1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6 */
7
8#include <linux/pci.h>
9#include <linux/module.h>
10#include <linux/interrupt.h>
11#include <linux/spinlock.h>
12#include <linux/bitops.h>
13
14#include "core.h"
15#include "debug.h"
16#include "coredump.h"
17
18#include "targaddrs.h"
19#include "bmi.h"
20
21#include "hif.h"
22#include "htc.h"
23
24#include "ce.h"
25#include "pci.h"
26
27enum ath10k_pci_reset_mode {
28 ATH10K_PCI_RESET_AUTO = 0,
29 ATH10K_PCI_RESET_WARM_ONLY = 1,
30};
31
32static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
33static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
34
35module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
36MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
37
38module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
39MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
40
41/* how long wait to wait for target to initialise, in ms */
42#define ATH10K_PCI_TARGET_WAIT 3000
43#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
44
45/* Maximum number of bytes that can be handled atomically by
46 * diag read and write.
47 */
48#define ATH10K_DIAG_TRANSFER_LIMIT 0x5000
49
50#define QCA99X0_PCIE_BAR0_START_REG 0x81030
51#define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c
52#define QCA99X0_CPU_MEM_DATA_REG 0x4d010
53
54static const struct pci_device_id ath10k_pci_id_table[] = {
55 /* PCI-E QCA988X V2 (Ubiquiti branded) */
56 { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
57
58 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
59 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
60 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
61 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
62 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
63 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
64 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
65 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
66 {0}
67};
68
69static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 /* QCA988X pre 2.0 chips are not supported because they need some nasty
71 * hacks. ath10k doesn't have them and these devices crash horribly
72 * because of that.
73 */
74 { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
75 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
76
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
78 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
79 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
80 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
81 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
82
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
84 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
85 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
86 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
87 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
88
89 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
90
91 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
92
93 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
94
95 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
96 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
97
98 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
99};
100
101static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
102static int ath10k_pci_cold_reset(struct ath10k *ar);
103static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
104static int ath10k_pci_init_irq(struct ath10k *ar);
105static int ath10k_pci_deinit_irq(struct ath10k *ar);
106static int ath10k_pci_request_irq(struct ath10k *ar);
107static void ath10k_pci_free_irq(struct ath10k *ar);
108static int ath10k_pci_bmi_wait(struct ath10k *ar,
109 struct ath10k_ce_pipe *tx_pipe,
110 struct ath10k_ce_pipe *rx_pipe,
111 struct bmi_xfer *xfer);
112static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
113static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
114static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
115static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
116static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
117static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
118static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
119
120static const struct ce_attr pci_host_ce_config_wlan[] = {
121 /* CE0: host->target HTC control and raw streams */
122 {
123 .flags = CE_ATTR_FLAGS,
124 .src_nentries = 16,
125 .src_sz_max = 256,
126 .dest_nentries = 0,
127 .send_cb = ath10k_pci_htc_tx_cb,
128 },
129
130 /* CE1: target->host HTT + HTC control */
131 {
132 .flags = CE_ATTR_FLAGS,
133 .src_nentries = 0,
134 .src_sz_max = 2048,
135 .dest_nentries = 512,
136 .recv_cb = ath10k_pci_htt_htc_rx_cb,
137 },
138
139 /* CE2: target->host WMI */
140 {
141 .flags = CE_ATTR_FLAGS,
142 .src_nentries = 0,
143 .src_sz_max = 2048,
144 .dest_nentries = 128,
145 .recv_cb = ath10k_pci_htc_rx_cb,
146 },
147
148 /* CE3: host->target WMI */
149 {
150 .flags = CE_ATTR_FLAGS,
