1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Overview:
4 * This is the generic MTD driver for NAND flash devices. It should be
5 * capable of working with almost all NAND chips currently available.
6 *
7 * Additional technical information is available on
8 * http://www.linux-mtd.infradead.org/doc/nand.html
9 *
10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
12 *
13 * Credits:
14 * David Woodhouse for adding multichip support
15 *
16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17 * rework for 2K page size chips
18 *
19 * TODO:
20 * Enable cached programming for 2k page size chips
21 * Check, if mtd->ecctype should be set to MTD_ECC_HW
22 * if we have HW ECC support.
23 * BBT table is not serialized, has to be fixed
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/module.h>
29#include <linux/delay.h>
30#include <linux/errno.h>
31#include <linux/err.h>
32#include <linux/sched.h>
33#include <linux/slab.h>
34#include <linux/mm.h>
35#include <linux/types.h>
36#include <linux/mtd/mtd.h>
37#include <linux/mtd/nand.h>
38#include <linux/mtd/nand-ecc-sw-hamming.h>
39#include <linux/mtd/nand-ecc-sw-bch.h>
40#include <linux/interrupt.h>
41#include <linux/bitops.h>
42#include <linux/io.h>
43#include <linux/mtd/partitions.h>
44#include <linux/of.h>
45#include <linux/gpio/consumer.h>
46
47#include "internals.h"
48
49static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50 struct mtd_pairing_info *info)
51{
52 int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53 int dist = 3;
54
55 if (page == lastpage)
56 dist = 2;
57
58 if (!page || (page & 1)) {
59 info->group = 0;
60 info->pair = (page + 1) / 2;
61 } else {
62 info->group = 1;
63 info->pair = (page + 1 - dist) / 2;
64 }
65
66 return 0;
67}
68
69static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70 const struct mtd_pairing_info *info)
71{
72 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73 int page = info->pair * 2;
74 int dist = 3;
75
76 if (!info->group && !info->pair)
77 return 0;
78
79 if (info->pair == lastpair && info->group)
80 dist = 2;
81
82 if (!info->group)
83 page--;
84 else if (info->pair)
85 page += dist - 1;
86
87 if (page >= mtd->erasesize / mtd->writesize)
88 return -EINVAL;
89
90 return page;
91}
92
93const struct mtd_pairing_scheme dist3_pairing_scheme = {
94 .ngroups = 2,
95 .get_info = nand_pairing_dist3_get_info,
96 .get_wunit = nand_pairing_dist3_get_wunit,
97};
98
99static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100{
101 int ret = 0;
102
103 /* Start address must align on block boundary */
104 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105 pr_debug("%s: unaligned address\n", __func__);
106 ret = -EINVAL;
107 }
108
109 /* Length must align on block boundary */
110 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111 pr_debug("%s: length not block aligned\n", __func__);
112 ret = -EINVAL;
113 }
114
115 return ret;
116}
117
118/**
119 * nand_extract_bits - Copy unaligned bits from one buffer to another one
120 * @dst: destination buffer
121 * @dst_off: bit offset at which the writing starts
122 * @src: source buffer
123 * @src_off: bit offset at which the reading starts
124 * @nbits: number of bits to copy from @src to @dst
125 *
126 * Copy bits from one memory region to another (overlap authorized).
127 */
128void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129 unsigned int src_off, unsigned int nbits)
130{
131 unsigned int tmp, n;
132
133 dst += dst_off / 8;
134 dst_off %= 8;
135 src += src_off / 8;
136 src_off %= 8;
137
138 while (nbits) {
139 n = min3(8 - dst_off, 8 - src_off, nbits);
140
141 tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142 *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143 *dst |= tmp << dst_off;
144
145 dst_off += n;
146 if (dst_off >= 8) {
147 dst++;
148 dst_off -= 8;
149 }
150
151 src_off += n;
152 if (src_off >= 8) {
153 src++;
154 src_off -= 8;
155 }
156
157 nbits -= n;
158 }
159}
160EXPORT_SYMBOL_GPL(nand_extract_bits);
161
162/**
163 * nand_select_target() - Select a NAND target (A.K.A. die)
164 * @chip: NAND chip object
165 * @cs: the CS line to select. Note that this CS id is always from the chip
166 * PoV, not the controller one
167 *
168 * Select a NAND target so that further operations executed on @chip go to the
169 * selected NAND target.
170 */
171void nand_select_target(struct nand_chip *chip, unsigned int cs)
172{
173 /*
174 * cs should always lie between 0 and nanddev_ntargets(), when that's
175 * not the case it's a bug and the caller should be fixed.
176 */
177 if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178 return;
179
180 chip->cur_cs = cs;
181
182 if (chip->legacy.select_chip)
183 chip->legacy.select_chip(chip, cs);
184}
185EXPORT_SYMBOL_GPL(nand_select_target);
186
187/**
188 * nand_deselect_target() - Deselect the currently selected target
189 * @chip: NAND chip object
190 *
191 * Deselect the currently selected NAND target. The result of operations
192 * executed on @chip after the target has been deselected is undefined.
193 */
194void nand_deselect_target(struct nand_chip *chip)
195{
196 if (chip->legacy.select_chip)
197 chip->legacy.select_chip(chip, -1);
198
199 chip->cur_cs = -1;
200}
201EXPORT_SYMBOL_GPL(nand_deselect_target);
202
203/**
204 * nand_release_device - [GENERIC] release chip
205 * @chip: NAND chip object
206 *
207 * Release chip lock and wake up anyone waiting on the device.
208 */
209static void nand_release_device(struct nand_chip *chip)
210{
211 /* Release the controller and the chip */
212 mutex_unlock(lock: &chip->controller->lock);
213 mutex_unlock(lock: &chip->lock);
214}
215
216/**
217 * nand_bbm_get_next_page - Get the next page for bad block markers
218 * @chip: NAND chip object
219 * @page: First page to start checking for bad block marker usage
220 *
221 * Returns an integer that corresponds to the page offset within a block, for
222 * a page that is used to store bad block markers. If no more pages are
223 * available, -EINVAL is returned.
224 */
225int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226{
227 struct mtd_info *mtd = nand_to_mtd(chip);
228 int last_page = ((mtd->erasesize - mtd->writesize) >>
229 chip->page_shift) & chip->pagemask;
230 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231 | NAND_BBM_LASTPAGE;
232
233 if (page == 0 && !(chip->options & bbm_flags))
234 return 0;
235 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236 return 0;
237 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238 return 1;
239 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240 return last_page;
241
242 return -EINVAL;
243}
244
245/**
246 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247 * @chip: NAND chip object
248 * @ofs: offset from device start
249 *
250 * Check, if the block is bad.
251 */
252static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253{
254 int first_page, page_offset;
255 int res;
256 u8 bad;
257
258 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259 page_offset = nand_bbm_get_next_page(chip, page: 0);
260
261 while (page_offset >= 0) {
262 res = chip->ecc.read_oob(chip, first_page + page_offset);
263 if (res < 0)
264 return res;
265
266 bad = chip->oob_poi[chip->badblockpos];
267
268 if (likely(chip->badblockbits == 8))
269 res = bad != 0xFF;
270 else
271 res = hweight8(bad) < chip->badblockbits;
272 if (res)
273 return res;
274
275 page_offset = nand_bbm_get_next_page(chip, page: page_offset + 1);
276 }
277
278 return 0;
279}
280
281/**
282 * nand_region_is_secured() - Check if the region is secured
283 * @chip: NAND chip object
284 * @offset: Offset of the region to check
285 * @size: Size of the region to check
286 *
287 * Checks if the region is secured by comparing the offset and size with the
288 * list of secure regions obtained from DT. Returns true if the region is
289 * secured else false.
290 */
291static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
292{
293 int i;
294
295 /* Skip touching the secure regions if present */
296 for (i = 0; i < chip->nr_secure_regions; i++) {
297 const struct nand_secure_region *region = &chip->secure_regions[i];
298
299 if (offset + size <= region->offset ||
300 offset >= region->offset + region->size)
301 continue;
302
303 pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
304 __func__, offset, offset + size);
305
306 return true;
307 }
308
309 return false;
310}
311
312static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
313{
314 struct mtd_info *mtd = nand_to_mtd(chip);
315
316 if (chip->options & NAND_NO_BBM_QUIRK)
317 return 0;
318
319 /* Check if the region is secured */
320 if (nand_region_is_secured(chip, offset: ofs, size: mtd->erasesize))
321 return -EIO;
322
323 if (mtd_check_expert_analysis_mode())
324 return 0;
325
326 if (chip->legacy.block_bad)
327 return chip->legacy.block_bad(chip, ofs);
328
329 return nand_block_bad(chip, ofs);
330}
331
332/**
333 * nand_get_device - [GENERIC] Get chip for selected access
334 * @chip: NAND chip structure
335 *
336 * Lock the device and its controller for exclusive access
337 */
338static void nand_get_device(struct nand_chip *chip)
339{
340 /* Wait until the device is resumed. */
341 while (1) {
342 mutex_lock(&chip->lock);
343 if (!chip->suspended) {
344 mutex_lock(&chip->controller->lock);
345 return;
346 }
347 mutex_unlock(lock: &chip->lock);
348
349 wait_event(chip->resume_wq, !chip->suspended);
350 }
351}
352
353/**
354 * nand_check_wp - [GENERIC] check if the chip is write protected
355 * @chip: NAND chip object
356 *
357 * Check, if the device is write protected. The function expects, that the
358 * device is already selected.
359 */
360static int nand_check_wp(struct nand_chip *chip)
361{
362 u8 status;
363 int ret;
364
365 /* Broken xD cards report WP despite being writable */
366 if (chip->options & NAND_BROKEN_XD)
367 return 0;
368
369 /* controller responsible for NAND write protect */
370 if (chip->controller->controller_wp)
371 return 0;
372
373 /* Check the WP bit */
374 ret = nand_status_op(chip, status: &status);
375 if (ret)
376 return ret;
377
378 return status & NAND_STATUS_WP ? 0 : 1;
379}
380
381/**
382 * nand_fill_oob - [INTERN] Transfer client buffer to oob
383 * @chip: NAND chip object
384 * @oob: oob data buffer
385 * @len: oob data write length
386 * @ops: oob ops structure
387 */
388static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
389 struct mtd_oob_ops *ops)
390{
391 struct mtd_info *mtd = nand_to_mtd(chip);
392 int ret;
393
394 /*
395 * Initialise to all 0xFF, to avoid the possibility of left over OOB
396 * data from a previous OOB read.
397 */
398 memset(chip->oob_poi, 0xff, mtd->oobsize);
399
400 switch (ops->mode) {
401
402 case MTD_OPS_PLACE_OOB:
403 case MTD_OPS_RAW:
404 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
405 return oob + len;
406
407 case MTD_OPS_AUTO_OOB:
408 ret = mtd_ooblayout_set_databytes(mtd, databuf: oob, oobbuf: chip->oob_poi,
409 start: ops->ooboffs, nbytes: len);
410 BUG_ON(ret);
411 return oob + len;
412
413 default:
414 BUG();
415 }
416 return NULL;
417}
418
419/**
420 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
421 * @chip: NAND chip object
422 * @to: offset to write to
423 * @ops: oob operation description structure
424 *
425 * NAND write out-of-band.
426 */
427static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
428 struct mtd_oob_ops *ops)
429{
430 struct mtd_info *mtd = nand_to_mtd(chip);
431 int chipnr, page, status, len, ret;
432
433 pr_debug("%s: to = 0x%08x, len = %i\n",
434 __func__, (unsigned int)to, (int)ops->ooblen);
435
436 len = mtd_oobavail(mtd, ops);
437
438 /* Do not allow write past end of page */
439 if ((ops->ooboffs + ops->ooblen) > len) {
440 pr_debug("%s: attempt to write past end of page\n",
441 __func__);
442 return -EINVAL;
443 }
444
445 /* Check if the region is secured */
446 if (nand_region_is_secured(chip, offset: to, size: ops->ooblen))
447 return -EIO;
448
449 chipnr = (int)(to >> chip->chip_shift);
450
451 /*
452 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
453 * of my DiskOnChip 2000 test units) will clear the whole data page too
454 * if we don't do this. I have no clue why, but I seem to have 'fixed'
455 * it in the doc2000 driver in August 1999. dwmw2.
456 */
457 ret = nand_reset(chip, chipnr);
458 if (ret)
459 return ret;
460
461 nand_select_target(chip, chipnr);
462
463 /* Shift to get page */
464 page = (int)(to >> chip->page_shift);
465
466 /* Check, if it is write protected */
467 if (nand_check_wp(chip)) {
468 nand_deselect_target(chip);
469 return -EROFS;
470 }
471
472 /* Invalidate the page cache, if we write to the cached page */
473 if (page == chip->pagecache.page)
474 chip->pagecache.page = -1;
475
476 nand_fill_oob(chip, oob: ops->oobbuf, len: ops->ooblen, ops);
477
478 if (ops->mode == MTD_OPS_RAW)
479 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
480 else
481 status = chip->ecc.write_oob(chip, page & chip->pagemask);
482
483 nand_deselect_target(chip);
484
485 if (status)
486 return status;
487
488 ops->oobretlen = ops->ooblen;
489
490 return 0;
491}
492
493/**
494 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
495 * @chip: NAND chip object
496 * @ofs: offset from device start
497 *
498 * This is the default implementation, which can be overridden by a hardware
499 * specific driver. It provides the details for writing a bad block marker to a
500 * block.
501 */
502static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
503{
504 struct mtd_info *mtd = nand_to_mtd(chip);
505 struct mtd_oob_ops ops;
506 uint8_t buf[2] = { 0, 0 };
507 int ret = 0, res, page_offset;
508
509 memset(&ops, 0, sizeof(ops));
510 ops.oobbuf = buf;
511 ops.ooboffs = chip->badblockpos;
512 if (chip->options & NAND_BUSWIDTH_16) {
513 ops.ooboffs &= ~0x01;
514 ops.len = ops.ooblen = 2;
515 } else {
516 ops.len = ops.ooblen = 1;
517 }
518 ops.mode = MTD_OPS_PLACE_OOB;
519
520 page_offset = nand_bbm_get_next_page(chip, page: 0);
521
522 while (page_offset >= 0) {
523 res = nand_do_write_oob(chip,
524 to: ofs + (page_offset * mtd->writesize),
525 ops: &ops);
526
527 if (!ret)
528 ret = res;
529
530 page_offset = nand_bbm_get_next_page(chip, page: page_offset + 1);
531 }
532
533 return ret;
534}
535
536/**
537 * nand_markbad_bbm - mark a block by updating the BBM
538 * @chip: NAND chip object
539 * @ofs: offset of the block to mark bad
540 */
541int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
542{
543 if (chip->legacy.block_markbad)
544 return chip->legacy.block_markbad(chip, ofs);
545
546 return nand_default_block_markbad(chip, ofs);
547}
548
549/**
550 * nand_block_markbad_lowlevel - mark a block bad
551 * @chip: NAND chip object
552 * @ofs: offset from device start
553 *
554 * This function performs the generic NAND bad block marking steps (i.e., bad
555 * block table(s) and/or marker(s)). We only allow the hardware driver to
556 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
557 *
558 * We try operations in the following order:
559 *
560 * (1) erase the affected block, to allow OOB marker to be written cleanly
561 * (2) write bad block marker to OOB area of affected block (unless flag
562 * NAND_BBT_NO_OOB_BBM is present)
563 * (3) update the BBT
564 *
565 * Note that we retain the first error encountered in (2) or (3), finish the
566 * procedures, and dump the error in the end.
567*/
568static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
569{
570 struct mtd_info *mtd = nand_to_mtd(chip);
571 int res, ret = 0;
572
573 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
574 struct erase_info einfo;
575
576 /* Attempt erase before marking OOB */
577 memset(&einfo, 0, sizeof(einfo));
578 einfo.addr = ofs;
579 einfo.len = 1ULL << chip->phys_erase_shift;
580 nand_erase_nand(chip, instr: &einfo, allowbbt: 0);
581
582 /* Write bad block marker to OOB */
583 nand_get_device(chip);
584
585 ret = nand_markbad_bbm(chip, ofs);
586 nand_release_device(chip);
587 }
588
589 /* Mark block bad in BBT */
590 if (chip->bbt) {
591 res = nand_markbad_bbt(chip, offs: ofs);
592 if (!ret)
593 ret = res;
594 }
595
596 if (!ret)
597 mtd->ecc_stats.badblocks++;
598
599 return ret;
600}
601
602/**
603 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
604 * @mtd: MTD device structure
605 * @ofs: offset from device start
606 *
607 * Check if the block is marked as reserved.
608 */
609static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
610{
611 struct nand_chip *chip = mtd_to_nand(mtd);
612
613 if (!chip->bbt)
614 return 0;
615 /* Return info from the table */
616 return nand_isreserved_bbt(chip, offs: ofs);
617}
618
619/**
620 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
621 * @chip: NAND chip object
622 * @ofs: offset from device start
623 * @allowbbt: 1, if its allowed to access the bbt area
624 *
625 * Check, if the block is bad. Either by reading the bad block table or
626 * calling of the scan function.
627 */
628static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
629{
630 /* Return info from the table */
631 if (chip->bbt)
632 return nand_isbad_bbt(chip, offs: ofs, allowbbt);
633
634 return nand_isbad_bbm(chip, ofs);
635}
636
637/**
638 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
639 * @chip: NAND chip structure
640 * @timeout_ms: Timeout in ms
641 *
642 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
643 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
644 * returned.
645 *
646 * This helper is intended to be used when the controller does not have access
647 * to the NAND R/B pin.
648 *
649 * Be aware that calling this helper from an ->exec_op() implementation means
650 * ->exec_op() must be re-entrant.
651 *
652 * Return 0 if the NAND chip is ready, a negative error otherwise.
653 */
654int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
655{
656 const struct nand_interface_config *conf;
657 u8 status = 0;
658 int ret;
659
660 if (!nand_has_exec_op(chip))
661 return -ENOTSUPP;
662
663 /* Wait tWB before polling the STATUS reg. */
664 conf = nand_get_interface_config(chip);
665 ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
666
667 ret = nand_status_op(chip, NULL);
668 if (ret)
669 return ret;
670
671 /*
672 * +1 below is necessary because if we are now in the last fraction
673 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
674 * small jiffy fraction - possibly leading to false timeout
675 */
676 timeout_ms = jiffies + msecs_to_jiffies(m: timeout_ms) + 1;
677 do {
678 ret = nand_read_data_op(chip, buf: &status, len: sizeof(status), force_8bit: true,
679 check_only: false);
680 if (ret)
681 break;
682
683 if (status & NAND_STATUS_READY)
684 break;
685
686 /*
687 * Typical lowest execution time for a tR on most NANDs is 10us,
688 * use this as polling delay before doing something smarter (ie.
689 * deriving a delay from the timeout value, timeout_ms/ratio).
690 */
691 udelay(10);
692 } while (time_before(jiffies, timeout_ms));
693
694 /*
695 * We have to exit READ_STATUS mode in order to read real data on the
696 * bus in case the WAITRDY instruction is preceding a DATA_IN
697 * instruction.
698 */
699 nand_exit_status_op(chip);
700
701 if (ret)
702 return ret;
703
704 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
705};
706EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
707
708/**
709 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
710 * @chip: NAND chip structure
711 * @gpiod: GPIO descriptor of R/B pin
712 * @timeout_ms: Timeout in ms
713 *
714 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
715 * whitin the specified timeout, -ETIMEDOUT is returned.
716 *
717 * This helper is intended to be used when the controller has access to the
718 * NAND R/B pin over GPIO.
719 *
720 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
721 */
722int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
723 unsigned long timeout_ms)
724{
725
726 /*
727 * Wait until R/B pin indicates chip is ready or timeout occurs.
728 * +1 below is necessary because if we are now in the last fraction
729 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
730 * small jiffy fraction - possibly leading to false timeout.
731 */
732 timeout_ms = jiffies + msecs_to_jiffies(m: timeout_ms) + 1;
733 do {
734 if (gpiod_get_value_cansleep(desc: gpiod))
735 return 0;
736
737 cond_resched();
738 } while (time_before(jiffies, timeout_ms));
739
740 return gpiod_get_value_cansleep(desc: gpiod) ? 0 : -ETIMEDOUT;
741};
742EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
743
744/**
745 * panic_nand_wait - [GENERIC] wait until the command is done
746 * @chip: NAND chip structure
747 * @timeo: timeout
748 *
749 * Wait for command done. This is a helper function for nand_wait used when
750 * we are in interrupt context. May happen when in panic and trying to write
751 * an oops through mtdoops.
752 */
753void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
754{
755 int i;
756 for (i = 0; i < timeo; i++) {
757 if (chip->legacy.dev_ready) {
758 if (chip->legacy.dev_ready(chip))
759 break;
760 } else {
761 int ret;
762 u8 status;
763
764 ret = nand_read_data_op(chip, buf: &status, len: sizeof(status),
765 force_8bit: true, check_only: false);
766 if (ret)
767 return;
768
769 if (status & NAND_STATUS_READY)
770 break;
771 }
772 mdelay(1);
773 }
774}
775
776static bool nand_supports_get_features(struct nand_chip *chip, int addr)
777{
778 return (chip->parameters.supports_set_get_features &&
779 test_bit(addr, chip->parameters.get_feature_list));
780}
781
782static bool nand_supports_set_features(struct nand_chip *chip, int addr)
783{
784 return (chip->parameters.supports_set_get_features &&
785 test_bit(addr, chip->parameters.set_feature_list));
786}
787
788/**
789 * nand_reset_interface - Reset data interface and timings
790 * @chip: The NAND chip
791 * @chipnr: Internal die id
792 *
793 * Reset the Data interface and timings to ONFI mode 0.
794 *
795 * Returns 0 for success or negative error code otherwise.
796 */
797static int nand_reset_interface(struct nand_chip *chip, int chipnr)
798{
799 const struct nand_controller_ops *ops = chip->controller->ops;
800 int ret;
801
802 if (!nand_controller_can_setup_interface(chip))
803 return 0;
804
805 /*
806 * The ONFI specification says:
807 * "
808 * To transition from NV-DDR or NV-DDR2 to the SDR data
809 * interface, the host shall use the Reset (FFh) command
810 * using SDR timing mode 0. A device in any timing mode is
811 * required to recognize Reset (FFh) command issued in SDR
812 * timing mode 0.
813 * "
814 *
815 * Configure the data interface in SDR mode and set the
816 * timings to timing mode 0.
817 */
818
819 chip->current_interface_config = nand_get_reset_interface_config();
820 ret = ops->setup_interface(chip, chipnr,
821 chip->current_interface_config);
822 if (ret)
823 pr_err("Failed to configure data interface to SDR timing mode 0\n");
824
825 return ret;
826}
827
828/**
829 * nand_setup_interface - Setup the best data interface and timings
830 * @chip: The NAND chip
831 * @chipnr: Internal die id
832 *
833 * Configure what has been reported to be the best data interface and NAND
834 * timings supported by the chip and the driver.
835 *
836 * Returns 0 for success or negative error code otherwise.
837 */
838static int nand_setup_interface(struct nand_chip *chip, int chipnr)
839{
840 const struct nand_controller_ops *ops = chip->controller->ops;
841 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
842 int ret;
843
844 if (!nand_controller_can_setup_interface(chip))
845 return 0;
846
847 /*
848 * A nand_reset_interface() put both the NAND chip and the NAND
849 * controller in timings mode 0. If the default mode for this chip is
850 * also 0, no need to proceed to the change again. Plus, at probe time,
851 * nand_setup_interface() uses ->set/get_features() which would
852 * fail anyway as the parameter page is not available yet.
853 */
854 if (!chip->best_interface_config)
855 return 0;
856
857 request = chip->best_interface_config->timings.mode;
858 if (nand_interface_is_sdr(conf: chip->best_interface_config))
859 request |= ONFI_DATA_INTERFACE_SDR;
860 else
861 request |= ONFI_DATA_INTERFACE_NVDDR;
862 tmode_param[0] = request;
863
864 /* Change the mode on the chip side (if supported by the NAND chip) */
865 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
866 nand_select_target(chip, chipnr);
867 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
868 subfeature_param: tmode_param);
869 nand_deselect_target(chip);
870 if (ret)
871 return ret;
872 }
873
874 /* Change the mode on the controller side */
875 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
876 if (ret)
877 return ret;
878
879 /* Check the mode has been accepted by the chip, if supported */
880 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
881 goto update_interface_config;
882
883 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
884 nand_select_target(chip, chipnr);
885 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
886 subfeature_param: tmode_param);
887 nand_deselect_target(chip);
888 if (ret)
889 goto err_reset_chip;
890
891 if (request != tmode_param[0]) {
892 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
893 nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
894 chip->best_interface_config->timings.mode);
895 pr_debug("NAND chip would work in %s timing mode %d\n",
896 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
897 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
898 goto err_reset_chip;
899 }
900
901update_interface_config:
902 chip->current_interface_config = chip->best_interface_config;
903
904 return 0;
905
906err_reset_chip:
907 /*
908 * Fallback to mode 0 if the chip explicitly did not ack the chosen
909 * timing mode.
910 */
911 nand_reset_interface(chip, chipnr);
912 nand_select_target(chip, chipnr);
913 nand_reset_op(chip);
914 nand_deselect_target(chip);
915
916 return ret;
917}
918
919/**
920 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
921 * NAND controller and the NAND chip support
922 * @chip: the NAND chip
923 * @iface: the interface configuration (can eventually be updated)
924 * @spec_timings: specific timings, when not fitting the ONFI specification
925 *
926 * If specific timings are provided, use them. Otherwise, retrieve supported
927 * timing modes from ONFI information.
