1/*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/sched/mm.h>
26#include <linux/dma-fence-array.h>
27#include <drm/drm_gem.h>
28
29#include "display/intel_display.h"
30#include "display/intel_frontbuffer.h"
31#include "gem/i915_gem_lmem.h"
32#include "gem/i915_gem_object_frontbuffer.h"
33#include "gem/i915_gem_tiling.h"
34#include "gt/intel_engine.h"
35#include "gt/intel_engine_heartbeat.h"
36#include "gt/intel_gt.h"
37#include "gt/intel_gt_pm.h"
38#include "gt/intel_gt_requests.h"
39#include "gt/intel_tlb.h"
40
41#include "i915_drv.h"
42#include "i915_gem_evict.h"
43#include "i915_sw_fence_work.h"
44#include "i915_trace.h"
45#include "i915_vma.h"
46#include "i915_vma_resource.h"
47
48static inline void assert_vma_held_evict(const struct i915_vma *vma)
49{
50 /*
51 * We may be forced to unbind when the vm is dead, to clean it up.
52 * This is the only exception to the requirement of the object lock
53 * being held.
54 */
55 if (kref_read(kref: &vma->vm->ref))
56 assert_object_held_shared(obj: vma->obj);
57}
58
59static struct kmem_cache *slab_vmas;
60
61static struct i915_vma *i915_vma_alloc(void)
62{
63 return kmem_cache_zalloc(k: slab_vmas, GFP_KERNEL);
64}
65
66static void i915_vma_free(struct i915_vma *vma)
67{
68 return kmem_cache_free(s: slab_vmas, objp: vma);
69}
70
71#if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
72
73#include <linux/stackdepot.h>
74
75static void vma_print_allocator(struct i915_vma *vma, const char *reason)
76{
77 char buf[512];
78
79 if (!vma->node.stack) {
80 drm_dbg(vma->obj->base.dev,
81 "vma.node [%08llx + %08llx] %s: unknown owner\n",
82 vma->node.start, vma->node.size, reason);
83 return;
84 }
85
86 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
87 drm_dbg(vma->obj->base.dev,
88 "vma.node [%08llx + %08llx] %s: inserted at %s\n",
89 vma->node.start, vma->node.size, reason, buf);
90}
91
92#else
93
94static void vma_print_allocator(struct i915_vma *vma, const char *reason)
95{
96}
97
98#endif
99
100static inline struct i915_vma *active_to_vma(struct i915_active *ref)
101{
102 return container_of(ref, typeof(struct i915_vma), active);
103}
104
105static int __i915_vma_active(struct i915_active *ref)
106{
107 struct i915_vma *vma = active_to_vma(ref);
108
109 if (!i915_vma_tryget(vma))
110 return -ENOENT;
111
112 /*
113 * Exclude global GTT VMA from holding a GT wakeref
114 * while active, otherwise GPU never goes idle.
115 */
116 if (!i915_vma_is_ggtt(vma)) {
117 /*
118 * Since we and our _retire() counterpart can be
119 * called asynchronously, storing a wakeref tracking
120 * handle inside struct i915_vma is not safe, and
121 * there is no other good place for that. Hence,
122 * use untracked variants of intel_gt_pm_get/put().
123 */
124 intel_gt_pm_get_untracked(gt: vma->vm->gt);
125 }
126
127 return 0;
128}
129
130static void __i915_vma_retire(struct i915_active *ref)
131{
132 struct i915_vma *vma = active_to_vma(ref);
133
134 if (!i915_vma_is_ggtt(vma)) {
135 /*
136 * Since we can be called from atomic contexts,
137 * use an async variant of intel_gt_pm_put().
138 */
139 intel_gt_pm_put_async_untracked(gt: vma->vm->gt);
140 }
141
142 i915_vma_put(vma);
143}
144
145static struct i915_vma *
146vma_create(struct drm_i915_gem_object *obj,
147 struct i915_address_space *vm,
148 const struct i915_gtt_view *view)
149{
150 struct i915_vma *pos = ERR_PTR(error: -E2BIG);
151 struct i915_vma *vma;
152 struct rb_node *rb, **p;
153 int err;
154
155 /* The aliasing_ppgtt should never be used directly! */
156 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
157
158 vma = i915_vma_alloc();
159 if (vma == NULL)
160 return ERR_PTR(error: -ENOMEM);
161
162 vma->ops = &vm->vma_ops;
163 vma->obj = obj;
164 vma->size = obj->base.size;
165 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
166
167 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
168
169 /* Declare ourselves safe for use inside shrinkers */
170 if (IS_ENABLED(CONFIG_LOCKDEP)) {
171 fs_reclaim_acquire(GFP_KERNEL);
172 might_lock(&vma->active.mutex);
173 fs_reclaim_release(GFP_KERNEL);
174 }
175
176 INIT_LIST_HEAD(list: &vma->closed_link);
177 INIT_LIST_HEAD(list: &vma->obj_link);
178 RB_CLEAR_NODE(&vma->obj_node);
179
180 if (view && view->type != I915_GTT_VIEW_NORMAL) {
181 vma->gtt_view = *view;
182 if (view->type == I915_GTT_VIEW_PARTIAL) {
183 GEM_BUG_ON(range_overflows_t(u64,
184 view->partial.offset,
185 view->partial.size,
186 obj->base.size >> PAGE_SHIFT));
187 vma->size = view->partial.size;
188 vma->size <<= PAGE_SHIFT;
189 GEM_BUG_ON(vma->size > obj->base.size);
190 } else if (view->type == I915_GTT_VIEW_ROTATED) {
191 vma->size = intel_rotation_info_size(rot_info: &view->rotated);
192 vma->size <<= PAGE_SHIFT;
193 } else if (view->type == I915_GTT_VIEW_REMAPPED) {
194 vma->size = intel_remapped_info_size(rem_info: &view->remapped);
195 vma->size <<= PAGE_SHIFT;
196 }
197 }
198
199 if (unlikely(vma->size > vm->total))
200 goto err_vma;
201
202 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
203
204 err = mutex_lock_interruptible(&vm->mutex);
205 if (err) {
206 pos = ERR_PTR(error: err);
207 goto err_vma;
208 }
209
210 vma->vm = vm;
211 list_add_tail(new: &vma->vm_link, head: &vm->unbound_list);
212
213 spin_lock(lock: &obj->vma.lock);
214 if (i915_is_ggtt(vm)) {
215 if (unlikely(overflows_type(vma->size, u32)))
216 goto err_unlock;
217
218 vma->fence_size = i915_gem_fence_size(i915: vm->i915, size: vma->size,
219 tiling: i915_gem_object_get_tiling(obj),
220 stride: i915_gem_object_get_stride(obj));
221 if (unlikely(vma->fence_size < vma->size || /* overflow */
222 vma->fence_size > vm->total))
223 goto err_unlock;
224
225 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
226
227 vma->fence_alignment = i915_gem_fence_alignment(i915: vm->i915, size: vma->size,
228 tiling: i915_gem_object_get_tiling(obj),
229 stride: i915_gem_object_get_stride(obj));
230 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
231
232 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
233 }
234
235 rb = NULL;
236 p = &obj->vma.tree.rb_node;
237 while (*p) {
238 long cmp;
239
240 rb = *p;
241 pos = rb_entry(rb, struct i915_vma, obj_node);
242
243 /*
244 * If the view already exists in the tree, another thread
245 * already created a matching vma, so return the older instance
246 * and dispose of ours.
247 */
248 cmp = i915_vma_compare(vma: pos, vm, view);
249 if (cmp < 0)
250 p = &rb->rb_right;
251 else if (cmp > 0)
252 p = &rb->rb_left;
253 else
254 goto err_unlock;
255 }
256 rb_link_node(node: &vma->obj_node, parent: rb, rb_link: p);
257 rb_insert_color(&vma->obj_node, &obj->vma.tree);
258
259 if (i915_vma_is_ggtt(vma))
260 /*
261 * We put the GGTT vma at the start of the vma-list, followed
262 * by the ppGGTT vma. This allows us to break early when
263 * iterating over only the GGTT vma for an object, see
264 * for_each_ggtt_vma()
265 */
266 list_add(new: &vma->obj_link, head: &obj->vma.list);
267 else
268 list_add_tail(new: &vma->obj_link, head: &obj->vma.list);
269
270 spin_unlock(lock: &obj->vma.lock);
271 mutex_unlock(lock: &vm->mutex);
272
273 return vma;
274
275err_unlock:
276 spin_unlock(lock: &obj->vma.lock);
277 list_del_init(entry: &vma->vm_link);
278 mutex_unlock(lock: &vm->mutex);
279err_vma:
280 i915_vma_free(vma);
281 return pos;
282}
283
284static struct i915_vma *
285i915_vma_lookup(struct drm_i915_gem_object *obj,
286 struct i915_address_space *vm,
287 const struct i915_gtt_view *view)
288{
289 struct rb_node *rb;
290
291 rb = obj->vma.tree.rb_node;
292 while (rb) {
293 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
294 long cmp;
295
296 cmp = i915_vma_compare(vma, vm, view);
297 if (cmp == 0)
298 return vma;
299
300 if (cmp < 0)
301 rb = rb->rb_right;
302 else
303 rb = rb->rb_left;
304 }
305
306 return NULL;
307}
308
309/**
310 * i915_vma_instance - return the singleton instance of the VMA
311 * @obj: parent &struct drm_i915_gem_object to be mapped
312 * @vm: address space in which the mapping is located
313 * @view: additional mapping requirements
314 *
315 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
316 * the same @view characteristics. If a match is not found, one is created.
