1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Rockchip NAND Flash controller driver.
4 * Copyright (C) 2020 Rockchip Inc.
5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
6 */
7
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/dma-mapping.h>
11#include <linux/dmaengine.h>
12#include <linux/interrupt.h>
13#include <linux/iopoll.h>
14#include <linux/module.h>
15#include <linux/mtd/mtd.h>
16#include <linux/mtd/rawnand.h>
17#include <linux/of.h>
18#include <linux/platform_device.h>
19#include <linux/slab.h>
20
21/*
22 * NFC Page Data Layout:
23 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
24 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
25 * ......
26 * NAND Page Data Layout:
27 * 1024 * n data + m Bytes oob
28 * Original Bad Block Mask Location:
29 * First byte of oob(spare).
30 * nand_chip->oob_poi data layout:
31 * 4Bytes sys data + .... + 4Bytes sys data + ECC data.
32 */
33
34/* NAND controller register definition */
35#define NFC_READ (0)
36#define NFC_WRITE (1)
37
38#define NFC_FMCTL (0x00)
39#define FMCTL_CE_SEL_M 0xFF
40#define FMCTL_CE_SEL(x) (1 << (x))
41#define FMCTL_WP BIT(8)
42#define FMCTL_RDY BIT(9)
43
44#define NFC_FMWAIT (0x04)
45#define FLCTL_RST BIT(0)
46#define FLCTL_WR (1) /* 0: read, 1: write */
47#define FLCTL_XFER_ST BIT(2)
48#define FLCTL_XFER_EN BIT(3)
49#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
50#define FLCTL_XFER_READY BIT(20)
51#define FLCTL_XFER_SECTOR (22)
52#define FLCTL_TOG_FIX BIT(29)
53
54#define BCHCTL_BANK_M (7 << 5)
55#define BCHCTL_BANK (5)
56
57#define DMA_ST BIT(0)
58#define DMA_WR (1) /* 0: write, 1: read */
59#define DMA_EN BIT(2)
60#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
61#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
62#define DMA_INC_NUM (9) /* 1 - 16 */
63
64#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
65 (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
66#define INT_DMA BIT(0)
67#define NFC_BANK (0x800)
68#define NFC_BANK_STEP (0x100)
69#define BANK_DATA (0x00)
70#define BANK_ADDR (0x04)
71#define BANK_CMD (0x08)
72#define NFC_SRAM0 (0x1000)
73#define NFC_SRAM1 (0x1400)
74#define NFC_SRAM_SIZE (0x400)
75#define NFC_TIMEOUT (500000)
76#define NFC_MAX_OOB_PER_STEP 128
77#define NFC_MIN_OOB_PER_STEP 64
78#define MAX_DATA_SIZE 0xFFFC
79#define MAX_ADDRESS_CYC 6
80#define NFC_ECC_MAX_MODES 4
81#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
82#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
83#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
84#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
85
86enum nfc_type {
87 NFC_V6,
88 NFC_V8,
89 NFC_V9,
90};
91
92/**
93 * struct rk_ecc_cnt_status: represent a ecc status data.
94 * @err_flag_bit: error flag bit index at register.
95 * @low: ECC count low bit index at register.
96 * @low_mask: mask bit.
97 * @low_bn: ECC count low bit number.
98 * @high: ECC count high bit index at register.
99 * @high_mask: mask bit
100 */
101struct rk_ecc_cnt_status {
102 u8 err_flag_bit;
103 u8 low;
104 u8 low_mask;
105 u8 low_bn;
106 u8 high;
107 u8 high_mask;
108};
109
110/**
111 * struct nfc_cfg: Rockchip NAND controller configuration
112 * @type: NFC version
113 * @ecc_strengths: ECC strengths
114 * @ecc_cfgs: ECC config values
115 * @flctl_off: FLCTL register offset
116 * @bchctl_off: BCHCTL register offset
117 * @dma_data_buf_off: DMA_DATA_BUF register offset
118 * @dma_oob_buf_off: DMA_OOB_BUF register offset
119 * @dma_cfg_off: DMA_CFG register offset
120 * @dma_st_off: DMA_ST register offset
121 * @bch_st_off: BCG_ST register offset
122 * @randmz_off: RANDMZ register offset
123 * @int_en_off: interrupt enable register offset
124 * @int_clr_off: interrupt clean register offset
125 * @int_st_off: interrupt status register offset
126 * @oob0_off: oob0 register offset
127 * @oob1_off: oob1 register offset
128 * @ecc0: represent ECC0 status data
129 * @ecc1: represent ECC1 status data
130 */
131struct nfc_cfg {
132 enum nfc_type type;
133 u8 ecc_strengths[NFC_ECC_MAX_MODES];
134 u32 ecc_cfgs[NFC_ECC_MAX_MODES];
135 u32 flctl_off;
136 u32 bchctl_off;
137 u32 dma_cfg_off;
138 u32 dma_data_buf_off;
139 u32 dma_oob_buf_off;
140 u32 dma_st_off;
141 u32 bch_st_off;
142 u32 randmz_off;
143 u32 int_en_off;
144 u32 int_clr_off;
145 u32 int_st_off;
146 u32 oob0_off;
147 u32 oob1_off;
148 struct rk_ecc_cnt_status ecc0;
149 struct rk_ecc_cnt_status ecc1;
150};
151
152struct rk_nfc_nand_chip {
153 struct list_head node;
154 struct nand_chip chip;
155
156 u16 boot_blks;
157 u16 metadata_size;
158 u32 boot_ecc;
159 u32 timing;
160
161 u8 nsels;
162 u8 sels[] __counted_by(nsels);
163};
164
165struct rk_nfc {
166 struct nand_controller controller;
167 const struct nfc_cfg *cfg;
168 struct device *dev;
169
170 struct clk *nfc_clk;
171 struct clk *ahb_clk;
172 void __iomem *regs;
173
174 u32 selected_bank;
175 u32 band_offset;
176 u32 cur_ecc;
177 u32 cur_timing;
178
179 struct completion done;
180 struct list_head chips;
181
182 u8 *page_buf;
183 u32 *oob_buf;
184 u32 page_buf_size;
185 u32 oob_buf_size;
186
187 unsigned long assigned_cs;
188};
189
190static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
191{
192 return container_of(chip, struct rk_nfc_nand_chip, chip);
193}
194
195static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
196{
197 return (u8 *)p + i * chip->ecc.size;
198}
199
200static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
201{
202 u8 *poi;
203
204 poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
205
206 return poi;
207}
208
209static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
210{
211 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
212 u8 *poi;
213
214 poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
215
216 return poi;
217}
218
219static inline int rk_nfc_data_len(struct nand_chip *chip)
220{
221 return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
222}
223
