1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NAND Flash Controller Device Driver
4 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 *
6 * Copyright (c) 2017-2019 Socionext Inc.
7 * Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
8 */
9
10#include <linux/bitfield.h>
11#include <linux/completion.h>
12#include <linux/dma-mapping.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/module.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/slab.h>
19#include <linux/spinlock.h>
20
21#include "denali.h"
22
23#define DENALI_NAND_NAME "denali-nand"
24
25/* for Indexed Addressing */
26#define DENALI_INDEXED_CTRL 0x00
27#define DENALI_INDEXED_DATA 0x10
28
29#define DENALI_MAP00 (0 << 26) /* direct access to buffer */
30#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
31#define DENALI_MAP10 (2 << 26) /* high-level control plane */
32#define DENALI_MAP11 (3 << 26) /* direct controller access */
33
34/* MAP11 access cycle type */
35#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */
36#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */
37#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */
38
39#define DENALI_BANK(denali) ((denali)->active_bank << 24)
40
41#define DENALI_INVALID_BANK -1
42
43static struct denali_chip *to_denali_chip(struct nand_chip *chip)
44{
45 return container_of(chip, struct denali_chip, chip);
46}
47
48static struct denali_controller *to_denali_controller(struct nand_chip *chip)
49{
50 return container_of(chip->controller, struct denali_controller,
51 controller);
52}
53
54/*
55 * Direct Addressing - the slave address forms the control information (command
56 * type, bank, block, and page address). The slave data is the actual data to
57 * be transferred. This mode requires 28 bits of address region allocated.
58 */
59static u32 denali_direct_read(struct denali_controller *denali, u32 addr)
60{
61 return ioread32(denali->host + addr);
62}
63
64static void denali_direct_write(struct denali_controller *denali, u32 addr,
65 u32 data)
66{
67 iowrite32(data, denali->host + addr);
68}
69
70/*
71 * Indexed Addressing - address translation module intervenes in passing the
72 * control information. This mode reduces the required address range. The
73 * control information and transferred data are latched by the registers in
74 * the translation module.
75 */
76static u32 denali_indexed_read(struct denali_controller *denali, u32 addr)
77{
78 iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
79 return ioread32(denali->host + DENALI_INDEXED_DATA);
80}
81
82static void denali_indexed_write(struct denali_controller *denali, u32 addr,
83 u32 data)
84{
85 iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
86 iowrite32(data, denali->host + DENALI_INDEXED_DATA);
87}
88
89static void denali_enable_irq(struct denali_controller *denali)
90{
91 int i;
92
93 for (i = 0; i < denali->nbanks; i++)
94 iowrite32(U32_MAX, denali->reg + INTR_EN(i));
95 iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
96}
97
98static void denali_disable_irq(struct denali_controller *denali)
99{
100 int i;
101
102 for (i = 0; i < denali->nbanks; i++)
103 iowrite32(0, denali->reg + INTR_EN(i));
104 iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
105}
106
107static void denali_clear_irq(struct denali_controller *denali,
108 int bank, u32 irq_status)
109{
110 /* write one to clear bits */
111 iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
112}
113
114static void denali_clear_irq_all(struct denali_controller *denali)
115{
116 int i;
117
118 for (i = 0; i < denali->nbanks; i++)
119 denali_clear_irq(denali, bank: i, U32_MAX);
120}
121
122static irqreturn_t denali_isr(int irq, void *dev_id)
123{
124 struct denali_controller *denali = dev_id;
125 irqreturn_t ret = IRQ_NONE;
126 u32 irq_status;
127 int i;
128
129 spin_lock(lock: &denali->irq_lock);
130
131 for (i = 0; i < denali->nbanks; i++) {
132 irq_status = ioread32(denali->reg + INTR_STATUS(i));
133 if (irq_status)
134 ret = IRQ_HANDLED;
135
136 denali_clear_irq(denali, bank: i, irq_status);
137
138 if (i != denali->active_bank)
139 continue;
140
141 denali->irq_status |= irq_status;
142
143 if (denali->irq_status & denali->irq_mask)
144 complete(&denali->complete);
145 }
146
147 spin_unlock(lock: &denali->irq_lock);
148
149 return ret;
150}
151
152static void denali_reset_irq(struct denali_controller *denali)
153{
154 unsigned long flags;
155
156 spin_lock_irqsave(&denali->irq_lock, flags);
157 denali->irq_status = 0;
158 denali->irq_mask = 0;
159 spin_unlock_irqrestore(lock: &denali->irq_lock, flags);
160}
161
162static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask)
163{
164 unsigned long time_left, flags;
165 u32 irq_status;
166
167 spin_lock_irqsave(&denali->irq_lock, flags);
168
169 irq_status = denali->irq_status;
170
171 if (irq_mask & irq_status) {
172 /* return immediately if the IRQ has already happened. */
173 spin_unlock_irqrestore(lock: &denali->irq_lock, flags);
174 return irq_status;
175 }
176
177 denali->irq_mask = irq_mask;
178 reinit_completion(x: &denali->complete);
179 spin_unlock_irqrestore(lock: &denali->irq_lock, flags);
180
181 time_left = wait_for_completion_timeout(x: &denali->complete,
182 timeout: msecs_to_jiffies(m: 1000));
183 if (!time_left) {
184 dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
185 irq_mask);
186 return 0;
187 }
188
189 return denali->irq_status;
190}
191
192static void denali_select_target(struct nand_chip *chip, int cs)
193{
194 struct denali_controller *denali = to_denali_controller(chip);
195 struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs];
196 struct mtd_info *mtd = nand_to_mtd(chip);
197
198 denali->active_bank = sel->bank;
199
200 iowrite32(1 << (chip->phys_erase_shift - chip->page_shift),
201 denali->reg + PAGES_PER_BLOCK);
202 iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
203 denali->reg + DEVICE_WIDTH);
204 iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
205 iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
206 iowrite32(chip->options & NAND_ROW_ADDR_3 ?
