 if (count)
876 msleep(msecs: 100);
877 pci_write_config_dword(dev, where, val);
878 pci_read_config_dword(dev, where, val: &read);
879
880 if (read == val)
881 return 0;
882 }
883
884 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
885 "write=%08x. Read=%08x\n",
886 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
887 where, val, read);
888
889 return -EINVAL;
890}
891
892/*
893 * This routine prepares the Memory Controller for error injection.
894 * The error will be injected when some process tries to write to the
895 * memory that matches the given criteria.
896 * The criteria can be set in terms of a mask where dimm, rank, bank, page
897 * and col can be specified.
898 * A -1 value for any of the mask items will make the MCU to ignore
899 * that matching criteria for error injection.
900 *
901 * It should be noticed that the error will only happen after a write operation
902 * on a memory that matches the condition. if REPEAT_EN is not enabled at
903 * inject mask, then it will produce just one error. Otherwise, it will repeat
904 * until the injectmask would be cleaned.
905 *
906 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
907 * is reliable enough to check if the MC is using the
908 * three channels. However, this is not clear at the datasheet.
909 */
910static ssize_t i7core_inject_enable_store(struct device *dev,
911 struct device_attribute *mattr,
912 const char *data, size_t count)
913{
914 struct mem_ctl_info *mci = to_mci(dev);
915 struct i7core_pvt *pvt = mci->pvt_info;
916 u32 injectmask;
917 u64 mask = 0;
918 int rc;
919 long enable;
920
921 if (!pvt->pci_ch[pvt->inject.channel][0])
922 return 0;
923
924 rc = kstrtoul(s: data, base: 10, res: &enable);
925 if ((rc < 0))
926 return 0;
927
928 if (enable) {
929 pvt->inject.enable = 1;
930 } else {
931 disable_inject(mci);
932 return count;
933 }
934
935 /* Sets pvt->inject.dimm mask */
936 if (pvt->inject.dimm < 0)
937 mask |= 1LL << 41;
938 else {
939 if (pvt->channel[pvt->inject.channel].dimms > 2)
940 mask |= (pvt->inject.dimm & 0x3LL) << 35;
941 else
942 mask |= (pvt->inject.dimm & 0x1LL) << 36;
943 }
944
945 /* Sets pvt->inject.rank mask */
946 if (pvt->inject.rank < 0)
947 mask |= 1LL << 40;
948 else {
949 if (pvt->channel[pvt->inject.channel].dimms > 2)
950 mask |= (pvt->inject.rank & 0x1LL) << 34;
951 else
952 mask |= (pvt->inject.rank & 0x3LL) << 34;
953 }
954
955 /* Sets pvt->inject.bank mask */
956 if (pvt->inject.bank < 0)
957 mask |= 1LL << 39;
958 else
959 mask |= (pvt->inject.bank & 0x15LL) << 30;
960
961 /* Sets pvt->inject.page mask */
962 if (pvt->inject.page < 0)
963 mask |= 1LL << 38;
964 else
965 mask |= (pvt->inject.page & 0xffff) << 14;
966
967 /* Sets pvt->inject.column mask */
968 if (pvt->inject.col < 0)
969 mask |= 1LL << 37;
970 else
971 mask |= (pvt->inject.col & 0x3fff);
972
973 /*
974 * bit 0: REPEAT_EN
975 * bits 1-2: MASK_HALF_CACHELINE
976 * bit 3: INJECT_ECC
977 * bit 4: INJECT_ADDR_PARITY
978 */
979
980 injectmask = (pvt->inject.type & 1) |
981 (pvt->inject.section & 0x3) << 1 |
982 (pvt->inject.type & 0x6) << (3 - 1);
983
984 /* Unlock writes to registers - this register is write only */
985 pci_write_config_dword(dev: pvt->pci_noncore,
986 MC_CFG_CONTROL, val: 0x2);
987
988 write_and_test(dev: pvt->pci_ch[pvt->inject.channel][0],
989 MC_CHANNEL_ADDR_MATCH, val: mask);
990 write_and_test(dev: pvt->pci_ch[pvt->inject.channel][0],
991 MC_CHANNEL_ADDR_MATCH + 4, val: mask >> 32L);
992
993 write_and_test(dev: pvt->pci_ch[pvt->inject.channel][0],
994 MC_CHANNEL_ERROR_MASK, val: pvt->inject.eccmask);
995
996 write_and_test(dev: pvt->pci_ch[pvt->inject.channel][0],
997 MC_CHANNEL_ERROR_INJECT, val: injectmask);
998
999 /*
1000 * This is something undocumented, based on my tests
1001 * Without writing 8 to this register, errors aren't injected. Not sure
1002 * why.