928 */
929int nand_choose_best_sdr_timings(struct nand_chip *chip,
930 struct nand_interface_config *iface,
931 struct nand_sdr_timings *spec_timings)
932{
933 const struct nand_controller_ops *ops = chip->controller->ops;
934 int best_mode = 0, mode, ret = -EOPNOTSUPP;
935
936 iface->type = NAND_SDR_IFACE;
937
938 if (spec_timings) {
939 iface->timings.sdr = *spec_timings;
940 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
941
942 /* Verify the controller supports the requested interface */
943 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
944 iface);
945 if (!ret) {
946 chip->best_interface_config = iface;
947 return ret;
948 }
949
950 /* Fallback to slower modes */
951 best_mode = iface->timings.mode;
952 } else if (chip->parameters.onfi) {
953 best_mode = fls(x: chip->parameters.onfi->sdr_timing_modes) - 1;
954 }
955
956 for (mode = best_mode; mode >= 0; mode--) {
957 onfi_fill_interface_config(chip, iface, type: NAND_SDR_IFACE, timing_mode: mode);
958
959 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
960 iface);
961 if (!ret) {
962 chip->best_interface_config = iface;
963 break;
964 }
965 }
966
967 return ret;
968}
969
970/**
971 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
972 * NAND controller and the NAND chip support
973 * @chip: the NAND chip
974 * @iface: the interface configuration (can eventually be updated)
975 * @spec_timings: specific timings, when not fitting the ONFI specification
976 *
977 * If specific timings are provided, use them. Otherwise, retrieve supported
978 * timing modes from ONFI information.
979 */
980int nand_choose_best_nvddr_timings(struct nand_chip *chip,
981 struct nand_interface_config *iface,
982 struct nand_nvddr_timings *spec_timings)
983{
984 const struct nand_controller_ops *ops = chip->controller->ops;
985 int best_mode = 0, mode, ret = -EOPNOTSUPP;
986
987 iface->type = NAND_NVDDR_IFACE;
988
989 if (spec_timings) {
990 iface->timings.nvddr = *spec_timings;
991 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
992
993 /* Verify the controller supports the requested interface */
994 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
995 iface);
996 if (!ret) {
997 chip->best_interface_config = iface;
998 return ret;
999 }
1000
1001 /* Fallback to slower modes */
1002 best_mode = iface->timings.mode;
1003 } else if (chip->parameters.onfi) {
1004 best_mode = fls(x: chip->parameters.onfi->nvddr_timing_modes) - 1;
1005 }
1006
1007 for (mode = best_mode; mode >= 0; mode--) {
1008 onfi_fill_interface_config(chip, iface, type: NAND_NVDDR_IFACE, timing_mode: mode);
1009
1010 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1011 iface);
1012 if (!ret) {
1013 chip->best_interface_config = iface;
1014 break;
1015 }
1016 }
1017
1018 return ret;
1019}
1020
1021/**
1022 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1023 * NAND controller and the NAND chip support
1024 * @chip: the NAND chip
1025 * @iface: the interface configuration (can eventually be updated)
1026 *
1027 * If specific timings are provided, use them. Otherwise, retrieve supported
1028 * timing modes from ONFI information.
1029 */
1030static int nand_choose_best_timings(struct nand_chip *chip,
1031 struct nand_interface_config *iface)
1032{
1033 int ret;
1034
1035 /* Try the fastest timings: NV-DDR */
1036 ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1037 if (!ret)
1038 return 0;
1039
1040 /* Fallback to SDR timings otherwise */
1041 return nand_choose_best_sdr_timings(chip, iface, NULL);
1042}
1043
1044/**
1045 * nand_choose_interface_config - find the best data interface and timings
1046 * @chip: The NAND chip
1047 *
1048 * Find the best data interface and NAND timings supported by the chip
1049 * and the driver. Eventually let the NAND manufacturer driver propose his own
1050 * set of timings.
1051 *
1052 * After this function nand_chip->interface_config is initialized with the best
1053 * timing mode available.
1054 *
1055 * Returns 0 for success or negative error code otherwise.
1056 */
1057static int nand_choose_interface_config(struct nand_chip *chip)
1058{
1059 struct nand_interface_config *iface;
1060 int ret;
1061
1062 if (!nand_controller_can_setup_interface(chip))
1063 return 0;
1064
1065 iface = kzalloc(size: sizeof(*iface), GFP_KERNEL);
1066 if (!iface)
1067 return -ENOMEM;
1068
1069 if (chip->ops.choose_interface_config)
1070 ret = chip->ops.choose_interface_config(chip, iface);
1071 else
1072 ret = nand_choose_best_timings(chip, iface);
1073
1074 if (ret)
1075 kfree(objp: iface);
1076
1077 return ret;
1078}
1079
1080/**
1081 * nand_fill_column_cycles - fill the column cycles of an address
1082 * @chip: The NAND chip
1083 * @addrs: Array of address cycles to fill
1084 * @offset_in_page: The offset in the page
1085 *
1086 * Fills the first or the first two bytes of the @addrs field depending
1087 * on the NAND bus width and the page size.
1088 *
1089 * Returns the number of cycles needed to encode the column, or a negative
1090 * error code in case one of the arguments is invalid.
1091 */
1092static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1093 unsigned int offset_in_page)
1094{
1095 struct mtd_info *mtd = nand_to_mtd(chip);
1096
1097 /* Make sure the offset is less than the actual page size. */
1098 if (offset_in_page > mtd->writesize + mtd->oobsize)
1099 return -EINVAL;
1100
1101 /*
1102 * On small page NANDs, there's a dedicated command to access the OOB
1103 * area, and the column address is relative to the start of the OOB
1104 * area, not the start of the page. Asjust the address accordingly.
1105 */
1106 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1107 offset_in_page -= mtd->writesize;
1108
1109 /*
1110 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1111 * wide, then it must be divided by 2.
1112 */
1113 if (chip->options & NAND_BUSWIDTH_16) {
1114 if (WARN_ON(offset_in_page % 2))
1115 return -EINVAL;
1116
1117 offset_in_page /= 2;
1118 }
1119
1120 addrs[0] = offset_in_page;
1121
1122 /*
1123 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1124 * need 2
1125 */
1126 if (mtd->writesize <= 512)
1127 return 1;
1128
1129 addrs[1] = offset_in_page >> 8;
1130
1131 return 2;
1132}
1133
1134static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1135 unsigned int offset_in_page, void *buf,
1136 unsigned int len)
1137{
1138 const struct nand_interface_config *conf =
1139 nand_get_interface_config(chip);
1140 struct mtd_info *mtd = nand_to_mtd(chip);
1141 u8 addrs[4];
1142 struct nand_op_instr instrs[] = {
1143 NAND_OP_CMD(NAND_CMD_READ0, 0),
1144 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1145 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1146 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1147 NAND_OP_DATA_IN(len, buf, 0),
1148 };
1149 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1150 int ret;
1151
1152 /* Drop the DATA_IN instruction if len is set to 0. */
1153 if (!len)
1154 op.ninstrs--;
1155
1156 if (offset_in_page >= mtd->writesize)
1157 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1158 else if (offset_in_page >= 256 &&
1159 !(chip->options & NAND_BUSWIDTH_16))
1160 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1161
1162 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1163 if (ret < 0)
1164 return ret;
1165
1166 addrs[1] = page;
1167 addrs[2] = page >> 8;
1168
1169 if (chip->options & NAND_ROW_ADDR_3) {
1170 addrs[3] = page >> 16;
1171 instrs[1].ctx.addr.naddrs++;
1172 }
1173
1174 return nand_exec_op(chip, op: &op);
1175}
1176
1177static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1178 unsigned int offset_in_page, void *buf,
1179 unsigned int len)
1180{
1181 const struct nand_interface_config *conf =
1182 nand_get_interface_config(chip);
1183 u8 addrs[5];
1184 struct nand_op_instr instrs[] = {
1185 NAND_OP_CMD(NAND_CMD_READ0, 0),
1186 NAND_OP_ADDR(4, addrs, 0),
1187 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1188 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1189 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1190 NAND_OP_DATA_IN(len, buf, 0),
1191 };
1192 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1193 int ret;
1194
1195 /* Drop the DATA_IN instruction if len is set to 0. */
1196 if (!len)
1197 op.ninstrs--;
1198
1199 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1200 if (ret < 0)
1201 return ret;
1202
1203 addrs[2] = page;
1204 addrs[3] = page >> 8;
1205
1206 if (chip->options & NAND_ROW_ADDR_3) {
1207 addrs[4] = page >> 16;
1208 instrs[1].ctx.addr.naddrs++;
1209 }
1210
1211 return nand_exec_op(chip, op: &op);
1212}
1213
1214static unsigned int rawnand_last_page_of_lun(unsigned int pages_per_lun, unsigned int lun)
1215{
1216 /* lun is expected to be very small */
1217 return (lun * pages_per_lun) + pages_per_lun - 1;
1218}
1219
1220static void rawnand_cap_cont_reads(struct nand_chip *chip)
1221{
1222 struct nand_memory_organization *memorg;
1223 unsigned int ppl, first_lun, last_lun;
1224
1225 memorg = nanddev_get_memorg(nand: &chip->base);
1226 ppl = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1227 first_lun = chip->cont_read.first_page / ppl;
1228 last_lun = chip->cont_read.last_page / ppl;
1229
1230 /* Prevent sequential cache reads across LUN boundaries */
1231 if (first_lun != last_lun)
1232 chip->cont_read.pause_page = rawnand_last_page_of_lun(pages_per_lun: ppl, lun: first_lun);
1233 else
1234 chip->cont_read.pause_page = chip->cont_read.last_page;
1235
1236 if (chip->cont_read.first_page == chip->cont_read.pause_page) {
1237 chip->cont_read.first_page++;
1238 chip->cont_read.pause_page = min(chip->cont_read.last_page,
1239 rawnand_last_page_of_lun(ppl, first_lun + 1));
1240 }
1241
1242 if (chip->cont_read.first_page >= chip->cont_read.last_page)
1243 chip->cont_read.ongoing = false;
1244}
1245
1246static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1247 unsigned int offset_in_page, void *buf,
1248 unsigned int len, bool check_only)
1249{
1250 const struct nand_interface_config *conf =
1251 nand_get_interface_config(chip);
1252 u8 addrs[5];
1253 struct nand_op_instr start_instrs[] = {
1254 NAND_OP_CMD(NAND_CMD_READ0, 0),
1255 NAND_OP_ADDR(4, addrs, 0),
1256 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1257 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1258 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1259 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1260 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1261 NAND_OP_DATA_IN(len, buf, 0),
1262 };
1263 struct nand_op_instr cont_instrs[] = {
1264 NAND_OP_CMD(page == chip->cont_read.pause_page ?
1265 NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1266 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1267 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1268 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1269 NAND_OP_DATA_IN(len, buf, 0),
1270 };
1271 struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1272 struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1273 int ret;
1274
1275 if (!len) {
1276 start_op.ninstrs--;
1277 cont_op.ninstrs--;
1278 }
1279
1280 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1281 if (ret < 0)
1282 return ret;
1283
1284 addrs[2] = page;
1285 addrs[3] = page >> 8;
1286
1287 if (chip->options & NAND_ROW_ADDR_3) {
1288 addrs[4] = page >> 16;
1289 start_instrs[1].ctx.addr.naddrs++;
1290 }
1291
1292 /* Check if cache reads are supported */
1293 if (check_only) {
1294 if (nand_check_op(chip, op: &start_op) || nand_check_op(chip, op: &cont_op))
1295 return -EOPNOTSUPP;
1296
1297 return 0;
1298 }
1299
1300 if (page == chip->cont_read.first_page)
1301 ret = nand_exec_op(chip, op: &start_op);
1302 else
1303 ret = nand_exec_op(chip, op: &cont_op);
1304 if (ret)
1305 return ret;
1306
1307 if (!chip->cont_read.ongoing)
1308 return 0;
1309
1310 if (page == chip->cont_read.last_page) {
1311 chip->cont_read.ongoing = false;
1312 } else if (page == chip->cont_read.pause_page) {
1313 chip->cont_read.first_page++;
1314 rawnand_cap_cont_reads(chip);
1315 }
1316
1317 return 0;
1318}
1319
1320static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1321{
1322 return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1323}
1324
1325/**
1326 * nand_read_page_op - Do a READ PAGE operation
1327 * @chip: The NAND chip
1328 * @page: page to read
1329 * @offset_in_page: offset within the page
1330 * @buf: buffer used to store the data
1331 * @len: length of the buffer
1332 *
1333 * This function issues a READ PAGE operation.
1334 * This function does not select/unselect the CS line.
1335 *
1336 * Returns 0 on success, a negative error code otherwise.
1337 */
1338int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1339 unsigned int offset_in_page, void *buf, unsigned int len)
1340{
1341 struct mtd_info *mtd = nand_to_mtd(chip);
1342
1343 if (len && !buf)
1344 return -EINVAL;
1345
1346 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1347 return -EINVAL;
1348
1349 if (nand_has_exec_op(chip)) {
1350 if (mtd->writesize > 512) {
1351 if (rawnand_cont_read_ongoing(chip, page))
1352 return nand_lp_exec_cont_read_page_op(chip, page,
1353 offset_in_page,
1354 buf, len, check_only: false);
1355 else
1356 return nand_lp_exec_read_page_op(chip, page,
1357 offset_in_page, buf,
1358 len);
1359 }
1360
1361 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1362 buf, len);
1363 }
1364
1365 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1366 if (len)
1367 chip->legacy.read_buf(chip, buf, len);
1368
1369 return 0;
1370}
1371EXPORT_SYMBOL_GPL(nand_read_page_op);
1372
1373/**
1374 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1375 * @chip: The NAND chip
1376 * @page: parameter page to read
1377 * @buf: buffer used to store the data
1378 * @len: length of the buffer
1379 *
1380 * This function issues a READ PARAMETER PAGE operation.
1381 * This function does not select/unselect the CS line.
1382 *
1383 * Returns 0 on success, a negative error code otherwise.
1384 */
1385int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1386 unsigned int len)
1387{
1388 unsigned int i;
1389 u8 *p = buf;
1390
1391 if (len && !buf)
1392 return -EINVAL;
1393
1394 if (nand_has_exec_op(chip)) {
1395 const struct nand_interface_config *conf =
1396 nand_get_interface_config(chip);
1397 struct nand_op_instr instrs[] = {
1398 NAND_OP_CMD(NAND_CMD_PARAM, 0),
1399 NAND_OP_ADDR(1, &page,
1400 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1401 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1402 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1403 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1404 };
1405 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1406
1407 /* Drop the DATA_IN instruction if len is set to 0. */
1408 if (!len)
1409 op.ninstrs--;
1410
1411 return nand_exec_op(chip, op: &op);
1412 }
1413
1414 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1415 for (i = 0; i < len; i++)
1416 p[i] = chip->legacy.read_byte(chip);
1417
1418 return 0;
1419}
1420
1421/**
1422 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1423 * @chip: The NAND chip
1424 * @offset_in_page: offset within the page
1425 * @buf: buffer used to store the data
1426 * @len: length of the buffer
1427 * @force_8bit: force 8-bit bus access
1428 *
1429 * This function issues a CHANGE READ COLUMN operation.
1430 * This function does not select/unselect the CS line.
1431 *
1432 * Returns 0 on success, a negative error code otherwise.
1433 */
1434int nand_change_read_column_op(struct nand_chip *chip,
1435 unsigned int offset_in_page, void *buf,
1436 unsigned int len, bool force_8bit)
1437{
1438 struct mtd_info *mtd = nand_to_mtd(chip);
1439
1440 if (len && !buf)
1441 return -EINVAL;
1442
1443 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1444 return -EINVAL;
1445
1446 /* Small page NANDs do not support column change. */
1447 if (mtd->writesize <= 512)
1448 return -ENOTSUPP;
1449
1450 if (nand_has_exec_op(chip)) {
1451 const struct nand_interface_config *conf =
1452 nand_get_interface_config(chip);
1453 u8 addrs[2] = {};
1454 struct nand_op_instr instrs[] = {
1455 NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1456 NAND_OP_ADDR(2, addrs, 0),
1457 NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1458 NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1459 NAND_OP_DATA_IN(len, buf, 0),
1460 };
1461 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1462 int ret;
1463
1464 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1465 if (ret < 0)
1466 return ret;
1467
1468 /* Drop the DATA_IN instruction if len is set to 0. */
1469 if (!len)
1470 op.ninstrs--;
1471
1472 instrs[3].ctx.data.force_8bit = force_8bit;
1473
1474 return nand_exec_op(chip, op: &op);
1475 }
1476
1477 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1478 if (len)
1479 chip->legacy.read_buf(chip, buf, len);
1480
1481 return 0;
1482}
1483EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1484
1485/**
1486 * nand_read_oob_op - Do a READ OOB operation
1487 * @chip: The NAND chip
1488 * @page: page to read
1489 * @offset_in_oob: offset within the OOB area
1490 * @buf: buffer used to store the data
1491 * @len: length of the buffer
1492 *
1493 * This function issues a READ OOB operation.
1494 * This function does not select/unselect the CS line.
1495 *
1496 * Returns 0 on success, a negative error code otherwise.
1497 */
1498int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1499 unsigned int offset_in_oob, void *buf, unsigned int len)
1500{
1501 struct mtd_info *mtd = nand_to_mtd(chip);
1502
1503 if (len && !buf)
1504 return -EINVAL;
1505
1506 if (offset_in_oob + len > mtd->oobsize)
1507 return -EINVAL;
1508
1509 if (nand_has_exec_op(chip))
1510 return nand_read_page_op(chip, page,
1511 mtd->writesize + offset_in_oob,
1512 buf, len);
1513
1514 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1515 if (len)
1516 chip->legacy.read_buf(chip, buf, len);
1517
1518 return 0;
1519}
1520EXPORT_SYMBOL_GPL(nand_read_oob_op);
1521
1522static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1523 unsigned int offset_in_page, const void *buf,
1524 unsigned int len, bool prog)
1525{
1526 const struct nand_interface_config *conf =
1527 nand_get_interface_config(chip);
1528 struct mtd_info *mtd = nand_to_mtd(chip);
1529 u8 addrs[5] = {};
1530 struct nand_op_instr instrs[] = {
1531 /*
1532 * The first instruction will be dropped if we're dealing
1533 * with a large page NAND and adjusted if we're dealing
1534 * with a small page NAND and the page offset is > 255.
1535 */
1536 NAND_OP_CMD(NAND_CMD_READ0, 0),
1537 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1538 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1539 NAND_OP_DATA_OUT(len, buf, 0),
1540 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1541 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1542 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1543 };
1544 struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1545 instrs);
1546 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1547
1548 if (naddrs < 0)
1549 return naddrs;
1550
1551 addrs[naddrs++] = page;
1552 addrs[naddrs++] = page >> 8;
1553 if (chip->options & NAND_ROW_ADDR_3)
1554 addrs[naddrs++] = page >> 16;
1555
1556 instrs[2].ctx.addr.naddrs = naddrs;
1557
1558 /* Drop the last two instructions if we're not programming the page. */
1559 if (!prog) {
1560 op.ninstrs -= 2;
1561 /* Also drop the DATA_OUT instruction if empty. */
1562 if (!len)
1563 op.ninstrs--;
1564 }
1565
1566 if (mtd->writesize <= 512) {
1567 /*
1568 * Small pages need some more tweaking: we have to adjust the
1569 * first instruction depending on the page offset we're trying
1570 * to access.
1571 */
1572 if (offset_in_page >= mtd->writesize)
1573 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1574 else if (offset_in_page >= 256 &&
1575 !(chip->options & NAND_BUSWIDTH_16))
1576 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1577 } else {
1578 /*
1579 * Drop the first command if we're dealing with a large page
1580 * NAND.
1581 */
1582 op.instrs++;
1583 op.ninstrs--;
1584 }
1585
1586 return nand_exec_op(chip, op: &op);
1587}
1588
1589/**
1590 * nand_prog_page_begin_op - starts a PROG PAGE operation
1591 * @chip: The NAND chip
1592 * @page: page to write
1593 * @offset_in_page: offset within the page
1594 * @buf: buffer containing the data to write to the page
1595 * @len: length of the buffer
1596 *
1597 * This function issues the first half of a PROG PAGE operation.
1598 * This function does not select/unselect the CS line.
1599 *
1600 * Returns 0 on success, a negative error code otherwise.
1601 */
1602int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1603 unsigned int offset_in_page, const void *buf,
1604 unsigned int len)
1605{
1606 struct mtd_info *mtd = nand_to_mtd(chip);
1607
1608 if (len && !buf)
1609 return -EINVAL;
1610
1611 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1612 return -EINVAL;
1613
1614 if (nand_has_exec_op(chip))
1615 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1616 len, prog: false);
1617
1618 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1619
1620 if (buf)
1621 chip->legacy.write_buf(chip, buf, len);
1622
1623 return 0;
1624}
1625EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1626
1627/**
1628 * nand_prog_page_end_op - ends a PROG PAGE operation
1629 * @chip: The NAND chip
1630 *
1631 * This function issues the second half of a PROG PAGE operation.
1632 * This function does not select/unselect the CS line.
1633 *
1634 * Returns 0 on success, a negative error code otherwise.
1635 */
1636int nand_prog_page_end_op(struct nand_chip *chip)
1637{
1638 int ret;
1639 u8 status;
1640
1641 if (nand_has_exec_op(chip)) {
1642 const struct nand_interface_config *conf =
1643 nand_get_interface_config(chip);
1644 struct nand_op_instr instrs[] = {
1645 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1646 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1647 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1648 0),
1649 };
1650 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1651
1652 ret = nand_exec_op(chip, op: &op);
1653 if (ret)
1654 return ret;
1655
1656 ret = nand_status_op(chip, status: &status);
1657 if (ret)
1658 return ret;
1659 } else {
1660 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1661 ret = chip->legacy.waitfunc(chip);
1662 if (ret < 0)
1663 return ret;
1664
1665 status = ret;
1666 }
1667
1668 if (status & NAND_STATUS_FAIL)
1669 return -EIO;
1670
1671 return 0;
1672}
1673EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1674
1675/**
1676 * nand_prog_page_op - Do a full PROG PAGE operation
1677 * @chip: The NAND chip
1678 * @page: page to write
1679 * @offset_in_page: offset within the page
1680 * @buf: buffer containing the data to write to the page
1681 * @len: length of the buffer
1682 *
1683 * This function issues a full PROG PAGE operation.
1684 * This function does not select/unselect the CS line.
1685 *
1686 * Returns 0 on success, a negative error code otherwise.
1687 */
1688int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1689 unsigned int offset_in_page, const void *buf,
1690 unsigned int len)
1691{
1692 struct mtd_info *mtd = nand_to_mtd(chip);
1693 u8 status;
1694 int ret;
1695
1696 if (!len || !buf)
1697 return -EINVAL;
1698
1699 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1700 return -EINVAL;
1701
1702 if (nand_has_exec_op(chip)) {
1703 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1704 len, prog: true);
1705 if (ret)
1706 return ret;
1707
1708 ret = nand_status_op(chip, status: &status);
1709 if (ret)
1710 return ret;
1711 } else {
1712 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1713 page);
1714 chip->legacy.write_buf(chip, buf, len);
1715 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1716 ret = chip->legacy.waitfunc(chip);
1717 if (ret < 0)
1718 return ret;
1719
1720 status = ret;
1721 }
1722
1723 if (status & NAND_STATUS_FAIL)
1724 return -EIO;
1725
1726 return 0;
1727}
1728EXPORT_SYMBOL_GPL(nand_prog_page_op);
1729
1730/**
1731 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1732 * @chip: The NAND chip
1733 * @offset_in_page: offset within the page
1734 * @buf: buffer containing the data to send to the NAND
1735 * @len: length of the buffer
1736 * @force_8bit: force 8-bit bus access
1737 *
1738 * This function issues a CHANGE WRITE COLUMN operation.
1739 * This function does not select/unselect the CS line.
1740 *
1741 * Returns 0 on success, a negative error code otherwise.
1742 */
1743int nand_change_write_column_op(struct nand_chip *chip,
1744 unsigned int offset_in_page,
1745 const void *buf, unsigned int len,
1746 bool force_8bit)
1747{
1748 struct mtd_info *mtd = nand_to_mtd(chip);
1749
1750 if (len && !buf)
1751 return -EINVAL;
1752
1753 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1754 return -EINVAL;
1755
1756 /* Small page NANDs do not support column change. */
1757 if (mtd->writesize <= 512)
1758 return -ENOTSUPP;
1759
1760 if (nand_has_exec_op(chip)) {
1761 const struct nand_interface_config *conf =
1762 nand_get_interface_config(chip);
1763 u8 addrs[2];
1764 struct nand_op_instr instrs[] = {
1765 NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1766 NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1767 NAND_OP_DATA_OUT(len, buf, 0),
1768 };
1769 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1770 int ret;
1771
1772 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1773 if (ret < 0)
1774 return ret;
1775
1776 instrs[2].ctx.data.force_8bit = force_8bit;
1777
1778 /* Drop the DATA_OUT instruction if len is set to 0. */
1779 if (!len)
1780 op.ninstrs--;
1781
1782 return nand_exec_op(chip, op: &op);
1783 }
1784
1785 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1786 if (len)
1787 chip->legacy.write_buf(chip, buf, len);
1788
1789 return 0;
1790}
1791EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1792
1793/**
1794 * nand_readid_op - Do a READID operation
1795 * @chip: The NAND chip
1796 * @addr: address cycle to pass after the READID command
1797 * @buf: buffer used to store the ID
1798 * @len: length of the buffer
1799 *
1800 * This function sends a READID command and reads back the ID returned by the
1801 * NAND.
