1// SPDX-License-Identifier: GPL-2.0
2/*
3 * V4L2 Driver for Renesas Capture Engine Unit (CEU) interface
4 * Copyright (C) 2017-2018 Jacopo Mondi <jacopo+renesas@jmondi.org>
5 *
6 * Based on soc-camera driver "soc_camera/sh_mobile_ceu_camera.c"
7 * Copyright (C) 2008 Magnus Damm
8 *
9 * Based on V4L2 Driver for PXA camera host - "pxa_camera.c",
10 * Copyright (C) 2006, Sascha Hauer, Pengutronix
11 * Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
12 */
13
14#include <linux/delay.h>
15#include <linux/device.h>
16#include <linux/dma-mapping.h>
17#include <linux/err.h>
18#include <linux/errno.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_graph.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/slab.h>
29#include <linux/time.h>
30#include <linux/videodev2.h>
31
32#include <media/v4l2-async.h>
33#include <media/v4l2-common.h>
34#include <media/v4l2-ctrls.h>
35#include <media/v4l2-dev.h>
36#include <media/v4l2-device.h>
37#include <media/v4l2-event.h>
38#include <media/v4l2-fwnode.h>
39#include <media/v4l2-image-sizes.h>
40#include <media/v4l2-ioctl.h>
41#include <media/v4l2-mediabus.h>
42#include <media/videobuf2-dma-contig.h>
43
44#include <media/drv-intf/renesas-ceu.h>
45
46#define DRIVER_NAME "renesas-ceu"
47
48/* CEU registers offsets and masks. */
49#define CEU_CAPSR 0x00 /* Capture start register */
50#define CEU_CAPCR 0x04 /* Capture control register */
51#define CEU_CAMCR 0x08 /* Capture interface control register */
52#define CEU_CAMOR 0x10 /* Capture interface offset register */
53#define CEU_CAPWR 0x14 /* Capture interface width register */
54#define CEU_CAIFR 0x18 /* Capture interface input format register */
55#define CEU_CRCNTR 0x28 /* CEU register control register */
56#define CEU_CRCMPR 0x2c /* CEU register forcible control register */
57#define CEU_CFLCR 0x30 /* Capture filter control register */
58#define CEU_CFSZR 0x34 /* Capture filter size clip register */
59#define CEU_CDWDR 0x38 /* Capture destination width register */
60#define CEU_CDAYR 0x3c /* Capture data address Y register */
61#define CEU_CDACR 0x40 /* Capture data address C register */
62#define CEU_CFWCR 0x5c /* Firewall operation control register */
63#define CEU_CDOCR 0x64 /* Capture data output control register */
64#define CEU_CEIER 0x70 /* Capture event interrupt enable register */
65#define CEU_CETCR 0x74 /* Capture event flag clear register */
66#define CEU_CSTSR 0x7c /* Capture status register */
67#define CEU_CSRTR 0x80 /* Capture software reset register */
68
69/* Data synchronous fetch mode. */
70#define CEU_CAMCR_JPEG BIT(4)
71
72/* Input components ordering: CEU_CAMCR.DTARY field. */
73#define CEU_CAMCR_DTARY_8_UYVY (0x00 << 8)
74#define CEU_CAMCR_DTARY_8_VYUY (0x01 << 8)
75#define CEU_CAMCR_DTARY_8_YUYV (0x02 << 8)
76#define CEU_CAMCR_DTARY_8_YVYU (0x03 << 8)
77/* TODO: input components ordering for 16 bits input. */
78
79/* Bus transfer MTU. */
80#define CEU_CAPCR_BUS_WIDTH256 (0x3 << 20)
81
82/* Bus width configuration. */
83#define CEU_CAMCR_DTIF_16BITS BIT(12)
84
85/* No downsampling to planar YUV420 in image fetch mode. */
86#define CEU_CDOCR_NO_DOWSAMPLE BIT(4)
87
88/* Swap all input data in 8-bit, 16-bits and 32-bits units (Figure 46.45). */
89#define CEU_CDOCR_SWAP_ENDIANNESS (7)
90
91/* Capture reset and enable bits. */
92#define CEU_CAPSR_CPKIL BIT(16)
93#define CEU_CAPSR_CE BIT(0)
94
95/* CEU operating flag bit. */
96#define CEU_CAPCR_CTNCP BIT(16)
97#define CEU_CSTRST_CPTON BIT(0)
98
99/* Platform specific IRQ source flags. */
100#define CEU_CETCR_ALL_IRQS_RZ 0x397f313
101#define CEU_CETCR_ALL_IRQS_SH4 0x3d7f313
102
103/* Prohibited register access interrupt bit. */
104#define CEU_CETCR_IGRW BIT(4)
105/* One-frame capture end interrupt. */
106#define CEU_CEIER_CPE BIT(0)
107/* VBP error. */
108#define CEU_CEIER_VBP BIT(20)
109#define CEU_CEIER_MASK (CEU_CEIER_CPE | CEU_CEIER_VBP)
110
111#define CEU_MAX_WIDTH 2560
112#define CEU_MAX_HEIGHT 1920
113#define CEU_MAX_BPL 8188
114#define CEU_W_MAX(w) ((w) < CEU_MAX_WIDTH ? (w) : CEU_MAX_WIDTH)
115#define CEU_H_MAX(h) ((h) < CEU_MAX_HEIGHT ? (h) : CEU_MAX_HEIGHT)
116
117/*
118 * ceu_bus_fmt - describe a 8-bits yuyv format the sensor can produce
119 *
120 * @mbus_code: bus format code
121 * @fmt_order: CEU_CAMCR.DTARY ordering of input components (Y, Cb, Cr)
122 * @fmt_order_swap: swapped CEU_CAMCR.DTARY ordering of input components
123 * (Y, Cr, Cb)
124 * @swapped: does Cr appear before Cb?
125 * @bps: number of bits sent over bus for each sample
126 * @bpp: number of bits per pixels unit
127 */
128struct ceu_mbus_fmt {
129 u32 mbus_code;
130 u32 fmt_order;
131 u32 fmt_order_swap;
132 bool swapped;
133 u8 bps;
134 u8 bpp;
135};
136
137/*
138 * ceu_buffer - Link vb2 buffer to the list of available buffers.
139 */
140struct ceu_buffer {
141 struct vb2_v4l2_buffer vb;
142 struct list_head queue;
143};
144
145static inline struct ceu_buffer *vb2_to_ceu(struct vb2_v4l2_buffer *vbuf)
146{
147 return container_of(vbuf, struct ceu_buffer, vb);
148}
149
150/*
151 * ceu_subdev - Wraps v4l2 sub-device and provides async subdevice.
152 */
153struct ceu_subdev {
154 struct v4l2_async_connection asd;
155 struct v4l2_subdev *v4l2_sd;
156
157 /* per-subdevice mbus configuration options */
158 unsigned int mbus_flags;
159 struct ceu_mbus_fmt mbus_fmt;
160};
161
162static struct ceu_subdev *to_ceu_subdev(struct v4l2_async_connection *asd)
163{
164 return container_of(asd, struct ceu_subdev, asd);
165}
166
167/*
168 * ceu_device - CEU device instance
169 */
170struct ceu_device {
171 struct device *dev;
172 struct video_device vdev;
173 struct v4l2_device v4l2_dev;
174
175 /* subdevices descriptors */
176 struct ceu_subdev **subdevs;
177 /* the subdevice currently in use */
178 struct ceu_subdev *sd;
179 unsigned int sd_index;
180 unsigned int num_sd;
181
182 /* platform specific mask with all IRQ sources flagged */
183 u32 irq_mask;
184
185 /* currently configured field and pixel format */
186 enum v4l2_field field;
187 struct v4l2_pix_format_mplane v4l2_pix;
188
189 /* async subdev notification helpers */
190 struct v4l2_async_notifier notifier;
191
192 /* vb2 queue, capture buffer list and active buffer pointer */
193 struct vb2_queue vb2_vq;
194 struct list_head capture;
195 struct vb2_v4l2_buffer *active;
196 unsigned int sequence;
197
198 /* mlock - lock access to interface reset and vb2 queue */
199 struct mutex mlock;
200
201 /* lock - lock access to capture buffer queue and active buffer */
202 spinlock_t lock;
203
204 /* base - CEU memory base address */
205 void __iomem *base;
206};
207
208static inline struct ceu_device *v4l2_to_ceu(struct v4l2_device *v4l2_dev)
209{
210 return container_of(v4l2_dev, struct ceu_device, v4l2_dev);
211}
212
213/* --- CEU memory output formats --- */
214
215/*
216 * ceu_fmt - describe a memory output format supported by CEU interface.
