1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2003-2022, Intel Corporation. All rights reserved.
4 * Intel Management Engine Interface (Intel MEI) Linux driver
5 */
6
7#include <linux/pci.h>
8
9#include <linux/kthread.h>
10#include <linux/interrupt.h>
11#include <linux/pm_runtime.h>
12#include <linux/sizes.h>
13#include <linux/delay.h>
14
15#include "mei_dev.h"
16#include "hbm.h"
17
18#include "hw-me.h"
19#include "hw-me-regs.h"
20
21#include "mei-trace.h"
22
23/**
24 * mei_me_reg_read - Reads 32bit data from the mei device
25 *
26 * @hw: the me hardware structure
27 * @offset: offset from which to read the data
28 *
29 * Return: register value (u32)
30 */
31static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
32 unsigned long offset)
33{
34 return ioread32(hw->mem_addr + offset);
35}
36
37
38/**
39 * mei_me_reg_write - Writes 32bit data to the mei device
40 *
41 * @hw: the me hardware structure
42 * @offset: offset from which to write the data
43 * @value: register value to write (u32)
44 */
45static inline void mei_me_reg_write(const struct mei_me_hw *hw,
46 unsigned long offset, u32 value)
47{
48 iowrite32(value, hw->mem_addr + offset);
49}
50
51/**
52 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
53 * read window register
54 *
55 * @dev: the device structure
56 *
57 * Return: ME_CB_RW register value (u32)
58 */
59static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
60{
61 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
62}
63
64/**
65 * mei_me_hcbww_write - write 32bit data to the host circular buffer
66 *
67 * @dev: the device structure
68 * @data: 32bit data to be written to the host circular buffer
69 */
70static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
71{
72 mei_me_reg_write(to_me_hw(dev), H_CB_WW, value: data);
73}
74
75/**
76 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
77 *
78 * @dev: the device structure
79 *
80 * Return: ME_CSR_HA register value (u32)
81 */
82static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
83{
84 u32 reg;
85
86 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
87 trace_mei_reg_read(dev: dev->dev, reg: "ME_CSR_HA", ME_CSR_HA, val: reg);
88
89 return reg;
90}
91
92/**
93 * mei_hcsr_read - Reads 32bit data from the host CSR
94 *
95 * @dev: the device structure
96 *
97 * Return: H_CSR register value (u32)
98 */
99static inline u32 mei_hcsr_read(const struct mei_device *dev)
100{
101 u32 reg;
102
103 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
104 trace_mei_reg_read(dev: dev->dev, reg: "H_CSR", H_CSR, val: reg);
105
106 return reg;
107}
108
109/**
110 * mei_hcsr_write - writes H_CSR register to the mei device
111 *
112 * @dev: the device structure
113 * @reg: new register value
114 */
115static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
116{
117 trace_mei_reg_write(dev: dev->dev, reg: "H_CSR", H_CSR, val: reg);
118 mei_me_reg_write(to_me_hw(dev), H_CSR, value: reg);
119}
120
121/**
122 * mei_hcsr_set - writes H_CSR register to the mei device,
123 * and ignores the H_IS bit for it is write-one-to-zero.
124 *
125 * @dev: the device structure
126 * @reg: new register value
127 */
128static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
129{
130 reg &= ~H_CSR_IS_MASK;
131 mei_hcsr_write(dev, reg);
132}
133
134/**
135 * mei_hcsr_set_hig - set host interrupt (set H_IG)
136 *
137 * @dev: the device structure
138 */
139static inline void mei_hcsr_set_hig(struct mei_device *dev)
140{
141 u32 hcsr;
142
143 hcsr = mei_hcsr_read(dev) | H_IG;
144 mei_hcsr_set(dev, reg: hcsr);
145}
146
147/**
148 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
149 *
150 * @dev: the device structure
151 *
152 * Return: H_D0I3C register value (u32)
153 */
154static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
155{
156 u32 reg;
157
158 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
159 trace_mei_reg_read(dev: dev->dev, reg: "H_D0I3C", H_D0I3C, val: reg);
160
161 return reg;
162}
163
164/**
165 * mei_me_d0i3c_write - writes H_D0I3C register to device
166 *
167 * @dev: the device structure
168 * @reg: new register value
169 */
170static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
171{
172 trace_mei_reg_write(dev: dev->dev, reg: "H_D0I3C", H_D0I3C, val: reg);
173 mei_me_reg_write(to_me_hw(dev), H_D0I3C, value: reg);
174}
175
176/**
177 * mei_me_trc_status - read trc status register
178 *
179 * @dev: mei device
180 * @trc: trc status register value
181 *
182 * Return: 0 on success, error otherwise
183 */
184static int mei_me_trc_status(struct mei_device *dev, u32 *trc)
185{
186 struct mei_me_hw *hw = to_me_hw(dev);
187
188 if (!hw->cfg->hw_trc_supported)
189 return -EOPNOTSUPP;
190
191 *trc = mei_me_reg_read(hw, ME_TRC);
192 trace_mei_reg_read(dev: dev->dev, reg: "ME_TRC", ME_TRC, val: *trc);
193
194 return 0;
195}
196
197/**
198 * mei_me_fw_status - read fw status register from pci config space
199 *
200 * @dev: mei device
201 * @fw_status: fw status register values
202 *
203 * Return: 0 on success, error otherwise
204 */
205static int mei_me_fw_status(struct mei_device *dev,
206 struct mei_fw_status *fw_status)
207{
208 struct mei_me_hw *hw = to_me_hw(dev);
209 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
210 int ret;
211 int i;
212
213 if (!fw_status || !hw->read_fws)
214 return -EINVAL;
215
216 fw_status->count = fw_src->count;
217 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
218 ret = hw->read_fws(dev, fw_src->status[i],
219 &fw_status->status[i]);
220 trace_mei_pci_cfg_read(dev: dev->dev, reg: "PCI_CFG_HFS_X",
221 offs: fw_src->status[i],
222 val: fw_status->status[i]);
223 if (ret)
224 return ret;
225 }
226
227 return 0;
228}
229
230/**
231 * mei_me_hw_config - configure hw dependent settings
232 *
233 * @dev: mei device
234 *
235 * Return:
236 * * -EINVAL when read_fws is not set
237 * * 0 on success
238 *
239 */
240static int mei_me_hw_config(struct mei_device *dev)
241{
242 struct mei_me_hw *hw = to_me_hw(dev);
243 u32 hcsr, reg;
244
245 if (WARN_ON(!hw->read_fws))
246 return -EINVAL;
247
248 /* Doesn't change in runtime */
249 hcsr = mei_hcsr_read(dev);
250 hw->hbuf_depth = (hcsr & H_CBD) >> 24;
251
252 reg = 0;
253 hw->read_fws(dev, PCI_CFG_HFS_1, &reg);
254 trace_mei_pci_cfg_read(dev: dev->dev, reg: "PCI_CFG_HFS_1", PCI_CFG_HFS_1, val: reg);
255 hw->d0i3_supported =
256 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
257
258 hw->pg_state = MEI_PG_OFF;
259 if (hw->d0i3_supported) {
260 reg = mei_me_d0i3c_read(dev);
261 if (reg & H_D0I3C_I3)
262 hw->pg_state = MEI_PG_ON;
263 }
264
265 return 0;
266}
267
268/**
269 * mei_me_pg_state - translate internal pg state
270 * to the mei power gating state
271 *
272 * @dev: mei device
273 *
274 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
275 */
276static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
277{
278 struct mei_me_hw *hw = to_me_hw(dev);
279
280 return hw->pg_state;
281}
282
283static inline u32 me_intr_src(u32 hcsr)
284{
285 return hcsr & H_CSR_IS_MASK;
286}
287
288/**
289 * me_intr_disable - disables mei device interrupts
290 * using supplied hcsr register value.