317 * Once created, the VMA is kept until either the object is freed, or the
318 * address space is closed.
319 *
320 * Returns the vma, or an error pointer.
321 */
322struct i915_vma *
323i915_vma_instance(struct drm_i915_gem_object *obj,
324 struct i915_address_space *vm,
325 const struct i915_gtt_view *view)
326{
327 struct i915_vma *vma;
328
329 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
330 GEM_BUG_ON(!kref_read(&vm->ref));
331
332 spin_lock(lock: &obj->vma.lock);
333 vma = i915_vma_lookup(obj, vm, view);
334 spin_unlock(lock: &obj->vma.lock);
335
336 /* vma_create() will resolve the race if another creates the vma */
337 if (unlikely(!vma))
338 vma = vma_create(obj, vm, view);
339
340 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
341 return vma;
342}
343
344struct i915_vma_work {
345 struct dma_fence_work base;
346 struct i915_address_space *vm;
347 struct i915_vm_pt_stash stash;
348 struct i915_vma_resource *vma_res;
349 struct drm_i915_gem_object *obj;
350 struct i915_sw_dma_fence_cb cb;
351 unsigned int pat_index;
352 unsigned int flags;
353};
354
355static void __vma_bind(struct dma_fence_work *work)
356{
357 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
358 struct i915_vma_resource *vma_res = vw->vma_res;
359
360 /*
361 * We are about the bind the object, which must mean we have already
362 * signaled the work to potentially clear/move the pages underneath. If
363 * something went wrong at that stage then the object should have
364 * unknown_state set, in which case we need to skip the bind.
365 */
366 if (i915_gem_object_has_unknown_state(obj: vw->obj))
367 return;
368
369 vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
370 vma_res, vw->pat_index, vw->flags);
371}
372
373static void __vma_release(struct dma_fence_work *work)
374{
375 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
376
377 if (vw->obj)
378 i915_gem_object_put(obj: vw->obj);
379
380 i915_vm_free_pt_stash(vm: vw->vm, stash: &vw->stash);
381 if (vw->vma_res)
382 i915_vma_resource_put(vma_res: vw->vma_res);
383}
384
385static const struct dma_fence_work_ops bind_ops = {
386 .name = "bind",
387 .work = __vma_bind,
388 .release = __vma_release,
389};
390
391struct i915_vma_work *i915_vma_work(void)
392{
393 struct i915_vma_work *vw;
394
395 vw = kzalloc(size: sizeof(*vw), GFP_KERNEL);
396 if (!vw)
397 return NULL;
398
399 dma_fence_work_init(f: &vw->base, ops: &bind_ops);
400 vw->base.dma.error = -EAGAIN; /* disable the worker by default */
401
402 return vw;
403}
404
405int i915_vma_wait_for_bind(struct i915_vma *vma)
406{
407 int err = 0;
408
409 if (rcu_access_pointer(vma->active.excl.fence)) {
410 struct dma_fence *fence;
411
412 rcu_read_lock();
413 fence = dma_fence_get_rcu_safe(fencep: &vma->active.excl.fence);
414 rcu_read_unlock();
415 if (fence) {
416 err = dma_fence_wait(fence, intr: true);
417 dma_fence_put(fence);
418 }
419 }
420
421 return err;
422}
423
424#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
425static int i915_vma_verify_bind_complete(struct i915_vma *vma)
426{
427 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
428 int err;
429
430 if (!fence)
431 return 0;
432
433 if (dma_fence_is_signaled(fence))
434 err = fence->error;
435 else
436 err = -EBUSY;
437
438 dma_fence_put(fence);
439
440 return err;
441}
442#else
443#define i915_vma_verify_bind_complete(_vma) 0
444#endif
445
446I915_SELFTEST_EXPORT void
447i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
448 struct i915_vma *vma)
449{
450 struct drm_i915_gem_object *obj = vma->obj;
451
452 i915_vma_resource_init(vma_res, vm: vma->vm, pages: vma->pages, page_sizes: &vma->page_sizes,
453 pages_rsgt: obj->mm.rsgt, readonly: i915_gem_object_is_readonly(obj),
454 lmem: i915_gem_object_is_lmem(obj), mr: obj->mm.region,
455 ops: vma->ops, private: vma->private, start: __i915_vma_offset(vma),
456 node_size: __i915_vma_size(vma), size: vma->size, guard: vma->guard);
457}
458
459/**
460 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
461 * @vma: VMA to map
462 * @pat_index: PAT index to set in PTE
463 * @flags: flags like global or local mapping
464 * @work: preallocated worker for allocating and binding the PTE
465 * @vma_res: pointer to a preallocated vma resource. The resource is either
466 * consumed or freed.
467 *
468 * DMA addresses are taken from the scatter-gather table of this object (or of
469 * this VMA in case of non-default GGTT views) and PTE entries set up.
470 * Note that DMA addresses are also the only part of the SG table we care about.
471 */
472int i915_vma_bind(struct i915_vma *vma,
473 unsigned int pat_index,
474 u32 flags,
475 struct i915_vma_work *work,
476 struct i915_vma_resource *vma_res)
477{
478 u32 bind_flags;
479 u32 vma_flags;
480 int ret;
481
482 lockdep_assert_held(&vma->vm->mutex);
483 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
484 GEM_BUG_ON(vma->size > i915_vma_size(vma));
485
486 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
487 vma->node.size,
488 vma->vm->total))) {
489 i915_vma_resource_free(vma_res);
490 return -ENODEV;
491 }
492
493 if (GEM_DEBUG_WARN_ON(!flags)) {
494 i915_vma_resource_free(vma_res);
495 return -EINVAL;
496 }
497
498 bind_flags = flags;
499 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
500
501 vma_flags = atomic_read(v: &vma->flags);
502 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
503
504 bind_flags &= ~vma_flags;
505 if (bind_flags == 0) {
506 i915_vma_resource_free(vma_res);
507 return 0;
508 }
509
510 GEM_BUG_ON(!atomic_read(&vma->pages_count));
511
512 /* Wait for or await async unbinds touching our range */
513 if (work && bind_flags & vma->vm->bind_async_flags)
514 ret = i915_vma_resource_bind_dep_await(vm: vma->vm,
515 sw_fence: &work->base.chain,
516 first: vma->node.start,
517 last: vma->node.size,
518 intr: true,
519 GFP_NOWAIT |
520 __GFP_RETRY_MAYFAIL |
521 __GFP_NOWARN);
522 else
523 ret = i915_vma_resource_bind_dep_sync(vm: vma->vm, first: vma->node.start,
524 last: vma->node.size, intr: true);
525 if (ret) {
526 i915_vma_resource_free(vma_res);
527 return ret;
528 }
529
530 if (vma->resource || !vma_res) {
531 /* Rebinding with an additional I915_VMA_*_BIND */
532 GEM_WARN_ON(!vma_flags);
533 i915_vma_resource_free(vma_res);
534 } else {
535 i915_vma_resource_init_from_vma(vma_res, vma);
536 vma->resource = vma_res;
537 }
538 trace_i915_vma_bind(vma, flags: bind_flags);
539 if (work && bind_flags & vma->vm->bind_async_flags) {
540 struct dma_fence *prev;
541
542 work->vma_res = i915_vma_resource_get(vma_res: vma->resource);
543 work->pat_index = pat_index;
544 work->flags = bind_flags;
545
546 /*
547 * Note we only want to chain up to the migration fence on
548 * the pages (not the object itself). As we don't track that,
549 * yet, we have to use the exclusive fence instead.
550 *
551 * Also note that we do not want to track the async vma as
552 * part of the obj->resv->excl_fence as it only affects
553 * execution and not content or object's backing store lifetime.