1003 */
1004 pci_write_config_dword(dev: pvt->pci_noncore,
1005 MC_CFG_CONTROL, val: 8);
1006
1007 edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1008 mask, pvt->inject.eccmask, injectmask);
1009
1010
1011 return count;
1012}
1013
1014static ssize_t i7core_inject_enable_show(struct device *dev,
1015 struct device_attribute *mattr,
1016 char *data)
1017{
1018 struct mem_ctl_info *mci = to_mci(dev);
1019 struct i7core_pvt *pvt = mci->pvt_info;
1020 u32 injectmask;
1021
1022 if (!pvt->pci_ch[pvt->inject.channel][0])
1023 return 0;
1024
1025 pci_read_config_dword(dev: pvt->pci_ch[pvt->inject.channel][0],
1026 MC_CHANNEL_ERROR_INJECT, val: &injectmask);
1027
1028 edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1029
1030 if (injectmask & 0x0c)
1031 pvt->inject.enable = 1;
1032
1033 return sprintf(buf: data, fmt: "%d\n", pvt->inject.enable);
1034}
1035
1036#define DECLARE_COUNTER(param) \
1037static ssize_t i7core_show_counter_##param( \
1038 struct device *dev, \
1039 struct device_attribute *mattr, \
1040 char *data) \
1041{ \
1042 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
1043 struct i7core_pvt *pvt = mci->pvt_info; \
1044 \
1045 edac_dbg(1, "\n"); \
1046 if (!pvt->ce_count_available || (pvt->is_registered)) \
1047 return sprintf(data, "data unavailable\n"); \
1048 return sprintf(data, "%lu\n", \
1049 pvt->udimm_ce_count[param]); \
1050}
1051
1052#define ATTR_COUNTER(param) \
1053 static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \
1054 i7core_show_counter_##param, \
1055 NULL)
1056
1057DECLARE_COUNTER(0);
1058DECLARE_COUNTER(1);
1059DECLARE_COUNTER(2);
1060
1061ATTR_COUNTER(0);
1062ATTR_COUNTER(1);
1063ATTR_COUNTER(2);
1064
1065/*
1066 * inject_addrmatch device sysfs struct
1067 */
1068
1069static struct attribute *i7core_addrmatch_attrs[] = {
1070 &dev_attr_channel.attr,
1071 &dev_attr_dimm.attr,
1072 &dev_attr_rank.attr,
1073 &dev_attr_bank.attr,
1074 &dev_attr_page.attr,
1075 &dev_attr_col.attr,
1076 NULL
1077};
1078
1079static const struct attribute_group addrmatch_grp = {
1080 .attrs = i7core_addrmatch_attrs,
1081};
1082
1083static const struct attribute_group *addrmatch_groups[] = {
1084 &addrmatch_grp,
1085 NULL
1086};
1087
1088static void addrmatch_release(struct device *device)
1089{
1090 edac_dbg(1, "Releasing device %s\n", dev_name(device));
1091 kfree(objp: device);
1092}
1093
1094static const struct device_type addrmatch_type = {
1095 .groups = addrmatch_groups,
1096 .release = addrmatch_release,
1097};
1098
1099/*
1100 * all_channel_counts sysfs struct
1101 */
1102
1103static struct attribute *i7core_udimm_counters_attrs[] = {
1104 &dev_attr_udimm0.attr,
1105 &dev_attr_udimm1.attr,
1106 &dev_attr_udimm2.attr,
1107 NULL
1108};
1109
1110static const struct attribute_group all_channel_counts_grp = {
1111 .attrs = i7core_udimm_counters_attrs,
1112};
1113
1114static const struct attribute_group *all_channel_counts_groups[] = {
1115 &all_channel_counts_grp,
1116 NULL
1117};
1118
1119static void all_channel_counts_release(struct device *device)
1120{
1121 edac_dbg(1, "Releasing device %s\n", dev_name(device));
1122 kfree(objp: device);
1123}
1124
1125static const struct device_type all_channel_counts_type = {
1126 .groups = all_channel_counts_groups,
1127 .release = all_channel_counts_release,
1128};
1129
1130/*
1131 * inject sysfs attributes
1132 */
1133
1134static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1135 i7core_inject_section_show, i7core_inject_section_store);
1136
1137static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1138 i7core_inject_type_show, i7core_inject_type_store);
1139
1140
1141static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1142 i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1143
1144static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1145 i7core_inject_enable_show, i7core_inject_enable_store);
1146
1147static struct attribute *i7core_dev_attrs[] = {
1148 &dev_attr_inject_section.attr,
1149 &dev_attr_inject_type.attr,
1150 &dev_attr_inject_eccmask.attr,
1151 &dev_attr_inject_enable.attr,
1152 NULL
1153};
1154
1155ATTRIBUTE_GROUPS(i7core_dev);
1156
1157static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1158{
1159 struct i7core_pvt *pvt = mci->pvt_info;
1160 int rc;
1161
1162 pvt->addrmatch_dev = kzalloc(size: sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1163 if (!pvt->addrmatch_dev)
1164 return -ENOMEM;
1165
1166 pvt->addrmatch_dev->type = &addrmatch_type;
1167 pvt->addrmatch_dev->bus = mci->dev.bus;
1168 device_initialize(dev: pvt->addrmatch_dev);
1169 pvt->addrmatch_dev->parent = &mci->dev;
1170 dev_set_name(dev: pvt->addrmatch_dev, name: "inject_addrmatch");
1171 dev_set_drvdata(dev: pvt->addrmatch_dev, data: mci);
1172
1173 edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1174
1175 rc = device_add(dev: pvt->addrmatch_dev);
1176 if (rc < 0)
1177 goto err_put_addrmatch;
1178
1179 if (!pvt->is_registered) {
1180 pvt->chancounts_dev = kzalloc(size: sizeof(*pvt->chancounts_dev),
1181 GFP_KERNEL);
1182 if (!pvt->chancounts_dev) {
1183 rc = -ENOMEM;
1184 goto err_del_addrmatch;
1185 }
1186
1187 pvt->chancounts_dev->type = &all_channel_counts_type;
1188 pvt->chancounts_dev->bus = mci->dev.bus;
1189 device_initialize(dev: pvt->chancounts_dev);
1190 pvt->chancounts_dev->parent = &mci->dev;
1191 dev_set_name(dev: pvt->chancounts_dev, name: "all_channel_counts");
1192 dev_set_drvdata(dev: pvt->chancounts_dev, data: mci);
1193
1194 edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1195
1196 rc = device_add(dev: pvt->chancounts_dev);
1197 if (rc < 0)
1198 goto err_put_chancounts;
1199 }
1200 return 0;
1201
1202err_put_chancounts:
1203 put_device(dev: pvt->chancounts_dev);
1204err_del_addrmatch:
1205 device_del(dev: pvt->addrmatch_dev);
1206err_put_addrmatch:
1207 put_device(dev: pvt->addrmatch_dev);
1208
1209 return rc;
1210}
1211
1212static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1213{
1214 struct i7core_pvt *pvt = mci->pvt_info;
1215
1216 edac_dbg(1, "\n");
1217
1218 if (!pvt->is_registered) {
1219 device_del(dev: pvt->chancounts_dev);
1220 put_device(dev: pvt->chancounts_dev);
1221 }
1222 device_del(dev: pvt->addrmatch_dev);
1223 put_device(dev: pvt->addrmatch_dev);
1224}
1225
1226/****************************************************************************
1227 Device initialization routines: put/get, init/exit
1228 ****************************************************************************/
1229
1230/*
1231 * i7core_put_all_devices 'put' all the devices that we have
1232 * reserved via 'get'
1233 */
1234static void i7core_put_devices(struct i7core_dev *i7core_dev)
1235{
1236 int i;
1237
1238 edac_dbg(0, "\n");
1239 for (i = 0; i < i7core_dev->n_devs; i++) {
1240 struct pci_dev *pdev = i7core_dev->pdev[i];
