1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 *
5 * Copyright © 2006 Texas Instruments.
6 *
7 * Port to 2.6.23 Copyright © 2008 by:
8 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
9 * Troy Kisky <troy.kisky@boundarydevices.com>
10 * Dirk Behme <Dirk.Behme@gmail.com>
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/err.h>
17#include <linux/iopoll.h>
18#include <linux/mtd/rawnand.h>
19#include <linux/mtd/partitions.h>
20#include <linux/slab.h>
21#include <linux/of.h>
22
23#include <linux/platform_data/mtd-davinci.h>
24#include <linux/platform_data/mtd-davinci-aemif.h>
25
26/*
27 * This is a device driver for the NAND flash controller found on the
28 * various DaVinci family chips. It handles up to four SoC chipselects,
29 * and some flavors of secondary chipselect (e.g. based on A12) as used
30 * with multichip packages.
31 *
32 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
33 * available on chips like the DM355 and OMAP-L137 and needed with the
34 * more error-prone MLC NAND chips.
35 *
36 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
37 * outputs in a "wire-AND" configuration, with no per-chip signals.
38 */
39struct davinci_nand_info {
40 struct nand_controller controller;
41 struct nand_chip chip;
42
43 struct platform_device *pdev;
44
45 bool is_readmode;
46
47 void __iomem *base;
48 void __iomem *vaddr;
49
50 void __iomem *current_cs;
51
52 uint32_t mask_chipsel;
53 uint32_t mask_ale;
54 uint32_t mask_cle;
55
56 uint32_t core_chipsel;
57
58 struct davinci_aemif_timing *timing;
59};
60
61static DEFINE_SPINLOCK(davinci_nand_lock);
62static bool ecc4_busy;
63
64static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
65{
66 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
67}
68
69static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
70 int offset)
71{
72 return __raw_readl(addr: info->base + offset);
73}
74
75static inline void davinci_nand_writel(struct davinci_nand_info *info,
76 int offset, unsigned long value)
77{
78 __raw_writel(val: value, addr: info->base + offset);
79}
80
81/*----------------------------------------------------------------------*/
82
83/*
84 * 1-bit hardware ECC ... context maintained for each core chipselect
85 */
86
87static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
88{
89 struct davinci_nand_info *info = to_davinci_nand(mtd);
90
91 return davinci_nand_readl(info, NANDF1ECC_OFFSET
92 + 4 * info->core_chipsel);
93}
94
95static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
96{
97 struct davinci_nand_info *info;
98 uint32_t nandcfr;
99 unsigned long flags;
100
101 info = to_davinci_nand(mtd: nand_to_mtd(chip));
102
103 /* Reset ECC hardware */
104 nand_davinci_readecc_1bit(mtd: nand_to_mtd(chip));
105
106 spin_lock_irqsave(&davinci_nand_lock, flags);
107
108 /* Restart ECC hardware */
109 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
110 nandcfr |= BIT(8 + info->core_chipsel);
111 davinci_nand_writel(info, NANDFCR_OFFSET, value: nandcfr);
112
113 spin_unlock_irqrestore(lock: &davinci_nand_lock, flags);
114}
115
116/*
117 * Read hardware ECC value and pack into three bytes
118 */
119static int nand_davinci_calculate_1bit(struct nand_chip *chip,
120 const u_char *dat, u_char *ecc_code)
121{
122 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd: nand_to_mtd(chip));
123 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
124
125 /* invert so that erased block ecc is correct */
126 ecc24 = ~ecc24;
127 ecc_code[0] = (u_char)(ecc24);
128 ecc_code[1] = (u_char)(ecc24 >> 8);
129 ecc_code[2] = (u_char)(ecc24 >> 16);
130
131 return 0;
132}
133
134static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
135 u_char *read_ecc, u_char *calc_ecc)
136{
137 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
138 (read_ecc[2] << 16);
139 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
140 (calc_ecc[2] << 16);
141 uint32_t diff = eccCalc ^ eccNand;
142
143 if (diff) {
144 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
145 /* Correctable error */
146 if ((diff >> (12 + 3)) < chip->ecc.size) {
147 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
148 return 1;
149 } else {
150 return -EBADMSG;
151 }
152 } else if (!(diff & (diff - 1))) {
153 /* Single bit ECC error in the ECC itself,
154 * nothing to fix */
155 return 1;
156 } else {
157 /* Uncorrectable error */
158 return -EBADMSG;
159 }
160
161 }
162 return 0;
163}
164
165/*----------------------------------------------------------------------*/
166
167/*
168 * 4-bit hardware ECC ... context maintained over entire AEMIF
169 *
170 * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
171 * since that forces use of a problematic "infix OOB" layout.