1802 * This function does not select/unselect the CS line.
1803 *
1804 * Returns 0 on success, a negative error code otherwise.
1805 */
1806int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1807 unsigned int len)
1808{
1809 unsigned int i;
1810 u8 *id = buf, *ddrbuf = NULL;
1811
1812 if (len && !buf)
1813 return -EINVAL;
1814
1815 if (nand_has_exec_op(chip)) {
1816 const struct nand_interface_config *conf =
1817 nand_get_interface_config(chip);
1818 struct nand_op_instr instrs[] = {
1819 NAND_OP_CMD(NAND_CMD_READID, 0),
1820 NAND_OP_ADDR(1, &addr,
1821 NAND_COMMON_TIMING_NS(conf, tADL_min)),
1822 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1823 };
1824 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1825 int ret;
1826
1827 /* READ_ID data bytes are received twice in NV-DDR mode */
1828 if (len && nand_interface_is_nvddr(conf)) {
1829 ddrbuf = kzalloc(size: len * 2, GFP_KERNEL);
1830 if (!ddrbuf)
1831 return -ENOMEM;
1832
1833 instrs[2].ctx.data.len *= 2;
1834 instrs[2].ctx.data.buf.in = ddrbuf;
1835 }
1836
1837 /* Drop the DATA_IN instruction if len is set to 0. */
1838 if (!len)
1839 op.ninstrs--;
1840
1841 ret = nand_exec_op(chip, op: &op);
1842 if (!ret && len && nand_interface_is_nvddr(conf)) {
1843 for (i = 0; i < len; i++)
1844 id[i] = ddrbuf[i * 2];
1845 }
1846
1847 kfree(objp: ddrbuf);
1848
1849 return ret;
1850 }
1851
1852 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1853
1854 for (i = 0; i < len; i++)
1855 id[i] = chip->legacy.read_byte(chip);
1856
1857 return 0;
1858}
1859EXPORT_SYMBOL_GPL(nand_readid_op);
1860
1861/**
1862 * nand_status_op - Do a STATUS operation
1863 * @chip: The NAND chip
1864 * @status: out variable to store the NAND status
1865 *
1866 * This function sends a STATUS command and reads back the status returned by
1867 * the NAND.
1868 * This function does not select/unselect the CS line.
1869 *
1870 * Returns 0 on success, a negative error code otherwise.
1871 */
1872int nand_status_op(struct nand_chip *chip, u8 *status)
1873{
1874 if (nand_has_exec_op(chip)) {
1875 const struct nand_interface_config *conf =
1876 nand_get_interface_config(chip);
1877 u8 ddrstatus[2];
1878 struct nand_op_instr instrs[] = {
1879 NAND_OP_CMD(NAND_CMD_STATUS,
1880 NAND_COMMON_TIMING_NS(conf, tADL_min)),
1881 NAND_OP_8BIT_DATA_IN(1, status, 0),
1882 };
1883 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1884 int ret;
1885
1886 /* The status data byte will be received twice in NV-DDR mode */
1887 if (status && nand_interface_is_nvddr(conf)) {
1888 instrs[1].ctx.data.len *= 2;
1889 instrs[1].ctx.data.buf.in = ddrstatus;
1890 }
1891
1892 if (!status)
1893 op.ninstrs--;
1894
1895 ret = nand_exec_op(chip, op: &op);
1896 if (!ret && status && nand_interface_is_nvddr(conf))
1897 *status = ddrstatus[0];
1898
1899 return ret;
1900 }
1901
1902 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1903 if (status)
1904 *status = chip->legacy.read_byte(chip);
1905
1906 return 0;
1907}
1908EXPORT_SYMBOL_GPL(nand_status_op);
1909
1910/**
1911 * nand_exit_status_op - Exit a STATUS operation
1912 * @chip: The NAND chip
1913 *
1914 * This function sends a READ0 command to cancel the effect of the STATUS
1915 * command to avoid reading only the status until a new read command is sent.
1916 *
1917 * This function does not select/unselect the CS line.
1918 *
1919 * Returns 0 on success, a negative error code otherwise.
1920 */
1921int nand_exit_status_op(struct nand_chip *chip)
1922{
1923 if (nand_has_exec_op(chip)) {
1924 struct nand_op_instr instrs[] = {
1925 NAND_OP_CMD(NAND_CMD_READ0, 0),
1926 };
1927 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1928
1929 return nand_exec_op(chip, op: &op);
1930 }
1931
1932 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1933
1934 return 0;
1935}
1936EXPORT_SYMBOL_GPL(nand_exit_status_op);
1937
1938/**
1939 * nand_erase_op - Do an erase operation
1940 * @chip: The NAND chip
1941 * @eraseblock: block to erase
1942 *
1943 * This function sends an ERASE command and waits for the NAND to be ready
1944 * before returning.
1945 * This function does not select/unselect the CS line.
1946 *
1947 * Returns 0 on success, a negative error code otherwise.
1948 */
1949int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1950{
1951 unsigned int page = eraseblock <<
1952 (chip->phys_erase_shift - chip->page_shift);
1953 int ret;
1954 u8 status;
1955
1956 if (nand_has_exec_op(chip)) {
1957 const struct nand_interface_config *conf =
1958 nand_get_interface_config(chip);
1959 u8 addrs[3] = { page, page >> 8, page >> 16 };
1960 struct nand_op_instr instrs[] = {
1961 NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1962 NAND_OP_ADDR(2, addrs, 0),
1963 NAND_OP_CMD(NAND_CMD_ERASE2,
1964 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1965 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1966 0),
1967 };
1968 struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1969 instrs);
1970
1971 if (chip->options & NAND_ROW_ADDR_3)
1972 instrs[1].ctx.addr.naddrs++;
1973
1974 ret = nand_exec_op(chip, op: &op);
1975 if (ret)
1976 return ret;
1977
1978 ret = nand_status_op(chip, &status);
1979 if (ret)
1980 return ret;
1981 } else {
1982 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1983 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1984
1985 ret = chip->legacy.waitfunc(chip);
1986 if (ret < 0)
1987 return ret;
1988
1989 status = ret;
1990 }
1991
1992 if (status & NAND_STATUS_FAIL)
1993 return -EIO;
1994
1995 return 0;
1996}
1997EXPORT_SYMBOL_GPL(nand_erase_op);
1998
1999/**
2000 * nand_set_features_op - Do a SET FEATURES operation
2001 * @chip: The NAND chip
2002 * @feature: feature id
2003 * @data: 4 bytes of data
2004 *
2005 * This function sends a SET FEATURES command and waits for the NAND to be
2006 * ready before returning.
2007 * This function does not select/unselect the CS line.
2008 *
2009 * Returns 0 on success, a negative error code otherwise.
2010 */
2011static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2012 const void *data)
2013{
2014 const u8 *params = data;
2015 int i, ret;
2016
2017 if (nand_has_exec_op(chip)) {
2018 const struct nand_interface_config *conf =
2019 nand_get_interface_config(chip);
2020 struct nand_op_instr instrs[] = {
2021 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2022 NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2023 tADL_min)),
2024 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2025 NAND_COMMON_TIMING_NS(conf,
2026 tWB_max)),
2027 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2028 0),
2029 };
2030 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2031
2032 return nand_exec_op(chip, op: &op);
2033 }
2034
2035 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2036 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2037 chip->legacy.write_byte(chip, params[i]);
2038
2039 ret = chip->legacy.waitfunc(chip);
2040 if (ret < 0)
2041 return ret;
2042
2043 if (ret & NAND_STATUS_FAIL)
2044 return -EIO;
2045
2046 return 0;
2047}
2048
2049/**
2050 * nand_get_features_op - Do a GET FEATURES operation
2051 * @chip: The NAND chip
2052 * @feature: feature id
2053 * @data: 4 bytes of data
2054 *
2055 * This function sends a GET FEATURES command and waits for the NAND to be
2056 * ready before returning.
2057 * This function does not select/unselect the CS line.
2058 *
2059 * Returns 0 on success, a negative error code otherwise.
2060 */
2061static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2062 void *data)
2063{
2064 u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2065 int i;
2066
2067 if (nand_has_exec_op(chip)) {
2068 const struct nand_interface_config *conf =
2069 nand_get_interface_config(chip);
2070 struct nand_op_instr instrs[] = {
2071 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2072 NAND_OP_ADDR(1, &feature,
2073 NAND_COMMON_TIMING_NS(conf, tWB_max)),
2074 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2075 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2076 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2077 data, 0),
2078 };
2079 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2080 int ret;
2081
2082 /* GET_FEATURE data bytes are received twice in NV-DDR mode */
2083 if (nand_interface_is_nvddr(conf)) {
2084 instrs[3].ctx.data.len *= 2;
2085 instrs[3].ctx.data.buf.in = ddrbuf;
2086 }
2087
2088 ret = nand_exec_op(chip, op: &op);
2089 if (nand_interface_is_nvddr(conf)) {
2090 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2091 params[i] = ddrbuf[i * 2];
2092 }
2093
2094 return ret;
2095 }
2096
2097 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2098 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2099 params[i] = chip->legacy.read_byte(chip);
2100
2101 return 0;
2102}
2103
2104static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2105 unsigned int delay_ns)
2106{
2107 if (nand_has_exec_op(chip)) {
2108 struct nand_op_instr instrs[] = {
2109 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2110 PSEC_TO_NSEC(delay_ns)),
2111 };
2112 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2113
2114 return nand_exec_op(chip, op: &op);
2115 }
2116
2117 /* Apply delay or wait for ready/busy pin */
2118 if (!chip->legacy.dev_ready)
2119 udelay(chip->legacy.chip_delay);
2120 else
2121 nand_wait_ready(chip);
2122
2123 return 0;
2124}
2125
2126/**
2127 * nand_reset_op - Do a reset operation
2128 * @chip: The NAND chip
2129 *
2130 * This function sends a RESET command and waits for the NAND to be ready
2131 * before returning.
2132 * This function does not select/unselect the CS line.
2133 *
2134 * Returns 0 on success, a negative error code otherwise.
2135 */
2136int nand_reset_op(struct nand_chip *chip)
2137{
2138 if (nand_has_exec_op(chip)) {
2139 const struct nand_interface_config *conf =
2140 nand_get_interface_config(chip);
2141 struct nand_op_instr instrs[] = {
2142 NAND_OP_CMD(NAND_CMD_RESET,
2143 NAND_COMMON_TIMING_NS(conf, tWB_max)),
2144 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2145 0),
2146 };
2147 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2148
2149 return nand_exec_op(chip, op: &op);
2150 }
2151
2152 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2153
2154 return 0;
2155}
2156EXPORT_SYMBOL_GPL(nand_reset_op);
2157
2158/**
2159 * nand_read_data_op - Read data from the NAND
2160 * @chip: The NAND chip
2161 * @buf: buffer used to store the data
2162 * @len: length of the buffer
2163 * @force_8bit: force 8-bit bus access
2164 * @check_only: do not actually run the command, only checks if the
2165 * controller driver supports it
2166 *
2167 * This function does a raw data read on the bus. Usually used after launching
2168 * another NAND operation like nand_read_page_op().
2169 * This function does not select/unselect the CS line.
2170 *
2171 * Returns 0 on success, a negative error code otherwise.
2172 */
2173int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2174 bool force_8bit, bool check_only)
2175{
2176 if (!len || !buf)
2177 return -EINVAL;
2178
2179 if (nand_has_exec_op(chip)) {
2180 const struct nand_interface_config *conf =
2181 nand_get_interface_config(chip);
2182 struct nand_op_instr instrs[] = {
2183 NAND_OP_DATA_IN(len, buf, 0),
2184 };
2185 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2186 u8 *ddrbuf = NULL;
2187 int ret, i;
2188
2189 instrs[0].ctx.data.force_8bit = force_8bit;
2190
2191 /*
2192 * Parameter payloads (ID, status, features, etc) do not go
2193 * through the same pipeline as regular data, hence the
2194 * force_8bit flag must be set and this also indicates that in
2195 * case NV-DDR timings are being used the data will be received
2196 * twice.
2197 */
2198 if (force_8bit && nand_interface_is_nvddr(conf)) {
2199 ddrbuf = kzalloc(size: len * 2, GFP_KERNEL);
2200 if (!ddrbuf)
2201 return -ENOMEM;
2202
2203 instrs[0].ctx.data.len *= 2;
2204 instrs[0].ctx.data.buf.in = ddrbuf;
2205 }
2206
2207 if (check_only) {
2208 ret = nand_check_op(chip, op: &op);
2209 kfree(objp: ddrbuf);
2210 return ret;
2211 }
2212
2213 ret = nand_exec_op(chip, op: &op);
2214 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2215 u8 *dst = buf;
2216
2217 for (i = 0; i < len; i++)
2218 dst[i] = ddrbuf[i * 2];
2219 }
2220
2221 kfree(objp: ddrbuf);
2222
2223 return ret;
2224 }
2225
2226 if (check_only)
2227 return 0;
2228
2229 if (force_8bit) {
2230 u8 *p = buf;
2231 unsigned int i;
2232
2233 for (i = 0; i < len; i++)
2234 p[i] = chip->legacy.read_byte(chip);
2235 } else {
2236 chip->legacy.read_buf(chip, buf, len);
2237 }
2238
2239 return 0;
2240}
2241EXPORT_SYMBOL_GPL(nand_read_data_op);
2242
2243/**
2244 * nand_write_data_op - Write data from the NAND
2245 * @chip: The NAND chip
2246 * @buf: buffer containing the data to send on the bus
2247 * @len: length of the buffer
2248 * @force_8bit: force 8-bit bus access
2249 *
2250 * This function does a raw data write on the bus. Usually used after launching
2251 * another NAND operation like nand_write_page_begin_op().
2252 * This function does not select/unselect the CS line.
2253 *
2254 * Returns 0 on success, a negative error code otherwise.
2255 */
2256int nand_write_data_op(struct nand_chip *chip, const void *buf,
2257 unsigned int len, bool force_8bit)
2258{
2259 if (!len || !buf)
2260 return -EINVAL;
2261
2262 if (nand_has_exec_op(chip)) {
2263 struct nand_op_instr instrs[] = {
2264 NAND_OP_DATA_OUT(len, buf, 0),
2265 };
2266 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2267
2268 instrs[0].ctx.data.force_8bit = force_8bit;
2269
2270 return nand_exec_op(chip, op: &op);
2271 }
2272
2273 if (force_8bit) {
2274 const u8 *p = buf;
2275 unsigned int i;
2276
2277 for (i = 0; i < len; i++)
2278 chip->legacy.write_byte(chip, p[i]);
2279 } else {
2280 chip->legacy.write_buf(chip, buf, len);
2281 }
2282
2283 return 0;
2284}
2285EXPORT_SYMBOL_GPL(nand_write_data_op);
2286
2287/**
2288 * struct nand_op_parser_ctx - Context used by the parser
2289 * @instrs: array of all the instructions that must be addressed
2290 * @ninstrs: length of the @instrs array
2291 * @subop: Sub-operation to be passed to the NAND controller
2292 *
2293 * This structure is used by the core to split NAND operations into
2294 * sub-operations that can be handled by the NAND controller.
2295 */
2296struct nand_op_parser_ctx {
2297 const struct nand_op_instr *instrs;
2298 unsigned int ninstrs;
2299 struct nand_subop subop;
2300};
2301
2302/**
2303 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2304 * @pat: the parser pattern element that matches @instr
2305 * @instr: pointer to the instruction to check
2306 * @start_offset: this is an in/out parameter. If @instr has already been
2307 * split, then @start_offset is the offset from which to start
2308 * (either an address cycle or an offset in the data buffer).
2309 * Conversely, if the function returns true (ie. instr must be
2310 * split), this parameter is updated to point to the first
2311 * data/address cycle that has not been taken care of.
2312 *
2313 * Some NAND controllers are limited and cannot send X address cycles with a
2314 * unique operation, or cannot read/write more than Y bytes at the same time.
2315 * In this case, split the instruction that does not fit in a single
2316 * controller-operation into two or more chunks.
2317 *
2318 * Returns true if the instruction must be split, false otherwise.
2319 * The @start_offset parameter is also updated to the offset at which the next
2320 * bundle of instruction must start (if an address or a data instruction).
2321 */
2322static bool
2323nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2324 const struct nand_op_instr *instr,
2325 unsigned int *start_offset)
2326{
2327 switch (pat->type) {
2328 case NAND_OP_ADDR_INSTR:
2329 if (!pat->ctx.addr.maxcycles)
2330 break;
2331
2332 if (instr->ctx.addr.naddrs - *start_offset >
2333 pat->ctx.addr.maxcycles) {
2334 *start_offset += pat->ctx.addr.maxcycles;
2335 return true;
2336 }
2337 break;
2338
2339 case NAND_OP_DATA_IN_INSTR:
2340 case NAND_OP_DATA_OUT_INSTR:
2341 if (!pat->ctx.data.maxlen)
2342 break;
2343
2344 if (instr->ctx.data.len - *start_offset >
2345 pat->ctx.data.maxlen) {
2346 *start_offset += pat->ctx.data.maxlen;
2347 return true;
2348 }
2349 break;
2350
2351 default:
2352 break;
2353 }
2354
2355 return false;
2356}
2357
2358/**
2359 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2360 * remaining in the parser context
2361 * @pat: the pattern to test
2362 * @ctx: the parser context structure to match with the pattern @pat
2363 *
2364 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2365 * Returns true if this is the case, false ortherwise. When true is returned,
2366 * @ctx->subop is updated with the set of instructions to be passed to the
2367 * controller driver.
2368 */
2369static bool
2370nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2371 struct nand_op_parser_ctx *ctx)
2372{
2373 unsigned int instr_offset = ctx->subop.first_instr_start_off;
2374 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2375 const struct nand_op_instr *instr = ctx->subop.instrs;
2376 unsigned int i, ninstrs;
2377
2378 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2379 /*
2380 * The pattern instruction does not match the operation
2381 * instruction. If the instruction is marked optional in the
2382 * pattern definition, we skip the pattern element and continue
2383 * to the next one. If the element is mandatory, there's no
2384 * match and we can return false directly.
2385 */
2386 if (instr->type != pat->elems[i].type) {
2387 if (!pat->elems[i].optional)
2388 return false;
2389
2390 continue;
2391 }
2392
2393 /*
2394 * Now check the pattern element constraints. If the pattern is
2395 * not able to handle the whole instruction in a single step,
2396 * we have to split it.
2397 * The last_instr_end_off value comes back updated to point to
2398 * the position where we have to split the instruction (the
2399 * start of the next subop chunk).
2400 */
2401 if (nand_op_parser_must_split_instr(pat: &pat->elems[i], instr,
2402 start_offset: &instr_offset)) {
2403 ninstrs++;
2404 i++;
2405 break;
2406 }
2407
2408 instr++;
2409 ninstrs++;
2410 instr_offset = 0;
2411 }
2412
2413 /*
2414 * This can happen if all instructions of a pattern are optional.
2415 * Still, if there's not at least one instruction handled by this
2416 * pattern, this is not a match, and we should try the next one (if
2417 * any).
2418 */
2419 if (!ninstrs)
2420 return false;
2421
2422 /*
2423 * We had a match on the pattern head, but the pattern may be longer
2424 * than the instructions we're asked to execute. We need to make sure
2425 * there's no mandatory elements in the pattern tail.
2426 */
2427 for (; i < pat->nelems; i++) {
2428 if (!pat->elems[i].optional)
2429 return false;
2430 }
2431
2432 /*
2433 * We have a match: update the subop structure accordingly and return
2434 * true.
2435 */
2436 ctx->subop.ninstrs = ninstrs;
2437 ctx->subop.last_instr_end_off = instr_offset;
2438
2439 return true;
2440}
2441
2442#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2443static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2444{
2445 const struct nand_op_instr *instr;
2446 char *prefix = " ";
2447 unsigned int i;
2448
2449 pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2450
2451 for (i = 0; i < ctx->ninstrs; i++) {
2452 instr = &ctx->instrs[i];
2453
2454 if (instr == &ctx->subop.instrs[0])
2455 prefix = " ->";
2456
2457 nand_op_trace(prefix, instr);
2458
2459 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2460 prefix = " ";
2461 }
2462}
2463#else
2464static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2465{
2466 /* NOP */
2467}
2468#endif
2469
2470static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2471 const struct nand_op_parser_ctx *b)
2472{
2473 if (a->subop.ninstrs < b->subop.ninstrs)
2474 return -1;
2475 else if (a->subop.ninstrs > b->subop.ninstrs)
2476 return 1;
2477
2478 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2479 return -1;
2480 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2481 return 1;
2482
2483 return 0;
2484}
2485
2486/**
2487 * nand_op_parser_exec_op - exec_op parser
2488 * @chip: the NAND chip
2489 * @parser: patterns description provided by the controller driver
2490 * @op: the NAND operation to address
2491 * @check_only: when true, the function only checks if @op can be handled but
2492 * does not execute the operation
2493 *
2494 * Helper function designed to ease integration of NAND controller drivers that
2495 * only support a limited set of instruction sequences. The supported sequences
2496 * are described in @parser, and the framework takes care of splitting @op into
2497 * multiple sub-operations (if required) and pass them back to the ->exec()
2498 * callback of the matching pattern if @check_only is set to false.
2499 *
2500 * NAND controller drivers should call this function from their own ->exec_op()
2501 * implementation.
2502 *
2503 * Returns 0 on success, a negative error code otherwise. A failure can be
2504 * caused by an unsupported operation (none of the supported patterns is able
2505 * to handle the requested operation), or an error returned by one of the
2506 * matching pattern->exec() hook.
2507 */
2508int nand_op_parser_exec_op(struct nand_chip *chip,
2509 const struct nand_op_parser *parser,
2510 const struct nand_operation *op, bool check_only)
2511{
2512 struct nand_op_parser_ctx ctx = {
2513 .subop.cs = op->cs,
2514 .subop.instrs = op->instrs,
2515 .instrs = op->instrs,
2516 .ninstrs = op->ninstrs,
2517 };
2518 unsigned int i;
2519
2520 while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2521 const struct nand_op_parser_pattern *pattern;
2522 struct nand_op_parser_ctx best_ctx;
2523 int ret, best_pattern = -1;
2524
2525 for (i = 0; i < parser->npatterns; i++) {
2526 struct nand_op_parser_ctx test_ctx = ctx;
2527
2528 pattern = &parser->patterns[i];
2529 if (!nand_op_parser_match_pat(pat: pattern, ctx: &test_ctx))
2530 continue;
2531
2532 if (best_pattern >= 0 &&
2533 nand_op_parser_cmp_ctx(a: &test_ctx, b: &best_ctx) <= 0)
2534 continue;
2535
2536 best_pattern = i;
2537 best_ctx = test_ctx;
2538 }
2539
2540 if (best_pattern < 0) {
2541 pr_debug("->exec_op() parser: pattern not found!\n");
2542 return -ENOTSUPP;
2543 }
2544
2545 ctx = best_ctx;
2546 nand_op_parser_trace(ctx: &ctx);
2547
2548 if (!check_only) {
2549 pattern = &parser->patterns[best_pattern];
2550 ret = pattern->exec(chip, &ctx.subop);
2551 if (ret)
2552 return ret;
2553 }
2554
2555 /*
2556 * Update the context structure by pointing to the start of the
2557 * next subop.
2558 */
2559 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2560 if (ctx.subop.last_instr_end_off)
2561 ctx.subop.instrs -= 1;
2562
2563 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2564 }
2565
2566 return 0;
2567}
2568EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2569
2570static bool nand_instr_is_data(const struct nand_op_instr *instr)
2571{
2572 return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2573 instr->type == NAND_OP_DATA_OUT_INSTR);
2574}
2575
2576static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2577 unsigned int instr_idx)
2578{
2579 return subop && instr_idx < subop->ninstrs;
2580}
2581
2582static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2583 unsigned int instr_idx)
2584{
2585 if (instr_idx)
2586 return 0;
2587
2588 return subop->first_instr_start_off;
2589}
2590
2591/**
2592 * nand_subop_get_addr_start_off - Get the start offset in an address array
2593 * @subop: The entire sub-operation
2594 * @instr_idx: Index of the instruction inside the sub-operation
2595 *
2596 * During driver development, one could be tempted to directly use the
2597 * ->addr.addrs field of address instructions. This is wrong as address
2598 * instructions might be split.
2599 *
2600 * Given an address instruction, returns the offset of the first cycle to issue.
2601 */
2602unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2603 unsigned int instr_idx)
2604{
2605 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2606 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2607 return 0;
2608
2609 return nand_subop_get_start_off(subop, instr_idx);
2610}
2611EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2612
2613/**
2614 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2615 * @subop: The entire sub-operation
2616 * @instr_idx: Index of the instruction inside the sub-operation
2617 *
2618 * During driver development, one could be tempted to directly use the
2619 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2620 * might be split.
2621 *
2622 * Given an address instruction, returns the number of address cycle to issue.
2623 */
2624unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2625 unsigned int instr_idx)
2626{
2627 int start_off, end_off;
2628
2629 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2630 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2631 return 0;
2632
2633 start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2634
2635 if (instr_idx == subop->ninstrs - 1 &&
2636 subop->last_instr_end_off)
2637 end_off = subop->last_instr_end_off;
2638 else
2639 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2640
2641 return end_off - start_off;
2642}
2643EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2644
2645/**
2646 * nand_subop_get_data_start_off - Get the start offset in a data array
2647 * @subop: The entire sub-operation
2648 * @instr_idx: Index of the instruction inside the sub-operation
2649 *
2650 * During driver development, one could be tempted to directly use the
2651 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2652 * instructions might be split.