217 *
218 * @fourcc: memory layout fourcc format code
219 * @bpp: number of bits for each pixel stored in memory
220 */
221struct ceu_fmt {
222 u32 fourcc;
223 u32 bpp;
224};
225
226/*
227 * ceu_format_list - List of supported memory output formats
228 *
229 * If sensor provides any YUYV bus format, all the following planar memory
230 * formats are available thanks to CEU re-ordering and sub-sampling
231 * capabilities.
232 */
233static const struct ceu_fmt ceu_fmt_list[] = {
234 {
235 .fourcc = V4L2_PIX_FMT_NV16,
236 .bpp = 16,
237 },
238 {
239 .fourcc = V4L2_PIX_FMT_NV61,
240 .bpp = 16,
241 },
242 {
243 .fourcc = V4L2_PIX_FMT_NV12,
244 .bpp = 12,
245 },
246 {
247 .fourcc = V4L2_PIX_FMT_NV21,
248 .bpp = 12,
249 },
250 {
251 .fourcc = V4L2_PIX_FMT_YUYV,
252 .bpp = 16,
253 },
254 {
255 .fourcc = V4L2_PIX_FMT_UYVY,
256 .bpp = 16,
257 },
258 {
259 .fourcc = V4L2_PIX_FMT_YVYU,
260 .bpp = 16,
261 },
262 {
263 .fourcc = V4L2_PIX_FMT_VYUY,
264 .bpp = 16,
265 },
266};
267
268static const struct ceu_fmt *get_ceu_fmt_from_fourcc(unsigned int fourcc)
269{
270 const struct ceu_fmt *fmt = &ceu_fmt_list[0];
271 unsigned int i;
272
273 for (i = 0; i < ARRAY_SIZE(ceu_fmt_list); i++, fmt++)
274 if (fmt->fourcc == fourcc)
275 return fmt;
276
277 return NULL;
278}
279
280static bool ceu_fmt_mplane(struct v4l2_pix_format_mplane *pix)
281{
282 switch (pix->pixelformat) {
283 case V4L2_PIX_FMT_YUYV:
284 case V4L2_PIX_FMT_UYVY:
285 case V4L2_PIX_FMT_YVYU:
286 case V4L2_PIX_FMT_VYUY:
287 return false;
288 case V4L2_PIX_FMT_NV16:
289 case V4L2_PIX_FMT_NV61:
290 case V4L2_PIX_FMT_NV12:
291 case V4L2_PIX_FMT_NV21:
292 return true;
293 default:
294 return false;
295 }
296}
297
298/* --- CEU HW operations --- */
299
300static void ceu_write(struct ceu_device *priv, unsigned int reg_offs, u32 data)
301{
302 iowrite32(data, priv->base + reg_offs);
303}
304
305static u32 ceu_read(struct ceu_device *priv, unsigned int reg_offs)
306{
307 return ioread32(priv->base + reg_offs);
308}
309
310/*
311 * ceu_soft_reset() - Software reset the CEU interface.
312 * @ceu_device: CEU device.
313 *
314 * Returns 0 for success, -EIO for error.
315 */
316static int ceu_soft_reset(struct ceu_device *ceudev)
317{
318 unsigned int i;
319
320 ceu_write(priv: ceudev, CEU_CAPSR, CEU_CAPSR_CPKIL);
321
322 for (i = 0; i < 100; i++) {
323 if (!(ceu_read(priv: ceudev, CEU_CSTSR) & CEU_CSTRST_CPTON))
324 break;
325 udelay(1);
326 }
327
328 if (i == 100) {
329 dev_err(ceudev->dev, "soft reset time out\n");
330 return -EIO;
331 }
332
333 for (i = 0; i < 100; i++) {
334 if (!(ceu_read(priv: ceudev, CEU_CAPSR) & CEU_CAPSR_CPKIL))
335 return 0;
336 udelay(1);
337 }
338
339 /* If we get here, CEU has not reset properly. */
340 return -EIO;
341}
342
343/* --- CEU Capture Operations --- */
344
345/*
346 * ceu_hw_config() - Configure CEU interface registers.
347 */
348static int ceu_hw_config(struct ceu_device *ceudev)
349{
350 u32 camcr, cdocr, cfzsr, cdwdr, capwr;
351 struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
352 struct ceu_subdev *ceu_sd = ceudev->sd;
353 struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt;
354 unsigned int mbus_flags = ceu_sd->mbus_flags;
355
356 /* Start configuring CEU registers */
357 ceu_write(priv: ceudev, CEU_CAIFR, data: 0);
358 ceu_write(priv: ceudev, CEU_CFWCR, data: 0);
359 ceu_write(priv: ceudev, CEU_CRCNTR, data: 0);
360 ceu_write(priv: ceudev, CEU_CRCMPR, data: 0);
361
362 /* Set the frame capture period for both image capture and data sync. */
363 capwr = (pix->height << 16) | pix->width * mbus_fmt->bpp / 8;
364
365 /*
366 * Swap input data endianness by default.
367 * In data fetch mode bytes are received in chunks of 8 bytes.
368 * D0, D1, D2, D3, D4, D5, D6, D7 (D0 received first)
369 * The data is however by default written to memory in reverse order:
370 * D7, D6, D5, D4, D3, D2, D1, D0 (D7 written to lowest byte)
371 *
372 * Use CEU_CDOCR[2:0] to swap data ordering.
373 */
374 cdocr = CEU_CDOCR_SWAP_ENDIANNESS;
375
376 /*
377 * Configure CAMCR and CDOCR:
378 * match input components ordering with memory output format and
379 * handle downsampling to YUV420.
380 *
381 * If the memory output planar format is 'swapped' (Cr before Cb) and
382 * input format is not, use the swapped version of CAMCR.DTARY.
383 *
384 * If the memory output planar format is not 'swapped' (Cb before Cr)
385 * and input format is, use the swapped version of CAMCR.DTARY.
386 *
387 * CEU by default downsample to planar YUV420 (CDCOR[4] = 0).
388 * If output is planar YUV422 set CDOCR[4] = 1
389 *
390 * No downsample for data fetch sync mode.
391 */
392 switch (pix->pixelformat) {
393 /* Data fetch sync mode */
394 case V4L2_PIX_FMT_YUYV:
395 case V4L2_PIX_FMT_YVYU:
396 case V4L2_PIX_FMT_UYVY:
397 case V4L2_PIX_FMT_VYUY:
398 camcr = CEU_CAMCR_JPEG;
399 cdocr |= CEU_CDOCR_NO_DOWSAMPLE;
400 cfzsr = (pix->height << 16) | pix->width;
401 cdwdr = pix->plane_fmt[0].bytesperline;
402 break;
403
404 /* Non-swapped planar image capture mode. */
405 case V4L2_PIX_FMT_NV16:
406 cdocr |= CEU_CDOCR_NO_DOWSAMPLE;
407 fallthrough;
408 case V4L2_PIX_FMT_NV12:
409 if (mbus_fmt->swapped)
410 camcr = mbus_fmt->fmt_order_swap;
411 else
412 camcr = mbus_fmt->fmt_order;
413
414 cfzsr = (pix->height << 16) | pix->width;
415 cdwdr = pix->width;
416 break;
417
418 /* Swapped planar image capture mode. */
419 case V4L2_PIX_FMT_NV61:
420 cdocr |= CEU_CDOCR_NO_DOWSAMPLE;
421 fallthrough;
422 case V4L2_PIX_FMT_NV21:
423 if (mbus_fmt->swapped)
424 camcr = mbus_fmt->fmt_order;
425 else
426 camcr = mbus_fmt->fmt_order_swap;
427
428 cfzsr = (pix->height << 16) | pix->width;
429 cdwdr = pix->width;
430 break;
431
432 default:
433 return -EINVAL;
434 }
435
436 camcr |= mbus_flags & V4L2_MBUS_VSYNC_ACTIVE_LOW ? 1 << 1 : 0;
437 camcr |= mbus_flags & V4L2_MBUS_HSYNC_ACTIVE_LOW ? 1 << 0 : 0;
438
439 /* TODO: handle 16 bit bus width with DTIF bit in CAMCR */
440 ceu_write(priv: ceudev, CEU_CAMCR, data: camcr);
441 ceu_write(priv: ceudev, CEU_CDOCR, data: cdocr);
442 ceu_write(priv: ceudev, CEU_CAPCR, CEU_CAPCR_BUS_WIDTH256);
443
444 /*
445 * TODO: make CAMOR offsets configurable.
