1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
4 *
5 * Derived from:
6 * https://github.com/yuq/sunxi-nfc-mtd
7 * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
8 *
9 * https://github.com/hno/Allwinner-Info
10 * Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
11 *
12 * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
13 * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
14 */
15
16#include <linux/dma-mapping.h>
17#include <linux/slab.h>
18#include <linux/module.h>
19#include <linux/moduleparam.h>
20#include <linux/platform_device.h>
21#include <linux/of.h>
22#include <linux/mtd/mtd.h>
23#include <linux/mtd/rawnand.h>
24#include <linux/mtd/partitions.h>
25#include <linux/clk.h>
26#include <linux/delay.h>
27#include <linux/dmaengine.h>
28#include <linux/interrupt.h>
29#include <linux/iopoll.h>
30#include <linux/reset.h>
31
32#define NFC_REG_CTL 0x0000
33#define NFC_REG_ST 0x0004
34#define NFC_REG_INT 0x0008
35#define NFC_REG_TIMING_CTL 0x000C
36#define NFC_REG_TIMING_CFG 0x0010
37#define NFC_REG_ADDR_LOW 0x0014
38#define NFC_REG_ADDR_HIGH 0x0018
39#define NFC_REG_SECTOR_NUM 0x001C
40#define NFC_REG_CNT 0x0020
41#define NFC_REG_CMD 0x0024
42#define NFC_REG_RCMD_SET 0x0028
43#define NFC_REG_WCMD_SET 0x002C
44#define NFC_REG_A10_IO_DATA 0x0030
45#define NFC_REG_A23_IO_DATA 0x0300
46#define NFC_REG_ECC_CTL 0x0034
47#define NFC_REG_ECC_ST 0x0038
48#define NFC_REG_DEBUG 0x003C
49#define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3)
50#define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4))
51#define NFC_REG_SPARE_AREA 0x00A0
52#define NFC_REG_PAT_ID 0x00A4
53#define NFC_REG_MDMA_ADDR 0x00C0
54#define NFC_REG_MDMA_CNT 0x00C4
55#define NFC_RAM0_BASE 0x0400
56#define NFC_RAM1_BASE 0x0800
57
58/* define bit use in NFC_CTL */
59#define NFC_EN BIT(0)
60#define NFC_RESET BIT(1)
61#define NFC_BUS_WIDTH_MSK BIT(2)
62#define NFC_BUS_WIDTH_8 (0 << 2)
63#define NFC_BUS_WIDTH_16 (1 << 2)
64#define NFC_RB_SEL_MSK BIT(3)
65#define NFC_RB_SEL(x) ((x) << 3)
66#define NFC_CE_SEL_MSK GENMASK(26, 24)
67#define NFC_CE_SEL(x) ((x) << 24)
68#define NFC_CE_CTL BIT(6)
69#define NFC_PAGE_SHIFT_MSK GENMASK(11, 8)
70#define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8)
71#define NFC_SAM BIT(12)
72#define NFC_RAM_METHOD BIT(14)
73#define NFC_DMA_TYPE_NORMAL BIT(15)
74#define NFC_DEBUG_CTL BIT(31)
75
76/* define bit use in NFC_ST */
77#define NFC_RB_B2R BIT(0)
78#define NFC_CMD_INT_FLAG BIT(1)
79#define NFC_DMA_INT_FLAG BIT(2)
80#define NFC_CMD_FIFO_STATUS BIT(3)
81#define NFC_STA BIT(4)
82#define NFC_NATCH_INT_FLAG BIT(5)
83#define NFC_RB_STATE(x) BIT(x + 8)
84
85/* define bit use in NFC_INT */
86#define NFC_B2R_INT_ENABLE BIT(0)
87#define NFC_CMD_INT_ENABLE BIT(1)
88#define NFC_DMA_INT_ENABLE BIT(2)
89#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \
90 NFC_CMD_INT_ENABLE | \
91 NFC_DMA_INT_ENABLE)
92
93/* define bit use in NFC_TIMING_CTL */
94#define NFC_TIMING_CTL_EDO BIT(8)
95
96/* define NFC_TIMING_CFG register layout */
97#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \
98 (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \
99 (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \
100 (((tCAD) & 0x7) << 8))
101
102/* define bit use in NFC_CMD */
103#define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0)
104#define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8)
105#define NFC_CMD(x) (x)
106#define NFC_ADR_NUM_MSK GENMASK(18, 16)
107#define NFC_ADR_NUM(x) (((x) - 1) << 16)
108#define NFC_SEND_ADR BIT(19)
109#define NFC_ACCESS_DIR BIT(20)
110#define NFC_DATA_TRANS BIT(21)
111#define NFC_SEND_CMD1 BIT(22)
112#define NFC_WAIT_FLAG BIT(23)
113#define NFC_SEND_CMD2 BIT(24)
114#define NFC_SEQ BIT(25)
115#define NFC_DATA_SWAP_METHOD BIT(26)
116#define NFC_ROW_AUTO_INC BIT(27)
117#define NFC_SEND_CMD3 BIT(28)
118#define NFC_SEND_CMD4 BIT(29)
119#define NFC_CMD_TYPE_MSK GENMASK(31, 30)
120#define NFC_NORMAL_OP (0 << 30)
121#define NFC_ECC_OP (1 << 30)
122#define NFC_PAGE_OP (2U << 30)
123
124/* define bit use in NFC_RCMD_SET */
125#define NFC_READ_CMD_MSK GENMASK(7, 0)
126#define NFC_RND_READ_CMD0_MSK GENMASK(15, 8)
127#define NFC_RND_READ_CMD1_MSK GENMASK(23, 16)
128
129/* define bit use in NFC_WCMD_SET */
130#define NFC_PROGRAM_CMD_MSK GENMASK(7, 0)
131#define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8)
132#define NFC_READ_CMD0_MSK GENMASK(23, 16)
133#define NFC_READ_CMD1_MSK GENMASK(31, 24)
134
135/* define bit use in NFC_ECC_CTL */
136#define NFC_ECC_EN BIT(0)
137#define NFC_ECC_PIPELINE BIT(3)
138#define NFC_ECC_EXCEPTION BIT(4)
139#define NFC_ECC_BLOCK_SIZE_MSK BIT(5)
140#define NFC_ECC_BLOCK_512 BIT(5)
141#define NFC_RANDOM_EN BIT(9)
142#define NFC_RANDOM_DIRECTION BIT(10)
143#define NFC_ECC_MODE_MSK GENMASK(15, 12)
144#define NFC_ECC_MODE(x) ((x) << 12)
145#define NFC_RANDOM_SEED_MSK GENMASK(30, 16)
146#define NFC_RANDOM_SEED(x) ((x) << 16)
147
148/* define bit use in NFC_ECC_ST */
149#define NFC_ECC_ERR(x) BIT(x)
150#define NFC_ECC_ERR_MSK GENMASK(15, 0)
151#define NFC_ECC_PAT_FOUND(x) BIT(x + 16)
152#define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff)
153
154#define NFC_DEFAULT_TIMEOUT_MS 1000
155
156#define NFC_SRAM_SIZE 1024
157
158#define NFC_MAX_CS 7
159
160/**
161 * struct sunxi_nand_chip_sel - stores information related to NAND Chip Select
162 *
163 * @cs: the NAND CS id used to communicate with a NAND Chip
164 * @rb: the Ready/Busy pin ID. -1 means no R/B pin connected to the NFC
165 */
166struct sunxi_nand_chip_sel {
167 u8 cs;
168 s8 rb;
169};
170
171/**
172 * struct sunxi_nand_hw_ecc - stores information related to HW ECC support
173 *
174 * @ecc_ctl: ECC_CTL register value for this NAND chip
175 */
176struct sunxi_nand_hw_ecc {
177 u32 ecc_ctl;
178};
179
180/**
181 * struct sunxi_nand_chip - stores NAND chip device related information
182 *
183 * @node: used to store NAND chips into a list
184 * @nand: base NAND chip structure
185 * @ecc: ECC controller structure
186 * @clk_rate: clk_rate required for this NAND chip
187 * @timing_cfg: TIMING_CFG register value for this NAND chip
188 * @timing_ctl: TIMING_CTL register value for this NAND chip
189 * @nsels: number of CS lines required by the NAND chip
190 * @sels: array of CS lines descriptions
191 */
192struct sunxi_nand_chip {
193 struct list_head node;
194 struct nand_chip nand;
195 struct sunxi_nand_hw_ecc ecc;
196 unsigned long clk_rate;
197 u32 timing_cfg;
198 u32 timing_ctl;
199 int nsels;
200 struct sunxi_nand_chip_sel sels[] __counted_by(nsels);
201};
202
203static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
204{
205 return container_of(nand, struct sunxi_nand_chip, nand);
206}
207
208/*
209 * NAND Controller capabilities structure: stores NAND controller capabilities
210 * for distinction between compatible strings.
211 *
212 * @has_mdma: Use mbus dma mode, otherwise general dma
213 * through MBUS on A23/A33 needs extra configuration.