2653 *
2654 * Given a data instruction, returns the offset to start from.
2655 */
2656unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2657 unsigned int instr_idx)
2658{
2659 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2660 !nand_instr_is_data(&subop->instrs[instr_idx])))
2661 return 0;
2662
2663 return nand_subop_get_start_off(subop, instr_idx);
2664}
2665EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2666
2667/**
2668 * nand_subop_get_data_len - Get the number of bytes to retrieve
2669 * @subop: The entire sub-operation
2670 * @instr_idx: Index of the instruction inside the sub-operation
2671 *
2672 * During driver development, one could be tempted to directly use the
2673 * ->data->len field of a data instruction. This is wrong as data instructions
2674 * might be split.
2675 *
2676 * Returns the length of the chunk of data to send/receive.
2677 */
2678unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2679 unsigned int instr_idx)
2680{
2681 int start_off = 0, end_off;
2682
2683 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2684 !nand_instr_is_data(&subop->instrs[instr_idx])))
2685 return 0;
2686
2687 start_off = nand_subop_get_data_start_off(subop, instr_idx);
2688
2689 if (instr_idx == subop->ninstrs - 1 &&
2690 subop->last_instr_end_off)
2691 end_off = subop->last_instr_end_off;
2692 else
2693 end_off = subop->instrs[instr_idx].ctx.data.len;
2694
2695 return end_off - start_off;
2696}
2697EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2698
2699/**
2700 * nand_reset - Reset and initialize a NAND device
2701 * @chip: The NAND chip
2702 * @chipnr: Internal die id
2703 *
2704 * Save the timings data structure, then apply SDR timings mode 0 (see
2705 * nand_reset_interface for details), do the reset operation, and apply
2706 * back the previous timings.
2707 *
2708 * Returns 0 on success, a negative error code otherwise.
2709 */
2710int nand_reset(struct nand_chip *chip, int chipnr)
2711{
2712 int ret;
2713
2714 ret = nand_reset_interface(chip, chipnr);
2715 if (ret)
2716 return ret;
2717
2718 /*
2719 * The CS line has to be released before we can apply the new NAND
2720 * interface settings, hence this weird nand_select_target()
2721 * nand_deselect_target() dance.
2722 */
2723 nand_select_target(chip, chipnr);
2724 ret = nand_reset_op(chip);
2725 nand_deselect_target(chip);
2726 if (ret)
2727 return ret;
2728
2729 ret = nand_setup_interface(chip, chipnr);
2730 if (ret)
2731 return ret;
2732
2733 return 0;
2734}
2735EXPORT_SYMBOL_GPL(nand_reset);
2736
2737/**
2738 * nand_get_features - wrapper to perform a GET_FEATURE
2739 * @chip: NAND chip info structure
2740 * @addr: feature address
2741 * @subfeature_param: the subfeature parameters, a four bytes array
2742 *
2743 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2744 * operation cannot be handled.
2745 */
2746int nand_get_features(struct nand_chip *chip, int addr,
2747 u8 *subfeature_param)
2748{
2749 if (!nand_supports_get_features(chip, addr))
2750 return -ENOTSUPP;
2751
2752 if (chip->legacy.get_features)
2753 return chip->legacy.get_features(chip, addr, subfeature_param);
2754
2755 return nand_get_features_op(chip, feature: addr, data: subfeature_param);
2756}
2757
2758/**
2759 * nand_set_features - wrapper to perform a SET_FEATURE
2760 * @chip: NAND chip info structure
2761 * @addr: feature address
2762 * @subfeature_param: the subfeature parameters, a four bytes array
2763 *
2764 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2765 * operation cannot be handled.
2766 */
2767int nand_set_features(struct nand_chip *chip, int addr,
2768 u8 *subfeature_param)
2769{
2770 if (!nand_supports_set_features(chip, addr))
2771 return -ENOTSUPP;
2772
2773 if (chip->legacy.set_features)
2774 return chip->legacy.set_features(chip, addr, subfeature_param);
2775
2776 return nand_set_features_op(chip, feature: addr, data: subfeature_param);
2777}
2778
2779/**
2780 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2781 * @buf: buffer to test
2782 * @len: buffer length
2783 * @bitflips_threshold: maximum number of bitflips
2784 *
2785 * Check if a buffer contains only 0xff, which means the underlying region
2786 * has been erased and is ready to be programmed.
2787 * The bitflips_threshold specify the maximum number of bitflips before
2788 * considering the region is not erased.
2789 * Note: The logic of this function has been extracted from the memweight
2790 * implementation, except that nand_check_erased_buf function exit before
2791 * testing the whole buffer if the number of bitflips exceed the
2792 * bitflips_threshold value.
2793 *
2794 * Returns a positive number of bitflips less than or equal to
2795 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2796 * threshold.
2797 */
2798static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2799{
2800 const unsigned char *bitmap = buf;
2801 int bitflips = 0;
2802 int weight;
2803
2804 for (; len && ((uintptr_t)bitmap) % sizeof(long);
2805 len--, bitmap++) {
2806 weight = hweight8(*bitmap);
2807 bitflips += BITS_PER_BYTE - weight;
2808 if (unlikely(bitflips > bitflips_threshold))
2809 return -EBADMSG;
2810 }
2811
2812 for (; len >= sizeof(long);
2813 len -= sizeof(long), bitmap += sizeof(long)) {
2814 unsigned long d = *((unsigned long *)bitmap);
2815 if (d == ~0UL)
2816 continue;
2817 weight = hweight_long(w: d);
2818 bitflips += BITS_PER_LONG - weight;
2819 if (unlikely(bitflips > bitflips_threshold))
2820 return -EBADMSG;
2821 }
2822
2823 for (; len > 0; len--, bitmap++) {
2824 weight = hweight8(*bitmap);
2825 bitflips += BITS_PER_BYTE - weight;
2826 if (unlikely(bitflips > bitflips_threshold))
2827 return -EBADMSG;
2828 }
2829
2830 return bitflips;
2831}
2832
2833/**
2834 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2835 * 0xff data
2836 * @data: data buffer to test
2837 * @datalen: data length
2838 * @ecc: ECC buffer
2839 * @ecclen: ECC length
2840 * @extraoob: extra OOB buffer
2841 * @extraooblen: extra OOB length
2842 * @bitflips_threshold: maximum number of bitflips
2843 *
2844 * Check if a data buffer and its associated ECC and OOB data contains only
2845 * 0xff pattern, which means the underlying region has been erased and is
2846 * ready to be programmed.
2847 * The bitflips_threshold specify the maximum number of bitflips before
2848 * considering the region as not erased.
2849 *
2850 * Note:
2851 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2852 * different from the NAND page size. When fixing bitflips, ECC engines will
2853 * report the number of errors per chunk, and the NAND core infrastructure
2854 * expect you to return the maximum number of bitflips for the whole page.
2855 * This is why you should always use this function on a single chunk and
2856 * not on the whole page. After checking each chunk you should update your
2857 * max_bitflips value accordingly.
2858 * 2/ When checking for bitflips in erased pages you should not only check
2859 * the payload data but also their associated ECC data, because a user might
2860 * have programmed almost all bits to 1 but a few. In this case, we
2861 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
2862 * this case.
2863 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2864 * data are protected by the ECC engine.
2865 * It could also be used if you support subpages and want to attach some
2866 * extra OOB data to an ECC chunk.
2867 *
2868 * Returns a positive number of bitflips less than or equal to
2869 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2870 * threshold. In case of success, the passed buffers are filled with 0xff.
2871 */
2872int nand_check_erased_ecc_chunk(void *data, int datalen,
2873 void *ecc, int ecclen,
2874 void *extraoob, int extraooblen,
2875 int bitflips_threshold)
2876{
2877 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2878
2879 data_bitflips = nand_check_erased_buf(buf: data, len: datalen,
2880 bitflips_threshold);
2881 if (data_bitflips < 0)
2882 return data_bitflips;
2883
2884 bitflips_threshold -= data_bitflips;
2885
2886 ecc_bitflips = nand_check_erased_buf(buf: ecc, len: ecclen, bitflips_threshold);
2887 if (ecc_bitflips < 0)
2888 return ecc_bitflips;
2889
2890 bitflips_threshold -= ecc_bitflips;
2891
2892 extraoob_bitflips = nand_check_erased_buf(buf: extraoob, len: extraooblen,
2893 bitflips_threshold);
2894 if (extraoob_bitflips < 0)
2895 return extraoob_bitflips;
2896
2897 if (data_bitflips)
2898 memset(data, 0xff, datalen);
2899
2900 if (ecc_bitflips)
2901 memset(ecc, 0xff, ecclen);
2902
2903 if (extraoob_bitflips)
2904 memset(extraoob, 0xff, extraooblen);
2905
2906 return data_bitflips + ecc_bitflips + extraoob_bitflips;
2907}
2908EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2909
2910/**
2911 * nand_read_page_raw_notsupp - dummy read raw page function
2912 * @chip: nand chip info structure
2913 * @buf: buffer to store read data
2914 * @oob_required: caller requires OOB data read to chip->oob_poi
2915 * @page: page number to read
2916 *
2917 * Returns -ENOTSUPP unconditionally.
2918 */
2919int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2920 int oob_required, int page)
2921{
2922 return -ENOTSUPP;
2923}
2924
2925/**
2926 * nand_read_page_raw - [INTERN] read raw page data without ecc
2927 * @chip: nand chip info structure
2928 * @buf: buffer to store read data
2929 * @oob_required: caller requires OOB data read to chip->oob_poi
2930 * @page: page number to read
2931 *
2932 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2933 */
2934int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2935 int page)
2936{
2937 struct mtd_info *mtd = nand_to_mtd(chip);
2938 int ret;
2939
2940 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2941 if (ret)
2942 return ret;
2943
2944 if (oob_required) {
2945 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2946 false, false);
2947 if (ret)
2948 return ret;
2949 }
2950
2951 return 0;
2952}
2953EXPORT_SYMBOL(nand_read_page_raw);
2954
2955/**
2956 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2957 * @chip: NAND chip info structure
2958 * @buf: buffer to store read data
2959 * @oob_required: caller requires OOB data read to chip->oob_poi
2960 * @page: page number to read
2961 *
2962 * This is a raw page read, ie. without any error detection/correction.
2963 * Monolithic means we are requesting all the relevant data (main plus
2964 * eventually OOB) to be loaded in the NAND cache and sent over the
2965 * bus (from the NAND chip to the NAND controller) in a single
2966 * operation. This is an alternative to nand_read_page_raw(), which
2967 * first reads the main data, and if the OOB data is requested too,
2968 * then reads more data on the bus.
2969 */
2970int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2971 int oob_required, int page)
2972{
2973 struct mtd_info *mtd = nand_to_mtd(chip);
2974 unsigned int size = mtd->writesize;
2975 u8 *read_buf = buf;
2976 int ret;
2977
2978 if (oob_required) {
2979 size += mtd->oobsize;
2980
2981 if (buf != chip->data_buf)
2982 read_buf = nand_get_data_buf(chip);
2983 }
2984
2985 ret = nand_read_page_op(chip, page, 0, read_buf, size);
2986 if (ret)
2987 return ret;
2988
2989 if (buf != chip->data_buf)
2990 memcpy(buf, read_buf, mtd->writesize);
2991
2992 return 0;
2993}
2994EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2995
2996/**
2997 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2998 * @chip: nand chip info structure
2999 * @buf: buffer to store read data
3000 * @oob_required: caller requires OOB data read to chip->oob_poi
3001 * @page: page number to read
3002 *
3003 * We need a special oob layout and handling even when OOB isn't used.
3004 */
3005static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
3006 int oob_required, int page)
3007{
3008 struct mtd_info *mtd = nand_to_mtd(chip);
3009 int eccsize = chip->ecc.size;
3010 int eccbytes = chip->ecc.bytes;
3011 uint8_t *oob = chip->oob_poi;
3012 int steps, size, ret;
3013
3014 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3015 if (ret)
3016 return ret;
3017
3018 for (steps = chip->ecc.steps; steps > 0; steps--) {
3019 ret = nand_read_data_op(chip, buf, eccsize, false, false);
3020 if (ret)
3021 return ret;
3022
3023 buf += eccsize;
3024
3025 if (chip->ecc.prepad) {
3026 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3027 false, false);
3028 if (ret)
3029 return ret;
3030
3031 oob += chip->ecc.prepad;
3032 }
3033
3034 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3035 if (ret)
3036 return ret;
3037
3038 oob += eccbytes;
3039
3040 if (chip->ecc.postpad) {
3041 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3042 false, false);
3043 if (ret)
3044 return ret;
3045
3046 oob += chip->ecc.postpad;
3047 }
3048 }
3049
3050 size = mtd->oobsize - (oob - chip->oob_poi);
3051 if (size) {
3052 ret = nand_read_data_op(chip, oob, size, false, false);
3053 if (ret)
3054 return ret;
3055 }
3056
3057 return 0;
3058}
3059
3060/**
3061 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3062 * @chip: nand chip info structure
3063 * @buf: buffer to store read data
3064 * @oob_required: caller requires OOB data read to chip->oob_poi
3065 * @page: page number to read
3066 */
3067static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3068 int oob_required, int page)
3069{
3070 struct mtd_info *mtd = nand_to_mtd(chip);
3071 int i, eccsize = chip->ecc.size, ret;
3072 int eccbytes = chip->ecc.bytes;
3073 int eccsteps = chip->ecc.steps;
3074 uint8_t *p = buf;
3075 uint8_t *ecc_calc = chip->ecc.calc_buf;
3076 uint8_t *ecc_code = chip->ecc.code_buf;
3077 unsigned int max_bitflips = 0;
3078
3079 chip->ecc.read_page_raw(chip, buf, 1, page);
3080
3081 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3082 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3083
3084 ret = mtd_ooblayout_get_eccbytes(mtd, eccbuf: ecc_code, oobbuf: chip->oob_poi, start: 0,
3085 nbytes: chip->ecc.total);
3086 if (ret)
3087 return ret;
3088
3089 eccsteps = chip->ecc.steps;
3090 p = buf;
3091
3092 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3093 int stat;
3094
3095 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3096 if (stat < 0) {
3097 mtd->ecc_stats.failed++;
3098 } else {
3099 mtd->ecc_stats.corrected += stat;
3100 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3101 }
3102 }
3103 return max_bitflips;
3104}
3105
3106/**
3107 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3108 * @chip: nand chip info structure
3109 * @data_offs: offset of requested data within the page
3110 * @readlen: data length
3111 * @bufpoi: buffer to store read data
3112 * @page: page number to read
3113 */
3114static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3115 uint32_t readlen, uint8_t *bufpoi, int page)
3116{
3117 struct mtd_info *mtd = nand_to_mtd(chip);
3118 int start_step, end_step, num_steps, ret;
3119 uint8_t *p;
3120 int data_col_addr, i, gaps = 0;
3121 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3122 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3123 int index, section = 0;
3124 unsigned int max_bitflips = 0;
3125 struct mtd_oob_region oobregion = { };
3126
3127 /* Column address within the page aligned to ECC size (256bytes) */
3128 start_step = data_offs / chip->ecc.size;
3129 end_step = (data_offs + readlen - 1) / chip->ecc.size;
3130 num_steps = end_step - start_step + 1;
3131 index = start_step * chip->ecc.bytes;
3132
3133 /* Data size aligned to ECC ecc.size */
3134 datafrag_len = num_steps * chip->ecc.size;
3135 eccfrag_len = num_steps * chip->ecc.bytes;
3136
3137 data_col_addr = start_step * chip->ecc.size;
3138 /* If we read not a page aligned data */
3139 p = bufpoi + data_col_addr;
3140 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3141 if (ret)
3142 return ret;
3143
3144 /* Calculate ECC */
3145 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3146 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3147
3148 /*
3149 * The performance is faster if we position offsets according to
3150 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3151 */
3152 ret = mtd_ooblayout_find_eccregion(mtd, eccbyte: index, section: &section, oobregion: &oobregion);
3153 if (ret)
3154 return ret;
3155
3156 if (oobregion.length < eccfrag_len)
3157 gaps = 1;
3158
3159 if (gaps) {
3160 ret = nand_change_read_column_op(chip, mtd->writesize,
3161 chip->oob_poi, mtd->oobsize,
3162 false);
3163 if (ret)
3164 return ret;
3165 } else {
3166 /*
3167 * Send the command to read the particular ECC bytes take care
3168 * about buswidth alignment in read_buf.
3169 */
3170 aligned_pos = oobregion.offset & ~(busw - 1);
3171 aligned_len = eccfrag_len;
3172 if (oobregion.offset & (busw - 1))
3173 aligned_len++;
3174 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3175 (busw - 1))
3176 aligned_len++;
3177
3178 ret = nand_change_read_column_op(chip,
3179 mtd->writesize + aligned_pos,
3180 &chip->oob_poi[aligned_pos],
3181 aligned_len, false);
3182 if (ret)
3183 return ret;
3184 }
3185
3186 ret = mtd_ooblayout_get_eccbytes(mtd, eccbuf: chip->ecc.code_buf,
3187 oobbuf: chip->oob_poi, start: index, nbytes: eccfrag_len);
3188 if (ret)
3189 return ret;
3190
3191 p = bufpoi + data_col_addr;
3192 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3193 int stat;
3194
3195 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3196 &chip->ecc.calc_buf[i]);
3197 if (stat == -EBADMSG &&
3198 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3199 /* check for empty pages with bitflips */
3200 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3201 &chip->ecc.code_buf[i],
3202 chip->ecc.bytes,
3203 NULL, 0,
3204 chip->ecc.strength);
3205 }
3206
3207 if (stat < 0) {
3208 mtd->ecc_stats.failed++;
3209 } else {
3210 mtd->ecc_stats.corrected += stat;
3211 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3212 }
3213 }
3214 return max_bitflips;
3215}
3216
3217/**
3218 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3219 * @chip: nand chip info structure
3220 * @buf: buffer to store read data
3221 * @oob_required: caller requires OOB data read to chip->oob_poi
3222 * @page: page number to read
3223 *
3224 * Not for syndrome calculating ECC controllers which need a special oob layout.
3225 */
3226static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3227 int oob_required, int page)
3228{
3229 struct mtd_info *mtd = nand_to_mtd(chip);
3230 int i, eccsize = chip->ecc.size, ret;
3231 int eccbytes = chip->ecc.bytes;
3232 int eccsteps = chip->ecc.steps;
3233 uint8_t *p = buf;
3234 uint8_t *ecc_calc = chip->ecc.calc_buf;
3235 uint8_t *ecc_code = chip->ecc.code_buf;
3236 unsigned int max_bitflips = 0;
3237
3238 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3239 if (ret)
3240 return ret;
3241
3242 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3243 chip->ecc.hwctl(chip, NAND_ECC_READ);
3244
3245 ret = nand_read_data_op(chip, p, eccsize, false, false);
3246 if (ret)
3247 return ret;
3248
3249 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3250 }
3251
3252 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3253 false);
3254 if (ret)
3255 return ret;
3256
3257 ret = mtd_ooblayout_get_eccbytes(mtd, eccbuf: ecc_code, oobbuf: chip->oob_poi, start: 0,
3258 nbytes: chip->ecc.total);
3259 if (ret)
3260 return ret;
3261
3262 eccsteps = chip->ecc.steps;
3263 p = buf;
3264
3265 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3266 int stat;
3267
3268 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3269 if (stat == -EBADMSG &&
3270 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3271 /* check for empty pages with bitflips */
3272 stat = nand_check_erased_ecc_chunk(p, eccsize,
3273 &ecc_code[i], eccbytes,
3274 NULL, 0,
3275 chip->ecc.strength);
3276 }
3277
3278 if (stat < 0) {
3279 mtd->ecc_stats.failed++;
3280 } else {
3281 mtd->ecc_stats.corrected += stat;
3282 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3283 }
3284 }
3285 return max_bitflips;
3286}
3287
3288/**
3289 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3290 * data read from OOB area
3291 * @chip: nand chip info structure
3292 * @buf: buffer to store read data
3293 * @oob_required: caller requires OOB data read to chip->oob_poi
3294 * @page: page number to read
3295 *
3296 * Hardware ECC for large page chips, which requires the ECC data to be
3297 * extracted from the OOB before the actual data is read.
3298 */
3299int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3300 int oob_required, int page)
3301{
3302 struct mtd_info *mtd = nand_to_mtd(chip);
3303 int i, eccsize = chip->ecc.size, ret;
3304 int eccbytes = chip->ecc.bytes;
3305 int eccsteps = chip->ecc.steps;
3306 uint8_t *p = buf;
3307 uint8_t *ecc_code = chip->ecc.code_buf;
3308 unsigned int max_bitflips = 0;
3309
3310 /* Read the OOB area first */
3311 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3312 if (ret)
3313 return ret;
3314
3315 /* Move read cursor to start of page */
3316 ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3317 if (ret)
3318 return ret;
3319
3320 ret = mtd_ooblayout_get_eccbytes(mtd, eccbuf: ecc_code, oobbuf: chip->oob_poi, start: 0,
3321 nbytes: chip->ecc.total);
3322 if (ret)
3323 return ret;
3324
3325 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3326 int stat;
3327
3328 chip->ecc.hwctl(chip, NAND_ECC_READ);
3329
3330 ret = nand_read_data_op(chip, p, eccsize, false, false);
3331 if (ret)
3332 return ret;
3333
3334 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3335 if (stat == -EBADMSG &&
3336 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3337 /* check for empty pages with bitflips */
3338 stat = nand_check_erased_ecc_chunk(p, eccsize,
3339 &ecc_code[i],
3340 eccbytes, NULL, 0,
3341 chip->ecc.strength);
3342 }
3343
3344 if (stat < 0) {
3345 mtd->ecc_stats.failed++;
3346 } else {
3347 mtd->ecc_stats.corrected += stat;
3348 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3349 }
3350 }
3351 return max_bitflips;
3352}
3353EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3354
3355/**
3356 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3357 * @chip: nand chip info structure
3358 * @buf: buffer to store read data
3359 * @oob_required: caller requires OOB data read to chip->oob_poi
3360 * @page: page number to read
3361 *
3362 * The hw generator calculates the error syndrome automatically. Therefore we
3363 * need a special oob layout and handling.
3364 */
3365static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3366 int oob_required, int page)
3367{
3368 struct mtd_info *mtd = nand_to_mtd(chip);
3369 int ret, i, eccsize = chip->ecc.size;
3370 int eccbytes = chip->ecc.bytes;
3371 int eccsteps = chip->ecc.steps;
3372 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3373 uint8_t *p = buf;
3374 uint8_t *oob = chip->oob_poi;
3375 unsigned int max_bitflips = 0;
3376
3377 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3378 if (ret)
3379 return ret;
3380
3381 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3382 int stat;
3383
3384 chip->ecc.hwctl(chip, NAND_ECC_READ);
3385
3386 ret = nand_read_data_op(chip, p, eccsize, false, false);
3387 if (ret)
3388 return ret;
3389
3390 if (chip->ecc.prepad) {
3391 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3392 false, false);
3393 if (ret)
3394 return ret;
3395
3396 oob += chip->ecc.prepad;
3397 }
3398
3399 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3400
3401 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3402 if (ret)
3403 return ret;
3404
3405 stat = chip->ecc.correct(chip, p, oob, NULL);
3406
3407 oob += eccbytes;
3408
3409 if (chip->ecc.postpad) {
3410 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3411 false, false);
3412 if (ret)
3413 return ret;
3414
3415 oob += chip->ecc.postpad;
3416 }
3417
3418 if (stat == -EBADMSG &&
3419 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3420 /* check for empty pages with bitflips */
3421 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3422 oob - eccpadbytes,
3423 eccpadbytes,
3424 NULL, 0,
3425 chip->ecc.strength);
3426 }
3427
3428 if (stat < 0) {
3429 mtd->ecc_stats.failed++;
3430 } else {
3431 mtd->ecc_stats.corrected += stat;
3432 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3433 }
3434 }
3435
3436 /* Calculate remaining oob bytes */
3437 i = mtd->oobsize - (oob - chip->oob_poi);
3438 if (i) {
3439 ret = nand_read_data_op(chip, oob, i, false, false);
3440 if (ret)
3441 return ret;
3442 }
3443
3444 return max_bitflips;
3445}
3446
3447/**
3448 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3449 * @chip: NAND chip object
3450 * @oob: oob destination address
3451 * @ops: oob ops structure
3452 * @len: size of oob to transfer
3453 */
3454static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3455 struct mtd_oob_ops *ops, size_t len)
3456{
3457 struct mtd_info *mtd = nand_to_mtd(chip);
3458 int ret;
3459
3460 switch (ops->mode) {
3461
3462 case MTD_OPS_PLACE_OOB:
3463 case MTD_OPS_RAW:
3464 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3465 return oob + len;
3466
3467 case MTD_OPS_AUTO_OOB:
3468 ret = mtd_ooblayout_get_databytes(mtd, databuf: oob, oobbuf: chip->oob_poi,
3469 start: ops->ooboffs, nbytes: len);
3470 BUG_ON(ret);
3471 return oob + len;
3472
3473 default:
3474 BUG();
3475 }
3476 return NULL;
3477}
3478
3479static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3480 u32 readlen, int col)
3481{
3482 struct mtd_info *mtd = nand_to_mtd(chip);
3483 unsigned int first_page, last_page;
3484
3485 chip->cont_read.ongoing = false;
3486
3487 if (!chip->controller->supported_op.cont_read)
3488 return;
3489
3490 /*
3491 * Don't bother making any calculations if the length is too small.