554 */
555 prev = i915_active_set_exclusive(ref: &vma->active, f: &work->base.dma);
556 if (prev) {
557 __i915_sw_fence_await_dma_fence(fence: &work->base.chain,
558 dma: prev,
559 cb: &work->cb);
560 dma_fence_put(fence: prev);
561 }
562
563 work->base.dma.error = 0; /* enable the queue_work() */
564 work->obj = i915_gem_object_get(obj: vma->obj);
565 } else {
566 ret = i915_gem_object_wait_moving_fence(obj: vma->obj, intr: true);
567 if (ret) {
568 i915_vma_resource_free(vma_res: vma->resource);
569 vma->resource = NULL;
570
571 return ret;
572 }
573 vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
574 bind_flags);
575 }
576
577 atomic_or(i: bind_flags, v: &vma->flags);
578 return 0;
579}
580
581void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
582{
583 void __iomem *ptr;
584 int err;
585
586 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
587 return IOMEM_ERR_PTR(-EINVAL);
588
589 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
590 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
591 GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
592
593 ptr = READ_ONCE(vma->iomap);
594 if (ptr == NULL) {
595 /*
596 * TODO: consider just using i915_gem_object_pin_map() for lmem
597 * instead, which already supports mapping non-contiguous chunks
598 * of pages, that way we can also drop the
599 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
600 */
601 if (i915_gem_object_is_lmem(obj: vma->obj)) {
602 ptr = i915_gem_object_lmem_io_map(obj: vma->obj, n: 0,
603 size: vma->obj->base.size);
604 } else if (i915_vma_is_map_and_fenceable(vma)) {
605 ptr = io_mapping_map_wc(mapping: &i915_vm_to_ggtt(vm: vma->vm)->iomap,
606 offset: i915_vma_offset(vma),
607 size: i915_vma_size(vma));
608 } else {
609 ptr = (void __iomem *)
610 i915_gem_object_pin_map(obj: vma->obj, type: I915_MAP_WC);
611 if (IS_ERR(ptr)) {
612 err = PTR_ERR(ptr);
613 goto err;
614 }
615 ptr = page_pack_bits(ptr, 1);
616 }
617
618 if (ptr == NULL) {
619 err = -ENOMEM;
620 goto err;
621 }
622
623 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
624 if (page_unmask_bits(ptr))
625 __i915_gem_object_release_map(obj: vma->obj);
626 else
627 io_mapping_unmap(vaddr: ptr);
628 ptr = vma->iomap;
629 }
630 }
631
632 __i915_vma_pin(vma);
633
634 err = i915_vma_pin_fence(vma);
635 if (err)
636 goto err_unpin;
637
638 i915_vma_set_ggtt_write(vma);
639
640 /* NB Access through the GTT requires the device to be awake. */
641 return page_mask_bits(ptr);
642
643err_unpin:
644 __i915_vma_unpin(vma);
645err:
646 return IOMEM_ERR_PTR(err);
647}
648
649void i915_vma_flush_writes(struct i915_vma *vma)
650{
651 if (i915_vma_unset_ggtt_write(vma))
652 intel_gt_flush_ggtt_writes(gt: vma->vm->gt);
653}
654
655void i915_vma_unpin_iomap(struct i915_vma *vma)
656{
657 GEM_BUG_ON(vma->iomap == NULL);
658
659 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */
660
661 i915_vma_flush_writes(vma);
662
663 i915_vma_unpin_fence(vma);
664 i915_vma_unpin(vma);
665}
666
667void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
668{
669 struct i915_vma *vma;
670 struct drm_i915_gem_object *obj;
671
672 vma = fetch_and_zero(p_vma);
673 if (!vma)
674 return;
675
676 obj = vma->obj;
677 GEM_BUG_ON(!obj);
678
679 i915_vma_unpin(vma);
680
681 if (flags & I915_VMA_RELEASE_MAP)
682 i915_gem_object_unpin_map(obj);
683
684 i915_gem_object_put(obj);
685}
686
687bool i915_vma_misplaced(const struct i915_vma *vma,
688 u64 size, u64 alignment, u64 flags)
689{
690 if (!drm_mm_node_allocated(node: &vma->node))
691 return false;
692
693 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
694 return true;
695
696 if (i915_vma_size(vma) < size)
697 return true;
698
699 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
700 if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
701 return true;
702
703 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
704 return true;
705
706 if (flags & PIN_OFFSET_BIAS &&
707 i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
708 return true;
709
710 if (flags & PIN_OFFSET_FIXED &&
711 i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
712 return true;
713
714 if (flags & PIN_OFFSET_GUARD &&
715 vma->guard < (flags & PIN_OFFSET_MASK))
716 return true;
717
718 return false;
719}
720
721void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
722{
723 bool mappable, fenceable;
724
725 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
726 GEM_BUG_ON(!vma->fence_size);
727
728 fenceable = (i915_vma_size(vma) >= vma->fence_size &&
729 IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
730
731 mappable = i915_ggtt_offset(vma) + vma->fence_size <=
732 i915_vm_to_ggtt(vm: vma->vm)->mappable_end;
733
734 if (mappable && fenceable)
735 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
736 else
737 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
738}
739
740bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
741{
742 struct drm_mm_node *node = &vma->node;
743 struct drm_mm_node *other;
744
745 /*
746 * On some machines we have to be careful when putting differing types
747 * of snoopable memory together to avoid the prefetcher crossing memory
748 * domains and dying. During vm initialisation, we decide whether or not
749 * these constraints apply and set the drm_mm.color_adjust
750 * appropriately.
751 */
752 if (!i915_vm_has_cache_coloring(vm: vma->vm))
753 return true;
754
755 /* Only valid to be called on an already inserted vma */
756 GEM_BUG_ON(!drm_mm_node_allocated(node));
757 GEM_BUG_ON(list_empty(&node->node_list));
758
759 other = list_prev_entry(node, node_list);
760 if (i915_node_color_differs(node: other, color) &&
761 !drm_mm_hole_follows(node: other))
762 return false;
763
764 other = list_next_entry(node, node_list);
765 if (i915_node_color_differs(node: other, color) &&
766 !drm_mm_hole_follows(node))
767 return false;
768
769 return true;
770}
771
772/**
773 * i915_vma_insert - finds a slot for the vma in its address space
774 * @vma: the vma
775 * @ww: An optional struct i915_gem_ww_ctx
776 * @size: requested size in bytes (can be larger than the VMA)
777 * @alignment: required alignment
778 * @flags: mask of PIN_* flags to use
779 *
780 * First we try to allocate some free space that meets the requirements for
781 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
782 * preferrably the oldest idle entry to make room for the new VMA.
783 *
784 * Returns:
785 * 0 on success, negative error code otherwise.
786 */
787static int
788i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
789 u64 size, u64 alignment, u64 flags)
790{
791 unsigned long color, guard;
792 u64 start, end;
793 int ret;
794
795 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
796 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
797 GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
798
799 size = max(size, vma->size);
800 alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
801 if (flags & PIN_MAPPABLE) {
802 size = max_t(typeof(size), size, vma->fence_size);
803 alignment = max_t(typeof(alignment),
804 alignment, vma->fence_alignment);
805 }
806
807 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
808 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
809 GEM_BUG_ON(!is_power_of_2(alignment));
810
811 guard = vma->guard; /* retain guard across rebinds */
812 if (flags & PIN_OFFSET_GUARD) {
813 GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
814 guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
815 }
816 /*
817 * As we align the node upon insertion, but the hardware gets
818 * node.start + guard, the easiest way to make that work is
819 * to make the guard a multiple of the alignment size.
820 */
821 guard = ALIGN(guard, alignment);
822
823 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
824 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
825
826 end = vma->vm->total;
827 if (flags & PIN_MAPPABLE)
828 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
829 if (flags & PIN_ZONE_4G)
830 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
831 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
832
833 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
834
835 /*
836 * If binding the object/GGTT view requires more space than the entire
837 * aperture has, reject it early before evicting everything in a vain
838 * attempt to find space.
839 */
840 if (size > end - 2 * guard) {
841 drm_dbg(vma->obj->base.dev,
842 "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
843 size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
844 return -ENOSPC;
845 }
846
847 color = 0;
848
849 if (i915_vm_has_cache_coloring(vm: vma->vm))
850 color = vma->obj->pat_index;
851
852 if (flags & PIN_OFFSET_FIXED) {
853 u64 offset = flags & PIN_OFFSET_MASK;
854 if (!IS_ALIGNED(offset, alignment) ||
855 range_overflows(offset, size, end))
856 return -EINVAL;
857 /*
858 * The caller knows not of the guard added by others and
859 * requests for the offset of the start of its buffer
860 * to be fixed, which may not be the same as the position
861 * of the vma->node due to the guard pages.
862 */
863 if (offset < guard || offset + size > end - guard)
864 return -ENOSPC;
865
866 ret = i915_gem_gtt_reserve(vm: vma->vm, ww, node: &vma->node,
867 size: size + 2 * guard,
868 offset: offset - guard,
869 color, flags);
870 if (ret)
871 return ret;
872 } else {
873 size += 2 * guard;
874 /*
875 * We only support huge gtt pages through the 48b PPGTT,
876 * however we also don't want to force any alignment for
877 * objects which need to be tightly packed into the low 32bits.
878 *
879 * Note that we assume that GGTT are limited to 4GiB for the
880 * forseeable future. See also i915_ggtt_offset().
881 */
882 if (upper_32_bits(end - 1) &&
883 vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
884 !HAS_64K_PAGES(vma->vm->i915)) {
885 /*
886 * We can't mix 64K and 4K PTEs in the same page-table
887 * (2M block), and so to avoid the ugliness and
888 * complexity of coloring we opt for just aligning 64K
889 * objects to 2M.
890 */
891 u64 page_alignment =
892 rounddown_pow_of_two(vma->page_sizes.sg |
893 I915_GTT_PAGE_SIZE_2M);
894
895 /*
896 * Check we don't expand for the limited Global GTT
897 * (mappable aperture is even more precious!). This
898 * also checks that we exclude the aliasing-ppgtt.
