1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ8795 switch driver
4 *
5 * Copyright (C) 2017 Microchip Technology Inc.
6 * Tristram Ha <Tristram.Ha@microchip.com>
7 */
8
9#include <linux/bitfield.h>
10#include <linux/delay.h>
11#include <linux/export.h>
12#include <linux/gpio.h>
13#include <linux/if_vlan.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/platform_data/microchip-ksz.h>
17#include <linux/phy.h>
18#include <linux/etherdevice.h>
19#include <linux/if_bridge.h>
20#include <linux/micrel_phy.h>
21#include <net/dsa.h>
22#include <net/switchdev.h>
23#include <linux/phylink.h>
24
25#include "ksz_common.h"
26#include "ksz8795_reg.h"
27#include "ksz8.h"
28
29static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30{
31 regmap_update_bits(map: ksz_regmap_8(dev), reg: addr, mask: bits, val: set ? bits : 0);
32}
33
34static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 bool set)
36{
37 regmap_update_bits(map: ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
38 mask: bits, val: set ? bits : 0);
39}
40
41static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42{
43 const u16 *regs;
44 u16 ctrl_addr;
45 int ret = 0;
46
47 regs = dev->info->regs;
48
49 mutex_lock(&dev->alu_mutex);
50
51 ctrl_addr = IND_ACC_TABLE(table) | addr;
52 ret = ksz_write16(dev, reg: regs[REG_IND_CTRL_0], value: ctrl_addr);
53 if (!ret)
54 ret = ksz_write8(dev, reg: regs[REG_IND_BYTE], value: data);
55
56 mutex_unlock(lock: &dev->alu_mutex);
57
58 return ret;
59}
60
61int ksz8_reset_switch(struct ksz_device *dev)
62{
63 if (ksz_is_ksz88x3(dev)) {
64 /* reset switch */
65 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, set: true);
67 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, set: false);
69 } else {
70 /* reset switch */
71 ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 ksz_write8(dev, REG_POWER_MANAGEMENT_1, value: 0);
74 }
75
76 return 0;
77}
78
79static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80{
81 u8 ctrl2 = 0;
82
83 if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84 ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85 else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86 ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87
88 return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89 KSZ8863_HUGE_PACKET_ENABLE, val: ctrl2);
90}
91
92static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93{
94 u8 ctrl1 = 0, ctrl2 = 0;
95 int ret;
96
97 if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98 ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99 if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100 ctrl1 |= SW_HUGE_PACKET;
101
102 ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, val: ctrl1);
103 if (ret)
104 return ret;
105
106 return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, val: ctrl2);
107}
108
109int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110{
111 u16 frame_size;
112
113 if (!dsa_is_cpu_port(ds: dev->ds, p: port))
114 return 0;
115
116 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117
118 switch (dev->chip_id) {
119 case KSZ8795_CHIP_ID:
120 case KSZ8794_CHIP_ID:
121 case KSZ8765_CHIP_ID:
122 return ksz8795_change_mtu(dev, frame_size);
123 case KSZ8830_CHIP_ID:
124 return ksz8863_change_mtu(dev, frame_size);
125 }
126
127 return -EOPNOTSUPP;
128}
129
130static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
131{
132 u8 hi, lo;
133
134 /* Number of queues can only be 1, 2, or 4. */
135 switch (queue) {
136 case 4:
137 case 3:
138 queue = PORT_QUEUE_SPLIT_4;
139 break;
140 case 2:
141 queue = PORT_QUEUE_SPLIT_2;
142 break;
143 default:
144 queue = PORT_QUEUE_SPLIT_1;
145 }
146 ksz_pread8(dev, port, REG_PORT_CTRL_0, data: &lo);
147 ksz_pread8(dev, port, P_DROP_TAG_CTRL, data: &hi);
148 lo &= ~PORT_QUEUE_SPLIT_L;
149 if (queue & PORT_QUEUE_SPLIT_2)
150 lo |= PORT_QUEUE_SPLIT_L;
151 hi &= ~PORT_QUEUE_SPLIT_H;
152 if (queue & PORT_QUEUE_SPLIT_4)
153 hi |= PORT_QUEUE_SPLIT_H;
154 ksz_pwrite8(dev, port, REG_PORT_CTRL_0, data: lo);
155 ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, data: hi);
156
157 /* Default is port based for egress rate limit. */
158 if (queue != PORT_QUEUE_SPLIT_1)
159 ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
160 set: true);
161}
162
163void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164{
165 const u32 *masks;
166 const u16 *regs;
167 u16 ctrl_addr;
168 u32 data;
169 u8 check;
170 int loop;
171
172 masks = dev->info->masks;
173 regs = dev->info->regs;
174
175 ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
177
178 mutex_lock(&dev->alu_mutex);
179 ksz_write16(dev, reg: regs[REG_IND_CTRL_0], value: ctrl_addr);
180
181 /* It is almost guaranteed to always read the valid bit because of
182 * slow SPI speed.
183 */
184 for (loop = 2; loop > 0; loop--) {
185 ksz_read8(dev, reg: regs[REG_IND_MIB_CHECK], val: &check);
186
187 if (check & masks[MIB_COUNTER_VALID]) {
188 ksz_read32(dev, reg: regs[REG_IND_DATA_LO], val: &data);
189 if (check & masks[MIB_COUNTER_OVERFLOW])
190 *cnt += MIB_COUNTER_VALUE + 1;
191 *cnt += data & MIB_COUNTER_VALUE;
192 break;
193 }
194 }
195 mutex_unlock(lock: &dev->alu_mutex);
196}
197
198static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
199 u64 *dropped, u64 *cnt)
200{
201 const u32 *masks;
202 const u16 *regs;
203 u16 ctrl_addr;
204 u32 data;
205 u8 check;
206 int loop;
207
208 masks = dev->info->masks;
209 regs = dev->info->regs;
210
211 addr -= dev->info->reg_mib_cnt;
212 ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
213 ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215
216 mutex_lock(&dev->alu_mutex);
217 ksz_write16(dev, reg: regs[REG_IND_CTRL_0], value: ctrl_addr);
218
219 /* It is almost guaranteed to always read the valid bit because of
220 * slow SPI speed.