3492 * Side effect: avoids possible integer underflows below.
3493 */
3494 if (readlen < (2 * mtd->writesize))
3495 return;
3496
3497 /* Derive the page where continuous read should start (the first full page read) */
3498 first_page = page;
3499 if (col)
3500 first_page++;
3501
3502 /* Derive the page where continuous read should stop (the last full page read) */
3503 last_page = page + ((col + readlen) / mtd->writesize) - 1;
3504
3505 /* Configure and enable continuous read when suitable */
3506 if (first_page < last_page) {
3507 chip->cont_read.first_page = first_page;
3508 chip->cont_read.last_page = last_page;
3509 chip->cont_read.ongoing = true;
3510 /* May reset the ongoing flag */
3511 rawnand_cap_cont_reads(chip);
3512 }
3513}
3514
3515static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3516{
3517 if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3518 return;
3519
3520 chip->cont_read.first_page++;
3521 rawnand_cap_cont_reads(chip);
3522}
3523
3524/**
3525 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3526 * @chip: NAND chip object
3527 * @retry_mode: the retry mode to use
3528 *
3529 * Some vendors supply a special command to shift the Vt threshold, to be used
3530 * when there are too many bitflips in a page (i.e., ECC error). After setting
3531 * a new threshold, the host should retry reading the page.
3532 */
3533static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3534{
3535 pr_debug("setting READ RETRY mode %d\n", retry_mode);
3536
3537 if (retry_mode >= chip->read_retries)
3538 return -EINVAL;
3539
3540 if (!chip->ops.setup_read_retry)
3541 return -EOPNOTSUPP;
3542
3543 return chip->ops.setup_read_retry(chip, retry_mode);
3544}
3545
3546static void nand_wait_readrdy(struct nand_chip *chip)
3547{
3548 const struct nand_interface_config *conf;
3549
3550 if (!(chip->options & NAND_NEED_READRDY))
3551 return;
3552
3553 conf = nand_get_interface_config(chip);
3554 WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3555}
3556
3557/**
3558 * nand_do_read_ops - [INTERN] Read data with ECC
3559 * @chip: NAND chip object
3560 * @from: offset to read from
3561 * @ops: oob ops structure
3562 *
3563 * Internal function. Called with chip held.
3564 */
3565static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3566 struct mtd_oob_ops *ops)
3567{
3568 int chipnr, page, realpage, col, bytes, aligned, oob_required;
3569 struct mtd_info *mtd = nand_to_mtd(chip);
3570 int ret = 0;
3571 uint32_t readlen = ops->len;
3572 uint32_t oobreadlen = ops->ooblen;
3573 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3574
3575 uint8_t *bufpoi, *oob, *buf;
3576 int use_bounce_buf;
3577 unsigned int max_bitflips = 0;
3578 int retry_mode = 0;
3579 bool ecc_fail = false;
3580
3581 /* Check if the region is secured */
3582 if (nand_region_is_secured(chip, offset: from, size: readlen))
3583 return -EIO;
3584
3585 chipnr = (int)(from >> chip->chip_shift);
3586 nand_select_target(chip, chipnr);
3587
3588 realpage = (int)(from >> chip->page_shift);
3589 page = realpage & chip->pagemask;
3590
3591 col = (int)(from & (mtd->writesize - 1));
3592
3593 buf = ops->datbuf;
3594 oob = ops->oobbuf;
3595 oob_required = oob ? 1 : 0;
3596
3597 if (likely(ops->mode != MTD_OPS_RAW))
3598 rawnand_enable_cont_reads(chip, page, readlen, col);
3599
3600 while (1) {
3601 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3602
3603 bytes = min(mtd->writesize - col, readlen);
3604 aligned = (bytes == mtd->writesize);
3605
3606 if (!aligned)
3607 use_bounce_buf = 1;
3608 else if (chip->options & NAND_USES_DMA)
3609 use_bounce_buf = !virt_addr_valid(buf) ||
3610 !IS_ALIGNED((unsigned long)buf,
3611 chip->buf_align);
3612 else
3613 use_bounce_buf = 0;
3614
3615 /* Is the current page in the buffer? */
3616 if (realpage != chip->pagecache.page || oob) {
3617 bufpoi = use_bounce_buf ? chip->data_buf : buf;
3618
3619 if (use_bounce_buf && aligned)
3620 pr_debug("%s: using read bounce buffer for buf@%p\n",
3621 __func__, buf);
3622
3623read_retry:
3624 /*
3625 * Now read the page into the buffer. Absent an error,
3626 * the read methods return max bitflips per ecc step.
3627 */
3628 if (unlikely(ops->mode == MTD_OPS_RAW))
3629 ret = chip->ecc.read_page_raw(chip, bufpoi,
3630 oob_required,
3631 page);
3632 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3633 !oob)
3634 ret = chip->ecc.read_subpage(chip, col, bytes,
3635 bufpoi, page);
3636 else
3637 ret = chip->ecc.read_page(chip, bufpoi,
3638 oob_required, page);
3639 if (ret < 0) {
3640 if (use_bounce_buf)
3641 /* Invalidate page cache */
3642 chip->pagecache.page = -1;
3643 break;
3644 }
3645
3646 /*
3647 * Copy back the data in the initial buffer when reading
3648 * partial pages or when a bounce buffer is required.
3649 */
3650 if (use_bounce_buf) {
3651 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3652 !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3653 (ops->mode != MTD_OPS_RAW)) {
3654 chip->pagecache.page = realpage;
3655 chip->pagecache.bitflips = ret;
3656 } else {
3657 /* Invalidate page cache */
3658 chip->pagecache.page = -1;
3659 }
3660 memcpy(buf, bufpoi + col, bytes);
3661 }
3662
3663 if (unlikely(oob)) {
3664 int toread = min(oobreadlen, max_oobsize);
3665
3666 if (toread) {
3667 oob = nand_transfer_oob(chip, oob, ops,
3668 len: toread);
3669 oobreadlen -= toread;
3670 }
3671 }
3672
3673 nand_wait_readrdy(chip);
3674
3675 if (mtd->ecc_stats.failed - ecc_stats.failed) {
3676 if (retry_mode + 1 < chip->read_retries) {
3677 retry_mode++;
3678 ret = nand_setup_read_retry(chip,
3679 retry_mode);
3680 if (ret < 0)
3681 break;
3682
3683 /* Reset ecc_stats; retry */
3684 mtd->ecc_stats = ecc_stats;
3685 goto read_retry;
3686 } else {
3687 /* No more retry modes; real failure */
3688 ecc_fail = true;
3689 }
3690 }
3691
3692 buf += bytes;
3693 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3694 } else {
3695 memcpy(buf, chip->data_buf + col, bytes);
3696 buf += bytes;
3697 max_bitflips = max_t(unsigned int, max_bitflips,
3698 chip->pagecache.bitflips);
3699
3700 rawnand_cont_read_skip_first_page(chip, page);
3701 }
3702
3703 readlen -= bytes;
3704
3705 /* Reset to retry mode 0 */
3706 if (retry_mode) {
3707 ret = nand_setup_read_retry(chip, retry_mode: 0);
3708 if (ret < 0)
3709 break;
3710 retry_mode = 0;
3711 }
3712
3713 if (!readlen)
3714 break;
3715
3716 /* For subsequent reads align to page boundary */
3717 col = 0;
3718 /* Increment page address */
3719 realpage++;
3720
3721 page = realpage & chip->pagemask;
3722 /* Check, if we cross a chip boundary */
3723 if (!page) {
3724 chipnr++;
3725 nand_deselect_target(chip);
3726 nand_select_target(chip, chipnr);
3727 }
3728 }
3729 nand_deselect_target(chip);
3730
3731 if (WARN_ON_ONCE(chip->cont_read.ongoing))
3732 chip->cont_read.ongoing = false;
3733
3734 ops->retlen = ops->len - (size_t) readlen;
3735 if (oob)
3736 ops->oobretlen = ops->ooblen - oobreadlen;
3737
3738 if (ret < 0)
3739 return ret;
3740
3741 if (ecc_fail)
3742 return -EBADMSG;
3743
3744 return max_bitflips;
3745}
3746
3747/**
3748 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3749 * @chip: nand chip info structure
3750 * @page: page number to read
3751 */
3752int nand_read_oob_std(struct nand_chip *chip, int page)
3753{
3754 struct mtd_info *mtd = nand_to_mtd(chip);
3755
3756 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3757}
3758EXPORT_SYMBOL(nand_read_oob_std);
3759
3760/**
3761 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3762 * with syndromes
3763 * @chip: nand chip info structure
3764 * @page: page number to read
3765 */
3766static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3767{
3768 struct mtd_info *mtd = nand_to_mtd(chip);
3769 int length = mtd->oobsize;
3770 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3771 int eccsize = chip->ecc.size;
3772 uint8_t *bufpoi = chip->oob_poi;
3773 int i, toread, sndrnd = 0, pos, ret;
3774
3775 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3776 if (ret)
3777 return ret;
3778
3779 for (i = 0; i < chip->ecc.steps; i++) {
3780 if (sndrnd) {
3781 int ret;
3782
3783 pos = eccsize + i * (eccsize + chunk);
3784 if (mtd->writesize > 512)
3785 ret = nand_change_read_column_op(chip, pos,
3786 NULL, 0,
3787 false);
3788 else
3789 ret = nand_read_page_op(chip, page, pos, NULL,
3790 0);
3791
3792 if (ret)
3793 return ret;
3794 } else
3795 sndrnd = 1;
3796 toread = min_t(int, length, chunk);
3797
3798 ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3799 if (ret)
3800 return ret;
3801
3802 bufpoi += toread;
3803 length -= toread;
3804 }
3805 if (length > 0) {
3806 ret = nand_read_data_op(chip, bufpoi, length, false, false);
3807 if (ret)
3808 return ret;
3809 }
3810
3811 return 0;
3812}
3813
3814/**
3815 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3816 * @chip: nand chip info structure
3817 * @page: page number to write
3818 */
3819int nand_write_oob_std(struct nand_chip *chip, int page)
3820{
3821 struct mtd_info *mtd = nand_to_mtd(chip);
3822
3823 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3824 mtd->oobsize);
3825}
3826EXPORT_SYMBOL(nand_write_oob_std);
3827
3828/**
3829 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3830 * with syndrome - only for large page flash
3831 * @chip: nand chip info structure
3832 * @page: page number to write
3833 */
3834static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3835{
3836 struct mtd_info *mtd = nand_to_mtd(chip);
3837 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3838 int eccsize = chip->ecc.size, length = mtd->oobsize;
3839 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3840 const uint8_t *bufpoi = chip->oob_poi;
3841
3842 /*
3843 * data-ecc-data-ecc ... ecc-oob
3844 * or
3845 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3846 */
3847 if (!chip->ecc.prepad && !chip->ecc.postpad) {
3848 pos = steps * (eccsize + chunk);
3849 steps = 0;
3850 } else
3851 pos = eccsize;
3852
3853 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3854 if (ret)
3855 return ret;
3856
3857 for (i = 0; i < steps; i++) {
3858 if (sndcmd) {
3859 if (mtd->writesize <= 512) {
3860 uint32_t fill = 0xFFFFFFFF;
3861
3862 len = eccsize;
3863 while (len > 0) {
3864 int num = min_t(int, len, 4);
3865
3866 ret = nand_write_data_op(chip, &fill,
3867 num, false);
3868 if (ret)
3869 return ret;
3870
3871 len -= num;
3872 }
3873 } else {
3874 pos = eccsize + i * (eccsize + chunk);
3875 ret = nand_change_write_column_op(chip, pos,
3876 NULL, 0,
3877 false);
3878 if (ret)
3879 return ret;
3880 }
3881 } else
3882 sndcmd = 1;
3883 len = min_t(int, length, chunk);
3884
3885 ret = nand_write_data_op(chip, bufpoi, len, false);
3886 if (ret)
3887 return ret;
3888
3889 bufpoi += len;
3890 length -= len;
3891 }
3892 if (length > 0) {
3893 ret = nand_write_data_op(chip, bufpoi, length, false);
3894 if (ret)
3895 return ret;
3896 }
3897
3898 return nand_prog_page_end_op(chip);
3899}
3900
3901/**
3902 * nand_do_read_oob - [INTERN] NAND read out-of-band
3903 * @chip: NAND chip object
3904 * @from: offset to read from
3905 * @ops: oob operations description structure
3906 *
3907 * NAND read out-of-band data from the spare area.
3908 */
3909static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3910 struct mtd_oob_ops *ops)
3911{
3912 struct mtd_info *mtd = nand_to_mtd(chip);
3913 unsigned int max_bitflips = 0;
3914 int page, realpage, chipnr;
3915 struct mtd_ecc_stats stats;
3916 int readlen = ops->ooblen;
3917 int len;
3918 uint8_t *buf = ops->oobbuf;
3919 int ret = 0;
3920
3921 pr_debug("%s: from = 0x%08Lx, len = %i\n",
3922 __func__, (unsigned long long)from, readlen);
3923
3924 /* Check if the region is secured */
3925 if (nand_region_is_secured(chip, offset: from, size: readlen))
3926 return -EIO;
3927
3928 stats = mtd->ecc_stats;
3929
3930 len = mtd_oobavail(mtd, ops);
3931
3932 chipnr = (int)(from >> chip->chip_shift);
3933 nand_select_target(chip, chipnr);
3934
3935 /* Shift to get page */
3936 realpage = (int)(from >> chip->page_shift);
3937 page = realpage & chip->pagemask;
3938
3939 while (1) {
3940 if (ops->mode == MTD_OPS_RAW)
3941 ret = chip->ecc.read_oob_raw(chip, page);
3942 else
3943 ret = chip->ecc.read_oob(chip, page);
3944
3945 if (ret < 0)
3946 break;
3947
3948 len = min(len, readlen);
3949 buf = nand_transfer_oob(chip, oob: buf, ops, len);
3950
3951 nand_wait_readrdy(chip);
3952
3953 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3954
3955 readlen -= len;
3956 if (!readlen)
3957 break;
3958
3959 /* Increment page address */
3960 realpage++;
3961
3962 page = realpage & chip->pagemask;
3963 /* Check, if we cross a chip boundary */
3964 if (!page) {
3965 chipnr++;
3966 nand_deselect_target(chip);
3967 nand_select_target(chip, chipnr);
3968 }
3969 }
3970 nand_deselect_target(chip);
3971
3972 ops->oobretlen = ops->ooblen - readlen;
3973
3974 if (ret < 0)
3975 return ret;
3976
3977 if (mtd->ecc_stats.failed - stats.failed)
3978 return -EBADMSG;
3979
3980 return max_bitflips;
3981}
3982
3983/**
3984 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3985 * @mtd: MTD device structure
3986 * @from: offset to read from
3987 * @ops: oob operation description structure
3988 *
3989 * NAND read data and/or out-of-band data.
3990 */
3991static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3992 struct mtd_oob_ops *ops)
3993{
3994 struct nand_chip *chip = mtd_to_nand(mtd);
3995 struct mtd_ecc_stats old_stats;
3996 int ret;
3997
3998 ops->retlen = 0;
3999
4000 if (ops->mode != MTD_OPS_PLACE_OOB &&
4001 ops->mode != MTD_OPS_AUTO_OOB &&
4002 ops->mode != MTD_OPS_RAW)
4003 return -ENOTSUPP;
4004
4005 nand_get_device(chip);
4006
4007 old_stats = mtd->ecc_stats;
4008
4009 if (!ops->datbuf)
4010 ret = nand_do_read_oob(chip, from, ops);
4011 else
4012 ret = nand_do_read_ops(chip, from, ops);
4013
4014 if (ops->stats) {
4015 ops->stats->uncorrectable_errors +=
4016 mtd->ecc_stats.failed - old_stats.failed;
4017 ops->stats->corrected_bitflips +=
4018 mtd->ecc_stats.corrected - old_stats.corrected;
4019 }
4020
4021 nand_release_device(chip);
4022 return ret;
4023}
4024
4025/**
4026 * nand_write_page_raw_notsupp - dummy raw page write function
4027 * @chip: nand chip info structure
4028 * @buf: data buffer
4029 * @oob_required: must write chip->oob_poi to OOB
4030 * @page: page number to write
4031 *
4032 * Returns -ENOTSUPP unconditionally.
4033 */
4034int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4035 int oob_required, int page)
4036{
4037 return -ENOTSUPP;
4038}
4039
4040/**
4041 * nand_write_page_raw - [INTERN] raw page write function
4042 * @chip: nand chip info structure
4043 * @buf: data buffer
4044 * @oob_required: must write chip->oob_poi to OOB
4045 * @page: page number to write
4046 *
4047 * Not for syndrome calculating ECC controllers, which use a special oob layout.
4048 */
4049int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4050 int oob_required, int page)
4051{
4052 struct mtd_info *mtd = nand_to_mtd(chip);
4053 int ret;
4054
4055 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4056 if (ret)
4057 return ret;
4058
4059 if (oob_required) {
4060 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4061 false);
4062 if (ret)
4063 return ret;
4064 }
4065
4066 return nand_prog_page_end_op(chip);
4067}
4068EXPORT_SYMBOL(nand_write_page_raw);
4069
4070/**
4071 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4072 * @chip: NAND chip info structure
4073 * @buf: data buffer to write
4074 * @oob_required: must write chip->oob_poi to OOB
4075 * @page: page number to write
4076 *
4077 * This is a raw page write, ie. without any error detection/correction.
4078 * Monolithic means we are requesting all the relevant data (main plus
4079 * eventually OOB) to be sent over the bus and effectively programmed
4080 * into the NAND chip arrays in a single operation. This is an
4081 * alternative to nand_write_page_raw(), which first sends the main
4082 * data, then eventually send the OOB data by latching more data
4083 * cycles on the NAND bus, and finally sends the program command to
4084 * synchronyze the NAND chip cache.
4085 */
4086int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4087 int oob_required, int page)
4088{
4089 struct mtd_info *mtd = nand_to_mtd(chip);
4090 unsigned int size = mtd->writesize;
4091 u8 *write_buf = (u8 *)buf;
4092
4093 if (oob_required) {
4094 size += mtd->oobsize;
4095
4096 if (buf != chip->data_buf) {
4097 write_buf = nand_get_data_buf(chip);
4098 memcpy(write_buf, buf, mtd->writesize);
4099 }
4100 }
4101
4102 return nand_prog_page_op(chip, page, 0, write_buf, size);
4103}
4104EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4105
4106/**
4107 * nand_write_page_raw_syndrome - [INTERN] raw page write function
4108 * @chip: nand chip info structure
4109 * @buf: data buffer
4110 * @oob_required: must write chip->oob_poi to OOB
4111 * @page: page number to write
4112 *
4113 * We need a special oob layout and handling even when ECC isn't checked.
4114 */
4115static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4116 const uint8_t *buf, int oob_required,
4117 int page)
4118{
4119 struct mtd_info *mtd = nand_to_mtd(chip);
4120 int eccsize = chip->ecc.size;
4121 int eccbytes = chip->ecc.bytes;
4122 uint8_t *oob = chip->oob_poi;
4123 int steps, size, ret;
4124
4125 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4126 if (ret)
4127 return ret;
4128
4129 for (steps = chip->ecc.steps; steps > 0; steps--) {
4130 ret = nand_write_data_op(chip, buf, eccsize, false);
4131 if (ret)
4132 return ret;
4133
4134 buf += eccsize;
4135
4136 if (chip->ecc.prepad) {
4137 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4138 false);
4139 if (ret)
4140 return ret;
4141
4142 oob += chip->ecc.prepad;
4143 }
4144
4145 ret = nand_write_data_op(chip, oob, eccbytes, false);
4146 if (ret)
4147 return ret;
4148
4149 oob += eccbytes;
4150
4151 if (chip->ecc.postpad) {
4152 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4153 false);
4154 if (ret)
4155 return ret;
4156
4157 oob += chip->ecc.postpad;
4158 }
4159 }
4160
4161 size = mtd->oobsize - (oob - chip->oob_poi);
4162 if (size) {
4163 ret = nand_write_data_op(chip, oob, size, false);
4164 if (ret)
4165 return ret;
4166 }
4167
4168 return nand_prog_page_end_op(chip);
4169}
4170/**
4171 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4172 * @chip: nand chip info structure
4173 * @buf: data buffer
4174 * @oob_required: must write chip->oob_poi to OOB
4175 * @page: page number to write
4176 */
4177static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4178 int oob_required, int page)
4179{
4180 struct mtd_info *mtd = nand_to_mtd(chip);
4181 int i, eccsize = chip->ecc.size, ret;
4182 int eccbytes = chip->ecc.bytes;
4183 int eccsteps = chip->ecc.steps;
4184 uint8_t *ecc_calc = chip->ecc.calc_buf;
4185 const uint8_t *p = buf;
4186
4187 /* Software ECC calculation */
4188 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4189 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4190
4191 ret = mtd_ooblayout_set_eccbytes(mtd, eccbuf: ecc_calc, oobbuf: chip->oob_poi, start: 0,
4192 nbytes: chip->ecc.total);
4193 if (ret)
4194 return ret;
4195
4196 return chip->ecc.write_page_raw(chip, buf, 1, page);
4197}
4198
4199/**
4200 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4201 * @chip: nand chip info structure
4202 * @buf: data buffer
4203 * @oob_required: must write chip->oob_poi to OOB
4204 * @page: page number to write
4205 */
4206static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4207 int oob_required, int page)
4208{
4209 struct mtd_info *mtd = nand_to_mtd(chip);
4210 int i, eccsize = chip->ecc.size, ret;
4211 int eccbytes = chip->ecc.bytes;
4212 int eccsteps = chip->ecc.steps;
4213 uint8_t *ecc_calc = chip->ecc.calc_buf;
4214 const uint8_t *p = buf;
4215
4216 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4217 if (ret)
4218 return ret;
4219
4220 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4221 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4222
4223 ret = nand_write_data_op(chip, p, eccsize, false);
4224 if (ret)
4225 return ret;
4226
4227 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4228 }
4229
4230 ret = mtd_ooblayout_set_eccbytes(mtd, eccbuf: ecc_calc, oobbuf: chip->oob_poi, start: 0,
4231 nbytes: chip->ecc.total);
4232 if (ret)
4233 return ret;
4234
4235 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4236 if (ret)
4237 return ret;
4238
4239 return nand_prog_page_end_op(chip);
4240}
4241
4242
4243/**
4244 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4245 * @chip: nand chip info structure
4246 * @offset: column address of subpage within the page
4247 * @data_len: data length
4248 * @buf: data buffer
4249 * @oob_required: must write chip->oob_poi to OOB
4250 * @page: page number to write
4251 */
4252static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4253 uint32_t data_len, const uint8_t *buf,
4254 int oob_required, int page)
4255{
4256 struct mtd_info *mtd = nand_to_mtd(chip);
4257 uint8_t *oob_buf = chip->oob_poi;
4258 uint8_t *ecc_calc = chip->ecc.calc_buf;
4259 int ecc_size = chip->ecc.size;
4260 int ecc_bytes = chip->ecc.bytes;
4261 int ecc_steps = chip->ecc.steps;
4262 uint32_t start_step = offset / ecc_size;
4263 uint32_t end_step = (offset + data_len - 1) / ecc_size;
4264 int oob_bytes = mtd->oobsize / ecc_steps;
4265 int step, ret;
4266
4267 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4268 if (ret)
4269 return ret;
4270
4271 for (step = 0; step < ecc_steps; step++) {
4272 /* configure controller for WRITE access */
4273 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4274
4275 /* write data (untouched subpages already masked by 0xFF) */
4276 ret = nand_write_data_op(chip, buf, ecc_size, false);
4277 if (ret)
4278 return ret;
4279
4280 /* mask ECC of un-touched subpages by padding 0xFF */
4281 if ((step < start_step) || (step > end_step))
4282 memset(ecc_calc, 0xff, ecc_bytes);
4283 else
4284 chip->ecc.calculate(chip, buf, ecc_calc);
4285
4286 /* mask OOB of un-touched subpages by padding 0xFF */
4287 /* if oob_required, preserve OOB metadata of written subpage */
4288 if (!oob_required || (step < start_step) || (step > end_step))
4289 memset(oob_buf, 0xff, oob_bytes);
4290
4291 buf += ecc_size;
4292 ecc_calc += ecc_bytes;
4293 oob_buf += oob_bytes;
4294 }
4295
4296 /* copy calculated ECC for whole page to chip->buffer->oob */
4297 /* this include masked-value(0xFF) for unwritten subpages */
4298 ecc_calc = chip->ecc.calc_buf;
4299 ret = mtd_ooblayout_set_eccbytes(mtd, eccbuf: ecc_calc, oobbuf: chip->oob_poi, start: 0,
4300 nbytes: chip->ecc.total);
4301 if (ret)
4302 return ret;
4303
4304 /* write OOB buffer to NAND device */
4305 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4306 if (ret)
4307 return ret;
4308
4309 return nand_prog_page_end_op(chip);
4310}
4311
4312
4313/**
4314 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4315 * @chip: nand chip info structure
4316 * @buf: data buffer
4317 * @oob_required: must write chip->oob_poi to OOB
4318 * @page: page number to write
4319 *
4320 * The hw generator calculates the error syndrome automatically. Therefore we
4321 * need a special oob layout and handling.