214 * @reg_io_data: I/O data register
215 * @dma_maxburst: DMA maxburst
216 */
217struct sunxi_nfc_caps {
218 bool has_mdma;
219 unsigned int reg_io_data;
220 unsigned int dma_maxburst;
221};
222
223/**
224 * struct sunxi_nfc - stores sunxi NAND controller information
225 *
226 * @controller: base controller structure
227 * @dev: parent device (used to print error messages)
228 * @regs: NAND controller registers
229 * @ahb_clk: NAND controller AHB clock
230 * @mod_clk: NAND controller mod clock
231 * @reset: NAND controller reset line
232 * @assigned_cs: bitmask describing already assigned CS lines
233 * @clk_rate: NAND controller current clock rate
234 * @chips: a list containing all the NAND chips attached to this NAND
235 * controller
236 * @complete: a completion object used to wait for NAND controller events
237 * @dmac: the DMA channel attached to the NAND controller
238 * @caps: NAND Controller capabilities
239 */
240struct sunxi_nfc {
241 struct nand_controller controller;
242 struct device *dev;
243 void __iomem *regs;
244 struct clk *ahb_clk;
245 struct clk *mod_clk;
246 struct reset_control *reset;
247 unsigned long assigned_cs;
248 unsigned long clk_rate;
249 struct list_head chips;
250 struct completion complete;
251 struct dma_chan *dmac;
252 const struct sunxi_nfc_caps *caps;
253};
254
255static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_controller *ctrl)
256{
257 return container_of(ctrl, struct sunxi_nfc, controller);
258}
259
260static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
261{
262 struct sunxi_nfc *nfc = dev_id;
263 u32 st = readl(addr: nfc->regs + NFC_REG_ST);
264 u32 ien = readl(addr: nfc->regs + NFC_REG_INT);
265
266 if (!(ien & st))
267 return IRQ_NONE;
268
269 if ((ien & st) == ien)
270 complete(&nfc->complete);
271
272 writel(val: st & NFC_INT_MASK, addr: nfc->regs + NFC_REG_ST);
273 writel(val: ~st & ien & NFC_INT_MASK, addr: nfc->regs + NFC_REG_INT);
274
275 return IRQ_HANDLED;
276}
277
278static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events,
279 bool use_polling, unsigned int timeout_ms)
280{
281 int ret;
282
283 if (events & ~NFC_INT_MASK)
284 return -EINVAL;
285
286 if (!timeout_ms)
287 timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
288
289 if (!use_polling) {
290 init_completion(x: &nfc->complete);
291
292 writel(val: events, addr: nfc->regs + NFC_REG_INT);
293
294 ret = wait_for_completion_timeout(x: &nfc->complete,
295 timeout: msecs_to_jiffies(m: timeout_ms));
296 if (!ret)
297 ret = -ETIMEDOUT;
298 else
299 ret = 0;
300
301 writel(val: 0, addr: nfc->regs + NFC_REG_INT);
302 } else {
303 u32 status;
304
305 ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
306 (status & events) == events, 1,
307 timeout_ms * 1000);
308 }
309
310 writel(val: events & NFC_INT_MASK, addr: nfc->regs + NFC_REG_ST);
311
312 if (ret)
313 dev_err(nfc->dev, "wait interrupt timedout\n");
314
315 return ret;
316}
317
318static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
319{
320 u32 status;
321 int ret;
322
323 ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
324 !(status & NFC_CMD_FIFO_STATUS), 1,
325 NFC_DEFAULT_TIMEOUT_MS * 1000);
326 if (ret)
327 dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
328
329 return ret;
330}
331
332static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
333{
334 u32 ctl;
335 int ret;
336
337 writel(val: 0, addr: nfc->regs + NFC_REG_ECC_CTL);
338 writel(NFC_RESET, addr: nfc->regs + NFC_REG_CTL);
339
340 ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl,
341 !(ctl & NFC_RESET), 1,
342 NFC_DEFAULT_TIMEOUT_MS * 1000);
343 if (ret)
344 dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
345
346 return ret;
347}
348
349static int sunxi_nfc_dma_op_prepare(struct sunxi_nfc *nfc, const void *buf,
350 int chunksize, int nchunks,
351 enum dma_data_direction ddir,
352 struct scatterlist *sg)
353{
354 struct dma_async_tx_descriptor *dmad;
355 enum dma_transfer_direction tdir;
356 dma_cookie_t dmat;
357 int ret;
358
359 if (ddir == DMA_FROM_DEVICE)
360 tdir = DMA_DEV_TO_MEM;
361 else
362 tdir = DMA_MEM_TO_DEV;
363
364 sg_init_one(sg, buf, nchunks * chunksize);
365 ret = dma_map_sg(nfc->dev, sg, 1, ddir);
366 if (!ret)
367 return -ENOMEM;
368
369 if (!nfc->caps->has_mdma) {
370 dmad = dmaengine_prep_slave_sg(chan: nfc->dmac, sgl: sg, sg_len: 1, dir: tdir, flags: DMA_CTRL_ACK);
371 if (!dmad) {
372 ret = -EINVAL;
373 goto err_unmap_buf;
374 }
375 }
376
377 writel(readl(addr: nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD,
378 addr: nfc->regs + NFC_REG_CTL);
379 writel(val: nchunks, addr: nfc->regs + NFC_REG_SECTOR_NUM);
380 writel(val: chunksize, addr: nfc->regs + NFC_REG_CNT);
381
382 if (nfc->caps->has_mdma) {
383 writel(readl(addr: nfc->regs + NFC_REG_CTL) & ~NFC_DMA_TYPE_NORMAL,
384 addr: nfc->regs + NFC_REG_CTL);
385 writel(val: chunksize * nchunks, addr: nfc->regs + NFC_REG_MDMA_CNT);
386 writel(sg_dma_address(sg), addr: nfc->regs + NFC_REG_MDMA_ADDR);
387 } else {
388 dmat = dmaengine_submit(desc: dmad);
389
390 ret = dma_submit_error(cookie: dmat);
391 if (ret)
392 goto err_clr_dma_flag;
393 }
394
395 return 0;
396
397err_clr_dma_flag:
398 writel(readl(addr: nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
399 addr: nfc->regs + NFC_REG_CTL);
400
401err_unmap_buf:
402 dma_unmap_sg(nfc->dev, sg, 1, ddir);
403 return ret;
404}
405
406static void sunxi_nfc_dma_op_cleanup(struct sunxi_nfc *nfc,
407 enum dma_data_direction ddir,
408 struct scatterlist *sg)
409{
410 dma_unmap_sg(nfc->dev, sg, 1, ddir);
411 writel(readl(addr: nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
412 addr: nfc->regs + NFC_REG_CTL);
413}
414
415static void sunxi_nfc_select_chip(struct nand_chip *nand, unsigned int cs)
416{
417 struct mtd_info *mtd = nand_to_mtd(chip: nand);
418 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
419 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: sunxi_nand->nand.controller);
420 struct sunxi_nand_chip_sel *sel;
421 u32 ctl;
422
423 if (cs >= sunxi_nand->nsels)
424 return;
425
426 ctl = readl(addr: nfc->regs + NFC_REG_CTL) &
427 ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
428
429 sel = &sunxi_nand->sels[cs];
430 ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift);
431 if (sel->rb >= 0)
432 ctl |= NFC_RB_SEL(sel->rb);
433
434 writel(val: mtd->writesize, addr: nfc->regs + NFC_REG_SPARE_AREA);
435
436 if (nfc->clk_rate != sunxi_nand->clk_rate) {
437 clk_set_rate(clk: nfc->mod_clk, rate: sunxi_nand->clk_rate);
438 nfc->clk_rate = sunxi_nand->clk_rate;
439 }
440
441 writel(val: sunxi_nand->timing_ctl, addr: nfc->regs + NFC_REG_TIMING_CTL);
442 writel(val: sunxi_nand->timing_cfg, addr: nfc->regs + NFC_REG_TIMING_CFG);
443 writel(val: ctl, addr: nfc->regs + NFC_REG_CTL);
444}
445
446static void sunxi_nfc_read_buf(struct nand_chip *nand, uint8_t *buf, int len)
447{
448 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
449 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: sunxi_nand->nand.controller);
450 int ret;
451 int cnt;
452 int offs = 0;
453 u32 tmp;
454
455 while (len > offs) {
456 bool poll = false;
457
458 cnt = min(len - offs, NFC_SRAM_SIZE);
459
460 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
461 if (ret)
462 break;
463
464 writel(val: cnt, addr: nfc->regs + NFC_REG_CNT);
465 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
466 writel(val: tmp, addr: nfc->regs + NFC_REG_CMD);
467
468 /* Arbitrary limit for polling mode */
469 if (cnt < 64)
470 poll = true;
471
472 ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, use_polling: poll, timeout_ms: 0);
473 if (ret)
474 break;
475
476 if (buf)
477 memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
478 cnt);
479 offs += cnt;
480 }
481}
482
483static void sunxi_nfc_write_buf(struct nand_chip *nand, const uint8_t *buf,
484 int len)
485{
486 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
487 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: sunxi_nand->nand.controller);
488 int ret;
489 int cnt;
490 int offs = 0;
491 u32 tmp;
492
493 while (len > offs) {
494 bool poll = false;
495
496 cnt = min(len - offs, NFC_SRAM_SIZE);
497
498 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
499 if (ret)
500 break;
501
502 writel(val: cnt, addr: nfc->regs + NFC_REG_CNT);
503 memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
504 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
505 NFC_ACCESS_DIR;
506 writel(val: tmp, addr: nfc->regs + NFC_REG_CMD);
507
508 /* Arbitrary limit for polling mode */
509 if (cnt < 64)
510 poll = true;
511
512 ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, use_polling: poll, timeout_ms: 0);
513 if (ret)
514 break;
515
516 offs += cnt;
517 }
518}
519
520/* These seed values have been extracted from Allwinner's BSP */
521static const u16 sunxi_nfc_randomizer_page_seeds[] = {
522 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
523 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
524 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
525 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
526 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
527 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
528 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
529 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
530 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
531 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
532 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
533 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
534 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
535 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
536 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
537 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
538};
539
540/*
541 * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
542 * have been generated using
543 * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
544 * the randomizer engine does internally before de/scrambling OOB data.
545 *
546 * Those tables are statically defined to avoid calculating randomizer state
547 * at runtime.
