1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * File Name:
4 * skfddi.c
5 *
6 * Copyright Information:
7 * Copyright SysKonnect 1998,1999.
8 *
9 * The information in this file is provided "AS IS" without warranty.
10 *
11 * Abstract:
12 * A Linux device driver supporting the SysKonnect FDDI PCI controller
13 * familie.
14 *
15 * Maintainers:
16 * CG Christoph Goos (cgoos@syskonnect.de)
17 *
18 * Contributors:
19 * DM David S. Miller
20 *
21 * Address all question to:
22 * linux@syskonnect.de
23 *
24 * The technical manual for the adapters is available from SysKonnect's
25 * web pages: www.syskonnect.com
26 * Goto "Support" and search Knowledge Base for "manual".
27 *
28 * Driver Architecture:
29 * The driver architecture is based on the DEC FDDI driver by
30 * Lawrence V. Stefani and several ethernet drivers.
31 * I also used an existing Windows NT miniport driver.
32 * All hardware dependent functions are handled by the SysKonnect
33 * Hardware Module.
34 * The only headerfiles that are directly related to this source
35 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
36 * The others belong to the SysKonnect FDDI Hardware Module and
37 * should better not be changed.
38 *
39 * Modification History:
40 * Date Name Description
41 * 02-Mar-98 CG Created.
42 *
43 * 10-Mar-99 CG Support for 2.2.x added.
44 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
45 * 26-Oct-99 CG Fixed compilation error on 2.2.13
46 * 12-Nov-99 CG Source code release
47 * 22-Nov-99 CG Included in kernel source.
48 * 07-May-00 DM 64 bit fixes, new dma interface
49 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
50 * Daniele Bellucci <bellucda@tiscali.it>
51 * 03-Dec-03 SH Convert to PCI device model
52 *
53 * Compilation options (-Dxxx):
54 * DRIVERDEBUG print lots of messages to log file
55 * DUMPPACKETS print received/transmitted packets to logfile
56 *
57 * Tested cpu architectures:
58 * - i386
59 * - sparc64
60 */
61
62/* Version information string - should be updated prior to */
63/* each new release!!! */
64#define VERSION "2.07"
65
66static const char * const boot_msg =
67 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
68 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
69
70/* Include files */
71
72#include <linux/capability.h>
73#include <linux/compat.h>
74#include <linux/module.h>
75#include <linux/kernel.h>
76#include <linux/errno.h>
77#include <linux/ioport.h>
78#include <linux/interrupt.h>
79#include <linux/pci.h>
80#include <linux/netdevice.h>
81#include <linux/etherdevice.h>
82#include <linux/fddidevice.h>
83#include <linux/skbuff.h>
84#include <linux/bitops.h>
85#include <linux/gfp.h>
86
87#include <asm/byteorder.h>
88#include <asm/io.h>
89#include <linux/uaccess.h>
90
91#include "h/types.h"
92#undef ADDR // undo Linux definition
93#include "h/skfbi.h"
94#include "h/fddi.h"
95#include "h/smc.h"
96#include "h/smtstate.h"
97
98
99// Define module-wide (static) routines
100static int skfp_driver_init(struct net_device *dev);
101static int skfp_open(struct net_device *dev);
102static int skfp_close(struct net_device *dev);
103static irqreturn_t skfp_interrupt(int irq, void *dev_id);
104static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
105static void skfp_ctl_set_multicast_list(struct net_device *dev);
106static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
107static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
108static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq,
109 void __user *data, int cmd);
110static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
111 struct net_device *dev);
112static void send_queued_packets(struct s_smc *smc);
113static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
114static void ResetAdapter(struct s_smc *smc);
115
116
117// Functions needed by the hardware module
118void *mac_drv_get_space(struct s_smc *smc, u_int size);
119void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
120unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
121unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
122void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
123 int flag);
124void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
125void llc_restart_tx(struct s_smc *smc);
126void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
127 int frag_count, int len);
128void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
129 int frag_count);
130void mac_drv_fill_rxd(struct s_smc *smc);
131void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
132 int frag_count);
133int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
134 int la_len);
135void dump_data(unsigned char *Data, int length);
136
137// External functions from the hardware module
138extern u_int mac_drv_check_space(void);
139extern int mac_drv_init(struct s_smc *smc);
140extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
141 int len, int frame_status);
142extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
143 int frame_len, int frame_status);
144extern void fddi_isr(struct s_smc *smc);
145extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
146 int len, int frame_status);
147extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
148extern void mac_drv_clear_rx_queue(struct s_smc *smc);
149extern void enable_tx_irq(struct s_smc *smc, u_short queue);
150
151static const struct pci_device_id skfddi_pci_tbl[] = {
152 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
153 { } /* Terminating entry */
154};
155MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
156MODULE_DESCRIPTION("SysKonnect FDDI PCI driver");
157MODULE_LICENSE("GPL");
158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159
160// Define module-wide (static) variables
161
162static int num_boards; /* total number of adapters configured */
163
164static const struct net_device_ops skfp_netdev_ops = {
165 .ndo_open = skfp_open,
166 .ndo_stop = skfp_close,
167 .ndo_start_xmit = skfp_send_pkt,
168 .ndo_get_stats = skfp_ctl_get_stats,
169 .ndo_set_rx_mode = skfp_ctl_set_multicast_list,
170 .ndo_set_mac_address = skfp_ctl_set_mac_address,
171 .ndo_siocdevprivate = skfp_siocdevprivate,
172};
173
174/*
175 * =================
176 * = skfp_init_one =
177 * =================
178 *
179 * Overview:
180 * Probes for supported FDDI PCI controllers
181 *
182 * Returns:
183 * Condition code
184 *
185 * Arguments:
186 * pdev - pointer to PCI device information
187 *
188 * Functional Description:
189 * This is now called by PCI driver registration process
190 * for each board found.
191 *
192 * Return Codes:
193 * 0 - This device (fddi0, fddi1, etc) configured successfully
194 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
195 * present for this device name
196 *
197 *
198 * Side Effects:
199 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
200 * initialized and the board resources are read and stored in
201 * the device structure.