1241 if (!pdev)
1242 continue;
1243 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1244 pdev->bus->number,
1245 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1246 pci_dev_put(dev: pdev);
1247 }
1248}
1249
1250static void i7core_put_all_devices(void)
1251{
1252 struct i7core_dev *i7core_dev, *tmp;
1253
1254 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1255 i7core_put_devices(i7core_dev);
1256 free_i7core_dev(i7core_dev);
1257 }
1258}
1259
1260static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1261{
1262 struct pci_dev *pdev = NULL;
1263 int i;
1264
1265 /*
1266 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1267 * aren't announced by acpi. So, we need to use a legacy scan probing
1268 * to detect them
1269 */
1270 while (table && table->descr) {
1271 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, device: table->descr[0].dev_id, NULL);
1272 if (unlikely(!pdev)) {
1273 for (i = 0; i < MAX_SOCKET_BUSES; i++)
1274 pcibios_scan_specific_bus(busn: 255-i);
1275 }
1276 pci_dev_put(dev: pdev);
1277 table++;
1278 }
1279}
1280
1281static unsigned i7core_pci_lastbus(void)
1282{
1283 int last_bus = 0, bus;
1284 struct pci_bus *b = NULL;
1285
1286 while ((b = pci_find_next_bus(from: b)) != NULL) {
1287 bus = b->number;
1288 edac_dbg(0, "Found bus %d\n", bus);
1289 if (bus > last_bus)
1290 last_bus = bus;
1291 }
1292
1293 edac_dbg(0, "Last bus %d\n", last_bus);
1294
1295 return last_bus;
1296}
1297
1298/*
1299 * i7core_get_all_devices Find and perform 'get' operation on the MCH's
1300 * device/functions we want to reference for this driver
1301 *
1302 * Need to 'get' device 16 func 1 and func 2
1303 */
1304static int i7core_get_onedevice(struct pci_dev **prev,
1305 const struct pci_id_table *table,
1306 const unsigned devno,
1307 const unsigned last_bus)
1308{
1309 struct i7core_dev *i7core_dev;
1310 const struct pci_id_descr *dev_descr = &table->descr[devno];
1311
1312 struct pci_dev *pdev = NULL;
1313 u8 bus = 0;
1314 u8 socket = 0;
1315
1316 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1317 device: dev_descr->dev_id, from: *prev);
1318
1319 /*
1320 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1321 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1322 * to probe for the alternate address in case of failure
1323 */
1324 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
1325 pci_dev_get(dev: *prev); /* pci_get_device will put it */
1326 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1327 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, from: *prev);
1328 }
1329
1330 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
1331 !pdev) {
1332 pci_dev_get(dev: *prev); /* pci_get_device will put it */
1333 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1334 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1335 from: *prev);
1336 }
1337
1338 if (!pdev) {
1339 if (*prev) {
1340 *prev = pdev;
1341 return 0;
1342 }
1343
1344 if (dev_descr->optional)
1345 return 0;
1346
1347 if (devno == 0)
1348 return -ENODEV;
1349
1350 i7core_printk(KERN_INFO,
1351 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1352 dev_descr->dev, dev_descr->func,
1353 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1354
1355 /* End of list, leave */
1356 return -ENODEV;
1357 }
1358 bus = pdev->bus->number;
1359
1360 socket = last_bus - bus;
1361
1362 i7core_dev = get_i7core_dev(socket);
1363 if (!i7core_dev) {
1364 i7core_dev = alloc_i7core_dev(socket, table);
1365 if (!i7core_dev) {
1366 pci_dev_put(dev: pdev);
1367 return -ENOMEM;
1368 }
1369 }
1370
1371 if (i7core_dev->pdev[devno]) {
1372 i7core_printk(KERN_ERR,
1373 "Duplicated device for "
1374 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1375 bus, dev_descr->dev, dev_descr->func,
1376 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1377 pci_dev_put(dev: pdev);
1378 return -ENODEV;
1379 }
1380
1381 i7core_dev->pdev[devno] = pdev;
1382
1383 /* Sanity check */
1384 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1385 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1386 i7core_printk(KERN_ERR,
1387 "Device PCI ID %04x:%04x "
1388 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1389 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1390 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1391 bus, dev_descr->dev, dev_descr->func);
1392 return -ENODEV;
1393 }
1394
1395 /* Be sure that the device is enabled */
1396 if (unlikely(pci_enable_device(pdev) < 0)) {
1397 i7core_printk(KERN_ERR,
1398 "Couldn't enable "
1399 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1400 bus, dev_descr->dev, dev_descr->func,
1401 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1402 return -ENODEV;
1403 }
1404
1405 edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1406 socket, bus, dev_descr->dev,
1407 dev_descr->func,
1408 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1409
1410 /*
1411 * As stated on drivers/pci/search.c, the reference count for
1412 * @from is always decremented if it is not %NULL. So, as we need
1413 * to get all devices up to null, we need to do a get for the device
1414 */
1415 pci_dev_get(dev: pdev);
1416
1417 *prev = pdev;
1418
1419 return 0;
1420}
1421
1422static int i7core_get_all_devices(void)
1423{
1424 int i, rc, last_bus;
1425 struct pci_dev *pdev = NULL;
1426 const struct pci_id_table *table = pci_dev_table;
1427
1428 last_bus = i7core_pci_lastbus();
1429
1430 while (table && table->descr) {
1431 for (i = 0; i < table->n_devs; i++) {
1432 pdev = NULL;
1433 do {
1434 rc = i7core_get_onedevice(prev: &pdev, table, devno: i,
1435 last_bus);
1436 if (rc < 0) {
1437 if (i == 0) {
1438 i = table->n_devs;
1439 break;
1440 }
1441 i7core_put_all_devices();
1442 return -ENODEV;
1443 }
1444 } while (pdev);
1445 }
1446 table++;
1447 }
1448
1449 return 0;
1450}
1451
1452static int mci_bind_devs(struct mem_ctl_info *mci,
1453 struct i7core_dev *i7core_dev)
1454{
1455 struct i7core_pvt *pvt = mci->pvt_info;
1456 struct pci_dev *pdev;
1457 int i, func, slot;
1458 char *family;
1459
1460 pvt->is_registered = false;
1461 pvt->enable_scrub = false;
1462 for (i = 0; i < i7core_dev->n_devs; i++) {
1463 pdev = i7core_dev->pdev[i];
1464 if (!pdev)
1465 continue;
1466
1467 func = PCI_FUNC(pdev->devfn);
1468 slot = PCI_SLOT(pdev->devfn);
1469 if (slot == 3) {
1470 if (unlikely(func > MAX_MCR_FUNC))
1471 goto error;
1472 pvt->pci_mcr[func] = pdev;
1473 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1474 if (unlikely(func > MAX_CHAN_FUNC))
1475 goto error;
1476 pvt->pci_ch[slot - 4][func] = pdev;
1477 } else if (!slot && !func) {
1478 pvt->pci_noncore = pdev;
1479
1480 /* Detect the processor family */
1481 switch (pdev->device) {
1482 case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1483 family = "Xeon 35xx/ i7core";