224static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
225{
226 struct rk_nfc *nfc = nand_get_controller_data(chip);
227
228 return nfc->page_buf + i * rk_nfc_data_len(chip);
229}
230
231static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
232{
233 struct rk_nfc *nfc = nand_get_controller_data(chip);
234
235 return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
236}
237
238static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
239{
240 struct rk_nfc *nfc = nand_get_controller_data(chip);
241 u32 reg, i;
242
243 for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
244 if (strength == nfc->cfg->ecc_strengths[i]) {
245 reg = nfc->cfg->ecc_cfgs[i];
246 break;
247 }
248 }
249
250 if (i >= NFC_ECC_MAX_MODES)
251 return -EINVAL;
252
253 writel(val: reg, addr: nfc->regs + nfc->cfg->bchctl_off);
254
255 /* Save chip ECC setting */
256 nfc->cur_ecc = strength;
257
258 return 0;
259}
260
261static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
262{
263 struct rk_nfc *nfc = nand_get_controller_data(chip);
264 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
265 struct nand_ecc_ctrl *ecc = &chip->ecc;
266 u32 val;
267
268 if (cs < 0) {
269 nfc->selected_bank = -1;
270 /* Deselect the currently selected target. */
271 val = readl_relaxed(nfc->regs + NFC_FMCTL);
272 val &= ~FMCTL_CE_SEL_M;
273 writel(val, addr: nfc->regs + NFC_FMCTL);
274 return;
275 }
276
277 nfc->selected_bank = rknand->sels[cs];
278 nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
279
280 val = readl_relaxed(nfc->regs + NFC_FMCTL);
281 val &= ~FMCTL_CE_SEL_M;
282 val |= FMCTL_CE_SEL(nfc->selected_bank);
283
284 writel(val, addr: nfc->regs + NFC_FMCTL);
285
286 /*
287 * Compare current chip timing with selected chip timing and
288 * change if needed.
289 */
290 if (nfc->cur_timing != rknand->timing) {
291 writel(val: rknand->timing, addr: nfc->regs + NFC_FMWAIT);
292 nfc->cur_timing = rknand->timing;
293 }
294
295 /*
296 * Compare current chip ECC setting with selected chip ECC setting and
297 * change if needed.
298 */
299 if (nfc->cur_ecc != ecc->strength)
300 rk_nfc_hw_ecc_setup(chip, strength: ecc->strength);
301}
302
303static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
304{
305 int rc;
306 u32 val;
307
308 rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
309 val & FMCTL_RDY, 10, NFC_TIMEOUT);
310
311 return rc;
312}
313
314static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
315{
316 int i;
317
318 for (i = 0; i < len; i++)
319 buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
320 BANK_DATA);
321}
322
323static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
324{
325 int i;
326
327 for (i = 0; i < len; i++)
328 writeb(val: buf[i], addr: nfc->regs + nfc->band_offset + BANK_DATA);
329}
330
331static int rk_nfc_cmd(struct nand_chip *chip,
332 const struct nand_subop *subop)
333{
334 struct rk_nfc *nfc = nand_get_controller_data(chip);
335 unsigned int i, j, remaining, start;
336 int reg_offset = nfc->band_offset;
337 u8 *inbuf = NULL;
338 const u8 *outbuf;
339 u32 cnt = 0;
340 int ret = 0;
341
342 for (i = 0; i < subop->ninstrs; i++) {
343 const struct nand_op_instr *instr = &subop->instrs[i];
344
345 switch (instr->type) {
346 case NAND_OP_CMD_INSTR:
347 writeb(val: instr->ctx.cmd.opcode,
348 addr: nfc->regs + reg_offset + BANK_CMD);
349 break;
350
351 case NAND_OP_ADDR_INSTR:
352 remaining = nand_subop_get_num_addr_cyc(subop, op_id: i);
353 start = nand_subop_get_addr_start_off(subop, op_id: i);
354
355 for (j = 0; j < 8 && j + start < remaining; j++)
356 writeb(val: instr->ctx.addr.addrs[j + start],
357 addr: nfc->regs + reg_offset + BANK_ADDR);
358 break;
359
360 case NAND_OP_DATA_IN_INSTR:
361 case NAND_OP_DATA_OUT_INSTR:
362 start = nand_subop_get_data_start_off(subop, op_id: i);
363 cnt = nand_subop_get_data_len(subop, op_id: i);
364
365 if (instr->type == NAND_OP_DATA_OUT_INSTR) {
366 outbuf = instr->ctx.data.buf.out + start;
367 rk_nfc_write_buf(nfc, buf: outbuf, len: cnt);
368 } else {
369 inbuf = instr->ctx.data.buf.in + start;
370 rk_nfc_read_buf(nfc, buf: inbuf, len: cnt);
371 }
372 break;
373
374 case NAND_OP_WAITRDY_INSTR:
375 if (rk_nfc_wait_ioready(nfc) < 0) {
376 ret = -ETIMEDOUT;
377 dev_err(nfc->dev, "IO not ready\n");
378 }
379 break;
380 }
381 }
382
383 return ret;
384}
385
386static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
387 NAND_OP_PARSER_PATTERN(
388 rk_nfc_cmd,
389 NAND_OP_PARSER_PAT_CMD_ELEM(true),
390 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
391 NAND_OP_PARSER_PAT_CMD_ELEM(true),
392 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
393 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
394 NAND_OP_PARSER_PATTERN(
395 rk_nfc_cmd,
396 NAND_OP_PARSER_PAT_CMD_ELEM(true),
397 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
398 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
399 NAND_OP_PARSER_PAT_CMD_ELEM(true),
400 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
401);
402
403static int rk_nfc_exec_op(struct nand_chip *chip,
404 const struct nand_operation *op,
405 bool check_only)
406{
407 if (!check_only)
408 rk_nfc_select_chip(chip, cs: op->cs);
409
410 return nand_op_parser_exec_op(chip, parser: &rk_nfc_op_parser, op,
411 check_only);
412}
413
414static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
415 const struct nand_interface_config *conf)
416{
417 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
418 struct rk_nfc *nfc = nand_get_controller_data(chip);
419 const struct nand_sdr_timings *timings;
420 u32 rate, tc2rw, trwpw, trw2c;
421 u32 temp;
422
423 if (target < 0)
424 return 0;
425
426 timings = nand_get_sdr_timings(conf);
427 if (IS_ERR(ptr: timings))
428 return -EOPNOTSUPP;
429
430 if (IS_ERR(ptr: nfc->nfc_clk))
431 rate = clk_get_rate(clk: nfc->ahb_clk);
432 else
433 rate = clk_get_rate(clk: nfc->nfc_clk);
434
435 /* Turn clock rate into kHz. */
436 rate /= 1000;
437