207 0 : TWO_ROW_ADDR_CYCLES__FLAG,
208 denali->reg + TWO_ROW_ADDR_CYCLES);
209 iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
210 FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
211 denali->reg + ECC_CORRECTION);
212 iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
213 iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
214 iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS);
215
216 if (chip->options & NAND_KEEP_TIMINGS)
217 return;
218
219 /* update timing registers unless NAND_KEEP_TIMINGS is set */
220 iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE);
221 iowrite32(sel->tcwaw_and_addr_2_data,
222 denali->reg + TCWAW_AND_ADDR_2_DATA);
223 iowrite32(sel->re_2_we, denali->reg + RE_2_WE);
224 iowrite32(sel->acc_clks, denali->reg + ACC_CLKS);
225 iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT);
226 iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT);
227 iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT);
228 iowrite32(sel->re_2_re, denali->reg + RE_2_RE);
229}
230
231static int denali_change_column(struct nand_chip *chip, unsigned int offset,
232 void *buf, unsigned int len, bool write)
233{
234 if (write)
235 return nand_change_write_column_op(chip, offset_in_page: offset, buf, len,
236 force_8bit: false);
237 else
238 return nand_change_read_column_op(chip, offset_in_page: offset, buf, len,
239 force_8bit: false);
240}
241
242static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write)
243{
244 struct denali_controller *denali = to_denali_controller(chip);
245 struct mtd_info *mtd = nand_to_mtd(chip);
246 struct nand_ecc_ctrl *ecc = &chip->ecc;
247 int writesize = mtd->writesize;
248 int oob_skip = denali->oob_skip_bytes;
249 int ret, i, pos, len;
250
251 for (i = 0; i < ecc->steps; i++) {
252 pos = i * (ecc->size + ecc->bytes);
253 len = ecc->size;
254
255 if (pos >= writesize) {
256 pos += oob_skip;
257 } else if (pos + len > writesize) {
258 /* This chunk overwraps the BBM area. Must be split */
259 ret = denali_change_column(chip, offset: pos, buf,
260 len: writesize - pos, write);
261 if (ret)
262 return ret;
263
264 buf += writesize - pos;
265 len -= writesize - pos;
266 pos = writesize + oob_skip;
267 }
268
269 ret = denali_change_column(chip, offset: pos, buf, len, write);
270 if (ret)
271 return ret;
272
273 buf += len;
274 }
275
276 return 0;
277}
278
279static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write)
280{
281 struct denali_controller *denali = to_denali_controller(chip);
282 struct mtd_info *mtd = nand_to_mtd(chip);
283 struct nand_ecc_ctrl *ecc = &chip->ecc;
284 int writesize = mtd->writesize;
285 int oobsize = mtd->oobsize;
286 int oob_skip = denali->oob_skip_bytes;
287 int ret, i, pos, len;
288
289 /* BBM at the beginning of the OOB area */
290 ret = denali_change_column(chip, offset: writesize, buf, len: oob_skip, write);
291 if (ret)
292 return ret;
293
294 buf += oob_skip;
295
296 for (i = 0; i < ecc->steps; i++) {
297 pos = ecc->size + i * (ecc->size + ecc->bytes);
298
299 if (i == ecc->steps - 1)
300 /* The last chunk includes OOB free */
301 len = writesize + oobsize - pos - oob_skip;
302 else
303 len = ecc->bytes;
304
305 if (pos >= writesize) {
306 pos += oob_skip;
307 } else if (pos + len > writesize) {
308 /* This chunk overwraps the BBM area. Must be split */
309 ret = denali_change_column(chip, offset: pos, buf,
310 len: writesize - pos, write);
311 if (ret)
312 return ret;
313
314 buf += writesize - pos;
315 len -= writesize - pos;
316 pos = writesize + oob_skip;
317 }
318
319 ret = denali_change_column(chip, offset: pos, buf, len, write);
320 if (ret)
321 return ret;
322
323 buf += len;
324 }
325
326 return 0;
327}
328
329static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf,
330 int page)
331{
332 int ret;
333
334 if (!buf && !oob_buf)
335 return -EINVAL;
336
337 ret = nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0);
338 if (ret)
339 return ret;
340
341 if (buf) {
342 ret = denali_payload_xfer(chip, buf, write: false);
343 if (ret)
344 return ret;
345 }
346
347 if (oob_buf) {
348 ret = denali_oob_xfer(chip, buf: oob_buf, write: false);
349 if (ret)
350 return ret;
351 }
352
353 return 0;
354}
355
356static int denali_write_raw(struct nand_chip *chip, const void *buf,
357 const void *oob_buf, int page)
358{
359 int ret;
360
361 if (!buf && !oob_buf)
362 return -EINVAL;
363
364 ret = nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0);
365 if (ret)
366 return ret;
367
368 if (buf) {
369 ret = denali_payload_xfer(chip, buf: (void *)buf, write: true);
370 if (ret)
371 return ret;
372 }
373
374 if (oob_buf) {
375 ret = denali_oob_xfer(chip, buf: (void *)oob_buf, write: true);
376 if (ret)
377 return ret;
378 }
379
380 return nand_prog_page_end_op(chip);
381}
382
383static int denali_read_page_raw(struct nand_chip *chip, u8 *buf,
384 int oob_required, int page)
385{