1484 pvt->enable_scrub = false;
1485 break;
1486 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1487 family = "i7-800/i5-700";
1488 pvt->enable_scrub = false;
1489 break;
1490 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1491 family = "Xeon 34xx";
1492 pvt->enable_scrub = false;
1493 break;
1494 case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1495 family = "Xeon 55xx";
1496 pvt->enable_scrub = true;
1497 break;
1498 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1499 family = "Xeon 56xx / i7-900";
1500 pvt->enable_scrub = true;
1501 break;
1502 default:
1503 family = "unknown";
1504 pvt->enable_scrub = false;
1505 }
1506 edac_dbg(0, "Detected a processor type %s\n", family);
1507 } else
1508 goto error;
1509
1510 edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1511 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1512 pdev, i7core_dev->socket);
1513
1514 if (PCI_SLOT(pdev->devfn) == 3 &&
1515 PCI_FUNC(pdev->devfn) == 2)
1516 pvt->is_registered = true;
1517 }
1518
1519 return 0;
1520
1521error:
1522 i7core_printk(KERN_ERR, "Device %d, function %d "
1523 "is out of the expected range\n",
1524 slot, func);
1525 return -EINVAL;
1526}
1527
1528/****************************************************************************
1529 Error check routines
1530 ****************************************************************************/
1531
1532static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1533 const int chan,
1534 const int new0,
1535 const int new1,
1536 const int new2)
1537{
1538 struct i7core_pvt *pvt = mci->pvt_info;
1539 int add0 = 0, add1 = 0, add2 = 0;
1540 /* Updates CE counters if it is not the first time here */
1541 if (pvt->ce_count_available) {
1542 /* Updates CE counters */
1543
1544 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1545 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1546 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1547
1548 if (add2 < 0)
1549 add2 += 0x7fff;
1550 pvt->rdimm_ce_count[chan][2] += add2;
1551
1552 if (add1 < 0)
1553 add1 += 0x7fff;
1554 pvt->rdimm_ce_count[chan][1] += add1;
1555
1556 if (add0 < 0)
1557 add0 += 0x7fff;
1558 pvt->rdimm_ce_count[chan][0] += add0;
1559 } else
1560 pvt->ce_count_available = 1;
1561
1562 /* Store the new values */
1563 pvt->rdimm_last_ce_count[chan][2] = new2;
1564 pvt->rdimm_last_ce_count[chan][1] = new1;
1565 pvt->rdimm_last_ce_count[chan][0] = new0;
1566
1567 /*updated the edac core */
1568 if (add0 != 0)
1569 edac_mc_handle_error(type: HW_EVENT_ERR_CORRECTED, mci, error_count: add0,
1570 page_frame_number: 0, offset_in_page: 0, syndrome: 0,
1571 top_layer: chan, mid_layer: 0, low_layer: -1, msg: "error", other_detail: "");
1572 if (add1 != 0)
1573 edac_mc_handle_error(type: HW_EVENT_ERR_CORRECTED, mci, error_count: add1,
1574 page_frame_number: 0, offset_in_page: 0, syndrome: 0,
1575 top_layer: chan, mid_layer: 1, low_layer: -1, msg: "error", other_detail: "");
1576 if (add2 != 0)
1577 edac_mc_handle_error(type: HW_EVENT_ERR_CORRECTED, mci, error_count: add2,
1578 page_frame_number: 0, offset_in_page: 0, syndrome: 0,
1579 top_layer: chan, mid_layer: 2, low_layer: -1, msg: "error", other_detail: "");
1580}
1581
1582static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1583{
1584 struct i7core_pvt *pvt = mci->pvt_info;
1585 u32 rcv[3][2];
1586 int i, new0, new1, new2;
1587
1588 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
1589 pci_read_config_dword(dev: pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1590 val: &rcv[0][0]);
1591 pci_read_config_dword(dev: pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1592 val: &rcv[0][1]);
1593 pci_read_config_dword(dev: pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1594 val: &rcv[1][0]);
1595 pci_read_config_dword(dev: pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1596 val: &rcv[1][1]);
1597 pci_read_config_dword(dev: pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1598 val: &rcv[2][0]);
1599 pci_read_config_dword(dev: pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1600 val: &rcv[2][1]);
1601 for (i = 0 ; i < 3; i++) {
1602 edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1603 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1604 /*if the channel has 3 dimms*/
1605 if (pvt->channel[i].dimms > 2) {
1606 new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1607 new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1608 new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1609 } else {
1610 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1611 DIMM_BOT_COR_ERR(rcv[i][0]);
1612 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1613 DIMM_BOT_COR_ERR(rcv[i][1]);
1614 new2 = 0;
1615 }
1616
1617 i7core_rdimm_update_ce_count(mci, chan: i, new0, new1, new2);
1618 }
1619}
1620
1621/* This function is based on the device 3 function 4 registers as described on:
1622 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1623 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1624 * also available at:
1625 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1626 */
1627static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1628{
1629 struct i7core_pvt *pvt = mci->pvt_info;
1630 u32 rcv1, rcv0;
1631 int new0, new1, new2;
1632
1633 if (!pvt->pci_mcr[4]) {
1634 edac_dbg(0, "MCR registers not found\n");
1635 return;
1636 }
1637
1638 /* Corrected test errors */
1639 pci_read_config_dword(dev: pvt->pci_mcr[4], MC_TEST_ERR_RCV1, val: &rcv1);
1640 pci_read_config_dword(dev: pvt->pci_mcr[4], MC_TEST_ERR_RCV0, val: &rcv0);
1641
1642 /* Store the new values */
1643 new2 = DIMM2_COR_ERR(rcv1);
1644 new1 = DIMM1_COR_ERR(rcv0);
1645 new0 = DIMM0_COR_ERR(rcv0);
1646
1647 /* Updates CE counters if it is not the first time here */
1648 if (pvt->ce_count_available) {
1649 /* Updates CE counters */
1650 int add0, add1, add2;
1651
1652 add2 = new2 - pvt->udimm_last_ce_count[2];
1653 add1 = new1 - pvt->udimm_last_ce_count[1];
1654 add0 = new0 - pvt->udimm_last_ce_count[0];
1655
1656 if (add2 < 0)
1657 add2 += 0x7fff;
1658 pvt->udimm_ce_count[2] += add2;
1659
1660 if (add1 < 0)
1661 add1 += 0x7fff;
1662 pvt->udimm_ce_count[1] += add1;
1663
1664 if (add0 < 0)
1665 add0 += 0x7fff;
1666 pvt->udimm_ce_count[0] += add0;
1667
1668 if (add0 | add1 | add2)
1669 i7core_printk(KERN_ERR, "New Corrected error(s): "
1670 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1671 add0, add1, add2);
1672 } else
1673 pvt->ce_count_available = 1;
1674
1675 /* Store the new values */
1676 pvt->udimm_last_ce_count[2] = new2;
1677 pvt->udimm_last_ce_count[1] = new1;
1678 pvt->udimm_last_ce_count[0] = new0;
1679}
1680
1681/*
1682 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1683 * Architectures Software Developer’s Manual Volume 3B.