446 * CAMOR wants to know the number of blanks between a VS/HS signal
447 * and valid data. This value should actually come from the sensor...
448 */
449 ceu_write(priv: ceudev, CEU_CAMOR, data: 0);
450
451 /* TODO: 16 bit bus width require re-calculation of cdwdr and cfzsr */
452 ceu_write(priv: ceudev, CEU_CAPWR, data: capwr);
453 ceu_write(priv: ceudev, CEU_CFSZR, data: cfzsr);
454 ceu_write(priv: ceudev, CEU_CDWDR, data: cdwdr);
455
456 return 0;
457}
458
459/*
460 * ceu_capture() - Trigger start of a capture sequence.
461 *
462 * Program the CEU DMA registers with addresses where to transfer image data.
463 */
464static int ceu_capture(struct ceu_device *ceudev)
465{
466 struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
467 dma_addr_t phys_addr_top;
468
469 phys_addr_top =
470 vb2_dma_contig_plane_dma_addr(vb: &ceudev->active->vb2_buf, plane_no: 0);
471 ceu_write(priv: ceudev, CEU_CDAYR, data: phys_addr_top);
472
473 /* Ignore CbCr plane for non multi-planar image formats. */
474 if (ceu_fmt_mplane(pix)) {
475 phys_addr_top =
476 vb2_dma_contig_plane_dma_addr(vb: &ceudev->active->vb2_buf,
477 plane_no: 1);
478 ceu_write(priv: ceudev, CEU_CDACR, data: phys_addr_top);
479 }
480
481 /*
482 * Trigger new capture start: once for each frame, as we work in
483 * one-frame capture mode.
484 */
485 ceu_write(priv: ceudev, CEU_CAPSR, CEU_CAPSR_CE);
486
487 return 0;
488}
489
490static irqreturn_t ceu_irq(int irq, void *data)
491{
492 struct ceu_device *ceudev = data;
493 struct vb2_v4l2_buffer *vbuf;
494 struct ceu_buffer *buf;
495 u32 status;
496
497 /* Clean interrupt status. */
498 status = ceu_read(priv: ceudev, CEU_CETCR);
499 ceu_write(priv: ceudev, CEU_CETCR, data: ~ceudev->irq_mask);
500
501 /* Unexpected interrupt. */
502 if (!(status & CEU_CEIER_MASK))
503 return IRQ_NONE;
504
505 spin_lock(lock: &ceudev->lock);
506
507 /* Stale interrupt from a released buffer, ignore it. */
508 vbuf = ceudev->active;
509 if (!vbuf) {
510 spin_unlock(lock: &ceudev->lock);
511 return IRQ_HANDLED;
512 }
513
514 /*
515 * When a VBP interrupt occurs, no capture end interrupt will occur
516 * and the image of that frame is not captured correctly.
517 */
518 if (status & CEU_CEIER_VBP) {
519 dev_err(ceudev->dev, "VBP interrupt: abort capture\n");
520 goto error_irq_out;
521 }
522
523 /* Prepare to return the 'previous' buffer. */
524 vbuf->vb2_buf.timestamp = ktime_get_ns();
525 vbuf->sequence = ceudev->sequence++;
526 vbuf->field = ceudev->field;
527
528 /* Prepare a new 'active' buffer and trigger a new capture. */
529 if (!list_empty(head: &ceudev->capture)) {
530 buf = list_first_entry(&ceudev->capture, struct ceu_buffer,
531 queue);
532 list_del(entry: &buf->queue);
533 ceudev->active = &buf->vb;
534
535 ceu_capture(ceudev);
536 }
537
538 /* Return the 'previous' buffer. */
539 vb2_buffer_done(vb: &vbuf->vb2_buf, state: VB2_BUF_STATE_DONE);
540
541 spin_unlock(lock: &ceudev->lock);
542
543 return IRQ_HANDLED;
544
545error_irq_out:
546 /* Return the 'previous' buffer and all queued ones. */
547 vb2_buffer_done(vb: &vbuf->vb2_buf, state: VB2_BUF_STATE_ERROR);
548
549 list_for_each_entry(buf, &ceudev->capture, queue)
550 vb2_buffer_done(vb: &buf->vb.vb2_buf, state: VB2_BUF_STATE_ERROR);
551
552 spin_unlock(lock: &ceudev->lock);
553
554 return IRQ_HANDLED;
555}
556
557/* --- CEU Videobuf2 operations --- */
558
559static void ceu_update_plane_sizes(struct v4l2_plane_pix_format *plane,
560 unsigned int bpl, unsigned int szimage)
561{
562 memset(plane, 0, sizeof(*plane));
563
564 plane->sizeimage = szimage;
565 if (plane->bytesperline < bpl || plane->bytesperline > CEU_MAX_BPL)
566 plane->bytesperline = bpl;
567}
568
569/*
570 * ceu_calc_plane_sizes() - Fill per-plane 'struct v4l2_plane_pix_format'
571 * information according to the currently configured
572 * pixel format.
573 * @ceu_device: CEU device.
574 * @ceu_fmt: Active image format.
575 * @pix: Pixel format information (store line width and image sizes)
576 */
577static void ceu_calc_plane_sizes(struct ceu_device *ceudev,
578 const struct ceu_fmt *ceu_fmt,
579 struct v4l2_pix_format_mplane *pix)
580{
581 unsigned int bpl, szimage;
582
583 switch (pix->pixelformat) {
584 case V4L2_PIX_FMT_YUYV:
585 case V4L2_PIX_FMT_UYVY:
586 case V4L2_PIX_FMT_YVYU:
587 case V4L2_PIX_FMT_VYUY:
588 pix->num_planes = 1;
589 bpl = pix->width * ceu_fmt->bpp / 8;
590 szimage = pix->height * bpl;
591 ceu_update_plane_sizes(plane: &pix->plane_fmt[0], bpl, szimage);
592 break;
593
594 case V4L2_PIX_FMT_NV12:
595 case V4L2_PIX_FMT_NV21:
596 pix->num_planes = 2;
597 bpl = pix->width;
598 szimage = pix->height * pix->width;
599 ceu_update_plane_sizes(plane: &pix->plane_fmt[0], bpl, szimage);
600 ceu_update_plane_sizes(plane: &pix->plane_fmt[1], bpl, szimage: szimage / 2);
601 break;
602
603 case V4L2_PIX_FMT_NV16:
604 case V4L2_PIX_FMT_NV61:
605 default:
606 pix->num_planes = 2;
607 bpl = pix->width;
608 szimage = pix->height * pix->width;
609 ceu_update_plane_sizes(plane: &pix->plane_fmt[0], bpl, szimage);
610 ceu_update_plane_sizes(plane: &pix->plane_fmt[1], bpl, szimage);
611 break;
612 }
613}
614
615/*
616 * ceu_vb2_setup() - is called to check whether the driver can accept the
617 * requested number of buffers and to fill in plane sizes
618 * for the current frame format, if required.