151 .src_nentries = 32,
152 .src_sz_max = 2048,
153 .dest_nentries = 0,
154 .send_cb = ath10k_pci_htc_tx_cb,
155 },
156
157 /* CE4: host->target HTT */
158 {
159 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
160 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
161 .src_sz_max = 256,
162 .dest_nentries = 0,
163 .send_cb = ath10k_pci_htt_tx_cb,
164 },
165
166 /* CE5: target->host HTT (HIF->HTT) */
167 {
168 .flags = CE_ATTR_FLAGS,
169 .src_nentries = 0,
170 .src_sz_max = 512,
171 .dest_nentries = 512,
172 .recv_cb = ath10k_pci_htt_rx_cb,
173 },
174
175 /* CE6: target autonomous hif_memcpy */
176 {
177 .flags = CE_ATTR_FLAGS,
178 .src_nentries = 0,
179 .src_sz_max = 0,
180 .dest_nentries = 0,
181 },
182
183 /* CE7: ce_diag, the Diagnostic Window */
184 {
185 .flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
186 .src_nentries = 2,
187 .src_sz_max = DIAG_TRANSFER_LIMIT,
188 .dest_nentries = 2,
189 },
190
191 /* CE8: target->host pktlog */
192 {
193 .flags = CE_ATTR_FLAGS,
194 .src_nentries = 0,
195 .src_sz_max = 2048,
196 .dest_nentries = 128,
197 .recv_cb = ath10k_pci_pktlog_rx_cb,
198 },
199
200 /* CE9 target autonomous qcache memcpy */
201 {
202 .flags = CE_ATTR_FLAGS,
203 .src_nentries = 0,
204 .src_sz_max = 0,
205 .dest_nentries = 0,
206 },
207
208 /* CE10: target autonomous hif memcpy */
209 {
210 .flags = CE_ATTR_FLAGS,
211 .src_nentries = 0,
212 .src_sz_max = 0,
213 .dest_nentries = 0,
214 },
215
216 /* CE11: target autonomous hif memcpy */
217 {
218 .flags = CE_ATTR_FLAGS,
219 .src_nentries = 0,
220 .src_sz_max = 0,
221 .dest_nentries = 0,
222 },
223};
224
225/* Target firmware's Copy Engine configuration. */
226static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
227 /* CE0: host->target HTC control and raw streams */
228 {
229 .pipenum = __cpu_to_le32(0),
230 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
231 .nentries = __cpu_to_le32(32),
232 .nbytes_max = __cpu_to_le32(256),
233 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
234 .reserved = __cpu_to_le32(0),
235 },
236
237 /* CE1: target->host HTT + HTC control */
238 {
239 .pipenum = __cpu_to_le32(1),
240 .pipedir = __cpu_to_le32(PIPEDIR_IN),
241 .nentries = __cpu_to_le32(32),
242 .nbytes_max = __cpu_to_le32(2048),
243 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
244 .reserved = __cpu_to_le32(0),
245 },
246
247 /* CE2: target->host WMI */
248 {
249 .pipenum = __cpu_to_le32(2),
250 .pipedir = __cpu_to_le32(PIPEDIR_IN),
251 .nentries = __cpu_to_le32(64),
252 .nbytes_max = __cpu_to_le32(2048),
253 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
254 .reserved = __cpu_to_le32(0),
255 },
256
257 /* CE3: host->target WMI */
258 {
259 .pipenum = __cpu_to_le32(3),
260 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
261 .nentries = __cpu_to_le32(32),
262 .nbytes_max = __cpu_to_le32(2048),
263 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
264 .reserved = __cpu_to_le32(0),
265 },
266
267 /* CE4: host->target HTT */
268 {
269 .pipenum = __cpu_to_le32(4),
270 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
271 .nentries = __cpu_to_le32(256),
272 .nbytes_max = __cpu_to_le32(256),
273 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
274 .reserved = __cpu_to_le32(0),
275 },
276
277 /* NB: 50% of src nentries, since tx has 2 frags */
278
279 /* CE5: target->host HTT (HIF->HTT) */
280 {
281 .pipenum = __cpu_to_le32(5),
282 .pipedir = __cpu_to_le32(PIPEDIR_IN),
283 .nentries = __cpu_to_le32(32),
284 .nbytes_max = __cpu_to_le32(512),
285 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
286 .reserved = __cpu_to_le32(0),
287 },
288
289 /* CE6: Reserved for target autonomous hif_memcpy */
290 {
291 .pipenum = __cpu_to_le32(6),
292 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
293 .nentries = __cpu_to_le32(32),
294 .nbytes_max = __cpu_to_le32(4096),
295 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
296 .reserved = __cpu_to_le32(0),
297 },
298
299 /* CE7 used only by Host */
300 {
301 .pipenum = __cpu_to_le32(7),
302 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
303 .nentries = __cpu_to_le32(0),
304 .nbytes_max = __cpu_to_le32(0),
305 .flags = __cpu_to_le32(0),
306 .reserved = __cpu_to_le32(0),
307 },
308
309 /* CE8 target->host packtlog */
310 {
311 .pipenum = __cpu_to_le32(8),
312 .pipedir = __cpu_to_le32(PIPEDIR_IN),
313 .nentries = __cpu_to_le32(64),
314 .nbytes_max = __cpu_to_le32(2048),
315 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
316 .reserved = __cpu_to_le32(0),
317 },
318
319 /* CE9 target autonomous qcache memcpy */
320 {
321 .pipenum = __cpu_to_le32(9),
322 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
323 .nentries = __cpu_to_le32(32),
324 .nbytes_max = __cpu_to_le32(2048),
325 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
326 .reserved = __cpu_to_le32(0),
327 },
328
329 /* It not necessary to send target wlan configuration for CE10 & CE11
330 * as these CEs are not actively used in target.