202 */
203static int skfp_init_one(struct pci_dev *pdev,
204 const struct pci_device_id *ent)
205{
206 struct net_device *dev;
207 struct s_smc *smc; /* board pointer */
208 void __iomem *mem;
209 int err;
210
211 pr_debug("entering skfp_init_one\n");
212
213 if (num_boards == 0)
214 printk("%s\n", boot_msg);
215
216 err = pci_enable_device(dev: pdev);
217 if (err)
218 return err;
219
220 err = pci_request_regions(pdev, "skfddi");
221 if (err)
222 goto err_out1;
223
224 pci_set_master(dev: pdev);
225
226#ifdef MEM_MAPPED_IO
227 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
228 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
229 err = -EIO;
230 goto err_out2;
231 }
232
233 mem = ioremap(pci_resource_start(pdev, 0), size: 0x4000);
234#else
235 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
236 printk(KERN_ERR "skfp: region is not PIO resource\n");
237 err = -EIO;
238 goto err_out2;
239 }
240
241 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
242#endif
243 if (!mem) {
244 printk(KERN_ERR "skfp: Unable to map register, "
245 "FDDI adapter will be disabled.\n");
246 err = -EIO;
247 goto err_out2;
248 }
249
250 dev = alloc_fddidev(sizeof_priv: sizeof(struct s_smc));
251 if (!dev) {
252 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
253 "FDDI adapter will be disabled.\n");
254 err = -ENOMEM;
255 goto err_out3;
256 }
257
258 dev->irq = pdev->irq;
259 dev->netdev_ops = &skfp_netdev_ops;
260
261 SET_NETDEV_DEV(dev, &pdev->dev);
262
263 /* Initialize board structure with bus-specific info */
264 smc = netdev_priv(dev);
265 smc->os.dev = dev;
266 smc->os.bus_type = SK_BUS_TYPE_PCI;
267 smc->os.pdev = *pdev;
268 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
269 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
270 smc->os.dev = dev;
271 smc->hw.slot = -1;
272 smc->hw.iop = mem;
273 smc->os.ResetRequested = FALSE;
274 skb_queue_head_init(list: &smc->os.SendSkbQueue);
275
276 dev->base_addr = (unsigned long)mem;
277
278 err = skfp_driver_init(dev);
279 if (err)
280 goto err_out4;
281
282 err = register_netdev(dev);
283 if (err)
284 goto err_out5;
285
286 ++num_boards;
287 pci_set_drvdata(pdev, data: dev);
288
289 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
290 (pdev->subsystem_device & 0xff00) == 0x5800)
291 printk("%s: SysKonnect FDDI PCI adapter"
292 " found (SK-%04X)\n", dev->name,
293 pdev->subsystem_device);
294 else
295 printk("%s: FDDI PCI adapter found\n", dev->name);
296
297 return 0;
298err_out5:
299 if (smc->os.SharedMemAddr)
300 dma_free_coherent(dev: &pdev->dev, size: smc->os.SharedMemSize,
301 cpu_addr: smc->os.SharedMemAddr,
302 dma_handle: smc->os.SharedMemDMA);
303 dma_free_coherent(dev: &pdev->dev, MAX_FRAME_SIZE,
304 cpu_addr: smc->os.LocalRxBuffer, dma_handle: smc->os.LocalRxBufferDMA);
305err_out4:
306 free_netdev(dev);
307err_out3:
308#ifdef MEM_MAPPED_IO
309 iounmap(addr: mem);
310#else
311 ioport_unmap(mem);
312#endif
313err_out2:
314 pci_release_regions(pdev);
315err_out1:
316 pci_disable_device(dev: pdev);
317 return err;
318}
319
320/*
321 * Called for each adapter board from pci_unregister_driver
322 */
323static void skfp_remove_one(struct pci_dev *pdev)
324{
325 struct net_device *p = pci_get_drvdata(pdev);
326 struct s_smc *lp = netdev_priv(dev: p);
327
328 unregister_netdev(dev: p);
329
330 if (lp->os.SharedMemAddr) {
331 dma_free_coherent(dev: &pdev->dev,
332 size: lp->os.SharedMemSize,
333 cpu_addr: lp->os.SharedMemAddr,
334 dma_handle: lp->os.SharedMemDMA);
335 lp->os.SharedMemAddr = NULL;
336 }
337 if (lp->os.LocalRxBuffer) {
338 dma_free_coherent(dev: &pdev->dev,
339 MAX_FRAME_SIZE,
340 cpu_addr: lp->os.LocalRxBuffer,
341 dma_handle: lp->os.LocalRxBufferDMA);
342 lp->os.LocalRxBuffer = NULL;
343 }
344#ifdef MEM_MAPPED_IO
345 iounmap(addr: lp->hw.iop);
346#else
347 ioport_unmap(lp->hw.iop);
348#endif
349 pci_release_regions(pdev);
350 free_netdev(dev: p);
351
352 pci_disable_device(dev: pdev);
353}
354
355/*
356 * ====================
357 * = skfp_driver_init =
358 * ====================
359 *
360 * Overview:
361 * Initializes remaining adapter board structure information
362 * and makes sure adapter is in a safe state prior to skfp_open().
363 *
364 * Returns:
365 * Condition code
366 *
367 * Arguments:
368 * dev - pointer to device information
369 *
370 * Functional Description:
371 * This function allocates additional resources such as the host memory
372 * blocks needed by the adapter.
373 * The adapter is also reset. The OS must call skfp_open() to open
374 * the adapter and bring it on-line.
375 *
376 * Return Codes:
377 * 0 - initialization succeeded
378 * -1 - initialization failed
379 */
380static int skfp_driver_init(struct net_device *dev)
381{
382 struct s_smc *smc = netdev_priv(dev);
383 skfddi_priv *bp = &smc->os;
384 int err = -EIO;
385
386 pr_debug("entering skfp_driver_init\n");
387
388 // set the io address in private structures
389 bp->base_addr = dev->base_addr;
390
391 // Get the interrupt level from the PCI Configuration Table
392 smc->hw.irq = dev->irq;
393
394 spin_lock_init(&bp->DriverLock);
395
396 // Allocate invalid frame
397 bp->LocalRxBuffer = dma_alloc_coherent(dev: &bp->pdev.dev, MAX_FRAME_SIZE,
398 dma_handle: &bp->LocalRxBufferDMA,
399 GFP_ATOMIC);
400 if (!bp->LocalRxBuffer) {
401 printk("could not allocate mem for ");
402 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403 goto fail;
404 }
405
406 // Determine the required size of the 'shared' memory area.
407 bp->SharedMemSize = mac_drv_check_space();
408 pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
409 if (bp->SharedMemSize > 0) {
410 bp->SharedMemSize += 16; // for descriptor alignment
411
412 bp->SharedMemAddr = dma_alloc_coherent(dev: &bp->pdev.dev,
413 size: bp->SharedMemSize,
414 dma_handle: &bp->SharedMemDMA,
415 GFP_ATOMIC);
416 if (!bp->SharedMemAddr) {
417 printk("could not allocate mem for ");
418 printk("hardware module: %ld byte\n",
419 bp->SharedMemSize);
420 goto fail;
421 }
422
423 } else {
424 bp->SharedMemAddr = NULL;
425 }
426
427 bp->SharedMemHeap = 0;
428
429 card_stop(smc); // Reset adapter.
430
431 pr_debug("mac_drv_init()..\n");
432 if (mac_drv_init(smc) != 0) {
433 pr_debug("mac_drv_init() failed\n");
434 goto fail;
435 }
436 read_address(smc, NULL);
437 pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
438 eth_hw_addr_set(dev, addr: smc->hw.fddi_canon_addr.a);
439
440 smt_reset_defaults(smc, level: 0);
441
442 return 0;
443
444fail:
445 if (bp->SharedMemAddr) {
446 dma_free_coherent(dev: &bp->pdev.dev,
447 size: bp->SharedMemSize,
448 cpu_addr: bp->SharedMemAddr,
449 dma_handle: bp->SharedMemDMA);
450 bp->SharedMemAddr = NULL;
451 }
452 if (bp->LocalRxBuffer) {
453 dma_free_coherent(dev: &bp->pdev.dev, MAX_FRAME_SIZE,
454 cpu_addr: bp->LocalRxBuffer, dma_handle: bp->LocalRxBufferDMA);
455 bp->LocalRxBuffer = NULL;
456 }
457 return err;
458} // skfp_driver_init
459
460
461/*
462 * =============
463 * = skfp_open =
464 * =============
465 *
466 * Overview:
467 * Opens the adapter
468 *
469 * Returns:
470 * Condition code
471 *
472 * Arguments:
473 * dev - pointer to device information
474 *
475 * Functional Description:
476 * This function brings the adapter to an operational state.
477 *
478 * Return Codes:
479 * 0 - Adapter was successfully opened
480 * -EAGAIN - Could not register IRQ
481 */
482static int skfp_open(struct net_device *dev)
483{
484 struct s_smc *smc = netdev_priv(dev);
485 int err;
486
487 pr_debug("entering skfp_open\n");
488 /* Register IRQ - support shared interrupts by passing device ptr */
489 err = request_irq(irq: dev->irq, handler: skfp_interrupt, IRQF_SHARED,
490 name: dev->name, dev);
491 if (err)
492 return err;
493
494 /*
495 * Set current address to factory MAC address
496 *
497 * Note: We've already done this step in skfp_driver_init.
498 * However, it's possible that a user has set a node
499 * address override, then closed and reopened the
500 * adapter. Unless we reset the device address field
501 * now, we'll continue to use the existing modified
502 * address.
503 */
504 read_address(smc, NULL);
505 eth_hw_addr_set(dev, addr: smc->hw.fddi_canon_addr.a);
506
507 init_smt(smc, NULL);
508 smt_online(smc, on: 1);
509 STI_FBI();
510
511 /* Clear local multicast address tables */
512 mac_clear_multicast(smc);
513
514 /* Disable promiscuous filter settings */
515 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
516
517 netif_start_queue(dev);
518 return 0;
519} // skfp_open
520
521
522/*
523 * ==============
524 * = skfp_close =
525 * ==============
526 *
527 * Overview:
528 * Closes the device/module.
529 *
530 * Returns:
531 * Condition code
532 *
533 * Arguments:
534 * dev - pointer to device information
535 *
536 * Functional Description:
537 * This routine closes the adapter and brings it to a safe state.
538 * The interrupt service routine is deregistered with the OS.
539 * The adapter can be opened again with another call to skfp_open().
540 *
541 * Return Codes:
542 * Always return 0.
543 *
544 * Assumptions:
545 * No further requests for this adapter are made after this routine is
546 * called. skfp_open() can be called to reset and reinitialize the
547 * adapter.