438 tc2rw = 1;
439 trw2c = 1;
440
441 trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
442 trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
443
444 temp = timings->tREA_max / 1000;
445 temp = DIV_ROUND_UP(temp * rate, 1000000);
446
447 if (trwpw < temp)
448 trwpw = temp;
449
450 /*
451 * ACCON: access timing control register
452 * -------------------------------------
453 * 31:18: reserved
454 * 17:12: csrw, clock cycles from the falling edge of CSn to the
455 * falling edge of RDn or WRn
456 * 11:11: reserved
457 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
458 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
459 * rising edge of CSn
460 */
461
462 /* Save chip timing */
463 rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
464
465 return 0;
466}
467
468static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
469 dma_addr_t dma_data, dma_addr_t dma_oob)
470{
471 u32 dma_reg, fl_reg, bch_reg;
472
473 dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
474 (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
475
476 fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
477 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
478
479 if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
480 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
481 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
482 (nfc->selected_bank << BCHCTL_BANK);
483 writel(val: bch_reg, addr: nfc->regs + nfc->cfg->bchctl_off);
484 }
485
486 writel(val: dma_reg, addr: nfc->regs + nfc->cfg->dma_cfg_off);
487 writel(val: (u32)dma_data, addr: nfc->regs + nfc->cfg->dma_data_buf_off);
488 writel(val: (u32)dma_oob, addr: nfc->regs + nfc->cfg->dma_oob_buf_off);
489 writel(val: fl_reg, addr: nfc->regs + nfc->cfg->flctl_off);
490 fl_reg |= FLCTL_XFER_ST;
491 writel(val: fl_reg, addr: nfc->regs + nfc->cfg->flctl_off);
492}
493
494static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
495{
496 void __iomem *ptr;
497 u32 reg;
498
499 ptr = nfc->regs + nfc->cfg->flctl_off;
500
501 return readl_relaxed_poll_timeout(ptr, reg,
502 reg & FLCTL_XFER_READY,
503 10, NFC_TIMEOUT);
504}
505
506static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
507 int oob_on, int page)
508{
509 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
510 struct rk_nfc *nfc = nand_get_controller_data(chip);
511 struct mtd_info *mtd = nand_to_mtd(chip);
512 struct nand_ecc_ctrl *ecc = &chip->ecc;
513 int i, pages_per_blk;
514
515 pages_per_blk = mtd->erasesize / mtd->writesize;
516 if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
517 (page < (pages_per_blk * rknand->boot_blks)) &&
518 rknand->boot_ecc != ecc->strength) {
519 /*
520 * There's currently no method to notify the MTD framework that
521 * a different ECC strength is in use for the boot blocks.
522 */
523 return -EIO;
524 }
525
526 if (!buf)
527 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
528
529 for (i = 0; i < ecc->steps; i++) {
530 /* Copy data to the NFC buffer. */
531 if (buf)
532 memcpy(rk_nfc_data_ptr(chip, i),
533 rk_nfc_buf_to_data_ptr(chip, buf, i),
534 ecc->size);
535 /*
536 * The first four bytes of OOB are reserved for the
537 * boot ROM. In some debugging cases, such as with a
538 * read, erase and write back test these 4 bytes stored
539 * in OOB also need to be written back.
540 *
541 * The function nand_block_bad detects bad blocks like:
542 *
543 * bad = chip->oob_poi[chip->badblockpos];
544 *
545 * chip->badblockpos == 0 for a large page NAND Flash,
546 * so chip->oob_poi[0] is the bad block mask (BBM).
547 *
548 * The OOB data layout on the NFC is:
549 *
550 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
551 *
552 * or
553 *
554 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
555 *
556 * The code here just swaps the first 4 bytes with the last
557 * 4 bytes without losing any data.
558 *
559 * The chip->oob_poi data layout:
560 *
561 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
562 *
563 * The rk_nfc_ooblayout_free() function already has reserved
564 * these 4 bytes together with 2 bytes for BBM
565 * by reducing it's length:
566 *
567 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
568 */
569 if (!i)
570 memcpy(rk_nfc_oob_ptr(chip, i),
571 rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
572 NFC_SYS_DATA_SIZE);
573 else
574 memcpy(rk_nfc_oob_ptr(chip, i),
575 rk_nfc_buf_to_oob_ptr(chip, i - 1),
576 NFC_SYS_DATA_SIZE);
577 /* Copy ECC data to the NFC buffer. */
578 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
579 rk_nfc_buf_to_oob_ecc_ptr(chip, i),
580 ecc->bytes);
581 }
582
583 nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0);
584 rk_nfc_write_buf(nfc, buf, len: mtd->writesize + mtd->oobsize);
585 return nand_prog_page_end_op(chip);
586}
587
588static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
589 int oob_on, int page)
590{
591 struct mtd_info *mtd = nand_to_mtd(chip);
592 struct rk_nfc *nfc = nand_get_controller_data(chip);
593 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
594 struct nand_ecc_ctrl *ecc = &chip->ecc;
595 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
596 NFC_MIN_OOB_PER_STEP;
597 int pages_per_blk = mtd->erasesize / mtd->writesize;
598 int ret = 0, i, boot_rom_mode = 0;
599 dma_addr_t dma_data, dma_oob;
600 u32 tmp;
601 u8 *oob;
602
603 nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0);
604
605 if (buf)
606 memcpy(nfc->page_buf, buf, mtd->writesize);
607 else
608 memset(nfc->page_buf, 0xFF, mtd->writesize);
609
610 /*
611 * The first blocks (4, 8 or 16 depending on the device) are used
612 * by the boot ROM and the first 32 bits of OOB need to link to
613 * the next page address in the same block. We can't directly copy
614 * OOB data from the MTD framework, because this page address
615 * conflicts for example with the bad block marker (BBM),
616 * so we shift all OOB data including the BBM with 4 byte positions.