386 return denali_read_raw(chip, buf, oob_buf: oob_required ? chip->oob_poi : NULL,
387 page);
388}
389
390static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf,
391 int oob_required, int page)
392{
393 return denali_write_raw(chip, buf, oob_buf: oob_required ? chip->oob_poi : NULL,
394 page);
395}
396
397static int denali_read_oob(struct nand_chip *chip, int page)
398{
399 return denali_read_raw(chip, NULL, oob_buf: chip->oob_poi, page);
400}
401
402static int denali_write_oob(struct nand_chip *chip, int page)
403{
404 return denali_write_raw(chip, NULL, oob_buf: chip->oob_poi, page);
405}
406
407static int denali_check_erased_page(struct nand_chip *chip, u8 *buf,
408 unsigned long uncor_ecc_flags,
409 unsigned int max_bitflips)
410{
411 struct denali_controller *denali = to_denali_controller(chip);
412 struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
413 struct nand_ecc_ctrl *ecc = &chip->ecc;
414 u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
415 int i, stat;
416
417 for (i = 0; i < ecc->steps; i++) {
418 if (!(uncor_ecc_flags & BIT(i)))
419 continue;
420
421 stat = nand_check_erased_ecc_chunk(data: buf, datalen: ecc->size, ecc: ecc_code,
422 ecclen: ecc->bytes, NULL, extraooblen: 0,
423 threshold: ecc->strength);
424 if (stat < 0) {
425 ecc_stats->failed++;
426 } else {
427 ecc_stats->corrected += stat;
428 max_bitflips = max_t(unsigned int, max_bitflips, stat);
429 }
430
431 buf += ecc->size;
432 ecc_code += ecc->bytes;
433 }
434
435 return max_bitflips;
436}
437
438static int denali_hw_ecc_fixup(struct nand_chip *chip,
439 unsigned long *uncor_ecc_flags)
440{
441 struct denali_controller *denali = to_denali_controller(chip);
442 struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
443 int bank = denali->active_bank;
444 u32 ecc_cor;
445 unsigned int max_bitflips;
446
447 ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
448 ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
449
450 if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
451 /*
452 * This flag is set when uncorrectable error occurs at least in
453 * one ECC sector. We can not know "how many sectors", or
454 * "which sector(s)". We need erase-page check for all sectors.
455 */
456 *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
457 return 0;
458 }
459
460 max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
461
462 /*
463 * The register holds the maximum of per-sector corrected bitflips.
464 * This is suitable for the return value of the ->read_page() callback.
465 * Unfortunately, we can not know the total number of corrected bits in
466 * the page. Increase the stats by max_bitflips. (compromised solution)
467 */
468 ecc_stats->corrected += max_bitflips;
469
470 return max_bitflips;
471}
472
473static int denali_sw_ecc_fixup(struct nand_chip *chip,
474 unsigned long *uncor_ecc_flags, u8 *buf)
475{
476 struct denali_controller *denali = to_denali_controller(chip);
477 struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
478 unsigned int ecc_size = chip->ecc.size;
479 unsigned int bitflips = 0;
480 unsigned int max_bitflips = 0;
481 u32 err_addr, err_cor_info;
482 unsigned int err_byte, err_sector, err_device;
483 u8 err_cor_value;
484 unsigned int prev_sector = 0;
485 u32 irq_status;
486
487 denali_reset_irq(denali);
488
489 do {
490 err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
491 err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
492 err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
493
494 err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
495 err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
496 err_cor_info);
497 err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
498 err_cor_info);
499
500 /* reset the bitflip counter when crossing ECC sector */
501 if (err_sector != prev_sector)
502 bitflips = 0;
503
504 if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
505 /*
506 * Check later if this is a real ECC error, or
507 * an erased sector.
508 */
509 *uncor_ecc_flags |= BIT(err_sector);
510 } else if (err_byte < ecc_size) {
511 /*
512 * If err_byte is larger than ecc_size, means error
513 * happened in OOB, so we ignore it. It's no need for
514 * us to correct it err_device is represented the NAND
515 * error bits are happened in if there are more than
516 * one NAND connected.
517 */
518 int offset;
519 unsigned int flips_in_byte;
520
521 offset = (err_sector * ecc_size + err_byte) *
522 denali->devs_per_cs + err_device;
523
524 /* correct the ECC error */
525 flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
526 buf[offset] ^= err_cor_value;
527 ecc_stats->corrected += flips_in_byte;
528 bitflips += flips_in_byte;
529
530 max_bitflips = max(max_bitflips, bitflips);
531 }
532
533 prev_sector = err_sector;
534 } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
535
536 /*
537 * Once handle all ECC errors, controller will trigger an
538 * ECC_TRANSACTION_DONE interrupt.