4322 */
4323static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4324 int oob_required, int page)
4325{
4326 struct mtd_info *mtd = nand_to_mtd(chip);
4327 int i, eccsize = chip->ecc.size;
4328 int eccbytes = chip->ecc.bytes;
4329 int eccsteps = chip->ecc.steps;
4330 const uint8_t *p = buf;
4331 uint8_t *oob = chip->oob_poi;
4332 int ret;
4333
4334 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4335 if (ret)
4336 return ret;
4337
4338 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4339 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4340
4341 ret = nand_write_data_op(chip, p, eccsize, false);
4342 if (ret)
4343 return ret;
4344
4345 if (chip->ecc.prepad) {
4346 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4347 false);
4348 if (ret)
4349 return ret;
4350
4351 oob += chip->ecc.prepad;
4352 }
4353
4354 chip->ecc.calculate(chip, p, oob);
4355
4356 ret = nand_write_data_op(chip, oob, eccbytes, false);
4357 if (ret)
4358 return ret;
4359
4360 oob += eccbytes;
4361
4362 if (chip->ecc.postpad) {
4363 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4364 false);
4365 if (ret)
4366 return ret;
4367
4368 oob += chip->ecc.postpad;
4369 }
4370 }
4371
4372 /* Calculate remaining oob bytes */
4373 i = mtd->oobsize - (oob - chip->oob_poi);
4374 if (i) {
4375 ret = nand_write_data_op(chip, oob, i, false);
4376 if (ret)
4377 return ret;
4378 }
4379
4380 return nand_prog_page_end_op(chip);
4381}
4382
4383/**
4384 * nand_write_page - write one page
4385 * @chip: NAND chip descriptor
4386 * @offset: address offset within the page
4387 * @data_len: length of actual data to be written
4388 * @buf: the data to write
4389 * @oob_required: must write chip->oob_poi to OOB
4390 * @page: page number to write
4391 * @raw: use _raw version of write_page
4392 */
4393static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4394 int data_len, const uint8_t *buf, int oob_required,
4395 int page, int raw)
4396{
4397 struct mtd_info *mtd = nand_to_mtd(chip);
4398 int status, subpage;
4399
4400 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4401 chip->ecc.write_subpage)
4402 subpage = offset || (data_len < mtd->writesize);
4403 else
4404 subpage = 0;
4405
4406 if (unlikely(raw))
4407 status = chip->ecc.write_page_raw(chip, buf, oob_required,
4408 page);
4409 else if (subpage)
4410 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4411 oob_required, page);
4412 else
4413 status = chip->ecc.write_page(chip, buf, oob_required, page);
4414
4415 if (status < 0)
4416 return status;
4417
4418 return 0;
4419}
4420
4421#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
4422
4423/**
4424 * nand_do_write_ops - [INTERN] NAND write with ECC
4425 * @chip: NAND chip object
4426 * @to: offset to write to
4427 * @ops: oob operations description structure
4428 *
4429 * NAND write with ECC.
4430 */
4431static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4432 struct mtd_oob_ops *ops)
4433{
4434 struct mtd_info *mtd = nand_to_mtd(chip);
4435 int chipnr, realpage, page, column;
4436 uint32_t writelen = ops->len;
4437
4438 uint32_t oobwritelen = ops->ooblen;
4439 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4440
4441 uint8_t *oob = ops->oobbuf;
4442 uint8_t *buf = ops->datbuf;
4443 int ret;
4444 int oob_required = oob ? 1 : 0;
4445
4446 ops->retlen = 0;
4447 if (!writelen)
4448 return 0;
4449
4450 /* Reject writes, which are not page aligned */
4451 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4452 pr_notice("%s: attempt to write non page aligned data\n",
4453 __func__);
4454 return -EINVAL;
4455 }
4456
4457 /* Check if the region is secured */
4458 if (nand_region_is_secured(chip, offset: to, size: writelen))
4459 return -EIO;
4460
4461 column = to & (mtd->writesize - 1);
4462
4463 chipnr = (int)(to >> chip->chip_shift);
4464 nand_select_target(chip, chipnr);
4465
4466 /* Check, if it is write protected */
4467 if (nand_check_wp(chip)) {
4468 ret = -EIO;
4469 goto err_out;
4470 }
4471
4472 realpage = (int)(to >> chip->page_shift);
4473 page = realpage & chip->pagemask;
4474
4475 /* Invalidate the page cache, when we write to the cached page */
4476 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4477 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4478 chip->pagecache.page = -1;
4479
4480 /* Don't allow multipage oob writes with offset */
4481 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4482 ret = -EINVAL;
4483 goto err_out;
4484 }
4485
4486 while (1) {
4487 int bytes = mtd->writesize;
4488 uint8_t *wbuf = buf;
4489 int use_bounce_buf;
4490 int part_pagewr = (column || writelen < mtd->writesize);
4491
4492 if (part_pagewr)
4493 use_bounce_buf = 1;
4494 else if (chip->options & NAND_USES_DMA)
4495 use_bounce_buf = !virt_addr_valid(buf) ||
4496 !IS_ALIGNED((unsigned long)buf,
4497 chip->buf_align);
4498 else
4499 use_bounce_buf = 0;
4500
4501 /*
4502 * Copy the data from the initial buffer when doing partial page
4503 * writes or when a bounce buffer is required.
4504 */
4505 if (use_bounce_buf) {
4506 pr_debug("%s: using write bounce buffer for buf@%p\n",
4507 __func__, buf);
4508 if (part_pagewr)
4509 bytes = min_t(int, bytes - column, writelen);
4510 wbuf = nand_get_data_buf(chip);
4511 memset(wbuf, 0xff, mtd->writesize);
4512 memcpy(&wbuf[column], buf, bytes);
4513 }
4514
4515 if (unlikely(oob)) {
4516 size_t len = min(oobwritelen, oobmaxlen);
4517 oob = nand_fill_oob(chip, oob, len, ops);
4518 oobwritelen -= len;
4519 } else {
4520 /* We still need to erase leftover OOB data */
4521 memset(chip->oob_poi, 0xff, mtd->oobsize);
4522 }
4523
4524 ret = nand_write_page(chip, offset: column, data_len: bytes, buf: wbuf,
4525 oob_required, page,
4526 raw: (ops->mode == MTD_OPS_RAW));
4527 if (ret)
4528 break;
4529
4530 writelen -= bytes;
4531 if (!writelen)
4532 break;
4533
4534 column = 0;
4535 buf += bytes;
4536 realpage++;
4537
4538 page = realpage & chip->pagemask;
4539 /* Check, if we cross a chip boundary */
4540 if (!page) {
4541 chipnr++;
4542 nand_deselect_target(chip);
4543 nand_select_target(chip, chipnr);
4544 }
4545 }
4546
4547 ops->retlen = ops->len - writelen;
4548 if (unlikely(oob))
4549 ops->oobretlen = ops->ooblen;
4550
4551err_out:
4552 nand_deselect_target(chip);
4553 return ret;
4554}
4555
4556/**
4557 * panic_nand_write - [MTD Interface] NAND write with ECC
4558 * @mtd: MTD device structure
4559 * @to: offset to write to
4560 * @len: number of bytes to write
4561 * @retlen: pointer to variable to store the number of written bytes
4562 * @buf: the data to write
4563 *
4564 * NAND write with ECC. Used when performing writes in interrupt context, this
4565 * may for example be called by mtdoops when writing an oops while in panic.
4566 */
4567static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4568 size_t *retlen, const uint8_t *buf)
4569{
4570 struct nand_chip *chip = mtd_to_nand(mtd);
4571 int chipnr = (int)(to >> chip->chip_shift);
4572 struct mtd_oob_ops ops;
4573 int ret;
4574
4575 nand_select_target(chip, chipnr);
4576
4577 /* Wait for the device to get ready */
4578 panic_nand_wait(chip, timeo: 400);
4579
4580 memset(&ops, 0, sizeof(ops));
4581 ops.len = len;
4582 ops.datbuf = (uint8_t *)buf;
4583 ops.mode = MTD_OPS_PLACE_OOB;
4584
4585 ret = nand_do_write_ops(chip, to, ops: &ops);
4586
4587 *retlen = ops.retlen;
4588 return ret;
4589}
4590
4591/**
4592 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4593 * @mtd: MTD device structure
4594 * @to: offset to write to
4595 * @ops: oob operation description structure
4596 */
4597static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4598 struct mtd_oob_ops *ops)
4599{
4600 struct nand_chip *chip = mtd_to_nand(mtd);
4601 int ret = 0;
4602
4603 ops->retlen = 0;
4604
4605 nand_get_device(chip);
4606
4607 switch (ops->mode) {
4608 case MTD_OPS_PLACE_OOB:
4609 case MTD_OPS_AUTO_OOB:
4610 case MTD_OPS_RAW:
4611 break;
4612
4613 default:
4614 goto out;
4615 }
4616
4617 if (!ops->datbuf)
4618 ret = nand_do_write_oob(chip, to, ops);
4619 else
4620 ret = nand_do_write_ops(chip, to, ops);
4621
4622out:
4623 nand_release_device(chip);
4624 return ret;
4625}
4626
4627/**
4628 * nand_erase - [MTD Interface] erase block(s)
4629 * @mtd: MTD device structure
4630 * @instr: erase instruction
4631 *
4632 * Erase one ore more blocks.
4633 */
4634static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4635{
4636 return nand_erase_nand(chip: mtd_to_nand(mtd), instr, allowbbt: 0);
4637}
4638
4639/**
4640 * nand_erase_nand - [INTERN] erase block(s)
4641 * @chip: NAND chip object
4642 * @instr: erase instruction
4643 * @allowbbt: allow erasing the bbt area
4644 *
4645 * Erase one ore more blocks.
4646 */
4647int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4648 int allowbbt)
4649{
4650 int page, pages_per_block, ret, chipnr;
4651 loff_t len;
4652
4653 pr_debug("%s: start = 0x%012llx, len = %llu\n",
4654 __func__, (unsigned long long)instr->addr,
4655 (unsigned long long)instr->len);
4656
4657 if (check_offs_len(chip, ofs: instr->addr, len: instr->len))
4658 return -EINVAL;
4659
4660 /* Check if the region is secured */
4661 if (nand_region_is_secured(chip, offset: instr->addr, size: instr->len))
4662 return -EIO;
4663
4664 /* Grab the lock and see if the device is available */
4665 nand_get_device(chip);
4666
4667 /* Shift to get first page */
4668 page = (int)(instr->addr >> chip->page_shift);
4669 chipnr = (int)(instr->addr >> chip->chip_shift);
4670
4671 /* Calculate pages in each block */
4672 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4673
4674 /* Select the NAND device */
4675 nand_select_target(chip, chipnr);
4676
4677 /* Check, if it is write protected */
4678 if (nand_check_wp(chip)) {
4679 pr_debug("%s: device is write protected!\n",
4680 __func__);
4681 ret = -EIO;
4682 goto erase_exit;
4683 }
4684
4685 /* Loop through the pages */
4686 len = instr->len;
4687
4688 while (len) {
4689 loff_t ofs = (loff_t)page << chip->page_shift;
4690
4691 /* Check if we have a bad block, we do not erase bad blocks! */
4692 if (nand_block_checkbad(chip, ofs: ((loff_t) page) <<
4693 chip->page_shift, allowbbt)) {
4694 pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4695 __func__, (unsigned long long)ofs);
4696 ret = -EIO;
4697 goto erase_exit;
4698 }
4699
4700 /*
4701 * Invalidate the page cache, if we erase the block which
4702 * contains the current cached page.
4703 */
4704 if (page <= chip->pagecache.page && chip->pagecache.page <
4705 (page + pages_per_block))
4706 chip->pagecache.page = -1;
4707
4708 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4709 (chip->phys_erase_shift - chip->page_shift));
4710 if (ret) {
4711 pr_debug("%s: failed erase, page 0x%08x\n",
4712 __func__, page);
4713 instr->fail_addr = ofs;
4714 goto erase_exit;
4715 }
4716
4717 /* Increment page address and decrement length */
4718 len -= (1ULL << chip->phys_erase_shift);
4719 page += pages_per_block;
4720
4721 /* Check, if we cross a chip boundary */
4722 if (len && !(page & chip->pagemask)) {
4723 chipnr++;
4724 nand_deselect_target(chip);
4725 nand_select_target(chip, chipnr);
4726 }
4727 }
4728
4729 ret = 0;
4730erase_exit:
4731
4732 /* Deselect and wake up anyone waiting on the device */
4733 nand_deselect_target(chip);
4734 nand_release_device(chip);
4735
4736 /* Return more or less happy */
4737 return ret;
4738}
4739
4740/**
4741 * nand_sync - [MTD Interface] sync
4742 * @mtd: MTD device structure
4743 *
4744 * Sync is actually a wait for chip ready function.
4745 */
4746static void nand_sync(struct mtd_info *mtd)
4747{
4748 struct nand_chip *chip = mtd_to_nand(mtd);
4749
4750 pr_debug("%s: called\n", __func__);
4751
4752 /* Grab the lock and see if the device is available */
4753 nand_get_device(chip);
4754 /* Release it and go back */
4755 nand_release_device(chip);
4756}
4757
4758/**
4759 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4760 * @mtd: MTD device structure
4761 * @offs: offset relative to mtd start
4762 */
4763static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4764{
4765 struct nand_chip *chip = mtd_to_nand(mtd);
4766 int chipnr = (int)(offs >> chip->chip_shift);
4767 int ret;
4768
4769 /* Select the NAND device */
4770 nand_get_device(chip);
4771
4772 nand_select_target(chip, chipnr);
4773
4774 ret = nand_block_checkbad(chip, ofs: offs, allowbbt: 0);
4775
4776 nand_deselect_target(chip);
4777 nand_release_device(chip);
4778
4779 return ret;
4780}
4781
4782/**
4783 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4784 * @mtd: MTD device structure
4785 * @ofs: offset relative to mtd start
4786 */
4787static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4788{
4789 int ret;
4790
4791 ret = nand_block_isbad(mtd, offs: ofs);
4792 if (ret) {
4793 /* If it was bad already, return success and do nothing */
4794 if (ret > 0)
4795 return 0;
4796 return ret;
4797 }
4798
4799 return nand_block_markbad_lowlevel(chip: mtd_to_nand(mtd), ofs);
4800}
4801
4802/**
4803 * nand_suspend - [MTD Interface] Suspend the NAND flash
4804 * @mtd: MTD device structure
4805 *
4806 * Returns 0 for success or negative error code otherwise.
4807 */
4808static int nand_suspend(struct mtd_info *mtd)
4809{
4810 struct nand_chip *chip = mtd_to_nand(mtd);
4811 int ret = 0;
4812
4813 mutex_lock(&chip->lock);
4814 if (chip->ops.suspend)
4815 ret = chip->ops.suspend(chip);
4816 if (!ret)
4817 chip->suspended = 1;
4818 mutex_unlock(lock: &chip->lock);
4819
4820 return ret;
4821}
4822
4823/**
4824 * nand_resume - [MTD Interface] Resume the NAND flash
4825 * @mtd: MTD device structure
4826 */
4827static void nand_resume(struct mtd_info *mtd)
4828{
4829 struct nand_chip *chip = mtd_to_nand(mtd);
4830
4831 mutex_lock(&chip->lock);
4832 if (chip->suspended) {
4833 if (chip->ops.resume)
4834 chip->ops.resume(chip);
4835 chip->suspended = 0;
4836 } else {
4837 pr_err("%s called for a chip which is not in suspended state\n",
4838 __func__);
4839 }
4840 mutex_unlock(lock: &chip->lock);
4841
4842 wake_up_all(&chip->resume_wq);
4843}
4844
4845/**
4846 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4847 * prevent further operations
4848 * @mtd: MTD device structure
4849 */
4850static void nand_shutdown(struct mtd_info *mtd)
4851{
4852 nand_suspend(mtd);
4853}
4854
4855/**
4856 * nand_lock - [MTD Interface] Lock the NAND flash
4857 * @mtd: MTD device structure
4858 * @ofs: offset byte address
4859 * @len: number of bytes to lock (must be a multiple of block/page size)
4860 */
4861static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4862{
4863 struct nand_chip *chip = mtd_to_nand(mtd);
4864
4865 if (!chip->ops.lock_area)
4866 return -ENOTSUPP;
4867
4868 return chip->ops.lock_area(chip, ofs, len);
4869}
4870
4871/**
4872 * nand_unlock - [MTD Interface] Unlock the NAND flash
4873 * @mtd: MTD device structure
4874 * @ofs: offset byte address
4875 * @len: number of bytes to unlock (must be a multiple of block/page size)
4876 */
4877static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4878{
4879 struct nand_chip *chip = mtd_to_nand(mtd);
4880
4881 if (!chip->ops.unlock_area)
4882 return -ENOTSUPP;
4883
4884 return chip->ops.unlock_area(chip, ofs, len);
4885}
4886
4887/* Set default functions */
4888static void nand_set_defaults(struct nand_chip *chip)
4889{
4890 /* If no controller is provided, use the dummy, legacy one. */
4891 if (!chip->controller) {
4892 chip->controller = &chip->legacy.dummy_controller;
4893 nand_controller_init(nfc: chip->controller);
4894 }
4895
4896 nand_legacy_set_defaults(chip);
4897
4898 if (!chip->buf_align)
4899 chip->buf_align = 1;
4900}
4901
4902/* Sanitize ONFI strings so we can safely print them */
4903void sanitize_string(uint8_t *s, size_t len)
4904{
4905 ssize_t i;
4906
4907 /* Null terminate */
4908 s[len - 1] = 0;
4909
4910 /* Remove non printable chars */
4911 for (i = 0; i < len - 1; i++) {
4912 if (s[i] < ' ' || s[i] > 127)
4913 s[i] = '?';
4914 }
4915
4916 /* Remove trailing spaces */
4917 strim(s);
4918}
4919
4920/*
4921 * nand_id_has_period - Check if an ID string has a given wraparound period
4922 * @id_data: the ID string
4923 * @arrlen: the length of the @id_data array
4924 * @period: the period of repitition
4925 *
4926 * Check if an ID string is repeated within a given sequence of bytes at
4927 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4928 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4929 * if the repetition has a period of @period; otherwise, returns zero.
4930 */
4931static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4932{
4933 int i, j;
4934 for (i = 0; i < period; i++)
4935 for (j = i + period; j < arrlen; j += period)
4936 if (id_data[i] != id_data[j])
4937 return 0;
4938 return 1;
4939}
4940
4941/*
4942 * nand_id_len - Get the length of an ID string returned by CMD_READID
4943 * @id_data: the ID string
4944 * @arrlen: the length of the @id_data array
4945
4946 * Returns the length of the ID string, according to known wraparound/trailing
4947 * zero patterns. If no pattern exists, returns the length of the array.
4948 */
4949static int nand_id_len(u8 *id_data, int arrlen)
4950{
4951 int last_nonzero, period;
4952
4953 /* Find last non-zero byte */
4954 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4955 if (id_data[last_nonzero])
4956 break;
4957
4958 /* All zeros */
4959 if (last_nonzero < 0)
4960 return 0;
4961
4962 /* Calculate wraparound period */
4963 for (period = 1; period < arrlen; period++)
4964 if (nand_id_has_period(id_data, arrlen, period))
4965 break;
4966
4967 /* There's a repeated pattern */
4968 if (period < arrlen)
4969 return period;
4970
4971 /* There are trailing zeros */
4972 if (last_nonzero < arrlen - 1)
4973 return last_nonzero + 1;
4974
4975 /* No pattern detected */
4976 return arrlen;
4977}
4978
4979/* Extract the bits of per cell from the 3rd byte of the extended ID */
4980static int nand_get_bits_per_cell(u8 cellinfo)
4981{
4982 int bits;
4983
4984 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4985 bits >>= NAND_CI_CELLTYPE_SHIFT;
4986 return bits + 1;
4987}
4988
4989/*
4990 * Many new NAND share similar device ID codes, which represent the size of the
4991 * chip. The rest of the parameters must be decoded according to generic or
4992 * manufacturer-specific "extended ID" decoding patterns.
4993 */
4994void nand_decode_ext_id(struct nand_chip *chip)
4995{
4996 struct nand_memory_organization *memorg;
4997 struct mtd_info *mtd = nand_to_mtd(chip);
4998 int extid;
4999 u8 *id_data = chip->id.data;
5000
5001 memorg = nanddev_get_memorg(nand: &chip->base);
5002
5003 /* The 3rd id byte holds MLC / multichip data */
5004 memorg->bits_per_cell = nand_get_bits_per_cell(cellinfo: id_data[2]);
5005 /* The 4th id byte is the important one */
5006 extid = id_data[3];
5007
5008 /* Calc pagesize */
5009 memorg->pagesize = 1024 << (extid & 0x03);
5010 mtd->writesize = memorg->pagesize;
5011 extid >>= 2;
5012 /* Calc oobsize */
5013 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5014 mtd->oobsize = memorg->oobsize;
5015 extid >>= 2;
5016 /* Calc blocksize. Blocksize is multiples of 64KiB */
5017 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
5018 memorg->pagesize;
5019 mtd->erasesize = (64 * 1024) << (extid & 0x03);
5020 extid >>= 2;
5021 /* Get buswidth information */
5022 if (extid & 0x1)
5023 chip->options |= NAND_BUSWIDTH_16;
5024}
5025EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5026
5027/*
5028 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5029 * decodes a matching ID table entry and assigns the MTD size parameters for
5030 * the chip.
5031 */
5032static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5033{
5034 struct mtd_info *mtd = nand_to_mtd(chip);
5035 struct nand_memory_organization *memorg;
5036
5037 memorg = nanddev_get_memorg(nand: &chip->base);
5038
5039 memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5040 mtd->erasesize = type->erasesize;
5041 memorg->pagesize = type->pagesize;
5042 mtd->writesize = memorg->pagesize;
5043 memorg->oobsize = memorg->pagesize / 32;
5044 mtd->oobsize = memorg->oobsize;
5045
5046 /* All legacy ID NAND are small-page, SLC */
5047 memorg->bits_per_cell = 1;
5048}
5049
5050/*
5051 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5052 * heuristic patterns using various detected parameters (e.g., manufacturer,
5053 * page size, cell-type information).
5054 */
5055static void nand_decode_bbm_options(struct nand_chip *chip)
5056{
5057 struct mtd_info *mtd = nand_to_mtd(chip);
5058
5059 /* Set the bad block position */
5060 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5061 chip->badblockpos = NAND_BBM_POS_LARGE;
5062 else
5063 chip->badblockpos = NAND_BBM_POS_SMALL;
5064}
5065
5066static inline bool is_full_id_nand(struct nand_flash_dev *type)
5067{
5068 return type->id_len;
5069}
5070
5071static bool find_full_id_nand(struct nand_chip *chip,
5072 struct nand_flash_dev *type)
5073{
5074 struct nand_device *base = &chip->base;
5075 struct nand_ecc_props requirements;
5076 struct mtd_info *mtd = nand_to_mtd(chip);
5077 struct nand_memory_organization *memorg;
5078 u8 *id_data = chip->id.data;
5079
5080 memorg = nanddev_get_memorg(nand: &chip->base);
5081
5082 if (!strncmp(type->id, id_data, type->id_len)) {
5083 memorg->pagesize = type->pagesize;
5084 mtd->writesize = memorg->pagesize;
5085 memorg->pages_per_eraseblock = type->erasesize /
5086 type->pagesize;
5087 mtd->erasesize = type->erasesize;
5088 memorg->oobsize = type->oobsize;
5089 mtd->oobsize = memorg->oobsize;
5090
5091 memorg->bits_per_cell = nand_get_bits_per_cell(cellinfo: id_data[2]);
5092 memorg->eraseblocks_per_lun =
5093 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5094 memorg->pagesize *
5095 memorg->pages_per_eraseblock);
5096 chip->options |= type->options;
5097 requirements.strength = NAND_ECC_STRENGTH(type);
5098 requirements.step_size = NAND_ECC_STEP(type);
5099 nanddev_set_ecc_requirements(nand: base, reqs: &requirements);
5100
5101 chip->parameters.model = kstrdup(s: type->name, GFP_KERNEL);
5102 if (!chip->parameters.model)
5103 return false;
5104
5105 return true;
5106 }
5107 return false;
5108}
5109
5110/*
5111 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5112 * compliant and does not have a full-id or legacy-id entry in the nand_ids
5113 * table.
5114 */
5115static void nand_manufacturer_detect(struct nand_chip *chip)
5116{
5117 /*
5118 * Try manufacturer detection if available and use
5119 * nand_decode_ext_id() otherwise.
5120 */
5121 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5122 chip->manufacturer.desc->ops->detect) {
5123 struct nand_memory_organization *memorg;
5124
5125 memorg = nanddev_get_memorg(nand: &chip->base);
5126
5127 /* The 3rd id byte holds MLC / multichip data */
5128 memorg->bits_per_cell = nand_get_bits_per_cell(cellinfo: chip->id.data[2]);
5129 chip->manufacturer.desc->ops->detect(chip);
5130 } else {
5131 nand_decode_ext_id(chip);
5132 }
5133}
5134
5135/*
5136 * Manufacturer initialization. This function is called for all NANDs including
5137 * ONFI and JEDEC compliant ones.
5138 * Manufacturer drivers should put all their specific initialization code in
5139 * their ->init() hook.
5140 */
5141static int nand_manufacturer_init(struct nand_chip *chip)
5142{
5143 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5144 !chip->manufacturer.desc->ops->init)
5145 return 0;
5146
5147 return chip->manufacturer.desc->ops->init(chip);
5148}
5149
5150/*
5151 * Manufacturer cleanup. This function is called for all NANDs including
5152 * ONFI and JEDEC compliant ones.
5153 * Manufacturer drivers should put all their specific cleanup code in their
5154 * ->cleanup() hook.