1684 * Nehalem are defined as family 0x06, model 0x1a
1685 *
1686 * The MCA registers used here are the following ones:
1687 * struct mce field MCA Register
1688 * m->status MSR_IA32_MC8_STATUS
1689 * m->addr MSR_IA32_MC8_ADDR
1690 * m->misc MSR_IA32_MC8_MISC
1691 * In the case of Nehalem, the error information is masked at .status and .misc
1692 * fields
1693 */
1694static void i7core_mce_output_error(struct mem_ctl_info *mci,
1695 const struct mce *m)
1696{
1697 struct i7core_pvt *pvt = mci->pvt_info;
1698 char *optype, *err;
1699 enum hw_event_mc_err_type tp_event;
1700 unsigned long error = m->status & 0x1ff0000l;
1701 bool uncorrected_error = m->mcgstatus & 1ll << 61;
1702 bool ripv = m->mcgstatus & 1;
1703 u32 optypenum = (m->status >> 4) & 0x07;
1704 u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1705 u32 dimm = (m->misc >> 16) & 0x3;
1706 u32 channel = (m->misc >> 18) & 0x3;
1707 u32 syndrome = m->misc >> 32;
1708 u32 errnum = find_first_bit(addr: &error, size: 32);
1709
1710 if (uncorrected_error) {
1711 core_err_cnt = 1;
1712 if (ripv)
1713 tp_event = HW_EVENT_ERR_UNCORRECTED;
1714 else
1715 tp_event = HW_EVENT_ERR_FATAL;
1716 } else {
1717 tp_event = HW_EVENT_ERR_CORRECTED;
1718 }
1719
1720 switch (optypenum) {
1721 case 0:
1722 optype = "generic undef request";
1723 break;
1724 case 1:
1725 optype = "read error";
1726 break;
1727 case 2:
1728 optype = "write error";
1729 break;
1730 case 3:
1731 optype = "addr/cmd error";
1732 break;
1733 case 4:
1734 optype = "scrubbing error";
1735 break;
1736 default:
1737 optype = "reserved";
1738 break;
1739 }
1740
1741 switch (errnum) {
1742 case 16:
1743 err = "read ECC error";
1744 break;
1745 case 17:
1746 err = "RAS ECC error";
1747 break;
1748 case 18:
1749 err = "write parity error";
1750 break;
1751 case 19:
1752 err = "redundancy loss";
1753 break;
1754 case 20:
1755 err = "reserved";
1756 break;
1757 case 21:
1758 err = "memory range error";
1759 break;
1760 case 22:
1761 err = "RTID out of range";
1762 break;
1763 case 23:
1764 err = "address parity error";
1765 break;
1766 case 24:
1767 err = "byte enable parity error";
1768 break;
1769 default:
1770 err = "unknown";
1771 }
1772
1773 /*
1774 * Call the helper to output message
1775 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1776 * only one event
1777 */
1778 if (uncorrected_error || !pvt->is_registered)
1779 edac_mc_handle_error(type: tp_event, mci, error_count: core_err_cnt,
1780 page_frame_number: m->addr >> PAGE_SHIFT,
1781 offset_in_page: m->addr & ~PAGE_MASK,
1782 syndrome,
1783 top_layer: channel, mid_layer: dimm, low_layer: -1,
1784 msg: err, other_detail: optype);
1785}
1786
1787/*
1788 * i7core_check_error Retrieve and process errors reported by the
1789 * hardware. Called by the Core module.
1790 */
1791static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m)
1792{
1793 struct i7core_pvt *pvt = mci->pvt_info;
1794
1795 i7core_mce_output_error(mci, m);
1796
1797 /*
1798 * Now, let's increment CE error counts
1799 */
1800 if (!pvt->is_registered)
1801 i7core_udimm_check_mc_ecc_err(mci);
1802 else
1803 i7core_rdimm_check_mc_ecc_err(mci);
1804}
1805
1806/*
1807 * Check that logging is enabled and that this is the right type
1808 * of error for us to handle.