619 */
620static int ceu_vb2_setup(struct vb2_queue *vq, unsigned int *count,
621 unsigned int *num_planes, unsigned int sizes[],
622 struct device *alloc_devs[])
623{
624 struct ceu_device *ceudev = vb2_get_drv_priv(q: vq);
625 struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
626 unsigned int i;
627
628 /* num_planes is set: just check plane sizes. */
629 if (*num_planes) {
630 for (i = 0; i < pix->num_planes; i++)
631 if (sizes[i] < pix->plane_fmt[i].sizeimage)
632 return -EINVAL;
633
634 return 0;
635 }
636
637 /* num_planes not set: called from REQBUFS, just set plane sizes. */
638 *num_planes = pix->num_planes;
639 for (i = 0; i < pix->num_planes; i++)
640 sizes[i] = pix->plane_fmt[i].sizeimage;
641
642 return 0;
643}
644
645static void ceu_vb2_queue(struct vb2_buffer *vb)
646{
647 struct ceu_device *ceudev = vb2_get_drv_priv(q: vb->vb2_queue);
648 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
649 struct ceu_buffer *buf = vb2_to_ceu(vbuf);
650 unsigned long irqflags;
651
652 spin_lock_irqsave(&ceudev->lock, irqflags);
653 list_add_tail(new: &buf->queue, head: &ceudev->capture);
654 spin_unlock_irqrestore(lock: &ceudev->lock, flags: irqflags);
655}
656
657static int ceu_vb2_prepare(struct vb2_buffer *vb)
658{
659 struct ceu_device *ceudev = vb2_get_drv_priv(q: vb->vb2_queue);
660 struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
661 unsigned int i;
662
663 for (i = 0; i < pix->num_planes; i++) {
664 if (vb2_plane_size(vb, plane_no: i) < pix->plane_fmt[i].sizeimage) {
665 dev_err(ceudev->dev,
666 "Plane size too small (%lu < %u)\n",
667 vb2_plane_size(vb, i),
668 pix->plane_fmt[i].sizeimage);
669 return -EINVAL;
670 }
671
672 vb2_set_plane_payload(vb, plane_no: i, size: pix->plane_fmt[i].sizeimage);
673 }
674
675 return 0;
676}
677
678static int ceu_start_streaming(struct vb2_queue *vq, unsigned int count)
679{
680 struct ceu_device *ceudev = vb2_get_drv_priv(q: vq);
681 struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
682 struct ceu_buffer *buf;
683 unsigned long irqflags;
684 int ret;
685
686 /* Program the CEU interface according to the CEU image format. */
687 ret = ceu_hw_config(ceudev);
688 if (ret)
689 goto error_return_bufs;
690
691 ret = v4l2_subdev_call(v4l2_sd, video, s_stream, 1);
692 if (ret && ret != -ENOIOCTLCMD) {
693 dev_dbg(ceudev->dev,
694 "Subdevice failed to start streaming: %d\n", ret);
695 goto error_return_bufs;
696 }
697
698 spin_lock_irqsave(&ceudev->lock, irqflags);
699 ceudev->sequence = 0;
700
701 /* Grab the first available buffer and trigger the first capture. */
702 buf = list_first_entry(&ceudev->capture, struct ceu_buffer,
703 queue);
704
705 list_del(entry: &buf->queue);
706 ceudev->active = &buf->vb;
707
708 /* Clean and program interrupts for first capture. */
709 ceu_write(priv: ceudev, CEU_CETCR, data: ~ceudev->irq_mask);
710 ceu_write(priv: ceudev, CEU_CEIER, CEU_CEIER_MASK);
711
712 ceu_capture(ceudev);
713
714 spin_unlock_irqrestore(lock: &ceudev->lock, flags: irqflags);
715
716 return 0;
717
718error_return_bufs:
719 spin_lock_irqsave(&ceudev->lock, irqflags);
720 list_for_each_entry(buf, &ceudev->capture, queue)
721 vb2_buffer_done(vb: &ceudev->active->vb2_buf,
722 state: VB2_BUF_STATE_QUEUED);
723 ceudev->active = NULL;
724 spin_unlock_irqrestore(lock: &ceudev->lock, flags: irqflags);
725
726 return ret;
727}
728
729static void ceu_stop_streaming(struct vb2_queue *vq)
730{
731 struct ceu_device *ceudev = vb2_get_drv_priv(q: vq);
732 struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
733 struct ceu_buffer *buf;
734 unsigned long irqflags;
735
736 /* Clean and disable interrupt sources. */
737 ceu_write(priv: ceudev, CEU_CETCR,
738 data: ceu_read(priv: ceudev, CEU_CETCR) & ceudev->irq_mask);
739 ceu_write(priv: ceudev, CEU_CEIER, CEU_CEIER_MASK);
740
741 v4l2_subdev_call(v4l2_sd, video, s_stream, 0);
742
743 spin_lock_irqsave(&ceudev->lock, irqflags);
744 if (ceudev->active) {
745 vb2_buffer_done(vb: &ceudev->active->vb2_buf,
746 state: VB2_BUF_STATE_ERROR);
747 ceudev->active = NULL;
748 }
749
750 /* Release all queued buffers. */
751 list_for_each_entry(buf, &ceudev->capture, queue)
752 vb2_buffer_done(vb: &buf->vb.vb2_buf, state: VB2_BUF_STATE_ERROR);
753 INIT_LIST_HEAD(list: &ceudev->capture);
754
755 spin_unlock_irqrestore(lock: &ceudev->lock, flags: irqflags);
756
757 ceu_soft_reset(ceudev);
758}
759
760static const struct vb2_ops ceu_vb2_ops = {
761 .queue_setup = ceu_vb2_setup,
762 .buf_queue = ceu_vb2_queue,
763 .buf_prepare = ceu_vb2_prepare,
764 .wait_prepare = vb2_ops_wait_prepare,
765 .wait_finish = vb2_ops_wait_finish,
766 .start_streaming = ceu_start_streaming,
767 .stop_streaming = ceu_stop_streaming,
768};
769
770/* --- CEU image formats handling --- */
771
772/*
773 * __ceu_try_fmt() - test format on CEU and sensor
774 * @ceudev: The CEU device.
775 * @v4l2_fmt: format to test.
776 * @sd_mbus_code: the media bus code accepted by the subdevice; output param.
777 *
778 * Returns 0 for success, < 0 for errors.
779 */
780static int __ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt,
781 u32 *sd_mbus_code)
782{
783 struct ceu_subdev *ceu_sd = ceudev->sd;
784 struct v4l2_pix_format_mplane *pix = &v4l2_fmt->fmt.pix_mp;
785 struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
786 struct v4l2_subdev_pad_config pad_cfg;
787 struct v4l2_subdev_state pad_state = {
788 .pads = &pad_cfg,
789 };
790 const struct ceu_fmt *ceu_fmt;
791 u32 mbus_code_old;
792 u32 mbus_code;
793 int ret;
794
795 /*
796 * Set format on sensor sub device: bus format used to produce memory
797 * format is selected depending on YUV component ordering or
798 * at initialization time.
799 */
800 struct v4l2_subdev_format sd_format = {
801 .which = V4L2_SUBDEV_FORMAT_TRY,
802 };
803
804 mbus_code_old = ceu_sd->mbus_fmt.mbus_code;
805
806 switch (pix->pixelformat) {
807 case V4L2_PIX_FMT_YUYV:
808 mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
809 break;
810 case V4L2_PIX_FMT_UYVY:
811 mbus_code = MEDIA_BUS_FMT_UYVY8_2X8;
812 break;
813 case V4L2_PIX_FMT_YVYU:
814 mbus_code = MEDIA_BUS_FMT_YVYU8_2X8;
815 break;
816 case V4L2_PIX_FMT_VYUY:
817 mbus_code = MEDIA_BUS_FMT_VYUY8_2X8;
818 break;
819 case V4L2_PIX_FMT_NV16:
820 case V4L2_PIX_FMT_NV61:
821 case V4L2_PIX_FMT_NV12:
822 case V4L2_PIX_FMT_NV21:
823 mbus_code = ceu_sd->mbus_fmt.mbus_code;
824 break;
825
826 default:
827 pix->pixelformat = V4L2_PIX_FMT_NV16;
828 mbus_code = ceu_sd->mbus_fmt.mbus_code;
829 break;
830 }
831
832 ceu_fmt = get_ceu_fmt_from_fourcc(fourcc: pix->pixelformat);
833
834 /* CFSZR requires height and width to be 4-pixel aligned. */
835 v4l_bound_align_image(width: &pix->width, wmin: 2, CEU_MAX_WIDTH, walign: 4,
836 height: &pix->height, hmin: 4, CEU_MAX_HEIGHT, halign: 4, salign: 0);
837
838 v4l2_fill_mbus_format_mplane(mbus_fmt: &sd_format.format, pix_mp_fmt: pix);
839
840 /*
841 * Try with the mbus_code matching YUYV components ordering first,
842 * if that one fails, fallback to default selected at initialization
843 * time.