899 */
900 GEM_BUG_ON(i915_vma_is_ggtt(vma));
901
902 alignment = max(alignment, page_alignment);
903
904 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
905 size = round_up(size, I915_GTT_PAGE_SIZE_2M);
906 }
907
908 ret = i915_gem_gtt_insert(vm: vma->vm, ww, node: &vma->node,
909 size, alignment, color,
910 start, end, flags);
911 if (ret)
912 return ret;
913
914 GEM_BUG_ON(vma->node.start < start);
915 GEM_BUG_ON(vma->node.start + vma->node.size > end);
916 }
917 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
918 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
919
920 list_move_tail(list: &vma->vm_link, head: &vma->vm->bound_list);
921 vma->guard = guard;
922
923 return 0;
924}
925
926static void
927i915_vma_detach(struct i915_vma *vma)
928{
929 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
930 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
931
932 /*
933 * And finally now the object is completely decoupled from this
934 * vma, we can drop its hold on the backing storage and allow
935 * it to be reaped by the shrinker.
936 */
937 list_move_tail(list: &vma->vm_link, head: &vma->vm->unbound_list);
938}
939
940static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
941{
942 unsigned int bound;
943
944 bound = atomic_read(v: &vma->flags);
945
946 if (flags & PIN_VALIDATE) {
947 flags &= I915_VMA_BIND_MASK;
948
949 return (flags & bound) == flags;
950 }
951
952 /* with the lock mandatory for unbind, we don't race here */
953 flags &= I915_VMA_BIND_MASK;
954 do {
955 if (unlikely(flags & ~bound))
956 return false;
957
958 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
959 return false;
960
961 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
962 } while (!atomic_try_cmpxchg(v: &vma->flags, old: &bound, new: bound + 1));
963
964 return true;
965}
966
967static struct scatterlist *
968rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
969 unsigned int width, unsigned int height,
970 unsigned int src_stride, unsigned int dst_stride,
971 struct sg_table *st, struct scatterlist *sg)
972{
973 unsigned int column, row;
974 pgoff_t src_idx;
975
976 for (column = 0; column < width; column++) {
977 unsigned int left;
978
979 src_idx = src_stride * (height - 1) + column + offset;
980 for (row = 0; row < height; row++) {
981 st->nents++;
982 /*
983 * We don't need the pages, but need to initialize
984 * the entries so the sg list can be happily traversed.
985 * The only thing we need are DMA addresses.
986 */
987 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, offset: 0);
988 sg_dma_address(sg) =
989 i915_gem_object_get_dma_address(obj, src_idx);
990 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
991 sg = sg_next(sg);
992 src_idx -= src_stride;
993 }
994
995 left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
996
997 if (!left)
998 continue;
999
1000 st->nents++;
1001
1002 /*
1003 * The DE ignores the PTEs for the padding tiles, the sg entry
1004 * here is just a conenience to indicate how many padding PTEs
1005 * to insert at this spot.
1006 */
1007 sg_set_page(sg, NULL, len: left, offset: 0);
1008 sg_dma_address(sg) = 0;
1009 sg_dma_len(sg) = left;
1010 sg = sg_next(sg);
1011 }
1012
1013 return sg;
1014}
1015
1016static noinline struct sg_table *
1017intel_rotate_pages(struct intel_rotation_info *rot_info,
1018 struct drm_i915_gem_object *obj)
1019{
1020 unsigned int size = intel_rotation_info_size(rot_info);
1021 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
1022 struct sg_table *st;
1023 struct scatterlist *sg;
1024 int ret = -ENOMEM;
1025 int i;
1026
1027 /* Allocate target SG list. */
1028 st = kmalloc(size: sizeof(*st), GFP_KERNEL);
1029 if (!st)
1030 goto err_st_alloc;
1031
1032 ret = sg_alloc_table(st, size, GFP_KERNEL);
1033 if (ret)
1034 goto err_sg_alloc;
1035
1036 st->nents = 0;
1037 sg = st->sgl;
1038
1039 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1040 sg = rotate_pages(obj, offset: rot_info->plane[i].offset,
1041 width: rot_info->plane[i].width, height: rot_info->plane[i].height,
1042 src_stride: rot_info->plane[i].src_stride,
1043 dst_stride: rot_info->plane[i].dst_stride,
1044 st, sg);
1045
1046 return st;
1047
1048err_sg_alloc:
1049 kfree(objp: st);
1050err_st_alloc:
1051
1052 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1053 obj->base.size, rot_info->plane[0].width,
1054 rot_info->plane[0].height, size);
1055
1056 return ERR_PTR(error: ret);
1057}
1058
1059static struct scatterlist *
1060add_padding_pages(unsigned int count,
1061 struct sg_table *st, struct scatterlist *sg)
1062{
1063 st->nents++;
1064
1065 /*
1066 * The DE ignores the PTEs for the padding tiles, the sg entry
1067 * here is just a convenience to indicate how many padding PTEs
1068 * to insert at this spot.
1069 */
1070 sg_set_page(sg, NULL, len: count * I915_GTT_PAGE_SIZE, offset: 0);
1071 sg_dma_address(sg) = 0;
1072 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1073 sg = sg_next(sg);
1074
1075 return sg;
1076}
1077
1078static struct scatterlist *
1079remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1080 unsigned long offset, unsigned int alignment_pad,
1081 unsigned int width, unsigned int height,
1082 unsigned int src_stride, unsigned int dst_stride,
1083 struct sg_table *st, struct scatterlist *sg,
1084 unsigned int *gtt_offset)
1085{
1086 unsigned int row;
1087
1088 if (!width || !height)
1089 return sg;
1090
1091 if (alignment_pad)
1092 sg = add_padding_pages(count: alignment_pad, st, sg);
1093
1094 for (row = 0; row < height; row++) {
1095 unsigned int left = width * I915_GTT_PAGE_SIZE;
1096
1097 while (left) {
1098 dma_addr_t addr;
1099 unsigned int length;
1100
1101 /*
1102 * We don't need the pages, but need to initialize
1103 * the entries so the sg list can be happily traversed.
1104 * The only thing we need are DMA addresses.
1105 */
1106
1107 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1108
1109 length = min(left, length);
1110
1111 st->nents++;
1112
1113 sg_set_page(sg, NULL, len: length, offset: 0);
1114 sg_dma_address(sg) = addr;
1115 sg_dma_len(sg) = length;
1116 sg = sg_next(sg);
1117
1118 offset += length / I915_GTT_PAGE_SIZE;
1119 left -= length;
1120 }
1121
1122 offset += src_stride - width;
1123
1124 left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1125
1126 if (!left)
1127 continue;
1128
1129 sg = add_padding_pages(count: left >> PAGE_SHIFT, st, sg);
1130 }
1131
1132 *gtt_offset += alignment_pad + dst_stride * height;
1133
1134 return sg;
1135}
1136
1137static struct scatterlist *
1138remap_contiguous_pages(struct drm_i915_gem_object *obj,
1139 pgoff_t obj_offset,
1140 unsigned int count,
1141 struct sg_table *st, struct scatterlist *sg)
1142{
1143 struct scatterlist *iter;
1144 unsigned int offset;
1145
1146 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1147 GEM_BUG_ON(!iter);
1148
1149 do {
1150 unsigned int len;
1151
1152 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1153 count << PAGE_SHIFT);
1154 sg_set_page(sg, NULL, len, offset: 0);
1155 sg_dma_address(sg) =
1156 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1157 sg_dma_len(sg) = len;
1158
1159 st->nents++;
1160 count -= len >> PAGE_SHIFT;
1161 if (count == 0)
1162 return sg;
1163
1164 sg = __sg_next(sg);
1165 iter = __sg_next(sg: iter);
1166 offset = 0;
1167 } while (1);
1168}
1169
1170static struct scatterlist *
1171remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1172 pgoff_t obj_offset, unsigned int alignment_pad,
1173 unsigned int size,
1174 struct sg_table *st, struct scatterlist *sg,
1175 unsigned int *gtt_offset)
1176{
1177 if (!size)
1178 return sg;
1179
1180 if (alignment_pad)
1181 sg = add_padding_pages(count: alignment_pad, st, sg);
1182
1183 sg = remap_contiguous_pages(obj, obj_offset, count: size, st, sg);
1184 sg = sg_next(sg);
1185
1186 *gtt_offset += alignment_pad + size;
1187
1188 return sg;
1189}
1190
1191static struct scatterlist *
1192remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1193 struct drm_i915_gem_object *obj,
1194 int color_plane,
1195 struct sg_table *st, struct scatterlist *sg,
1196 unsigned int *gtt_offset)
1197{
1198 unsigned int alignment_pad = 0;
1199
1200 if (rem_info->plane_alignment)
1201 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1202
1203 if (rem_info->plane[color_plane].linear)
1204 sg = remap_linear_color_plane_pages(obj,
1205 obj_offset: rem_info->plane[color_plane].offset,
1206 alignment_pad,
1207 size: rem_info->plane[color_plane].size,
1208 st, sg,
1209 gtt_offset);
1210
1211 else
1212 sg = remap_tiled_color_plane_pages(obj,
1213 offset: rem_info->plane[color_plane].offset,
