1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 */
8
9#include <linux/device.h>
10#include <linux/kernel.h>
11#include <linux/mtd/spinand.h>
12
13#define SPINAND_MFR_MICRON 0x2c
14
15#define MICRON_STATUS_ECC_MASK GENMASK(6, 4)
16#define MICRON_STATUS_ECC_NO_BITFLIPS (0 << 4)
17#define MICRON_STATUS_ECC_1TO3_BITFLIPS (1 << 4)
18#define MICRON_STATUS_ECC_4TO6_BITFLIPS (3 << 4)
19#define MICRON_STATUS_ECC_7TO8_BITFLIPS (5 << 4)
20
21#define MICRON_CFG_CR BIT(0)
22
23/*
24 * As per datasheet, die selection is done by the 6th bit of Die
25 * Select Register (Address 0xD0).
26 */
27#define MICRON_DIE_SELECT_REG 0xD0
28
29#define MICRON_SELECT_DIE(x) ((x) << 6)
30
31static SPINAND_OP_VARIANTS(quadio_read_cache_variants,
32 SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
33 SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
34 SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
35 SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
36 SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
37 SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
38
39static SPINAND_OP_VARIANTS(x4_write_cache_variants,
40 SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
41 SPINAND_PROG_LOAD(true, 0, NULL, 0));
42
43static SPINAND_OP_VARIANTS(x4_update_cache_variants,
44 SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
45 SPINAND_PROG_LOAD(false, 0, NULL, 0));
46
47/* Micron MT29F2G01AAAED Device */
48static SPINAND_OP_VARIANTS(x4_read_cache_variants,
49 SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
50 SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
51 SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
52 SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
53
54static SPINAND_OP_VARIANTS(x1_write_cache_variants,
55 SPINAND_PROG_LOAD(true, 0, NULL, 0));
56
57static SPINAND_OP_VARIANTS(x1_update_cache_variants,
58 SPINAND_PROG_LOAD(false, 0, NULL, 0));
59
60static int micron_8_ooblayout_ecc(struct mtd_info *mtd, int section,
61 struct mtd_oob_region *region)
62{
63 if (section)
64 return -ERANGE;
65
66 region->offset = mtd->oobsize / 2;
67 region->length = mtd->oobsize / 2;
68
69 return 0;
70}
71
72static int micron_8_ooblayout_free(struct mtd_info *mtd, int section,
73 struct mtd_oob_region *region)
74{
75 if (section)
76 return -ERANGE;
77
78 /* Reserve 2 bytes for the BBM. */
79 region->offset = 2;
80 region->length = (mtd->oobsize / 2) - 2;
81
82 return 0;
83}
84
85static const struct mtd_ooblayout_ops micron_8_ooblayout = {
86 .ecc = micron_8_ooblayout_ecc,
87 .free = micron_8_ooblayout_free,
88};
89
90static int micron_4_ooblayout_ecc(struct mtd_info *mtd, int section,
91 struct mtd_oob_region *region)
92{
93 struct spinand_device *spinand = mtd_to_spinand(mtd);
94
95 if (section >= spinand->base.memorg.pagesize /
96 mtd->ecc_step_size)
97 return -ERANGE;
98
99 region->offset = (section * 16) + 8;
100 region->length = 8;
101
102 return 0;
103}
104
105static int micron_4_ooblayout_free(struct mtd_info *mtd, int section,
106 struct mtd_oob_region *region)
107{
108 struct spinand_device *spinand = mtd_to_spinand(mtd);
109
110 if (section >= spinand->base.memorg.pagesize /
111 mtd->ecc_step_size)
112 return -ERANGE;
113
114 if (section) {
115 region->offset = 16 * section;
116 region->length = 8;
117 } else {
118 /* section 0 has two bytes reserved for the BBM */
119 region->offset = 2;
120 region->length = 6;
121 }
122
123 return 0;
124}
125
126static const struct mtd_ooblayout_ops micron_4_ooblayout = {
127 .ecc = micron_4_ooblayout_ecc,
128 .free = micron_4_ooblayout_free,
129};
130
131static int micron_select_target(struct spinand_device *spinand,
132 unsigned int target)
133{
134 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(MICRON_DIE_SELECT_REG,
135 spinand->scratchbuf);
136
137 if (target > 1)
138 return -EINVAL;
139
140 *spinand->scratchbuf = MICRON_SELECT_DIE(target);
141
142 return spi_mem_exec_op(mem: spinand->spimem, op: &op);
143}
144
145static int micron_8_ecc_get_status(struct spinand_device *spinand,
146 u8 status)
147{
148 switch (status & MICRON_STATUS_ECC_MASK) {
149 case STATUS_ECC_NO_BITFLIPS:
150 return 0;
151
152 case STATUS_ECC_UNCOR_ERROR:
153 return -EBADMSG;
154
155 case MICRON_STATUS_ECC_1TO3_BITFLIPS:
156 return 3;
157
158 case MICRON_STATUS_ECC_4TO6_BITFLIPS:
159 return 6;
160
161 case MICRON_STATUS_ECC_7TO8_BITFLIPS:
162 return 8;
163
164 default:
165 break;
166 }
167
168 return -EINVAL;
169}
170
171static const struct spinand_info micron_spinand_table[] = {
172 /* M79A 2Gb 3.3V */
173 SPINAND_INFO("MT29F2G01ABAGD",
174 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x24),
175 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
176 NAND_ECCREQ(8, 512),
177 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