548 */
549static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
550 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
551 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
552 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
553 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
554 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
555 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
556 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
557 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
558 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
559 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
560 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
561 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
562 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
563 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
564 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
565 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
566};
567
568static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
569 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
570 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
571 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
572 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
573 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
574 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
575 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
576 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
577 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
578 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
579 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
580 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
581 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
582 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
583 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
584 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
585};
586
587static u16 sunxi_nfc_randomizer_step(u16 state, int count)
588{
589 state &= 0x7fff;
590
591 /*
592 * This loop is just a simple implementation of a Fibonacci LFSR using
593 * the x16 + x15 + 1 polynomial.
594 */
595 while (count--)
596 state = ((state >> 1) |
597 (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;
598
599 return state;
600}
601
602static u16 sunxi_nfc_randomizer_state(struct nand_chip *nand, int page,
603 bool ecc)
604{
605 struct mtd_info *mtd = nand_to_mtd(chip: nand);
606 const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
607 int mod = mtd_div_by_ws(sz: mtd->erasesize, mtd);
608
609 if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
610 mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);
611
612 if (ecc) {
613 if (mtd->ecc_step_size == 512)
614 seeds = sunxi_nfc_randomizer_ecc512_seeds;
615 else
616 seeds = sunxi_nfc_randomizer_ecc1024_seeds;
617 }
618
619 return seeds[page % mod];
620}
621
622static void sunxi_nfc_randomizer_config(struct nand_chip *nand, int page,
623 bool ecc)
624{
625 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
626 u32 ecc_ctl = readl(addr: nfc->regs + NFC_REG_ECC_CTL);
627 u16 state;
628
629 if (!(nand->options & NAND_NEED_SCRAMBLING))
630 return;
631
632 ecc_ctl = readl(addr: nfc->regs + NFC_REG_ECC_CTL);
633 state = sunxi_nfc_randomizer_state(nand, page, ecc);
634 ecc_ctl = readl(addr: nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
635 writel(val: ecc_ctl | NFC_RANDOM_SEED(state), addr: nfc->regs + NFC_REG_ECC_CTL);
636}
637
638static void sunxi_nfc_randomizer_enable(struct nand_chip *nand)
639{
640 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
641
642 if (!(nand->options & NAND_NEED_SCRAMBLING))
643 return;
644
645 writel(readl(addr: nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
646 addr: nfc->regs + NFC_REG_ECC_CTL);
647}
648
649static void sunxi_nfc_randomizer_disable(struct nand_chip *nand)
650{
651 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
652
653 if (!(nand->options & NAND_NEED_SCRAMBLING))
654 return;
655
656 writel(readl(addr: nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
657 addr: nfc->regs + NFC_REG_ECC_CTL);
658}
659
660static void sunxi_nfc_randomize_bbm(struct nand_chip *nand, int page, u8 *bbm)
661{
662 u16 state = sunxi_nfc_randomizer_state(nand, page, ecc: true);
663
664 bbm[0] ^= state;
665 bbm[1] ^= sunxi_nfc_randomizer_step(state, count: 8);
666}
667
668static void sunxi_nfc_randomizer_write_buf(struct nand_chip *nand,
669 const uint8_t *buf, int len,
670 bool ecc, int page)
671{
672 sunxi_nfc_randomizer_config(nand, page, ecc);
673 sunxi_nfc_randomizer_enable(nand);
674 sunxi_nfc_write_buf(nand, buf, len);
675 sunxi_nfc_randomizer_disable(nand);
676}
677
678static void sunxi_nfc_randomizer_read_buf(struct nand_chip *nand, uint8_t *buf,
679 int len, bool ecc, int page)
680{
681 sunxi_nfc_randomizer_config(nand, page, ecc);
682 sunxi_nfc_randomizer_enable(nand);
683 sunxi_nfc_read_buf(nand, buf, len);
684 sunxi_nfc_randomizer_disable(nand);
685}
686
687static void sunxi_nfc_hw_ecc_enable(struct nand_chip *nand)
688{
689 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
690 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
691
692 writel(val: sunxi_nand->ecc.ecc_ctl, addr: nfc->regs + NFC_REG_ECC_CTL);
693}
694
695static void sunxi_nfc_hw_ecc_disable(struct nand_chip *nand)
696{
697 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
698
699 writel(val: 0, addr: nfc->regs + NFC_REG_ECC_CTL);
700}
701
702static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
703{
704 buf[0] = user_data;
705 buf[1] = user_data >> 8;
706 buf[2] = user_data >> 16;
707 buf[3] = user_data >> 24;
708}
709
710static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
711{
712 return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
713}
714
715static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct nand_chip *nand, u8 *oob,
716 int step, bool bbm, int page)
717{
718 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
719
720 sunxi_nfc_user_data_to_buf(readl(addr: nfc->regs + NFC_REG_USER_DATA(step)),
721 buf: oob);
722
723 /* De-randomize the Bad Block Marker. */
724 if (bbm && (nand->options & NAND_NEED_SCRAMBLING))
725 sunxi_nfc_randomize_bbm(nand, page, bbm: oob);
726}
727
728static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct nand_chip *nand,
729 const u8 *oob, int step,
730 bool bbm, int page)
731{
732 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
733 u8 user_data[4];
734
735 /* Randomize the Bad Block Marker. */
736 if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) {
737 memcpy(user_data, oob, sizeof(user_data));
738 sunxi_nfc_randomize_bbm(nand, page, bbm: user_data);
739 oob = user_data;
740 }
741
742 writel(val: sunxi_nfc_buf_to_user_data(buf: oob),
743 addr: nfc->regs + NFC_REG_USER_DATA(step));
744}
745
746static void sunxi_nfc_hw_ecc_update_stats(struct nand_chip *nand,
747 unsigned int *max_bitflips, int ret)
748{
749 struct mtd_info *mtd = nand_to_mtd(chip: nand);
750
751 if (ret < 0) {
752 mtd->ecc_stats.failed++;
753 } else {
754 mtd->ecc_stats.corrected += ret;
755 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
756 }
757}
758
759static int sunxi_nfc_hw_ecc_correct(struct nand_chip *nand, u8 *data, u8 *oob,
760 int step, u32 status, bool *erased)
761{
762 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
763 struct nand_ecc_ctrl *ecc = &nand->ecc;
764 u32 tmp;
765
766 *erased = false;
767
768 if (status & NFC_ECC_ERR(step))
769 return -EBADMSG;
770
771 if (status & NFC_ECC_PAT_FOUND(step)) {
772 u8 pattern;
773
774 if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) {
775 pattern = 0x0;
776 } else {
777 pattern = 0xff;
778 *erased = true;
779 }
780
781 if (data)
782 memset(data, pattern, ecc->size);
783
784 if (oob)
785 memset(oob, pattern, ecc->bytes + 4);
786
787 return 0;
788 }
789
790 tmp = readl(addr: nfc->regs + NFC_REG_ECC_ERR_CNT(step));
791
792 return NFC_ECC_ERR_CNT(step, tmp);
793}
794
795static int sunxi_nfc_hw_ecc_read_chunk(struct nand_chip *nand,
796 u8 *data, int data_off,
797 u8 *oob, int oob_off,
798 int *cur_off,
799 unsigned int *max_bitflips,
800 bool bbm, bool oob_required, int page)
801{
802 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
803 struct nand_ecc_ctrl *ecc = &nand->ecc;
804 int raw_mode = 0;
805 bool erased;
806 int ret;
807
808 if (*cur_off != data_off)
809 nand_change_read_column_op(chip: nand, offset_in_page: data_off, NULL, len: 0, force_8bit: false);
810
811 sunxi_nfc_randomizer_read_buf(nand, NULL, len: ecc->size, ecc: false, page);
812
813 if (data_off + ecc->size != oob_off)
814 nand_change_read_column_op(chip: nand, offset_in_page: oob_off, NULL, len: 0, force_8bit: false);
815
816 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
817 if (ret)
818 return ret;
819
820 sunxi_nfc_randomizer_enable(nand);
821 writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
822 addr: nfc->regs + NFC_REG_CMD);
823
824 ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, use_polling: false, timeout_ms: 0);
825 sunxi_nfc_randomizer_disable(nand);
826 if (ret)
827 return ret;
828
829 *cur_off = oob_off + ecc->bytes + 4;
830
831 ret = sunxi_nfc_hw_ecc_correct(nand, data, oob: oob_required ? oob : NULL, step: 0,
832 readl(addr: nfc->regs + NFC_REG_ECC_ST),
833 erased: &erased);
834 if (erased)
835 return 1;
836
837 if (ret < 0) {
838 /*
839 * Re-read the data with the randomizer disabled to identify
840 * bitflips in erased pages.