539 */
540 irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
541 if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
542 return -EIO;
543
544 return max_bitflips;
545}
546
547static void denali_setup_dma64(struct denali_controller *denali,
548 dma_addr_t dma_addr, int page, bool write)
549{
550 u32 mode;
551 const int page_count = 1;
552
553 mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
554
555 /* DMA is a three step process */
556
557 /*
558 * 1. setup transfer type, interrupt when complete,
559 * burst len = 64 bytes, the number of pages
560 */
561 denali->host_write(denali, mode,
562 0x01002000 | (64 << 16) |
563 (write ? BIT(8) : 0) | page_count);
564
565 /* 2. set memory low address */
566 denali->host_write(denali, mode, lower_32_bits(dma_addr));
567
568 /* 3. set memory high address */
569 denali->host_write(denali, mode, upper_32_bits(dma_addr));
570}
571
572static void denali_setup_dma32(struct denali_controller *denali,
573 dma_addr_t dma_addr, int page, bool write)
574{
575 u32 mode;
576 const int page_count = 1;
577
578 mode = DENALI_MAP10 | DENALI_BANK(denali);
579
580 /* DMA is a four step process */
581
582 /* 1. setup transfer type and # of pages */
583 denali->host_write(denali, mode | page,
584 0x2000 | (write ? BIT(8) : 0) | page_count);
585
586 /* 2. set memory high address bits 23:8 */
587 denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
588
589 /* 3. set memory low address bits 23:8 */
590 denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
591
592 /* 4. interrupt when complete, burst len = 64 bytes */
593 denali->host_write(denali, mode | 0x14000, 0x2400);
594}
595
596static int denali_pio_read(struct denali_controller *denali, u32 *buf,
597 size_t size, int page)
598{
599 u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
600 u32 irq_status, ecc_err_mask;
601 int i;
602
603 if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
604 ecc_err_mask = INTR__ECC_UNCOR_ERR;
605 else
606 ecc_err_mask = INTR__ECC_ERR;
607
608 denali_reset_irq(denali);
609
610 for (i = 0; i < size / 4; i++)
611 buf[i] = denali->host_read(denali, addr);
612
613 irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
614 if (!(irq_status & INTR__PAGE_XFER_INC))
615 return -EIO;
616
617 if (irq_status & INTR__ERASED_PAGE)
618 memset(buf, 0xff, size);
619
620 return irq_status & ecc_err_mask ? -EBADMSG : 0;
621}
622
623static int denali_pio_write(struct denali_controller *denali, const u32 *buf,
624 size_t size, int page)
625{
626 u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
627 u32 irq_status;
628 int i;
629
630 denali_reset_irq(denali);
631
632 for (i = 0; i < size / 4; i++)
633 denali->host_write(denali, addr, buf[i]);
634
635 irq_status = denali_wait_for_irq(denali,
636 INTR__PROGRAM_COMP |
637 INTR__PROGRAM_FAIL);
638 if (!(irq_status & INTR__PROGRAM_COMP))
639 return -EIO;
640
641 return 0;
642}
643
644static int denali_pio_xfer(struct denali_controller *denali, void *buf,
645 size_t size, int page, bool write)
646{
647 if (write)
648 return denali_pio_write(denali, buf, size, page);
649 else
650 return denali_pio_read(denali, buf, size, page);
651}
652
653static int denali_dma_xfer(struct denali_controller *denali, void *buf,
654 size_t size, int page, bool write)
655{
656 dma_addr_t dma_addr;
657 u32 irq_mask, irq_status, ecc_err_mask;
658 enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
659 int ret = 0;
660
661 dma_addr = dma_map_single(denali->dev, buf, size, dir);
662 if (dma_mapping_error(dev: denali->dev, dma_addr)) {
663 dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
664 return denali_pio_xfer(denali, buf, size, page, write);
665 }
666
667 if (write) {
668 /*
669 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
670 * We can use INTR__DMA_CMD_COMP instead. This flag is asserted
671 * when the page program is completed.
672 */
673 irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
674 ecc_err_mask = 0;
675 } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
676 irq_mask = INTR__DMA_CMD_COMP;
677 ecc_err_mask = INTR__ECC_UNCOR_ERR;
678 } else {
679 irq_mask = INTR__DMA_CMD_COMP;
680 ecc_err_mask = INTR__ECC_ERR;
681 }
682
683 iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
684 /*
685 * The ->setup_dma() hook kicks DMA by using the data/command
686 * interface, which belongs to a different AXI port from the
687 * register interface. Read back the register to avoid a race.