5155 */
5156static void nand_manufacturer_cleanup(struct nand_chip *chip)
5157{
5158 /* Release manufacturer private data */
5159 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5160 chip->manufacturer.desc->ops->cleanup)
5161 chip->manufacturer.desc->ops->cleanup(chip);
5162}
5163
5164static const char *
5165nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5166{
5167 return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5168}
5169
5170static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5171{
5172 /* Use an arbitrary size for the check */
5173 if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5174 chip->controller->supported_op.data_only_read = 1;
5175}
5176
5177static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5178{
5179 /* The supported_op fields should not be set by individual drivers */
5180 WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5181
5182 if (!nand_has_exec_op(chip))
5183 return;
5184
5185 rawnand_check_data_only_read_support(chip);
5186}
5187
5188static void rawnand_check_cont_read_support(struct nand_chip *chip)
5189{
5190 struct mtd_info *mtd = nand_to_mtd(chip);
5191
5192 if (!chip->parameters.supports_read_cache)
5193 return;
5194
5195 if (chip->read_retries)
5196 return;
5197
5198 if (!nand_lp_exec_cont_read_page_op(chip, page: 0, offset_in_page: 0, NULL,
5199 len: mtd->writesize, check_only: true))
5200 chip->controller->supported_op.cont_read = 1;
5201}
5202
5203static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5204{
5205 /* The supported_op fields should not be set by individual drivers */
5206 WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5207
5208 /*
5209 * Too many devices do not support sequential cached reads with on-die
5210 * ECC correction enabled, so in this case refuse to perform the
5211 * automation.
5212 */
5213 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5214 return;
5215
5216 if (!nand_has_exec_op(chip))
5217 return;
5218
5219 /*
5220 * For now, continuous reads can only be used with the core page helpers.
5221 * This can be extended later.
5222 */
5223 if (!(chip->ecc.read_page == nand_read_page_hwecc ||
5224 chip->ecc.read_page == nand_read_page_syndrome ||
5225 chip->ecc.read_page == nand_read_page_swecc))
5226 return;
5227
5228 rawnand_check_cont_read_support(chip);
5229}
5230
5231/*
5232 * Get the flash and manufacturer id and lookup if the type is supported.
5233 */
5234static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5235{
5236 const struct nand_manufacturer_desc *manufacturer_desc;
5237 struct mtd_info *mtd = nand_to_mtd(chip);
5238 struct nand_memory_organization *memorg;
5239 int busw, ret;
5240 u8 *id_data = chip->id.data;
5241 u8 maf_id, dev_id;
5242 u64 targetsize;
5243
5244 /*
5245 * Let's start by initializing memorg fields that might be left
5246 * unassigned by the ID-based detection logic.
5247 */
5248 memorg = nanddev_get_memorg(nand: &chip->base);
5249 memorg->planes_per_lun = 1;
5250 memorg->luns_per_target = 1;
5251
5252 /*
5253 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5254 * after power-up.
5255 */
5256 ret = nand_reset(chip, 0);
5257 if (ret)
5258 return ret;
5259
5260 /* Select the device */
5261 nand_select_target(chip, 0);
5262
5263 rawnand_early_check_supported_ops(chip);
5264
5265 /* Send the command for reading device ID */
5266 ret = nand_readid_op(chip, 0, id_data, 2);
5267 if (ret)
5268 return ret;
5269
5270 /* Read manufacturer and device IDs */
5271 maf_id = id_data[0];
5272 dev_id = id_data[1];
5273
5274 /*
5275 * Try again to make sure, as some systems the bus-hold or other
5276 * interface concerns can cause random data which looks like a
5277 * possibly credible NAND flash to appear. If the two results do
5278 * not match, ignore the device completely.
5279 */
5280
5281 /* Read entire ID string */
5282 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5283 if (ret)
5284 return ret;
5285
5286 if (id_data[0] != maf_id || id_data[1] != dev_id) {
5287 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5288 maf_id, dev_id, id_data[0], id_data[1]);
5289 return -ENODEV;
5290 }
5291
5292 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5293
5294 /* Try to identify manufacturer */
5295 manufacturer_desc = nand_get_manufacturer_desc(id: maf_id);
5296 chip->manufacturer.desc = manufacturer_desc;
5297
5298 if (!type)
5299 type = nand_flash_ids;
5300
5301 /*
5302 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5303 * override it.
5304 * This is required to make sure initial NAND bus width set by the
5305 * NAND controller driver is coherent with the real NAND bus width
5306 * (extracted by auto-detection code).
5307 */
5308 busw = chip->options & NAND_BUSWIDTH_16;
5309
5310 /*
5311 * The flag is only set (never cleared), reset it to its default value
5312 * before starting auto-detection.
5313 */
5314 chip->options &= ~NAND_BUSWIDTH_16;
5315
5316 for (; type->name != NULL; type++) {
5317 if (is_full_id_nand(type)) {
5318 if (find_full_id_nand(chip, type))
5319 goto ident_done;
5320 } else if (dev_id == type->dev_id) {
5321 break;
5322 }
5323 }
5324
5325 if (!type->name || !type->pagesize) {
5326 /* Check if the chip is ONFI compliant */
5327 ret = nand_onfi_detect(chip);
5328 if (ret < 0)
5329 return ret;
5330 else if (ret)
5331 goto ident_done;
5332
5333 /* Check if the chip is JEDEC compliant */
5334 ret = nand_jedec_detect(chip);
5335 if (ret < 0)
5336 return ret;
5337 else if (ret)
5338 goto ident_done;
5339 }
5340
5341 if (!type->name)
5342 return -ENODEV;
5343
5344 chip->parameters.model = kstrdup(s: type->name, GFP_KERNEL);
5345 if (!chip->parameters.model)
5346 return -ENOMEM;
5347
5348 if (!type->pagesize)
5349 nand_manufacturer_detect(chip);
5350 else
5351 nand_decode_id(chip, type);
5352
5353 /* Get chip options */
5354 chip->options |= type->options;
5355
5356 memorg->eraseblocks_per_lun =
5357 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5358 memorg->pagesize *
5359 memorg->pages_per_eraseblock);
5360
5361ident_done:
5362 if (!mtd->name)
5363 mtd->name = chip->parameters.model;
5364
5365 if (chip->options & NAND_BUSWIDTH_AUTO) {
5366 WARN_ON(busw & NAND_BUSWIDTH_16);
5367 nand_set_defaults(chip);
5368 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5369 /*
5370 * Check, if buswidth is correct. Hardware drivers should set
5371 * chip correct!
5372 */
5373 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5374 maf_id, dev_id);
5375 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5376 mtd->name);
5377 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5378 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5379 ret = -EINVAL;
5380
5381 goto free_detect_allocation;
5382 }
5383
5384 nand_decode_bbm_options(chip);
5385
5386 /* Calculate the address shift from the page size */
5387 chip->page_shift = ffs(mtd->writesize) - 1;
5388 /* Convert chipsize to number of pages per chip -1 */
5389 targetsize = nanddev_target_size(nand: &chip->base);
5390 chip->pagemask = (targetsize >> chip->page_shift) - 1;
5391
5392 chip->bbt_erase_shift = chip->phys_erase_shift =
5393 ffs(mtd->erasesize) - 1;
5394 if (targetsize & 0xffffffff)
5395 chip->chip_shift = ffs((unsigned)targetsize) - 1;
5396 else {
5397 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5398 chip->chip_shift += 32 - 1;
5399 }
5400
5401 if (chip->chip_shift - chip->page_shift > 16)
5402 chip->options |= NAND_ROW_ADDR_3;
5403
5404 chip->badblockbits = 8;
5405
5406 nand_legacy_adjust_cmdfunc(chip);
5407
5408 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5409 maf_id, dev_id);
5410 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5411 chip->parameters.model);
5412 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5413 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5414 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5415 return 0;
5416
5417free_detect_allocation:
5418 kfree(objp: chip->parameters.model);
5419
5420 return ret;
5421}
5422
5423static enum nand_ecc_engine_type
5424of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5425{
5426 enum nand_ecc_legacy_mode {
5427 NAND_ECC_INVALID,
5428 NAND_ECC_NONE,
5429 NAND_ECC_SOFT,
5430 NAND_ECC_SOFT_BCH,
5431 NAND_ECC_HW,
5432 NAND_ECC_HW_SYNDROME,
5433 NAND_ECC_ON_DIE,
5434 };
5435 const char * const nand_ecc_legacy_modes[] = {
5436 [NAND_ECC_NONE] = "none",
5437 [NAND_ECC_SOFT] = "soft",
5438 [NAND_ECC_SOFT_BCH] = "soft_bch",
5439 [NAND_ECC_HW] = "hw",
5440 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
5441 [NAND_ECC_ON_DIE] = "on-die",
5442 };
5443 enum nand_ecc_legacy_mode eng_type;
5444 const char *pm;
5445 int err;
5446
5447 err = of_property_read_string(np, propname: "nand-ecc-mode", out_string: &pm);
5448 if (err)
5449 return NAND_ECC_ENGINE_TYPE_INVALID;
5450
5451 for (eng_type = NAND_ECC_NONE;
5452 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5453 if (!strcasecmp(s1: pm, s2: nand_ecc_legacy_modes[eng_type])) {
5454 switch (eng_type) {
5455 case NAND_ECC_NONE:
5456 return NAND_ECC_ENGINE_TYPE_NONE;
5457 case NAND_ECC_SOFT:
5458 case NAND_ECC_SOFT_BCH:
5459 return NAND_ECC_ENGINE_TYPE_SOFT;
5460 case NAND_ECC_HW:
5461 case NAND_ECC_HW_SYNDROME:
5462 return NAND_ECC_ENGINE_TYPE_ON_HOST;
5463 case NAND_ECC_ON_DIE:
5464 return NAND_ECC_ENGINE_TYPE_ON_DIE;
5465 default:
5466 break;
5467 }
5468 }
5469 }
5470
5471 return NAND_ECC_ENGINE_TYPE_INVALID;
5472}
5473
5474static enum nand_ecc_placement
5475of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5476{
5477 const char *pm;
5478 int err;
5479
5480 err = of_property_read_string(np, propname: "nand-ecc-mode", out_string: &pm);
5481 if (!err) {
5482 if (!strcasecmp(s1: pm, s2: "hw_syndrome"))
5483 return NAND_ECC_PLACEMENT_INTERLEAVED;
5484 }
5485
5486 return NAND_ECC_PLACEMENT_UNKNOWN;
5487}
5488
5489static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5490{
5491 const char *pm;
5492 int err;
5493
5494 err = of_property_read_string(np, propname: "nand-ecc-mode", out_string: &pm);
5495 if (!err) {
5496 if (!strcasecmp(s1: pm, s2: "soft"))
5497 return NAND_ECC_ALGO_HAMMING;
5498 else if (!strcasecmp(s1: pm, s2: "soft_bch"))
5499 return NAND_ECC_ALGO_BCH;
5500 }
5501
5502 return NAND_ECC_ALGO_UNKNOWN;
5503}
5504
5505static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5506{
5507 struct device_node *dn = nand_get_flash_node(chip);
5508 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5509
5510 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5511 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(np: dn);
5512
5513 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5514 user_conf->algo = of_get_rawnand_ecc_algo_legacy(np: dn);
5515
5516 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5517 user_conf->placement = of_get_rawnand_ecc_placement_legacy(np: dn);
5518}
5519
5520static int of_get_nand_bus_width(struct nand_chip *chip)
5521{
5522 struct device_node *dn = nand_get_flash_node(chip);
5523 u32 val;
5524 int ret;
5525
5526 ret = of_property_read_u32(np: dn, propname: "nand-bus-width", out_value: &val);
5527 if (ret == -EINVAL)
5528 /* Buswidth defaults to 8 if the property does not exist .*/
5529 return 0;
5530 else if (ret)
5531 return ret;
5532
5533 if (val == 16)
5534 chip->options |= NAND_BUSWIDTH_16;
5535 else if (val != 8)
5536 return -EINVAL;
5537 return 0;
5538}
5539
5540static int of_get_nand_secure_regions(struct nand_chip *chip)
5541{
5542 struct device_node *dn = nand_get_flash_node(chip);
5543 struct property *prop;
5544 int nr_elem, i, j;
5545
5546 /* Only proceed if the "secure-regions" property is present in DT */
5547 prop = of_find_property(np: dn, name: "secure-regions", NULL);
5548 if (!prop)
5549 return 0;
5550
5551 nr_elem = of_property_count_elems_of_size(np: dn, propname: "secure-regions", elem_size: sizeof(u64));
5552 if (nr_elem <= 0)
5553 return nr_elem;
5554
5555 chip->nr_secure_regions = nr_elem / 2;
5556 chip->secure_regions = kcalloc(n: chip->nr_secure_regions, size: sizeof(*chip->secure_regions),
5557 GFP_KERNEL);
5558 if (!chip->secure_regions)
5559 return -ENOMEM;
5560
5561 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5562 of_property_read_u64_index(np: dn, propname: "secure-regions", index: j,
5563 out_value: &chip->secure_regions[i].offset);
5564 of_property_read_u64_index(np: dn, propname: "secure-regions", index: j + 1,
5565 out_value: &chip->secure_regions[i].size);
5566 }
5567
5568 return 0;
5569}
5570
5571/**
5572 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5573 * @dev: Device that will be parsed. Also used for managed allocations.
5574 * @cs_array: Array of GPIO desc pointers allocated on success
5575 * @ncs_array: Number of entries in @cs_array updated on success.
5576 * @return 0 on success, an error otherwise.
5577 */
5578int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5579 unsigned int *ncs_array)
5580{
5581 struct gpio_desc **descs;
5582 int ndescs, i;
5583
5584 ndescs = gpiod_count(dev, con_id: "cs");
5585 if (ndescs < 0) {
5586 dev_dbg(dev, "No valid cs-gpios property\n");
5587 return 0;
5588 }
5589
5590 descs = devm_kcalloc(dev, n: ndescs, size: sizeof(*descs), GFP_KERNEL);
5591 if (!descs)
5592 return -ENOMEM;
5593
5594 for (i = 0; i < ndescs; i++) {
5595 descs[i] = gpiod_get_index_optional(dev, con_id: "cs", index: i,
5596 flags: GPIOD_OUT_HIGH);
5597 if (IS_ERR(ptr: descs[i]))
5598 return PTR_ERR(ptr: descs[i]);
5599 }
5600
5601 *ncs_array = ndescs;
5602 *cs_array = descs;
5603
5604 return 0;
5605}
5606EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5607
5608static int rawnand_dt_init(struct nand_chip *chip)
5609{
5610 struct nand_device *nand = mtd_to_nanddev(mtd: nand_to_mtd(chip));
5611 struct device_node *dn = nand_get_flash_node(chip);
5612 int ret;
5613
5614 if (!dn)
5615 return 0;
5616
5617 ret = of_get_nand_bus_width(chip);
5618 if (ret)
5619 return ret;
5620
5621 if (of_property_read_bool(np: dn, propname: "nand-is-boot-medium"))
5622 chip->options |= NAND_IS_BOOT_MEDIUM;
5623
5624 if (of_property_read_bool(np: dn, propname: "nand-on-flash-bbt"))
5625 chip->bbt_options |= NAND_BBT_USE_FLASH;
5626
5627 of_get_nand_ecc_user_config(nand);
5628 of_get_nand_ecc_legacy_user_config(chip);
5629
5630 /*
5631 * If neither the user nor the NAND controller have requested a specific
5632 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5633 */
5634 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5635
5636 /*
5637 * Use the user requested engine type, unless there is none, in this
5638 * case default to the NAND controller choice, otherwise fallback to
5639 * the raw NAND default one.
5640 */
5641 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5642 chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5643 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5644 chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5645
5646 chip->ecc.placement = nand->ecc.user_conf.placement;
5647 chip->ecc.algo = nand->ecc.user_conf.algo;
5648 chip->ecc.strength = nand->ecc.user_conf.strength;
5649 chip->ecc.size = nand->ecc.user_conf.step_size;
5650
5651 return 0;
5652}
5653
5654/**
5655 * nand_scan_ident - Scan for the NAND device
5656 * @chip: NAND chip object
5657 * @maxchips: number of chips to scan for
5658 * @table: alternative NAND ID table
5659 *
5660 * This is the first phase of the normal nand_scan() function. It reads the
5661 * flash ID and sets up MTD fields accordingly.
5662 *
5663 * This helper used to be called directly from controller drivers that needed
5664 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5665 * prevented dynamic allocations during this phase which was unconvenient and
5666 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5667 */
5668static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5669 struct nand_flash_dev *table)
5670{
5671 struct mtd_info *mtd = nand_to_mtd(chip);
5672 struct nand_memory_organization *memorg;
5673 int nand_maf_id, nand_dev_id;
5674 unsigned int i;
5675 int ret;
5676
5677 memorg = nanddev_get_memorg(nand: &chip->base);
5678
5679 /* Assume all dies are deselected when we enter nand_scan_ident(). */
5680 chip->cur_cs = -1;
5681
5682 mutex_init(&chip->lock);
5683 init_waitqueue_head(&chip->resume_wq);
5684
5685 /* Enforce the right timings for reset/detection */
5686 chip->current_interface_config = nand_get_reset_interface_config();
5687
5688 ret = rawnand_dt_init(chip);
5689 if (ret)
5690 return ret;
5691
5692 if (!mtd->name && mtd->dev.parent)
5693 mtd->name = dev_name(dev: mtd->dev.parent);
5694
5695 /* Set the default functions */
5696 nand_set_defaults(chip);
5697
5698 ret = nand_legacy_check_hooks(chip);
5699 if (ret)
5700 return ret;
5701
5702 memorg->ntargets = maxchips;
5703
5704 /* Read the flash type */
5705 ret = nand_detect(chip, type: table);
5706 if (ret) {
5707 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5708 pr_warn("No NAND device found\n");
5709 nand_deselect_target(chip);
5710 return ret;
5711 }
5712
5713 nand_maf_id = chip->id.data[0];
5714 nand_dev_id = chip->id.data[1];
5715
5716 nand_deselect_target(chip);
5717
5718 /* Check for a chip array */
5719 for (i = 1; i < maxchips; i++) {
5720 u8 id[2];
5721
5722 /* See comment in nand_get_flash_type for reset */
5723 ret = nand_reset(chip, i);
5724 if (ret)
5725 break;
5726
5727 nand_select_target(chip, i);
5728 /* Send the command for reading device ID */
5729 ret = nand_readid_op(chip, 0, id, sizeof(id));
5730 if (ret)
5731 break;
5732 /* Read manufacturer and device IDs */
5733 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5734 nand_deselect_target(chip);
5735 break;
5736 }
5737 nand_deselect_target(chip);
5738 }
5739 if (i > 1)
5740 pr_info("%d chips detected\n", i);
5741
5742 /* Store the number of chips and calc total size for mtd */
5743 memorg->ntargets = i;
5744 mtd->size = i * nanddev_target_size(nand: &chip->base);
5745
5746 return 0;
5747}
5748
5749static void nand_scan_ident_cleanup(struct nand_chip *chip)
5750{
5751 kfree(objp: chip->parameters.model);
5752 kfree(objp: chip->parameters.onfi);
5753}
5754
5755int rawnand_sw_hamming_init(struct nand_chip *chip)
5756{
5757 struct nand_ecc_sw_hamming_conf *engine_conf;
5758 struct nand_device *base = &chip->base;
5759 int ret;
5760
5761 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5762 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5763 base->ecc.user_conf.strength = chip->ecc.strength;
5764 base->ecc.user_conf.step_size = chip->ecc.size;
5765
5766 ret = nand_ecc_sw_hamming_init_ctx(nand: base);
5767 if (ret)
5768 return ret;
5769
5770 engine_conf = base->ecc.ctx.priv;
5771
5772 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5773 engine_conf->sm_order = true;
5774
5775 chip->ecc.size = base->ecc.ctx.conf.step_size;
5776 chip->ecc.strength = base->ecc.ctx.conf.strength;
5777 chip->ecc.total = base->ecc.ctx.total;
5778 chip->ecc.steps = nanddev_get_ecc_nsteps(nand: base);
5779 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(nand: base);
5780
5781 return 0;
5782}
5783EXPORT_SYMBOL(rawnand_sw_hamming_init);
5784
5785int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5786 const unsigned char *buf,
5787 unsigned char *code)
5788{
5789 struct nand_device *base = &chip->base;
5790
5791 return nand_ecc_sw_hamming_calculate(nand: base, buf, code);
5792}
5793EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5794
5795int rawnand_sw_hamming_correct(struct nand_chip *chip,
5796 unsigned char *buf,
5797 unsigned char *read_ecc,
5798 unsigned char *calc_ecc)
5799{
5800 struct nand_device *base = &chip->base;
5801
5802 return nand_ecc_sw_hamming_correct(nand: base, buf, read_ecc, calc_ecc);
5803}
5804EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5805
5806void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5807{
5808 struct nand_device *base = &chip->base;
5809
5810 nand_ecc_sw_hamming_cleanup_ctx(nand: base);
5811}
5812EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5813
5814int rawnand_sw_bch_init(struct nand_chip *chip)
5815{
5816 struct nand_device *base = &chip->base;
5817 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(nand: base);
5818 int ret;
5819
5820 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5821 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5822 base->ecc.user_conf.step_size = chip->ecc.size;
5823 base->ecc.user_conf.strength = chip->ecc.strength;
5824
5825 ret = nand_ecc_sw_bch_init_ctx(nand: base);
5826 if (ret)
5827 return ret;
5828
5829 chip->ecc.size = ecc_conf->step_size;
5830 chip->ecc.strength = ecc_conf->strength;
5831 chip->ecc.total = base->ecc.ctx.total;
5832 chip->ecc.steps = nanddev_get_ecc_nsteps(nand: base);
5833 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(nand: base);
5834
5835 return 0;
5836}
5837EXPORT_SYMBOL(rawnand_sw_bch_init);
5838
5839static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5840 const unsigned char *buf,
5841 unsigned char *code)
5842{
5843 struct nand_device *base = &chip->base;
5844
5845 return nand_ecc_sw_bch_calculate(nand: base, buf, code);
5846}
5847
5848int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5849 unsigned char *read_ecc, unsigned char *calc_ecc)
5850{
5851 struct nand_device *base = &chip->base;
5852
5853 return nand_ecc_sw_bch_correct(nand: base, buf, read_ecc, calc_ecc);
5854}
5855EXPORT_SYMBOL(rawnand_sw_bch_correct);
5856
5857void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5858{
5859 struct nand_device *base = &chip->base;
5860
5861 nand_ecc_sw_bch_cleanup_ctx(nand: base);
5862}
5863EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5864
5865static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5866{
5867 struct nand_ecc_ctrl *ecc = &chip->ecc;
5868
5869 switch (ecc->placement) {
5870 case NAND_ECC_PLACEMENT_UNKNOWN:
5871 case NAND_ECC_PLACEMENT_OOB:
5872 /* Use standard hwecc read page function? */
5873 if (!ecc->read_page)
5874 ecc->read_page = nand_read_page_hwecc;
5875 if (!ecc->write_page)
5876 ecc->write_page = nand_write_page_hwecc;
5877 if (!ecc->read_page_raw)
5878 ecc->read_page_raw = nand_read_page_raw;
5879 if (!ecc->write_page_raw)
5880 ecc->write_page_raw = nand_write_page_raw;
5881 if (!ecc->read_oob)
5882 ecc->read_oob = nand_read_oob_std;
5883 if (!ecc->write_oob)
5884 ecc->write_oob = nand_write_oob_std;
5885 if (!ecc->read_subpage)
5886 ecc->read_subpage = nand_read_subpage;
5887 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5888 ecc->write_subpage = nand_write_subpage_hwecc;
5889 fallthrough;
5890
5891 case NAND_ECC_PLACEMENT_INTERLEAVED:
5892 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5893 (!ecc->read_page ||
5894 ecc->read_page == nand_read_page_hwecc ||
5895 !ecc->write_page ||
5896 ecc->write_page == nand_write_page_hwecc)) {
5897 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5898 return -EINVAL;
5899 }
5900 /* Use standard syndrome read/write page function? */
5901 if (!ecc->read_page)
5902 ecc->read_page = nand_read_page_syndrome;
5903 if (!ecc->write_page)
5904 ecc->write_page = nand_write_page_syndrome;
5905 if (!ecc->read_page_raw)
5906 ecc->read_page_raw = nand_read_page_raw_syndrome;
5907 if (!ecc->write_page_raw)
5908 ecc->write_page_raw = nand_write_page_raw_syndrome;
5909 if (!ecc->read_oob)
5910 ecc->read_oob = nand_read_oob_syndrome;
5911 if (!ecc->write_oob)
5912 ecc->write_oob = nand_write_oob_syndrome;
5913 break;
5914
5915 default:
5916 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5917 ecc->placement);
5918 return -EINVAL;
5919 }
5920
5921 return 0;
5922}
5923
5924static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5925{
5926 struct mtd_info *mtd = nand_to_mtd(chip);
5927 struct nand_device *nanddev = mtd_to_nanddev(mtd);
5928 struct nand_ecc_ctrl *ecc = &chip->ecc;
5929 int ret;
5930
5931 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5932 return -EINVAL;
5933
5934 switch (ecc->algo) {
5935 case NAND_ECC_ALGO_HAMMING:
5936 ecc->calculate = rawnand_sw_hamming_calculate;
5937 ecc->correct = rawnand_sw_hamming_correct;
5938 ecc->read_page = nand_read_page_swecc;
5939 ecc->read_subpage = nand_read_subpage;
5940 ecc->write_page = nand_write_page_swecc;
5941 if (!ecc->read_page_raw)
5942 ecc->read_page_raw = nand_read_page_raw;
5943 if (!ecc->write_page_raw)
5944 ecc->write_page_raw = nand_write_page_raw;
5945 ecc->read_oob = nand_read_oob_std;
5946 ecc->write_oob = nand_write_oob_std;
5947 if (!ecc->size)
5948 ecc->size = 256;
5949 ecc->bytes = 3;
5950 ecc->strength = 1;
5951
5952 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5953 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5954
5955 ret = rawnand_sw_hamming_init(chip);
5956 if (ret) {
5957 WARN(1, "Hamming ECC initialization failed!\n");
5958 return ret;
5959 }
5960
5961 return 0;
5962 case NAND_ECC_ALGO_BCH:
5963 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5964 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5965 return -EINVAL;
5966 }
5967 ecc->calculate = rawnand_sw_bch_calculate;
5968 ecc->correct = rawnand_sw_bch_correct;
5969 ecc->read_page = nand_read_page_swecc;
5970 ecc->read_subpage = nand_read_subpage;
5971 ecc->write_page = nand_write_page_swecc;
5972 if (!ecc->read_page_raw)
5973 ecc->read_page_raw = nand_read_page_raw;
5974 if (!ecc->write_page_raw)
5975 ecc->write_page_raw = nand_write_page_raw;
5976 ecc->read_oob = nand_read_oob_std;
5977 ecc->write_oob = nand_write_oob_std;
5978
5979 /*
5980 * We can only maximize ECC config when the default layout is
5981 * used, otherwise we don't know how many bytes can really be
5982 * used.