172 * Among other things, it trashes manufacturer bad block markers.
173 * Also, and specific to this hardware, it ECC-protects the "prepad"
174 * in the OOB ... while having ECC protection for parts of OOB would
175 * seem useful, the current MTD stack sometimes wants to update the
176 * OOB without recomputing ECC.
177 */
178
179static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
180{
181 struct davinci_nand_info *info = to_davinci_nand(mtd: nand_to_mtd(chip));
182 unsigned long flags;
183 u32 val;
184
185 /* Reset ECC hardware */
186 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
187
188 spin_lock_irqsave(&davinci_nand_lock, flags);
189
190 /* Start 4-bit ECC calculation for read/write */
191 val = davinci_nand_readl(info, NANDFCR_OFFSET);
192 val &= ~(0x03 << 4);
193 val |= (info->core_chipsel << 4) | BIT(12);
194 davinci_nand_writel(info, NANDFCR_OFFSET, value: val);
195
196 info->is_readmode = (mode == NAND_ECC_READ);
197
198 spin_unlock_irqrestore(lock: &davinci_nand_lock, flags);
199}
200
201/* Read raw ECC code after writing to NAND. */
202static void
203nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
204{
205 const u32 mask = 0x03ff03ff;
206
207 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
208 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
209 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
210 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
211}
212
213/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
214static int nand_davinci_calculate_4bit(struct nand_chip *chip,
215 const u_char *dat, u_char *ecc_code)
216{
217 struct davinci_nand_info *info = to_davinci_nand(mtd: nand_to_mtd(chip));
218 u32 raw_ecc[4], *p;
219 unsigned i;
220
221 /* After a read, terminate ECC calculation by a dummy read
222 * of some 4-bit ECC register. ECC covers everything that
223 * was read; correct() just uses the hardware state, so
224 * ecc_code is not needed.
225 */
226 if (info->is_readmode) {
227 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
228 return 0;
229 }
230
231 /* Pack eight raw 10-bit ecc values into ten bytes, making
232 * two passes which each convert four values (in upper and
233 * lower halves of two 32-bit words) into five bytes. The
234 * ROM boot loader uses this same packing scheme.
235 */
236 nand_davinci_readecc_4bit(info, code: raw_ecc);
237 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
238 *ecc_code++ = p[0] & 0xff;
239 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
240 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
241 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
242 *ecc_code++ = (p[1] >> 18) & 0xff;
243 }
244
245 return 0;
246}
247
248/* Correct up to 4 bits in data we just read, using state left in the
249 * hardware plus the ecc_code computed when it was first written.
250 */
251static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
252 u_char *ecc_code, u_char *null)
253{
254 int i;
255 struct davinci_nand_info *info = to_davinci_nand(mtd: nand_to_mtd(chip));
256 unsigned short ecc10[8];
257 unsigned short *ecc16;
258 u32 syndrome[4];
259 u32 ecc_state;
260 unsigned num_errors, corrected;
261 unsigned long timeo;
262
263 /* Unpack ten bytes into eight 10 bit values. We know we're
264 * little-endian, and use type punning for less shifting/masking.