291 *
292 * @dev: the device structure
293 * @hcsr: supplied hcsr register value
294 */
295static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
296{
297 hcsr &= ~H_CSR_IE_MASK;
298 mei_hcsr_set(dev, reg: hcsr);
299}
300
301/**
302 * me_intr_clear - clear and stop interrupts
303 *
304 * @dev: the device structure
305 * @hcsr: supplied hcsr register value
306 */
307static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
308{
309 if (me_intr_src(hcsr))
310 mei_hcsr_write(dev, reg: hcsr);
311}
312
313/**
314 * mei_me_intr_clear - clear and stop interrupts
315 *
316 * @dev: the device structure
317 */
318static void mei_me_intr_clear(struct mei_device *dev)
319{
320 u32 hcsr = mei_hcsr_read(dev);
321
322 me_intr_clear(dev, hcsr);
323}
324/**
325 * mei_me_intr_enable - enables mei device interrupts
326 *
327 * @dev: the device structure
328 */
329static void mei_me_intr_enable(struct mei_device *dev)
330{
331 u32 hcsr;
332
333 if (mei_me_hw_use_polling(to_me_hw(dev)))
334 return;
335
336 hcsr = mei_hcsr_read(dev) | H_CSR_IE_MASK;
337 mei_hcsr_set(dev, reg: hcsr);
338}
339
340/**
341 * mei_me_intr_disable - disables mei device interrupts
342 *
343 * @dev: the device structure
344 */
345static void mei_me_intr_disable(struct mei_device *dev)
346{
347 u32 hcsr = mei_hcsr_read(dev);
348
349 me_intr_disable(dev, hcsr);
350}
351
352/**
353 * mei_me_synchronize_irq - wait for pending IRQ handlers
354 *
355 * @dev: the device structure
356 */
357static void mei_me_synchronize_irq(struct mei_device *dev)
358{
359 struct mei_me_hw *hw = to_me_hw(dev);
360
361 if (mei_me_hw_use_polling(hw))
362 return;
363
364 synchronize_irq(irq: hw->irq);
365}
366
367/**
368 * mei_me_hw_reset_release - release device from the reset
369 *
370 * @dev: the device structure
371 */
372static void mei_me_hw_reset_release(struct mei_device *dev)
373{
374 u32 hcsr = mei_hcsr_read(dev);
375
376 hcsr |= H_IG;
377 hcsr &= ~H_RST;
378 mei_hcsr_set(dev, reg: hcsr);
379}
380
381/**
382 * mei_me_host_set_ready - enable device
383 *
384 * @dev: mei device
385 */
386static void mei_me_host_set_ready(struct mei_device *dev)
387{
388 u32 hcsr = mei_hcsr_read(dev);
389
390 if (!mei_me_hw_use_polling(to_me_hw(dev)))
391 hcsr |= H_CSR_IE_MASK;
392
393 hcsr |= H_IG | H_RDY;
394 mei_hcsr_set(dev, reg: hcsr);
395}
396
397/**
398 * mei_me_host_is_ready - check whether the host has turned ready
399 *
400 * @dev: mei device
401 * Return: bool
402 */
403static bool mei_me_host_is_ready(struct mei_device *dev)
404{
405 u32 hcsr = mei_hcsr_read(dev);
406
407 return (hcsr & H_RDY) == H_RDY;
408}
409
410/**
411 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
412 *
413 * @dev: mei device
414 * Return: bool
415 */
416static bool mei_me_hw_is_ready(struct mei_device *dev)
417{
418 u32 mecsr = mei_me_mecsr_read(dev);
419
420 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
421}
422
423/**
424 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
425 *
426 * @dev: mei device
427 * Return: bool
428 */
429static bool mei_me_hw_is_resetting(struct mei_device *dev)
430{
431 u32 mecsr = mei_me_mecsr_read(dev);
432
433 return (mecsr & ME_RST_HRA) == ME_RST_HRA;
434}
435
436/**
437 * mei_gsc_pxp_check - check for gsc firmware entering pxp mode
438 *
439 * @dev: the device structure
440 */
441static void mei_gsc_pxp_check(struct mei_device *dev)
442{
443 struct mei_me_hw *hw = to_me_hw(dev);
444 u32 fwsts5 = 0;
445
446 if (!kind_is_gsc(dev) && !kind_is_gscfi(dev))
447 return;
448
449 hw->read_fws(dev, PCI_CFG_HFS_5, &fwsts5);
450 trace_mei_pci_cfg_read(dev: dev->dev, reg: "PCI_CFG_HFS_5", PCI_CFG_HFS_5, val: fwsts5);
451
452 if ((fwsts5 & GSC_CFG_HFS_5_BOOT_TYPE_MSK) == GSC_CFG_HFS_5_BOOT_TYPE_PXP) {
453 if (dev->gsc_reset_to_pxp == MEI_DEV_RESET_TO_PXP_DEFAULT)
454 dev->gsc_reset_to_pxp = MEI_DEV_RESET_TO_PXP_PERFORMED;
455 } else {
456 dev->gsc_reset_to_pxp = MEI_DEV_RESET_TO_PXP_DEFAULT;
457 }
458
459 if (dev->pxp_mode == MEI_DEV_PXP_DEFAULT)
460 return;
461
462 if ((fwsts5 & GSC_CFG_HFS_5_BOOT_TYPE_MSK) == GSC_CFG_HFS_5_BOOT_TYPE_PXP) {
463 dev_dbg(dev->dev, "pxp mode is ready 0x%08x\n", fwsts5);
464 dev->pxp_mode = MEI_DEV_PXP_READY;
465 } else {
466 dev_dbg(dev->dev, "pxp mode is not ready 0x%08x\n", fwsts5);
467 }
468}
469
470/**
471 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
472 * or timeout is reached
473 *
474 * @dev: mei device
475 * Return: 0 on success, error otherwise
476 */
477static int mei_me_hw_ready_wait(struct mei_device *dev)
478{
479 mutex_unlock(lock: &dev->device_lock);
480 wait_event_timeout(dev->wait_hw_ready,
481 dev->recvd_hw_ready,
482 dev->timeouts.hw_ready);
483 mutex_lock(&dev->device_lock);
484 if (!dev->recvd_hw_ready) {
485 dev_err(dev->dev, "wait hw ready failed\n");
486 return -ETIME;
487 }
488
489 mei_gsc_pxp_check(dev);
490
491 mei_me_hw_reset_release(dev);
492 dev->recvd_hw_ready = false;
493 return 0;
494}
495
496/**
497 * mei_me_check_fw_reset - check for the firmware reset error and exception conditions
498 *
499 * @dev: mei device
500 */
501static void mei_me_check_fw_reset(struct mei_device *dev)
502{
503 struct mei_fw_status fw_status;
504 char fw_sts_str[MEI_FW_STATUS_STR_SZ] = {0};
505 int ret;
506 u32 fw_pm_event = 0;
507
508 if (!dev->saved_fw_status_flag)
509 goto end;
510
511 if (dev->gsc_reset_to_pxp == MEI_DEV_RESET_TO_PXP_PERFORMED) {
512 ret = mei_fw_status(dev, fw_status: &fw_status);
513 if (!ret) {
514 fw_pm_event = fw_status.status[1] & PCI_CFG_HFS_2_PM_EVENT_MASK;
515 if (fw_pm_event != PCI_CFG_HFS_2_PM_CMOFF_TO_CMX_ERROR &&
516 fw_pm_event != PCI_CFG_HFS_2_PM_CM_RESET_ERROR)
517 goto end;
518 } else {
519 dev_err(dev->dev, "failed to read firmware status: %d\n", ret);
520 }
521 }
522
523 mei_fw_status2str(fw_sts: &dev->saved_fw_status, buf: fw_sts_str, len: sizeof(fw_sts_str));
524 dev_warn(dev->dev, "unexpected reset: fw_pm_event = 0x%x, dev_state = %u fw status = %s\n",
525 fw_pm_event, dev->saved_dev_state, fw_sts_str);
526
527end:
528 if (dev->gsc_reset_to_pxp == MEI_DEV_RESET_TO_PXP_PERFORMED)
529 dev->gsc_reset_to_pxp = MEI_DEV_RESET_TO_PXP_DONE;
530 dev->saved_fw_status_flag = false;
531}
532
533/**
534 * mei_me_hw_start - hw start routine
535 *
536 * @dev: mei device
537 * Return: 0 on success, error otherwise
538 */
539static int mei_me_hw_start(struct mei_device *dev)
540{
541 int ret = mei_me_hw_ready_wait(dev);
542
543 if (kind_is_gsc(dev) || kind_is_gscfi(dev))
544 mei_me_check_fw_reset(dev);
545 if (ret)
546 return ret;
547 dev_dbg(dev->dev, "hw is ready\n");
548
549 mei_me_host_set_ready(dev);
550 return ret;
551}
552
553
554/**
555 * mei_hbuf_filled_slots - gets number of device filled buffer slots
556 *
557 * @dev: the device structure
558 *
559 * Return: number of filled slots
560 */
561static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
562{
563 u32 hcsr;
564 char read_ptr, write_ptr;
565
566 hcsr = mei_hcsr_read(dev);
567
568 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
569 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
570
571 return (unsigned char) (write_ptr - read_ptr);
572}
573
574/**
575 * mei_me_hbuf_is_empty - checks if host buffer is empty.