331 */
332};
333
334/*
335 * Map from service/endpoint to Copy Engine.
336 * This table is derived from the CE_PCI TABLE, above.
337 * It is passed to the Target at startup for use by firmware.
338 */
339static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
340 {
341 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
343 __cpu_to_le32(3),
344 },
345 {
346 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
347 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
348 __cpu_to_le32(2),
349 },
350 {
351 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
353 __cpu_to_le32(3),
354 },
355 {
356 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
357 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
358 __cpu_to_le32(2),
359 },
360 {
361 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
363 __cpu_to_le32(3),
364 },
365 {
366 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
367 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
368 __cpu_to_le32(2),
369 },
370 {
371 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
373 __cpu_to_le32(3),
374 },
375 {
376 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
377 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
378 __cpu_to_le32(2),
379 },
380 {
381 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
383 __cpu_to_le32(3),
384 },
385 {
386 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
387 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
388 __cpu_to_le32(2),
389 },
390 {
391 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
393 __cpu_to_le32(0),
394 },
395 {
396 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
397 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
398 __cpu_to_le32(1),
399 },
400 { /* not used */
401 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
403 __cpu_to_le32(0),
404 },
405 { /* not used */
406 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
407 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
408 __cpu_to_le32(1),
409 },
410 {
411 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
413 __cpu_to_le32(4),
414 },
415 {
416 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
417 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
418 __cpu_to_le32(5),
419 },
420
421 /* (Additions here) */
422
423 { /* must be last */
424 __cpu_to_le32(0),
425 __cpu_to_le32(0),
426 __cpu_to_le32(0),
427 },
428};
429
430static bool ath10k_pci_is_awake(struct ath10k *ar)
431{
432 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
434 RTC_STATE_ADDRESS);
435
436 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
437}
438
439static void __ath10k_pci_wake(struct ath10k *ar)
440{
441 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
442
443 lockdep_assert_held(&ar_pci->ps_lock);
444
445 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
446 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
447
448 iowrite32(PCIE_SOC_WAKE_V_MASK,
449 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
450 PCIE_SOC_WAKE_ADDRESS);
451}
452
453static void __ath10k_pci_sleep(struct ath10k *ar)
454{
455 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
456
457 lockdep_assert_held(&ar_pci->ps_lock);
458
459 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
460 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
461
462 iowrite32(PCIE_SOC_WAKE_RESET,
463 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
464 PCIE_SOC_WAKE_ADDRESS);
465 ar_pci->ps_awake = false;
466}
467
468static int ath10k_pci_wake_wait(struct ath10k *ar)
469{
470 int tot_delay = 0;
471 int curr_delay = 5;
472
473 while (tot_delay < PCIE_WAKE_TIMEOUT) {
474 if (ath10k_pci_is_awake(ar)) {
475 if (tot_delay > PCIE_WAKE_LATE_US)
476 ath10k_warn(ar, fmt: "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
477 tot_delay / 1000);
478 return 0;
479 }
480
481 udelay(curr_delay);
482 tot_delay += curr_delay;
483
484 if (curr_delay < 50)
485 curr_delay += 5;
486 }
487
488 return -ETIMEDOUT;
489}
490
491static int ath10k_pci_force_wake(struct ath10k *ar)
492{
493 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
494 unsigned long flags;
495 int ret = 0;
496
497 if (ar_pci->pci_ps)
498 return ret;
499
500 spin_lock_irqsave(&ar_pci->ps_lock, flags);
501
502 if (!ar_pci->ps_awake) {
503 iowrite32(PCIE_SOC_WAKE_V_MASK,
504 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
505 PCIE_SOC_WAKE_ADDRESS);
506
507 ret = ath10k_pci_wake_wait(ar);
508 if (ret == 0)
509 ar_pci->ps_awake = true;
510 }
511
512 spin_unlock_irqrestore(lock: &ar_pci->ps_lock, flags);
513
514 return ret;
515}
516
517static void ath10k_pci_force_sleep(struct ath10k *ar)
518{
519 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
520 unsigned long flags;
521
522 spin_lock_irqsave(&ar_pci->ps_lock, flags);
523
524 iowrite32(PCIE_SOC_WAKE_RESET,
525 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
526 PCIE_SOC_WAKE_ADDRESS);
527 ar_pci->ps_awake = false;
528
529 spin_unlock_irqrestore(lock: &ar_pci->ps_lock, flags);
530}
531
532static int ath10k_pci_wake(struct ath10k *ar)
533{
534 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
535 unsigned long flags;
536 int ret = 0;
537
538 if (ar_pci->pci_ps == 0)
539 return ret;
540
541 spin_lock_irqsave(&ar_pci->ps_lock, flags);
542
543 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
544 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
545
546 /* This function can be called very frequently. To avoid excessive
547 * CPU stalls for MMIO reads use a cache var to hold the device state.