841 */
842 if (nand->options & NAND_NEED_SCRAMBLING)
843 nand_change_read_column_op(chip: nand, offset_in_page: data_off, buf: data,
844 len: ecc->size, force_8bit: false);
845 else
846 memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE,
847 ecc->size);
848
849 nand_change_read_column_op(chip: nand, offset_in_page: oob_off, buf: oob, len: ecc->bytes + 4,
850 force_8bit: false);
851
852 ret = nand_check_erased_ecc_chunk(data, datalen: ecc->size,
853 ecc: oob, ecclen: ecc->bytes + 4,
854 NULL, extraooblen: 0, threshold: ecc->strength);
855 if (ret >= 0)
856 raw_mode = 1;
857 } else {
858 memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
859
860 if (oob_required) {
861 nand_change_read_column_op(chip: nand, offset_in_page: oob_off, NULL, len: 0,
862 force_8bit: false);
863 sunxi_nfc_randomizer_read_buf(nand, buf: oob, len: ecc->bytes + 4,
864 ecc: true, page);
865
866 sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, step: 0,
867 bbm, page);
868 }
869 }
870
871 sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips, ret);
872
873 return raw_mode;
874}
875
876static void sunxi_nfc_hw_ecc_read_extra_oob(struct nand_chip *nand,
877 u8 *oob, int *cur_off,
878 bool randomize, int page)
879{
880 struct mtd_info *mtd = nand_to_mtd(chip: nand);
881 struct nand_ecc_ctrl *ecc = &nand->ecc;
882 int offset = ((ecc->bytes + 4) * ecc->steps);
883 int len = mtd->oobsize - offset;
884
885 if (len <= 0)
886 return;
887
888 if (!cur_off || *cur_off != offset)
889 nand_change_read_column_op(chip: nand, offset_in_page: mtd->writesize, NULL, len: 0,
890 force_8bit: false);
891
892 if (!randomize)
893 sunxi_nfc_read_buf(nand, buf: oob + offset, len);
894 else
895 sunxi_nfc_randomizer_read_buf(nand, buf: oob + offset, len,
896 ecc: false, page);
897
898 if (cur_off)
899 *cur_off = mtd->oobsize + mtd->writesize;
900}
901
902static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf,
903 int oob_required, int page,
904 int nchunks)
905{
906 bool randomized = nand->options & NAND_NEED_SCRAMBLING;
907 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
908 struct mtd_info *mtd = nand_to_mtd(chip: nand);
909 struct nand_ecc_ctrl *ecc = &nand->ecc;
910 unsigned int max_bitflips = 0;
911 int ret, i, raw_mode = 0;
912 struct scatterlist sg;
913 u32 status, wait;
914
915 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
916 if (ret)
917 return ret;
918
919 ret = sunxi_nfc_dma_op_prepare(nfc, buf, chunksize: ecc->size, nchunks,
920 ddir: DMA_FROM_DEVICE, sg: &sg);
921 if (ret)
922 return ret;
923
924 sunxi_nfc_hw_ecc_enable(nand);
925 sunxi_nfc_randomizer_config(nand, page, ecc: false);
926 sunxi_nfc_randomizer_enable(nand);
927
928 writel(val: (NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) |
929 NAND_CMD_READSTART, addr: nfc->regs + NFC_REG_RCMD_SET);
930
931 wait = NFC_CMD_INT_FLAG;
932
933 if (nfc->caps->has_mdma)
934 wait |= NFC_DMA_INT_FLAG;
935 else
936 dma_async_issue_pending(chan: nfc->dmac);
937
938 writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS,
939 addr: nfc->regs + NFC_REG_CMD);
940
941 ret = sunxi_nfc_wait_events(nfc, events: wait, use_polling: false, timeout_ms: 0);
942 if (ret && !nfc->caps->has_mdma)
943 dmaengine_terminate_all(chan: nfc->dmac);
944
945 sunxi_nfc_randomizer_disable(nand);
946 sunxi_nfc_hw_ecc_disable(nand);
947
948 sunxi_nfc_dma_op_cleanup(nfc, ddir: DMA_FROM_DEVICE, sg: &sg);
949
950 if (ret)
951 return ret;
952
953 status = readl(addr: nfc->regs + NFC_REG_ECC_ST);
954
955 for (i = 0; i < nchunks; i++) {
956 int data_off = i * ecc->size;
957 int oob_off = i * (ecc->bytes + 4);
958 u8 *data = buf + data_off;
959 u8 *oob = nand->oob_poi + oob_off;
960 bool erased;
961
962 ret = sunxi_nfc_hw_ecc_correct(nand, data: randomized ? data : NULL,
963 oob: oob_required ? oob : NULL,
964 step: i, status, erased: &erased);
965
966 /* ECC errors are handled in the second loop. */
967 if (ret < 0)
968 continue;
969
970 if (oob_required && !erased) {
971 /* TODO: use DMA to retrieve OOB */
972 nand_change_read_column_op(chip: nand,
973 offset_in_page: mtd->writesize + oob_off,
974 buf: oob, len: ecc->bytes + 4, force_8bit: false);
975
976 sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, step: i,
977 bbm: !i, page);
978 }
979
980 if (erased)
981 raw_mode = 1;
982
983 sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips: &max_bitflips, ret);
984 }
985
986 if (status & NFC_ECC_ERR_MSK) {
987 for (i = 0; i < nchunks; i++) {
988 int data_off = i * ecc->size;
989 int oob_off = i * (ecc->bytes + 4);
990 u8 *data = buf + data_off;
991 u8 *oob = nand->oob_poi + oob_off;
992
993 if (!(status & NFC_ECC_ERR(i)))
994 continue;
995
996 /*
997 * Re-read the data with the randomizer disabled to
998 * identify bitflips in erased pages.
999 * TODO: use DMA to read page in raw mode
1000 */
1001 if (randomized)
1002 nand_change_read_column_op(chip: nand, offset_in_page: data_off,
1003 buf: data, len: ecc->size,
1004 force_8bit: false);
1005
1006 /* TODO: use DMA to retrieve OOB */
1007 nand_change_read_column_op(chip: nand,
1008 offset_in_page: mtd->writesize + oob_off,
1009 buf: oob, len: ecc->bytes + 4, force_8bit: false);
1010
1011 ret = nand_check_erased_ecc_chunk(data, datalen: ecc->size,
1012 ecc: oob, ecclen: ecc->bytes + 4,
1013 NULL, extraooblen: 0,
1014 threshold: ecc->strength);
1015 if (ret >= 0)
1016 raw_mode = 1;
1017
1018 sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips: &max_bitflips, ret);
1019 }
1020 }
1021
1022 if (oob_required)
1023 sunxi_nfc_hw_ecc_read_extra_oob(nand, oob: nand->oob_poi,
1024 NULL, randomize: !raw_mode,
1025 page);
1026
1027 return max_bitflips;
1028}
1029
1030static int sunxi_nfc_hw_ecc_write_chunk(struct nand_chip *nand,
1031 const u8 *data, int data_off,
1032 const u8 *oob, int oob_off,
1033 int *cur_off, bool bbm,
1034 int page)
1035{
1036 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
1037 struct nand_ecc_ctrl *ecc = &nand->ecc;
1038 int ret;
1039
1040 if (data_off != *cur_off)
1041 nand_change_write_column_op(chip: nand, offset_in_page: data_off, NULL, len: 0, force_8bit: false);
1042
1043 sunxi_nfc_randomizer_write_buf(nand, buf: data, len: ecc->size, ecc: false, page);
1044
1045 if (data_off + ecc->size != oob_off)
1046 nand_change_write_column_op(chip: nand, offset_in_page: oob_off, NULL, len: 0, force_8bit: false);
1047
1048 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
1049 if (ret)
1050 return ret;
1051
1052 sunxi_nfc_randomizer_enable(nand);
1053 sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, step: 0, bbm, page);
1054
1055 writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
1056 NFC_ACCESS_DIR | NFC_ECC_OP,
1057 addr: nfc->regs + NFC_REG_CMD);
1058
1059 ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, use_polling: false, timeout_ms: 0);
1060 sunxi_nfc_randomizer_disable(nand);
1061 if (ret)
1062 return ret;
1063
1064 *cur_off = oob_off + ecc->bytes + 4;
1065
1066 return 0;
1067}
1068
1069static void sunxi_nfc_hw_ecc_write_extra_oob(struct nand_chip *nand,
1070 u8 *oob, int *cur_off,
1071 int page)
1072{
1073 struct mtd_info *mtd = nand_to_mtd(chip: nand);
1074 struct nand_ecc_ctrl *ecc = &nand->ecc;
1075 int offset = ((ecc->bytes + 4) * ecc->steps);
1076 int len = mtd->oobsize - offset;
1077
1078 if (len <= 0)
1079 return;
1080
1081 if (!cur_off || *cur_off != offset)
1082 nand_change_write_column_op(chip: nand, offset_in_page: offset + mtd->writesize,
1083 NULL, len: 0, force_8bit: false);
1084
1085 sunxi_nfc_randomizer_write_buf(nand, buf: oob + offset, len, ecc: false, page);
1086
1087 if (cur_off)
1088 *cur_off = mtd->oobsize + mtd->writesize;
1089}
1090
1091static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *nand, uint8_t *buf,
1092 int oob_required, int page)
1093{
1094 struct mtd_info *mtd = nand_to_mtd(chip: nand);
1095 struct nand_ecc_ctrl *ecc = &nand->ecc;
1096 unsigned int max_bitflips = 0;
1097 int ret, i, cur_off = 0;
1098 bool raw_mode = false;
1099
1100 sunxi_nfc_select_chip(nand, cs: nand->cur_cs);
1101
1102 nand_read_page_op(chip: nand, page, offset_in_page: 0, NULL, len: 0);
1103
1104 sunxi_nfc_hw_ecc_enable(nand);
1105
1106 for (i = 0; i < ecc->steps; i++) {
1107 int data_off = i * ecc->size;
1108 int oob_off = i * (ecc->bytes + 4);
1109 u8 *data = buf + data_off;
1110 u8 *oob = nand->oob_poi + oob_off;
1111
1112 ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, oob,
1113 oob_off: oob_off + mtd->writesize,
1114 cur_off: &cur_off, max_bitflips: &max_bitflips,