576 *
577 * @dev: the device structure
578 *
579 * Return: true if empty, false - otherwise.
580 */
581static bool mei_me_hbuf_is_empty(struct mei_device *dev)
582{
583 return mei_hbuf_filled_slots(dev) == 0;
584}
585
586/**
587 * mei_me_hbuf_empty_slots - counts write empty slots.
588 *
589 * @dev: the device structure
590 *
591 * Return: -EOVERFLOW if overflow, otherwise empty slots count
592 */
593static int mei_me_hbuf_empty_slots(struct mei_device *dev)
594{
595 struct mei_me_hw *hw = to_me_hw(dev);
596 unsigned char filled_slots, empty_slots;
597
598 filled_slots = mei_hbuf_filled_slots(dev);
599 empty_slots = hw->hbuf_depth - filled_slots;
600
601 /* check for overflow */
602 if (filled_slots > hw->hbuf_depth)
603 return -EOVERFLOW;
604
605 return empty_slots;
606}
607
608/**
609 * mei_me_hbuf_depth - returns depth of the hw buffer.
610 *
611 * @dev: the device structure
612 *
613 * Return: size of hw buffer in slots
614 */
615static u32 mei_me_hbuf_depth(const struct mei_device *dev)
616{
617 struct mei_me_hw *hw = to_me_hw(dev);
618
619 return hw->hbuf_depth;
620}
621
622/**
623 * mei_me_hbuf_write - writes a message to host hw buffer.
624 *
625 * @dev: the device structure
626 * @hdr: header of message
627 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
628 * @data: payload
629 * @data_len: payload length in bytes
630 *
631 * Return: 0 if success, < 0 - otherwise.
632 */
633static int mei_me_hbuf_write(struct mei_device *dev,
634 const void *hdr, size_t hdr_len,
635 const void *data, size_t data_len)
636{
637 unsigned long rem;
638 unsigned long i;
639 const u32 *reg_buf;
640 u32 dw_cnt;
641 int empty_slots;
642
643 if (WARN_ON(!hdr || hdr_len & 0x3))
644 return -EINVAL;
645
646 if (!data && data_len) {
647 dev_err(dev->dev, "wrong parameters null data with data_len = %zu\n", data_len);
648 return -EINVAL;
649 }
650
651 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
652
653 empty_slots = mei_hbuf_empty_slots(dev);
654 dev_dbg(dev->dev, "empty slots = %d.\n", empty_slots);
655
656 if (empty_slots < 0)
657 return -EOVERFLOW;
658
659 dw_cnt = mei_data2slots(length: hdr_len + data_len);
660 if (dw_cnt > (u32)empty_slots)
661 return -EMSGSIZE;
662
663 reg_buf = hdr;
664 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
665 mei_me_hcbww_write(dev, data: reg_buf[i]);
666
667 reg_buf = data;
668 for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
669 mei_me_hcbww_write(dev, data: reg_buf[i]);
670
671 rem = data_len & 0x3;
672 if (rem > 0) {
673 u32 reg = 0;
674
675 memcpy(&reg, (const u8 *)data + data_len - rem, rem);
676 mei_me_hcbww_write(dev, data: reg);
677 }
678
679 mei_hcsr_set_hig(dev);
680 if (!mei_me_hw_is_ready(dev))
681 return -EIO;
682
683 return 0;
684}
685
686/**
687 * mei_me_count_full_read_slots - counts read full slots.
688 *
689 * @dev: the device structure
690 *
691 * Return: -EOVERFLOW if overflow, otherwise filled slots count
692 */
693static int mei_me_count_full_read_slots(struct mei_device *dev)
694{
695 u32 me_csr;
696 char read_ptr, write_ptr;
697 unsigned char buffer_depth, filled_slots;
698
699 me_csr = mei_me_mecsr_read(dev);
700 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
701 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
702 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
703 filled_slots = (unsigned char) (write_ptr - read_ptr);
704
705 /* check for overflow */
706 if (filled_slots > buffer_depth)
707 return -EOVERFLOW;
708
709 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
710 return (int)filled_slots;
711}
712
713/**
714 * mei_me_read_slots - reads a message from mei device.