548 */
549static int skfp_close(struct net_device *dev)
550{
551 struct s_smc *smc = netdev_priv(dev);
552 skfddi_priv *bp = &smc->os;
553
554 CLI_FBI();
555 smt_reset_defaults(smc, level: 1);
556 card_stop(smc);
557 mac_drv_clear_tx_queue(smc);
558 mac_drv_clear_rx_queue(smc);
559
560 netif_stop_queue(dev);
561 /* Deregister (free) IRQ */
562 free_irq(dev->irq, dev);
563
564 skb_queue_purge(list: &bp->SendSkbQueue);
565 bp->QueueSkb = MAX_TX_QUEUE_LEN;
566
567 return 0;
568} // skfp_close
569
570
571/*
572 * ==================
573 * = skfp_interrupt =
574 * ==================
575 *
576 * Overview:
577 * Interrupt processing routine
578 *
579 * Returns:
580 * None
581 *
582 * Arguments:
583 * irq - interrupt vector
584 * dev_id - pointer to device information
585 *
586 * Functional Description:
587 * This routine calls the interrupt processing routine for this adapter. It
588 * disables and reenables adapter interrupts, as appropriate. We can support
589 * shared interrupts since the incoming dev_id pointer provides our device
590 * structure context. All the real work is done in the hardware module.
591 *
592 * Return Codes:
593 * None
594 *
595 * Assumptions:
596 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
597 * on Intel-based systems) is done by the operating system outside this
598 * routine.
599 *
600 * System interrupts are enabled through this call.
601 *
602 * Side Effects:
603 * Interrupts are disabled, then reenabled at the adapter.
604 */
605
606static irqreturn_t skfp_interrupt(int irq, void *dev_id)
607{
608 struct net_device *dev = dev_id;
609 struct s_smc *smc; /* private board structure pointer */
610 skfddi_priv *bp;
611
612 smc = netdev_priv(dev);
613 bp = &smc->os;
614
615 // IRQs enabled or disabled ?
616 if (inpd(ADDR(B0_IMSK)) == 0) {
617 // IRQs are disabled: must be shared interrupt
618 return IRQ_NONE;
619 }
620 // Note: At this point, IRQs are enabled.
621 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
622 // Adapter did not issue an IRQ: must be shared interrupt
623 return IRQ_NONE;
624 }
625 CLI_FBI(); // Disable IRQs from our adapter.
626 spin_lock(lock: &bp->DriverLock);
627
628 // Call interrupt handler in hardware module (HWM).
629 fddi_isr(smc);
630
631 if (smc->os.ResetRequested) {
632 ResetAdapter(smc);
633 smc->os.ResetRequested = FALSE;
634 }
635 spin_unlock(lock: &bp->DriverLock);
636 STI_FBI(); // Enable IRQs from our adapter.
637
638 return IRQ_HANDLED;
639} // skfp_interrupt
640
641
642/*
643 * ======================
644 * = skfp_ctl_get_stats =
645 * ======================
646 *
647 * Overview:
648 * Get statistics for FDDI adapter
649 *
650 * Returns:
651 * Pointer to FDDI statistics structure
652 *
653 * Arguments:
654 * dev - pointer to device information
655 *
656 * Functional Description:
657 * Gets current MIB objects from adapter, then
658 * returns FDDI statistics structure as defined
659 * in if_fddi.h.
660 *
661 * Note: Since the FDDI statistics structure is
662 * still new and the device structure doesn't
663 * have an FDDI-specific get statistics handler,
664 * we'll return the FDDI statistics structure as
665 * a pointer to an Ethernet statistics structure.
666 * That way, at least the first part of the statistics
667 * structure can be decoded properly.
668 * We'll have to pay attention to this routine as the
669 * device structure becomes more mature and LAN media
670 * independent.
671 *
672 */
673static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
674{
675 struct s_smc *bp = netdev_priv(dev);
676
677 /* Fill the bp->stats structure with driver-maintained counters */
678
679 bp->os.MacStat.port_bs_flag[0] = 0x1234;
680 bp->os.MacStat.port_bs_flag[1] = 0x5678;
681// goos: need to fill out fddi statistic
682#if 0
683 /* Get FDDI SMT MIB objects */
684
685/* Fill the bp->stats structure with the SMT MIB object values */
686
687 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
688 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
689 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
690 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
691 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
692 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
693 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
694 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
695 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
696 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
697 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
698 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
699 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
700 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
701 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
702 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
703 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
704 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
705 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
706 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
707 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
708 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
709 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
710 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
711 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
712 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
713 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
714 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
715 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
716 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
717 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
718 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
719 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
720 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
721 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
722 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
723 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
724 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
725 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
726 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
727 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
728 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
729 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
730 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
731 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
732 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
733 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
734 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
735 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
736 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
737 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
738 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
739 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
740 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
741 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
742 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
743 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
744 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
745 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
746 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
747 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
748 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
749 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
750 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
751 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
752 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
753 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
754 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
755 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
756 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
757 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
758 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
759 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
760 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
761 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
762 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
763 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
764 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
765 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
766 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
767 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
768 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
769 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
770 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
771 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
772 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
773 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
774 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
775 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
776 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
777 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
778 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
779
780
781 /* Fill the bp->stats structure with the FDDI counter values */
782
783 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
784 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
785 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
786 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
787 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
788 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
789 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
790 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
791 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
792 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
793 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
794
795#endif
796 return (struct net_device_stats *)&bp->os.MacStat;
797} // ctl_get_stat
798
799
800/*
801 * ==============================
802 * = skfp_ctl_set_multicast_list =
803 * ==============================
804 *
805 * Overview:
806 * Enable/Disable LLC frame promiscuous mode reception
807 * on the adapter and/or update multicast address table.
808 *
809 * Returns:
810 * None
811 *
812 * Arguments:
813 * dev - pointer to device information
814 *
815 * Functional Description:
816 * This function acquires the driver lock and only calls
817 * skfp_ctl_set_multicast_list_wo_lock then.
818 * This routine follows a fairly simple algorithm for setting the
819 * adapter filters and CAM:
820 *
821 * if IFF_PROMISC flag is set
822 * enable promiscuous mode
823 * else
824 * disable promiscuous mode
825 * if number of multicast addresses <= max. multicast number
826 * add mc addresses to adapter table
827 * else
828 * enable promiscuous mode
829 * update adapter filters
830 *
831 * Assumptions:
832 * Multicast addresses are presented in canonical (LSB) format.
833 *
834 * Side Effects:
835 * On-board adapter filters are updated.
836 */
837static void skfp_ctl_set_multicast_list(struct net_device *dev)
838{
839 struct s_smc *smc = netdev_priv(dev);
840 skfddi_priv *bp = &smc->os;
841 unsigned long Flags;
842
843 spin_lock_irqsave(&bp->DriverLock, Flags);
844 skfp_ctl_set_multicast_list_wo_lock(dev);
845 spin_unlock_irqrestore(lock: &bp->DriverLock, flags: Flags);
846} // skfp_ctl_set_multicast_list
847
848
849
850static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
851{
852 struct s_smc *smc = netdev_priv(dev);
853 struct netdev_hw_addr *ha;
854
855 /* Enable promiscuous mode, if necessary */
856 if (dev->flags & IFF_PROMISC) {
857 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
858 pr_debug("PROMISCUOUS MODE ENABLED\n");
859 }
860 /* Else, update multicast address table */
861 else {
862 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
863 pr_debug("PROMISCUOUS MODE DISABLED\n");
864
865 // Reset all MC addresses
866 mac_clear_multicast(smc);
867 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
868
869 if (dev->flags & IFF_ALLMULTI) {
870 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
871 pr_debug("ENABLE ALL MC ADDRESSES\n");
872 } else if (!netdev_mc_empty(dev)) {
873 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
874 /* use exact filtering */
875
876 // point to first multicast addr
877 netdev_for_each_mc_addr(ha, dev) {
878 mac_add_multicast(smc,
879 addr: (struct fddi_addr *)ha->addr,
880 can: 1);
881
882 pr_debug("ENABLE MC ADDRESS: %pMF\n",
883 ha->addr);
884 }
885
886 } else { // more MC addresses than HW supports
887
888 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
889 pr_debug("ENABLE ALL MC ADDRESSES\n");
890 }
891 } else { // no MC addresses
892
893 pr_debug("DISABLE ALL MC ADDRESSES\n");
894 }
895
896 /* Update adapter filters */
897 mac_update_multicast(smc);
898 }
899} // skfp_ctl_set_multicast_list_wo_lock
900
901
902/*
903 * ===========================
904 * = skfp_ctl_set_mac_address =
905 * ===========================
906 *
907 * Overview:
908 * set new mac address on adapter and update dev_addr field in device table.