1115 bbm: !i, oob_required, page);
1116 if (ret < 0)
1117 return ret;
1118 else if (ret)
1119 raw_mode = true;
1120 }
1121
1122 if (oob_required)
1123 sunxi_nfc_hw_ecc_read_extra_oob(nand, oob: nand->oob_poi, cur_off: &cur_off,
1124 randomize: !raw_mode, page);
1125
1126 sunxi_nfc_hw_ecc_disable(nand);
1127
1128 return max_bitflips;
1129}
1130
1131static int sunxi_nfc_hw_ecc_read_page_dma(struct nand_chip *nand, u8 *buf,
1132 int oob_required, int page)
1133{
1134 int ret;
1135
1136 sunxi_nfc_select_chip(nand, cs: nand->cur_cs);
1137
1138 nand_read_page_op(chip: nand, page, offset_in_page: 0, NULL, len: 0);
1139
1140 ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, oob_required, page,
1141 nchunks: nand->ecc.steps);
1142 if (ret >= 0)
1143 return ret;
1144
1145 /* Fallback to PIO mode */
1146 return sunxi_nfc_hw_ecc_read_page(nand, buf, oob_required, page);
1147}
1148
1149static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *nand,
1150 u32 data_offs, u32 readlen,
1151 u8 *bufpoi, int page)
1152{
1153 struct mtd_info *mtd = nand_to_mtd(chip: nand);
1154 struct nand_ecc_ctrl *ecc = &nand->ecc;
1155 int ret, i, cur_off = 0;
1156 unsigned int max_bitflips = 0;
1157
1158 sunxi_nfc_select_chip(nand, cs: nand->cur_cs);
1159
1160 nand_read_page_op(chip: nand, page, offset_in_page: 0, NULL, len: 0);
1161
1162 sunxi_nfc_hw_ecc_enable(nand);
1163
1164 for (i = data_offs / ecc->size;
1165 i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
1166 int data_off = i * ecc->size;
1167 int oob_off = i * (ecc->bytes + 4);
1168 u8 *data = bufpoi + data_off;
1169 u8 *oob = nand->oob_poi + oob_off;
1170
1171 ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off,
1172 oob,
1173 oob_off: oob_off + mtd->writesize,
1174 cur_off: &cur_off, max_bitflips: &max_bitflips, bbm: !i,
1175 oob_required: false, page);
1176 if (ret < 0)
1177 return ret;
1178 }
1179
1180 sunxi_nfc_hw_ecc_disable(nand);
1181
1182 return max_bitflips;
1183}
1184
1185static int sunxi_nfc_hw_ecc_read_subpage_dma(struct nand_chip *nand,
1186 u32 data_offs, u32 readlen,
1187 u8 *buf, int page)
1188{
1189 int nchunks = DIV_ROUND_UP(data_offs + readlen, nand->ecc.size);
1190 int ret;
1191
1192 sunxi_nfc_select_chip(nand, cs: nand->cur_cs);
1193
1194 nand_read_page_op(chip: nand, page, offset_in_page: 0, NULL, len: 0);
1195
1196 ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, oob_required: false, page, nchunks);
1197 if (ret >= 0)
1198 return ret;
1199
1200 /* Fallback to PIO mode */
1201 return sunxi_nfc_hw_ecc_read_subpage(nand, data_offs, readlen,
1202 bufpoi: buf, page);
1203}
1204
1205static int sunxi_nfc_hw_ecc_write_page(struct nand_chip *nand,
1206 const uint8_t *buf, int oob_required,
1207 int page)
1208{
1209 struct mtd_info *mtd = nand_to_mtd(chip: nand);
1210 struct nand_ecc_ctrl *ecc = &nand->ecc;
1211 int ret, i, cur_off = 0;
1212
1213 sunxi_nfc_select_chip(nand, cs: nand->cur_cs);
1214
1215 nand_prog_page_begin_op(chip: nand, page, offset_in_page: 0, NULL, len: 0);
1216
1217 sunxi_nfc_hw_ecc_enable(nand);
1218
1219 for (i = 0; i < ecc->steps; i++) {
1220 int data_off = i * ecc->size;
1221 int oob_off = i * (ecc->bytes + 4);
1222 const u8 *data = buf + data_off;
1223 const u8 *oob = nand->oob_poi + oob_off;
1224
1225 ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob,
1226 oob_off: oob_off + mtd->writesize,
1227 cur_off: &cur_off, bbm: !i, page);
1228 if (ret)
1229 return ret;
1230 }
1231
1232 if (oob_required || (nand->options & NAND_NEED_SCRAMBLING))
1233 sunxi_nfc_hw_ecc_write_extra_oob(nand, oob: nand->oob_poi,
1234 cur_off: &cur_off, page);
1235
1236 sunxi_nfc_hw_ecc_disable(nand);
1237
1238 return nand_prog_page_end_op(chip: nand);
1239}
1240
1241static int sunxi_nfc_hw_ecc_write_subpage(struct nand_chip *nand,
1242 u32 data_offs, u32 data_len,
1243 const u8 *buf, int oob_required,
1244 int page)
1245{
1246 struct mtd_info *mtd = nand_to_mtd(chip: nand);
1247 struct nand_ecc_ctrl *ecc = &nand->ecc;
1248 int ret, i, cur_off = 0;
1249
1250 sunxi_nfc_select_chip(nand, cs: nand->cur_cs);
1251
1252 nand_prog_page_begin_op(chip: nand, page, offset_in_page: 0, NULL, len: 0);
1253
1254 sunxi_nfc_hw_ecc_enable(nand);
1255
1256 for (i = data_offs / ecc->size;
1257 i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
1258 int data_off = i * ecc->size;
1259 int oob_off = i * (ecc->bytes + 4);
1260 const u8 *data = buf + data_off;
1261 const u8 *oob = nand->oob_poi + oob_off;
1262
1263 ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob,
1264 oob_off: oob_off + mtd->writesize,
1265 cur_off: &cur_off, bbm: !i, page);
1266 if (ret)
1267 return ret;
1268 }
1269
1270 sunxi_nfc_hw_ecc_disable(nand);
1271
1272 return nand_prog_page_end_op(chip: nand);
1273}
1274
1275static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand,
1276 const u8 *buf,
1277 int oob_required,
1278 int page)
1279{
1280 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
1281 struct nand_ecc_ctrl *ecc = &nand->ecc;
1282 struct scatterlist sg;
1283 u32 wait;
1284 int ret, i;
1285
1286 sunxi_nfc_select_chip(nand, cs: nand->cur_cs);
1287
1288 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
1289 if (ret)
1290 return ret;
1291
1292 ret = sunxi_nfc_dma_op_prepare(nfc, buf, chunksize: ecc->size, nchunks: ecc->steps,
1293 ddir: DMA_TO_DEVICE, sg: &sg);
1294 if (ret)
1295 goto pio_fallback;
1296
1297 for (i = 0; i < ecc->steps; i++) {
1298 const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4));
1299
1300 sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, step: i, bbm: !i, page);
1301 }
1302
1303 nand_prog_page_begin_op(chip: nand, page, offset_in_page: 0, NULL, len: 0);
1304
1305 sunxi_nfc_hw_ecc_enable(nand);
1306 sunxi_nfc_randomizer_config(nand, page, ecc: false);
1307 sunxi_nfc_randomizer_enable(nand);
1308
1309 writel(val: (NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG,
1310 addr: nfc->regs + NFC_REG_WCMD_SET);
1311
1312 wait = NFC_CMD_INT_FLAG;
1313
1314 if (nfc->caps->has_mdma)
1315 wait |= NFC_DMA_INT_FLAG;
1316 else
1317 dma_async_issue_pending(chan: nfc->dmac);
1318
1319 writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD |
1320 NFC_DATA_TRANS | NFC_ACCESS_DIR,
1321 addr: nfc->regs + NFC_REG_CMD);
1322
1323 ret = sunxi_nfc_wait_events(nfc, events: wait, use_polling: false, timeout_ms: 0);
1324 if (ret && !nfc->caps->has_mdma)
1325 dmaengine_terminate_all(chan: nfc->dmac);
1326
1327 sunxi_nfc_randomizer_disable(nand);
1328 sunxi_nfc_hw_ecc_disable(nand);
1329
1330 sunxi_nfc_dma_op_cleanup(nfc, ddir: DMA_TO_DEVICE, sg: &sg);
1331
1332 if (ret)
1333 return ret;
1334
1335 if (oob_required || (nand->options & NAND_NEED_SCRAMBLING))
1336 /* TODO: use DMA to transfer extra OOB bytes ? */
1337 sunxi_nfc_hw_ecc_write_extra_oob(nand, oob: nand->oob_poi,
1338 NULL, page);
1339
1340 return nand_prog_page_end_op(chip: nand);
1341
1342pio_fallback:
1343 return sunxi_nfc_hw_ecc_write_page(nand, buf, oob_required, page);
1344}
1345
1346static int sunxi_nfc_hw_ecc_read_oob(struct nand_chip *nand, int page)
1347{
1348 u8 *buf = nand_get_data_buf(chip: nand);
1349
1350 return nand->ecc.read_page(nand, buf, 1, page);
1351}
1352
1353static int sunxi_nfc_hw_ecc_write_oob(struct nand_chip *nand, int page)
1354{
1355 struct mtd_info *mtd = nand_to_mtd(chip: nand);
1356 u8 *buf = nand_get_data_buf(chip: nand);
1357 int ret;
1358
1359 memset(buf, 0xff, mtd->writesize);
1360 ret = nand->ecc.write_page(nand, buf, 1, page);
1361 if (ret)
1362 return ret;
1363
1364 /* Send command to program the OOB data */
1365 return nand_prog_page_end_op(chip: nand);
1366}
1367
1368static const s32 tWB_lut[] = {6, 12, 16, 20};
1369static const s32 tRHW_lut[] = {4, 8, 12, 20};
1370
1371static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
1372 u32 clk_period)
1373{
1374 u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
1375 int i;
1376
1377 for (i = 0; i < lut_size; i++) {
1378 if (clk_cycles <= lut[i])
1379 return i;
1380 }
1381
1382 /* Doesn't fit */
1383 return -EINVAL;
1384}
1385
1386#define sunxi_nand_lookup_timing(l, p, c) \
1387 _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
1388
1389static int sunxi_nfc_setup_interface(struct nand_chip *nand, int csline,
1390 const struct nand_interface_config *conf)
1391{
1392 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1393 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: sunxi_nand->nand.controller);
1394 const struct nand_sdr_timings *timings;
1395 u32 min_clk_period = 0;