221 */
222 for (loop = 2; loop > 0; loop--) {
223 ksz_read8(dev, reg: regs[REG_IND_MIB_CHECK], val: &check);
224
225 if (check & masks[MIB_COUNTER_VALID]) {
226 ksz_read32(dev, reg: regs[REG_IND_DATA_LO], val: &data);
227 if (addr < 2) {
228 u64 total;
229
230 total = check & MIB_TOTAL_BYTES_H;
231 total <<= 32;
232 *cnt += total;
233 *cnt += data;
234 if (check & masks[MIB_COUNTER_OVERFLOW]) {
235 total = MIB_TOTAL_BYTES_H + 1;
236 total <<= 32;
237 *cnt += total;
238 }
239 } else {
240 if (check & masks[MIB_COUNTER_OVERFLOW])
241 *cnt += MIB_PACKET_DROPPED + 1;
242 *cnt += data & MIB_PACKET_DROPPED;
243 }
244 break;
245 }
246 }
247 mutex_unlock(lock: &dev->alu_mutex);
248}
249
250static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
251 u64 *dropped, u64 *cnt)
252{
253 u32 *last = (u32 *)dropped;
254 const u16 *regs;
255 u16 ctrl_addr;
256 u32 data;
257 u32 cur;
258
259 regs = dev->info->regs;
260
261 addr -= dev->info->reg_mib_cnt;
262 ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
263 KSZ8863_MIB_PACKET_DROPPED_RX_0;
264 ctrl_addr += port;
265 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
266
267 mutex_lock(&dev->alu_mutex);
268 ksz_write16(dev, reg: regs[REG_IND_CTRL_0], value: ctrl_addr);
269 ksz_read32(dev, reg: regs[REG_IND_DATA_LO], val: &data);
270 mutex_unlock(lock: &dev->alu_mutex);
271
272 data &= MIB_PACKET_DROPPED;
273 cur = last[addr];
274 if (data != cur) {
275 last[addr] = data;
276 if (data < cur)
277 data += MIB_PACKET_DROPPED + 1;
278 data -= cur;
279 *cnt += data;
280 }
281}
282
283void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
284 u64 *dropped, u64 *cnt)
285{
286 if (ksz_is_ksz88x3(dev))
287 ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
288 else
289 ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
290}
291
292void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293{
294 if (ksz_is_ksz88x3(dev))
295 return;
296
297 /* enable the port for flush/freeze function */
298 if (freeze)
299 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), set: true);
300 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, set: freeze);
301
302 /* disable the port after freeze is done */
303 if (!freeze)
304 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), set: false);
305}
306
307void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308{
309 struct ksz_port_mib *mib = &dev->ports[port].mib;
310 u64 *dropped;
311
312 if (!ksz_is_ksz88x3(dev)) {
313 /* flush all enabled port MIB counters */
314 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), set: true);
315 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, set: true);
316 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), set: false);
317 }
318
319 mib->cnt_ptr = 0;
320
321 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322 while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
324 &mib->counters[mib->cnt_ptr]);
325 ++mib->cnt_ptr;
326 }
327
328 /* last one in storage */
329 dropped = &mib->counters[dev->info->mib_cnt];
330
331 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332 while (mib->cnt_ptr < dev->info->mib_cnt) {
333 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334 dropped, &mib->counters[mib->cnt_ptr]);
335 ++mib->cnt_ptr;
336 }
337}
338
339static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340{
341 const u16 *regs;
342 u16 ctrl_addr;
343 int ret;
344
345 regs = dev->info->regs;
346
347 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
348
349 mutex_lock(&dev->alu_mutex);
350 ret = ksz_write16(dev, reg: regs[REG_IND_CTRL_0], value: ctrl_addr);
351 if (ret)
352 goto unlock_alu;
353
354 ret = ksz_read64(dev, reg: regs[REG_IND_DATA_HI], val: data);
355unlock_alu:
356 mutex_unlock(lock: &dev->alu_mutex);
357
358 return ret;
359}
360
361static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
362{
363 const u16 *regs;
364 u16 ctrl_addr;
365 int ret;
366
367 regs = dev->info->regs;
368
369 ctrl_addr = IND_ACC_TABLE(table) | addr;
370
371 mutex_lock(&dev->alu_mutex);
372 ret = ksz_write64(dev, reg: regs[REG_IND_DATA_HI], value: data);
373 if (ret)
374 goto unlock_alu;
375
376 ret = ksz_write16(dev, reg: regs[REG_IND_CTRL_0], value: ctrl_addr);
377unlock_alu:
378 mutex_unlock(lock: &dev->alu_mutex);
379
380 return ret;
381}
382
383static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
384{
385 int timeout = 100;
386 const u32 *masks;
387 const u16 *regs;
388
389 masks = dev->info->masks;
390 regs = dev->info->regs;
391
392 do {
393 ksz_read8(dev, reg: regs[REG_IND_DATA_CHECK], val: data);
394 timeout--;
395 } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
396
397 /* Entry is not ready for accessing. */
398 if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
399 return -EAGAIN;
400 /* Entry is ready for accessing. */
401 } else {
402 ksz_read8(dev, reg: regs[REG_IND_DATA_8], val: data);
403
404 /* There is no valid entry in the table. */
405 if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
406 return -ENXIO;
407 }
408 return 0;
409}
410
411int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
412 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
413{
414 u32 data_hi, data_lo;
415 const u8 *shifts;
416 const u32 *masks;
417 const u16 *regs;
418 u16 ctrl_addr;
419 u8 data;
420 int rc;
421
422 shifts = dev->info->shifts;
423 masks = dev->info->masks;
424 regs = dev->info->regs;
425
426 ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
427
428 mutex_lock(&dev->alu_mutex);
429 ksz_write16(dev, reg: regs[REG_IND_CTRL_0], value: ctrl_addr);
430
431 rc = ksz8_valid_dyn_entry(dev, data: &data);
432 if (rc == -EAGAIN) {
433 if (addr == 0)
434 *entries = 0;
435 } else if (rc == -ENXIO) {
436 *entries = 0;
437 /* At least one valid entry in the table. */
438 } else {
439 u64 buf = 0;
440 int cnt;
441
442 ksz_read64(dev, reg: regs[REG_IND_DATA_HI], val: &buf);
443 data_hi = (u32)(buf >> 32);
444 data_lo = (u32)buf;
445
446 /* Check out how many valid entry in the table. */
447 cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
448 cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
449 cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
450 shifts[DYNAMIC_MAC_ENTRIES];
451 *entries = cnt + 1;
452
453 *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
454 shifts[DYNAMIC_MAC_FID];
455 *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
456 shifts[DYNAMIC_MAC_SRC_PORT];
457 *timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
458 shifts[DYNAMIC_MAC_TIMESTAMP];
459
460 mac_addr[5] = (u8)data_lo;
461 mac_addr[4] = (u8)(data_lo >> 8);
462 mac_addr[3] = (u8)(data_lo >> 16);
463 mac_addr[2] = (u8)(data_lo >> 24);
464
465 mac_addr[1] = (u8)data_hi;
466 mac_addr[0] = (u8)(data_hi >> 8);
467 rc = 0;
468 }
469 mutex_unlock(lock: &dev->alu_mutex);
470
471 return rc;
472}
473
474static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
475 struct alu_struct *alu, bool *valid)
476{
477 u32 data_hi, data_lo;
478 const u8 *shifts;
479 const u32 *masks;
480 u64 data;
481 int ret;
482
483 shifts = dev->info->shifts;
484 masks = dev->info->masks;
485
486 ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, data: &data);
487 if (ret)
488 return ret;
489
490 data_hi = data >> 32;
491 data_lo = (u32)data;
492
493 if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
494 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
495 *valid = false;
496 return 0;
497 }
498
499 alu->mac[5] = (u8)data_lo;
500 alu->mac[4] = (u8)(data_lo >> 8);
501 alu->mac[3] = (u8)(data_lo >> 16);
502 alu->mac[2] = (u8)(data_lo >> 24);
503 alu->mac[1] = (u8)data_hi;
504 alu->mac[0] = (u8)(data_hi >> 8);
505 alu->port_forward =
506 (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
507 shifts[STATIC_MAC_FWD_PORTS];
508 alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
509
510 /* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
511 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
512 * static MAC table compared to doing write.