844 */
845 sd_format.format.code = mbus_code;
846 ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, &pad_state, &sd_format);
847 if (ret) {
848 if (ret == -EINVAL) {
849 /* fallback */
850 sd_format.format.code = mbus_code_old;
851 ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt,
852 &pad_state, &sd_format);
853 }
854
855 if (ret)
856 return ret;
857 }
858
859 /* Apply size returned by sensor as the CEU can't scale. */
860 v4l2_fill_pix_format_mplane(pix_mp_fmt: pix, mbus_fmt: &sd_format.format);
861
862 /* Calculate per-plane sizes based on image format. */
863 ceu_calc_plane_sizes(ceudev, ceu_fmt, pix);
864
865 /* Report to caller the configured mbus format. */
866 *sd_mbus_code = sd_format.format.code;
867
868 return 0;
869}
870
871/*
872 * ceu_try_fmt() - Wrapper for __ceu_try_fmt; discard configured mbus_fmt
873 */
874static int ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt)
875{
876 u32 mbus_code;
877
878 return __ceu_try_fmt(ceudev, v4l2_fmt, sd_mbus_code: &mbus_code);
879}
880
881/*
882 * ceu_set_fmt() - Apply the supplied format to both sensor and CEU
883 */
884static int ceu_set_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt)
885{
886 struct ceu_subdev *ceu_sd = ceudev->sd;
887 struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
888 u32 mbus_code;
889 int ret;
890
891 /*
892 * Set format on sensor sub device: bus format used to produce memory
893 * format is selected at initialization time.
894 */
895 struct v4l2_subdev_format format = {
896 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
897 };
898
899 ret = __ceu_try_fmt(ceudev, v4l2_fmt, sd_mbus_code: &mbus_code);
900 if (ret)
901 return ret;
902
903 format.format.code = mbus_code;
904 v4l2_fill_mbus_format_mplane(mbus_fmt: &format.format, pix_mp_fmt: &v4l2_fmt->fmt.pix_mp);
905 ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, NULL, &format);
906 if (ret)
907 return ret;
908
909 ceudev->v4l2_pix = v4l2_fmt->fmt.pix_mp;
910 ceudev->field = V4L2_FIELD_NONE;
911
912 return 0;
913}
914
915/*
916 * ceu_set_default_fmt() - Apply default NV16 memory output format with VGA
917 * sizes.
918 */
919static int ceu_set_default_fmt(struct ceu_device *ceudev)
920{
921 int ret;
922
923 struct v4l2_format v4l2_fmt = {
924 .type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
925 .fmt.pix_mp = {
926 .width = VGA_WIDTH,
927 .height = VGA_HEIGHT,
928 .field = V4L2_FIELD_NONE,
929 .pixelformat = V4L2_PIX_FMT_NV16,
930 .num_planes = 2,
931 .plane_fmt = {
932 [0] = {
933 .sizeimage = VGA_WIDTH * VGA_HEIGHT * 2,
934 .bytesperline = VGA_WIDTH * 2,
935 },
936 [1] = {
937 .sizeimage = VGA_WIDTH * VGA_HEIGHT * 2,
938 .bytesperline = VGA_WIDTH * 2,
939 },
940 },
941 },
942 };
943
944 ret = ceu_try_fmt(ceudev, v4l2_fmt: &v4l2_fmt);
945 if (ret)
946 return ret;
947
948 ceudev->v4l2_pix = v4l2_fmt.fmt.pix_mp;
949 ceudev->field = V4L2_FIELD_NONE;
950
951 return 0;
952}
953
954/*
955 * ceu_init_mbus_fmt() - Query sensor for supported formats and initialize
956 * CEU media bus format used to produce memory formats.
957 *
958 * Find out if sensor can produce a permutation of 8-bits YUYV bus format.
959 * From a single 8-bits YUYV bus format the CEU can produce several memory
960 * output formats:
961 * - NV[12|21|16|61] through image fetch mode;
962 * - YUYV422 if sensor provides YUYV422
963 *
964 * TODO: Other YUYV422 permutations through data fetch sync mode and DTARY
965 * TODO: Binary data (eg. JPEG) and raw formats through data fetch sync mode
966 */
967static int ceu_init_mbus_fmt(struct ceu_device *ceudev)
968{
969 struct ceu_subdev *ceu_sd = ceudev->sd;
970 struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt;
971 struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
972 bool yuyv_bus_fmt = false;
973
974 struct v4l2_subdev_mbus_code_enum sd_mbus_fmt = {
975 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
976 .index = 0,
977 };
978
979 /* Find out if sensor can produce any permutation of 8-bits YUYV422. */
980 while (!yuyv_bus_fmt &&
981 !v4l2_subdev_call(v4l2_sd, pad, enum_mbus_code,
982 NULL, &sd_mbus_fmt)) {
983 switch (sd_mbus_fmt.code) {
984 case MEDIA_BUS_FMT_YUYV8_2X8:
985 case MEDIA_BUS_FMT_YVYU8_2X8:
986 case MEDIA_BUS_FMT_UYVY8_2X8:
987 case MEDIA_BUS_FMT_VYUY8_2X8:
988 yuyv_bus_fmt = true;
989 break;
990 default:
991 /*
992 * Only support 8-bits YUYV bus formats at the moment;
993 *
994 * TODO: add support for binary formats (data sync
995 * fetch mode).
996 */
997 break;
998 }
999
1000 sd_mbus_fmt.index++;
1001 }
1002
1003 if (!yuyv_bus_fmt)
1004 return -ENXIO;
1005
1006 /*
1007 * Save the first encountered YUYV format as "mbus_fmt" and use it
1008 * to output all planar YUV422 and YUV420 (NV*) formats to memory as
1009 * well as for data synch fetch mode (YUYV - YVYU etc. ).
1010 */
1011 mbus_fmt->mbus_code = sd_mbus_fmt.code;
1012 mbus_fmt->bps = 8;
1013
1014 /* Annotate the selected bus format components ordering. */
1015 switch (sd_mbus_fmt.code) {
1016 case MEDIA_BUS_FMT_YUYV8_2X8:
1017 mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_YUYV;
1018 mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_YVYU;
1019 mbus_fmt->swapped = false;
1020 mbus_fmt->bpp = 16;
1021 break;
1022
1023 case MEDIA_BUS_FMT_YVYU8_2X8:
1024 mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_YVYU;
1025 mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_YUYV;
1026 mbus_fmt->swapped = true;
1027 mbus_fmt->bpp = 16;
1028 break;
1029
1030 case MEDIA_BUS_FMT_UYVY8_2X8:
1031 mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_UYVY;
1032 mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_VYUY;
1033 mbus_fmt->swapped = false;
1034 mbus_fmt->bpp = 16;
1035 break;
1036
1037 case MEDIA_BUS_FMT_VYUY8_2X8:
1038 mbus_fmt->fmt_order = CEU_CAMCR_DTARY_8_VYUY;
1039 mbus_fmt->fmt_order_swap = CEU_CAMCR_DTARY_8_UYVY;
1040 mbus_fmt->swapped = true;
1041 mbus_fmt->bpp = 16;
1042 break;
1043 }
1044
1045 return 0;
1046}
1047
1048/* --- Runtime PM Handlers --- */
1049
1050/*
1051 * ceu_runtime_resume() - soft-reset the interface and turn sensor power on.
1052 */
1053static int __maybe_unused ceu_runtime_resume(struct device *dev)
1054{
1055 struct ceu_device *ceudev = dev_get_drvdata(dev);
1056 struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
1057
1058 v4l2_subdev_call(v4l2_sd, core, s_power, 1);
1059
1060 ceu_soft_reset(ceudev);
1061
1062 return 0;
1063}
1064
1065/*
1066 * ceu_runtime_suspend() - disable capture and interrupts and soft-reset.
1067 * Turn sensor power off.