178 &x4_write_cache_variants,
179 &x4_update_cache_variants),
180 0,
181 SPINAND_ECCINFO(&micron_8_ooblayout,
182 micron_8_ecc_get_status)),
183 /* M79A 2Gb 1.8V */
184 SPINAND_INFO("MT29F2G01ABBGD",
185 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x25),
186 NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
187 NAND_ECCREQ(8, 512),
188 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
189 &x4_write_cache_variants,
190 &x4_update_cache_variants),
191 0,
192 SPINAND_ECCINFO(&micron_8_ooblayout,
193 micron_8_ecc_get_status)),
194 /* M78A 1Gb 3.3V */
195 SPINAND_INFO("MT29F1G01ABAFD",
196 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x14),
197 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
198 NAND_ECCREQ(8, 512),
199 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
200 &x4_write_cache_variants,
201 &x4_update_cache_variants),
202 0,
203 SPINAND_ECCINFO(&micron_8_ooblayout,
204 micron_8_ecc_get_status)),
205 /* M78A 1Gb 1.8V */
206 SPINAND_INFO("MT29F1G01ABAFD",
207 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x15),
208 NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
209 NAND_ECCREQ(8, 512),
210 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
211 &x4_write_cache_variants,
212 &x4_update_cache_variants),
213 0,
214 SPINAND_ECCINFO(&micron_8_ooblayout,
215 micron_8_ecc_get_status)),
216 /* M79A 4Gb 3.3V */
217 SPINAND_INFO("MT29F4G01ADAGD",
218 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x36),
219 NAND_MEMORG(1, 2048, 128, 64, 2048, 80, 2, 1, 2),
220 NAND_ECCREQ(8, 512),
221 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
222 &x4_write_cache_variants,
223 &x4_update_cache_variants),
224 0,
225 SPINAND_ECCINFO(&micron_8_ooblayout,
226 micron_8_ecc_get_status),
227 SPINAND_SELECT_TARGET(micron_select_target)),
228 /* M70A 4Gb 3.3V */
229 SPINAND_INFO("MT29F4G01ABAFD",
230 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x34),
231 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
232 NAND_ECCREQ(8, 512),
233 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
234 &x4_write_cache_variants,
235 &x4_update_cache_variants),
236 SPINAND_HAS_CR_FEAT_BIT,
237 SPINAND_ECCINFO(&micron_8_ooblayout,
238 micron_8_ecc_get_status)),
239 /* M70A 4Gb 1.8V */
240 SPINAND_INFO("MT29F4G01ABBFD",
241 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x35),
242 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
243 NAND_ECCREQ(8, 512),
244 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
245 &x4_write_cache_variants,
246 &x4_update_cache_variants),
247 SPINAND_HAS_CR_FEAT_BIT,
248 SPINAND_ECCINFO(&micron_8_ooblayout,
249 micron_8_ecc_get_status)),
250 /* M70A 8Gb 3.3V */
251 SPINAND_INFO("MT29F8G01ADAFD",
252 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x46),
253 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
254 NAND_ECCREQ(8, 512),
255 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
256 &x4_write_cache_variants,
257 &x4_update_cache_variants),
258 SPINAND_HAS_CR_FEAT_BIT,
259 SPINAND_ECCINFO(&micron_8_ooblayout,
260 micron_8_ecc_get_status),
261 SPINAND_SELECT_TARGET(micron_select_target)),
262 /* M70A 8Gb 1.8V */
263 SPINAND_INFO("MT29F8G01ADBFD",
264 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x47),
265 NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
266 NAND_ECCREQ(8, 512),
267 SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
268 &x4_write_cache_variants,
269 &x4_update_cache_variants),
270 SPINAND_HAS_CR_FEAT_BIT,
271 SPINAND_ECCINFO(&micron_8_ooblayout,
272 micron_8_ecc_get_status),
273 SPINAND_SELECT_TARGET(micron_select_target)),
274 /* M69A 2Gb 3.3V */
275 SPINAND_INFO("MT29F2G01AAAED",
276 SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x9F),
277 NAND_MEMORG(1, 2048, 64, 64, 2048, 80, 2, 1, 1),
278 NAND_ECCREQ(4, 512),
279 SPINAND_INFO_OP_VARIANTS(&x4_read_cache_variants,
280 &x1_write_cache_variants,
281 &x1_update_cache_variants),
282 0,
283 SPINAND_ECCINFO(&micron_4_ooblayout, NULL)),
284};
285
286static int micron_spinand_init(struct spinand_device *spinand)
287{
288 /*
289 * M70A device series enable Continuous Read feature at Power-up,
290 * which is not supported. Disable this bit to avoid any possible
291 * failure.
292 */
293 if (spinand->flags & SPINAND_HAS_CR_FEAT_BIT)
294 return spinand_upd_cfg(spinand, MICRON_CFG_CR, val: 0);
295
296 return 0;
297}
298
299static const struct spinand_manufacturer_ops micron_spinand_manuf_ops = {
300 .init = micron_spinand_init,
301};
302
303const struct spinand_manufacturer micron_spinand_manufacturer = {
304 .id = SPINAND_MFR_MICRON,
305 .name = "Micron",
306 .chips = micron_spinand_table,
307 .nchips = ARRAY_SIZE(micron_spinand_table),
308 .ops = &micron_spinand_manuf_ops,
309};
310

source code of linux/drivers/mtd/nand/spi/micron.c