513 */
514 if (ksz_is_ksz87xx(dev))
515 data_hi >>= 1;
516 alu->is_static = true;
517 alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
518 alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
519 shifts[STATIC_MAC_FID];
520
521 *valid = true;
522
523 return 0;
524}
525
526static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
527 struct alu_struct *alu)
528{
529 u32 data_hi, data_lo;
530 const u8 *shifts;
531 const u32 *masks;
532 u64 data;
533
534 shifts = dev->info->shifts;
535 masks = dev->info->masks;
536
537 data_lo = ((u32)alu->mac[2] << 24) |
538 ((u32)alu->mac[3] << 16) |
539 ((u32)alu->mac[4] << 8) | alu->mac[5];
540 data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
541 data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
542
543 if (alu->is_override)
544 data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
545 if (alu->is_use_fid) {
546 data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
547 data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
548 }
549 if (alu->is_static)
550 data_hi |= masks[STATIC_MAC_TABLE_VALID];
551 else
552 data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
553
554 data = (u64)data_hi << 32 | data_lo;
555
556 return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
557}
558
559static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
560 u8 *member, u8 *valid)
561{
562 const u8 *shifts;
563 const u32 *masks;
564
565 shifts = dev->info->shifts;
566 masks = dev->info->masks;
567
568 *fid = vlan & masks[VLAN_TABLE_FID];
569 *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
570 shifts[VLAN_TABLE_MEMBERSHIP_S];
571 *valid = !!(vlan & masks[VLAN_TABLE_VALID]);
572}
573
574static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
575 u16 *vlan)
576{
577 const u8 *shifts;
578 const u32 *masks;
579
580 shifts = dev->info->shifts;
581 masks = dev->info->masks;
582
583 *vlan = fid;
584 *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
585 if (valid)
586 *vlan |= masks[VLAN_TABLE_VALID];
587}
588
589static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
590{
591 const u8 *shifts;
592 u64 data;
593 int i;
594
595 shifts = dev->info->shifts;
596
597 ksz8_r_table(dev, TABLE_VLAN, addr, data: &data);
598 addr *= 4;
599 for (i = 0; i < 4; i++) {
600 dev->vlan_cache[addr + i].table[0] = (u16)data;
601 data >>= shifts[VLAN_TABLE];
602 }
603}
604
605static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
606{
607 int index;
608 u16 *data;
609 u16 addr;
610 u64 buf;
611
612 data = (u16 *)&buf;
613 addr = vid / 4;
614 index = vid & 3;
615 ksz8_r_table(dev, TABLE_VLAN, addr, data: &buf);
616 *vlan = data[index];
617}
618
619static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
620{
621 int index;
622 u16 *data;
623 u16 addr;
624 u64 buf;
625
626 data = (u16 *)&buf;
627 addr = vid / 4;
628 index = vid & 3;
629 ksz8_r_table(dev, TABLE_VLAN, addr, data: &buf);
630 data[index] = vlan;
631 dev->vlan_cache[vid].table[0] = vlan;
632 ksz8_w_table(dev, TABLE_VLAN, addr, data: buf);
633}
634
635/**
636 * ksz879x_get_loopback - KSZ879x specific function to get loopback
637 * configuration status for a specific port
638 * @dev: Pointer to the device structure
639 * @port: Port number to query
640 * @val: Pointer to store the result
641 *
642 * This function reads the SMI registers to determine whether loopback mode
643 * is enabled for a specific port.
644 *
645 * Return: 0 on success, error code on failure.
646 */
647static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
648 u16 *val)
649{
650 u8 stat3;
651 int ret;
652
653 ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, data: &stat3);
654 if (ret)
655 return ret;
656
657 if (stat3 & PORT_PHY_LOOPBACK)
658 *val |= BMCR_LOOPBACK;
659
660 return 0;
661}
662
663/**
664 * ksz879x_set_loopback - KSZ879x specific function to set loopback mode for
665 * a specific port
666 * @dev: Pointer to the device structure.
667 * @port: Port number to modify.
668 * @val: Value indicating whether to enable or disable loopback mode.
669 *
670 * This function translates loopback bit of the BMCR register into the
671 * corresponding hardware register bit value and writes it to the SMI interface.
672 *
673 * Return: 0 on success, error code on failure.
674 */
675static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
676{
677 u8 stat3 = 0;
678
679 if (val & BMCR_LOOPBACK)
680 stat3 |= PORT_PHY_LOOPBACK;
681
682 return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
683 val: stat3);
684}
685
686/**
687 * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
688 * Control register (Reg. 31).
689 * @dev: The KSZ device instance.
690 * @port: The port number to be read.
691 * @val: The value read from the SMI interface.
692 *
693 * This function reads the SMI interface and translates the hardware register
694 * bit values into their corresponding control settings for a MIIM PHY Control
695 * register.
696 *
697 * Return: 0 on success, error code on failure.
698 */
699static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
700{
701 const u16 *regs = dev->info->regs;
702 u8 reg_val;
703 int ret;
704
705 *val = 0;
706
707 ret = ksz_pread8(dev, port, offset: regs[P_LINK_STATUS], data: &reg_val);
708 if (ret < 0)
709 return ret;
710
711 if (reg_val & PORT_MDIX_STATUS)
712 *val |= KSZ886X_CTRL_MDIX_STAT;
713
714 ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, data: &reg_val);
715 if (ret < 0)
716 return ret;
717
718 if (reg_val & PORT_FORCE_LINK)
719 *val |= KSZ886X_CTRL_FORCE_LINK;
720
721 if (reg_val & PORT_POWER_SAVING)
722 *val |= KSZ886X_CTRL_PWRSAVE;
723
724 if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
725 *val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
726
727 return 0;
728}
729
730/**
731 * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
732 * Basic mode control register (Reg. 0).
733 * @dev: The KSZ device instance.
734 * @port: The port number to be read.
735 * @val: The value read from the SMI interface.
736 *
737 * This function reads the SMI interface and translates the hardware register
738 * bit values into their corresponding control settings for a MIIM PHY Basic
739 * mode control register.
740 *
741 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
742 * -------------------------------------------------------------------
743 * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
744 * ----------------------------+-----------------------------+----------------
745 * Bit 15 - Soft Reset | 0xF/4 | Not supported
746 * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
747 * Bit 13 - Force 100 | 0xC/6 = 0xC/6
748 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
749 * Bit 11 - Power Down | 0xD/3 = 0xD/3
750 * Bit 10 - PHY Isolate | 0xF/5 | Not supported
751 * Bit 9 - Restart AN | 0xD/5 = 0xD/5
752 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
753 * Bit 7 - Collision Test/Res. | Not supported | Not supported
754 * Bit 6 - Reserved | Not supported | Not supported
755 * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
756 * Bit 4 - Force MDI | 0xD/1 = 0xD/1
757 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
758 * Bit 2 - Disable Far-End F. | ???? | 0xD/4
759 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
760 * Bit 0 - Disable LED | 0xD/7 = 0xD/7
761 * -------------------------------------------------------------------
762 *
763 * Return: 0 on success, error code on failure.