715 *
716 * @dev: the device structure
717 * @buffer: message buffer will be written
718 * @buffer_length: message size will be read
719 *
720 * Return: always 0
721 */
722static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
723 unsigned long buffer_length)
724{
725 u32 *reg_buf = (u32 *)buffer;
726
727 for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
728 *reg_buf++ = mei_me_mecbrw_read(dev);
729
730 if (buffer_length > 0) {
731 u32 reg = mei_me_mecbrw_read(dev);
732
733 memcpy(reg_buf, &reg, buffer_length);
734 }
735
736 mei_hcsr_set_hig(dev);
737 return 0;
738}
739
740/**
741 * mei_me_pg_set - write pg enter register
742 *
743 * @dev: the device structure
744 */
745static void mei_me_pg_set(struct mei_device *dev)
746{
747 struct mei_me_hw *hw = to_me_hw(dev);
748 u32 reg;
749
750 reg = mei_me_reg_read(hw, H_HPG_CSR);
751 trace_mei_reg_read(dev: dev->dev, reg: "H_HPG_CSR", H_HPG_CSR, val: reg);
752
753 reg |= H_HPG_CSR_PGI;
754
755 trace_mei_reg_write(dev: dev->dev, reg: "H_HPG_CSR", H_HPG_CSR, val: reg);
756 mei_me_reg_write(hw, H_HPG_CSR, value: reg);
757}
758
759/**
760 * mei_me_pg_unset - write pg exit register
761 *
762 * @dev: the device structure
763 */
764static void mei_me_pg_unset(struct mei_device *dev)
765{
766 struct mei_me_hw *hw = to_me_hw(dev);
767 u32 reg;
768
769 reg = mei_me_reg_read(hw, H_HPG_CSR);
770 trace_mei_reg_read(dev: dev->dev, reg: "H_HPG_CSR", H_HPG_CSR, val: reg);
771
772 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
773
774 reg |= H_HPG_CSR_PGIHEXR;
775
776 trace_mei_reg_write(dev: dev->dev, reg: "H_HPG_CSR", H_HPG_CSR, val: reg);
777 mei_me_reg_write(hw, H_HPG_CSR, value: reg);
778}
779
780/**
781 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
782 *
783 * @dev: the device structure
784 *
785 * Return: 0 on success an error code otherwise
786 */
787static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
788{
789 struct mei_me_hw *hw = to_me_hw(dev);
790 int ret;
791
792 dev->pg_event = MEI_PG_EVENT_WAIT;
793
794 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
795 if (ret)
796 return ret;
797
798 mutex_unlock(lock: &dev->device_lock);
799 wait_event_timeout(dev->wait_pg,
800 dev->pg_event == MEI_PG_EVENT_RECEIVED,
801 dev->timeouts.pgi);
802 mutex_lock(&dev->device_lock);
803
804 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
805 mei_me_pg_set(dev);
806 ret = 0;
807 } else {
808 ret = -ETIME;
809 }
810
811 dev->pg_event = MEI_PG_EVENT_IDLE;
812 hw->pg_state = MEI_PG_ON;
813
814 return ret;
815}
816
817/**
818 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
819 *
820 * @dev: the device structure
821 *
822 * Return: 0 on success an error code otherwise
823 */
824static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
825{
826 struct mei_me_hw *hw = to_me_hw(dev);
827 int ret;
828
829 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
830 goto reply;
831
832 dev->pg_event = MEI_PG_EVENT_WAIT;
833
834 mei_me_pg_unset(dev);
835
836 mutex_unlock(lock: &dev->device_lock);
837 wait_event_timeout(dev->wait_pg,
838 dev->pg_event == MEI_PG_EVENT_RECEIVED,
839 dev->timeouts.pgi);
840 mutex_lock(&dev->device_lock);
841
842reply:
843 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
844 ret = -ETIME;
845 goto out;
846 }
847
848 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
849 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
850 if (ret)
851 return ret;
852
853 mutex_unlock(lock: &dev->device_lock);
854 wait_event_timeout(dev->wait_pg,
855 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
856 dev->timeouts.pgi);
857 mutex_lock(&dev->device_lock);
858
859 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
860 ret = 0;
861 else
862 ret = -ETIME;
863
864out:
865 dev->pg_event = MEI_PG_EVENT_IDLE;
866 hw->pg_state = MEI_PG_OFF;
867
868 return ret;
869}
870
871/**
872 * mei_me_pg_in_transition - is device now in pg transition
873 *
874 * @dev: the device structure
875 *
876 * Return: true if in pg transition, false otherwise
877 */
878static bool mei_me_pg_in_transition(struct mei_device *dev)
879{
880 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
881 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
882}
883
884/**
885 * mei_me_pg_is_enabled - detect if PG is supported by HW
886 *
887 * @dev: the device structure
888 *
889 * Return: true is pg supported, false otherwise
890 */
891static bool mei_me_pg_is_enabled(struct mei_device *dev)
892{
893 struct mei_me_hw *hw = to_me_hw(dev);
894 u32 reg = mei_me_mecsr_read(dev);
895
896 if (hw->d0i3_supported)
897 return true;
898
899 if ((reg & ME_PGIC_HRA) == 0)
900 goto notsupported;
901
902 if (!dev->hbm_f_pg_supported)
903 goto notsupported;
904
905 return true;
906
907notsupported:
908 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
909 hw->d0i3_supported,
910 !!(reg & ME_PGIC_HRA),
911 dev->version.major_version,
912 dev->version.minor_version,
913 HBM_MAJOR_VERSION_PGI,
914 HBM_MINOR_VERSION_PGI);
915
916 return false;
917}
918
919/**
920 * mei_me_d0i3_set - write d0i3 register bit on mei device.
921 *
922 * @dev: the device structure
923 * @intr: ask for interrupt
924 *
925 * Return: D0I3C register value
926 */
927static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
928{
929 u32 reg = mei_me_d0i3c_read(dev);
930
931 reg |= H_D0I3C_I3;
932 if (intr)
933 reg |= H_D0I3C_IR;
934 else
935 reg &= ~H_D0I3C_IR;
936 mei_me_d0i3c_write(dev, reg);
937 /* read it to ensure HW consistency */
938 reg = mei_me_d0i3c_read(dev);
939 return reg;
940}
941
942/**
943 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
944 *
945 * @dev: the device structure
946 *
947 * Return: D0I3C register value
948 */
949static u32 mei_me_d0i3_unset(struct mei_device *dev)
950{
951 u32 reg = mei_me_d0i3c_read(dev);
952
953 reg &= ~H_D0I3C_I3;
954 reg |= H_D0I3C_IR;
955 mei_me_d0i3c_write(dev, reg);
956 /* read it to ensure HW consistency */
957 reg = mei_me_d0i3c_read(dev);
958 return reg;
959}
960
961/**
962 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
963 *
964 * @dev: the device structure
965 *
966 * Return: 0 on success an error code otherwise
967 */
968static int mei_me_d0i3_enter_sync(struct mei_device *dev)
969{
970 struct mei_me_hw *hw = to_me_hw(dev);
971 int ret;
972 u32 reg;
973
974 reg = mei_me_d0i3c_read(dev);
975 if (reg & H_D0I3C_I3) {
976 /* we are in d0i3, nothing to do */
977 dev_dbg(dev->dev, "d0i3 set not needed\n");
978 ret = 0;
979 goto on;
980 }
981
982 /* PGI entry procedure */
983 dev->pg_event = MEI_PG_EVENT_WAIT;
984
985 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
986 if (ret)
987 /* FIXME: should we reset here? */
988 goto out;
989
990 mutex_unlock(lock: &dev->device_lock);
991 wait_event_timeout(dev->wait_pg,
992 dev->pg_event == MEI_PG_EVENT_RECEIVED,
993 dev->timeouts.pgi);
994 mutex_lock(&dev->device_lock);
995
996 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
997 ret = -ETIME;
998 goto out;
999 }
1000 /* end PGI entry procedure */
1001
1002 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
1003
1004 reg = mei_me_d0i3_set(dev, intr: true);
1005 if (!(reg & H_D0I3C_CIP)) {