1809 */
1810static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1811 void *data)
1812{
1813 struct mce *mce = (struct mce *)data;
1814 struct i7core_dev *i7_dev;
1815 struct mem_ctl_info *mci;
1816
1817 i7_dev = get_i7core_dev(socket: mce->socketid);
1818 if (!i7_dev || (mce->kflags & MCE_HANDLED_CEC))
1819 return NOTIFY_DONE;
1820
1821 mci = i7_dev->mci;
1822
1823 /*
1824 * Just let mcelog handle it if the error is
1825 * outside the memory controller
1826 */
1827 if (((mce->status & 0xffff) >> 7) != 1)
1828 return NOTIFY_DONE;
1829
1830 /* Bank 8 registers are the only ones that we know how to handle */
1831 if (mce->bank != 8)
1832 return NOTIFY_DONE;
1833
1834 i7core_check_error(mci, m: mce);
1835
1836 /* Advise mcelog that the errors were handled */
1837 mce->kflags |= MCE_HANDLED_EDAC;
1838 return NOTIFY_OK;
1839}
1840
1841static struct notifier_block i7_mce_dec = {
1842 .notifier_call = i7core_mce_check_error,
1843 .priority = MCE_PRIO_EDAC,
1844};
1845
1846struct memdev_dmi_entry {
1847 u8 type;
1848 u8 length;
1849 u16 handle;
1850 u16 phys_mem_array_handle;
1851 u16 mem_err_info_handle;
1852 u16 total_width;
1853 u16 data_width;
1854 u16 size;
1855 u8 form;
1856 u8 device_set;
1857 u8 device_locator;
1858 u8 bank_locator;
1859 u8 memory_type;
1860 u16 type_detail;
1861 u16 speed;
1862 u8 manufacturer;
1863 u8 serial_number;
1864 u8 asset_tag;
1865 u8 part_number;
1866 u8 attributes;
1867 u32 extended_size;
1868 u16 conf_mem_clk_speed;
1869} __attribute__((__packed__));
1870
1871
1872/*
1873 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1874 * memory devices show the same speed, and if they don't then consider
1875 * all speeds to be invalid.
1876 */
1877static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1878{
1879 int *dclk_freq = _dclk_freq;
1880 u16 dmi_mem_clk_speed;
1881
1882 if (*dclk_freq == -1)
1883 return;
1884
1885 if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1886 struct memdev_dmi_entry *memdev_dmi_entry =
1887 (struct memdev_dmi_entry *)dh;
1888 unsigned long conf_mem_clk_speed_offset =
1889 (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1890 (unsigned long)&memdev_dmi_entry->type;
1891 unsigned long speed_offset =
1892 (unsigned long)&memdev_dmi_entry->speed -
1893 (unsigned long)&memdev_dmi_entry->type;
1894
1895 /* Check that a DIMM is present */
1896 if (memdev_dmi_entry->size == 0)
1897 return;
1898
1899 /*
1900 * Pick the configured speed if it's available, otherwise
1901 * pick the DIMM speed, or we don't have a speed.
1902 */
1903 if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1904 dmi_mem_clk_speed =
1905 memdev_dmi_entry->conf_mem_clk_speed;
1906 } else if (memdev_dmi_entry->length > speed_offset) {
1907 dmi_mem_clk_speed = memdev_dmi_entry->speed;
1908 } else {
1909 *dclk_freq = -1;
1910 return;
1911 }
1912
1913 if (*dclk_freq == 0) {
1914 /* First pass, speed was 0 */
1915 if (dmi_mem_clk_speed > 0) {
1916 /* Set speed if a valid speed is read */
1917 *dclk_freq = dmi_mem_clk_speed;
1918 } else {
1919 /* Otherwise we don't have a valid speed */
1920 *dclk_freq = -1;
1921 }
1922 } else if (*dclk_freq > 0 &&
1923 *dclk_freq != dmi_mem_clk_speed) {
1924 /*
1925 * If we have a speed, check that all DIMMS are the same
1926 * speed, otherwise set the speed as invalid.
1927 */
1928 *dclk_freq = -1;
1929 }
1930 }
1931}
1932
1933/*
1934 * The default DCLK frequency is used as a fallback if we
1935 * fail to find anything reliable in the DMI. The value
1936 * is taken straight from the datasheet.
1937 */
1938#define DEFAULT_DCLK_FREQ 800
1939
1940static int get_dclk_freq(void)
1941{
1942 int dclk_freq = 0;
1943
1944 dmi_walk(decode: decode_dclk, private_data: (void *)&dclk_freq);
1945
1946 if (dclk_freq < 1)
1947 return DEFAULT_DCLK_FREQ;
1948
1949 return dclk_freq;
1950}
1951
1952/*
1953 * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate
1954 * to hardware according to SCRUBINTERVAL formula
1955 * found in datasheet.
1956 */
1957static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
1958{
1959 struct i7core_pvt *pvt = mci->pvt_info;
1960 struct pci_dev *pdev;
1961 u32 dw_scrub;
1962 u32 dw_ssr;
1963
1964 /* Get data from the MC register, function 2 */
1965 pdev = pvt->pci_mcr[2];
1966 if (!pdev)
1967 return -ENODEV;
1968
1969 pci_read_config_dword(dev: pdev, MC_SCRUB_CONTROL, val: &dw_scrub);
1970
1971 if (new_bw == 0) {
1972 /* Prepare to disable petrol scrub */
1973 dw_scrub &= ~STARTSCRUB;
1974 /* Stop the patrol scrub engine */
1975 write_and_test(dev: pdev, MC_SCRUB_CONTROL,
1976 val: dw_scrub & ~SCRUBINTERVAL_MASK);
1977
1978 /* Get current status of scrub rate and set bit to disable */
1979 pci_read_config_dword(dev: pdev, MC_SSRCONTROL, val: &dw_ssr);
1980 dw_ssr &= ~SSR_MODE_MASK;
1981 dw_ssr |= SSR_MODE_DISABLE;
1982 } else {
1983 const int cache_line_size = 64;
1984 const u32 freq_dclk_mhz = pvt->dclk_freq;
1985 unsigned long long scrub_interval;
1986 /*
1987 * Translate the desired scrub rate to a register value and
1988 * program the corresponding register value.
1989 */
1990 scrub_interval = (unsigned long long)freq_dclk_mhz *
1991 cache_line_size * 1000000;
1992 do_div(scrub_interval, new_bw);
1993
1994 if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
1995 return -EINVAL;
1996
1997 dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
1998
1999 /* Start the patrol scrub engine */
2000 pci_write_config_dword(dev: pdev, MC_SCRUB_CONTROL,
2001 STARTSCRUB | dw_scrub);
2002
2003 /* Get current status of scrub rate and set bit to enable */
2004 pci_read_config_dword(dev: pdev, MC_SSRCONTROL, val: &dw_ssr);
2005 dw_ssr &= ~SSR_MODE_MASK;
2006 dw_ssr |= SSR_MODE_ENABLE;
2007 }
2008 /* Disable or enable scrubbing */
2009 pci_write_config_dword(dev: pdev, MC_SSRCONTROL, val: dw_ssr);
2010
2011 return new_bw;
2012}
2013
2014/*
2015 * get_sdram_scrub_rate This routine convert current scrub rate value
2016 * into byte/sec bandwidth according to
2017 * SCRUBINTERVAL formula found in datasheet.