1214 alignment_pad,
1215 width: rem_info->plane[color_plane].width,
1216 height: rem_info->plane[color_plane].height,
1217 src_stride: rem_info->plane[color_plane].src_stride,
1218 dst_stride: rem_info->plane[color_plane].dst_stride,
1219 st, sg,
1220 gtt_offset);
1221
1222 return sg;
1223}
1224
1225static noinline struct sg_table *
1226intel_remap_pages(struct intel_remapped_info *rem_info,
1227 struct drm_i915_gem_object *obj)
1228{
1229 unsigned int size = intel_remapped_info_size(rem_info);
1230 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
1231 struct sg_table *st;
1232 struct scatterlist *sg;
1233 unsigned int gtt_offset = 0;
1234 int ret = -ENOMEM;
1235 int i;
1236
1237 /* Allocate target SG list. */
1238 st = kmalloc(size: sizeof(*st), GFP_KERNEL);
1239 if (!st)
1240 goto err_st_alloc;
1241
1242 ret = sg_alloc_table(st, size, GFP_KERNEL);
1243 if (ret)
1244 goto err_sg_alloc;
1245
1246 st->nents = 0;
1247 sg = st->sgl;
1248
1249 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1250 sg = remap_color_plane_pages(rem_info, obj, color_plane: i, st, sg, gtt_offset: &gtt_offset);
1251
1252 i915_sg_trim(orig_st: st);
1253
1254 return st;
1255
1256err_sg_alloc:
1257 kfree(objp: st);
1258err_st_alloc:
1259
1260 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1261 obj->base.size, rem_info->plane[0].width,
1262 rem_info->plane[0].height, size);
1263
1264 return ERR_PTR(error: ret);
1265}
1266
1267static noinline struct sg_table *
1268intel_partial_pages(const struct i915_gtt_view *view,
1269 struct drm_i915_gem_object *obj)
1270{
1271 struct sg_table *st;
1272 struct scatterlist *sg;
1273 unsigned int count = view->partial.size;
1274 int ret = -ENOMEM;
1275
1276 st = kmalloc(size: sizeof(*st), GFP_KERNEL);
1277 if (!st)
1278 goto err_st_alloc;
1279
1280 ret = sg_alloc_table(st, count, GFP_KERNEL);
1281 if (ret)
1282 goto err_sg_alloc;
1283
1284 st->nents = 0;
1285
1286 sg = remap_contiguous_pages(obj, obj_offset: view->partial.offset, count, st, sg: st->sgl);
1287
1288 sg_mark_end(sg);
1289 i915_sg_trim(orig_st: st); /* Drop any unused tail entries. */
1290
1291 return st;
1292
1293err_sg_alloc:
1294 kfree(objp: st);
1295err_st_alloc:
1296 return ERR_PTR(error: ret);
1297}
1298
1299static int
1300__i915_vma_get_pages(struct i915_vma *vma)
1301{
1302 struct sg_table *pages;
1303
1304 /*
1305 * The vma->pages are only valid within the lifespan of the borrowed
1306 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1307 * must be the vma->pages. A simple rule is that vma->pages must only
1308 * be accessed when the obj->mm.pages are pinned.
1309 */
1310 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1311
1312 switch (vma->gtt_view.type) {
1313 default:
1314 GEM_BUG_ON(vma->gtt_view.type);
1315 fallthrough;
1316 case I915_GTT_VIEW_NORMAL:
1317 pages = vma->obj->mm.pages;
1318 break;
1319
1320 case I915_GTT_VIEW_ROTATED:
1321 pages =
1322 intel_rotate_pages(rot_info: &vma->gtt_view.rotated, obj: vma->obj);
1323 break;
1324
1325 case I915_GTT_VIEW_REMAPPED:
1326 pages =
1327 intel_remap_pages(rem_info: &vma->gtt_view.remapped, obj: vma->obj);
1328 break;
1329
1330 case I915_GTT_VIEW_PARTIAL:
1331 pages = intel_partial_pages(view: &vma->gtt_view, obj: vma->obj);
1332 break;
1333 }
1334
1335 if (IS_ERR(ptr: pages)) {
1336 drm_err(&vma->vm->i915->drm,
1337 "Failed to get pages for VMA view type %u (%ld)!\n",
1338 vma->gtt_view.type, PTR_ERR(pages));
1339 return PTR_ERR(ptr: pages);
1340 }
1341
1342 vma->pages = pages;
1343
1344 return 0;
1345}
1346
1347I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1348{
1349 int err;
1350
1351 if (atomic_add_unless(v: &vma->pages_count, a: 1, u: 0))
1352 return 0;
1353
1354 err = i915_gem_object_pin_pages(obj: vma->obj);
1355 if (err)
1356 return err;
1357
1358 err = __i915_vma_get_pages(vma);
1359 if (err)
1360 goto err_unpin;
1361
1362 vma->page_sizes = vma->obj->mm.page_sizes;
1363 atomic_inc(v: &vma->pages_count);
1364
1365 return 0;
1366
1367err_unpin:
1368 __i915_gem_object_unpin_pages(obj: vma->obj);
1369
1370 return err;
1371}
1372
1373void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1374{
1375 struct intel_gt *gt;
1376 int id;
1377
1378 if (!tlb)
1379 return;
1380
1381 /*
1382 * Before we release the pages that were bound by this vma, we
1383 * must invalidate all the TLBs that may still have a reference
1384 * back to our physical address. It only needs to be done once,
1385 * so after updating the PTE to point away from the pages, record
1386 * the most recent TLB invalidation seqno, and if we have not yet
1387 * flushed the TLBs upon release, perform a full invalidation.
1388 */
1389 for_each_gt(gt, vm->i915, id)
1390 WRITE_ONCE(tlb[id],
1391 intel_gt_next_invalidate_tlb_full(gt));
1392}
1393
1394static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1395{
1396 /* We allocate under vma_get_pages, so beware the shrinker */
1397 GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1398
1399 if (atomic_sub_return(i: count, v: &vma->pages_count) == 0) {
1400 if (vma->pages != vma->obj->mm.pages) {
1401 sg_free_table(vma->pages);
1402 kfree(objp: vma->pages);
1403 }
1404 vma->pages = NULL;
1405
1406 i915_gem_object_unpin_pages(obj: vma->obj);
1407 }
1408}
1409
1410I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1411{
1412 if (atomic_add_unless(v: &vma->pages_count, a: -1, u: 1))
1413 return;
1414
1415 __vma_put_pages(vma, count: 1);
1416}
1417
1418static void vma_unbind_pages(struct i915_vma *vma)
1419{
1420 unsigned int count;
1421
1422 lockdep_assert_held(&vma->vm->mutex);
1423
1424 /* The upper portion of pages_count is the number of bindings */
1425 count = atomic_read(v: &vma->pages_count);
1426 count >>= I915_VMA_PAGES_BIAS;
1427 GEM_BUG_ON(!count);
1428
1429 __vma_put_pages(vma, count: count | count << I915_VMA_PAGES_BIAS);
1430}
1431
1432int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1433 u64 size, u64 alignment, u64 flags)
1434{
1435 struct i915_vma_work *work = NULL;
1436 struct dma_fence *moving = NULL;
1437 struct i915_vma_resource *vma_res = NULL;
1438 intel_wakeref_t wakeref;
1439 unsigned int bound;
1440 int err;
1441
1442 assert_vma_held(vma);
1443 GEM_BUG_ON(!ww);
1444
1445 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1446 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1447
1448 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1449
1450 /* First try and grab the pin without rebinding the vma */
1451 if (try_qad_pin(vma, flags))
1452 return 0;
1453
1454 err = i915_vma_get_pages(vma);
1455 if (err)
1456 return err;
1457
1458 /*
1459 * In case of a global GTT, we must hold a runtime-pm wakeref
1460 * while global PTEs are updated. In other cases, we hold
1461 * the rpm reference while the VMA is active. Since runtime
1462 * resume may require allocations, which are forbidden inside
1463 * vm->mutex, get the first rpm wakeref outside of the mutex.
1464 */
1465 wakeref = intel_runtime_pm_get(rpm: &vma->vm->i915->runtime_pm);
1466
1467 if (flags & vma->vm->bind_async_flags) {
1468 /* lock VM */
1469 err = i915_vm_lock_objects(vm: vma->vm, ww);
1470 if (err)
1471 goto err_rpm;
1472
1473 work = i915_vma_work();
1474 if (!work) {
1475 err = -ENOMEM;
1476 goto err_rpm;
1477 }
1478
1479 work->vm = vma->vm;
1480
1481 err = i915_gem_object_get_moving_fence(obj: vma->obj, fence: &moving);
1482 if (err)
1483 goto err_rpm;
1484
1485 dma_fence_work_chain(f: &work->base, signal: moving);
1486
1487 /* Allocate enough page directories to used PTE */
1488 if (vma->vm->allocate_va_range) {
1489 err = i915_vm_alloc_pt_stash(vm: vma->vm,
1490 stash: &work->stash,
1491 size: vma->size);
1492 if (err)
1493 goto err_fence;
1494
1495 err = i915_vm_map_pt_stash(vm: vma->vm, stash: &work->stash);
1496 if (err)
1497 goto err_fence;
1498 }
1499 }
1500
1501 vma_res = i915_vma_resource_alloc();
1502 if (IS_ERR(ptr: vma_res)) {
1503 err = PTR_ERR(ptr: vma_res);
1504 goto err_fence;
1505 }
1506
1507 /*
1508 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1509 *
1510 * We conflate the Global GTT with the user's vma when using the
1511 * aliasing-ppgtt, but it is still vitally important to try and
1512 * keep the use cases distinct. For example, userptr objects are
1513 * not allowed inside the Global GTT as that will cause lock
1514 * inversions when we have to evict them the mmu_notifier callbacks -
1515 * but they are allowed to be part of the user ppGTT which can never
1516 * be mapped. As such we try to give the distinct users of the same
1517 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1518 * and i915_ppgtt separate].