1006 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
1007 ret = 0;
1008 goto on;
1009 }
1010
1011 mutex_unlock(lock: &dev->device_lock);
1012 wait_event_timeout(dev->wait_pg,
1013 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
1014 dev->timeouts.d0i3);
1015 mutex_lock(&dev->device_lock);
1016
1017 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
1018 reg = mei_me_d0i3c_read(dev);
1019 if (!(reg & H_D0I3C_I3)) {
1020 ret = -ETIME;
1021 goto out;
1022 }
1023 }
1024
1025 ret = 0;
1026on:
1027 hw->pg_state = MEI_PG_ON;
1028out:
1029 dev->pg_event = MEI_PG_EVENT_IDLE;
1030 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
1031 return ret;
1032}
1033
1034/**
1035 * mei_me_d0i3_enter - perform d0i3 entry procedure
1036 * no hbm PG handshake
1037 * no waiting for confirmation; runs with interrupts
1038 * disabled
1039 *
1040 * @dev: the device structure
1041 *
1042 * Return: 0 on success an error code otherwise
1043 */
1044static int mei_me_d0i3_enter(struct mei_device *dev)
1045{
1046 struct mei_me_hw *hw = to_me_hw(dev);
1047 u32 reg;
1048
1049 reg = mei_me_d0i3c_read(dev);
1050 if (reg & H_D0I3C_I3) {
1051 /* we are in d0i3, nothing to do */
1052 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
1053 goto on;
1054 }
1055
1056 mei_me_d0i3_set(dev, intr: false);
1057on:
1058 hw->pg_state = MEI_PG_ON;
1059 dev->pg_event = MEI_PG_EVENT_IDLE;
1060 dev_dbg(dev->dev, "d0i3 enter\n");
1061 return 0;
1062}
1063
1064/**
1065 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
1066 *
1067 * @dev: the device structure
1068 *
1069 * Return: 0 on success an error code otherwise
1070 */
1071static int mei_me_d0i3_exit_sync(struct mei_device *dev)
1072{
1073 struct mei_me_hw *hw = to_me_hw(dev);
1074 int ret;
1075 u32 reg;
1076
1077 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
1078
1079 reg = mei_me_d0i3c_read(dev);
1080 if (!(reg & H_D0I3C_I3)) {
1081 /* we are not in d0i3, nothing to do */
1082 dev_dbg(dev->dev, "d0i3 exit not needed\n");
1083 ret = 0;
1084 goto off;
1085 }
1086
1087 reg = mei_me_d0i3_unset(dev);
1088 if (!(reg & H_D0I3C_CIP)) {
1089 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
1090 ret = 0;
1091 goto off;
1092 }
1093
1094 mutex_unlock(lock: &dev->device_lock);
1095 wait_event_timeout(dev->wait_pg,
1096 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
1097 dev->timeouts.d0i3);
1098 mutex_lock(&dev->device_lock);
1099
1100 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
1101 reg = mei_me_d0i3c_read(dev);
1102 if (reg & H_D0I3C_I3) {
1103 ret = -ETIME;
1104 goto out;
1105 }
1106 }
1107
1108 ret = 0;
1109off:
1110 hw->pg_state = MEI_PG_OFF;
1111out:
1112 dev->pg_event = MEI_PG_EVENT_IDLE;
1113
1114 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
1115 return ret;
1116}
1117
1118/**
1119 * mei_me_pg_legacy_intr - perform legacy pg processing
1120 * in interrupt thread handler
1121 *
1122 * @dev: the device structure
1123 */
1124static void mei_me_pg_legacy_intr(struct mei_device *dev)
1125{
1126 struct mei_me_hw *hw = to_me_hw(dev);
1127
1128 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1129 return;
1130
1131 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1132 hw->pg_state = MEI_PG_OFF;
1133 if (waitqueue_active(wq_head: &dev->wait_pg))
1134 wake_up(&dev->wait_pg);
1135}
1136
1137/**
1138 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1139 *
1140 * @dev: the device structure
1141 * @intr_source: interrupt source
1142 */
1143static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1144{
1145 struct mei_me_hw *hw = to_me_hw(dev);
1146
1147 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1148 (intr_source & H_D0I3C_IS)) {
1149 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1150 if (hw->pg_state == MEI_PG_ON) {
1151 hw->pg_state = MEI_PG_OFF;
1152 if (dev->hbm_state != MEI_HBM_IDLE) {
1153 /*
1154 * force H_RDY because it could be
1155 * wiped off during PG
1156 */
1157 dev_dbg(dev->dev, "d0i3 set host ready\n");
1158 mei_me_host_set_ready(dev);
1159 }
1160 } else {
1161 hw->pg_state = MEI_PG_ON;
1162 }
1163
1164 wake_up(&dev->wait_pg);
1165 }
1166
1167 if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1168 /*
1169 * HW sent some data and we are in D0i3, so
1170 * we got here because of HW initiated exit from D0i3.
1171 * Start runtime pm resume sequence to exit low power state.
1172 */
1173 dev_dbg(dev->dev, "d0i3 want resume\n");
1174 mei_hbm_pg_resume(dev);
1175 }
1176}
1177
1178/**
1179 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1180 *
1181 * @dev: the device structure
1182 * @intr_source: interrupt source
1183 */
1184static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1185{
1186 struct mei_me_hw *hw = to_me_hw(dev);
1187
1188 if (hw->d0i3_supported)
1189 mei_me_d0i3_intr(dev, intr_source);
1190 else
1191 mei_me_pg_legacy_intr(dev);
1192}
1193
1194/**
1195 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1196 *
1197 * @dev: the device structure
1198 *
1199 * Return: 0 on success an error code otherwise
1200 */
1201int mei_me_pg_enter_sync(struct mei_device *dev)
1202{
1203 struct mei_me_hw *hw = to_me_hw(dev);
1204
1205 if (hw->d0i3_supported)
1206 return mei_me_d0i3_enter_sync(dev);
1207 else
1208 return mei_me_pg_legacy_enter_sync(dev);
1209}
1210
1211/**
1212 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1213 *
1214 * @dev: the device structure
1215 *
1216 * Return: 0 on success an error code otherwise
1217 */
1218int mei_me_pg_exit_sync(struct mei_device *dev)
1219{
1220 struct mei_me_hw *hw = to_me_hw(dev);
1221
1222 if (hw->d0i3_supported)
1223 return mei_me_d0i3_exit_sync(dev);
1224 else
1225 return mei_me_pg_legacy_exit_sync(dev);
1226}
1227
1228/**
1229 * mei_me_hw_reset - resets fw via mei csr register.
1230 *
1231 * @dev: the device structure
1232 * @intr_enable: if interrupt should be enabled after reset.
1233 *
1234 * Return: 0 on success an error code otherwise
1235 */
1236static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1237{
1238 struct mei_me_hw *hw = to_me_hw(dev);
1239 int ret;
1240 u32 hcsr;
1241
1242 if (intr_enable) {
1243 mei_me_intr_enable(dev);
1244 if (hw->d0i3_supported) {
1245 ret = mei_me_d0i3_exit_sync(dev);
1246 if (ret)
1247 return ret;
1248 } else {
1249 hw->pg_state = MEI_PG_OFF;
1250 }
1251 }
1252
1253 pm_runtime_set_active(dev: dev->dev);
1254
1255 hcsr = mei_hcsr_read(dev);
1256 /* H_RST may be found lit before reset is started,
1257 * for example if preceding reset flow hasn't completed.
1258 * In that case asserting H_RST will be ignored, therefore
1259 * we need to clean H_RST bit to start a successful reset sequence.
1260 */
1261 if ((hcsr & H_RST) == H_RST) {
1262 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1263 hcsr &= ~H_RST;
1264 mei_hcsr_set(dev, reg: hcsr);
1265 hcsr = mei_hcsr_read(dev);
1266 }
1267
1268 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1269
1270 if (!intr_enable || mei_me_hw_use_polling(to_me_hw(dev)))
1271 hcsr &= ~H_CSR_IE_MASK;
1272
1273 dev->recvd_hw_ready = false;
1274 mei_hcsr_write(dev, reg: hcsr);
1275
1276 /*
1277 * Host reads the H_CSR once to ensure that the
1278 * posted write to H_CSR completes.