265 */
266 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
267 return -EINVAL;
268 ecc16 = (unsigned short *)ecc_code;
269
270 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
271 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
272 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
273 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
274 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
275 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
276 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
277 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
278
279 /* Tell ECC controller about the expected ECC codes. */
280 for (i = 7; i >= 0; i--)
281 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, value: ecc10[i]);
282
283 /* Allow time for syndrome calculation ... then read it.
284 * A syndrome of all zeroes 0 means no detected errors.
285 */
286 davinci_nand_readl(info, NANDFSR_OFFSET);
287 nand_davinci_readecc_4bit(info, code: syndrome);
288 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
289 return 0;
290
291 /*
292 * Clear any previous address calculation by doing a dummy read of an
293 * error address register.
294 */
295 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
296
297 /* Start address calculation, and wait for it to complete.
298 * We _could_ start reading more data while this is working,
299 * to speed up the overall page read.
300 */
301 davinci_nand_writel(info, NANDFCR_OFFSET,
302 value: davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
303
304 /*
305 * ECC_STATE field reads 0x3 (Error correction complete) immediately
306 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
307 * begin trying to poll for the state, you may fall right out of your
308 * loop without any of the correction calculations having taken place.
309 * The recommendation from the hardware team is to initially delay as
310 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
311 * correction state.
312 */
313 timeo = jiffies + usecs_to_jiffies(u: 100);
314 do {
315 ecc_state = (davinci_nand_readl(info,
316 NANDFSR_OFFSET) >> 8) & 0x0f;
317 cpu_relax();
318 } while ((ecc_state < 4) && time_before(jiffies, timeo));
319
320 for (;;) {
321 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
322
323 switch ((fsr >> 8) & 0x0f) {
324 case 0: /* no error, should not happen */
325 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
326 return 0;
327 case 1: /* five or more errors detected */
328 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
329 return -EBADMSG;
330 case 2: /* error addresses computed */
331 case 3:
332 num_errors = 1 + ((fsr >> 16) & 0x03);
333 goto correct;
334 default: /* still working on it */
335 cpu_relax();
336 continue;
337 }
338 }
339
340correct:
341 /* correct each error */
342 for (i = 0, corrected = 0; i < num_errors; i++) {
343 int error_address, error_value;
344
345 if (i > 1) {
346 error_address = davinci_nand_readl(info,
347 NAND_ERR_ADD2_OFFSET);
348 error_value = davinci_nand_readl(info,
349 NAND_ERR_ERRVAL2_OFFSET);
350 } else {
351 error_address = davinci_nand_readl(info,
352 NAND_ERR_ADD1_OFFSET);
353 error_value = davinci_nand_readl(info,
354 NAND_ERR_ERRVAL1_OFFSET);
355 }
356
357 if (i & 1) {
358 error_address >>= 16;
359 error_value >>= 16;
360 }
361 error_address &= 0x3ff;
362 error_address = (512 + 7) - error_address;
363
364 if (error_address < 512) {
365 data[error_address] ^= error_value;
366 corrected++;
367 }
368 }
369
370 return corrected;
371}
372
373/*----------------------------------------------------------------------*/
374
375/* An ECC layout for using 4-bit ECC with small-page flash, storing
376 * ten ECC bytes plus the manufacturer's bad block marker byte, and
377 * and not overlapping the default BBT markers.