1396 s32 tWB, tADL, tWHR, tRHW, tCAD;
1397 long real_clk_rate;
1398
1399 timings = nand_get_sdr_timings(conf);
1400 if (IS_ERR(ptr: timings))
1401 return -ENOTSUPP;
1402
1403 /* T1 <=> tCLS */
1404 if (timings->tCLS_min > min_clk_period)
1405 min_clk_period = timings->tCLS_min;
1406
1407 /* T2 <=> tCLH */
1408 if (timings->tCLH_min > min_clk_period)
1409 min_clk_period = timings->tCLH_min;
1410
1411 /* T3 <=> tCS */
1412 if (timings->tCS_min > min_clk_period)
1413 min_clk_period = timings->tCS_min;
1414
1415 /* T4 <=> tCH */
1416 if (timings->tCH_min > min_clk_period)
1417 min_clk_period = timings->tCH_min;
1418
1419 /* T5 <=> tWP */
1420 if (timings->tWP_min > min_clk_period)
1421 min_clk_period = timings->tWP_min;
1422
1423 /* T6 <=> tWH */
1424 if (timings->tWH_min > min_clk_period)
1425 min_clk_period = timings->tWH_min;
1426
1427 /* T7 <=> tALS */
1428 if (timings->tALS_min > min_clk_period)
1429 min_clk_period = timings->tALS_min;
1430
1431 /* T8 <=> tDS */
1432 if (timings->tDS_min > min_clk_period)
1433 min_clk_period = timings->tDS_min;
1434
1435 /* T9 <=> tDH */
1436 if (timings->tDH_min > min_clk_period)
1437 min_clk_period = timings->tDH_min;
1438
1439 /* T10 <=> tRR */
1440 if (timings->tRR_min > (min_clk_period * 3))
1441 min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
1442
1443 /* T11 <=> tALH */
1444 if (timings->tALH_min > min_clk_period)
1445 min_clk_period = timings->tALH_min;
1446
1447 /* T12 <=> tRP */
1448 if (timings->tRP_min > min_clk_period)
1449 min_clk_period = timings->tRP_min;
1450
1451 /* T13 <=> tREH */
1452 if (timings->tREH_min > min_clk_period)
1453 min_clk_period = timings->tREH_min;
1454
1455 /* T14 <=> tRC */
1456 if (timings->tRC_min > (min_clk_period * 2))
1457 min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
1458
1459 /* T15 <=> tWC */
1460 if (timings->tWC_min > (min_clk_period * 2))
1461 min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
1462
1463 /* T16 - T19 + tCAD */
1464 if (timings->tWB_max > (min_clk_period * 20))
1465 min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20);
1466
1467 if (timings->tADL_min > (min_clk_period * 32))
1468 min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32);
1469
1470 if (timings->tWHR_min > (min_clk_period * 32))
1471 min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32);
1472
1473 if (timings->tRHW_min > (min_clk_period * 20))
1474 min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20);
1475
1476 /*
1477 * In non-EDO, tREA should be less than tRP to guarantee that the
1478 * controller does not sample the IO lines too early. Unfortunately,
1479 * the sunxi NAND controller does not allow us to have different
1480 * values for tRP and tREH (tRP = tREH = tRW / 2).
1481 *
1482 * We have 2 options to overcome this limitation:
1483 *
1484 * 1/ Extend tRC to fulfil the tREA <= tRC / 2 constraint
1485 * 2/ Use EDO mode (only works if timings->tRLOH > 0)
1486 */
1487 if (timings->tREA_max > min_clk_period && !timings->tRLOH_min)
1488 min_clk_period = timings->tREA_max;
1489
1490 tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
1491 min_clk_period);
1492 if (tWB < 0) {
1493 dev_err(nfc->dev, "unsupported tWB\n");
1494 return tWB;
1495 }
1496
1497 tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
1498 if (tADL > 3) {
1499 dev_err(nfc->dev, "unsupported tADL\n");
1500 return -EINVAL;
1501 }
1502
1503 tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
1504 if (tWHR > 3) {
1505 dev_err(nfc->dev, "unsupported tWHR\n");
1506 return -EINVAL;
1507 }
1508
1509 tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
1510 min_clk_period);
1511 if (tRHW < 0) {
1512 dev_err(nfc->dev, "unsupported tRHW\n");
1513 return tRHW;
1514 }
1515
1516 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1517 return 0;
1518
1519 /*
1520 * TODO: according to ONFI specs this value only applies for DDR NAND,
1521 * but Allwinner seems to set this to 0x7. Mimic them for now.
1522 */
1523 tCAD = 0x7;
1524
1525 /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
1526 sunxi_nand->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
1527
1528 /* Convert min_clk_period from picoseconds to nanoseconds */
1529 min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
1530
1531 /*
1532 * Unlike what is stated in Allwinner datasheet, the clk_rate should
1533 * be set to (1 / min_clk_period), and not (2 / min_clk_period).
1534 * This new formula was verified with a scope and validated by
1535 * Allwinner engineers.
1536 */
1537 sunxi_nand->clk_rate = NSEC_PER_SEC / min_clk_period;
1538 real_clk_rate = clk_round_rate(clk: nfc->mod_clk, rate: sunxi_nand->clk_rate);
1539 if (real_clk_rate <= 0) {
1540 dev_err(nfc->dev, "Unable to round clk %lu\n",
1541 sunxi_nand->clk_rate);
1542 return -EINVAL;
1543 }
1544
1545 sunxi_nand->timing_ctl = 0;
1546
1547 /*
1548 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
1549 * output cycle timings shall be used if the host drives tRC less than
1550 * 30 ns. We should also use EDO mode if tREA is bigger than tRP.
1551 */
1552 min_clk_period = NSEC_PER_SEC / real_clk_rate;
1553 if (min_clk_period * 2 < 30 || min_clk_period * 1000 < timings->tREA_max)
1554 sunxi_nand->timing_ctl = NFC_TIMING_CTL_EDO;
1555
1556 return 0;
1557}
1558
1559static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1560 struct mtd_oob_region *oobregion)
1561{
1562 struct nand_chip *nand = mtd_to_nand(mtd);
1563 struct nand_ecc_ctrl *ecc = &nand->ecc;
1564
1565 if (section >= ecc->steps)
1566 return -ERANGE;
1567
1568 oobregion->offset = section * (ecc->bytes + 4) + 4;
1569 oobregion->length = ecc->bytes;
1570
1571 return 0;
1572}
1573
1574static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section,
1575 struct mtd_oob_region *oobregion)
1576{
1577 struct nand_chip *nand = mtd_to_nand(mtd);
1578 struct nand_ecc_ctrl *ecc = &nand->ecc;
1579
1580 if (section > ecc->steps)
1581 return -ERANGE;
1582
1583 /*
1584 * The first 2 bytes are used for BB markers, hence we
1585 * only have 2 bytes available in the first user data
1586 * section.
1587 */
1588 if (!section && ecc->engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1589 oobregion->offset = 2;
1590 oobregion->length = 2;
1591
1592 return 0;
1593 }
1594
1595 /*
1596 * The controller does not provide access to OOB bytes
1597 * past the end of the ECC data.
1598 */
1599 if (section == ecc->steps && ecc->engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1600 return -ERANGE;
1601
1602 oobregion->offset = section * (ecc->bytes + 4);
1603
1604 if (section < ecc->steps)
1605 oobregion->length = 4;
1606 else
1607 oobregion->length = mtd->oobsize - oobregion->offset;
1608
1609 return 0;
1610}
1611
1612static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = {
1613 .ecc = sunxi_nand_ooblayout_ecc,
1614 .free = sunxi_nand_ooblayout_free,
1615};
1616
1617static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
1618 struct nand_ecc_ctrl *ecc,
1619 struct device_node *np)
1620{
1621 static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1622 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1623 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
1624 struct mtd_info *mtd = nand_to_mtd(chip: nand);
1625 struct nand_device *nanddev = mtd_to_nanddev(mtd);
1626 int nsectors;
1627 int i;
1628
1629 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) {
1630 int bytes;
1631
1632 ecc->size = 1024;
1633 nsectors = mtd->writesize / ecc->size;
1634
1635 /* Reserve 2 bytes for the BBM */
1636 bytes = (mtd->oobsize - 2) / nsectors;
1637
1638 /* 4 non-ECC bytes are added before each ECC bytes section */
1639 bytes -= 4;
1640
1641 /* and bytes has to be even. */
1642 if (bytes % 2)
1643 bytes--;
1644
1645 ecc->strength = bytes * 8 / fls(x: 8 * ecc->size);
1646
1647 for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1648 if (strengths[i] > ecc->strength)
1649 break;
1650 }
1651
1652 if (!i)
1653 ecc->strength = 0;
1654 else
1655 ecc->strength = strengths[i - 1];
1656 }
1657
1658 if (ecc->size != 512 && ecc->size != 1024)
1659 return -EINVAL;
1660
1661 /* Prefer 1k ECC chunk over 512 ones */
1662 if (ecc->size == 512 && mtd->writesize > 512) {
1663 ecc->size = 1024;
1664 ecc->strength *= 2;
1665 }
1666
1667 /* Add ECC info retrieval from DT */
1668 for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1669 if (ecc->strength <= strengths[i]) {
1670 /*
1671 * Update ecc->strength value with the actual strength
1672 * that will be used by the ECC engine.