2018 */
2019static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2020{
2021 struct i7core_pvt *pvt = mci->pvt_info;
2022 struct pci_dev *pdev;
2023 const u32 cache_line_size = 64;
2024 const u32 freq_dclk_mhz = pvt->dclk_freq;
2025 unsigned long long scrub_rate;
2026 u32 scrubval;
2027
2028 /* Get data from the MC register, function 2 */
2029 pdev = pvt->pci_mcr[2];
2030 if (!pdev)
2031 return -ENODEV;
2032
2033 /* Get current scrub control data */
2034 pci_read_config_dword(dev: pdev, MC_SCRUB_CONTROL, val: &scrubval);
2035
2036 /* Mask highest 8-bits to 0 */
2037 scrubval &= SCRUBINTERVAL_MASK;
2038 if (!scrubval)
2039 return 0;
2040
2041 /* Calculate scrub rate value into byte/sec bandwidth */
2042 scrub_rate = (unsigned long long)freq_dclk_mhz *
2043 1000000 * cache_line_size;
2044 do_div(scrub_rate, scrubval);
2045 return (int)scrub_rate;
2046}
2047
2048static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2049{
2050 struct i7core_pvt *pvt = mci->pvt_info;
2051 u32 pci_lock;
2052
2053 /* Unlock writes to pci registers */
2054 pci_read_config_dword(dev: pvt->pci_noncore, MC_CFG_CONTROL, val: &pci_lock);
2055 pci_lock &= ~0x3;
2056 pci_write_config_dword(dev: pvt->pci_noncore, MC_CFG_CONTROL,
2057 val: pci_lock | MC_CFG_UNLOCK);
2058
2059 mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2060 mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2061}
2062
2063static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2064{
2065 struct i7core_pvt *pvt = mci->pvt_info;
2066 u32 pci_lock;
2067
2068 /* Lock writes to pci registers */
2069 pci_read_config_dword(dev: pvt->pci_noncore, MC_CFG_CONTROL, val: &pci_lock);
2070 pci_lock &= ~0x3;
2071 pci_write_config_dword(dev: pvt->pci_noncore, MC_CFG_CONTROL,
2072 val: pci_lock | MC_CFG_LOCK);
2073}
2074
2075static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2076{
2077 pvt->i7core_pci = edac_pci_create_generic_ctl(
2078 dev: &pvt->i7core_dev->pdev[0]->dev,
2079 EDAC_MOD_STR);
2080 if (unlikely(!pvt->i7core_pci))
2081 i7core_printk(KERN_WARNING,
2082 "Unable to setup PCI error report via EDAC\n");
2083}
2084
2085static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2086{
2087 if (likely(pvt->i7core_pci))
2088 edac_pci_release_generic_ctl(pci: pvt->i7core_pci);
2089 else
2090 i7core_printk(KERN_ERR,
2091 "Couldn't find mem_ctl_info for socket %d\n",
2092 pvt->i7core_dev->socket);
2093 pvt->i7core_pci = NULL;
2094}
2095
2096static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2097{
2098 struct mem_ctl_info *mci = i7core_dev->mci;
2099 struct i7core_pvt *pvt;
2100
2101 if (unlikely(!mci || !mci->pvt_info)) {
2102 edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2103
2104 i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2105 return;
2106 }
2107
2108 pvt = mci->pvt_info;
2109
2110 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2111
2112 /* Disable scrubrate setting */
2113 if (pvt->enable_scrub)
2114 disable_sdram_scrub_setting(mci);
2115
2116 /* Disable EDAC polling */
2117 i7core_pci_ctl_release(pvt);
2118
2119 /* Remove MC sysfs nodes */
2120 i7core_delete_sysfs_devices(mci);
2121 edac_mc_del_mc(dev: mci->pdev);
2122
2123 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2124 kfree(objp: mci->ctl_name);
2125 edac_mc_free(mci);
2126 i7core_dev->mci = NULL;
2127}
2128
2129static int i7core_register_mci(struct i7core_dev *i7core_dev)
2130{
2131 struct mem_ctl_info *mci;
2132 struct i7core_pvt *pvt;
2133 int rc;
2134 struct edac_mc_layer layers[2];
2135
2136 /* allocate a new MC control structure */
2137
2138 layers[0].type = EDAC_MC_LAYER_CHANNEL;
2139 layers[0].size = NUM_CHANS;
2140 layers[0].is_virt_csrow = false;
2141 layers[1].type = EDAC_MC_LAYER_SLOT;
2142 layers[1].size = MAX_DIMMS;
2143 layers[1].is_virt_csrow = true;
2144 mci = edac_mc_alloc(mc_num: i7core_dev->socket, ARRAY_SIZE(layers), layers,
2145 sz_pvt: sizeof(*pvt));
2146 if (unlikely(!mci))
2147 return -ENOMEM;
2148
2149 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2150
2151 pvt = mci->pvt_info;
2152 memset(pvt, 0, sizeof(*pvt));
2153
2154 /* Associates i7core_dev and mci for future usage */
2155 pvt->i7core_dev = i7core_dev;
2156 i7core_dev->mci = mci;
2157
2158 /*
2159 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2160 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2161 * memory channels
2162 */
2163 mci->mtype_cap = MEM_FLAG_DDR3;
2164 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2165 mci->edac_cap = EDAC_FLAG_NONE;
2166 mci->mod_name = "i7core_edac.c";
2167
2168 mci->ctl_name = kasprintf(GFP_KERNEL, fmt: "i7 core #%d", i7core_dev->socket);
2169 if (!mci->ctl_name) {
2170 rc = -ENOMEM;
2171 goto fail1;
2172 }
2173
2174 mci->dev_name = pci_name(pdev: i7core_dev->pdev[0]);
2175 mci->ctl_page_to_phys = NULL;
2176
2177 /* Store pci devices at mci for faster access */
2178 rc = mci_bind_devs(mci, i7core_dev);
2179 if (unlikely(rc < 0))
2180 goto fail0;
2181
2182
2183 /* Get dimm basic config */
2184 get_dimm_config(mci);
2185 /* record ptr to the generic device */
2186 mci->pdev = &i7core_dev->pdev[0]->dev;
2187
2188 /* Enable scrubrate setting */
2189 if (pvt->enable_scrub)
2190 enable_sdram_scrub_setting(mci);
2191
2192 /* add this new MC control structure to EDAC's list of MCs */
2193 if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) {
2194 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2195 /* FIXME: perhaps some code should go here that disables error
2196 * reporting if we just enabled it
2197 */
2198
2199 rc = -EINVAL;
2200 goto fail0;
2201 }
2202 if (i7core_create_sysfs_devices(mci)) {
2203 edac_dbg(0, "MC: failed to create sysfs nodes\n");
2204 edac_mc_del_mc(dev: mci->pdev);
2205 rc = -EINVAL;
2206 goto fail0;
2207 }
2208
2209 /* Default error mask is any memory */
2210 pvt->inject.channel = 0;
2211 pvt->inject.dimm = -1;
2212 pvt->inject.rank = -1;
2213 pvt->inject.bank = -1;
2214 pvt->inject.page = -1;
2215 pvt->inject.col = -1;
2216
2217 /* allocating generic PCI control info */
2218 i7core_pci_ctl_create(pvt);
2219
2220 /* DCLK for scrub rate setting */
2221 pvt->dclk_freq = get_dclk_freq();
2222
2223 return 0;
2224
2225fail0:
2226 kfree(objp: mci->ctl_name);
2227
2228fail1:
2229 edac_mc_free(mci);
2230 i7core_dev->mci = NULL;
2231 return rc;
2232}
2233
2234/*
2235 * i7core_probe Probe for ONE instance of device to see if it is
2236 * present.