378 */
379static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
380 struct mtd_oob_region *oobregion)
381{
382 if (section > 2)
383 return -ERANGE;
384
385 if (!section) {
386 oobregion->offset = 0;
387 oobregion->length = 5;
388 } else if (section == 1) {
389 oobregion->offset = 6;
390 oobregion->length = 2;
391 } else {
392 oobregion->offset = 13;
393 oobregion->length = 3;
394 }
395
396 return 0;
397}
398
399static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
400 struct mtd_oob_region *oobregion)
401{
402 if (section > 1)
403 return -ERANGE;
404
405 if (!section) {
406 oobregion->offset = 8;
407 oobregion->length = 5;
408 } else {
409 oobregion->offset = 16;
410 oobregion->length = mtd->oobsize - 16;
411 }
412
413 return 0;
414}
415
416static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
417 .ecc = hwecc4_ooblayout_small_ecc,
418 .free = hwecc4_ooblayout_small_free,
419};
420
421#if defined(CONFIG_OF)
422static const struct of_device_id davinci_nand_of_match[] = {
423 {.compatible = "ti,davinci-nand", },
424 {.compatible = "ti,keystone-nand", },
425 {},
426};
427MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
428
429static struct davinci_nand_pdata
430 *nand_davinci_get_pdata(struct platform_device *pdev)
431{
432 if (!dev_get_platdata(dev: &pdev->dev) && pdev->dev.of_node) {
433 struct davinci_nand_pdata *pdata;
434 const char *mode;
435 u32 prop;
436
437 pdata = devm_kzalloc(dev: &pdev->dev,
438 size: sizeof(struct davinci_nand_pdata),
439 GFP_KERNEL);
440 pdev->dev.platform_data = pdata;
441 if (!pdata)
442 return ERR_PTR(error: -ENOMEM);
443 if (!of_property_read_u32(np: pdev->dev.of_node,
444 propname: "ti,davinci-chipselect", out_value: &prop))
445 pdata->core_chipsel = prop;
446 else
447 return ERR_PTR(error: -EINVAL);
448
449 if (!of_property_read_u32(np: pdev->dev.of_node,
450 propname: "ti,davinci-mask-ale", out_value: &prop))
451 pdata->mask_ale = prop;
452 if (!of_property_read_u32(np: pdev->dev.of_node,
453 propname: "ti,davinci-mask-cle", out_value: &prop))
454 pdata->mask_cle = prop;
455 if (!of_property_read_u32(np: pdev->dev.of_node,
456 propname: "ti,davinci-mask-chipsel", out_value: &prop))
457 pdata->mask_chipsel = prop;
458 if (!of_property_read_string(np: pdev->dev.of_node,
459 propname: "ti,davinci-ecc-mode", out_string: &mode)) {
460 if (!strncmp("none", mode, 4))
461 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
462 if (!strncmp("soft", mode, 4))
463 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
464 if (!strncmp("hw", mode, 2))
465 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
466 }
467 if (!of_property_read_u32(np: pdev->dev.of_node,
468 propname: "ti,davinci-ecc-bits", out_value: &prop))
469 pdata->ecc_bits = prop;
470
471 if (!of_property_read_u32(np: pdev->dev.of_node,
472 propname: "ti,davinci-nand-buswidth", out_value: &prop) && prop == 16)
473 pdata->options |= NAND_BUSWIDTH_16;
474
475 if (of_property_read_bool(np: pdev->dev.of_node,
476 propname: "ti,davinci-nand-use-bbt"))
477 pdata->bbt_options = NAND_BBT_USE_FLASH;
478
479 /*
480 * Since kernel v4.8, this driver has been fixed to enable
481 * use of 4-bit hardware ECC with subpages and verified on
482 * TI's keystone EVMs (K2L, K2HK and K2E).
483 * However, in the interest of not breaking systems using
484 * existing UBI partitions, sub-page writes are not being
485 * (re)enabled. If you want to use subpage writes on Keystone
486 * platforms (i.e. do not have any existing UBI partitions),
487 * then use "ti,davinci-nand" as the compatible in your
488 * device-tree file.