1519 *
1520 * NB this may cause us to mask real lock inversions -- while the
1521 * code is safe today, lockdep may not be able to spot future
1522 * transgressions.
1523 */
1524 err = mutex_lock_interruptible_nested(lock: &vma->vm->mutex,
1525 subclass: !(flags & PIN_GLOBAL));
1526 if (err)
1527 goto err_vma_res;
1528
1529 /* No more allocations allowed now we hold vm->mutex */
1530
1531 if (unlikely(i915_vma_is_closed(vma))) {
1532 err = -ENOENT;
1533 goto err_unlock;
1534 }
1535
1536 bound = atomic_read(v: &vma->flags);
1537 if (unlikely(bound & I915_VMA_ERROR)) {
1538 err = -ENOMEM;
1539 goto err_unlock;
1540 }
1541
1542 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1543 err = -EAGAIN; /* pins are meant to be fairly temporary */
1544 goto err_unlock;
1545 }
1546
1547 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1548 if (!(flags & PIN_VALIDATE))
1549 __i915_vma_pin(vma);
1550 goto err_unlock;
1551 }
1552
1553 err = i915_active_acquire(ref: &vma->active);
1554 if (err)
1555 goto err_unlock;
1556
1557 if (!(bound & I915_VMA_BIND_MASK)) {
1558 err = i915_vma_insert(vma, ww, size, alignment, flags);
1559 if (err)
1560 goto err_active;
1561
1562 if (i915_is_ggtt(vma->vm))
1563 __i915_vma_set_map_and_fenceable(vma);
1564 }
1565
1566 GEM_BUG_ON(!vma->pages);
1567 err = i915_vma_bind(vma,
1568 pat_index: vma->obj->pat_index,
1569 flags, work, vma_res);
1570 vma_res = NULL;
1571 if (err)
1572 goto err_remove;
1573
1574 /* There should only be at most 2 active bindings (user, global) */
1575 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1576 atomic_add(I915_VMA_PAGES_ACTIVE, v: &vma->pages_count);
1577 list_move_tail(list: &vma->vm_link, head: &vma->vm->bound_list);
1578
1579 if (!(flags & PIN_VALIDATE)) {
1580 __i915_vma_pin(vma);
1581 GEM_BUG_ON(!i915_vma_is_pinned(vma));
1582 }
1583 GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1584 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1585
1586err_remove:
1587 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1588 i915_vma_detach(vma);
1589 drm_mm_remove_node(node: &vma->node);
1590 }
1591err_active:
1592 i915_active_release(ref: &vma->active);
1593err_unlock:
1594 mutex_unlock(lock: &vma->vm->mutex);
1595err_vma_res:
1596 i915_vma_resource_free(vma_res);
1597err_fence:
1598 if (work)
1599 dma_fence_work_commit_imm(f: &work->base);
1600err_rpm:
1601 intel_runtime_pm_put(rpm: &vma->vm->i915->runtime_pm, wref: wakeref);
1602
1603 if (moving)
1604 dma_fence_put(fence: moving);
1605
1606 i915_vma_put_pages(vma);
1607 return err;
1608}
1609
1610static void flush_idle_contexts(struct intel_gt *gt)
1611{
1612 struct intel_engine_cs *engine;
1613 enum intel_engine_id id;
1614
1615 for_each_engine(engine, gt, id)
1616 intel_engine_flush_barriers(engine);
1617
1618 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1619}
1620
1621static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1622 u32 align, unsigned int flags)
1623{
1624 struct i915_address_space *vm = vma->vm;
1625 struct intel_gt *gt;
1626 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1627 int err;
1628
1629 do {
1630 err = i915_vma_pin_ww(vma, ww, size: 0, alignment: align, flags: flags | PIN_GLOBAL);
1631
1632 if (err != -ENOSPC) {
1633 if (!err) {
1634 err = i915_vma_wait_for_bind(vma);
1635 if (err)
1636 i915_vma_unpin(vma);
1637 }
1638 return err;
1639 }
1640
1641 /* Unlike i915_vma_pin, we don't take no for an answer! */
1642 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1643 flush_idle_contexts(gt);
1644 if (mutex_lock_interruptible(&vm->mutex) == 0) {
1645 /*
1646 * We pass NULL ww here, as we don't want to unbind
1647 * locked objects when called from execbuf when pinning
1648 * is removed. This would probably regress badly.
1649 */
1650 i915_gem_evict_vm(vm, NULL, NULL);
1651 mutex_unlock(lock: &vm->mutex);
1652 }
1653 } while (1);
1654}
1655
1656int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1657 u32 align, unsigned int flags)
1658{
1659 struct i915_gem_ww_ctx _ww;
1660 int err;
1661
1662 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1663
1664 if (ww)
1665 return __i915_ggtt_pin(vma, ww, align, flags);
1666
1667 lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1668
1669 for_i915_gem_ww(&_ww, err, true) {
1670 err = i915_gem_object_lock(obj: vma->obj, ww: &_ww);
1671 if (!err)
1672 err = __i915_ggtt_pin(vma, ww: &_ww, align, flags);
1673 }
1674
1675 return err;
1676}
1677
1678/**
1679 * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1680 * @obj: i915 GEM object
1681 * This function clears scanout flags for objects ggtt vmas. These flags are set
1682 * when object is pinned for display use and this function to clear them all is
1683 * targeted to be called by frontbuffer tracking code when the frontbuffer is
1684 * about to be released.
1685 */
1686void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1687{
1688 struct i915_vma *vma;
1689
1690 spin_lock(lock: &obj->vma.lock);
1691 for_each_ggtt_vma(vma, obj) {
1692 i915_vma_clear_scanout(vma);
1693 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1694 }
1695 spin_unlock(lock: &obj->vma.lock);
1696}
1697
1698static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1699{
1700 /*
1701 * We defer actually closing, unbinding and destroying the VMA until
1702 * the next idle point, or if the object is freed in the meantime. By
1703 * postponing the unbind, we allow for it to be resurrected by the
1704 * client, avoiding the work required to rebind the VMA. This is
1705 * advantageous for DRI, where the client/server pass objects
1706 * between themselves, temporarily opening a local VMA to the
1707 * object, and then closing it again. The same object is then reused
1708 * on the next frame (or two, depending on the depth of the swap queue)
1709 * causing us to rebind the VMA once more. This ends up being a lot
1710 * of wasted work for the steady state.
1711 */
1712 GEM_BUG_ON(i915_vma_is_closed(vma));
1713 list_add(new: &vma->closed_link, head: &gt->closed_vma);
1714}
1715
1716void i915_vma_close(struct i915_vma *vma)
1717{
1718 struct intel_gt *gt = vma->vm->gt;
1719 unsigned long flags;
1720
1721 if (i915_vma_is_ggtt(vma))
1722 return;
1723
1724 GEM_BUG_ON(!atomic_read(&vma->open_count));
1725 if (atomic_dec_and_lock_irqsave(&vma->open_count,
1726 &gt->closed_lock,
1727 flags)) {
1728 __vma_close(vma, gt);
1729 spin_unlock_irqrestore(lock: &gt->closed_lock, flags);
1730 }
1731}
1732
1733static void __i915_vma_remove_closed(struct i915_vma *vma)
1734{
1735 list_del_init(entry: &vma->closed_link);
1736}
1737
1738void i915_vma_reopen(struct i915_vma *vma)
1739{
1740 struct intel_gt *gt = vma->vm->gt;
1741
1742 spin_lock_irq(lock: &gt->closed_lock);
1743 if (i915_vma_is_closed(vma))
1744 __i915_vma_remove_closed(vma);
1745 spin_unlock_irq(lock: &gt->closed_lock);
1746}
1747
1748static void force_unbind(struct i915_vma *vma)
1749{
1750 if (!drm_mm_node_allocated(node: &vma->node))
1751 return;
1752
1753 atomic_and(i: ~I915_VMA_PIN_MASK, v: &vma->flags);
1754 WARN_ON(__i915_vma_unbind(vma));
1755 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1756}
1757
1758static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1759 bool vm_ddestroy)
1760{
1761 struct drm_i915_gem_object *obj = vma->obj;
1762
1763 GEM_BUG_ON(i915_vma_is_active(vma));
1764
1765 spin_lock(lock: &obj->vma.lock);
1766 list_del(entry: &vma->obj_link);
1767 if (!RB_EMPTY_NODE(&vma->obj_node))
1768 rb_erase(&vma->obj_node, &obj->vma.tree);
1769
1770 spin_unlock(lock: &obj->vma.lock);
1771
1772 spin_lock_irq(lock: &gt->closed_lock);
1773 __i915_vma_remove_closed(vma);
1774 spin_unlock_irq(lock: &gt->closed_lock);
1775
1776 if (vm_ddestroy)
1777 i915_vm_resv_put(vm: vma->vm);
1778
1779 /* Wait for async active retire */
1780 i915_active_wait(ref: &vma->active);
1781 i915_active_fini(ref: &vma->active);
1782 GEM_WARN_ON(vma->resource);
1783 i915_vma_free(vma);
1784}
1785
1786/*
1787 * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1788 * the initial reference.