1673 */
1674 ecc->strength = strengths[i];
1675 break;
1676 }
1677 }
1678
1679 if (i >= ARRAY_SIZE(strengths)) {
1680 dev_err(nfc->dev, "unsupported strength\n");
1681 return -ENOTSUPP;
1682 }
1683
1684 /* HW ECC always request ECC bytes for 1024 bytes blocks */
1685 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
1686
1687 /* HW ECC always work with even numbers of ECC bytes */
1688 ecc->bytes = ALIGN(ecc->bytes, 2);
1689
1690 nsectors = mtd->writesize / ecc->size;
1691
1692 if (mtd->oobsize < ((ecc->bytes + 4) * nsectors))
1693 return -EINVAL;
1694
1695 ecc->read_oob = sunxi_nfc_hw_ecc_read_oob;
1696 ecc->write_oob = sunxi_nfc_hw_ecc_write_oob;
1697 mtd_set_ooblayout(mtd, ooblayout: &sunxi_nand_ooblayout_ops);
1698
1699 if (nfc->dmac || nfc->caps->has_mdma) {
1700 ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma;
1701 ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma;
1702 ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma;
1703 nand->options |= NAND_USES_DMA;
1704 } else {
1705 ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1706 ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
1707 ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1708 }
1709
1710 /* TODO: support DMA for raw accesses and subpage write */
1711 ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
1712 ecc->read_oob_raw = nand_read_oob_std;
1713 ecc->write_oob_raw = nand_write_oob_std;
1714
1715 sunxi_nand->ecc.ecc_ctl = NFC_ECC_MODE(i) | NFC_ECC_EXCEPTION |
1716 NFC_ECC_PIPELINE | NFC_ECC_EN;
1717
1718 if (ecc->size == 512)
1719 sunxi_nand->ecc.ecc_ctl |= NFC_ECC_BLOCK_512;
1720
1721 return 0;
1722}
1723
1724static int sunxi_nand_attach_chip(struct nand_chip *nand)
1725{
1726 const struct nand_ecc_props *requirements =
1727 nanddev_get_ecc_requirements(nand: &nand->base);
1728 struct nand_ecc_ctrl *ecc = &nand->ecc;
1729 struct device_node *np = nand_get_flash_node(chip: nand);
1730 int ret;
1731
1732 if (nand->bbt_options & NAND_BBT_USE_FLASH)
1733 nand->bbt_options |= NAND_BBT_NO_OOB;
1734
1735 if (nand->options & NAND_NEED_SCRAMBLING)
1736 nand->options |= NAND_NO_SUBPAGE_WRITE;
1737
1738 nand->options |= NAND_SUBPAGE_READ;
1739
1740 if (!ecc->size) {
1741 ecc->size = requirements->step_size;
1742 ecc->strength = requirements->strength;
1743 }
1744
1745 if (!ecc->size || !ecc->strength)
1746 return -EINVAL;
1747
1748 switch (ecc->engine_type) {
1749 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1750 ret = sunxi_nand_hw_ecc_ctrl_init(nand, ecc, np);
1751 if (ret)
1752 return ret;
1753 break;
1754 case NAND_ECC_ENGINE_TYPE_NONE:
1755 case NAND_ECC_ENGINE_TYPE_SOFT:
1756 break;
1757 default:
1758 return -EINVAL;
1759 }
1760
1761 return 0;
1762}
1763
1764static int sunxi_nfc_exec_subop(struct nand_chip *nand,
1765 const struct nand_subop *subop)
1766{
1767 struct sunxi_nfc *nfc = to_sunxi_nfc(ctrl: nand->controller);
1768 u32 cmd = 0, extcmd = 0, cnt = 0, addrs[2] = { };
1769 unsigned int i, j, remaining, start;
1770 void *inbuf = NULL;
1771 int ret;
1772
1773 for (i = 0; i < subop->ninstrs; i++) {
1774 const struct nand_op_instr *instr = &subop->instrs[i];
1775
1776 switch (instr->type) {
1777 case NAND_OP_CMD_INSTR:
1778 if (cmd & NFC_SEND_CMD1) {
1779 if (WARN_ON(cmd & NFC_SEND_CMD2))
1780 return -EINVAL;
1781
1782 cmd |= NFC_SEND_CMD2;
1783 extcmd |= instr->ctx.cmd.opcode;
1784 } else {
1785 cmd |= NFC_SEND_CMD1 |
1786 NFC_CMD(instr->ctx.cmd.opcode);
1787 }
1788 break;
1789
1790 case NAND_OP_ADDR_INSTR:
1791 remaining = nand_subop_get_num_addr_cyc(subop, op_id: i);
1792 start = nand_subop_get_addr_start_off(subop, op_id: i);
1793 for (j = 0; j < 8 && j + start < remaining; j++) {
1794 u32 addr = instr->ctx.addr.addrs[j + start];
1795
1796 addrs[j / 4] |= addr << (j % 4) * 8;
1797 }
1798
1799 if (j)
1800 cmd |= NFC_SEND_ADR | NFC_ADR_NUM(j);
1801
1802 break;
1803
1804 case NAND_OP_DATA_IN_INSTR:
1805 case NAND_OP_DATA_OUT_INSTR:
1806 start = nand_subop_get_data_start_off(subop, op_id: i);
1807 remaining = nand_subop_get_data_len(subop, op_id: i);
1808 cnt = min_t(u32, remaining, NFC_SRAM_SIZE);
1809 cmd |= NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
1810
1811 if (instr->type == NAND_OP_DATA_OUT_INSTR) {
1812 cmd |= NFC_ACCESS_DIR;
1813 memcpy_toio(nfc->regs + NFC_RAM0_BASE,
1814 instr->ctx.data.buf.out + start,
1815 cnt);
1816 } else {
1817 inbuf = instr->ctx.data.buf.in + start;
1818 }
1819
1820 break;
1821
1822 case NAND_OP_WAITRDY_INSTR:
1823 cmd |= NFC_WAIT_FLAG;
1824 break;
1825 }
1826 }
1827
1828 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
1829 if (ret)
1830 return ret;
1831
1832 if (cmd & NFC_SEND_ADR) {
1833 writel(val: addrs[0], addr: nfc->regs + NFC_REG_ADDR_LOW);
1834 writel(val: addrs[1], addr: nfc->regs + NFC_REG_ADDR_HIGH);
1835 }
1836
1837 if (cmd & NFC_SEND_CMD2)
1838 writel(val: extcmd,
1839 addr: nfc->regs +
1840 (cmd & NFC_ACCESS_DIR ?
1841 NFC_REG_WCMD_SET : NFC_REG_RCMD_SET));
1842
1843 if (cmd & NFC_DATA_TRANS)
1844 writel(val: cnt, addr: nfc->regs + NFC_REG_CNT);
1845
1846 writel(val: cmd, addr: nfc->regs + NFC_REG_CMD);
1847
1848 ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG,
1849 use_polling: !(cmd & NFC_WAIT_FLAG) && cnt < 64,
1850 timeout_ms: 0);
1851 if (ret)
1852 return ret;
1853
1854 if (inbuf)
1855 memcpy_fromio(inbuf, nfc->regs + NFC_RAM0_BASE, cnt);
1856
1857 return 0;
1858}
1859
1860static int sunxi_nfc_soft_waitrdy(struct nand_chip *nand,
1861 const struct nand_subop *subop)
1862{
1863 return nand_soft_waitrdy(chip: nand,
1864 timeout_ms: subop->instrs[0].ctx.waitrdy.timeout_ms);
1865}
1866
1867static const struct nand_op_parser sunxi_nfc_op_parser = NAND_OP_PARSER(
1868 NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
1869 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1870 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
1871 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1872 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1873 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)),
1874 NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
1875 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1876 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
1877 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024),
1878 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1879 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1880);
1881
1882static const struct nand_op_parser sunxi_nfc_norb_op_parser = NAND_OP_PARSER(
1883 NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
1884 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1885 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
1886 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1887 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)),
1888 NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
1889 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1890 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
1891 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024),
1892 NAND_OP_PARSER_PAT_CMD_ELEM(true)),
1893 NAND_OP_PARSER_PATTERN(sunxi_nfc_soft_waitrdy,
1894 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1895);
1896
1897static int sunxi_nfc_exec_op(struct nand_chip *nand,
1898 const struct nand_operation *op, bool check_only)
1899{
1900 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1901 const struct nand_op_parser *parser;
1902
1903 if (!check_only)
1904 sunxi_nfc_select_chip(nand, cs: op->cs);
1905
1906 if (sunxi_nand->sels[op->cs].rb >= 0)
1907 parser = &sunxi_nfc_op_parser;
1908 else
1909 parser = &sunxi_nfc_norb_op_parser;
1910
1911 return nand_op_parser_exec_op(chip: nand, parser, op, check_only);
1912}
1913
1914static const struct nand_controller_ops sunxi_nand_controller_ops = {
1915 .attach_chip = sunxi_nand_attach_chip,
1916 .setup_interface = sunxi_nfc_setup_interface,
1917 .exec_op = sunxi_nfc_exec_op,
1918};
1919
1920static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1921{
1922 struct sunxi_nand_chip *sunxi_nand;
1923 struct nand_chip *chip;
1924 int ret;
1925
1926 while (!list_empty(head: &nfc->chips)) {
1927 sunxi_nand = list_first_entry(&nfc->chips,
1928 struct sunxi_nand_chip,
1929 node);
1930 chip = &sunxi_nand->nand;
1931 ret = mtd_device_unregister(master: nand_to_mtd(chip));
1932 WARN_ON(ret);
1933 nand_cleanup(chip);
1934 list_del(entry: &sunxi_nand->node);
1935 }
1936}
1937
1938static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1939 struct device_node *np)
1940{
1941 struct sunxi_nand_chip *sunxi_nand;
1942 struct mtd_info *mtd;
1943 struct nand_chip *nand;
1944 int nsels;
1945 int ret;
1946 int i;
1947 u32 tmp;
1948
1949 if (!of_get_property(node: np, name: "reg", lenp: &nsels))
1950 return -EINVAL;
1951
1952 nsels /= sizeof(u32);
1953 if (!nsels) {
1954 dev_err(dev, "invalid reg property size\n");
1955 return -EINVAL;
1956 }
1957
1958 sunxi_nand = devm_kzalloc(dev, struct_size(sunxi_nand, sels, nsels),
1959 GFP_KERNEL);
1960 if (!sunxi_nand)
1961 return -ENOMEM;
1962
1963 sunxi_nand->nsels = nsels;
1964
1965 for (i = 0; i < nsels; i++) {
1966 ret = of_property_read_u32_index(np, propname: "reg", index: i, out_value: &tmp);
1967 if (ret) {
1968 dev_err(dev, "could not retrieve reg property: %d\n",
1969 ret);
1970 return ret;
1971 }
1972
1973 if (tmp > NFC_MAX_CS) {
1974 dev_err(dev,
1975 "invalid reg value: %u (max CS = 7)\n",
1976 tmp);
1977 return -EINVAL;
1978 }
1979
1980 if (test_and_set_bit(nr: tmp, addr: &nfc->assigned_cs)) {
1981 dev_err(dev, "CS %d already assigned\n", tmp);
1982 return -EINVAL;
1983 }
1984
1985 sunxi_nand->sels[i].cs = tmp;
1986
1987 if (!of_property_read_u32_index(np, propname: "allwinner,rb", index: i, out_value: &tmp) &&
1988 tmp < 2)
1989 sunxi_nand->sels[i].rb = tmp;
1990 else
1991 sunxi_nand->sels[i].rb = -1;
1992 }
1993
1994 nand = &sunxi_nand->nand;
1995 /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1996 nand->controller = &nfc->controller;
1997 nand->controller->ops = &sunxi_nand_controller_ops;
1998
1999 /*
2000 * Set the ECC mode to the default value in case nothing is specified
2001 * in the DT.