489 */
490 if (of_device_is_compatible(device: pdev->dev.of_node,
491 "ti,keystone-nand")) {
492 pdata->options |= NAND_NO_SUBPAGE_WRITE;
493 }
494 }
495
496 return dev_get_platdata(dev: &pdev->dev);
497}
498#else
499static struct davinci_nand_pdata
500 *nand_davinci_get_pdata(struct platform_device *pdev)
501{
502 return dev_get_platdata(&pdev->dev);
503}
504#endif
505
506static int davinci_nand_attach_chip(struct nand_chip *chip)
507{
508 struct mtd_info *mtd = nand_to_mtd(chip);
509 struct davinci_nand_info *info = to_davinci_nand(mtd);
510 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(pdev: info->pdev);
511 int ret = 0;
512
513 if (IS_ERR(ptr: pdata))
514 return PTR_ERR(ptr: pdata);
515
516 /* Use board-specific ECC config */
517 chip->ecc.engine_type = pdata->engine_type;
518 chip->ecc.placement = pdata->ecc_placement;
519
520 switch (chip->ecc.engine_type) {
521 case NAND_ECC_ENGINE_TYPE_NONE:
522 pdata->ecc_bits = 0;
523 break;
524 case NAND_ECC_ENGINE_TYPE_SOFT:
525 pdata->ecc_bits = 0;
526 /*
527 * This driver expects Hamming based ECC when engine_type is set
528 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
529 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
530 * field to davinci_nand_pdata.
531 */
532 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
533 break;
534 case NAND_ECC_ENGINE_TYPE_ON_HOST:
535 if (pdata->ecc_bits == 4) {
536 int chunks = mtd->writesize / 512;
537
538 if (!chunks || mtd->oobsize < 16) {
539 dev_dbg(&info->pdev->dev, "too small\n");
540 return -EINVAL;
541 }
542
543 /*
544 * No sanity checks: CPUs must support this,
545 * and the chips may not use NAND_BUSWIDTH_16.
546 */
547
548 /* No sharing 4-bit hardware between chipselects yet */
549 spin_lock_irq(lock: &davinci_nand_lock);
550 if (ecc4_busy)
551 ret = -EBUSY;
552 else
553 ecc4_busy = true;
554 spin_unlock_irq(lock: &davinci_nand_lock);
555
556 if (ret == -EBUSY)
557 return ret;
558
559 chip->ecc.calculate = nand_davinci_calculate_4bit;
560 chip->ecc.correct = nand_davinci_correct_4bit;
561 chip->ecc.hwctl = nand_davinci_hwctl_4bit;
562 chip->ecc.bytes = 10;
563 chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
564 chip->ecc.algo = NAND_ECC_ALGO_BCH;
565
566 /*
567 * Update ECC layout if needed ... for 1-bit HW ECC, the
568 * default is OK, but it allocates 6 bytes when only 3
569 * are needed (for each 512 bytes). For 4-bit HW ECC,
570 * the default is not usable: 10 bytes needed, not 6.
571 *
572 * For small page chips, preserve the manufacturer's
573 * badblock marking data ... and make sure a flash BBT
574 * table marker fits in the free bytes.
575 */
576 if (chunks == 1) {
577 mtd_set_ooblayout(mtd,
578 ooblayout: &hwecc4_small_ooblayout_ops);
579 } else if (chunks == 4 || chunks == 8) {
580 mtd_set_ooblayout(mtd,
581 ooblayout: nand_get_large_page_ooblayout());
582 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
583 } else {
584 return -EIO;
585 }
586 } else {
587 /* 1bit ecc hamming */
588 chip->ecc.calculate = nand_davinci_calculate_1bit;
589 chip->ecc.correct = nand_davinci_correct_1bit;
590 chip->ecc.hwctl = nand_davinci_hwctl_1bit;
591 chip->ecc.bytes = 3;
592 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
593 }
594 chip->ecc.size = 512;
595 chip->ecc.strength = pdata->ecc_bits;
596 break;
597 default:
598 return -EINVAL;
599 }
600
601 return ret;
602}
603
604static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
605 unsigned int len, bool force_8bit)
606{
607 u32 alignment = ((uintptr_t)buf | len) & 3;
608
609 if (force_8bit || (alignment & 1))
610 ioread8_rep(port: info->current_cs, buf, count: len);
611 else if (alignment & 3)
612 ioread16_rep(port: info->current_cs, buf, count: len >> 1);
613 else