548 */
549 if (!ar_pci->ps_awake) {
550 __ath10k_pci_wake(ar);
551
552 ret = ath10k_pci_wake_wait(ar);
553 if (ret == 0)
554 ar_pci->ps_awake = true;
555 }
556
557 if (ret == 0) {
558 ar_pci->ps_wake_refcount++;
559 WARN_ON(ar_pci->ps_wake_refcount == 0);
560 }
561
562 spin_unlock_irqrestore(lock: &ar_pci->ps_lock, flags);
563
564 return ret;
565}
566
567static void ath10k_pci_sleep(struct ath10k *ar)
568{
569 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
570 unsigned long flags;
571
572 if (ar_pci->pci_ps == 0)
573 return;
574
575 spin_lock_irqsave(&ar_pci->ps_lock, flags);
576
577 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
578 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
579
580 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
581 goto skip;
582
583 ar_pci->ps_wake_refcount--;
584
585 mod_timer(timer: &ar_pci->ps_timer, expires: jiffies +
586 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
587
588skip:
589 spin_unlock_irqrestore(lock: &ar_pci->ps_lock, flags);
590}
591
592static void ath10k_pci_ps_timer(struct timer_list *t)
593{
594 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
595 struct ath10k *ar = ar_pci->ar;
596 unsigned long flags;
597
598 spin_lock_irqsave(&ar_pci->ps_lock, flags);
599
600 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
601 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
602
603 if (ar_pci->ps_wake_refcount > 0)
604 goto skip;
605
606 __ath10k_pci_sleep(ar);
607
608skip:
609 spin_unlock_irqrestore(lock: &ar_pci->ps_lock, flags);
610}
611
612static void ath10k_pci_sleep_sync(struct ath10k *ar)
613{
614 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
615 unsigned long flags;
616
617 if (ar_pci->pci_ps == 0) {
618 ath10k_pci_force_sleep(ar);
619 return;
620 }
621
622 del_timer_sync(timer: &ar_pci->ps_timer);
623
624 spin_lock_irqsave(&ar_pci->ps_lock, flags);
625 WARN_ON(ar_pci->ps_wake_refcount > 0);
626 __ath10k_pci_sleep(ar);
627 spin_unlock_irqrestore(lock: &ar_pci->ps_lock, flags);
628}
629
630static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
631{
632 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
633 int ret;
634
635 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
636 ath10k_warn(ar, fmt: "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
637 offset, offset + sizeof(value), ar_pci->mem_len);
638 return;
639 }
640
641 ret = ath10k_pci_wake(ar);
642 if (ret) {
643 ath10k_warn(ar, fmt: "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
644 value, offset, ret);
645 return;
646 }
647
648 iowrite32(value, ar_pci->mem + offset);
649 ath10k_pci_sleep(ar);
650}
651
652static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
653{
654 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
655 u32 val;
656 int ret;
657
658 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
659 ath10k_warn(ar, fmt: "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
660 offset, offset + sizeof(val), ar_pci->mem_len);
661 return 0;
662 }
663
664 ret = ath10k_pci_wake(ar);
665 if (ret) {
666 ath10k_warn(ar, fmt: "failed to wake target for read32 at 0x%08x: %d\n",
667 offset, ret);
668 return 0xffffffff;
669 }
670
671 val = ioread32(ar_pci->mem + offset);
672 ath10k_pci_sleep(ar);
673
674 return val;
675}
676
677inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
678{
679 struct ath10k_ce *ce = ath10k_ce_priv(ar);
680
681 ce->bus_ops->write32(ar, offset, value);
682}
683
684inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
685{
686 struct ath10k_ce *ce = ath10k_ce_priv(ar);
687
688 return ce->bus_ops->read32(ar, offset);
689}
690
691u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
692{
693 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
694}
695
696void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
697{
698 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, value: val);
699}
700
701u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
702{
703 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
704}
705
706void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
707{
708 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, value: val);
709}
710
711bool ath10k_pci_irq_pending(struct ath10k *ar)
712{
713 u32 cause;
714
715 /* Check if the shared legacy irq is for us */
716 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
717 PCIE_INTR_CAUSE_ADDRESS);
718 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
719 return true;
720
721 return false;
722}
723
724void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
725{
726 /* IMPORTANT: INTR_CLR register has to be set after
727 * INTR_ENABLE is set to 0, otherwise interrupt can not be
728 * really cleared.