617 * As a consequence the OOB size available to the MTD framework is
618 * also reduced with 4 bytes.
619 *
620 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
621 *
622 * If a NAND is not a boot medium or the page is not a boot block,
623 * the first 4 bytes are left untouched by writing 0xFF to them.
624 *
625 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
626 *
627 * The code here just swaps the first 4 bytes with the last
628 * 4 bytes without losing any data.
629 *
630 * The chip->oob_poi data layout:
631 *
632 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
633 *
634 * Configure the ECC algorithm supported by the boot ROM.
635 */
636 if ((page < (pages_per_blk * rknand->boot_blks)) &&
637 (chip->options & NAND_IS_BOOT_MEDIUM)) {
638 boot_rom_mode = 1;
639 if (rknand->boot_ecc != ecc->strength)
640 rk_nfc_hw_ecc_setup(chip, strength: rknand->boot_ecc);
641 }
642
643 for (i = 0; i < ecc->steps; i++) {
644 if (!i)
645 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
646 else
647 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
648
649 tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
650
651 if (nfc->cfg->type == NFC_V9)
652 nfc->oob_buf[i] = tmp;
653 else
654 nfc->oob_buf[i * (oob_step / 4)] = tmp;
655 }
656
657 dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
658 mtd->writesize, DMA_TO_DEVICE);
659 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
660 ecc->steps * oob_step,
661 DMA_TO_DEVICE);
662
663 reinit_completion(x: &nfc->done);
664 writel(INT_DMA, addr: nfc->regs + nfc->cfg->int_en_off);
665
666 rk_nfc_xfer_start(nfc, NFC_WRITE, n_KB: ecc->steps, dma_data,
667 dma_oob);
668 ret = wait_for_completion_timeout(x: &nfc->done,
669 timeout: msecs_to_jiffies(m: 100));
670 if (!ret)
671 dev_warn(nfc->dev, "write: wait dma done timeout.\n");
672 /*
673 * Whether the DMA transfer is completed or not. The driver
674 * needs to check the NFC`s status register to see if the data
675 * transfer was completed.
676 */
677 ret = rk_nfc_wait_for_xfer_done(nfc);
678
679 dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
680 DMA_TO_DEVICE);
681 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
682 DMA_TO_DEVICE);
683
684 if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
685 rk_nfc_hw_ecc_setup(chip, strength: ecc->strength);
686
687 if (ret) {
688 dev_err(nfc->dev, "write: wait transfer done timeout.\n");
689 return -ETIMEDOUT;
690 }
691
692 return nand_prog_page_end_op(chip);
693}
694
695static int rk_nfc_write_oob(struct nand_chip *chip, int page)
696{
697 return rk_nfc_write_page_hwecc(chip, NULL, oob_on: 1, page);
698}
699
700static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
701 int page)
702{
703 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
704 struct rk_nfc *nfc = nand_get_controller_data(chip);
705 struct mtd_info *mtd = nand_to_mtd(chip);
706 struct nand_ecc_ctrl *ecc = &chip->ecc;
707 int i, pages_per_blk;
708
709 pages_per_blk = mtd->erasesize / mtd->writesize;
710 if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
711 (page < (pages_per_blk * rknand->boot_blks)) &&
712 rknand->boot_ecc != ecc->strength) {
713 /*
714 * There's currently no method to notify the MTD framework that
715 * a different ECC strength is in use for the boot blocks.
716 */
717 return -EIO;
718 }
719
720 nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0);
721 rk_nfc_read_buf(nfc, buf: nfc->page_buf, len: mtd->writesize + mtd->oobsize);
722 for (i = 0; i < ecc->steps; i++) {
723 /*
724 * The first four bytes of OOB are reserved for the
725 * boot ROM. In some debugging cases, such as with a read,
726 * erase and write back test, these 4 bytes also must be
727 * saved somewhere, otherwise this information will be
728 * lost during a write back.
729 */
730 if (!i)
731 memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
732 rk_nfc_oob_ptr(chip, i),
733 NFC_SYS_DATA_SIZE);
734 else
735 memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
736 rk_nfc_oob_ptr(chip, i),
737 NFC_SYS_DATA_SIZE);
738
739 /* Copy ECC data from the NFC buffer. */
740 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
741 rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
742 ecc->bytes);
743
744 /* Copy data from the NFC buffer. */
745 if (buf)
746 memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
747 rk_nfc_data_ptr(chip, i),
748 ecc->size);
749 }
750
751 return 0;
752}
753
754static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
755 int page)
756{
757 struct mtd_info *mtd = nand_to_mtd(chip);
758 struct rk_nfc *nfc = nand_get_controller_data(chip);
759 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
760 struct nand_ecc_ctrl *ecc = &chip->ecc;
761 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
762 NFC_MIN_OOB_PER_STEP;
763 int pages_per_blk = mtd->erasesize / mtd->writesize;
764 dma_addr_t dma_data, dma_oob;
765 int ret = 0, i, cnt, boot_rom_mode = 0;
766 int max_bitflips = 0, bch_st, ecc_fail = 0;
767 u8 *oob;
768 u32 tmp;
769
770 nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0);
771
772 dma_data = dma_map_single(nfc->dev, nfc->page_buf,
773 mtd->writesize,
774 DMA_FROM_DEVICE);
775 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
776 ecc->steps * oob_step,
777 DMA_FROM_DEVICE);
778
779 /*
780 * The first blocks (4, 8 or 16 depending on the device)
781 * are used by the boot ROM.