614 ioread32_rep(port: info->current_cs, buf, count: len >> 2);
615}
616
617static void nand_davinci_data_out(struct davinci_nand_info *info,
618 const void *buf, unsigned int len,
619 bool force_8bit)
620{
621 u32 alignment = ((uintptr_t)buf | len) & 3;
622
623 if (force_8bit || (alignment & 1))
624 iowrite8_rep(port: info->current_cs, buf, count: len);
625 else if (alignment & 3)
626 iowrite16_rep(port: info->current_cs, buf, count: len >> 1);
627 else
628 iowrite32_rep(port: info->current_cs, buf, count: len >> 2);
629}
630
631static int davinci_nand_exec_instr(struct davinci_nand_info *info,
632 const struct nand_op_instr *instr)
633{
634 unsigned int i, timeout_us;
635 u32 status;
636 int ret;
637
638 switch (instr->type) {
639 case NAND_OP_CMD_INSTR:
640 iowrite8(instr->ctx.cmd.opcode,
641 info->current_cs + info->mask_cle);
642 break;
643
644 case NAND_OP_ADDR_INSTR:
645 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
646 iowrite8(instr->ctx.addr.addrs[i],
647 info->current_cs + info->mask_ale);
648 }
649 break;
650
651 case NAND_OP_DATA_IN_INSTR:
652 nand_davinci_data_in(info, buf: instr->ctx.data.buf.in,
653 len: instr->ctx.data.len,
654 force_8bit: instr->ctx.data.force_8bit);
655 break;
656
657 case NAND_OP_DATA_OUT_INSTR:
658 nand_davinci_data_out(info, buf: instr->ctx.data.buf.out,
659 len: instr->ctx.data.len,
660 force_8bit: instr->ctx.data.force_8bit);
661 break;
662
663 case NAND_OP_WAITRDY_INSTR:
664 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
665 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
666 status, status & BIT(0), 100,
667 timeout_us);
668 if (ret)
669 return ret;
670
671 break;
672 }
673
674 if (instr->delay_ns)
675 ndelay(instr->delay_ns);
676
677 return 0;
678}
679
680static int davinci_nand_exec_op(struct nand_chip *chip,
681 const struct nand_operation *op,
682 bool check_only)
683{
684 struct davinci_nand_info *info = to_davinci_nand(mtd: nand_to_mtd(chip));
685 unsigned int i;
686
687 if (check_only)
688 return 0;
689
690 info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
691
692 for (i = 0; i < op->ninstrs; i++) {
693 int ret;
694
695 ret = davinci_nand_exec_instr(info, instr: &op->instrs[i]);
696 if (ret)
697 return ret;
698 }
699
700 return 0;
701}
702
703static const struct nand_controller_ops davinci_nand_controller_ops = {
704 .attach_chip = davinci_nand_attach_chip,
705 .exec_op = davinci_nand_exec_op,
706};
707
708static int nand_davinci_probe(struct platform_device *pdev)
709{
710 struct davinci_nand_pdata *pdata;
711 struct davinci_nand_info *info;
712 struct resource *res1;
713 struct resource *res2;
714 void __iomem *vaddr;
715 void __iomem *base;
716 int ret;
717 uint32_t val;
718 struct mtd_info *mtd;
719
720 pdata = nand_davinci_get_pdata(pdev);
721 if (IS_ERR(ptr: pdata))
722 return PTR_ERR(ptr: pdata);
723
724 /* insist on board-specific configuration */
725 if (!pdata)
726 return -ENODEV;
727
728 /* which external chipselect will we be managing? */
729 if (pdata->core_chipsel > 3)
730 return -ENODEV;
731
732 info = devm_kzalloc(dev: &pdev->dev, size: sizeof(*info), GFP_KERNEL);
733 if (!info)
734 return -ENOMEM;
735
736 platform_set_drvdata(pdev, data: info);
737
738 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
739 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
740 if (!res1 || !res2) {
741 dev_err(&pdev->dev, "resource missing\n");
742 return -EINVAL;
743 }
744
745 vaddr = devm_ioremap_resource(dev: &pdev->dev, res: res1);
746 if (IS_ERR(ptr: vaddr))
747 return PTR_ERR(ptr: vaddr);
748
749 /*
750 * This registers range is used to setup NAND settings. In case with
751 * TI AEMIF driver, the same memory address range is requested already
752 * by AEMIF, so we cannot request it twice, just ioremap.