729 */
730 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
731 value: 0);
732 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
733 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
734
735 /* IMPORTANT: this extra read transaction is required to
736 * flush the posted write buffer.
737 */
738 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
739 PCIE_INTR_ENABLE_ADDRESS);
740}
741
742void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
743{
744 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
745 PCIE_INTR_ENABLE_ADDRESS,
746 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
747
748 /* IMPORTANT: this extra read transaction is required to
749 * flush the posted write buffer.
750 */
751 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
752 PCIE_INTR_ENABLE_ADDRESS);
753}
754
755static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
756{
757 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
758
759 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
760 return "msi";
761
762 return "legacy";
763}
764
765static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
766{
767 struct ath10k *ar = pipe->hif_ce_state;
768 struct ath10k_ce *ce = ath10k_ce_priv(ar);
769 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
770 struct sk_buff *skb;
771 dma_addr_t paddr;
772 int ret;
773
774 skb = dev_alloc_skb(length: pipe->buf_sz);
775 if (!skb)
776 return -ENOMEM;
777
778 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
779
780 paddr = dma_map_single(ar->dev, skb->data,
781 skb->len + skb_tailroom(skb),
782 DMA_FROM_DEVICE);
783 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
784 ath10k_warn(ar, fmt: "failed to dma map pci rx buf\n");
785 dev_kfree_skb_any(skb);
786 return -EIO;
787 }
788
789 ATH10K_SKB_RXCB(skb)->paddr = paddr;
790
791 spin_lock_bh(lock: &ce->ce_lock);
792 ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
793 spin_unlock_bh(lock: &ce->ce_lock);
794 if (ret) {
795 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
796 DMA_FROM_DEVICE);
797 dev_kfree_skb_any(skb);
798 return ret;
799 }
800
801 return 0;
802}
803
804static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
805{
806 struct ath10k *ar = pipe->hif_ce_state;
807 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
808 struct ath10k_ce *ce = ath10k_ce_priv(ar);
809 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
810 int ret, num;
811
812 if (pipe->buf_sz == 0)
813 return;
814
815 if (!ce_pipe->dest_ring)
816 return;
817
818 spin_lock_bh(lock: &ce->ce_lock);
819 num = __ath10k_ce_rx_num_free_bufs(pipe: ce_pipe);
820 spin_unlock_bh(lock: &ce->ce_lock);
821
822 while (num >= 0) {
823 ret = __ath10k_pci_rx_post_buf(pipe);
824 if (ret) {
825 if (ret == -ENOSPC)
826 break;
827 ath10k_warn(ar, fmt: "failed to post pci rx buf: %d\n", ret);
828 mod_timer(timer: &ar_pci->rx_post_retry, expires: jiffies +
829 ATH10K_PCI_RX_POST_RETRY_MS);
830 break;
831 }
832 num--;
833 }
834}
835
836void ath10k_pci_rx_post(struct ath10k *ar)
837{
838 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
839 int i;
840
841 for (i = 0; i < CE_COUNT; i++)
842 ath10k_pci_rx_post_pipe(pipe: &ar_pci->pipe_info[i]);
843}
844
845void ath10k_pci_rx_replenish_retry(struct timer_list *t)
846{
847 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
848 struct ath10k *ar = ar_pci->ar;
849
850 ath10k_pci_rx_post(ar);
851}
852
853static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
854{
855 u32 val = 0, region = addr & 0xfffff;
856
857 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
858 & 0x7ff) << 21;
859 val |= 0x100000 | region;
860 return val;
861}
862
863/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
864 * Support to access target space below 1M for qca6174 and qca9377.