5983 */
5984 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5985 mtd->ooblayout != nand_get_large_page_ooblayout())
5986 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5987
5988 ret = rawnand_sw_bch_init(chip);
5989 if (ret) {
5990 WARN(1, "BCH ECC initialization failed!\n");
5991 return ret;
5992 }
5993
5994 return 0;
5995 default:
5996 WARN(1, "Unsupported ECC algorithm!\n");
5997 return -EINVAL;
5998 }
5999}
6000
6001/**
6002 * nand_check_ecc_caps - check the sanity of preset ECC settings
6003 * @chip: nand chip info structure
6004 * @caps: ECC caps info structure
6005 * @oobavail: OOB size that the ECC engine can use
6006 *
6007 * When ECC step size and strength are already set, check if they are supported
6008 * by the controller and the calculated ECC bytes fit within the chip's OOB.
6009 * On success, the calculated ECC bytes is set.
6010 */
6011static int
6012nand_check_ecc_caps(struct nand_chip *chip,
6013 const struct nand_ecc_caps *caps, int oobavail)
6014{
6015 struct mtd_info *mtd = nand_to_mtd(chip);
6016 const struct nand_ecc_step_info *stepinfo;
6017 int preset_step = chip->ecc.size;
6018 int preset_strength = chip->ecc.strength;
6019 int ecc_bytes, nsteps = mtd->writesize / preset_step;
6020 int i, j;
6021
6022 for (i = 0; i < caps->nstepinfos; i++) {
6023 stepinfo = &caps->stepinfos[i];
6024
6025 if (stepinfo->stepsize != preset_step)
6026 continue;
6027
6028 for (j = 0; j < stepinfo->nstrengths; j++) {
6029 if (stepinfo->strengths[j] != preset_strength)
6030 continue;
6031
6032 ecc_bytes = caps->calc_ecc_bytes(preset_step,
6033 preset_strength);
6034 if (WARN_ON_ONCE(ecc_bytes < 0))
6035 return ecc_bytes;
6036
6037 if (ecc_bytes * nsteps > oobavail) {
6038 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6039 preset_step, preset_strength);
6040 return -ENOSPC;
6041 }
6042
6043 chip->ecc.bytes = ecc_bytes;
6044
6045 return 0;
6046 }
6047 }
6048
6049 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6050 preset_step, preset_strength);
6051
6052 return -ENOTSUPP;
6053}
6054
6055/**
6056 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6057 * @chip: nand chip info structure
6058 * @caps: ECC engine caps info structure
6059 * @oobavail: OOB size that the ECC engine can use
6060 *
6061 * If a chip's ECC requirement is provided, try to meet it with the least
6062 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6063 * On success, the chosen ECC settings are set.
6064 */
6065static int
6066nand_match_ecc_req(struct nand_chip *chip,
6067 const struct nand_ecc_caps *caps, int oobavail)
6068{
6069 const struct nand_ecc_props *requirements =
6070 nanddev_get_ecc_requirements(nand: &chip->base);
6071 struct mtd_info *mtd = nand_to_mtd(chip);
6072 const struct nand_ecc_step_info *stepinfo;
6073 int req_step = requirements->step_size;
6074 int req_strength = requirements->strength;
6075 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6076 int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6077 int best_ecc_bytes_total = INT_MAX;
6078 int i, j;
6079
6080 /* No information provided by the NAND chip */
6081 if (!req_step || !req_strength)
6082 return -ENOTSUPP;
6083
6084 /* number of correctable bits the chip requires in a page */
6085 req_corr = mtd->writesize / req_step * req_strength;
6086
6087 for (i = 0; i < caps->nstepinfos; i++) {
6088 stepinfo = &caps->stepinfos[i];
6089 step_size = stepinfo->stepsize;
6090
6091 for (j = 0; j < stepinfo->nstrengths; j++) {
6092 strength = stepinfo->strengths[j];
6093
6094 /*
6095 * If both step size and strength are smaller than the
6096 * chip's requirement, it is not easy to compare the
6097 * resulted reliability.
6098 */
6099 if (step_size < req_step && strength < req_strength)
6100 continue;
6101
6102 if (mtd->writesize % step_size)
6103 continue;
6104
6105 nsteps = mtd->writesize / step_size;
6106
6107 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6108 if (WARN_ON_ONCE(ecc_bytes < 0))
6109 continue;
6110 ecc_bytes_total = ecc_bytes * nsteps;
6111
6112 if (ecc_bytes_total > oobavail ||
6113 strength * nsteps < req_corr)
6114 continue;
6115
6116 /*
6117 * We assume the best is to meet the chip's requrement
6118 * with the least number of ECC bytes.
6119 */
6120 if (ecc_bytes_total < best_ecc_bytes_total) {
6121 best_ecc_bytes_total = ecc_bytes_total;
6122 best_step = step_size;
6123 best_strength = strength;
6124 best_ecc_bytes = ecc_bytes;
6125 }
6126 }
6127 }
6128
6129 if (best_ecc_bytes_total == INT_MAX)
6130 return -ENOTSUPP;
6131
6132 chip->ecc.size = best_step;
6133 chip->ecc.strength = best_strength;
6134 chip->ecc.bytes = best_ecc_bytes;
6135
6136 return 0;
6137}
6138
6139/**
6140 * nand_maximize_ecc - choose the max ECC strength available
6141 * @chip: nand chip info structure
6142 * @caps: ECC engine caps info structure
6143 * @oobavail: OOB size that the ECC engine can use
6144 *
6145 * Choose the max ECC strength that is supported on the controller, and can fit
6146 * within the chip's OOB. On success, the chosen ECC settings are set.
6147 */
6148static int
6149nand_maximize_ecc(struct nand_chip *chip,
6150 const struct nand_ecc_caps *caps, int oobavail)
6151{
6152 struct mtd_info *mtd = nand_to_mtd(chip);
6153 const struct nand_ecc_step_info *stepinfo;
6154 int step_size, strength, nsteps, ecc_bytes, corr;
6155 int best_corr = 0;
6156 int best_step = 0;
6157 int best_strength = 0, best_ecc_bytes = 0;
6158 int i, j;
6159
6160 for (i = 0; i < caps->nstepinfos; i++) {
6161 stepinfo = &caps->stepinfos[i];
6162 step_size = stepinfo->stepsize;
6163
6164 /* If chip->ecc.size is already set, respect it */
6165 if (chip->ecc.size && step_size != chip->ecc.size)
6166 continue;
6167
6168 for (j = 0; j < stepinfo->nstrengths; j++) {
6169 strength = stepinfo->strengths[j];
6170
6171 if (mtd->writesize % step_size)
6172 continue;
6173
6174 nsteps = mtd->writesize / step_size;
6175
6176 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6177 if (WARN_ON_ONCE(ecc_bytes < 0))
6178 continue;
6179
6180 if (ecc_bytes * nsteps > oobavail)
6181 continue;
6182
6183 corr = strength * nsteps;
6184
6185 /*
6186 * If the number of correctable bits is the same,
6187 * bigger step_size has more reliability.
6188 */
6189 if (corr > best_corr ||
6190 (corr == best_corr && step_size > best_step)) {
6191 best_corr = corr;
6192 best_step = step_size;
6193 best_strength = strength;
6194 best_ecc_bytes = ecc_bytes;
6195 }
6196 }
6197 }
6198
6199 if (!best_corr)
6200 return -ENOTSUPP;
6201
6202 chip->ecc.size = best_step;
6203 chip->ecc.strength = best_strength;
6204 chip->ecc.bytes = best_ecc_bytes;
6205
6206 return 0;
6207}
6208
6209/**
6210 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6211 * @chip: nand chip info structure
6212 * @caps: ECC engine caps info structure
6213 * @oobavail: OOB size that the ECC engine can use
6214 *
6215 * Choose the ECC configuration according to following logic.
6216 *
6217 * 1. If both ECC step size and ECC strength are already set (usually by DT)
6218 * then check if it is supported by this controller.
6219 * 2. If the user provided the nand-ecc-maximize property, then select maximum
6220 * ECC strength.
6221 * 3. Otherwise, try to match the ECC step size and ECC strength closest
6222 * to the chip's requirement. If available OOB size can't fit the chip
6223 * requirement then fallback to the maximum ECC step size and ECC strength.
6224 *
6225 * On success, the chosen ECC settings are set.
6226 */
6227int nand_ecc_choose_conf(struct nand_chip *chip,
6228 const struct nand_ecc_caps *caps, int oobavail)
6229{
6230 struct mtd_info *mtd = nand_to_mtd(chip);
6231 struct nand_device *nanddev = mtd_to_nanddev(mtd);
6232
6233 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6234 return -EINVAL;
6235
6236 if (chip->ecc.size && chip->ecc.strength)
6237 return nand_check_ecc_caps(chip, caps, oobavail);
6238
6239 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6240 return nand_maximize_ecc(chip, caps, oobavail);
6241
6242 if (!nand_match_ecc_req(chip, caps, oobavail))
6243 return 0;
6244
6245 return nand_maximize_ecc(chip, caps, oobavail);
6246}
6247EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6248
6249static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6250{
6251 struct nand_chip *chip = container_of(nand, struct nand_chip,
6252 base);
6253 unsigned int eb = nanddev_pos_to_row(nand, pos);
6254 int ret;
6255
6256 eb >>= nand->rowconv.eraseblock_addr_shift;
6257
6258 nand_select_target(chip, pos->target);
6259 ret = nand_erase_op(chip, eb);
6260 nand_deselect_target(chip);
6261
6262 return ret;
6263}
6264
6265static int rawnand_markbad(struct nand_device *nand,
6266 const struct nand_pos *pos)
6267{
6268 struct nand_chip *chip = container_of(nand, struct nand_chip,
6269 base);
6270
6271 return nand_markbad_bbm(chip, ofs: nanddev_pos_to_offs(nand, pos));
6272}
6273
6274static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6275{
6276 struct nand_chip *chip = container_of(nand, struct nand_chip,
6277 base);
6278 int ret;
6279
6280 nand_select_target(chip, pos->target);
6281 ret = nand_isbad_bbm(chip, ofs: nanddev_pos_to_offs(nand, pos));
6282 nand_deselect_target(chip);
6283
6284 return ret;
6285}
6286
6287static const struct nand_ops rawnand_ops = {
6288 .erase = rawnand_erase,
6289 .markbad = rawnand_markbad,
6290 .isbad = rawnand_isbad,
6291};
6292
6293/**
6294 * nand_scan_tail - Scan for the NAND device
6295 * @chip: NAND chip object
6296 *
6297 * This is the second phase of the normal nand_scan() function. It fills out
6298 * all the uninitialized function pointers with the defaults and scans for a
6299 * bad block table if appropriate.
6300 */
6301static int nand_scan_tail(struct nand_chip *chip)
6302{
6303 struct mtd_info *mtd = nand_to_mtd(chip);
6304 struct nand_ecc_ctrl *ecc = &chip->ecc;
6305 int ret, i;
6306
6307 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6308 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6309 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6310 return -EINVAL;
6311 }
6312
6313 chip->data_buf = kmalloc(size: mtd->writesize + mtd->oobsize, GFP_KERNEL);
6314 if (!chip->data_buf)
6315 return -ENOMEM;
6316
6317 /*
6318 * FIXME: some NAND manufacturer drivers expect the first die to be
6319 * selected when manufacturer->init() is called. They should be fixed
6320 * to explictly select the relevant die when interacting with the NAND
6321 * chip.
6322 */
6323 nand_select_target(chip, 0);
6324 ret = nand_manufacturer_init(chip);
6325 nand_deselect_target(chip);
6326 if (ret)
6327 goto err_free_buf;
6328
6329 /* Set the internal oob buffer location, just after the page data */
6330 chip->oob_poi = chip->data_buf + mtd->writesize;
6331
6332 /*
6333 * If no default placement scheme is given, select an appropriate one.
6334 */
6335 if (!mtd->ooblayout &&
6336 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6337 ecc->algo == NAND_ECC_ALGO_BCH) &&
6338 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6339 ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6340 switch (mtd->oobsize) {
6341 case 8:
6342 case 16:
6343 mtd_set_ooblayout(mtd, ooblayout: nand_get_small_page_ooblayout());
6344 break;
6345 case 64:
6346 case 128:
6347 mtd_set_ooblayout(mtd,
6348 ooblayout: nand_get_large_page_hamming_ooblayout());
6349 break;
6350 default:
6351 /*
6352 * Expose the whole OOB area to users if ECC_NONE
6353 * is passed. We could do that for all kind of
6354 * ->oobsize, but we must keep the old large/small
6355 * page with ECC layout when ->oobsize <= 128 for
6356 * compatibility reasons.
6357 */
6358 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6359 mtd_set_ooblayout(mtd,
6360 ooblayout: nand_get_large_page_ooblayout());
6361 break;
6362 }
6363
6364 WARN(1, "No oob scheme defined for oobsize %d\n",
6365 mtd->oobsize);
6366 ret = -EINVAL;
6367 goto err_nand_manuf_cleanup;
6368 }
6369 }
6370
6371 /*
6372 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6373 * selected and we have 256 byte pagesize fallback to software ECC
6374 */
6375
6376 switch (ecc->engine_type) {
6377 case NAND_ECC_ENGINE_TYPE_ON_HOST:
6378 ret = nand_set_ecc_on_host_ops(chip);
6379 if (ret)
6380 goto err_nand_manuf_cleanup;
6381
6382 if (mtd->writesize >= ecc->size) {
6383 if (!ecc->strength) {
6384 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6385 ret = -EINVAL;
6386 goto err_nand_manuf_cleanup;
6387 }
6388 break;
6389 }
6390 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6391 ecc->size, mtd->writesize);
6392 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6393 ecc->algo = NAND_ECC_ALGO_HAMMING;
6394 fallthrough;
6395
6396 case NAND_ECC_ENGINE_TYPE_SOFT:
6397 ret = nand_set_ecc_soft_ops(chip);
6398 if (ret)
6399 goto err_nand_manuf_cleanup;
6400 break;
6401
6402 case NAND_ECC_ENGINE_TYPE_ON_DIE:
6403 if (!ecc->read_page || !ecc->write_page) {
6404 WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6405 ret = -EINVAL;
6406 goto err_nand_manuf_cleanup;
6407 }
6408 if (!ecc->read_oob)
6409 ecc->read_oob = nand_read_oob_std;
6410 if (!ecc->write_oob)
6411 ecc->write_oob = nand_write_oob_std;
6412 break;
6413
6414 case NAND_ECC_ENGINE_TYPE_NONE:
6415 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6416 ecc->read_page = nand_read_page_raw;
6417 ecc->write_page = nand_write_page_raw;
6418 ecc->read_oob = nand_read_oob_std;
6419 ecc->read_page_raw = nand_read_page_raw;
6420 ecc->write_page_raw = nand_write_page_raw;
6421 ecc->write_oob = nand_write_oob_std;
6422 ecc->size = mtd->writesize;
6423 ecc->bytes = 0;
6424 ecc->strength = 0;
6425 break;
6426
6427 default:
6428 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6429 ret = -EINVAL;
6430 goto err_nand_manuf_cleanup;
6431 }
6432
6433 if (ecc->correct || ecc->calculate) {
6434 ecc->calc_buf = kmalloc(size: mtd->oobsize, GFP_KERNEL);
6435 ecc->code_buf = kmalloc(size: mtd->oobsize, GFP_KERNEL);
6436 if (!ecc->calc_buf || !ecc->code_buf) {
6437 ret = -ENOMEM;
6438 goto err_nand_manuf_cleanup;
6439 }
6440 }
6441
6442 /* For many systems, the standard OOB write also works for raw */
6443 if (!ecc->read_oob_raw)
6444 ecc->read_oob_raw = ecc->read_oob;
6445 if (!ecc->write_oob_raw)
6446 ecc->write_oob_raw = ecc->write_oob;
6447
6448 /* propagate ecc info to mtd_info */
6449 mtd->ecc_strength = ecc->strength;
6450 mtd->ecc_step_size = ecc->size;
6451
6452 /*
6453 * Set the number of read / write steps for one page depending on ECC
6454 * mode.
6455 */
6456 if (!ecc->steps)
6457 ecc->steps = mtd->writesize / ecc->size;
6458 if (ecc->steps * ecc->size != mtd->writesize) {
6459 WARN(1, "Invalid ECC parameters\n");
6460 ret = -EINVAL;
6461 goto err_nand_manuf_cleanup;
6462 }
6463
6464 if (!ecc->total) {
6465 ecc->total = ecc->steps * ecc->bytes;
6466 chip->base.ecc.ctx.total = ecc->total;
6467 }
6468
6469 if (ecc->total > mtd->oobsize) {
6470 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6471 ret = -EINVAL;
6472 goto err_nand_manuf_cleanup;
6473 }
6474
6475 /*
6476 * The number of bytes available for a client to place data into
6477 * the out of band area.
6478 */
6479 ret = mtd_ooblayout_count_freebytes(mtd);
6480 if (ret < 0)
6481 ret = 0;
6482
6483 mtd->oobavail = ret;
6484
6485 /* ECC sanity check: warn if it's too weak */
6486 if (!nand_ecc_is_strong_enough(nand: &chip->base))
6487 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6488 mtd->name, chip->ecc.strength, chip->ecc.size,
6489 nanddev_get_ecc_requirements(&chip->base)->strength,
6490 nanddev_get_ecc_requirements(&chip->base)->step_size);
6491
6492 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6493 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6494 switch (ecc->steps) {
6495 case 2:
6496 mtd->subpage_sft = 1;
6497 break;
6498 case 4:
6499 case 8:
6500 case 16:
6501 mtd->subpage_sft = 2;
6502 break;
6503 }
6504 }
6505 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6506
6507 /* Invalidate the pagebuffer reference */
6508 chip->pagecache.page = -1;
6509
6510 /* Large page NAND with SOFT_ECC should support subpage reads */
6511 switch (ecc->engine_type) {
6512 case NAND_ECC_ENGINE_TYPE_SOFT:
6513 if (chip->page_shift > 9)
6514 chip->options |= NAND_SUBPAGE_READ;
6515 break;
6516
6517 default:
6518 break;
6519 }
6520
6521 ret = nanddev_init(nand: &chip->base, ops: &rawnand_ops, owner: mtd->owner);
6522 if (ret)
6523 goto err_nand_manuf_cleanup;
6524
6525 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6526 if (chip->options & NAND_ROM)
6527 mtd->flags = MTD_CAP_ROM;
6528
6529 /* Fill in remaining MTD driver data */
6530 mtd->_erase = nand_erase;
6531 mtd->_point = NULL;
6532 mtd->_unpoint = NULL;
6533 mtd->_panic_write = panic_nand_write;
6534 mtd->_read_oob = nand_read_oob;
6535 mtd->_write_oob = nand_write_oob;
6536 mtd->_sync = nand_sync;
6537 mtd->_lock = nand_lock;
6538 mtd->_unlock = nand_unlock;
6539 mtd->_suspend = nand_suspend;
6540 mtd->_resume = nand_resume;
6541 mtd->_reboot = nand_shutdown;
6542 mtd->_block_isreserved = nand_block_isreserved;
6543 mtd->_block_isbad = nand_block_isbad;
6544 mtd->_block_markbad = nand_block_markbad;
6545 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6546
6547 /*
6548 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6549 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6550 * properly set.
6551 */
6552 if (!mtd->bitflip_threshold)
6553 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6554
6555 /* Find the fastest data interface for this chip */
6556 ret = nand_choose_interface_config(chip);
6557 if (ret)
6558 goto err_nanddev_cleanup;
6559
6560 /* Enter fastest possible mode on all dies. */
6561 for (i = 0; i < nanddev_ntargets(nand: &chip->base); i++) {
6562 ret = nand_setup_interface(chip, chipnr: i);
6563 if (ret)
6564 goto err_free_interface_config;
6565 }
6566
6567 rawnand_late_check_supported_ops(chip);
6568
6569 /*
6570 * Look for secure regions in the NAND chip. These regions are supposed
6571 * to be protected by a secure element like Trustzone. So the read/write
6572 * accesses to these regions will be blocked in the runtime by this
6573 * driver.
6574 */
6575 ret = of_get_nand_secure_regions(chip);
6576 if (ret)
6577 goto err_free_interface_config;
6578
6579 /* Check, if we should skip the bad block table scan */
6580 if (chip->options & NAND_SKIP_BBTSCAN)
6581 return 0;
6582
6583 /* Build bad block table */
6584 ret = nand_create_bbt(chip);
6585 if (ret)
6586 goto err_free_secure_regions;
6587
6588 return 0;
6589
6590err_free_secure_regions:
6591 kfree(objp: chip->secure_regions);
6592
6593err_free_interface_config:
6594 kfree(objp: chip->best_interface_config);
6595
6596err_nanddev_cleanup:
6597 nanddev_cleanup(nand: &chip->base);
6598
6599err_nand_manuf_cleanup:
6600 nand_manufacturer_cleanup(chip);
6601
6602err_free_buf:
6603 kfree(objp: chip->data_buf);
6604 kfree(objp: ecc->code_buf);
6605 kfree(objp: ecc->calc_buf);
6606
6607 return ret;
6608}
6609
6610static int nand_attach(struct nand_chip *chip)
6611{
6612 if (chip->controller->ops && chip->controller->ops->attach_chip)
6613 return chip->controller->ops->attach_chip(chip);
6614
6615 return 0;
6616}
6617
6618static void nand_detach(struct nand_chip *chip)
6619{
6620 if (chip->controller->ops && chip->controller->ops->detach_chip)
6621 chip->controller->ops->detach_chip(chip);
6622}
6623
6624/**
6625 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6626 * @chip: NAND chip object
6627 * @maxchips: number of chips to scan for.
6628 * @ids: optional flash IDs table
6629 *
6630 * This fills out all the uninitialized function pointers with the defaults.
6631 * The flash ID is read and the mtd/chip structures are filled with the
6632 * appropriate values.
6633 */
6634int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6635 struct nand_flash_dev *ids)
6636{
6637 int ret;
6638
6639 if (!maxchips)
6640 return -EINVAL;
6641
6642 ret = nand_scan_ident(chip, maxchips, table: ids);
6643 if (ret)
6644 return ret;
6645
6646 ret = nand_attach(chip);
6647 if (ret)
6648 goto cleanup_ident;
6649
6650 ret = nand_scan_tail(chip);
6651 if (ret)
6652 goto detach_chip;
6653
6654 return 0;
6655
6656detach_chip:
6657 nand_detach(chip);
6658cleanup_ident:
6659 nand_scan_ident_cleanup(chip);
6660
6661 return ret;
6662}
6663EXPORT_SYMBOL(nand_scan_with_ids);
6664
6665/**
6666 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6667 * @chip: NAND chip object
6668 */
6669void nand_cleanup(struct nand_chip *chip)
6670{
6671 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6672 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6673 rawnand_sw_hamming_cleanup(chip);
6674 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6675 rawnand_sw_bch_cleanup(chip);
6676 }
6677
6678 nanddev_cleanup(nand: &chip->base);
6679
6680 /* Free secure regions data */
6681 kfree(objp: chip->secure_regions);
6682
6683 /* Free bad block table memory */
6684 kfree(objp: chip->bbt);
6685 kfree(objp: chip->data_buf);
6686 kfree(objp: chip->ecc.code_buf);
6687 kfree(objp: chip->ecc.calc_buf);
6688
6689 /* Free bad block descriptor memory */
6690 if (chip->badblock_pattern && chip->badblock_pattern->options
6691 & NAND_BBT_DYNAMICSTRUCT)
6692 kfree(objp: chip->badblock_pattern);
6693
6694 /* Free the data interface */
6695 kfree(objp: chip->best_interface_config);
6696
6697 /* Free manufacturer priv data. */
6698 nand_manufacturer_cleanup(chip);
6699
6700 /* Free controller specific allocations after chip identification */
6701 nand_detach(chip);
6702
6703 /* Free identification phase allocations */
6704 nand_scan_ident_cleanup(chip);
6705}
6706
6707EXPORT_SYMBOL_GPL(nand_cleanup);
6708
6709MODULE_LICENSE("GPL");
6710MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6711MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6712MODULE_DESCRIPTION("Generic NAND flash driver code");
6713

source code of linux/drivers/mtd/nand/raw/nand_base.c