753 * The AEMIF and NAND drivers not use the same registers in this range.
754 */
755 base = devm_ioremap(dev: &pdev->dev, offset: res2->start, size: resource_size(res: res2));
756 if (!base) {
757 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
758 return -EADDRNOTAVAIL;
759 }
760
761 info->pdev = pdev;
762 info->base = base;
763 info->vaddr = vaddr;
764
765 mtd = nand_to_mtd(chip: &info->chip);
766 mtd->dev.parent = &pdev->dev;
767 nand_set_flash_node(chip: &info->chip, np: pdev->dev.of_node);
768
769 /* options such as NAND_BBT_USE_FLASH */
770 info->chip.bbt_options = pdata->bbt_options;
771 /* options such as 16-bit widths */
772 info->chip.options = pdata->options;
773 info->chip.bbt_td = pdata->bbt_td;
774 info->chip.bbt_md = pdata->bbt_md;
775 info->timing = pdata->timing;
776
777 info->current_cs = info->vaddr;
778 info->core_chipsel = pdata->core_chipsel;
779 info->mask_chipsel = pdata->mask_chipsel;
780
781 /* use nandboot-capable ALE/CLE masks by default */
782 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
783 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
784
785 spin_lock_irq(lock: &davinci_nand_lock);
786
787 /* put CSxNAND into NAND mode */
788 val = davinci_nand_readl(info, NANDFCR_OFFSET);
789 val |= BIT(info->core_chipsel);
790 davinci_nand_writel(info, NANDFCR_OFFSET, value: val);
791
792 spin_unlock_irq(lock: &davinci_nand_lock);
793
794 /* Scan to find existence of the device(s) */
795 nand_controller_init(nfc: &info->controller);
796 info->controller.ops = &davinci_nand_controller_ops;
797 info->chip.controller = &info->controller;
798 ret = nand_scan(chip: &info->chip, max_chips: pdata->mask_chipsel ? 2 : 1);
799 if (ret < 0) {
800 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
801 return ret;
802 }
803
804 if (pdata->parts)
805 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
806 else
807 ret = mtd_device_register(mtd, NULL, 0);
808 if (ret < 0)
809 goto err_cleanup_nand;
810
811 val = davinci_nand_readl(info, NRCSR_OFFSET);
812 dev_info(&pdev->dev, "controller rev. %d.%d\n",
813 (val >> 8) & 0xff, val & 0xff);
814
815 return 0;
816
817err_cleanup_nand:
818 nand_cleanup(chip: &info->chip);
819
820 return ret;
821}
822
823static void nand_davinci_remove(struct platform_device *pdev)
824{
825 struct davinci_nand_info *info = platform_get_drvdata(pdev);
826 struct nand_chip *chip = &info->chip;
827 int ret;
828
829 spin_lock_irq(lock: &davinci_nand_lock);
830 if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
831 ecc4_busy = false;
832 spin_unlock_irq(lock: &davinci_nand_lock);
833
834 ret = mtd_device_unregister(master: nand_to_mtd(chip));
835 WARN_ON(ret);
836 nand_cleanup(chip);
837}
838
839static struct platform_driver nand_davinci_driver = {
840 .probe = nand_davinci_probe,
841 .remove_new = nand_davinci_remove,
842 .driver = {
843 .name = "davinci_nand",
844 .of_match_table = of_match_ptr(davinci_nand_of_match),
845 },
846};
847MODULE_ALIAS("platform:davinci_nand");
848
849module_platform_driver(nand_davinci_driver);
850
851MODULE_LICENSE("GPL");
852MODULE_AUTHOR("Texas Instruments");
853MODULE_DESCRIPTION("Davinci NAND flash driver");
854
855

source code of linux/drivers/mtd/nand/raw/davinci_nand.c