909 *
910 * Returns:
911 * None
912 *
913 * Arguments:
914 * dev - pointer to device information
915 * addr - pointer to sockaddr structure containing unicast address to set
916 *
917 * Assumptions:
918 * The address pointed to by addr->sa_data is a valid unicast
919 * address and is presented in canonical (LSB) format.
920 */
921static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
922{
923 struct s_smc *smc = netdev_priv(dev);
924 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
925 skfddi_priv *bp = &smc->os;
926 unsigned long Flags;
927
928
929 dev_addr_set(dev, addr: p_sockaddr->sa_data);
930 spin_lock_irqsave(&bp->DriverLock, Flags);
931 ResetAdapter(smc);
932 spin_unlock_irqrestore(lock: &bp->DriverLock, flags: Flags);
933
934 return 0; /* always return zero */
935} // skfp_ctl_set_mac_address
936
937
938/*
939 * =======================
940 * = skfp_siocdevprivate =
941 * =======================
942 *
943 * Overview:
944 *
945 * Perform IOCTL call functions here. Some are privileged operations and the
946 * effective uid is checked in those cases.
947 *
948 * Returns:
949 * status value
950 * 0 - success
951 * other - failure
952 *
953 * Arguments:
954 * dev - pointer to device information
955 * rq - pointer to ioctl request structure
956 * cmd - ?
957 *
958 */
959
960
961static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd)
962{
963 struct s_smc *smc = netdev_priv(dev);
964 skfddi_priv *lp = &smc->os;
965 struct s_skfp_ioctl ioc;
966 int status = 0;
967
968 if (copy_from_user(to: &ioc, from: data, n: sizeof(struct s_skfp_ioctl)))
969 return -EFAULT;
970
971 if (in_compat_syscall())
972 return -EOPNOTSUPP;
973
974 switch (ioc.cmd) {
975 case SKFP_GET_STATS: /* Get the driver statistics */
976 ioc.len = sizeof(lp->MacStat);
977 status = copy_to_user(to: ioc.data, from: skfp_ctl_get_stats(dev), n: ioc.len)
978 ? -EFAULT : 0;
979 break;
980 case SKFP_CLR_STATS: /* Zero out the driver statistics */
981 if (!capable(CAP_NET_ADMIN)) {
982 status = -EPERM;
983 } else {
984 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
985 }
986 break;
987 default:
988 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
989 status = -EOPNOTSUPP;
990
991 } // switch
992
993 return status;
994} // skfp_ioctl
995
996
997/*
998 * =====================
999 * = skfp_send_pkt =
1000 * =====================
1001 *
1002 * Overview:
1003 * Queues a packet for transmission and try to transmit it.
1004 *
1005 * Returns:
1006 * Condition code
1007 *
1008 * Arguments:
1009 * skb - pointer to sk_buff to queue for transmission
1010 * dev - pointer to device information
1011 *
1012 * Functional Description:
1013 * Here we assume that an incoming skb transmit request
1014 * is contained in a single physically contiguous buffer
1015 * in which the virtual address of the start of packet
1016 * (skb->data) can be converted to a physical address
1017 * by using dma_map_single().
1018 *
1019 * We have an internal queue for packets we can not send
1020 * immediately. Packets in this queue can be given to the
1021 * adapter if transmit buffers are freed.
1022 *
1023 * We can't free the skb until after it's been DMA'd
1024 * out by the adapter, so we'll keep it in the driver and
1025 * return it in mac_drv_tx_complete.
1026 *
1027 * Return Codes:
1028 * 0 - driver has queued and/or sent packet
1029 * 1 - caller should requeue the sk_buff for later transmission
1030 *
1031 * Assumptions:
1032 * The entire packet is stored in one physically
1033 * contiguous buffer which is not cached and whose
1034 * 32-bit physical address can be determined.
1035 *
1036 * It's vital that this routine is NOT reentered for the
1037 * same board and that the OS is not in another section of
1038 * code (eg. skfp_interrupt) for the same board on a
1039 * different thread.
1040 *
1041 * Side Effects:
1042 * None
1043 */
1044static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1045 struct net_device *dev)
1046{
1047 struct s_smc *smc = netdev_priv(dev);
1048 skfddi_priv *bp = &smc->os;
1049
1050 pr_debug("skfp_send_pkt\n");
1051
1052 /*
1053 * Verify that incoming transmit request is OK
1054 *
1055 * Note: The packet size check is consistent with other
1056 * Linux device drivers, although the correct packet
1057 * size should be verified before calling the
1058 * transmit routine.
1059 */
1060
1061 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1062 bp->MacStat.gen.tx_errors++; /* bump error counter */
1063 // dequeue packets from xmt queue and send them
1064 netif_start_queue(dev);
1065 dev_kfree_skb(skb);
1066 return NETDEV_TX_OK; /* return "success" */
1067 }
1068 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1069
1070 netif_stop_queue(dev);
1071 return NETDEV_TX_BUSY;
1072 }
1073 bp->QueueSkb--;
1074 skb_queue_tail(list: &bp->SendSkbQueue, newsk: skb);
1075 send_queued_packets(smc: netdev_priv(dev));
1076 if (bp->QueueSkb == 0) {
1077 netif_stop_queue(dev);
1078 }
1079 return NETDEV_TX_OK;
1080
1081} // skfp_send_pkt
1082
1083
1084/*
1085 * =======================
1086 * = send_queued_packets =
1087 * =======================
1088 *
1089 * Overview:
1090 * Send packets from the driver queue as long as there are some and
1091 * transmit resources are available.
1092 *
1093 * Returns:
1094 * None
1095 *
1096 * Arguments:
1097 * smc - pointer to smc (adapter) structure
1098 *
1099 * Functional Description:
1100 * Take a packet from queue if there is any. If not, then we are done.
1101 * Check if there are resources to send the packet. If not, requeue it
1102 * and exit.
1103 * Set packet descriptor flags and give packet to adapter.
1104 * Check if any send resources can be freed (we do not use the
1105 * transmit complete interrupt).
1106 */
1107static void send_queued_packets(struct s_smc *smc)
1108{
1109 skfddi_priv *bp = &smc->os;
1110 struct sk_buff *skb;
1111 unsigned char fc;
1112 int queue;
1113 struct s_smt_fp_txd *txd; // Current TxD.
1114 dma_addr_t dma_address;
1115 unsigned long Flags;
1116
1117 int frame_status; // HWM tx frame status.
1118
1119 pr_debug("send queued packets\n");
1120 for (;;) {
1121 // send first buffer from queue
1122 skb = skb_dequeue(list: &bp->SendSkbQueue);
1123
1124 if (!skb) {
1125 pr_debug("queue empty\n");
1126 return;
1127 } // queue empty !
1128
1129 spin_lock_irqsave(&bp->DriverLock, Flags);
1130 fc = skb->data[0];
1131 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1132#ifdef ESS
1133 // Check if the frame may/must be sent as a synchronous frame.
1134
1135 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1136 // It's an LLC frame.
1137 if (!smc->ess.sync_bw_available)
1138 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1139
1140 else { // Bandwidth is available.
1141
1142 if (smc->mib.fddiESSSynchTxMode) {
1143 // Send as sync. frame.
1144 fc |= FC_SYNC_BIT;
1145 }
1146 }
1147 }
1148#endif // ESS
1149 frame_status = hwm_tx_init(smc, fc, frag_count: 1, frame_len: skb->len, frame_status: queue);
1150
1151 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1152 // Unable to send the frame.
1153
1154 if ((frame_status & RING_DOWN) != 0) {
1155 // Ring is down.
1156 pr_debug("Tx attempt while ring down.\n");
1157 } else if ((frame_status & OUT_OF_TXD) != 0) {
1158 pr_debug("%s: out of TXDs.\n", bp->dev->name);
1159 } else {
1160 pr_debug("%s: out of transmit resources",
1161 bp->dev->name);
1162 }
1163
1164 // Note: We will retry the operation as soon as
1165 // transmit resources become available.
1166 skb_queue_head(list: &bp->SendSkbQueue, newsk: skb);
1167 spin_unlock_irqrestore(lock: &bp->DriverLock, flags: Flags);
1168 return; // Packet has been queued.