1068 */
1069static int __maybe_unused ceu_runtime_suspend(struct device *dev)
1070{
1071 struct ceu_device *ceudev = dev_get_drvdata(dev);
1072 struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
1073
1074 v4l2_subdev_call(v4l2_sd, core, s_power, 0);
1075
1076 ceu_write(priv: ceudev, CEU_CEIER, data: 0);
1077 ceu_soft_reset(ceudev);
1078
1079 return 0;
1080}
1081
1082/* --- File Operations --- */
1083
1084static int ceu_open(struct file *file)
1085{
1086 struct ceu_device *ceudev = video_drvdata(file);
1087 int ret;
1088
1089 ret = v4l2_fh_open(filp: file);
1090 if (ret)
1091 return ret;
1092
1093 mutex_lock(&ceudev->mlock);
1094 /* Causes soft-reset and sensor power on on first open */
1095 ret = pm_runtime_resume_and_get(dev: ceudev->dev);
1096 mutex_unlock(lock: &ceudev->mlock);
1097
1098 return ret;
1099}
1100
1101static int ceu_release(struct file *file)
1102{
1103 struct ceu_device *ceudev = video_drvdata(file);
1104
1105 vb2_fop_release(file);
1106
1107 mutex_lock(&ceudev->mlock);
1108 /* Causes soft-reset and sensor power down on last close */
1109 pm_runtime_put(dev: ceudev->dev);
1110 mutex_unlock(lock: &ceudev->mlock);
1111
1112 return 0;
1113}
1114
1115static const struct v4l2_file_operations ceu_fops = {
1116 .owner = THIS_MODULE,
1117 .open = ceu_open,
1118 .release = ceu_release,
1119 .unlocked_ioctl = video_ioctl2,
1120 .mmap = vb2_fop_mmap,
1121 .poll = vb2_fop_poll,
1122};
1123
1124/* --- Video Device IOCTLs --- */
1125
1126static int ceu_querycap(struct file *file, void *priv,
1127 struct v4l2_capability *cap)
1128{
1129 struct ceu_device *ceudev = video_drvdata(file);
1130
1131 strscpy(cap->card, "Renesas CEU", sizeof(cap->card));
1132 strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1133 snprintf(buf: cap->bus_info, size: sizeof(cap->bus_info),
1134 fmt: "platform:renesas-ceu-%s", dev_name(dev: ceudev->dev));
1135
1136 return 0;
1137}
1138
1139static int ceu_enum_fmt_vid_cap(struct file *file, void *priv,
1140 struct v4l2_fmtdesc *f)
1141{
1142 const struct ceu_fmt *fmt;
1143
1144 if (f->index >= ARRAY_SIZE(ceu_fmt_list))
1145 return -EINVAL;
1146
1147 fmt = &ceu_fmt_list[f->index];
1148 f->pixelformat = fmt->fourcc;
1149
1150 return 0;
1151}
1152
1153static int ceu_try_fmt_vid_cap(struct file *file, void *priv,
1154 struct v4l2_format *f)
1155{
1156 struct ceu_device *ceudev = video_drvdata(file);
1157
1158 return ceu_try_fmt(ceudev, v4l2_fmt: f);
1159}
1160
1161static int ceu_s_fmt_vid_cap(struct file *file, void *priv,
1162 struct v4l2_format *f)
1163{
1164 struct ceu_device *ceudev = video_drvdata(file);
1165
1166 if (vb2_is_streaming(q: &ceudev->vb2_vq))
1167 return -EBUSY;
1168
1169 return ceu_set_fmt(ceudev, v4l2_fmt: f);
1170}
1171
1172static int ceu_g_fmt_vid_cap(struct file *file, void *priv,
1173 struct v4l2_format *f)
1174{
1175 struct ceu_device *ceudev = video_drvdata(file);
1176
1177 f->fmt.pix_mp = ceudev->v4l2_pix;
1178
1179 return 0;
1180}
1181
1182static int ceu_enum_input(struct file *file, void *priv,
1183 struct v4l2_input *inp)
1184{
1185 struct ceu_device *ceudev = video_drvdata(file);
1186
1187 if (inp->index >= ceudev->num_sd)
1188 return -EINVAL;
1189
1190 inp->type = V4L2_INPUT_TYPE_CAMERA;
1191 inp->std = 0;
1192 snprintf(buf: inp->name, size: sizeof(inp->name), fmt: "Camera %u", inp->index);
1193
1194 return 0;
1195}
1196
1197static int ceu_g_input(struct file *file, void *priv, unsigned int *i)
1198{
1199 struct ceu_device *ceudev = video_drvdata(file);
1200
1201 *i = ceudev->sd_index;
1202
1203 return 0;
1204}
1205
1206static int ceu_s_input(struct file *file, void *priv, unsigned int i)
1207{
1208 struct ceu_device *ceudev = video_drvdata(file);
1209 struct ceu_subdev *ceu_sd_old;
1210 int ret;
1211
1212 if (i >= ceudev->num_sd)
1213 return -EINVAL;
1214
1215 if (vb2_is_streaming(q: &ceudev->vb2_vq))
1216 return -EBUSY;
1217
1218 if (i == ceudev->sd_index)
1219 return 0;
1220
1221 ceu_sd_old = ceudev->sd;
1222 ceudev->sd = ceudev->subdevs[i];
1223
1224 /*
1225 * Make sure we can generate output image formats and apply
1226 * default one.
1227 */
1228 ret = ceu_init_mbus_fmt(ceudev);
1229 if (ret) {
1230 ceudev->sd = ceu_sd_old;
1231 return -EINVAL;
1232 }
1233
1234 ret = ceu_set_default_fmt(ceudev);
1235 if (ret) {
1236 ceudev->sd = ceu_sd_old;
1237 return -EINVAL;
1238 }
1239
1240 /* Now that we're sure we can use the sensor, power off the old one. */
1241 v4l2_subdev_call(ceu_sd_old->v4l2_sd, core, s_power, 0);
1242 v4l2_subdev_call(ceudev->sd->v4l2_sd, core, s_power, 1);
1243
1244 ceudev->sd_index = i;
1245
1246 return 0;
1247}
1248
1249static int ceu_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
1250{
1251 struct ceu_device *ceudev = video_drvdata(file);
1252
1253 return v4l2_g_parm_cap(vdev: video_devdata(file), sd: ceudev->sd->v4l2_sd, a);
1254}
1255
1256static int ceu_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
1257{
1258 struct ceu_device *ceudev = video_drvdata(file);
1259
1260 return v4l2_s_parm_cap(vdev: video_devdata(file), sd: ceudev->sd->v4l2_sd, a);
1261}
1262
1263static int ceu_enum_framesizes(struct file *file, void *fh,
1264 struct v4l2_frmsizeenum *fsize)
1265{
1266 struct ceu_device *ceudev = video_drvdata(file);
1267 struct ceu_subdev *ceu_sd = ceudev->sd;
1268 const struct ceu_fmt *ceu_fmt;
1269 struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
1270 int ret;
1271
1272 struct v4l2_subdev_frame_size_enum fse = {
1273 .code = ceu_sd->mbus_fmt.mbus_code,
1274 .index = fsize->index,
1275 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
1276 };
1277
1278 /* Just check if user supplied pixel format is supported. */
1279 ceu_fmt = get_ceu_fmt_from_fourcc(fourcc: fsize->pixel_format);
1280 if (!ceu_fmt)
1281 return -EINVAL;
1282
1283 ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_size,
1284 NULL, &fse);
1285 if (ret)
1286 return ret;
1287
1288 fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1289 fsize->discrete.width = CEU_W_MAX(fse.max_width);
1290 fsize->discrete.height = CEU_H_MAX(fse.max_height);
1291
1292 return 0;
1293}
1294
1295static int ceu_enum_frameintervals(struct file *file, void *fh,
1296 struct v4l2_frmivalenum *fival)
1297{
1298 struct ceu_device *ceudev = video_drvdata(file);
1299 struct ceu_subdev *ceu_sd = ceudev->sd;
1300 const struct ceu_fmt *ceu_fmt;
1301 struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
1302 int ret;
1303
1304 struct v4l2_subdev_frame_interval_enum fie = {
1305 .code = ceu_sd->mbus_fmt.mbus_code,