764 */
765static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
766{
767 const u16 *regs = dev->info->regs;
768 u8 restart, speed, ctrl;
769 int ret;
770
771 *val = 0;
772
773 ret = ksz_pread8(dev, port, offset: regs[P_NEG_RESTART_CTRL], data: &restart);
774 if (ret)
775 return ret;
776
777 ret = ksz_pread8(dev, port, offset: regs[P_SPEED_STATUS], data: &speed);
778 if (ret)
779 return ret;
780
781 ret = ksz_pread8(dev, port, offset: regs[P_FORCE_CTRL], data: &ctrl);
782 if (ret)
783 return ret;
784
785 if (ctrl & PORT_FORCE_100_MBIT)
786 *val |= BMCR_SPEED100;
787
788 if (ksz_is_ksz88x3(dev)) {
789 if (restart & KSZ8873_PORT_PHY_LOOPBACK)
790 *val |= BMCR_LOOPBACK;
791
792 if ((ctrl & PORT_AUTO_NEG_ENABLE))
793 *val |= BMCR_ANENABLE;
794 } else {
795 ret = ksz879x_get_loopback(dev, port, val);
796 if (ret)
797 return ret;
798
799 if (!(ctrl & PORT_AUTO_NEG_DISABLE))
800 *val |= BMCR_ANENABLE;
801 }
802
803 if (restart & PORT_POWER_DOWN)
804 *val |= BMCR_PDOWN;
805
806 if (restart & PORT_AUTO_NEG_RESTART)
807 *val |= BMCR_ANRESTART;
808
809 if (ctrl & PORT_FORCE_FULL_DUPLEX)
810 *val |= BMCR_FULLDPLX;
811
812 if (speed & PORT_HP_MDIX)
813 *val |= KSZ886X_BMCR_HP_MDIX;
814
815 if (restart & PORT_FORCE_MDIX)
816 *val |= KSZ886X_BMCR_FORCE_MDI;
817
818 if (restart & PORT_AUTO_MDIX_DISABLE)
819 *val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
820
821 if (restart & PORT_TX_DISABLE)
822 *val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
823
824 if (restart & PORT_LED_OFF)
825 *val |= KSZ886X_BMCR_DISABLE_LED;
826
827 return 0;
828}
829
830int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
831{
832 u8 ctrl, link, val1, val2;
833 int processed = true;
834 const u16 *regs;
835 u16 data = 0;
836 u16 p = phy;
837 int ret;
838
839 regs = dev->info->regs;
840
841 switch (reg) {
842 case MII_BMCR:
843 ret = ksz8_r_phy_bmcr(dev, port: p, val: &data);
844 if (ret)
845 return ret;
846 break;
847 case MII_BMSR:
848 ret = ksz_pread8(dev, port: p, offset: regs[P_LINK_STATUS], data: &link);
849 if (ret)
850 return ret;
851
852 data = BMSR_100FULL |
853 BMSR_100HALF |
854 BMSR_10FULL |
855 BMSR_10HALF |
856 BMSR_ANEGCAPABLE;
857 if (link & PORT_AUTO_NEG_COMPLETE)
858 data |= BMSR_ANEGCOMPLETE;
859 if (link & PORT_STAT_LINK_GOOD)
860 data |= BMSR_LSTATUS;
861 break;
862 case MII_PHYSID1:
863 data = KSZ8795_ID_HI;
864 break;
865 case MII_PHYSID2:
866 if (ksz_is_ksz88x3(dev))
867 data = KSZ8863_ID_LO;
868 else
869 data = KSZ8795_ID_LO;
870 break;
871 case MII_ADVERTISE:
872 ret = ksz_pread8(dev, port: p, offset: regs[P_LOCAL_CTRL], data: &ctrl);
873 if (ret)
874 return ret;
875
876 data = ADVERTISE_CSMA;
877 if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
878 data |= ADVERTISE_PAUSE_CAP;
879 if (ctrl & PORT_AUTO_NEG_100BTX_FD)
880 data |= ADVERTISE_100FULL;
881 if (ctrl & PORT_AUTO_NEG_100BTX)
882 data |= ADVERTISE_100HALF;
883 if (ctrl & PORT_AUTO_NEG_10BT_FD)
884 data |= ADVERTISE_10FULL;
885 if (ctrl & PORT_AUTO_NEG_10BT)
886 data |= ADVERTISE_10HALF;
887 break;
888 case MII_LPA:
889 ret = ksz_pread8(dev, port: p, offset: regs[P_REMOTE_STATUS], data: &link);
890 if (ret)
891 return ret;
892
893 data = LPA_SLCT;
894 if (link & PORT_REMOTE_SYM_PAUSE)
895 data |= LPA_PAUSE_CAP;
896 if (link & PORT_REMOTE_100BTX_FD)
897 data |= LPA_100FULL;
898 if (link & PORT_REMOTE_100BTX)
899 data |= LPA_100HALF;
900 if (link & PORT_REMOTE_10BT_FD)
901 data |= LPA_10FULL;
902 if (link & PORT_REMOTE_10BT)
903 data |= LPA_10HALF;
904 if (data & ~LPA_SLCT)
905 data |= LPA_LPACK;
906 break;
907 case PHY_REG_LINK_MD:
908 ret = ksz_pread8(dev, port: p, REG_PORT_LINK_MD_CTRL, data: &val1);
909 if (ret)
910 return ret;
911
912 ret = ksz_pread8(dev, port: p, REG_PORT_LINK_MD_RESULT, data: &val2);
913 if (ret)
914 return ret;
915
916 if (val1 & PORT_START_CABLE_DIAG)
917 data |= PHY_START_CABLE_DIAG;
918
919 if (val1 & PORT_CABLE_10M_SHORT)
920 data |= PHY_CABLE_10M_SHORT;
921
922 data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
923 FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
924
925 data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
926 (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
927 FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
928 break;
929 case PHY_REG_PHY_CTRL:
930 ret = ksz8_r_phy_ctrl(dev, port: p, val: &data);
931 if (ret)
932 return ret;
933
934 break;
935 default:
936 processed = false;
937 break;
938 }
939 if (processed)
940 *val = data;
941
942 return 0;
943}
944
945/**
946 * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
947 * Control register (Reg. 31).
948 * @dev: The KSZ device instance.
949 * @port: The port number to be configured.
950 * @val: The register value to be written.
951 *
952 * This function translates control settings from a MIIM PHY Control register
953 * into their corresponding hardware register bit values for the SMI
954 * interface.
955 *
956 * Return: 0 on success, error code on failure.
957 */
958static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
959{
960 u8 reg_val = 0;
961 int ret;
962
963 if (val & KSZ886X_CTRL_FORCE_LINK)
964 reg_val |= PORT_FORCE_LINK;
965
966 if (val & KSZ886X_CTRL_PWRSAVE)
967 reg_val |= PORT_POWER_SAVING;
968
969 if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
970 reg_val |= PORT_PHY_REMOTE_LOOPBACK;
971
972 ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
973 PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, val: reg_val);
974 return ret;
975}
976
977/**
978 * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
979 * Basic mode control register (Reg. 0).
980 * @dev: The KSZ device instance.
981 * @port: The port number to be configured.
982 * @val: The register value to be written.
983 *
984 * This function translates control settings from a MIIM PHY Basic mode control
985 * register into their corresponding hardware register bit values for the SMI
986 * interface.