782 * Configure the ECC algorithm supported by the boot ROM.
783 */
784 if ((page < (pages_per_blk * rknand->boot_blks)) &&
785 (chip->options & NAND_IS_BOOT_MEDIUM)) {
786 boot_rom_mode = 1;
787 if (rknand->boot_ecc != ecc->strength)
788 rk_nfc_hw_ecc_setup(chip, strength: rknand->boot_ecc);
789 }
790
791 reinit_completion(x: &nfc->done);
792 writel(INT_DMA, addr: nfc->regs + nfc->cfg->int_en_off);
793 rk_nfc_xfer_start(nfc, NFC_READ, n_KB: ecc->steps, dma_data,
794 dma_oob);
795 ret = wait_for_completion_timeout(x: &nfc->done,
796 timeout: msecs_to_jiffies(m: 100));
797 if (!ret)
798 dev_warn(nfc->dev, "read: wait dma done timeout.\n");
799 /*
800 * Whether the DMA transfer is completed or not. The driver
801 * needs to check the NFC`s status register to see if the data
802 * transfer was completed.
803 */
804 ret = rk_nfc_wait_for_xfer_done(nfc);
805
806 dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
807 DMA_FROM_DEVICE);
808 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
809 DMA_FROM_DEVICE);
810
811 if (ret) {
812 ret = -ETIMEDOUT;
813 dev_err(nfc->dev, "read: wait transfer done timeout.\n");
814 goto timeout_err;
815 }
816
817 for (i = 0; i < ecc->steps; i++) {
818 if (!i)
819 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
820 else
821 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
822
823 if (nfc->cfg->type == NFC_V9)
824 tmp = nfc->oob_buf[i];
825 else
826 tmp = nfc->oob_buf[i * (oob_step / 4)];
827
828 *oob++ = (u8)tmp;
829 *oob++ = (u8)(tmp >> 8);
830 *oob++ = (u8)(tmp >> 16);
831 *oob++ = (u8)(tmp >> 24);
832 }
833
834 for (i = 0; i < (ecc->steps / 2); i++) {
835 bch_st = readl_relaxed(nfc->regs +
836 nfc->cfg->bch_st_off + i * 4);
837 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
838 bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
839 mtd->ecc_stats.failed++;
840 ecc_fail = 1;
841 } else {
842 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
843 mtd->ecc_stats.corrected += cnt;
844 max_bitflips = max_t(u32, max_bitflips, cnt);
845
846 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
847 mtd->ecc_stats.corrected += cnt;
848 max_bitflips = max_t(u32, max_bitflips, cnt);
849 }
850 }
851
852 if (buf)
853 memcpy(buf, nfc->page_buf, mtd->writesize);
854
855timeout_err:
856 if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
857 rk_nfc_hw_ecc_setup(chip, strength: ecc->strength);
858
859 if (ret)
860 return ret;
861
862 if (ecc_fail) {
863 dev_err(nfc->dev, "read page: %x ecc error!\n", page);
864 return 0;
865 }
866
867 return max_bitflips;
868}
869
870static int rk_nfc_read_oob(struct nand_chip *chip, int page)
871{
872 return rk_nfc_read_page_hwecc(chip, NULL, oob_on: 1, page);
873}
874
875static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
876{
877 /* Disable flash wp. */
878 writel(FMCTL_WP, addr: nfc->regs + NFC_FMCTL);
879 /* Config default timing 40ns at 150 Mhz NFC clock. */
880 writel(val: 0x1081, addr: nfc->regs + NFC_FMWAIT);
881 nfc->cur_timing = 0x1081;
882 /* Disable randomizer and DMA. */
883 writel(val: 0, addr: nfc->regs + nfc->cfg->randmz_off);
884 writel(val: 0, addr: nfc->regs + nfc->cfg->dma_cfg_off);
885 writel(FLCTL_RST, addr: nfc->regs + nfc->cfg->flctl_off);
886}
887
888static irqreturn_t rk_nfc_irq(int irq, void *id)
889{
890 struct rk_nfc *nfc = id;
891 u32 sta, ien;
892
893 sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
894 ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
895
896 if (!(sta & ien))
897 return IRQ_NONE;
898
899 writel(val: sta, addr: nfc->regs + nfc->cfg->int_clr_off);
900 writel(val: ~sta & ien, addr: nfc->regs + nfc->cfg->int_en_off);
901
902 complete(&nfc->done);
903
904 return IRQ_HANDLED;
905}
906
907static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
908{
909 int ret;
910
911 if (!IS_ERR(ptr: nfc->nfc_clk)) {
912 ret = clk_prepare_enable(clk: nfc->nfc_clk);
913 if (ret) {
914 dev_err(dev, "failed to enable NFC clk\n");
915 return ret;
916 }
917 }
918
919 ret = clk_prepare_enable(clk: nfc->ahb_clk);
920 if (ret) {
921 dev_err(dev, "failed to enable ahb clk\n");
922 clk_disable_unprepare(clk: nfc->nfc_clk);
923 return ret;
924 }
925
926 return 0;
927}
928
929static void rk_nfc_disable_clks(struct rk_nfc *nfc)
930{
931 clk_disable_unprepare(clk: nfc->nfc_clk);
932 clk_disable_unprepare(clk: nfc->ahb_clk);
933}
934
935static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
936 struct mtd_oob_region *oob_region)
937{
938 struct nand_chip *chip = mtd_to_nand(mtd);
939 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
940
941 if (section)
942 return -ERANGE;
943
944 oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
945 oob_region->offset = 2;
946
947 return 0;
948}
949
950static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
951 struct mtd_oob_region *oob_region)
952{
953 struct nand_chip *chip = mtd_to_nand(mtd);
954 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
955
956 if (section)
957 return -ERANGE;
958
959 oob_region->length = mtd->oobsize - rknand->metadata_size;
960 oob_region->offset = rknand->metadata_size;
961
962 return 0;
963}
964
965static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
966 .free = rk_nfc_ooblayout_free,
967 .ecc = rk_nfc_ooblayout_ecc,
968};
969
970static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
971{
972 struct nand_chip *chip = mtd_to_nand(mtd);
973 struct rk_nfc *nfc = nand_get_controller_data(chip);
974 struct nand_ecc_ctrl *ecc = &chip->ecc;
975 const u8 *strengths = nfc->cfg->ecc_strengths;
976 u8 max_strength, nfc_max_strength;
977 int i;
978
979 nfc_max_strength = nfc->cfg->ecc_strengths[0];
980 /* If optional dt settings not present. */
981 if (!ecc->size || !ecc->strength ||
982 ecc->strength > nfc_max_strength) {
983 chip->ecc.size = 1024;
984 ecc->steps = mtd->writesize / ecc->size;
985
986 /*
987 * HW ECC always requests the number of ECC bytes per 1024 byte
988 * blocks. The first 4 OOB bytes are reserved for sys data.