1306 .index = fival->index,
1307 .width = fival->width,
1308 .height = fival->height,
1309 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
1310 };
1311
1312 /* Just check if user supplied pixel format is supported. */
1313 ceu_fmt = get_ceu_fmt_from_fourcc(fourcc: fival->pixel_format);
1314 if (!ceu_fmt)
1315 return -EINVAL;
1316
1317 ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_interval, NULL,
1318 &fie);
1319 if (ret)
1320 return ret;
1321
1322 fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1323 fival->discrete = fie.interval;
1324
1325 return 0;
1326}
1327
1328static const struct v4l2_ioctl_ops ceu_ioctl_ops = {
1329 .vidioc_querycap = ceu_querycap,
1330
1331 .vidioc_enum_fmt_vid_cap = ceu_enum_fmt_vid_cap,
1332 .vidioc_try_fmt_vid_cap_mplane = ceu_try_fmt_vid_cap,
1333 .vidioc_s_fmt_vid_cap_mplane = ceu_s_fmt_vid_cap,
1334 .vidioc_g_fmt_vid_cap_mplane = ceu_g_fmt_vid_cap,
1335
1336 .vidioc_enum_input = ceu_enum_input,
1337 .vidioc_g_input = ceu_g_input,
1338 .vidioc_s_input = ceu_s_input,
1339
1340 .vidioc_reqbufs = vb2_ioctl_reqbufs,
1341 .vidioc_querybuf = vb2_ioctl_querybuf,
1342 .vidioc_qbuf = vb2_ioctl_qbuf,
1343 .vidioc_expbuf = vb2_ioctl_expbuf,
1344 .vidioc_dqbuf = vb2_ioctl_dqbuf,
1345 .vidioc_create_bufs = vb2_ioctl_create_bufs,
1346 .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1347 .vidioc_streamon = vb2_ioctl_streamon,
1348 .vidioc_streamoff = vb2_ioctl_streamoff,
1349
1350 .vidioc_g_parm = ceu_g_parm,
1351 .vidioc_s_parm = ceu_s_parm,
1352 .vidioc_enum_framesizes = ceu_enum_framesizes,
1353 .vidioc_enum_frameintervals = ceu_enum_frameintervals,
1354
1355 .vidioc_log_status = v4l2_ctrl_log_status,
1356 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1357 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1358};
1359
1360/*
1361 * ceu_vdev_release() - release CEU video device memory when last reference
1362 * to this driver is closed
1363 */
1364static void ceu_vdev_release(struct video_device *vdev)
1365{
1366 struct ceu_device *ceudev = video_get_drvdata(vdev);
1367
1368 kfree(objp: ceudev);
1369}
1370
1371static int ceu_notify_bound(struct v4l2_async_notifier *notifier,
1372 struct v4l2_subdev *v4l2_sd,
1373 struct v4l2_async_connection *asd)
1374{
1375 struct v4l2_device *v4l2_dev = notifier->v4l2_dev;
1376 struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev);
1377 struct ceu_subdev *ceu_sd = to_ceu_subdev(asd);
1378
1379 ceu_sd->v4l2_sd = v4l2_sd;
1380 ceudev->num_sd++;
1381
1382 return 0;
1383}
1384
1385static int ceu_notify_complete(struct v4l2_async_notifier *notifier)
1386{
1387 struct v4l2_device *v4l2_dev = notifier->v4l2_dev;
1388 struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev);
1389 struct video_device *vdev = &ceudev->vdev;
1390 struct vb2_queue *q = &ceudev->vb2_vq;
1391 struct v4l2_subdev *v4l2_sd;
1392 int ret;
1393
1394 /* Initialize vb2 queue. */
1395 q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1396 q->io_modes = VB2_MMAP | VB2_DMABUF;
1397 q->drv_priv = ceudev;
1398 q->ops = &ceu_vb2_ops;
1399 q->mem_ops = &vb2_dma_contig_memops;
1400 q->buf_struct_size = sizeof(struct ceu_buffer);
1401 q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1402 q->min_queued_buffers = 2;
1403 q->lock = &ceudev->mlock;
1404 q->dev = ceudev->v4l2_dev.dev;
1405
1406 ret = vb2_queue_init(q);
1407 if (ret)
1408 return ret;
1409
1410 /*
1411 * Make sure at least one sensor is primary and use it to initialize
1412 * ceu formats.
1413 */
1414 if (!ceudev->sd) {
1415 ceudev->sd = ceudev->subdevs[0];
1416 ceudev->sd_index = 0;
1417 }
1418
1419 v4l2_sd = ceudev->sd->v4l2_sd;
1420
1421 ret = ceu_init_mbus_fmt(ceudev);
1422 if (ret)
1423 return ret;
1424
1425 ret = ceu_set_default_fmt(ceudev);
1426 if (ret)
1427 return ret;
1428
1429 /* Register the video device. */
1430 strscpy(vdev->name, DRIVER_NAME, sizeof(vdev->name));
1431 vdev->v4l2_dev = v4l2_dev;
1432 vdev->lock = &ceudev->mlock;
1433 vdev->queue = &ceudev->vb2_vq;
1434 vdev->ctrl_handler = v4l2_sd->ctrl_handler;
1435 vdev->fops = &ceu_fops;
1436 vdev->ioctl_ops = &ceu_ioctl_ops;
1437 vdev->release = ceu_vdev_release;
1438 vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1439 V4L2_CAP_STREAMING;
1440 video_set_drvdata(vdev, data: ceudev);
1441
1442 ret = video_register_device(vdev, type: VFL_TYPE_VIDEO, nr: -1);
1443 if (ret < 0) {
1444 v4l2_err(vdev->v4l2_dev,
1445 "video_register_device failed: %d\n", ret);
1446 return ret;
1447 }
1448
1449 return 0;
1450}
1451
1452static const struct v4l2_async_notifier_operations ceu_notify_ops = {
1453 .bound = ceu_notify_bound,
1454 .complete = ceu_notify_complete,
1455};
1456
1457/*
1458 * ceu_init_async_subdevs() - Initialize CEU subdevices and async_subdevs in
1459 * ceu device. Both DT and platform data parsing use
1460 * this routine.
1461 *
1462 * Returns 0 for success, -ENOMEM for failure.
1463 */
1464static int ceu_init_async_subdevs(struct ceu_device *ceudev, unsigned int n_sd)
1465{
1466 /* Reserve memory for 'n_sd' ceu_subdev descriptors. */
1467 ceudev->subdevs = devm_kcalloc(dev: ceudev->dev, n: n_sd,
1468 size: sizeof(*ceudev->subdevs), GFP_KERNEL);
1469 if (!ceudev->subdevs)
1470 return -ENOMEM;
1471
1472 ceudev->sd = NULL;
1473 ceudev->sd_index = 0;
1474 ceudev->num_sd = 0;
1475
1476 return 0;
1477}
1478
1479/*
1480 * ceu_parse_platform_data() - Initialize async_subdevices using platform
1481 * device provided data.
1482 */
1483static int ceu_parse_platform_data(struct ceu_device *ceudev,
1484 const struct ceu_platform_data *pdata)
1485{
1486 const struct ceu_async_subdev *async_sd;
1487 struct ceu_subdev *ceu_sd;
1488 unsigned int i;
1489 int ret;
1490
1491 if (pdata->num_subdevs == 0)
1492 return -ENODEV;
1493
1494 ret = ceu_init_async_subdevs(ceudev, n_sd: pdata->num_subdevs);
1495 if (ret)
1496 return ret;
1497
1498 for (i = 0; i < pdata->num_subdevs; i++) {
1499
1500 /* Setup the ceu subdevice and the async subdevice. */
1501 async_sd = &pdata->subdevs[i];
1502 ceu_sd = v4l2_async_nf_add_i2c(&ceudev->notifier,
1503 async_sd->i2c_adapter_id,
1504 async_sd->i2c_address,
1505 struct ceu_subdev);
1506 if (IS_ERR(ptr: ceu_sd)) {
1507 v4l2_async_nf_cleanup(notifier: &ceudev->notifier);
1508 return PTR_ERR(ptr: ceu_sd);
1509 }
1510 ceu_sd->mbus_flags = async_sd->flags;
1511 ceudev->subdevs[i] = ceu_sd;
1512 }
1513
1514 return pdata->num_subdevs;
1515}
1516
1517/*
1518 * ceu_parse_dt() - Initialize async_subdevs parsing device tree graph.