987 *
988 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
989 * -------------------------------------------------------------------
990 * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
991 * ----------------------------+-----------------------------+----------------
992 * Bit 15 - Soft Reset | 0xF/4 | Not supported
993 * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
994 * Bit 13 - Force 100 | 0xC/6 = 0xC/6
995 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
996 * Bit 11 - Power Down | 0xD/3 = 0xD/3
997 * Bit 10 - PHY Isolate | 0xF/5 | Not supported
998 * Bit 9 - Restart AN | 0xD/5 = 0xD/5
999 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
1000 * Bit 7 - Collision Test/Res. | Not supported | Not supported
1001 * Bit 6 - Reserved | Not supported | Not supported
1002 * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
1003 * Bit 4 - Force MDI | 0xD/1 = 0xD/1
1004 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
1005 * Bit 2 - Disable Far-End F. | ???? | 0xD/4
1006 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
1007 * Bit 0 - Disable LED | 0xD/7 = 0xD/7
1008 * -------------------------------------------------------------------
1009 *
1010 * Return: 0 on success, error code on failure.
1011 */
1012static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1013{
1014 u8 restart, speed, ctrl, restart_mask;
1015 const u16 *regs = dev->info->regs;
1016 int ret;
1017
1018 /* Do not support PHY reset function. */
1019 if (val & BMCR_RESET)
1020 return 0;
1021
1022 speed = 0;
1023 if (val & KSZ886X_BMCR_HP_MDIX)
1024 speed |= PORT_HP_MDIX;
1025
1026 ret = ksz_prmw8(dev, port, offset: regs[P_SPEED_STATUS], PORT_HP_MDIX, val: speed);
1027 if (ret)
1028 return ret;
1029
1030 ctrl = 0;
1031 if (ksz_is_ksz88x3(dev)) {
1032 if ((val & BMCR_ANENABLE))
1033 ctrl |= PORT_AUTO_NEG_ENABLE;
1034 } else {
1035 if (!(val & BMCR_ANENABLE))
1036 ctrl |= PORT_AUTO_NEG_DISABLE;
1037
1038 /* Fiber port does not support auto-negotiation. */
1039 if (dev->ports[port].fiber)
1040 ctrl |= PORT_AUTO_NEG_DISABLE;
1041 }
1042
1043 if (val & BMCR_SPEED100)
1044 ctrl |= PORT_FORCE_100_MBIT;
1045
1046 if (val & BMCR_FULLDPLX)
1047 ctrl |= PORT_FORCE_FULL_DUPLEX;
1048
1049 ret = ksz_prmw8(dev, port, offset: regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
1050 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
1051 * bits
1052 */
1053 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, val: ctrl);
1054 if (ret)
1055 return ret;
1056
1057 restart = 0;
1058 restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1059 PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1060
1061 if (val & KSZ886X_BMCR_DISABLE_LED)
1062 restart |= PORT_LED_OFF;
1063
1064 if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1065 restart |= PORT_TX_DISABLE;
1066
1067 if (val & BMCR_ANRESTART)
1068 restart |= PORT_AUTO_NEG_RESTART;
1069
1070 if (val & BMCR_PDOWN)
1071 restart |= PORT_POWER_DOWN;
1072
1073 if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1074 restart |= PORT_AUTO_MDIX_DISABLE;
1075
1076 if (val & KSZ886X_BMCR_FORCE_MDI)
1077 restart |= PORT_FORCE_MDIX;
1078
1079 if (ksz_is_ksz88x3(dev)) {
1080 restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
1081
1082 if (val & BMCR_LOOPBACK)
1083 restart |= KSZ8873_PORT_PHY_LOOPBACK;
1084 } else {
1085 ret = ksz879x_set_loopback(dev, port, val);
1086 if (ret)
1087 return ret;
1088 }
1089
1090 return ksz_prmw8(dev, port, offset: regs[P_NEG_RESTART_CTRL], mask: restart_mask,
1091 val: restart);
1092}
1093
1094int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
1095{
1096 const u16 *regs;
1097 u8 ctrl, data;
1098 u16 p = phy;
1099 int ret;
1100
1101 regs = dev->info->regs;
1102
1103 switch (reg) {
1104 case MII_BMCR:
1105 ret = ksz8_w_phy_bmcr(dev, port: p, val);
1106 if (ret)
1107 return ret;
1108 break;
1109 case MII_ADVERTISE:
1110 ret = ksz_pread8(dev, port: p, offset: regs[P_LOCAL_CTRL], data: &ctrl);
1111 if (ret)
1112 return ret;
1113
1114 data = ctrl;
1115 data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
1116 PORT_AUTO_NEG_100BTX_FD |
1117 PORT_AUTO_NEG_100BTX |
1118 PORT_AUTO_NEG_10BT_FD |
1119 PORT_AUTO_NEG_10BT);
1120 if (val & ADVERTISE_PAUSE_CAP)
1121 data |= PORT_AUTO_NEG_SYM_PAUSE;
1122 if (val & ADVERTISE_100FULL)
1123 data |= PORT_AUTO_NEG_100BTX_FD;
1124 if (val & ADVERTISE_100HALF)
1125 data |= PORT_AUTO_NEG_100BTX;
1126 if (val & ADVERTISE_10FULL)
1127 data |= PORT_AUTO_NEG_10BT_FD;
1128 if (val & ADVERTISE_10HALF)
1129 data |= PORT_AUTO_NEG_10BT;
1130
1131 if (data != ctrl) {
1132 ret = ksz_pwrite8(dev, port: p, offset: regs[P_LOCAL_CTRL], data);
1133 if (ret)
1134 return ret;
1135 }
1136 break;
1137 case PHY_REG_LINK_MD:
1138 if (val & PHY_START_CABLE_DIAG)
1139 ksz_port_cfg(dev, port: p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, set: true);
1140 break;
1141
1142 case PHY_REG_PHY_CTRL:
1143 ret = ksz8_w_phy_ctrl(dev, port: p, val);
1144 if (ret)
1145 return ret;
1146 break;
1147 default:
1148 break;
1149 }
1150
1151 return 0;
1152}
1153
1154void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1155{
1156 u8 data;
1157
1158 ksz_pread8(dev, port, P_MIRROR_CTRL, data: &data);
1159 data &= ~PORT_VLAN_MEMBERSHIP;
1160 data |= (member & dev->port_mask);
1161 ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1162}
1163
1164void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1165{
1166 u8 learn[DSA_MAX_PORTS];
1167 int first, index, cnt;
1168 const u16 *regs;
1169
1170 regs = dev->info->regs;
1171
1172 if ((uint)port < dev->info->port_cnt) {
1173 first = port;
1174 cnt = port + 1;
1175 } else {