688 */
689 ioread32(denali->reg + DMA_ENABLE);
690
691 denali_reset_irq(denali);
692 denali->setup_dma(denali, dma_addr, page, write);
693
694 irq_status = denali_wait_for_irq(denali, irq_mask);
695 if (!(irq_status & INTR__DMA_CMD_COMP))
696 ret = -EIO;
697 else if (irq_status & ecc_err_mask)
698 ret = -EBADMSG;
699
700 iowrite32(0, denali->reg + DMA_ENABLE);
701
702 dma_unmap_single(denali->dev, dma_addr, size, dir);
703
704 if (irq_status & INTR__ERASED_PAGE)
705 memset(buf, 0xff, size);
706
707 return ret;
708}
709
710static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size,
711 int page, bool write)
712{
713 struct denali_controller *denali = to_denali_controller(chip);
714
715 denali_select_target(chip, cs: chip->cur_cs);
716
717 if (denali->dma_avail)
718 return denali_dma_xfer(denali, buf, size, page, write);
719 else
720 return denali_pio_xfer(denali, buf, size, page, write);
721}
722
723static int denali_read_page(struct nand_chip *chip, u8 *buf,
724 int oob_required, int page)
725{
726 struct denali_controller *denali = to_denali_controller(chip);
727 struct mtd_info *mtd = nand_to_mtd(chip);
728 unsigned long uncor_ecc_flags = 0;
729 int stat = 0;
730 int ret;
731
732 ret = denali_page_xfer(chip, buf, size: mtd->writesize, page, write: false);
733 if (ret && ret != -EBADMSG)
734 return ret;
735
736 if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
737 stat = denali_hw_ecc_fixup(chip, uncor_ecc_flags: &uncor_ecc_flags);
738 else if (ret == -EBADMSG)
739 stat = denali_sw_ecc_fixup(chip, uncor_ecc_flags: &uncor_ecc_flags, buf);
740
741 if (stat < 0)
742 return stat;
743
744 if (uncor_ecc_flags) {
745 ret = denali_read_oob(chip, page);
746 if (ret)
747 return ret;
748
749 stat = denali_check_erased_page(chip, buf,
750 uncor_ecc_flags, max_bitflips: stat);
751 }
752
753 return stat;
754}
755
756static int denali_write_page(struct nand_chip *chip, const u8 *buf,
757 int oob_required, int page)
758{
759 struct mtd_info *mtd = nand_to_mtd(chip);
760
761 return denali_page_xfer(chip, buf: (void *)buf, size: mtd->writesize, page, write: true);
762}
763
764static int denali_setup_interface(struct nand_chip *chip, int chipnr,
765 const struct nand_interface_config *conf)
766{
767 static const unsigned int data_setup_on_host = 10000;
768 struct denali_controller *denali = to_denali_controller(chip);
769 struct denali_chip_sel *sel;
770 const struct nand_sdr_timings *timings;
771 unsigned long t_x, mult_x;
772 int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
773 int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
774 int addr_2_data_mask;
775 u32 tmp;
776
777 timings = nand_get_sdr_timings(conf);
778 if (IS_ERR(ptr: timings))
779 return PTR_ERR(ptr: timings);
780
781 /* clk_x period in picoseconds */
782 t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
783 if (!t_x)
784 return -EINVAL;
785
786 /*
787 * The bus interface clock, clk_x, is phase aligned with the core clock.
788 * The clk_x is an integral multiple N of the core clk. The value N is
789 * configured at IP delivery time, and its available value is 4, 5, 6.
790 */
791 mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
792 if (mult_x < 4 || mult_x > 6)
793 return -EINVAL;
794
795 if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
796 return 0;
797
798 sel = &to_denali_chip(chip)->sels[chipnr];
799
800 /* tRWH -> RE_2_WE */
801 re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
802 re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
803
804 tmp = ioread32(denali->reg + RE_2_WE);
805 tmp &= ~RE_2_WE__VALUE;
806 tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
807 sel->re_2_we = tmp;
808
809 /* tRHZ -> RE_2_RE */
810 re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
811 re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
812
813 tmp = ioread32(denali->reg + RE_2_RE);
814 tmp &= ~RE_2_RE__VALUE;
815 tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
816 sel->re_2_re = tmp;
817
818 /*
819 * tCCS, tWHR -> WE_2_RE
820 *
821 * With WE_2_RE properly set, the Denali controller automatically takes
822 * care of the delay; the driver need not set NAND_WAIT_TCCS.
823 */
824 we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
825 we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
826
827 tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
828 tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
829 tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
830 sel->hwhr2_and_we_2_re = tmp;
831
832 /* tADL -> ADDR_2_DATA */
833
834 /* for older versions, ADDR_2_DATA is only 6 bit wide */
835 addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
836 if (denali->revision < 0x0501)
837 addr_2_data_mask >>= 1;
838
839 addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
840 addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
841
842 tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
843 tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
844 tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
845 sel->tcwaw_and_addr_2_data = tmp;
846
847 /* tREH, tWH -> RDWR_EN_HI_CNT */
848 rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
849 t_x);
850 rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
851
852 tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
853 tmp &= ~RDWR_EN_HI_CNT__VALUE;
854 tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
855 sel->rdwr_en_hi_cnt = tmp;
856
857 /*
858 * tREA -> ACC_CLKS
859 * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT
860 */
861
862 /*
863 * Determine the minimum of acc_clks to meet the setup timing when
864 * capturing the incoming data.
865 *
866 * The delay on the chip side is well-defined as tREA, but we need to
867 * take additional delay into account. This includes a certain degree
868 * of unknowledge, such as signal propagation delays on the PCB and
869 * in the SoC, load capacity of the I/O pins, etc.