989 */
990 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
991 fls(x: 8 * 1024);
992 if (max_strength > nfc_max_strength)
993 max_strength = nfc_max_strength;
994
995 for (i = 0; i < 4; i++) {
996 if (max_strength >= strengths[i])
997 break;
998 }
999
1000 if (i >= 4) {
1001 dev_err(nfc->dev, "unsupported ECC strength\n");
1002 return -EOPNOTSUPP;
1003 }
1004
1005 ecc->strength = strengths[i];
1006 }
1007 ecc->steps = mtd->writesize / ecc->size;
1008 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
1009
1010 return 0;
1011}
1012
1013static int rk_nfc_attach_chip(struct nand_chip *chip)
1014{
1015 struct mtd_info *mtd = nand_to_mtd(chip);
1016 struct device *dev = mtd->dev.parent;
1017 struct rk_nfc *nfc = nand_get_controller_data(chip);
1018 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
1019 struct nand_ecc_ctrl *ecc = &chip->ecc;
1020 int new_page_len, new_oob_len;
1021 void *buf;
1022 int ret;
1023
1024 if (chip->options & NAND_BUSWIDTH_16) {
1025 dev_err(dev, "16 bits bus width not supported");
1026 return -EINVAL;
1027 }
1028
1029 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1030 return 0;
1031
1032 ret = rk_nfc_ecc_init(dev, mtd);
1033 if (ret)
1034 return ret;
1035
1036 rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
1037
1038 if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
1039 dev_err(dev,
1040 "driver needs at least %d bytes of meta data\n",
1041 NFC_SYS_DATA_SIZE + 2);
1042 return -EIO;
1043 }
1044
1045 /* Check buffer first, avoid duplicate alloc buffer. */
1046 new_page_len = mtd->writesize + mtd->oobsize;
1047 if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
1048 buf = krealloc(objp: nfc->page_buf, new_size: new_page_len,
1049 GFP_KERNEL | GFP_DMA);
1050 if (!buf)
1051 return -ENOMEM;
1052 nfc->page_buf = buf;
1053 nfc->page_buf_size = new_page_len;
1054 }
1055
1056 new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
1057 if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
1058 buf = krealloc(objp: nfc->oob_buf, new_size: new_oob_len,
1059 GFP_KERNEL | GFP_DMA);
1060 if (!buf) {
1061 kfree(objp: nfc->page_buf);
1062 nfc->page_buf = NULL;
1063 return -ENOMEM;
1064 }
1065 nfc->oob_buf = buf;
1066 nfc->oob_buf_size = new_oob_len;
1067 }
1068
1069 if (!nfc->page_buf) {
1070 nfc->page_buf = kzalloc(size: new_page_len, GFP_KERNEL | GFP_DMA);
1071 if (!nfc->page_buf)
1072 return -ENOMEM;
1073 nfc->page_buf_size = new_page_len;
1074 }
1075
1076 if (!nfc->oob_buf) {
1077 nfc->oob_buf = kzalloc(size: new_oob_len, GFP_KERNEL | GFP_DMA);
1078 if (!nfc->oob_buf) {
1079 kfree(objp: nfc->page_buf);
1080 nfc->page_buf = NULL;
1081 return -ENOMEM;
1082 }
1083 nfc->oob_buf_size = new_oob_len;
1084 }
1085
1086 chip->ecc.write_page_raw = rk_nfc_write_page_raw;
1087 chip->ecc.write_page = rk_nfc_write_page_hwecc;
1088 chip->ecc.write_oob = rk_nfc_write_oob;
1089
1090 chip->ecc.read_page_raw = rk_nfc_read_page_raw;
1091 chip->ecc.read_page = rk_nfc_read_page_hwecc;
1092 chip->ecc.read_oob = rk_nfc_read_oob;
1093
1094 return 0;
1095}
1096
1097static const struct nand_controller_ops rk_nfc_controller_ops = {
1098 .attach_chip = rk_nfc_attach_chip,
1099 .exec_op = rk_nfc_exec_op,
1100 .setup_interface = rk_nfc_setup_interface,
1101};
1102
1103static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
1104 struct device_node *np)
1105{
1106 struct rk_nfc_nand_chip *rknand;
1107 struct nand_chip *chip;
1108 struct mtd_info *mtd;
1109 int nsels;
1110 u32 tmp;
1111 int ret;
1112 int i;
1113
1114 if (!of_get_property(node: np, name: "reg", lenp: &nsels))
1115 return -ENODEV;
1116 nsels /= sizeof(u32);
1117 if (!nsels || nsels > NFC_MAX_NSELS) {
1118 dev_err(dev, "invalid reg property size %d\n", nsels);
1119 return -EINVAL;
1120 }
1121
1122 rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels),
1123 GFP_KERNEL);
1124 if (!rknand)
1125 return -ENOMEM;
1126
1127 rknand->nsels = nsels;
1128 for (i = 0; i < nsels; i++) {
1129 ret = of_property_read_u32_index(np, propname: "reg", index: i, out_value: &tmp);
1130 if (ret) {
1131 dev_err(dev, "reg property failure : %d\n", ret);
1132 return ret;
1133 }
1134
1135 if (tmp >= NFC_MAX_NSELS) {
1136 dev_err(dev, "invalid CS: %u\n", tmp);
1137 return -EINVAL;
1138 }
1139
1140 if (test_and_set_bit(nr: tmp, addr: &nfc->assigned_cs)) {
1141 dev_err(dev, "CS %u already assigned\n", tmp);
1142 return -EINVAL;
1143 }
1144
1145 rknand->sels[i] = tmp;