1789 *
1790 * This function should be called when it's decided the vma isn't needed
1791 * anymore. The caller must assure that it doesn't race with another lookup
1792 * plus destroy, typically by taking an appropriate reference.
1793 *
1794 * Current callsites are
1795 * - __i915_gem_object_pages_fini()
1796 * - __i915_vm_close() - Blocks the above function by taking a reference on
1797 * the object.
1798 * - __i915_vma_parked() - Blocks the above functions by taking a reference
1799 * on the vm and a reference on the object. Also takes the object lock so
1800 * destruction from __i915_vma_parked() can be blocked by holding the
1801 * object lock. Since the object lock is only allowed from within i915 with
1802 * an object refcount, holding the object lock also implicitly blocks the
1803 * vma freeing from __i915_gem_object_pages_fini().
1804 *
1805 * Because of locks taken during destruction, a vma is also guaranteed to
1806 * stay alive while the following locks are held if it was looked up while
1807 * holding one of the locks:
1808 * - vm->mutex
1809 * - obj->vma.lock
1810 * - gt->closed_lock
1811 */
1812void i915_vma_destroy_locked(struct i915_vma *vma)
1813{
1814 lockdep_assert_held(&vma->vm->mutex);
1815
1816 force_unbind(vma);
1817 list_del_init(entry: &vma->vm_link);
1818 release_references(vma, gt: vma->vm->gt, vm_ddestroy: false);
1819}
1820
1821void i915_vma_destroy(struct i915_vma *vma)
1822{
1823 struct intel_gt *gt;
1824 bool vm_ddestroy;
1825
1826 mutex_lock(&vma->vm->mutex);
1827 force_unbind(vma);
1828 list_del_init(entry: &vma->vm_link);
1829 vm_ddestroy = vma->vm_ddestroy;
1830 vma->vm_ddestroy = false;
1831
1832 /* vma->vm may be freed when releasing vma->vm->mutex. */
1833 gt = vma->vm->gt;
1834 mutex_unlock(lock: &vma->vm->mutex);
1835 release_references(vma, gt, vm_ddestroy);
1836}
1837
1838void i915_vma_parked(struct intel_gt *gt)
1839{
1840 struct i915_vma *vma, *next;
1841 LIST_HEAD(closed);
1842
1843 spin_lock_irq(lock: &gt->closed_lock);
1844 list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1845 struct drm_i915_gem_object *obj = vma->obj;
1846 struct i915_address_space *vm = vma->vm;
1847
1848 /* XXX All to avoid keeping a reference on i915_vma itself */
1849
1850 if (!kref_get_unless_zero(kref: &obj->base.refcount))
1851 continue;
1852
1853 if (!i915_vm_tryget(vm)) {
1854 i915_gem_object_put(obj);
1855 continue;
1856 }
1857
1858 list_move(list: &vma->closed_link, head: &closed);
1859 }
1860 spin_unlock_irq(lock: &gt->closed_lock);
1861
1862 /* As the GT is held idle, no vma can be reopened as we destroy them */
1863 list_for_each_entry_safe(vma, next, &closed, closed_link) {
1864 struct drm_i915_gem_object *obj = vma->obj;
1865 struct i915_address_space *vm = vma->vm;
1866
1867 if (i915_gem_object_trylock(obj, NULL)) {
1868 INIT_LIST_HEAD(list: &vma->closed_link);
1869 i915_vma_destroy(vma);
1870 i915_gem_object_unlock(obj);
1871 } else {
1872 /* back you go.. */
1873 spin_lock_irq(lock: &gt->closed_lock);
1874 list_add(new: &vma->closed_link, head: &gt->closed_vma);
1875 spin_unlock_irq(lock: &gt->closed_lock);
1876 }
1877
1878 i915_gem_object_put(obj);
1879 i915_vm_put(vm);
1880 }
1881}
1882
1883static void __i915_vma_iounmap(struct i915_vma *vma)
1884{
1885 GEM_BUG_ON(i915_vma_is_pinned(vma));
1886
1887 if (vma->iomap == NULL)
1888 return;
1889
1890 if (page_unmask_bits(vma->iomap))
1891 __i915_gem_object_release_map(obj: vma->obj);
1892 else
1893 io_mapping_unmap(vaddr: vma->iomap);
1894 vma->iomap = NULL;
1895}
1896
1897void i915_vma_revoke_mmap(struct i915_vma *vma)
1898{
1899 struct drm_vma_offset_node *node;
1900 u64 vma_offset;
1901
1902 if (!i915_vma_has_userfault(vma))
1903 return;
1904
1905 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1906 GEM_BUG_ON(!vma->obj->userfault_count);
1907
1908 node = &vma->mmo->vma_node;
1909 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1910 unmap_mapping_range(mapping: vma->vm->i915->drm.anon_inode->i_mapping,
1911 holebegin: drm_vma_node_offset_addr(node) + vma_offset,
1912 holelen: vma->size,
1913 even_cows: 1);
1914
1915 i915_vma_unset_userfault(vma);
1916 if (!--vma->obj->userfault_count)
1917 list_del(entry: &vma->obj->userfault_link);
1918}
1919
1920static int
1921__i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1922{
1923 return __i915_request_await_exclusive(rq, active: &vma->active);
1924}
1925
1926static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1927{
1928 int err;
1929
1930 /* Wait for the vma to be bound before we start! */
1931 err = __i915_request_await_bind(rq, vma);
1932 if (err)
1933 return err;
1934
1935 return i915_active_add_request(ref: &vma->active, rq);
1936}
1937
1938int _i915_vma_move_to_active(struct i915_vma *vma,
1939 struct i915_request *rq,
1940 struct dma_fence *fence,
1941 unsigned int flags)
1942{
1943 struct drm_i915_gem_object *obj = vma->obj;
1944 int err;
1945
1946 assert_object_held(obj);
1947
1948 GEM_BUG_ON(!vma->pages);
1949
1950 if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1951 err = i915_request_await_object(to: rq, obj: vma->obj, write: flags & EXEC_OBJECT_WRITE);
1952 if (unlikely(err))
1953 return err;
1954 }
1955 err = __i915_vma_move_to_active(vma, rq);
1956 if (unlikely(err))
1957 return err;
1958
1959 /*
1960 * Reserve fences slot early to prevent an allocation after preparing
1961 * the workload and associating fences with dma_resv.
1962 */
1963 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1964 struct dma_fence *curr;
1965 int idx;
1966
1967 dma_fence_array_for_each(curr, idx, fence)
1968 ;
1969 err = dma_resv_reserve_fences(obj: vma->obj->base.resv, num_fences: idx);
1970 if (unlikely(err))
1971 return err;
1972 }
1973
1974 if (flags & EXEC_OBJECT_WRITE) {
1975 struct intel_frontbuffer *front;
1976
1977 front = i915_gem_object_get_frontbuffer(obj);
1978 if (unlikely(front)) {
1979 if (intel_frontbuffer_invalidate(front, origin: ORIGIN_CS))
1980 i915_active_add_request(ref: &front->write, rq);
1981 intel_frontbuffer_put(front);
1982 }
1983 }
1984
1985 if (fence) {
1986 struct dma_fence *curr;
1987 enum dma_resv_usage usage;
1988 int idx;
1989
1990 if (flags & EXEC_OBJECT_WRITE) {
1991 usage = DMA_RESV_USAGE_WRITE;
1992 obj->write_domain = I915_GEM_DOMAIN_RENDER;
1993 obj->read_domains = 0;
1994 } else {
1995 usage = DMA_RESV_USAGE_READ;
1996 obj->write_domain = 0;
1997 }
1998
1999 dma_fence_array_for_each(curr, idx, fence)
2000 dma_resv_add_fence(obj: vma->obj->base.resv, fence: curr, usage);
2001 }
2002
2003 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
2004 i915_active_add_request(ref: &vma->fence->active, rq);
2005
2006 obj->read_domains |= I915_GEM_GPU_DOMAINS;
2007 obj->mm.dirty = true;
2008
2009 GEM_BUG_ON(!i915_vma_is_active(vma));
2010 return 0;
2011}
2012
2013struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
2014{
2015 struct i915_vma_resource *vma_res = vma->resource;
2016 struct dma_fence *unbind_fence;
2017
2018 GEM_BUG_ON(i915_vma_is_pinned(vma));
2019 assert_vma_held_evict(vma);
2020
2021 if (i915_vma_is_map_and_fenceable(vma)) {
2022 /* Force a pagefault for domain tracking on next user access */
2023 i915_vma_revoke_mmap(vma);
2024
2025 /*
2026 * Check that we have flushed all writes through the GGTT
2027 * before the unbind, other due to non-strict nature of those
2028 * indirect writes they may end up referencing the GGTT PTE
2029 * after the unbind.