870 */
871 acc_clks = DIV_ROUND_UP(timings->tREA_max + data_setup_on_host, t_x);
872
873 /* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */
874 rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
875
876 /* Extend rdwr_en_lo to meet the data hold timing */
877 rdwr_en_lo = max_t(int, rdwr_en_lo,
878 acc_clks - timings->tRHOH_min / t_x);
879
880 /* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */
881 rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
882 t_x);
883 rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
884 rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
885
886 /* Center the data latch timing for extra safety */
887 acc_clks = (acc_clks + rdwr_en_lo +
888 DIV_ROUND_UP(timings->tRHOH_min, t_x)) / 2;
889 acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
890
891 tmp = ioread32(denali->reg + ACC_CLKS);
892 tmp &= ~ACC_CLKS__VALUE;
893 tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
894 sel->acc_clks = tmp;
895
896 tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
897 tmp &= ~RDWR_EN_LO_CNT__VALUE;
898 tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
899 sel->rdwr_en_lo_cnt = tmp;
900
901 /* tCS, tCEA -> CS_SETUP_CNT */
902 cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
903 (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
904 0);
905 cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
906
907 tmp = ioread32(denali->reg + CS_SETUP_CNT);
908 tmp &= ~CS_SETUP_CNT__VALUE;
909 tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
910 sel->cs_setup_cnt = tmp;
911
912 return 0;
913}
914
915int denali_calc_ecc_bytes(int step_size, int strength)
916{
917 /* BCH code. Denali requires ecc.bytes to be multiple of 2 */
918 return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
919}
920EXPORT_SYMBOL(denali_calc_ecc_bytes);
921
922static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
923 struct mtd_oob_region *oobregion)
924{
925 struct nand_chip *chip = mtd_to_nand(mtd);
926 struct denali_controller *denali = to_denali_controller(chip);
927
928 if (section > 0)
929 return -ERANGE;
930
931 oobregion->offset = denali->oob_skip_bytes;
932 oobregion->length = chip->ecc.total;
933
934 return 0;
935}
936
937static int denali_ooblayout_free(struct mtd_info *mtd, int section,
938 struct mtd_oob_region *oobregion)
939{
940 struct nand_chip *chip = mtd_to_nand(mtd);
941 struct denali_controller *denali = to_denali_controller(chip);
942
943 if (section > 0)
944 return -ERANGE;
945
946 oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
947 oobregion->length = mtd->oobsize - oobregion->offset;
948
949 return 0;
950}
951
952static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
953 .ecc = denali_ooblayout_ecc,
954 .free = denali_ooblayout_free,
955};
956
957static int denali_multidev_fixup(struct nand_chip *chip)
958{
959 struct denali_controller *denali = to_denali_controller(chip);
960 struct mtd_info *mtd = nand_to_mtd(chip);
961 struct nand_memory_organization *memorg;
962
963 memorg = nanddev_get_memorg(nand: &chip->base);
964
965 /*
966 * Support for multi device:
967 * When the IP configuration is x16 capable and two x8 chips are
968 * connected in parallel, DEVICES_CONNECTED should be set to 2.
969 * In this case, the core framework knows nothing about this fact,
970 * so we should tell it the _logical_ pagesize and anything necessary.
971 */
972 denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
973
974 /*
975 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
976 * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
977 */
978 if (denali->devs_per_cs == 0) {
979 denali->devs_per_cs = 1;
980 iowrite32(1, denali->reg + DEVICES_CONNECTED);
981 }
982
983 if (denali->devs_per_cs == 1)
984 return 0;
985
986 if (denali->devs_per_cs != 2) {
987 dev_err(denali->dev, "unsupported number of devices %d\n",
988 denali->devs_per_cs);
989 return -EINVAL;
990 }
991
992 /* 2 chips in parallel */
993 memorg->pagesize <<= 1;
994 memorg->oobsize <<= 1;
995 mtd->size <<= 1;
996 mtd->erasesize <<= 1;
997 mtd->writesize <<= 1;
998 mtd->oobsize <<= 1;
999 chip->page_shift += 1;
1000 chip->phys_erase_shift += 1;
1001 chip->bbt_erase_shift += 1;
1002 chip->chip_shift += 1;
1003 chip->pagemask <<= 1;
1004 chip->ecc.size <<= 1;
1005 chip->ecc.bytes <<= 1;
1006 chip->ecc.strength <<= 1;
1007 denali->oob_skip_bytes <<= 1;
1008
1009 return 0;
1010}
1011
1012static int denali_attach_chip(struct nand_chip *chip)
1013{
1014 struct denali_controller *denali = to_denali_controller(chip);
1015 struct mtd_info *mtd = nand_to_mtd(chip);
1016 int ret;
1017
1018 ret = nand_ecc_choose_conf(chip, caps: denali->ecc_caps,
1019 oobavail: mtd->oobsize - denali->oob_skip_bytes);
1020 if (ret) {
1021 dev_err(denali->dev, "Failed to setup ECC settings.\n");
1022 return ret;
1023 }
1024
1025 dev_dbg(denali->dev,
1026 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1027 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1028
1029 ret = denali_multidev_fixup(chip);
1030 if (ret)
1031 return ret;
1032
1033 return 0;
1034}
1035
1036static void denali_exec_in8(struct denali_controller *denali, u32 type,