1169
1170 } // if (unable to send frame)
1171
1172 bp->QueueSkb++; // one packet less in local queue
1173
1174 // source address in packet ?
1175 CheckSourceAddress(frame: skb->data, hw_addr: smc->hw.fddi_canon_addr.a);
1176
1177 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1178
1179 dma_address = dma_map_single(&(&bp->pdev)->dev, skb->data,
1180 skb->len, DMA_TO_DEVICE);
1181 if (frame_status & LAN_TX) {
1182 txd->txd_os.skb = skb; // save skb
1183 txd->txd_os.dma_addr = dma_address; // save dma mapping
1184 }
1185 hwm_tx_frag(smc, virt: skb->data, phys: dma_address, len: skb->len,
1186 frame_status: frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1187
1188 if (!(frame_status & LAN_TX)) { // local only frame
1189 dma_unmap_single(&(&bp->pdev)->dev, dma_address,
1190 skb->len, DMA_TO_DEVICE);
1191 dev_kfree_skb_irq(skb);
1192 }
1193 spin_unlock_irqrestore(lock: &bp->DriverLock, flags: Flags);
1194 } // for
1195
1196 return; // never reached
1197
1198} // send_queued_packets
1199
1200
1201/************************
1202 *
1203 * CheckSourceAddress
1204 *
1205 * Verify if the source address is set. Insert it if necessary.
1206 *
1207 ************************/
1208static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1209{
1210 unsigned char SRBit;
1211
1212 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1213
1214 return;
1215 if ((unsigned short) frame[1 + 10] != 0)
1216 return;
1217 SRBit = frame[1 + 6] & 0x01;
1218 memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1219 frame[8] |= SRBit;
1220} // CheckSourceAddress
1221
1222
1223/************************
1224 *
1225 * ResetAdapter
1226 *
1227 * Reset the adapter and bring it back to operational mode.
1228 * Args
1229 * smc - A pointer to the SMT context struct.
1230 * Out
1231 * Nothing.
1232 *
1233 ************************/
1234static void ResetAdapter(struct s_smc *smc)
1235{
1236
1237 pr_debug("[fddi: ResetAdapter]\n");
1238
1239 // Stop the adapter.
1240
1241 card_stop(smc); // Stop all activity.
1242
1243 // Clear the transmit and receive descriptor queues.
1244 mac_drv_clear_tx_queue(smc);
1245 mac_drv_clear_rx_queue(smc);
1246
1247 // Restart the adapter.
1248
1249 smt_reset_defaults(smc, level: 1); // Initialize the SMT module.
1250
1251 init_smt(smc, mac_addr: (smc->os.dev)->dev_addr); // Initialize the hardware.
1252
1253 smt_online(smc, on: 1); // Insert into the ring again.
1254 STI_FBI();
1255
1256 // Restore original receive mode (multicasts, promiscuous, etc.).
1257 skfp_ctl_set_multicast_list_wo_lock(dev: smc->os.dev);
1258} // ResetAdapter
1259
1260
1261//--------------- functions called by hardware module ----------------
1262
1263/************************
1264 *
1265 * llc_restart_tx
1266 *
1267 * The hardware driver calls this routine when the transmit complete
1268 * interrupt bits (end of frame) for the synchronous or asynchronous
1269 * queue is set.
1270 *
1271 * NOTE The hardware driver calls this function also if no packets are queued.
1272 * The routine must be able to handle this case.
1273 * Args
1274 * smc - A pointer to the SMT context struct.
1275 * Out
1276 * Nothing.
1277 *
1278 ************************/
1279void llc_restart_tx(struct s_smc *smc)
1280{
1281 skfddi_priv *bp = &smc->os;
1282
1283 pr_debug("[llc_restart_tx]\n");
1284
1285 // Try to send queued packets
1286 spin_unlock(lock: &bp->DriverLock);
1287 send_queued_packets(smc);
1288 spin_lock(lock: &bp->DriverLock);
1289 netif_start_queue(dev: bp->dev);// system may send again if it was blocked
1290
1291} // llc_restart_tx
1292
1293
1294/************************
1295 *
1296 * mac_drv_get_space
1297 *
1298 * The hardware module calls this function to allocate the memory
1299 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1300 * Args
1301 * smc - A pointer to the SMT context struct.
1302 *
1303 * size - Size of memory in bytes to allocate.
1304 * Out
1305 * != 0 A pointer to the virtual address of the allocated memory.
1306 * == 0 Allocation error.
1307 *
1308 ************************/
1309void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1310{
1311 void *virt;
1312
1313 pr_debug("mac_drv_get_space (%d bytes), ", size);
1314 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1315
1316 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1317 printk("Unexpected SMT memory size requested: %d\n", size);
1318 return NULL;
1319 }
1320 smc->os.SharedMemHeap += size; // Move heap pointer.
1321
1322 pr_debug("mac_drv_get_space end\n");
1323 pr_debug("virt addr: %lx\n", (ulong) virt);
1324 pr_debug("bus addr: %lx\n", (ulong)
1325 (smc->os.SharedMemDMA +
1326 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1327 return virt;
1328} // mac_drv_get_space
1329
1330
1331/************************
1332 *
1333 * mac_drv_get_desc_mem
1334 *
1335 * This function is called by the hardware dependent module.
1336 * It allocates the memory for the RxD and TxD descriptors.
1337 *
1338 * This memory must be non-cached, non-movable and non-swappable.
1339 * This memory should start at a physical page boundary.
1340 * Args
1341 * smc - A pointer to the SMT context struct.
1342 *
1343 * size - Size of memory in bytes to allocate.
1344 * Out
1345 * != 0 A pointer to the virtual address of the allocated memory.
1346 * == 0 Allocation error.
1347 *
1348 ************************/
1349void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1350{
1351
1352 char *virt;
1353
1354 pr_debug("mac_drv_get_desc_mem\n");
1355
1356 // Descriptor memory must be aligned on 16-byte boundary.
1357
1358 virt = mac_drv_get_space(smc, size);
1359
1360 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1361 size = size % 16;
1362
1363 pr_debug("Allocate %u bytes alignment gap ", size);
1364 pr_debug("for descriptor memory.\n");
1365
1366 if (!mac_drv_get_space(smc, size)) {
1367 printk("fddi: Unable to align descriptor memory.\n");
1368 return NULL;
1369 }
1370 return virt + size;
1371} // mac_drv_get_desc_mem
1372
1373
1374/************************
1375 *
1376 * mac_drv_virt2phys
1377 *
1378 * Get the physical address of a given virtual address.
1379 * Args
1380 * smc - A pointer to the SMT context struct.
1381 *
1382 * virt - A (virtual) pointer into our 'shared' memory area.
1383 * Out
1384 * Physical address of the given virtual address.
1385 *
1386 ************************/
1387unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1388{
1389 return smc->os.SharedMemDMA +
1390 ((char *) virt - (char *)smc->os.SharedMemAddr);
1391} // mac_drv_virt2phys
1392
1393
1394/************************
1395 *
1396 * dma_master
1397 *
1398 * The HWM calls this function, when the driver leads through a DMA
1399 * transfer. If the OS-specific module must prepare the system hardware
1400 * for the DMA transfer, it should do it in this function.
1401 *
1402 * The hardware module calls this dma_master if it wants to send an SMT
1403 * frame. This means that the virt address passed in here is part of
1404 * the 'shared' memory area.
1405 * Args
1406 * smc - A pointer to the SMT context struct.
1407 *
1408 * virt - The virtual address of the data.
1409 *
1410 * len - The length in bytes of the data.
1411 *
1412 * flag - Indicates the transmit direction and the buffer type:
1413 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1414 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1415 * SMT_BUF (0x80) SMT buffer
1416 *
1417 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1418 * Out
1419 * Returns the pyhsical address for the DMA transfer.
1420 *
1421 ************************/
1422u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1423{
1424 return smc->os.SharedMemDMA +
1425 ((char *) virt - (char *)smc->os.SharedMemAddr);
1426} // dma_master
1427
1428
1429/************************
1430 *
1431 * dma_complete
1432 *
1433 * The hardware module calls this routine when it has completed a DMA
1434 * transfer. If the operating system dependent module has set up the DMA
1435 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1436 * the DMA channel.
1437 * Args
1438 * smc - A pointer to the SMT context struct.