1519 */
1520static int ceu_parse_dt(struct ceu_device *ceudev)
1521{
1522 struct device_node *of = ceudev->dev->of_node;
1523 struct device_node *ep;
1524 struct ceu_subdev *ceu_sd;
1525 unsigned int i;
1526 int num_ep;
1527 int ret;
1528
1529 num_ep = of_graph_get_endpoint_count(np: of);
1530 if (!num_ep)
1531 return -ENODEV;
1532
1533 ret = ceu_init_async_subdevs(ceudev, n_sd: num_ep);
1534 if (ret)
1535 return ret;
1536
1537 for (i = 0; i < num_ep; i++) {
1538 struct v4l2_fwnode_endpoint fw_ep = {
1539 .bus_type = V4L2_MBUS_PARALLEL,
1540 .bus = {
1541 .parallel = {
1542 .flags = V4L2_MBUS_HSYNC_ACTIVE_HIGH |
1543 V4L2_MBUS_VSYNC_ACTIVE_HIGH,
1544 .bus_width = 8,
1545 },
1546 },
1547 };
1548
1549 ep = of_graph_get_endpoint_by_regs(parent: of, port_reg: 0, reg: i);
1550 if (!ep) {
1551 dev_err(ceudev->dev,
1552 "No subdevice connected on endpoint %u.\n", i);
1553 ret = -ENODEV;
1554 goto error_cleanup;
1555 }
1556
1557 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), vep: &fw_ep);
1558 if (ret) {
1559 dev_err(ceudev->dev,
1560 "Unable to parse endpoint #%u: %d.\n", i, ret);
1561 goto error_cleanup;
1562 }
1563
1564 /* Setup the ceu subdevice and the async subdevice. */
1565 ceu_sd = v4l2_async_nf_add_fwnode_remote(&ceudev->notifier,
1566 of_fwnode_handle(ep),
1567 struct ceu_subdev);
1568 if (IS_ERR(ptr: ceu_sd)) {
1569 ret = PTR_ERR(ptr: ceu_sd);
1570 goto error_cleanup;
1571 }
1572 ceu_sd->mbus_flags = fw_ep.bus.parallel.flags;
1573 ceudev->subdevs[i] = ceu_sd;
1574
1575 of_node_put(node: ep);
1576 }
1577
1578 return num_ep;
1579
1580error_cleanup:
1581 v4l2_async_nf_cleanup(notifier: &ceudev->notifier);
1582 of_node_put(node: ep);
1583 return ret;
1584}
1585
1586/*
1587 * struct ceu_data - Platform specific CEU data
1588 * @irq_mask: CETCR mask with all interrupt sources enabled. The mask differs
1589 * between SH4 and RZ platforms.
1590 */
1591struct ceu_data {
1592 u32 irq_mask;
1593};
1594
1595static const struct ceu_data ceu_data_sh4 = {
1596 .irq_mask = CEU_CETCR_ALL_IRQS_SH4,
1597};
1598
1599#if IS_ENABLED(CONFIG_OF)
1600static const struct ceu_data ceu_data_rz = {
1601 .irq_mask = CEU_CETCR_ALL_IRQS_RZ,
1602};
1603
1604static const struct of_device_id ceu_of_match[] = {
1605 { .compatible = "renesas,r7s72100-ceu", .data = &ceu_data_rz },
1606 { .compatible = "renesas,r8a7740-ceu", .data = &ceu_data_rz },
1607 { }
1608};
1609MODULE_DEVICE_TABLE(of, ceu_of_match);
1610#endif
1611
1612static int ceu_probe(struct platform_device *pdev)
1613{
1614 struct device *dev = &pdev->dev;
1615 const struct ceu_data *ceu_data;
1616 struct ceu_device *ceudev;
1617 unsigned int irq;
1618 int num_subdevs;
1619 int ret;
1620
1621 ceudev = kzalloc(size: sizeof(*ceudev), GFP_KERNEL);
1622 if (!ceudev)
1623 return -ENOMEM;
1624
1625 platform_set_drvdata(pdev, data: ceudev);
1626 ceudev->dev = dev;
1627
1628 INIT_LIST_HEAD(list: &ceudev->capture);
1629 spin_lock_init(&ceudev->lock);
1630 mutex_init(&ceudev->mlock);
1631
1632 ceudev->base = devm_platform_ioremap_resource(pdev, index: 0);
1633 if (IS_ERR(ptr: ceudev->base)) {
1634 ret = PTR_ERR(ptr: ceudev->base);
1635 goto error_free_ceudev;
1636 }
1637
1638 ret = platform_get_irq(pdev, 0);
1639 if (ret < 0)
1640 goto error_free_ceudev;
1641 irq = ret;
1642
1643 ret = devm_request_irq(dev, irq, handler: ceu_irq,
1644 irqflags: 0, devname: dev_name(dev), dev_id: ceudev);
1645 if (ret) {
1646 dev_err(&pdev->dev, "Unable to request CEU interrupt.\n");
1647 goto error_free_ceudev;
1648 }
1649
1650 pm_runtime_enable(dev);
1651
1652 ret = v4l2_device_register(dev, v4l2_dev: &ceudev->v4l2_dev);
1653 if (ret)
1654 goto error_pm_disable;
1655
1656 v4l2_async_nf_init(notifier: &ceudev->notifier, v4l2_dev: &ceudev->v4l2_dev);
1657
1658 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1659 ceu_data = of_device_get_match_data(dev);
1660 num_subdevs = ceu_parse_dt(ceudev);
1661 } else if (dev->platform_data) {
1662 /* Assume SH4 if booting with platform data. */
1663 ceu_data = &ceu_data_sh4;
1664 num_subdevs = ceu_parse_platform_data(ceudev,
1665 pdata: dev->platform_data);
1666 } else {
1667 num_subdevs = -EINVAL;
1668 }
1669
1670 if (num_subdevs < 0) {
1671 ret = num_subdevs;
1672 goto error_v4l2_unregister;
1673 }
1674 ceudev->irq_mask = ceu_data->irq_mask;
1675
1676 ceudev->notifier.v4l2_dev = &ceudev->v4l2_dev;
1677 ceudev->notifier.ops = &ceu_notify_ops;
1678 ret = v4l2_async_nf_register(notifier: &ceudev->notifier);
1679 if (ret)
1680 goto error_cleanup;
1681
1682 dev_info(dev, "Renesas Capture Engine Unit %s\n", dev_name(dev));
1683
1684 return 0;
1685
1686error_cleanup:
1687 v4l2_async_nf_cleanup(notifier: &ceudev->notifier);
1688error_v4l2_unregister:
1689 v4l2_device_unregister(v4l2_dev: &ceudev->v4l2_dev);
1690error_pm_disable:
1691 pm_runtime_disable(dev);
1692error_free_ceudev:
1693 kfree(objp: ceudev);
1694
1695 return ret;
1696}
1697
1698static void ceu_remove(struct platform_device *pdev)
1699{
1700 struct ceu_device *ceudev = platform_get_drvdata(pdev);
1701
1702 pm_runtime_disable(dev: ceudev->dev);
1703
1704 v4l2_async_nf_unregister(notifier: &ceudev->notifier);
1705
1706 v4l2_async_nf_cleanup(notifier: &ceudev->notifier);
1707
1708 v4l2_device_unregister(v4l2_dev: &ceudev->v4l2_dev);
1709
1710 video_unregister_device(vdev: &ceudev->vdev);
1711}
1712
1713static const struct dev_pm_ops ceu_pm_ops = {
1714 SET_RUNTIME_PM_OPS(ceu_runtime_suspend,
1715 ceu_runtime_resume,
1716 NULL)
1717};
1718
1719static struct platform_driver ceu_driver = {
1720 .driver = {
1721 .name = DRIVER_NAME,
1722 .pm = &ceu_pm_ops,
1723 .of_match_table = of_match_ptr(ceu_of_match),
1724 },
1725 .probe = ceu_probe,
1726 .remove_new = ceu_remove,
1727};
1728
1729module_platform_driver(ceu_driver);
1730
1731MODULE_DESCRIPTION("Renesas CEU camera driver");
1732MODULE_AUTHOR("Jacopo Mondi <jacopo+renesas@jmondi.org>");
1733MODULE_LICENSE("GPL v2");
1734

source code of linux/drivers/media/platform/renesas/renesas-ceu.c