1037 u8 *buf, unsigned int len)
1038{
1039 int i;
1040
1041 for (i = 0; i < len; i++)
1042 buf[i] = denali->host_read(denali, type | DENALI_BANK(denali));
1043}
1044
1045static void denali_exec_in16(struct denali_controller *denali, u32 type,
1046 u8 *buf, unsigned int len)
1047{
1048 u32 data;
1049 int i;
1050
1051 for (i = 0; i < len; i += 2) {
1052 data = denali->host_read(denali, type | DENALI_BANK(denali));
1053 /* bit 31:24 and 15:8 are used for DDR */
1054 buf[i] = data;
1055 buf[i + 1] = data >> 16;
1056 }
1057}
1058
1059static void denali_exec_in(struct denali_controller *denali, u32 type,
1060 u8 *buf, unsigned int len, bool width16)
1061{
1062 if (width16)
1063 denali_exec_in16(denali, type, buf, len);
1064 else
1065 denali_exec_in8(denali, type, buf, len);
1066}
1067
1068static void denali_exec_out8(struct denali_controller *denali, u32 type,
1069 const u8 *buf, unsigned int len)
1070{
1071 int i;
1072
1073 for (i = 0; i < len; i++)
1074 denali->host_write(denali, type | DENALI_BANK(denali), buf[i]);
1075}
1076
1077static void denali_exec_out16(struct denali_controller *denali, u32 type,
1078 const u8 *buf, unsigned int len)
1079{
1080 int i;
1081
1082 for (i = 0; i < len; i += 2)
1083 denali->host_write(denali, type | DENALI_BANK(denali),
1084 buf[i + 1] << 16 | buf[i]);
1085}
1086
1087static void denali_exec_out(struct denali_controller *denali, u32 type,
1088 const u8 *buf, unsigned int len, bool width16)
1089{
1090 if (width16)
1091 denali_exec_out16(denali, type, buf, len);
1092 else
1093 denali_exec_out8(denali, type, buf, len);
1094}
1095
1096static int denali_exec_waitrdy(struct denali_controller *denali)
1097{
1098 u32 irq_stat;
1099
1100 /* R/B# pin transitioned from low to high? */
1101 irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT);
1102
1103 /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */
1104 denali_reset_irq(denali);
1105
1106 return irq_stat & INTR__INT_ACT ? 0 : -EIO;
1107}
1108
1109static int denali_exec_instr(struct nand_chip *chip,
1110 const struct nand_op_instr *instr)
1111{
1112 struct denali_controller *denali = to_denali_controller(chip);
1113
1114 switch (instr->type) {
1115 case NAND_OP_CMD_INSTR:
1116 denali_exec_out8(denali, DENALI_MAP11_CMD,
1117 buf: &instr->ctx.cmd.opcode, len: 1);
1118 return 0;
1119 case NAND_OP_ADDR_INSTR:
1120 denali_exec_out8(denali, DENALI_MAP11_ADDR,
1121 buf: instr->ctx.addr.addrs,
1122 len: instr->ctx.addr.naddrs);
1123 return 0;
1124 case NAND_OP_DATA_IN_INSTR:
1125 denali_exec_in(denali, DENALI_MAP11_DATA,
1126 buf: instr->ctx.data.buf.in,
1127 len: instr->ctx.data.len,
1128 width16: !instr->ctx.data.force_8bit &&
1129 chip->options & NAND_BUSWIDTH_16);
1130 return 0;
1131 case NAND_OP_DATA_OUT_INSTR:
1132 denali_exec_out(denali, DENALI_MAP11_DATA,
1133 buf: instr->ctx.data.buf.out,
1134 len: instr->ctx.data.len,
1135 width16: !instr->ctx.data.force_8bit &&
1136 chip->options & NAND_BUSWIDTH_16);
1137 return 0;
1138 case NAND_OP_WAITRDY_INSTR:
1139 return denali_exec_waitrdy(denali);
1140 default:
1141 WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
1142 instr->type);
1143
1144 return -EINVAL;
1145 }
1146}
1147
1148static int denali_exec_op(struct nand_chip *chip,
1149 const struct nand_operation *op, bool check_only)
1150{
1151 int i, ret;
1152
1153 if (check_only)
1154 return 0;
1155
1156 denali_select_target(chip, cs: op->cs);
1157
1158 /*
1159 * Some commands contain NAND_OP_WAITRDY_INSTR.
1160 * irq must be cleared here to catch the R/B# interrupt there.
1161 */
1162 denali_reset_irq(denali: to_denali_controller(chip));
1163
1164 for (i = 0; i < op->ninstrs; i++) {
1165 ret = denali_exec_instr(chip, instr: &op->instrs[i]);
1166 if (ret)
1167 return ret;
1168 }
1169
1170 return 0;
1171}
1172
1173static const struct nand_controller_ops denali_controller_ops = {
1174 .attach_chip = denali_attach_chip,
1175 .exec_op = denali_exec_op,
1176 .setup_interface = denali_setup_interface,
1177};
1178
1179int denali_chip_init(struct denali_controller *denali,
1180 struct denali_chip *dchip)
1181{
1182 struct nand_chip *chip = &dchip->chip;
1183 struct mtd_info *mtd = nand_to_mtd(chip);
1184 struct denali_chip *dchip2;
1185 int i, j, ret;
1186
1187 chip->controller = &denali->controller;
1188
1189 /* sanity checks for bank numbers */
1190 for (i = 0; i < dchip->nsels; i++) {
1191 unsigned int bank = dchip->sels[i].bank;
1192
1193 if (bank >= denali->nbanks) {
1194 dev_err(denali->dev, "unsupported bank %d\n", bank);
1195 return -EINVAL;
1196 }
1197
1198 for (j = 0; j < i; j++) {
1199 if (bank == dchip->sels[j].bank) {
1200 dev_err(denali->dev,
1201 "bank %d is assigned twice in the same chip\n",
1202 bank);
1203 return -EINVAL;
1204 }
1205 }
1206
1207 list_for_each_entry(dchip2, &denali->chips, node) {
1208 for (j = 0; j < dchip2->nsels; j++) {
1209 if (bank == dchip2->sels[j].bank) {
1210 dev_err(denali->dev,
1211 "bank %d is already used\n",
1212 bank);
1213 return -EINVAL;
1214 }
1215 }
1216 }
1217 }
1218
1219 mtd->dev.parent = denali->dev;
1220
1221 /*
1222 * Fallback to the default name if DT did not give "label" property.
1223 * Use "label" property if multiple chips are connected.