865 * If target space is below 1M, the bit[20] of converted CE addr is 0.
866 * Otherwise bit[20] of converted CE addr is 1.
867 */
868static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
869{
870 u32 val = 0, region = addr & 0xfffff;
871
872 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
873 & 0x7ff) << 21;
874 val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
875 return val;
876}
877
878static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
879{
880 u32 val = 0, region = addr & 0xfffff;
881
882 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
883 val |= 0x100000 | region;
884 return val;
885}
886
887static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
888{
889 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
890
891 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
892 return -EOPNOTSUPP;
893
894 return ar_pci->targ_cpu_to_ce_addr(ar, addr);
895}
896
897/*
898 * Diagnostic read/write access is provided for startup/config/debug usage.
899 * Caller must guarantee proper alignment, when applicable, and single user
900 * at any moment.
901 */
902static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
903 int nbytes)
904{
905 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
906 int ret = 0;
907 u32 *buf;
908 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
909 struct ath10k_ce_pipe *ce_diag;
910 /* Host buffer address in CE space */
911 u32 ce_data;
912 dma_addr_t ce_data_base = 0;
913 void *data_buf;
914 int i;
915
916 mutex_lock(&ar_pci->ce_diag_mutex);
917 ce_diag = ar_pci->ce_diag;
918
919 /*
920 * Allocate a temporary bounce buffer to hold caller's data
921 * to be DMA'ed from Target. This guarantees
922 * 1) 4-byte alignment
923 * 2) Buffer in DMA-able space
924 */
925 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
926
927 data_buf = dma_alloc_coherent(dev: ar->dev, size: alloc_nbytes, dma_handle: &ce_data_base,
928 GFP_ATOMIC);
929 if (!data_buf) {
930 ret = -ENOMEM;
931 goto done;
932 }
933
934 /* The address supplied by the caller is in the
935 * Target CPU virtual address space.
936 *
937 * In order to use this address with the diagnostic CE,
938 * convert it from Target CPU virtual address space
939 * to CE address space
940 */
941 address = ath10k_pci_targ_cpu_to_ce_addr(ar, addr: address);
942
943 remaining_bytes = nbytes;
944 ce_data = ce_data_base;
945 while (remaining_bytes) {
946 nbytes = min_t(unsigned int, remaining_bytes,
947 DIAG_TRANSFER_LIMIT);
948
949 ret = ath10k_ce_rx_post_buf(pipe: ce_diag, ctx: &ce_data, paddr: ce_data);
950 if (ret != 0)
951 goto done;
952
953 /* Request CE to send from Target(!) address to Host buffer */
954 ret = ath10k_ce_send(ce_state: ce_diag, NULL, buffer: (u32)address, nbytes, transfer_id: 0, flags: 0);
955 if (ret)
956 goto done;
957
958 i = 0;
959 while (ath10k_ce_completed_send_next(ce_state: ce_diag, NULL) != 0) {
960 udelay(DIAG_ACCESS_CE_WAIT_US);
961 i += DIAG_ACCESS_CE_WAIT_US;
962
963 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
964 ret = -EBUSY;
965 goto done;
966 }
967 }
968
969 i = 0;
970 while (ath10k_ce_completed_recv_next(ce_state: ce_diag, per_transfer_contextp: (void **)&buf,
971 nbytesp: &completed_nbytes) != 0) {
972 udelay(DIAG_ACCESS_CE_WAIT_US);
973 i += DIAG_ACCESS_CE_WAIT_US;
974
975 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
976 ret = -EBUSY;
977 goto done;
978 }
979 }
980
981 if (nbytes != completed_nbytes) {
982 ret = -EIO;
983 goto done;
984 }
985
986 if (*buf != ce_data) {
987 ret = -EIO;
988 goto done;
989 }
990
991 remaining_bytes -= nbytes;
992 memcpy(data, data_buf, nbytes);
993
994 address += nbytes;
995 data += nbytes;
996 }
997
998done:
999
1000 if (data_buf)
1001 dma_free_coherent(dev: ar->dev, size: alloc_nbytes, cpu_addr: data_buf,
1002 dma_handle: ce_data_base);
1003
1004 mutex_unlock(lock: &ar_pci->ce_diag_mutex);
1005
1006 return ret;
1007}
1008