1439 *
1440 * descr - A pointer to a TxD or RxD, respectively.
1441 *
1442 * flag - Indicates the DMA transfer direction / SMT buffer:
1443 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1444 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1445 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1446 * Out
1447 * Nothing.
1448 *
1449 ************************/
1450void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1451{
1452 /* For TX buffers, there are two cases. If it is an SMT transmit
1453 * buffer, there is nothing to do since we use consistent memory
1454 * for the 'shared' memory area. The other case is for normal
1455 * transmit packets given to us by the networking stack, and in
1456 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1457 * below.
1458 *
1459 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1460 * because the hardware module is about to potentially look at
1461 * the contents of the buffer. If we did not call the PCI DMA
1462 * unmap first, the hardware module could read inconsistent data.
1463 */
1464 if (flag & DMA_WR) {
1465 skfddi_priv *bp = &smc->os;
1466 volatile struct s_smt_fp_rxd *r = &descr->r;
1467
1468 /* If SKB is NULL, we used the local buffer. */
1469 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1470 int MaxFrameSize = bp->MaxFrameSize;
1471
1472 dma_unmap_single(&(&bp->pdev)->dev,
1473 r->rxd_os.dma_addr, MaxFrameSize,
1474 DMA_FROM_DEVICE);
1475 r->rxd_os.dma_addr = 0;
1476 }
1477 }
1478} // dma_complete
1479
1480
1481/************************
1482 *
1483 * mac_drv_tx_complete
1484 *
1485 * Transmit of a packet is complete. Release the tx staging buffer.
1486 *
1487 * Args
1488 * smc - A pointer to the SMT context struct.
1489 *
1490 * txd - A pointer to the last TxD which is used by the frame.
1491 * Out
1492 * Returns nothing.
1493 *
1494 ************************/
1495void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1496{
1497 struct sk_buff *skb;
1498
1499 pr_debug("entering mac_drv_tx_complete\n");
1500 // Check if this TxD points to a skb
1501
1502 if (!(skb = txd->txd_os.skb)) {
1503 pr_debug("TXD with no skb assigned.\n");
1504 return;
1505 }
1506 txd->txd_os.skb = NULL;
1507
1508 // release the DMA mapping
1509 dma_unmap_single(&(&smc->os.pdev)->dev, txd->txd_os.dma_addr,
1510 skb->len, DMA_TO_DEVICE);
1511 txd->txd_os.dma_addr = 0;
1512
1513 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1514 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1515
1516 // free the skb
1517 dev_kfree_skb_irq(skb);
1518
1519 pr_debug("leaving mac_drv_tx_complete\n");
1520} // mac_drv_tx_complete
1521
1522
1523/************************
1524 *
1525 * dump packets to logfile
1526 *
1527 ************************/
1528#ifdef DUMPPACKETS
1529void dump_data(unsigned char *Data, int length)
1530{
1531 printk(KERN_INFO "---Packet start---\n");
1532 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false);
1533 printk(KERN_INFO "------------------\n");
1534} // dump_data
1535#else
1536#define dump_data(data,len)
1537#endif // DUMPPACKETS
1538
1539/************************
1540 *
1541 * mac_drv_rx_complete
1542 *
1543 * The hardware module calls this function if an LLC frame is received
1544 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1545 * from the network will be passed to the LLC layer by this function
1546 * if passing is enabled.
1547 *
1548 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1549 * be received. It also fills the RxD ring with new receive buffers if
1550 * some can be queued.
1551 * Args
1552 * smc - A pointer to the SMT context struct.
1553 *
1554 * rxd - A pointer to the first RxD which is used by the receive frame.
1555 *
1556 * frag_count - Count of RxDs used by the received frame.
1557 *
1558 * len - Frame length.
1559 * Out
1560 * Nothing.
1561 *
1562 ************************/
1563void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1564 int frag_count, int len)
1565{
1566 skfddi_priv *bp = &smc->os;
1567 struct sk_buff *skb;
1568 unsigned char *virt, *cp;
1569 unsigned short ri;
1570 u_int RifLength;
1571
1572 pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1573 if (frag_count != 1) { // This is not allowed to happen.
1574
1575 printk("fddi: Multi-fragment receive!\n");
1576 goto RequeueRxd; // Re-use the given RXD(s).
1577
1578 }
1579 skb = rxd->rxd_os.skb;
1580 if (!skb) {
1581 pr_debug("No skb in rxd\n");
1582 smc->os.MacStat.gen.rx_errors++;
1583 goto RequeueRxd;
1584 }
1585 virt = skb->data;
1586
1587 // The DMA mapping was released in dma_complete above.
1588
1589 dump_data(skb->data, len);
1590
1591 /*
1592 * FDDI Frame format:
1593 * +-------+-------+-------+------------+--------+------------+
1594 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1595 * +-------+-------+-------+------------+--------+------------+
1596 *
1597 * FC = Frame Control
1598 * DA = Destination Address
1599 * SA = Source Address
1600 * RIF = Routing Information Field
1601 * LLC = Logical Link Control
1602 */
1603
1604 // Remove Routing Information Field (RIF), if present.
1605
1606 if ((virt[1 + 6] & FDDI_RII) == 0)
1607 RifLength = 0;
1608 else {
1609 int n;
1610// goos: RIF removal has still to be tested
1611 pr_debug("RIF found\n");
1612 // Get RIF length from Routing Control (RC) field.
1613 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1614
1615 ri = ntohs(*((__be16 *) cp));
1616 RifLength = ri & FDDI_RCF_LEN_MASK;
1617 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1618 printk("fddi: Invalid RIF.\n");
1619 goto RequeueRxd; // Discard the frame.
1620
1621 }
1622 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1623 // regions overlap
1624
1625 virt = cp + RifLength;
1626 for (n = FDDI_MAC_HDR_LEN; n; n--)
1627 *--virt = *--cp;
1628 // adjust sbd->data pointer
1629 skb_pull(skb, len: RifLength);
1630 len -= RifLength;
1631 RifLength = 0;
1632 }
1633
1634 // Count statistics.
1635 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1636 // packets.
1637 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1638
1639 // virt points to header again
1640 if (virt[1] & 0x01) { // Check group (multicast) bit.
1641
1642 smc->os.MacStat.gen.multicast++;
1643 }
1644
1645 // deliver frame to system
1646 rxd->rxd_os.skb = NULL;
1647 skb_trim(skb, len);
1648 skb->protocol = fddi_type_trans(skb, dev: bp->dev);
1649
1650 netif_rx(skb);
1651
1652 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1653 return;
1654
1655 RequeueRxd:
1656 pr_debug("Rx: re-queue RXD.\n");
1657 mac_drv_requeue_rxd(smc, rxd, frag_count);
1658 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1659 // not indicated.
1660
1661} // mac_drv_rx_complete
1662
1663
1664/************************
1665 *
1666 * mac_drv_requeue_rxd
1667 *
1668 * The hardware module calls this function to request the OS-specific
1669 * module to queue the receive buffer(s) represented by the pointer
1670 * to the RxD and the frag_count into the receive queue again. This
1671 * buffer was filled with an invalid frame or an SMT frame.
1672 * Args
1673 * smc - A pointer to the SMT context struct.
1674 *
1675 * rxd - A pointer to the first RxD which is used by the receive frame.
1676 *
1677 * frag_count - Count of RxDs used by the received frame.
1678 * Out
1679 * Nothing.
1680 *
1681 ************************/
1682void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1683 int frag_count)
1684{
1685 volatile struct s_smt_fp_rxd *next_rxd;
1686 volatile struct s_smt_fp_rxd *src_rxd;
1687 struct sk_buff *skb;
1688 int MaxFrameSize;
1689 unsigned char *v_addr;
1690 dma_addr_t b_addr;
1691
1692 if (frag_count != 1) // This is not allowed to happen.