1176 /* Flush all ports. */
1177 first = 0;
1178 cnt = dev->info->port_cnt;
1179 }
1180 for (index = first; index < cnt; index++) {
1181 ksz_pread8(dev, port: index, offset: regs[P_STP_CTRL], data: &learn[index]);
1182 if (!(learn[index] & PORT_LEARN_DISABLE))
1183 ksz_pwrite8(dev, port: index, offset: regs[P_STP_CTRL],
1184 data: learn[index] | PORT_LEARN_DISABLE);
1185 }
1186 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, set: true);
1187 for (index = first; index < cnt; index++) {
1188 if (!(learn[index] & PORT_LEARN_DISABLE))
1189 ksz_pwrite8(dev, port: index, offset: regs[P_STP_CTRL], data: learn[index]);
1190 }
1191}
1192
1193int ksz8_fdb_dump(struct ksz_device *dev, int port,
1194 dsa_fdb_dump_cb_t *cb, void *data)
1195{
1196 int ret = 0;
1197 u16 i = 0;
1198 u16 entries = 0;
1199 u8 timestamp = 0;
1200 u8 fid;
1201 u8 src_port;
1202 u8 mac[ETH_ALEN];
1203
1204 do {
1205 ret = ksz8_r_dyn_mac_table(dev, addr: i, mac_addr: mac, fid: &fid, src_port: &src_port,
1206 timestamp: &timestamp, entries: &entries);
1207 if (!ret && port == src_port) {
1208 ret = cb(mac, fid, false, data);
1209 if (ret)
1210 break;
1211 }
1212 i++;
1213 } while (i < entries);
1214 if (i >= entries)
1215 ret = 0;
1216
1217 return ret;
1218}
1219
1220static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1221 const unsigned char *addr, u16 vid)
1222{
1223 struct alu_struct alu;
1224 int index, ret;
1225 int empty = 0;
1226
1227 alu.port_forward = 0;
1228 for (index = 0; index < dev->info->num_statics; index++) {
1229 bool valid;
1230
1231 ret = ksz8_r_sta_mac_table(dev, addr: index, alu: &alu, valid: &valid);
1232 if (ret)
1233 return ret;
1234 if (!valid) {
1235 /* Remember the first empty entry. */
1236 if (!empty)
1237 empty = index + 1;
1238 continue;
1239 }
1240
1241 if (!memcmp(p: alu.mac, q: addr, ETH_ALEN) && alu.fid == vid)
1242 break;
1243 }
1244
1245 /* no available entry */
1246 if (index == dev->info->num_statics && !empty)
1247 return -ENOSPC;
1248
1249 /* add entry */
1250 if (index == dev->info->num_statics) {
1251 index = empty - 1;
1252 memset(&alu, 0, sizeof(alu));
1253 memcpy(alu.mac, addr, ETH_ALEN);
1254 alu.is_static = true;
1255 }
1256 alu.port_forward |= BIT(port);
1257 if (vid) {
1258 alu.is_use_fid = true;
1259
1260 /* Need a way to map VID to FID. */
1261 alu.fid = vid;
1262 }
1263
1264 return ksz8_w_sta_mac_table(dev, addr: index, alu: &alu);
1265}
1266
1267static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1268 const unsigned char *addr, u16 vid)
1269{
1270 struct alu_struct alu;
1271 int index, ret;
1272
1273 for (index = 0; index < dev->info->num_statics; index++) {
1274 bool valid;
1275
1276 ret = ksz8_r_sta_mac_table(dev, addr: index, alu: &alu, valid: &valid);
1277 if (ret)
1278 return ret;
1279 if (!valid)
1280 continue;
1281
1282 if (!memcmp(p: alu.mac, q: addr, ETH_ALEN) && alu.fid == vid)
1283 break;
1284 }
1285
1286 /* no available entry */
1287 if (index == dev->info->num_statics)
1288 return 0;
1289
1290 /* clear port */
1291 alu.port_forward &= ~BIT(port);
1292 if (!alu.port_forward)
1293 alu.is_static = false;
1294
1295 return ksz8_w_sta_mac_table(dev, addr: index, alu: &alu);
1296}
1297
1298int ksz8_mdb_add(struct ksz_device *dev, int port,
1299 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1300{
1301 return ksz8_add_sta_mac(dev, port, addr: mdb->addr, vid: mdb->vid);
1302}
1303
1304int ksz8_mdb_del(struct ksz_device *dev, int port,
1305 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1306{
1307 return ksz8_del_sta_mac(dev, port, addr: mdb->addr, vid: mdb->vid);
1308}
1309
1310int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1311 u16 vid, struct dsa_db db)
1312{
1313 return ksz8_add_sta_mac(dev, port, addr, vid);
1314}
1315
1316int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1317 u16 vid, struct dsa_db db)
1318{
1319 return ksz8_del_sta_mac(dev, port, addr, vid);
1320}
1321
1322int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1323 struct netlink_ext_ack *extack)
1324{
1325 if (ksz_is_ksz88x3(dev))
1326 return -ENOTSUPP;
1327
1328 /* Discard packets with VID not enabled on the switch */
1329 ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, set: flag);
1330
1331 /* Discard packets with VID not enabled on the ingress port */
1332 for (port = 0; port < dev->phy_port_cnt; ++port)
1333 ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1334 set: flag);
1335
1336 return 0;
1337}
1338
1339static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1340{
1341 if (ksz_is_ksz88x3(dev)) {
1342 ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1343 bits: 0x03 << (4 - 2 * port), set: state);
1344 } else {
1345 ksz_pwrite8(dev, port, REG_PORT_CTRL_12, data: state ? 0x0f : 0x00);
1346 }
1347}
1348
1349int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1350 const struct switchdev_obj_port_vlan *vlan,
1351 struct netlink_ext_ack *extack)
1352{
1353 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1354 struct ksz_port *p = &dev->ports[port];
1355 u16 data, new_pvid = 0;
1356 u8 fid, member, valid;
1357
1358 if (ksz_is_ksz88x3(dev))
1359 return -ENOTSUPP;
1360
1361 /* If a VLAN is added with untagged flag different from the
1362 * port's Remove Tag flag, we need to change the latter.
1363 * Ignore VID 0, which is always untagged.
1364 * Ignore CPU port, which will always be tagged.
1365 */
1366 if (untagged != p->remove_tag && vlan->vid != 0 &&
1367 port != dev->cpu_port) {
1368 unsigned int vid;
1369
1370 /* Reject attempts to add a VLAN that requires the
1371 * Remove Tag flag to be changed, unless there are no
1372 * other VLANs currently configured.