1279 */
1280 hcsr = mei_hcsr_read(dev);
1281
1282 if ((hcsr & H_RST) == 0)
1283 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1284
1285 if ((hcsr & H_RDY) == H_RDY)
1286 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1287
1288 if (!intr_enable) {
1289 mei_me_hw_reset_release(dev);
1290 if (hw->d0i3_supported) {
1291 ret = mei_me_d0i3_enter(dev);
1292 if (ret)
1293 return ret;
1294 }
1295 }
1296 return 0;
1297}
1298
1299/**
1300 * mei_me_irq_quick_handler - The ISR of the MEI device
1301 *
1302 * @irq: The irq number
1303 * @dev_id: pointer to the device structure
1304 *
1305 * Return: irqreturn_t
1306 */
1307irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1308{
1309 struct mei_device *dev = (struct mei_device *)dev_id;
1310 u32 hcsr;
1311
1312 hcsr = mei_hcsr_read(dev);
1313 if (!me_intr_src(hcsr))
1314 return IRQ_NONE;
1315
1316 dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1317
1318 /* disable interrupts on device */
1319 me_intr_disable(dev, hcsr);
1320 return IRQ_WAKE_THREAD;
1321}
1322EXPORT_SYMBOL_GPL(mei_me_irq_quick_handler);
1323
1324/**
1325 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1326 * processing.
1327 *
1328 * @irq: The irq number
1329 * @dev_id: pointer to the device structure
1330 *
1331 * Return: irqreturn_t
1332 *
1333 */
1334irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1335{
1336 struct mei_device *dev = (struct mei_device *) dev_id;
1337 struct list_head cmpl_list;
1338 s32 slots;
1339 u32 hcsr;
1340 int rets = 0;
1341
1342 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1343 /* initialize our complete list */
1344 mutex_lock(&dev->device_lock);
1345
1346 hcsr = mei_hcsr_read(dev);
1347 me_intr_clear(dev, hcsr);
1348
1349 INIT_LIST_HEAD(list: &cmpl_list);
1350
1351 /* check if ME wants a reset */
1352 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1353 if (kind_is_gsc(dev) || kind_is_gscfi(dev)) {
1354 dev_dbg(dev->dev, "FW not ready: resetting: dev_state = %d\n",
1355 dev->dev_state);
1356 } else {
1357 dev_warn(dev->dev, "FW not ready: resetting: dev_state = %d\n",
1358 dev->dev_state);
1359 }
1360 if (dev->dev_state == MEI_DEV_POWERING_DOWN ||
1361 dev->dev_state == MEI_DEV_POWER_DOWN)
1362 mei_cl_all_disconnect(dev);
1363 else if (dev->dev_state != MEI_DEV_DISABLED)
1364 schedule_work(work: &dev->reset_work);
1365 goto end;
1366 }
1367
1368 if (mei_me_hw_is_resetting(dev))
1369 mei_hcsr_set_hig(dev);
1370
1371 mei_me_pg_intr(dev, intr_source: me_intr_src(hcsr));
1372
1373 /* check if we need to start the dev */
1374 if (!mei_host_is_ready(dev)) {
1375 if (mei_hw_is_ready(dev)) {
1376 dev_dbg(dev->dev, "we need to start the dev.\n");
1377 dev->recvd_hw_ready = true;
1378 wake_up(&dev->wait_hw_ready);
1379 } else {
1380 dev_dbg(dev->dev, "Spurious Interrupt\n");
1381 }
1382 goto end;
1383 }
1384 /* check slots available for reading */
1385 slots = mei_count_full_read_slots(dev);
1386 while (slots > 0) {
1387 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1388 rets = mei_irq_read_handler(dev, cmpl_list: &cmpl_list, slots: &slots);
1389 /* There is a race between ME write and interrupt delivery:
1390 * Not all data is always available immediately after the
1391 * interrupt, so try to read again on the next interrupt.
1392 */
1393 if (rets == -ENODATA)
1394 break;
1395
1396 if (rets) {
1397 dev_err(dev->dev, "mei_irq_read_handler ret = %d, state = %d.\n",
1398 rets, dev->dev_state);
1399 if (dev->dev_state != MEI_DEV_RESETTING &&
1400 dev->dev_state != MEI_DEV_DISABLED &&
1401 dev->dev_state != MEI_DEV_POWERING_DOWN &&
1402 dev->dev_state != MEI_DEV_POWER_DOWN)
1403 schedule_work(work: &dev->reset_work);
1404 goto end;
1405 }
1406 }
1407
1408 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1409
1410 /*
1411 * During PG handshake only allowed write is the replay to the
1412 * PG exit message, so block calling write function
1413 * if the pg event is in PG handshake
1414 */
1415 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1416 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1417 rets = mei_irq_write_handler(dev, cmpl_list: &cmpl_list);
1418 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1419 }
1420
1421 mei_irq_compl_handler(dev, cmpl_list: &cmpl_list);
1422
1423end:
1424 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1425 mei_me_intr_enable(dev);
1426 mutex_unlock(lock: &dev->device_lock);
1427 return IRQ_HANDLED;
1428}
1429EXPORT_SYMBOL_GPL(mei_me_irq_thread_handler);
1430
1431#define MEI_POLLING_TIMEOUT_ACTIVE 100
1432#define MEI_POLLING_TIMEOUT_IDLE 500
1433
1434/**
1435 * mei_me_polling_thread - interrupt register polling thread
1436 *
1437 * @_dev: mei device
1438 *
1439 * The thread monitors the interrupt source register and calls
1440 * mei_me_irq_thread_handler() to handle the firmware
1441 * input.
1442 *
1443 * The function polls in MEI_POLLING_TIMEOUT_ACTIVE timeout
1444 * in case there was an event, in idle case the polling
1445 * time increases yet again by MEI_POLLING_TIMEOUT_ACTIVE
1446 * up to MEI_POLLING_TIMEOUT_IDLE.