2237 * return:
2238 * 0 for FOUND a device
2239 * < 0 for error code
2240 */
2241
2242static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2243{
2244 int rc, count = 0;
2245 struct i7core_dev *i7core_dev;
2246
2247 /* get the pci devices we want to reserve for our use */
2248 mutex_lock(&i7core_edac_lock);
2249
2250 /*
2251 * All memory controllers are allocated at the first pass.
2252 */
2253 if (unlikely(probed >= 1)) {
2254 mutex_unlock(lock: &i7core_edac_lock);
2255 return -ENODEV;
2256 }
2257 probed++;
2258
2259 rc = i7core_get_all_devices();
2260 if (unlikely(rc < 0))
2261 goto fail0;
2262
2263 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2264 count++;
2265 rc = i7core_register_mci(i7core_dev);
2266 if (unlikely(rc < 0))
2267 goto fail1;
2268 }
2269
2270 /*
2271 * Nehalem-EX uses a different memory controller. However, as the
2272 * memory controller is not visible on some Nehalem/Nehalem-EP, we
2273 * need to indirectly probe via a X58 PCI device. The same devices
2274 * are found on (some) Nehalem-EX. So, on those machines, the
2275 * probe routine needs to return -ENODEV, as the actual Memory
2276 * Controller registers won't be detected.
2277 */
2278 if (!count) {
2279 rc = -ENODEV;
2280 goto fail1;
2281 }
2282
2283 i7core_printk(KERN_INFO,
2284 "Driver loaded, %d memory controller(s) found.\n",
2285 count);
2286
2287 mutex_unlock(lock: &i7core_edac_lock);
2288 return 0;
2289
2290fail1:
2291 list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2292 i7core_unregister_mci(i7core_dev);
2293
2294 i7core_put_all_devices();
2295fail0:
2296 mutex_unlock(lock: &i7core_edac_lock);
2297 return rc;
2298}
2299
2300/*
2301 * i7core_remove destructor for one instance of device
2302 *
2303 */
2304static void i7core_remove(struct pci_dev *pdev)
2305{
2306 struct i7core_dev *i7core_dev;
2307
2308 edac_dbg(0, "\n");
2309
2310 /*
2311 * we have a trouble here: pdev value for removal will be wrong, since
2312 * it will point to the X58 register used to detect that the machine
2313 * is a Nehalem or upper design. However, due to the way several PCI
2314 * devices are grouped together to provide MC functionality, we need
2315 * to use a different method for releasing the devices
2316 */
2317
2318 mutex_lock(&i7core_edac_lock);
2319
2320 if (unlikely(!probed)) {
2321 mutex_unlock(lock: &i7core_edac_lock);
2322 return;
2323 }
2324
2325 list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2326 i7core_unregister_mci(i7core_dev);
2327
2328 /* Release PCI resources */
2329 i7core_put_all_devices();
2330
2331 probed--;
2332
2333 mutex_unlock(lock: &i7core_edac_lock);
2334}
2335
2336MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2337
2338/*
2339 * i7core_driver pci_driver structure for this module
2340 *
2341 */
2342static struct pci_driver i7core_driver = {
2343 .name = "i7core_edac",
2344 .probe = i7core_probe,
2345 .remove = i7core_remove,
2346 .id_table = i7core_pci_tbl,
2347};
2348
2349/*
2350 * i7core_init Module entry function
2351 * Try to initialize this module for its devices
2352 */
2353static int __init i7core_init(void)
2354{
2355 int pci_rc;
2356
2357 edac_dbg(2, "\n");
2358
2359 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2360 opstate_init();
2361
2362 if (use_pci_fixup)
2363 i7core_xeon_pci_fixup(table: pci_dev_table);
2364
2365 pci_rc = pci_register_driver(&i7core_driver);
2366
2367 if (pci_rc >= 0) {
2368 mce_register_decode_chain(nb: &i7_mce_dec);
2369 return 0;
2370 }
2371
2372 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2373 pci_rc);
2374
2375 return pci_rc;
2376}
2377
2378/*
2379 * i7core_exit() Module exit function
2380 * Unregister the driver
2381 */
2382static void __exit i7core_exit(void)
2383{
2384 edac_dbg(2, "\n");
2385 pci_unregister_driver(dev: &i7core_driver);
2386 mce_unregister_decode_chain(nb: &i7_mce_dec);
2387}
2388
2389module_init(i7core_init);
2390module_exit(i7core_exit);
2391
2392MODULE_LICENSE("GPL");
2393MODULE_AUTHOR("Mauro Carvalho Chehab");
2394MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
2395MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2396 I7CORE_REVISION);
2397
2398module_param(edac_op_state, int, 0444);
2399MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2400

source code of linux/drivers/edac/i7core_edac.c