2002 */
2003 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2004 nand_set_flash_node(chip: nand, np);
2005
2006 mtd = nand_to_mtd(chip: nand);
2007 mtd->dev.parent = dev;
2008
2009 ret = nand_scan(chip: nand, max_chips: nsels);
2010 if (ret)
2011 return ret;
2012
2013 ret = mtd_device_register(mtd, NULL, 0);
2014 if (ret) {
2015 dev_err(dev, "failed to register mtd device: %d\n", ret);
2016 nand_cleanup(chip: nand);
2017 return ret;
2018 }
2019
2020 list_add_tail(new: &sunxi_nand->node, head: &nfc->chips);
2021
2022 return 0;
2023}
2024
2025static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
2026{
2027 struct device_node *np = dev->of_node;
2028 struct device_node *nand_np;
2029 int ret;
2030
2031 for_each_child_of_node(np, nand_np) {
2032 ret = sunxi_nand_chip_init(dev, nfc, np: nand_np);
2033 if (ret) {
2034 of_node_put(node: nand_np);
2035 sunxi_nand_chips_cleanup(nfc);
2036 return ret;
2037 }
2038 }
2039
2040 return 0;
2041}
2042
2043static int sunxi_nfc_dma_init(struct sunxi_nfc *nfc, struct resource *r)
2044{
2045 int ret;
2046
2047 if (nfc->caps->has_mdma)
2048 return 0;
2049
2050 nfc->dmac = dma_request_chan(dev: nfc->dev, name: "rxtx");
2051 if (IS_ERR(ptr: nfc->dmac)) {
2052 ret = PTR_ERR(ptr: nfc->dmac);
2053 if (ret == -EPROBE_DEFER)
2054 return ret;
2055
2056 /* Ignore errors to fall back to PIO mode */
2057 dev_warn(nfc->dev, "failed to request rxtx DMA channel: %d\n", ret);
2058 nfc->dmac = NULL;
2059 } else {
2060 struct dma_slave_config dmac_cfg = { };
2061
2062 dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data;
2063 dmac_cfg.dst_addr = dmac_cfg.src_addr;
2064 dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2065 dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width;
2066 dmac_cfg.src_maxburst = nfc->caps->dma_maxburst;
2067 dmac_cfg.dst_maxburst = nfc->caps->dma_maxburst;
2068 dmaengine_slave_config(chan: nfc->dmac, config: &dmac_cfg);
2069 }
2070 return 0;
2071}
2072
2073static int sunxi_nfc_probe(struct platform_device *pdev)
2074{
2075 struct device *dev = &pdev->dev;
2076 struct resource *r;
2077 struct sunxi_nfc *nfc;
2078 int irq;
2079 int ret;
2080
2081 nfc = devm_kzalloc(dev, size: sizeof(*nfc), GFP_KERNEL);
2082 if (!nfc)
2083 return -ENOMEM;
2084
2085 nfc->dev = dev;
2086 nand_controller_init(nfc: &nfc->controller);
2087 INIT_LIST_HEAD(list: &nfc->chips);
2088
2089 nfc->regs = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &r);
2090 if (IS_ERR(ptr: nfc->regs))
2091 return PTR_ERR(ptr: nfc->regs);
2092
2093 irq = platform_get_irq(pdev, 0);
2094 if (irq < 0)
2095 return irq;
2096
2097 nfc->ahb_clk = devm_clk_get_enabled(dev, id: "ahb");
2098 if (IS_ERR(ptr: nfc->ahb_clk)) {
2099 dev_err(dev, "failed to retrieve ahb clk\n");
2100 return PTR_ERR(ptr: nfc->ahb_clk);
2101 }
2102
2103 nfc->mod_clk = devm_clk_get_enabled(dev, id: "mod");
2104 if (IS_ERR(ptr: nfc->mod_clk)) {
2105 dev_err(dev, "failed to retrieve mod clk\n");
2106 return PTR_ERR(ptr: nfc->mod_clk);
2107 }
2108
2109 nfc->reset = devm_reset_control_get_optional_exclusive(dev, id: "ahb");
2110 if (IS_ERR(ptr: nfc->reset))
2111 return PTR_ERR(ptr: nfc->reset);
2112
2113 ret = reset_control_deassert(rstc: nfc->reset);
2114 if (ret) {
2115 dev_err(dev, "reset err %d\n", ret);
2116 return ret;
2117 }
2118
2119 nfc->caps = of_device_get_match_data(dev: &pdev->dev);
2120 if (!nfc->caps) {
2121 ret = -EINVAL;
2122 goto out_ahb_reset_reassert;
2123 }
2124
2125 ret = sunxi_nfc_rst(nfc);
2126 if (ret)
2127 goto out_ahb_reset_reassert;
2128
2129 writel(val: 0, addr: nfc->regs + NFC_REG_INT);
2130 ret = devm_request_irq(dev, irq, handler: sunxi_nfc_interrupt,
2131 irqflags: 0, devname: "sunxi-nand", dev_id: nfc);
2132 if (ret)
2133 goto out_ahb_reset_reassert;
2134
2135 ret = sunxi_nfc_dma_init(nfc, r);
2136
2137 if (ret)
2138 goto out_ahb_reset_reassert;
2139
2140 platform_set_drvdata(pdev, data: nfc);
2141
2142 ret = sunxi_nand_chips_init(dev, nfc);
2143 if (ret) {
2144 dev_err(dev, "failed to init nand chips\n");
2145 goto out_release_dmac;
2146 }
2147
2148 return 0;
2149
2150out_release_dmac:
2151 if (nfc->dmac)
2152 dma_release_channel(chan: nfc->dmac);
2153out_ahb_reset_reassert:
2154 reset_control_assert(rstc: nfc->reset);
2155
2156 return ret;
2157}
2158
2159static void sunxi_nfc_remove(struct platform_device *pdev)
2160{
2161 struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
2162
2163 sunxi_nand_chips_cleanup(nfc);
2164
2165 reset_control_assert(rstc: nfc->reset);
2166
2167 if (nfc->dmac)
2168 dma_release_channel(chan: nfc->dmac);
2169}
2170
2171static const struct sunxi_nfc_caps sunxi_nfc_a10_caps = {
2172 .reg_io_data = NFC_REG_A10_IO_DATA,
2173 .dma_maxburst = 4,
2174};
2175
2176static const struct sunxi_nfc_caps sunxi_nfc_a23_caps = {
2177 .has_mdma = true,
2178 .reg_io_data = NFC_REG_A23_IO_DATA,
2179 .dma_maxburst = 8,
2180};
2181
2182static const struct of_device_id sunxi_nfc_ids[] = {
2183 {
2184 .compatible = "allwinner,sun4i-a10-nand",
2185 .data = &sunxi_nfc_a10_caps,
2186 },
2187 {
2188 .compatible = "allwinner,sun8i-a23-nand-controller",
2189 .data = &sunxi_nfc_a23_caps,
2190 },
2191 { /* sentinel */ }
2192};
2193MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
2194
2195static struct platform_driver sunxi_nfc_driver = {
2196 .driver = {
2197 .name = "sunxi_nand",
2198 .of_match_table = sunxi_nfc_ids,
2199 },
2200 .probe = sunxi_nfc_probe,
2201 .remove_new = sunxi_nfc_remove,
2202};
2203module_platform_driver(sunxi_nfc_driver);
2204
2205MODULE_LICENSE("GPL");
2206MODULE_AUTHOR("Boris BREZILLON");
2207MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
2208MODULE_ALIAS("platform:sunxi_nand");
2209

source code of linux/drivers/mtd/nand/raw/sunxi_nand.c