1447 *
1448 * Return: always 0
1449 */
1450int mei_me_polling_thread(void *_dev)
1451{
1452 struct mei_device *dev = _dev;
1453 irqreturn_t irq_ret;
1454 long polling_timeout = MEI_POLLING_TIMEOUT_ACTIVE;
1455
1456 dev_dbg(dev->dev, "kernel thread is running\n");
1457 while (!kthread_should_stop()) {
1458 struct mei_me_hw *hw = to_me_hw(dev);
1459 u32 hcsr;
1460
1461 wait_event_timeout(hw->wait_active,
1462 hw->is_active || kthread_should_stop(),
1463 msecs_to_jiffies(MEI_POLLING_TIMEOUT_IDLE));
1464
1465 if (kthread_should_stop())
1466 break;
1467
1468 hcsr = mei_hcsr_read(dev);
1469 if (me_intr_src(hcsr)) {
1470 polling_timeout = MEI_POLLING_TIMEOUT_ACTIVE;
1471 irq_ret = mei_me_irq_thread_handler(1, dev);
1472 if (irq_ret != IRQ_HANDLED)
1473 dev_err(dev->dev, "irq_ret %d\n", irq_ret);
1474 } else {
1475 /*
1476 * Increase timeout by MEI_POLLING_TIMEOUT_ACTIVE
1477 * up to MEI_POLLING_TIMEOUT_IDLE
1478 */
1479 polling_timeout = clamp_val(polling_timeout + MEI_POLLING_TIMEOUT_ACTIVE,
1480 MEI_POLLING_TIMEOUT_ACTIVE,
1481 MEI_POLLING_TIMEOUT_IDLE);
1482 }
1483
1484 schedule_timeout_interruptible(timeout: msecs_to_jiffies(m: polling_timeout));
1485 }
1486
1487 return 0;
1488}
1489EXPORT_SYMBOL_GPL(mei_me_polling_thread);
1490
1491static const struct mei_hw_ops mei_me_hw_ops = {
1492
1493 .trc_status = mei_me_trc_status,
1494 .fw_status = mei_me_fw_status,
1495 .pg_state = mei_me_pg_state,
1496
1497 .host_is_ready = mei_me_host_is_ready,
1498
1499 .hw_is_ready = mei_me_hw_is_ready,
1500 .hw_reset = mei_me_hw_reset,
1501 .hw_config = mei_me_hw_config,
1502 .hw_start = mei_me_hw_start,
1503
1504 .pg_in_transition = mei_me_pg_in_transition,
1505 .pg_is_enabled = mei_me_pg_is_enabled,
1506
1507 .intr_clear = mei_me_intr_clear,
1508 .intr_enable = mei_me_intr_enable,
1509 .intr_disable = mei_me_intr_disable,
1510 .synchronize_irq = mei_me_synchronize_irq,
1511
1512 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1513 .hbuf_is_ready = mei_me_hbuf_is_empty,
1514 .hbuf_depth = mei_me_hbuf_depth,
1515
1516 .write = mei_me_hbuf_write,
1517
1518 .rdbuf_full_slots = mei_me_count_full_read_slots,
1519 .read_hdr = mei_me_mecbrw_read,
1520 .read = mei_me_read_slots
1521};
1522
1523/**
1524 * mei_me_fw_type_nm() - check for nm sku
1525 *
1526 * @pdev: pci device
1527 *
1528 * Read ME FW Status register to check for the Node Manager (NM) Firmware.
1529 * The NM FW is only signaled in PCI function 0.
1530 * __Note__: Deprecated by PCH8 and newer.
1531 *
1532 * Return: true in case of NM firmware
1533 */
1534static bool mei_me_fw_type_nm(const struct pci_dev *pdev)
1535{
1536 u32 reg;
1537 unsigned int devfn;
1538
1539 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1540 pci_bus_read_config_dword(bus: pdev->bus, devfn, PCI_CFG_HFS_2, val: &reg);
1541 trace_mei_pci_cfg_read(dev: &pdev->dev, reg: "PCI_CFG_HFS_2", PCI_CFG_HFS_2, val: reg);
1542 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1543 return (reg & 0x600) == 0x200;
1544}
1545
1546#define MEI_CFG_FW_NM \
1547 .quirk_probe = mei_me_fw_type_nm
1548
1549/**
1550 * mei_me_fw_type_sps_4() - check for sps 4.0 sku
1551 *
1552 * @pdev: pci device
1553 *
1554 * Read ME FW Status register to check for SPS Firmware.
1555 * The SPS FW is only signaled in the PCI function 0.
1556 * __Note__: Deprecated by SPS 5.0 and newer.
1557 *
1558 * Return: true in case of SPS firmware
1559 */
1560static bool mei_me_fw_type_sps_4(const struct pci_dev *pdev)
1561{
1562 u32 reg;
1563 unsigned int devfn;
1564
1565 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1566 pci_bus_read_config_dword(bus: pdev->bus, devfn, PCI_CFG_HFS_1, val: &reg);
1567 trace_mei_pci_cfg_read(dev: &pdev->dev, reg: "PCI_CFG_HFS_1", PCI_CFG_HFS_1, val: reg);
1568 return (reg & PCI_CFG_HFS_1_OPMODE_MSK) == PCI_CFG_HFS_1_OPMODE_SPS;
1569}
1570
1571#define MEI_CFG_FW_SPS_4 \
1572 .quirk_probe = mei_me_fw_type_sps_4
1573
1574/**
1575 * mei_me_fw_type_sps_ign() - check for sps or ign sku
1576 *
1577 * @pdev: pci device
1578 *
1579 * Read ME FW Status register to check for SPS or IGN Firmware.
1580 * The SPS/IGN FW is only signaled in pci function 0
1581 *
1582 * Return: true in case of SPS/IGN firmware
1583 */
1584static bool mei_me_fw_type_sps_ign(const struct pci_dev *pdev)
1585{
1586 u32 reg;
1587 u32 fw_type;
1588 unsigned int devfn;
1589
1590 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1591 pci_bus_read_config_dword(bus: pdev->bus, devfn, PCI_CFG_HFS_3, val: &reg);
1592 trace_mei_pci_cfg_read(dev: &pdev->dev, reg: "PCI_CFG_HFS_3", PCI_CFG_HFS_3, val: reg);
1593 fw_type = (reg & PCI_CFG_HFS_3_FW_SKU_MSK);
1594
1595 dev_dbg(&pdev->dev, "fw type is %d\n", fw_type);
1596
1597 return fw_type == PCI_CFG_HFS_3_FW_SKU_IGN ||
1598 fw_type == PCI_CFG_HFS_3_FW_SKU_SPS;
1599}
1600
1601#define MEI_CFG_KIND_ITOUCH \
1602 .kind = "itouch"
1603
1604#define MEI_CFG_TYPE_GSC \
1605 .kind = "gsc"
1606
1607#define MEI_CFG_TYPE_GSCFI \
1608 .kind = "gscfi"
1609
1610#define MEI_CFG_FW_SPS_IGN \
1611 .quirk_probe = mei_me_fw_type_sps_ign
1612
1613#define MEI_CFG_FW_VER_SUPP \
1614 .fw_ver_supported = 1
1615
1616#define MEI_CFG_ICH_HFS \
1617 .fw_status.count = 0
1618
1619#define MEI_CFG_ICH10_HFS \
1620 .fw_status.count = 1, \
1621 .fw_status.status[0] = PCI_CFG_HFS_1
1622
1623#define MEI_CFG_PCH_HFS \
1624 .fw_status.count = 2, \
1625 .fw_status.status[0] = PCI_CFG_HFS_1, \
1626 .fw_status.status[1] = PCI_CFG_HFS_2
1627
1628#define MEI_CFG_PCH8_HFS \
1629 .fw_status.count = 6, \
1630 .fw_status.status[0] = PCI_CFG_HFS_1, \
1631 .fw_status.status[1] = PCI_CFG_HFS_2, \
1632 .fw_status.status[2] = PCI_CFG_HFS_3, \
1633 .fw_status.status[3] = PCI_CFG_HFS_4, \
1634 .fw_status.status[4] = PCI_CFG_HFS_5, \