1373 */
1374 for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1375 /* Skip the VID we are going to add or reconfigure */
1376 if (vid == vlan->vid)
1377 continue;
1378
1379 ksz8_from_vlan(dev, vlan: dev->vlan_cache[vid].table[0],
1380 fid: &fid, member: &member, valid: &valid);
1381 if (valid && (member & BIT(port)))
1382 return -EINVAL;
1383 }
1384
1385 ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, set: untagged);
1386 p->remove_tag = untagged;
1387 }
1388
1389 ksz8_r_vlan_table(dev, vid: vlan->vid, vlan: &data);
1390 ksz8_from_vlan(dev, vlan: data, fid: &fid, member: &member, valid: &valid);
1391
1392 /* First time to setup the VLAN entry. */
1393 if (!valid) {
1394 /* Need to find a way to map VID to FID. */
1395 fid = 1;
1396 valid = 1;
1397 }
1398 member |= BIT(port);
1399
1400 ksz8_to_vlan(dev, fid, member, valid, vlan: &data);
1401 ksz8_w_vlan_table(dev, vid: vlan->vid, vlan: data);
1402
1403 /* change PVID */
1404 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1405 new_pvid = vlan->vid;
1406
1407 if (new_pvid) {
1408 u16 vid;
1409
1410 ksz_pread16(dev, port, REG_PORT_CTRL_VID, data: &vid);
1411 vid &= ~VLAN_VID_MASK;
1412 vid |= new_pvid;
1413 ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, data: vid);
1414
1415 ksz8_port_enable_pvid(dev, port, state: true);
1416 }
1417
1418 return 0;
1419}
1420
1421int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1422 const struct switchdev_obj_port_vlan *vlan)
1423{
1424 u16 data, pvid;
1425 u8 fid, member, valid;
1426
1427 if (ksz_is_ksz88x3(dev))
1428 return -ENOTSUPP;
1429
1430 ksz_pread16(dev, port, REG_PORT_CTRL_VID, data: &pvid);
1431 pvid = pvid & 0xFFF;
1432
1433 ksz8_r_vlan_table(dev, vid: vlan->vid, vlan: &data);
1434 ksz8_from_vlan(dev, vlan: data, fid: &fid, member: &member, valid: &valid);
1435
1436 member &= ~BIT(port);
1437
1438 /* Invalidate the entry if no more member. */
1439 if (!member) {
1440 fid = 0;
1441 valid = 0;
1442 }
1443
1444 ksz8_to_vlan(dev, fid, member, valid, vlan: &data);
1445 ksz8_w_vlan_table(dev, vid: vlan->vid, vlan: data);
1446
1447 if (pvid == vlan->vid)
1448 ksz8_port_enable_pvid(dev, port, state: false);
1449
1450 return 0;
1451}
1452
1453int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1454 struct dsa_mall_mirror_tc_entry *mirror,
1455 bool ingress, struct netlink_ext_ack *extack)
1456{
1457 if (ingress) {
1458 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, set: true);
1459 dev->mirror_rx |= BIT(port);
1460 } else {
1461 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, set: true);
1462 dev->mirror_tx |= BIT(port);
1463 }
1464
1465 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, set: false);
1466
1467 /* configure mirror port */
1468 if (dev->mirror_rx || dev->mirror_tx)
1469 ksz_port_cfg(dev, port: mirror->to_local_port, P_MIRROR_CTRL,
1470 PORT_MIRROR_SNIFFER, set: true);
1471
1472 return 0;
1473}
1474
1475void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1476 struct dsa_mall_mirror_tc_entry *mirror)
1477{
1478 u8 data;
1479
1480 if (mirror->ingress) {
1481 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, set: false);
1482 dev->mirror_rx &= ~BIT(port);
1483 } else {
1484 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, set: false);
1485 dev->mirror_tx &= ~BIT(port);
1486 }
1487
1488 ksz_pread8(dev, port, P_MIRROR_CTRL, data: &data);
1489
1490 if (!dev->mirror_rx && !dev->mirror_tx)
1491 ksz_port_cfg(dev, port: mirror->to_local_port, P_MIRROR_CTRL,
1492 PORT_MIRROR_SNIFFER, set: false);
1493}
1494
1495static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1496{
1497 struct ksz_port *p = &dev->ports[port];
1498
1499 if (!ksz_is_ksz87xx(dev))
1500 return;
1501
1502 if (!p->interface && dev->compat_interface) {
1503 dev_warn(dev->dev,
1504 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1505 "Please update your device tree.\n",
1506 port);
1507 p->interface = dev->compat_interface;
1508 }
1509}
1510
1511void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1512{
1513 struct dsa_switch *ds = dev->ds;
1514 const u32 *masks;
1515 u8 member;
1516
1517 masks = dev->info->masks;
1518
1519 /* enable broadcast storm limit */
1520 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, set: true);
1521
1522 if (!ksz_is_ksz88x3(dev))
1523 ksz8795_set_prio_queue(dev, port, queue: 4);
1524
1525 /* disable DiffServ priority */
1526 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, set: false);
1527
1528 /* replace priority */
1529 ksz_port_cfg(dev, port, P_802_1P_CTRL,
1530 bits: masks[PORT_802_1P_REMAPPING], set: false);
1531
1532 /* enable 802.1p priority */
1533 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, set: true);
1534
1535 if (cpu_port)
1536 member = dsa_user_ports(ds);
1537 else
1538 member = BIT(dsa_upstream_port(ds, port));
1539
1540 ksz8_cfg_port_member(dev, port, member);
1541}
1542
1543static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1544{
1545 struct dsa_port *cpu_dp = dsa_to_port(ds: dev->ds, p: dev->cpu_port);
1546 bool rmii_clk_internal;
1547
1548 if (!ksz_is_ksz88x3(dev))
1549 return;
1550
1551 rmii_clk_internal = of_property_read_bool(np: cpu_dp->dn,
1552 propname: "microchip,rmii-clk-internal");
1553
1554 ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1555 KSZ88X3_PORT3_RMII_CLK_INTERNAL, set: rmii_clk_internal);
1556}
1557
1558void ksz8_config_cpu_port(struct dsa_switch *ds)
1559{
1560 struct ksz_device *dev = ds->priv;
1561 struct ksz_port *p;
1562 const u32 *masks;
1563 const u16 *regs;
1564 u8 remote;
1565 int i;
1566
1567 masks = dev->info->masks;
1568 regs = dev->info->regs;
1569
1570 ksz_cfg(dev, addr: regs[S_TAIL_TAG_CTRL], bits: masks[SW_TAIL_TAG_ENABLE], set: true);
1571
1572 ksz8_port_setup(dev, port: dev->cpu_port, cpu_port: true);
1573
1574 ksz8795_cpu_interface_select(dev, port: dev->cpu_port);
1575 ksz88x3_config_rmii_clk(dev);
1576
1577 for (i = 0; i < dev->phy_port_cnt; i++) {
1578 ksz_port_stp_state_set(ds, port: i, BR_STATE_DISABLED);
1579 }
1580 for (i = 0; i < dev->phy_port_cnt; i++) {
1581 p = &dev->ports[i];
1582
1583 if (!ksz_is_ksz88x3(dev)) {
1584 ksz_pread8(dev, port: i, offset: regs[P_REMOTE_STATUS], data: &remote);
1585 if (remote & KSZ8_PORT_FIBER_MODE)
1586 p->fiber = 1;
1587 }
1588 if (p->fiber)
1589 ksz_port_cfg(dev, port: i, offset: regs[P_STP_CTRL],
1590 PORT_FORCE_FLOW_CTRL, set: true);
1591 else
1592 ksz_port_cfg(dev, port: i, offset: regs[P_STP_CTRL],
1593 PORT_FORCE_FLOW_CTRL, set: false);
1594 }
1595}
1596
1597/**
1598 * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1599 * @dev: The KSZ device instance.
1600 * @port: The port number to configure.
1601 * @duplex: The desired duplex mode.
1602 * @tx_pause: If true, enables transmit pause.
1603 * @rx_pause: If true, enables receive pause.
1604 *
1605 * Description:
1606 * The function configures flow control settings for a given port based on the
1607 * desired settings and current duplex mode.
1608 *
1609 * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1610 * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1611 * determines how flow control is handled on the port:
1612 * "1 = will always enable full-duplex flow control on the port, regardless
1613 * of AN result.
1614 * 0 = full-duplex flow control is enabled based on AN result."
1615 *
1616 * This means that the flow control behavior depends on the state of this bit:
1617 * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1618 * force flow control on the port.
1619 * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1620 * flow control based on the AN results.
1621 *
1622 * However, there is a potential limitation in this configuration. It is
1623 * currently not possible to force disable flow control on a port if we still
1624 * advertise pause support. While such a configuration is not currently
1625 * supported by Linux, and may not make practical sense, it's important to be
1626 * aware of this limitation when working with the KSZ8873 and similar devices.