1693
1694 printk("fddi: Multi-fragment requeue!\n");
1695
1696 MaxFrameSize = smc->os.MaxFrameSize;
1697 src_rxd = rxd;
1698 for (; frag_count > 0; frag_count--) {
1699 next_rxd = src_rxd->rxd_next;
1700 rxd = HWM_GET_CURR_RXD(smc);
1701
1702 skb = src_rxd->rxd_os.skb;
1703 if (skb == NULL) { // this should not happen
1704
1705 pr_debug("Requeue with no skb in rxd!\n");
1706 skb = alloc_skb(size: MaxFrameSize + 3, GFP_ATOMIC);
1707 if (skb) {
1708 // we got a skb
1709 rxd->rxd_os.skb = skb;
1710 skb_reserve(skb, len: 3);
1711 skb_put(skb, len: MaxFrameSize);
1712 v_addr = skb->data;
1713 b_addr = dma_map_single(&(&smc->os.pdev)->dev,
1714 v_addr, MaxFrameSize,
1715 DMA_FROM_DEVICE);
1716 rxd->rxd_os.dma_addr = b_addr;
1717 } else {
1718 // no skb available, use local buffer
1719 pr_debug("Queueing invalid buffer!\n");
1720 rxd->rxd_os.skb = NULL;
1721 v_addr = smc->os.LocalRxBuffer;
1722 b_addr = smc->os.LocalRxBufferDMA;
1723 }
1724 } else {
1725 // we use skb from old rxd
1726 rxd->rxd_os.skb = skb;
1727 v_addr = skb->data;
1728 b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1729 MaxFrameSize, DMA_FROM_DEVICE);
1730 rxd->rxd_os.dma_addr = b_addr;
1731 }
1732 hwm_rx_frag(smc, virt: v_addr, phys: b_addr, len: MaxFrameSize,
1733 FIRST_FRAG | LAST_FRAG);
1734
1735 src_rxd = next_rxd;
1736 }
1737} // mac_drv_requeue_rxd
1738
1739
1740/************************
1741 *
1742 * mac_drv_fill_rxd
1743 *
1744 * The hardware module calls this function at initialization time
1745 * to fill the RxD ring with receive buffers. It is also called by
1746 * mac_drv_rx_complete if rx_free is large enough to queue some new
1747 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1748 * receive buffers as long as enough RxDs and receive buffers are
1749 * available.
1750 * Args
1751 * smc - A pointer to the SMT context struct.
1752 * Out
1753 * Nothing.
1754 *
1755 ************************/
1756void mac_drv_fill_rxd(struct s_smc *smc)
1757{
1758 int MaxFrameSize;
1759 unsigned char *v_addr;
1760 unsigned long b_addr;
1761 struct sk_buff *skb;
1762 volatile struct s_smt_fp_rxd *rxd;
1763
1764 pr_debug("entering mac_drv_fill_rxd\n");
1765
1766 // Walk through the list of free receive buffers, passing receive
1767 // buffers to the HWM as long as RXDs are available.
1768
1769 MaxFrameSize = smc->os.MaxFrameSize;
1770 // Check if there is any RXD left.
1771 while (HWM_GET_RX_FREE(smc) > 0) {
1772 pr_debug(".\n");
1773
1774 rxd = HWM_GET_CURR_RXD(smc);
1775 skb = alloc_skb(size: MaxFrameSize + 3, GFP_ATOMIC);
1776 if (skb) {
1777 // we got a skb
1778 skb_reserve(skb, len: 3);
1779 skb_put(skb, len: MaxFrameSize);
1780 v_addr = skb->data;
1781 b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1782 MaxFrameSize, DMA_FROM_DEVICE);
1783 rxd->rxd_os.dma_addr = b_addr;
1784 } else {
1785 // no skb available, use local buffer
1786 // System has run out of buffer memory, but we want to
1787 // keep the receiver running in hope of better times.
1788 // Multiple descriptors may point to this local buffer,
1789 // so data in it must be considered invalid.
1790 pr_debug("Queueing invalid buffer!\n");
1791 v_addr = smc->os.LocalRxBuffer;
1792 b_addr = smc->os.LocalRxBufferDMA;
1793 }
1794
1795 rxd->rxd_os.skb = skb;
1796
1797 // Pass receive buffer to HWM.
1798 hwm_rx_frag(smc, virt: v_addr, phys: b_addr, len: MaxFrameSize,
1799 FIRST_FRAG | LAST_FRAG);
1800 }
1801 pr_debug("leaving mac_drv_fill_rxd\n");
1802} // mac_drv_fill_rxd
1803
1804
1805/************************
1806 *
1807 * mac_drv_clear_rxd
1808 *
1809 * The hardware module calls this function to release unused
1810 * receive buffers.
1811 * Args
1812 * smc - A pointer to the SMT context struct.
1813 *
1814 * rxd - A pointer to the first RxD which is used by the receive buffer.
1815 *
1816 * frag_count - Count of RxDs used by the receive buffer.
1817 * Out
1818 * Nothing.
1819 *
1820 ************************/
1821void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1822 int frag_count)
1823{
1824
1825 struct sk_buff *skb;
1826
1827 pr_debug("entering mac_drv_clear_rxd\n");
1828
1829 if (frag_count != 1) // This is not allowed to happen.
1830
1831 printk("fddi: Multi-fragment clear!\n");
1832
1833 for (; frag_count > 0; frag_count--) {
1834 skb = rxd->rxd_os.skb;
1835 if (skb != NULL) {
1836 skfddi_priv *bp = &smc->os;
1837 int MaxFrameSize = bp->MaxFrameSize;
1838
1839 dma_unmap_single(&(&bp->pdev)->dev,
1840 rxd->rxd_os.dma_addr, MaxFrameSize,
1841 DMA_FROM_DEVICE);
1842
1843 dev_kfree_skb(skb);
1844 rxd->rxd_os.skb = NULL;
1845 }
1846 rxd = rxd->rxd_next; // Next RXD.
1847
1848 }
1849} // mac_drv_clear_rxd
1850
1851
1852/************************
1853 *
1854 * mac_drv_rx_init
1855 *
1856 * The hardware module calls this routine when an SMT or NSA frame of the
1857 * local SMT should be delivered to the LLC layer.
1858 *
1859 * It is necessary to have this function, because there is no other way to
1860 * copy the contents of SMT MBufs into receive buffers.
1861 *
1862 * mac_drv_rx_init allocates the required target memory for this frame,
1863 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1864 * Args
1865 * smc - A pointer to the SMT context struct.
1866 *
1867 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1868 *
1869 * fc - The Frame Control field of the received frame.
1870 *
1871 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1872 *
1873 * la_len - The length of the lookahead data stored in the lookahead
1874 * buffer (may be zero).
1875 * Out
1876 * Always returns zero (0).
1877 *
1878 ************************/
1879int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1880 char *look_ahead, int la_len)
1881{
1882 struct sk_buff *skb;
1883
1884 pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1885
1886 // "Received" a SMT or NSA frame of the local SMT.
1887
1888 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1889 pr_debug("fddi: Discard invalid local SMT frame\n");
1890 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1891 len, la_len, (unsigned long) look_ahead);
1892 return 0;
1893 }
1894 skb = alloc_skb(size: len + 3, GFP_ATOMIC);
1895 if (!skb) {
1896 pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1897 return 0;
1898 }
1899 skb_reserve(skb, len: 3);
1900 skb_put(skb, len);
1901 skb_copy_to_linear_data(skb, from: look_ahead, len);
1902
1903 // deliver frame to system
1904 skb->protocol = fddi_type_trans(skb, dev: smc->os.dev);
1905 netif_rx(skb);
1906
1907 return 0;
1908} // mac_drv_rx_init
1909
1910
1911/************************
1912 *
1913 * smt_timer_poll
1914 *
1915 * This routine is called periodically by the SMT module to clean up the
1916 * driver.
1917 *
1918 * Return any queued frames back to the upper protocol layers if the ring
1919 * is down.
1920 * Args
1921 * smc - A pointer to the SMT context struct.
1922 * Out
1923 * Nothing.
1924 *
1925 ************************/
1926void smt_timer_poll(struct s_smc *smc)
1927{
1928} // smt_timer_poll
1929
1930
1931/************************
1932 *
1933 * ring_status_indication
1934 *
1935 * This function indicates a change of the ring state.
1936 * Args
1937 * smc - A pointer to the SMT context struct.
1938 *
1939 * status - The current ring status.
1940 * Out
1941 * Nothing.