1224 */
1225 if (!mtd->name && list_empty(head: &denali->chips))
1226 mtd->name = "denali-nand";
1227
1228 if (denali->dma_avail) {
1229 chip->options |= NAND_USES_DMA;
1230 chip->buf_align = 16;
1231 }
1232
1233 /* clk rate info is needed for setup_interface */
1234 if (!denali->clk_rate || !denali->clk_x_rate)
1235 chip->options |= NAND_KEEP_TIMINGS;
1236
1237 chip->bbt_options |= NAND_BBT_USE_FLASH;
1238 chip->bbt_options |= NAND_BBT_NO_OOB;
1239 chip->options |= NAND_NO_SUBPAGE_WRITE;
1240 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1241 chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
1242 chip->ecc.read_page = denali_read_page;
1243 chip->ecc.write_page = denali_write_page;
1244 chip->ecc.read_page_raw = denali_read_page_raw;
1245 chip->ecc.write_page_raw = denali_write_page_raw;
1246 chip->ecc.read_oob = denali_read_oob;
1247 chip->ecc.write_oob = denali_write_oob;
1248
1249 mtd_set_ooblayout(mtd, ooblayout: &denali_ooblayout_ops);
1250
1251 ret = nand_scan(chip, max_chips: dchip->nsels);
1252 if (ret)
1253 return ret;
1254
1255 ret = mtd_device_register(mtd, NULL, 0);
1256 if (ret) {
1257 dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1258 goto cleanup_nand;
1259 }
1260
1261 list_add_tail(new: &dchip->node, head: &denali->chips);
1262
1263 return 0;
1264
1265cleanup_nand:
1266 nand_cleanup(chip);
1267
1268 return ret;
1269}
1270EXPORT_SYMBOL_GPL(denali_chip_init);
1271
1272int denali_init(struct denali_controller *denali)
1273{
1274 u32 features = ioread32(denali->reg + FEATURES);
1275 int ret;
1276
1277 nand_controller_init(nfc: &denali->controller);
1278 denali->controller.ops = &denali_controller_ops;
1279 init_completion(x: &denali->complete);
1280 spin_lock_init(&denali->irq_lock);
1281 INIT_LIST_HEAD(list: &denali->chips);
1282 denali->active_bank = DENALI_INVALID_BANK;
1283
1284 /*
1285 * The REVISION register may not be reliable. Platforms are allowed to
1286 * override it.
1287 */
1288 if (!denali->revision)
1289 denali->revision = swab16(ioread32(denali->reg + REVISION));
1290
1291 denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
1292
1293 /* the encoding changed from rev 5.0 to 5.1 */
1294 if (denali->revision < 0x0501)
1295 denali->nbanks <<= 1;
1296
1297 if (features & FEATURES__DMA)
1298 denali->dma_avail = true;
1299
1300 if (denali->dma_avail) {
1301 int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1302
1303 ret = dma_set_mask(dev: denali->dev, DMA_BIT_MASK(dma_bit));
1304 if (ret) {
1305 dev_info(denali->dev,
1306 "Failed to set DMA mask. Disabling DMA.\n");
1307 denali->dma_avail = false;
1308 }
1309 }
1310
1311 if (denali->dma_avail) {
1312 if (denali->caps & DENALI_CAP_DMA_64BIT)
1313 denali->setup_dma = denali_setup_dma64;
1314 else
1315 denali->setup_dma = denali_setup_dma32;
1316 }
1317
1318 if (features & FEATURES__INDEX_ADDR) {
1319 denali->host_read = denali_indexed_read;
1320 denali->host_write = denali_indexed_write;
1321 } else {
1322 denali->host_read = denali_direct_read;
1323 denali->host_write = denali_direct_write;
1324 }
1325
1326 /*
1327 * Set how many bytes should be skipped before writing data in OOB.
1328 * If a platform requests a non-zero value, set it to the register.
1329 * Otherwise, read the value out, expecting it has already been set up
1330 * by firmware.
1331 */
1332 if (denali->oob_skip_bytes)
1333 iowrite32(denali->oob_skip_bytes,
1334 denali->reg + SPARE_AREA_SKIP_BYTES);
1335 else
1336 denali->oob_skip_bytes = ioread32(denali->reg +
1337 SPARE_AREA_SKIP_BYTES);
1338
1339 iowrite32(0, denali->reg + TRANSFER_SPARE_REG);
1340 iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED);
1341 iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1342 iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
1343 iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1344 iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT);
1345
1346 denali_clear_irq_all(denali);
1347
1348 ret = devm_request_irq(dev: denali->dev, irq: denali->irq, handler: denali_isr,
1349 IRQF_SHARED, DENALI_NAND_NAME, dev_id: denali);
1350 if (ret) {
1351 dev_err(denali->dev, "Unable to request IRQ\n");
1352 return ret;
1353 }
1354
1355 denali_enable_irq(denali);
1356
1357 return 0;
1358}
1359EXPORT_SYMBOL(denali_init);
1360
1361void denali_remove(struct denali_controller *denali)
1362{
1363 struct denali_chip *dchip, *tmp;
1364 struct nand_chip *chip;
1365 int ret;
1366
1367 list_for_each_entry_safe(dchip, tmp, &denali->chips, node) {
1368 chip = &dchip->chip;
1369 ret = mtd_device_unregister(master: nand_to_mtd(chip));
1370 WARN_ON(ret);
1371 nand_cleanup(chip);
1372 list_del(entry: &dchip->node);
1373 }
1374
1375 denali_disable_irq(denali);
1376}
1377EXPORT_SYMBOL(denali_remove);
1378
1379MODULE_DESCRIPTION("Driver core for Denali NAND controller");
1380MODULE_AUTHOR("Intel Corporation and its suppliers");
1381MODULE_LICENSE("GPL v2");
1382

source code of linux/drivers/mtd/nand/raw/denali.c