1146 }
1147
1148 chip = &rknand->chip;
1149 chip->controller = &nfc->controller;
1150
1151 nand_set_flash_node(chip, np);
1152
1153 nand_set_controller_data(chip, priv: nfc);
1154
1155 chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1156 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1157
1158 /* Set default mode in case dt entry is missing. */
1159 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1160
1161 mtd = nand_to_mtd(chip);
1162 mtd->owner = THIS_MODULE;
1163 mtd->dev.parent = dev;
1164
1165 if (!mtd->name) {
1166 dev_err(nfc->dev, "NAND label property is mandatory\n");
1167 return -EINVAL;
1168 }
1169
1170 mtd_set_ooblayout(mtd, ooblayout: &rk_nfc_ooblayout_ops);
1171 rk_nfc_hw_init(nfc);
1172 ret = nand_scan(chip, max_chips: nsels);
1173 if (ret)
1174 return ret;
1175
1176 if (chip->options & NAND_IS_BOOT_MEDIUM) {
1177 ret = of_property_read_u32(np, propname: "rockchip,boot-blks", out_value: &tmp);
1178 rknand->boot_blks = ret ? 0 : tmp;
1179
1180 ret = of_property_read_u32(np, propname: "rockchip,boot-ecc-strength",
1181 out_value: &tmp);
1182 rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
1183 }
1184
1185 ret = mtd_device_register(mtd, NULL, 0);
1186 if (ret) {
1187 dev_err(dev, "MTD parse partition error\n");
1188 nand_cleanup(chip);
1189 return ret;
1190 }
1191
1192 list_add_tail(new: &rknand->node, head: &nfc->chips);
1193
1194 return 0;
1195}
1196
1197static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
1198{
1199 struct rk_nfc_nand_chip *rknand, *tmp;
1200 struct nand_chip *chip;
1201 int ret;
1202
1203 list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
1204 chip = &rknand->chip;
1205 ret = mtd_device_unregister(master: nand_to_mtd(chip));
1206 WARN_ON(ret);
1207 nand_cleanup(chip);
1208 list_del(entry: &rknand->node);
1209 }
1210}
1211
1212static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
1213{
1214 struct device_node *np = dev->of_node, *nand_np;
1215 int nchips = of_get_child_count(np);
1216 int ret;
1217
1218 if (!nchips || nchips > NFC_MAX_NSELS) {
1219 dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
1220 nchips);
1221 return -EINVAL;
1222 }
1223
1224 for_each_child_of_node(np, nand_np) {
1225 ret = rk_nfc_nand_chip_init(dev, nfc, np: nand_np);
1226 if (ret) {
1227 of_node_put(node: nand_np);
1228 rk_nfc_chips_cleanup(nfc);
1229 return ret;
1230 }
1231 }
1232
1233 return 0;
1234}
1235
1236static struct nfc_cfg nfc_v6_cfg = {
1237 .type = NFC_V6,
1238 .ecc_strengths = {60, 40, 24, 16},
1239 .ecc_cfgs = {
1240 0x00040011, 0x00040001, 0x00000011, 0x00000001,
1241 },
1242 .flctl_off = 0x08,
1243 .bchctl_off = 0x0C,
1244 .dma_cfg_off = 0x10,
1245 .dma_data_buf_off = 0x14,
1246 .dma_oob_buf_off = 0x18,
1247 .dma_st_off = 0x1C,
1248 .bch_st_off = 0x20,
1249 .randmz_off = 0x150,
1250 .int_en_off = 0x16C,
1251 .int_clr_off = 0x170,
1252 .int_st_off = 0x174,
1253 .oob0_off = 0x200,
1254 .oob1_off = 0x230,
1255 .ecc0 = {
1256 .err_flag_bit = 2,
1257 .low = 3,
1258 .low_mask = 0x1F,
1259 .low_bn = 5,
1260 .high = 27,
1261 .high_mask = 0x1,
1262 },
1263 .ecc1 = {
1264 .err_flag_bit = 15,
1265 .low = 16,
1266 .low_mask = 0x1F,
1267 .low_bn = 5,
1268 .high = 29,
1269 .high_mask = 0x1,
1270 },
1271};
1272
1273static struct nfc_cfg nfc_v8_cfg = {
1274 .type = NFC_V8,
1275 .ecc_strengths = {16, 16, 16, 16},
1276 .ecc_cfgs = {
1277 0x00000001, 0x00000001, 0x00000001, 0x00000001,
1278 },
1279 .flctl_off = 0x08,
1280 .bchctl_off = 0x0C,
1281 .dma_cfg_off = 0x10,
1282 .dma_data_buf_off = 0x14,
1283 .dma_oob_buf_off = 0x18,
1284 .dma_st_off = 0x1C,
1285 .bch_st_off = 0x20,
1286 .randmz_off = 0x150,
1287 .int_en_off = 0x16C,
1288 .int_clr_off = 0x170,
1289 .int_st_off = 0x174,
1290 .oob0_off = 0x200,
1291 .oob1_off = 0x230,
1292 .ecc0 = {
1293 .err_flag_bit = 2,
1294 .low = 3,
1295 .low_mask = 0x1F,
1296 .low_bn = 5,
1297 .high = 27,
1298 .high_mask = 0x1,
1299 },
1300 .ecc1 = {
1301 .err_flag_bit = 15,
1302 .low = 16,
1303 .low_mask = 0x1F,
1304 .low_bn = 5,
1305 .high = 29,
1306 .high_mask = 0x1,
1307 },
1308};
1309
1310static struct nfc_cfg nfc_v9_cfg = {
1311 .type = NFC_V9,
1312 .ecc_strengths = {70, 60, 40, 16},
1313 .ecc_cfgs = {
1314 0x00000001, 0x06000001, 0x04000001, 0x02000001,
1315 },
1316 .flctl_off = 0x10,
1317 .bchctl_off = 0x20,
1318 .dma_cfg_off = 0x30,
1319 .dma_data_buf_off = 0x34,
1320 .dma_oob_buf_off = 0x38,
1321 .dma_st_off = 0x3C,