1942 *
1943 ************************/
1944void ring_status_indication(struct s_smc *smc, u_long status)
1945{
1946 pr_debug("ring_status_indication( ");
1947 if (status & RS_RES15)
1948 pr_debug("RS_RES15 ");
1949 if (status & RS_HARDERROR)
1950 pr_debug("RS_HARDERROR ");
1951 if (status & RS_SOFTERROR)
1952 pr_debug("RS_SOFTERROR ");
1953 if (status & RS_BEACON)
1954 pr_debug("RS_BEACON ");
1955 if (status & RS_PATHTEST)
1956 pr_debug("RS_PATHTEST ");
1957 if (status & RS_SELFTEST)
1958 pr_debug("RS_SELFTEST ");
1959 if (status & RS_RES9)
1960 pr_debug("RS_RES9 ");
1961 if (status & RS_DISCONNECT)
1962 pr_debug("RS_DISCONNECT ");
1963 if (status & RS_RES7)
1964 pr_debug("RS_RES7 ");
1965 if (status & RS_DUPADDR)
1966 pr_debug("RS_DUPADDR ");
1967 if (status & RS_NORINGOP)
1968 pr_debug("RS_NORINGOP ");
1969 if (status & RS_VERSION)
1970 pr_debug("RS_VERSION ");
1971 if (status & RS_STUCKBYPASSS)
1972 pr_debug("RS_STUCKBYPASSS ");
1973 if (status & RS_EVENT)
1974 pr_debug("RS_EVENT ");
1975 if (status & RS_RINGOPCHANGE)
1976 pr_debug("RS_RINGOPCHANGE ");
1977 if (status & RS_RES0)
1978 pr_debug("RS_RES0 ");
1979 pr_debug("]\n");
1980} // ring_status_indication
1981
1982
1983/************************
1984 *
1985 * smt_get_time
1986 *
1987 * Gets the current time from the system.
1988 * Args
1989 * None.
1990 * Out
1991 * The current time in TICKS_PER_SECOND.
1992 *
1993 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
1994 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
1995 * to the time returned by smt_get_time().
1996 *
1997 ************************/
1998unsigned long smt_get_time(void)
1999{
2000 return jiffies;
2001} // smt_get_time
2002
2003
2004/************************
2005 *
2006 * smt_stat_counter
2007 *
2008 * Status counter update (ring_op, fifo full).
2009 * Args
2010 * smc - A pointer to the SMT context struct.
2011 *
2012 * stat - = 0: A ring operational change occurred.
2013 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2014 * Out
2015 * Nothing.
2016 *
2017 ************************/
2018void smt_stat_counter(struct s_smc *smc, int stat)
2019{
2020// BOOLEAN RingIsUp ;
2021
2022 pr_debug("smt_stat_counter\n");
2023 switch (stat) {
2024 case 0:
2025 pr_debug("Ring operational change.\n");
2026 break;
2027 case 1:
2028 pr_debug("Receive fifo overflow.\n");
2029 smc->os.MacStat.gen.rx_errors++;
2030 break;
2031 default:
2032 pr_debug("Unknown status (%d).\n", stat);
2033 break;
2034 }
2035} // smt_stat_counter
2036
2037
2038/************************
2039 *
2040 * cfm_state_change
2041 *
2042 * Sets CFM state in custom statistics.
2043 * Args
2044 * smc - A pointer to the SMT context struct.
2045 *
2046 * c_state - Possible values are:
2047 *
2048 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2049 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2050 * Out
2051 * Nothing.
2052 *
2053 ************************/
2054void cfm_state_change(struct s_smc *smc, int c_state)
2055{
2056#ifdef DRIVERDEBUG
2057 char *s;
2058
2059 switch (c_state) {
2060 case SC0_ISOLATED:
2061 s = "SC0_ISOLATED";
2062 break;
2063 case SC1_WRAP_A:
2064 s = "SC1_WRAP_A";
2065 break;
2066 case SC2_WRAP_B:
2067 s = "SC2_WRAP_B";
2068 break;
2069 case SC4_THRU_A:
2070 s = "SC4_THRU_A";
2071 break;
2072 case SC5_THRU_B:
2073 s = "SC5_THRU_B";
2074 break;
2075 case SC7_WRAP_S:
2076 s = "SC7_WRAP_S";
2077 break;
2078 case SC9_C_WRAP_A:
2079 s = "SC9_C_WRAP_A";
2080 break;
2081 case SC10_C_WRAP_B:
2082 s = "SC10_C_WRAP_B";
2083 break;
2084 case SC11_C_WRAP_S:
2085 s = "SC11_C_WRAP_S";
2086 break;
2087 default:
2088 pr_debug("cfm_state_change: unknown %d\n", c_state);
2089 return;
2090 }
2091 pr_debug("cfm_state_change: %s\n", s);
2092#endif // DRIVERDEBUG
2093} // cfm_state_change
2094
2095
2096/************************
2097 *
2098 * ecm_state_change
2099 *
2100 * Sets ECM state in custom statistics.
2101 * Args
2102 * smc - A pointer to the SMT context struct.
2103 *
2104 * e_state - Possible values are:
2105 *
2106 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2107 * SC5_THRU_B (7), SC7_WRAP_S (8)
2108 * Out
2109 * Nothing.
2110 *
2111 ************************/
2112void ecm_state_change(struct s_smc *smc, int e_state)
2113{
2114#ifdef DRIVERDEBUG
2115 char *s;
2116
2117 switch (e_state) {
2118 case EC0_OUT:
2119 s = "EC0_OUT";
2120 break;
2121 case EC1_IN:
2122 s = "EC1_IN";
2123 break;
2124 case EC2_TRACE:
2125 s = "EC2_TRACE";
2126 break;
2127 case EC3_LEAVE:
2128 s = "EC3_LEAVE";
2129 break;
2130 case EC4_PATH_TEST:
2131 s = "EC4_PATH_TEST";
2132 break;
2133 case EC5_INSERT:
2134 s = "EC5_INSERT";
2135 break;
2136 case EC6_CHECK:
2137 s = "EC6_CHECK";
2138 break;
2139 case EC7_DEINSERT:
2140 s = "EC7_DEINSERT";
2141 break;
2142 default:
2143 s = "unknown";
2144 break;
2145 }
2146 pr_debug("ecm_state_change: %s\n", s);
2147#endif //DRIVERDEBUG
2148} // ecm_state_change
2149
2150
2151/************************
2152 *
2153 * rmt_state_change
2154 *
2155 * Sets RMT state in custom statistics.
2156 * Args
2157 * smc - A pointer to the SMT context struct.
2158 *
2159 * r_state - Possible values are:
2160 *
2161 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2162 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2163 * Out
2164 * Nothing.
2165 *
2166 ************************/
2167void rmt_state_change(struct s_smc *smc, int r_state)
2168{
2169#ifdef DRIVERDEBUG
2170 char *s;
2171
2172 switch (r_state) {
2173 case RM0_ISOLATED:
2174 s = "RM0_ISOLATED";
2175 break;
2176 case RM1_NON_OP:
2177 s = "RM1_NON_OP - not operational";
2178 break;
2179 case RM2_RING_OP:
2180 s = "RM2_RING_OP - ring operational";
2181 break;
2182 case RM3_DETECT:
2183 s = "RM3_DETECT - detect dupl addresses";
2184 break;
2185 case RM4_NON_OP_DUP:
2186 s = "RM4_NON_OP_DUP - dupl. addr detected";
2187 break;
2188 case RM5_RING_OP_DUP:
2189 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2190 break;
2191 case RM6_DIRECTED:
2192 s = "RM6_DIRECTED - sending directed beacons";
2193 break;
2194 case RM7_TRACE:
2195 s = "RM7_TRACE - trace initiated";
2196 break;
2197 default:
2198 s = "unknown";
2199 break;
2200 }
2201 pr_debug("[rmt_state_change: %s]\n", s);
2202#endif // DRIVERDEBUG
2203} // rmt_state_change
2204
2205
2206/************************
2207 *
2208 * drv_reset_indication
2209 *
2210 * This function is called by the SMT when it has detected a severe
2211 * hardware problem. The driver should perform a reset on the adapter
2212 * as soon as possible, but not from within this function.
2213 * Args
2214 * smc - A pointer to the SMT context struct.
2215 * Out
2216 * Nothing.
2217 *
2218 ************************/
2219void drv_reset_indication(struct s_smc *smc)
2220{
2221 pr_debug("entering drv_reset_indication\n");
2222
2223 smc->os.ResetRequested = TRUE; // Set flag.
2224
2225} // drv_reset_indication
2226
2227static struct pci_driver skfddi_pci_driver = {
2228 .name = "skfddi",
2229 .id_table = skfddi_pci_tbl,
2230 .probe = skfp_init_one,
2231 .remove = skfp_remove_one,
2232};
2233
2234module_pci_driver(skfddi_pci_driver);
2235

source code of linux/drivers/net/fddi/skfp/skfddi.c