1627 */
1628static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1629 bool tx_pause, bool rx_pause)
1630{
1631 const u16 *regs = dev->info->regs;
1632 u8 sctrl = 0;
1633
1634 /* The KSZ8795 switch differs from the KSZ8873 by supporting
1635 * asymmetric pause control. However, since a single bit is used to
1636 * control both RX and TX pause, we can't enforce asymmetric pause
1637 * control - both TX and RX pause will be either enabled or disabled
1638 * together.
1639 *
1640 * If auto-negotiation is enabled, we usually allow the flow control to
1641 * be determined by the auto-negotiation process based on the
1642 * capabilities of both link partners. However, for KSZ8873, the
1643 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1644 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1645 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1646 * properly cleared.
1647 *
1648 * In the absence of pause auto-negotiation, we will enforce symmetric
1649 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1650 *
1651 * Autoneg Pause Autoneg rx,tx PORT_FORCE_FLOW_CTRL
1652 * 1 1 x 0
1653 * 0 1 x 0 (flow control probably disabled)
1654 * x 0 1 1 (flow control force enabled)
1655 * 1 0 0 0 (flow control still depends on
1656 * aneg result due to hardware)
1657 * 0 0 0 0 (flow control probably disabled)
1658 */
1659 if (dev->ports[port].manual_flow && tx_pause)
1660 sctrl |= PORT_FORCE_FLOW_CTRL;
1661
1662 ksz_prmw8(dev, port, offset: regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, val: sctrl);
1663}
1664
1665/**
1666 * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1667 * @dev: The KSZ device instance.
1668 * @speed: The desired link speed.
1669 * @duplex: The desired duplex mode.
1670 * @tx_pause: If true, enables transmit pause.
1671 * @rx_pause: If true, enables receive pause.
1672 *
1673 * Description:
1674 * The function configures flow control and speed settings for the CPU
1675 * port of the switch based on the desired settings, current duplex mode, and
1676 * speed.
1677 */
1678static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1679 bool tx_pause, bool rx_pause)
1680{
1681 const u16 *regs = dev->info->regs;
1682 u8 ctrl = 0;
1683
1684 /* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1685 * at least on KSZ8873. They can have different values depending on your
1686 * board setup.
1687 */
1688 if (tx_pause || rx_pause)
1689 ctrl |= SW_FLOW_CTRL;
1690
1691 if (duplex == DUPLEX_HALF)
1692 ctrl |= SW_HALF_DUPLEX;
1693
1694 /* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1695 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1696 */
1697 if (speed == SPEED_10)
1698 ctrl |= SW_10_MBIT;
1699
1700 ksz_rmw8(dev, offset: regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1701 SW_10_MBIT, val: ctrl);
1702}
1703
1704void ksz8_phylink_mac_link_up(struct ksz_device *dev, int port,
1705 unsigned int mode, phy_interface_t interface,
1706 struct phy_device *phydev, int speed, int duplex,
1707 bool tx_pause, bool rx_pause)
1708{
1709 /* If the port is the CPU port, apply special handling. Only the CPU
1710 * port is configured via global registers.
1711 */
1712 if (dev->cpu_port == port)
1713 ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1714 else if (dev->info->internal_phy[port])
1715 ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1716}
1717
1718static int ksz8_handle_global_errata(struct dsa_switch *ds)
1719{
1720 struct ksz_device *dev = ds->priv;
1721 int ret = 0;
1722
1723 /* KSZ87xx Errata DS80000687C.
1724 * Module 2: Link drops with some EEE link partners.
1725 * An issue with the EEE next page exchange between the
1726 * KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1727 * the link dropping.
1728 */
1729 if (dev->info->ksz87xx_eee_link_erratum)
1730 ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, data: 0);
1731
1732 return ret;
1733}
1734
1735int ksz8_enable_stp_addr(struct ksz_device *dev)
1736{
1737 struct alu_struct alu;
1738
1739 /* Setup STP address for STP operation. */
1740 memset(&alu, 0, sizeof(alu));
1741 ether_addr_copy(dst: alu.mac, eth_stp_addr);
1742 alu.is_static = true;
1743 alu.is_override = true;
1744 alu.port_forward = dev->info->cpu_ports;
1745
1746 return ksz8_w_sta_mac_table(dev, addr: 0, alu: &alu);
1747}
1748
1749int ksz8_setup(struct dsa_switch *ds)
1750{
1751 struct ksz_device *dev = ds->priv;
1752 int i;
1753
1754 ds->mtu_enforcement_ingress = true;
1755
1756 /* We rely on software untagging on the CPU port, so that we
1757 * can support both tagged and untagged VLANs
1758 */
1759 ds->untag_bridge_pvid = true;
1760
1761 /* VLAN filtering is partly controlled by the global VLAN
1762 * Enable flag
1763 */
1764 ds->vlan_filtering_is_global = true;
1765
1766 /* Enable automatic fast aging when link changed detected. */
1767 ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, set: true);
1768
1769 /* Enable aggressive back off algorithm in half duplex mode. */
1770 regmap_update_bits(map: ksz_regmap_8(dev), REG_SW_CTRL_1,
1771 SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1772
1773 /*
1774 * Make sure unicast VLAN boundary is set as default and
1775 * enable no excessive collision drop.
1776 */
1777 regmap_update_bits(map: ksz_regmap_8(dev), REG_SW_CTRL_2,
1778 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1779 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1780
1781 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, set: false);
1782
1783 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, set: false);
1784
1785 if (!ksz_is_ksz88x3(dev))
1786 ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, set: true);
1787
1788 for (i = 0; i < (dev->info->num_vlans / 4); i++)
1789 ksz8_r_vlan_entries(dev, addr: i);
1790
1791 return ksz8_handle_global_errata(ds);
1792}
1793
1794void ksz8_get_caps(struct ksz_device *dev, int port,
1795 struct phylink_config *config)
1796{
1797 config->mac_capabilities = MAC_10 | MAC_100;
1798
1799 /* Silicon Errata Sheet (DS80000830A):
1800 * "Port 1 does not respond to received flow control PAUSE frames"
1801 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1802 * switches.
1803 */
1804 if (!ksz_is_ksz88x3(dev) || port)
1805 config->mac_capabilities |= MAC_SYM_PAUSE;
1806
1807 /* Asym pause is not supported on KSZ8863 and KSZ8873 */
1808 if (!ksz_is_ksz88x3(dev))
1809 config->mac_capabilities |= MAC_ASYM_PAUSE;
1810}
1811
1812u32 ksz8_get_port_addr(int port, int offset)
1813{
1814 return PORT_CTRL_ADDR(port, offset);
1815}
1816
1817int ksz8_switch_init(struct ksz_device *dev)
1818{
1819 dev->cpu_port = fls(x: dev->info->cpu_ports) - 1;
1820 dev->phy_port_cnt = dev->info->port_cnt - 1;
1821 dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1822
1823 return 0;
1824}
1825
1826void ksz8_switch_exit(struct ksz_device *dev)
1827{
1828 ksz8_reset_switch(dev);
1829}
1830
1831MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1832MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1833MODULE_LICENSE("GPL");
1834

source code of linux/drivers/net/dsa/microchip/ksz8795.c