1322 .bch_st_off = 0x150,
1323 .randmz_off = 0x208,
1324 .int_en_off = 0x120,
1325 .int_clr_off = 0x124,
1326 .int_st_off = 0x128,
1327 .oob0_off = 0x200,
1328 .oob1_off = 0x204,
1329 .ecc0 = {
1330 .err_flag_bit = 2,
1331 .low = 3,
1332 .low_mask = 0x7F,
1333 .low_bn = 7,
1334 .high = 0,
1335 .high_mask = 0x0,
1336 },
1337 .ecc1 = {
1338 .err_flag_bit = 18,
1339 .low = 19,
1340 .low_mask = 0x7F,
1341 .low_bn = 7,
1342 .high = 0,
1343 .high_mask = 0x0,
1344 },
1345};
1346
1347static const struct of_device_id rk_nfc_id_table[] = {
1348 {
1349 .compatible = "rockchip,px30-nfc",
1350 .data = &nfc_v9_cfg
1351 },
1352 {
1353 .compatible = "rockchip,rk2928-nfc",
1354 .data = &nfc_v6_cfg
1355 },
1356 {
1357 .compatible = "rockchip,rv1108-nfc",
1358 .data = &nfc_v8_cfg
1359 },
1360 { /* sentinel */ }
1361};
1362MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
1363
1364static int rk_nfc_probe(struct platform_device *pdev)
1365{
1366 struct device *dev = &pdev->dev;
1367 struct rk_nfc *nfc;
1368 int ret, irq;
1369
1370 nfc = devm_kzalloc(dev, size: sizeof(*nfc), GFP_KERNEL);
1371 if (!nfc)
1372 return -ENOMEM;
1373
1374 nand_controller_init(nfc: &nfc->controller);
1375 INIT_LIST_HEAD(list: &nfc->chips);
1376 nfc->controller.ops = &rk_nfc_controller_ops;
1377
1378 nfc->cfg = of_device_get_match_data(dev);
1379 nfc->dev = dev;
1380
1381 init_completion(x: &nfc->done);
1382
1383 nfc->regs = devm_platform_ioremap_resource(pdev, index: 0);
1384 if (IS_ERR(ptr: nfc->regs)) {
1385 ret = PTR_ERR(ptr: nfc->regs);
1386 goto release_nfc;
1387 }
1388
1389 nfc->nfc_clk = devm_clk_get(dev, id: "nfc");
1390 if (IS_ERR(ptr: nfc->nfc_clk)) {
1391 dev_dbg(dev, "no NFC clk\n");
1392 /* Some earlier models, such as rk3066, have no NFC clk. */
1393 }
1394
1395 nfc->ahb_clk = devm_clk_get(dev, id: "ahb");
1396 if (IS_ERR(ptr: nfc->ahb_clk)) {
1397 dev_err(dev, "no ahb clk\n");
1398 ret = PTR_ERR(ptr: nfc->ahb_clk);
1399 goto release_nfc;
1400 }
1401
1402 ret = rk_nfc_enable_clks(dev, nfc);
1403 if (ret)
1404 goto release_nfc;
1405
1406 irq = platform_get_irq(pdev, 0);
1407 if (irq < 0) {
1408 ret = -EINVAL;
1409 goto clk_disable;
1410 }
1411
1412 writel(val: 0, addr: nfc->regs + nfc->cfg->int_en_off);
1413 ret = devm_request_irq(dev, irq, handler: rk_nfc_irq, irqflags: 0x0, devname: "rk-nand", dev_id: nfc);
1414 if (ret) {
1415 dev_err(dev, "failed to request NFC irq\n");
1416 goto clk_disable;
1417 }
1418
1419 platform_set_drvdata(pdev, data: nfc);
1420
1421 ret = rk_nfc_nand_chips_init(dev, nfc);
1422 if (ret) {
1423 dev_err(dev, "failed to init NAND chips\n");
1424 goto clk_disable;
1425 }
1426 return 0;
1427
1428clk_disable:
1429 rk_nfc_disable_clks(nfc);
1430release_nfc:
1431 return ret;
1432}
1433
1434static void rk_nfc_remove(struct platform_device *pdev)
1435{
1436 struct rk_nfc *nfc = platform_get_drvdata(pdev);
1437
1438 kfree(objp: nfc->page_buf);
1439 kfree(objp: nfc->oob_buf);
1440 rk_nfc_chips_cleanup(nfc);
1441 rk_nfc_disable_clks(nfc);
1442}
1443
1444static int __maybe_unused rk_nfc_suspend(struct device *dev)
1445{
1446 struct rk_nfc *nfc = dev_get_drvdata(dev);
1447
1448 rk_nfc_disable_clks(nfc);
1449
1450 return 0;
1451}
1452
1453static int __maybe_unused rk_nfc_resume(struct device *dev)
1454{
1455 struct rk_nfc *nfc = dev_get_drvdata(dev);
1456 struct rk_nfc_nand_chip *rknand;
1457 struct nand_chip *chip;
1458 int ret;
1459 u32 i;
1460
1461 ret = rk_nfc_enable_clks(dev, nfc);
1462 if (ret)
1463 return ret;
1464
1465 /* Reset NAND chip if VCC was powered off. */
1466 list_for_each_entry(rknand, &nfc->chips, node) {
1467 chip = &rknand->chip;
1468 for (i = 0; i < rknand->nsels; i++)
1469 nand_reset(chip, chipnr: i);
1470 }
1471
1472 return 0;
1473}
1474
1475static const struct dev_pm_ops rk_nfc_pm_ops = {
1476 SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
1477};
1478
1479static struct platform_driver rk_nfc_driver = {
1480 .probe = rk_nfc_probe,
1481 .remove_new = rk_nfc_remove,
1482 .driver = {
1483 .name = "rockchip-nfc",
1484 .of_match_table = rk_nfc_id_table,
1485 .pm = &rk_nfc_pm_ops,
1486 },
1487};
1488
1489module_platform_driver(rk_nfc_driver);
1490
1491MODULE_LICENSE("Dual MIT/GPL");
1492MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
1493MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
1494MODULE_ALIAS("platform:rockchip-nand-controller");
1495

source code of linux/drivers/mtd/nand/raw/rockchip-nand-controller.c