1635 .fw_status.status[5] = PCI_CFG_HFS_6
1636
1637#define MEI_CFG_DMA_128 \
1638 .dma_size[DMA_DSCR_HOST] = SZ_128K, \
1639 .dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1640 .dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1641
1642#define MEI_CFG_TRC \
1643 .hw_trc_supported = 1
1644
1645/* ICH Legacy devices */
1646static const struct mei_cfg mei_me_ich_cfg = {
1647 MEI_CFG_ICH_HFS,
1648};
1649
1650/* ICH devices */
1651static const struct mei_cfg mei_me_ich10_cfg = {
1652 MEI_CFG_ICH10_HFS,
1653};
1654
1655/* PCH6 devices */
1656static const struct mei_cfg mei_me_pch6_cfg = {
1657 MEI_CFG_PCH_HFS,
1658};
1659
1660/* PCH7 devices */
1661static const struct mei_cfg mei_me_pch7_cfg = {
1662 MEI_CFG_PCH_HFS,
1663 MEI_CFG_FW_VER_SUPP,
1664};
1665
1666/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1667static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1668 MEI_CFG_PCH_HFS,
1669 MEI_CFG_FW_VER_SUPP,
1670 MEI_CFG_FW_NM,
1671};
1672
1673/* PCH8 Lynx Point and newer devices */
1674static const struct mei_cfg mei_me_pch8_cfg = {
1675 MEI_CFG_PCH8_HFS,
1676 MEI_CFG_FW_VER_SUPP,
1677};
1678
1679/* PCH8 Lynx Point and newer devices - iTouch */
1680static const struct mei_cfg mei_me_pch8_itouch_cfg = {
1681 MEI_CFG_KIND_ITOUCH,
1682 MEI_CFG_PCH8_HFS,
1683 MEI_CFG_FW_VER_SUPP,
1684};
1685
1686/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1687static const struct mei_cfg mei_me_pch8_sps_4_cfg = {
1688 MEI_CFG_PCH8_HFS,
1689 MEI_CFG_FW_VER_SUPP,
1690 MEI_CFG_FW_SPS_4,
1691};
1692
1693/* LBG with quirk for SPS (4.0) Firmware exclusion */
1694static const struct mei_cfg mei_me_pch12_sps_4_cfg = {
1695 MEI_CFG_PCH8_HFS,
1696 MEI_CFG_FW_VER_SUPP,
1697 MEI_CFG_FW_SPS_4,
1698};
1699
1700/* Cannon Lake and newer devices */
1701static const struct mei_cfg mei_me_pch12_cfg = {
1702 MEI_CFG_PCH8_HFS,
1703 MEI_CFG_FW_VER_SUPP,
1704 MEI_CFG_DMA_128,
1705};
1706
1707/* Cannon Lake with quirk for SPS 5.0 and newer Firmware exclusion */
1708static const struct mei_cfg mei_me_pch12_sps_cfg = {
1709 MEI_CFG_PCH8_HFS,
1710 MEI_CFG_FW_VER_SUPP,
1711 MEI_CFG_DMA_128,
1712 MEI_CFG_FW_SPS_IGN,
1713};
1714
1715/* Cannon Lake itouch with quirk for SPS 5.0 and newer Firmware exclusion
1716 * w/o DMA support.
1717 */
1718static const struct mei_cfg mei_me_pch12_itouch_sps_cfg = {
1719 MEI_CFG_KIND_ITOUCH,
1720 MEI_CFG_PCH8_HFS,
1721 MEI_CFG_FW_VER_SUPP,
1722 MEI_CFG_FW_SPS_IGN,
1723};
1724
1725/* Tiger Lake and newer devices */
1726static const struct mei_cfg mei_me_pch15_cfg = {
1727 MEI_CFG_PCH8_HFS,
1728 MEI_CFG_FW_VER_SUPP,
1729 MEI_CFG_DMA_128,
1730 MEI_CFG_TRC,
1731};
1732
1733/* Tiger Lake with quirk for SPS 5.0 and newer Firmware exclusion */
1734static const struct mei_cfg mei_me_pch15_sps_cfg = {
1735 MEI_CFG_PCH8_HFS,
1736 MEI_CFG_FW_VER_SUPP,
1737 MEI_CFG_DMA_128,
1738 MEI_CFG_TRC,
1739 MEI_CFG_FW_SPS_IGN,
1740};
1741
1742/* Graphics System Controller */
1743static const struct mei_cfg mei_me_gsc_cfg = {
1744 MEI_CFG_TYPE_GSC,
1745 MEI_CFG_PCH8_HFS,
1746 MEI_CFG_FW_VER_SUPP,
1747};
1748
1749/* Graphics System Controller Firmware Interface */
1750static const struct mei_cfg mei_me_gscfi_cfg = {
1751 MEI_CFG_TYPE_GSCFI,
1752 MEI_CFG_PCH8_HFS,
1753 MEI_CFG_FW_VER_SUPP,
1754};
1755
1756/*
1757 * mei_cfg_list - A list of platform platform specific configurations.
1758 * Note: has to be synchronized with enum mei_cfg_idx.
1759 */
1760static const struct mei_cfg *const mei_cfg_list[] = {
1761 [MEI_ME_UNDEF_CFG] = NULL,
1762 [MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1763 [MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1764 [MEI_ME_PCH6_CFG] = &mei_me_pch6_cfg,
1765 [MEI_ME_PCH7_CFG] = &mei_me_pch7_cfg,
1766 [MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1767 [MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1768 [MEI_ME_PCH8_ITOUCH_CFG] = &mei_me_pch8_itouch_cfg,
1769 [MEI_ME_PCH8_SPS_4_CFG] = &mei_me_pch8_sps_4_cfg,
1770 [MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1771 [MEI_ME_PCH12_SPS_4_CFG] = &mei_me_pch12_sps_4_cfg,
1772 [MEI_ME_PCH12_SPS_CFG] = &mei_me_pch12_sps_cfg,
1773 [MEI_ME_PCH12_SPS_ITOUCH_CFG] = &mei_me_pch12_itouch_sps_cfg,
1774 [MEI_ME_PCH15_CFG] = &mei_me_pch15_cfg,
1775 [MEI_ME_PCH15_SPS_CFG] = &mei_me_pch15_sps_cfg,
1776 [MEI_ME_GSC_CFG] = &mei_me_gsc_cfg,
1777 [MEI_ME_GSCFI_CFG] = &mei_me_gscfi_cfg,
1778};
1779
1780const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1781{
1782 BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1783
1784 if (idx >= MEI_ME_NUM_CFG)
1785 return NULL;
1786
1787 return mei_cfg_list[idx];
1788}
1789EXPORT_SYMBOL_GPL(mei_me_get_cfg);
1790
1791/**
1792 * mei_me_dev_init - allocates and initializes the mei device structure
1793 *
1794 * @parent: device associated with physical device (pci/platform)
1795 * @cfg: per device generation config
1796 * @slow_fw: configure longer timeouts as FW is slow
1797 *
1798 * Return: The mei_device pointer on success, NULL on failure.
1799 */
1800struct mei_device *mei_me_dev_init(struct device *parent,
1801 const struct mei_cfg *cfg, bool slow_fw)
1802{
1803 struct mei_device *dev;
1804 struct mei_me_hw *hw;
1805 int i;
1806
1807 dev = devm_kzalloc(dev: parent, size: sizeof(*dev) + sizeof(*hw), GFP_KERNEL);
1808 if (!dev)
1809 return NULL;
1810
1811 hw = to_me_hw(dev);
1812
1813 for (i = 0; i < DMA_DSCR_NUM; i++)
1814 dev->dr_dscr[i].size = cfg->dma_size[i];
1815
1816 mei_device_init(dev, device: parent, slow_fw, hw_ops: &mei_me_hw_ops);
1817 hw->cfg = cfg;
1818
1819 dev->fw_f_fw_ver_supported = cfg->fw_ver_supported;
1820
1821 dev->kind = cfg->kind;
1822
1823 return dev;
1824}
1825EXPORT_SYMBOL_GPL(mei_me_dev_init);
1826

source code of linux/drivers/misc/mei/hw-me.c