2030 *
2031 * Note that we may be concurrently poking at the GGTT_WRITE
2032 * bit from set-domain, as we mark all GGTT vma associated
2033 * with an object. We know this is for another vma, as we
2034 * are currently unbinding this one -- so if this vma will be
2035 * reused, it will be refaulted and have its dirty bit set
2036 * before the next write.
2037 */
2038 i915_vma_flush_writes(vma);
2039
2040 /* release the fence reg _after_ flushing */
2041 i915_vma_revoke_fence(vma);
2042
2043 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2044 }
2045
2046 __i915_vma_iounmap(vma);
2047
2048 GEM_BUG_ON(vma->fence);
2049 GEM_BUG_ON(i915_vma_has_userfault(vma));
2050
2051 /* Object backend must be async capable. */
2052 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2053
2054 /* If vm is not open, unbind is a nop. */
2055 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2056 kref_read(kref: &vma->vm->ref);
2057 vma_res->skip_pte_rewrite = !kref_read(kref: &vma->vm->ref) ||
2058 vma->vm->skip_pte_rewrite;
2059 trace_i915_vma_unbind(vma);
2060
2061 if (async)
2062 unbind_fence = i915_vma_resource_unbind(vma_res,
2063 tlb: vma->obj->mm.tlb);
2064 else
2065 unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2066
2067 vma->resource = NULL;
2068
2069 atomic_and(i: ~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2070 v: &vma->flags);
2071
2072 i915_vma_detach(vma);
2073
2074 if (!async) {
2075 if (unbind_fence) {
2076 dma_fence_wait(fence: unbind_fence, intr: false);
2077 dma_fence_put(fence: unbind_fence);
2078 unbind_fence = NULL;
2079 }
2080 vma_invalidate_tlb(vm: vma->vm, tlb: vma->obj->mm.tlb);
2081 }
2082
2083 /*
2084 * Binding itself may not have completed until the unbind fence signals,
2085 * so don't drop the pages until that happens, unless the resource is
2086 * async_capable.
2087 */
2088
2089 vma_unbind_pages(vma);
2090 return unbind_fence;
2091}
2092
2093int __i915_vma_unbind(struct i915_vma *vma)
2094{
2095 int ret;
2096
2097 lockdep_assert_held(&vma->vm->mutex);
2098 assert_vma_held_evict(vma);
2099
2100 if (!drm_mm_node_allocated(node: &vma->node))
2101 return 0;
2102
2103 if (i915_vma_is_pinned(vma)) {
2104 vma_print_allocator(vma, reason: "is pinned");
2105 return -EAGAIN;
2106 }
2107
2108 /*
2109 * After confirming that no one else is pinning this vma, wait for
2110 * any laggards who may have crept in during the wait (through
2111 * a residual pin skipping the vm->mutex) to complete.
2112 */
2113 ret = i915_vma_sync(vma);
2114 if (ret)
2115 return ret;
2116
2117 GEM_BUG_ON(i915_vma_is_active(vma));
2118 __i915_vma_evict(vma, async: false);
2119
2120 drm_mm_remove_node(node: &vma->node); /* pairs with i915_vma_release() */
2121 return 0;
2122}
2123
2124static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2125{
2126 struct dma_fence *fence;
2127
2128 lockdep_assert_held(&vma->vm->mutex);
2129
2130 if (!drm_mm_node_allocated(node: &vma->node))
2131 return NULL;
2132
2133 if (i915_vma_is_pinned(vma) ||
2134 &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2135 return ERR_PTR(error: -EAGAIN);
2136
2137 /*
2138 * We probably need to replace this with awaiting the fences of the
2139 * object's dma_resv when the vma active goes away. When doing that
2140 * we need to be careful to not add the vma_resource unbind fence
2141 * immediately to the object's dma_resv, because then unbinding
2142 * the next vma from the object, in case there are many, will
2143 * actually await the unbinding of the previous vmas, which is
2144 * undesirable.
2145 */
2146 if (i915_sw_fence_await_active(fence: &vma->resource->chain, ref: &vma->active,
2147 I915_ACTIVE_AWAIT_EXCL |
2148 I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2149 return ERR_PTR(error: -EBUSY);
2150 }
2151
2152 fence = __i915_vma_evict(vma, async: true);
2153
2154 drm_mm_remove_node(node: &vma->node); /* pairs with i915_vma_release() */
2155
2156 return fence;
2157}
2158
2159int i915_vma_unbind(struct i915_vma *vma)
2160{
2161 struct i915_address_space *vm = vma->vm;
2162 intel_wakeref_t wakeref = 0;
2163 int err;
2164
2165 assert_object_held_shared(obj: vma->obj);
2166
2167 /* Optimistic wait before taking the mutex */
2168 err = i915_vma_sync(vma);
2169 if (err)
2170 return err;
2171
2172 if (!drm_mm_node_allocated(node: &vma->node))
2173 return 0;
2174
2175 if (i915_vma_is_pinned(vma)) {
2176 vma_print_allocator(vma, reason: "is pinned");
2177 return -EAGAIN;
2178 }
2179
2180 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2181 /* XXX not always required: nop_clear_range */
2182 wakeref = intel_runtime_pm_get(rpm: &vm->i915->runtime_pm);
2183
2184 err = mutex_lock_interruptible_nested(lock: &vma->vm->mutex, subclass: !wakeref);
2185 if (err)
2186 goto out_rpm;
2187
2188 err = __i915_vma_unbind(vma);
2189 mutex_unlock(lock: &vm->mutex);
2190
2191out_rpm:
2192 if (wakeref)
2193 intel_runtime_pm_put(rpm: &vm->i915->runtime_pm, wref: wakeref);
2194 return err;
2195}
2196
2197int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2198{
2199 struct drm_i915_gem_object *obj = vma->obj;
2200 struct i915_address_space *vm = vma->vm;
2201 intel_wakeref_t wakeref = 0;
2202 struct dma_fence *fence;
2203 int err;
2204
2205 /*
2206 * We need the dma-resv lock since we add the
2207 * unbind fence to the dma-resv object.
2208 */
2209 assert_object_held(obj);
2210
2211 if (!drm_mm_node_allocated(node: &vma->node))
2212 return 0;
2213
2214 if (i915_vma_is_pinned(vma)) {
2215 vma_print_allocator(vma, reason: "is pinned");
2216 return -EAGAIN;
2217 }
2218
2219 if (!obj->mm.rsgt)
2220 return -EBUSY;
2221
2222 err = dma_resv_reserve_fences(obj: obj->base.resv, num_fences: 2);
2223 if (err)
2224 return -EBUSY;
2225
2226 /*
2227 * It would be great if we could grab this wakeref from the
2228 * async unbind work if needed, but we can't because it uses
2229 * kmalloc and it's in the dma-fence signalling critical path.
2230 */
2231 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2232 wakeref = intel_runtime_pm_get(rpm: &vm->i915->runtime_pm);
2233
2234 if (trylock_vm && !mutex_trylock(lock: &vm->mutex)) {
2235 err = -EBUSY;
2236 goto out_rpm;
2237 } else if (!trylock_vm) {
2238 err = mutex_lock_interruptible_nested(lock: &vm->mutex, subclass: !wakeref);
2239 if (err)
2240 goto out_rpm;
2241 }
2242
2243 fence = __i915_vma_unbind_async(vma);
2244 mutex_unlock(lock: &vm->mutex);
2245 if (IS_ERR_OR_NULL(ptr: fence)) {
2246 err = PTR_ERR_OR_ZERO(ptr: fence);
2247 goto out_rpm;
2248 }
2249
2250 dma_resv_add_fence(obj: obj->base.resv, fence, usage: DMA_RESV_USAGE_READ);
2251 dma_fence_put(fence);
2252
2253out_rpm:
2254 if (wakeref)
2255 intel_runtime_pm_put(rpm: &vm->i915->runtime_pm, wref: wakeref);
2256 return err;
2257}
2258
2259int i915_vma_unbind_unlocked(struct i915_vma *vma)
2260{
2261 int err;
2262
2263 i915_gem_object_lock(obj: vma->obj, NULL);
2264 err = i915_vma_unbind(vma);
2265 i915_gem_object_unlock(obj: vma->obj);
2266
2267 return err;
2268}
2269
2270struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2271{
2272 i915_gem_object_make_unshrinkable(obj: vma->obj);
2273 return vma;
2274}
2275
2276void i915_vma_make_shrinkable(struct i915_vma *vma)
2277{
2278 i915_gem_object_make_shrinkable(obj: vma->obj);
2279}
2280
2281void i915_vma_make_purgeable(struct i915_vma *vma)
2282{
2283 i915_gem_object_make_purgeable(obj: vma->obj);
2284}
2285
2286#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2287#include "selftests/i915_vma.c"
2288#endif
2289
2290void i915_vma_module_exit(void)
2291{
2292 kmem_cache_destroy(s: slab_vmas);
2293}
2294
2295int __init i915_vma_module_init(void)
2296{
2297 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2298 if (!slab_vmas)
2299 return -ENOMEM;
2300
2301 return 0;
2302}
2303

source code of linux/drivers/gpu/drm/i915/i915_vma.c