1009static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1010{
1011 __le32 val = 0;
1012 int ret;
1013
1014 ret = ath10k_pci_diag_read_mem(ar, address, data: &val, nbytes: sizeof(val));
1015 *value = __le32_to_cpu(val);
1016
1017 return ret;
1018}
1019
1020static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1021 u32 src, u32 len)
1022{
1023 u32 host_addr, addr;
1024 int ret;
1025
1026 host_addr = host_interest_item_address(item_offset: src);
1027
1028 ret = ath10k_pci_diag_read32(ar, address: host_addr, value: &addr);
1029 if (ret != 0) {
1030 ath10k_warn(ar, fmt: "failed to get memcpy hi address for firmware address %d: %d\n",
1031 src, ret);
1032 return ret;
1033 }
1034
1035 ret = ath10k_pci_diag_read_mem(ar, address: addr, data: dest, nbytes: len);
1036 if (ret != 0) {
1037 ath10k_warn(ar, fmt: "failed to memcpy firmware memory from %d (%d B): %d\n",
1038 addr, len, ret);
1039 return ret;
1040 }
1041
1042 return 0;
1043}
1044
1045#define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1046 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1047
1048int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1049 const void *data, int nbytes)
1050{
1051 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1052 int ret = 0;
1053 u32 *buf;
1054 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1055 struct ath10k_ce_pipe *ce_diag;
1056 void *data_buf;
1057 dma_addr_t ce_data_base = 0;
1058 int i;
1059
1060 mutex_lock(&ar_pci->ce_diag_mutex);
1061 ce_diag = ar_pci->ce_diag;
1062
1063 /*
1064 * Allocate a temporary bounce buffer to hold caller's data
1065 * to be DMA'ed to Target. This guarantees
1066 * 1) 4-byte alignment
1067 * 2) Buffer in DMA-able space
1068 */
1069 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1070
1071 data_buf = dma_alloc_coherent(dev: ar->dev, size: alloc_nbytes, dma_handle: &ce_data_base,
1072 GFP_ATOMIC);
1073 if (!data_buf) {
1074 ret = -ENOMEM;
1075 goto done;
1076 }
1077
1078 /*
1079 * The address supplied by the caller is in the
1080 * Target CPU virtual address space.
1081 *
1082 * In order to use this address with the diagnostic CE,
1083 * convert it from
1084 * Target CPU virtual address space
1085 * to
1086 * CE address space
1087 */
1088 address = ath10k_pci_targ_cpu_to_ce_addr(ar, addr: address);
1089
1090 remaining_bytes = nbytes;
1091 while (remaining_bytes) {
1092 /* FIXME: check cast */
1093 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1094
1095 /* Copy caller's data to allocated DMA buf */
1096 memcpy(data_buf, data, nbytes);
1097
1098 /* Set up to receive directly into Target(!) address */
1099 ret = ath10k_ce_rx_post_buf(pipe: ce_diag, ctx: &address, paddr: address);
1100 if (ret != 0)
1101 goto done;
1102
1103 /*
1104 * Request CE to send caller-supplied data that
1105 * was copied to bounce buffer to Target(!) address.
1106 */
1107 ret = ath10k_ce_send(ce_state: ce_diag, NULL, buffer: ce_data_base, nbytes, transfer_id: 0, flags: 0);
1108 if (ret != 0)
1109 goto done;
1110
1111 i = 0;
1112 while (ath10k_ce_completed_send_next(ce_state: ce_diag, NULL) != 0) {
1113 udelay(DIAG_ACCESS_CE_WAIT_US);
1114 i += DIAG_ACCESS_CE_WAIT_US;
1115
1116 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1117 ret = -EBUSY;
1118 goto done;
1119 }
1120 }
1121
1122 i = 0;
1123 while (ath10k_ce_completed_recv_next(ce_state: ce_diag, per_transfer_contextp: (void **)&buf,
1124 nbytesp: &completed_nbytes) != 0) {
1125 udelay(DIAG_ACCESS_CE_WAIT_US);
1126 i += DIAG_ACCESS_CE_WAIT_US;
1127
1128 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1129 ret = -EBUSY;
1130 goto done;
1131 }
1132 }
1133
1134 if (nbytes != completed_nbytes) {
1135 ret = -EIO;
1136 goto done;
1137 }
1138
1139 if (*buf != address) {
1140 ret = -EIO;
1141 goto done;
1142 }
1143
1144 remaining_bytes -= nbytes;
1145 address += nbytes;
1146 data += nbytes;
1147 }
1148
1149done:
1150 if (data_buf) {
1151 dma_free_coherent(dev: ar->dev, size: alloc_nbytes, cpu_addr: data_buf,
1152 dma_handle: ce_data_base);
1153 }
1154
1155 if (ret != 0)
1156 ath10k_warn(ar, fmt: "failed to write diag value at 0x%x: %d\n",
1157 address, ret);
1158
1159 mutex_unlock(lock: &ar_pci->ce_diag_mutex);
1160
1161 return ret;
1162}
1163
1164static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1165{
1166 __le32 val = __cpu_to_le32(value);
1167
1168 return ath10k_pci_diag_write_mem(ar, address, data: &val, nbytes: sizeof(val));
1169}
1170
1171/* Called by lower (CE) layer when a send to Target completes. */
1172static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1173{
1174 struct ath10k *ar = ce_state->ar;
1175 struct sk_buff_head list;
1176 struct sk_buff *skb;
1177
1178 __skb_queue_head_init(list: &list);
1179 while (ath10k_ce_completed_send_next(ce_state, per_transfer_contextp: (void **)&skb) == 0) {
1180 /* no need to call tx completion for NULL pointers */
1181 if (skb == NULL)
1182 continue;
1183
1184 __skb_queue_tail(list: &list, newsk: skb);
1185 }
1186
1187 while ((skb = __skb_dequeue(list: &list)))
1188 ath10k_htc_tx_completion_handler(ar, skb);
1189}
1190
1191static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1192 void (*callback)(struct ath10k *ar,
1193 struct sk_buff *skb))
1194{
1195 struct ath10k *ar = ce_state->ar;
1196 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1197 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1198 struct sk_buff *skb;
1199 struct sk_buff_head list;
1200 void *transfer_context;
1201 unsigned int nbytes, max_nbytes;
1202
1203 __skb_queue_head_init(list: &list);
1204 while (ath10k_ce_completed_recv_next(ce_state, per_transfer_contextp: &transfer_context,
1205 nbytesp: &nbytes) == 0) {
1206 skb = transfer_context;
1207 max_nbytes = skb->len + skb_tailroom(skb);
1208 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1209 max_nbytes, DMA_FROM_DEVICE);
1210
1211 if (unlikely(max_nbytes < nbytes)) {
1212 ath10k_warn(ar, fmt: "rxed more than expected (nbytes %d, max %d)",
1213 nbytes, max_nbytes);
1214 dev_kfree_skb_any(skb);
1215 continue;
1216 }
1217
1218 skb_put(skb, len: nbytes);
1219 __skb_queue_tail(list: &list, newsk: skb);
1220 }
1221
1222 while ((skb = __skb_dequeue(list: &list))) {
1223 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1224 ce_state->id, skb->len);
1225 ath10k_dbg_dump(ar, mask: ATH10K_DBG_PCI_DUMP, NULL, prefix: "pci rx: ",
1226 buf: skb->data, len: skb->len);
1227
1228 callback(ar, skb);
1229 }
1230
1231 ath10k_pci_rx_post_pipe(pipe: pipe_info);
1232}
1233
1234static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1235 void (*callback)(struct ath10k *ar,
1236 struct sk_buff *skb))
1237{
1238 struct ath10k *ar = ce_state->ar;
1239 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1240 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1241 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1242 struct sk_buff *skb;
1243 struct sk_buff_head list;
1244 void *transfer_context;
1245 unsigned int nbytes, max_nbytes, nentries;
1246 int orig_len;
1247
1248 /* No need to acquire ce_lock for CE5, since this is the only place CE5
1249 * is processed other than init and deinit. Before releasing CE5
1250 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1251 */
1252 __skb_queue_head_init(list: &list);
1253 while (ath10k_ce_completed_recv_next_nolock(ce_state, per_transfer_contextp: &transfer_context,
1254 nbytesp: &nbytes) == 0) {
1255 skb = transfer_context;
1256 max_nbytes = skb->len + skb_tailroom(skb);
1257
1258 if (unlikely(max_nbytes < nbytes)) {
1259 ath10k_warn(ar, fmt: "rxed more than expected (nbytes %d, max %d)",
1260 nbytes, max_nbytes);
1261 continue;
1262 }
1263
1264 dma_sync_single_for_cpu(dev: ar->dev, addr: ATH10K_SKB_RXCB(skb)->paddr,
1265 size: max_nbytes, dir: DMA_FROM_DEVICE);
1266 skb_put(skb, len: nbytes);
1267 __skb_queue_tail(list: &list, newsk: skb);
1268 }
1269
1270 nentries = skb_queue_len(list_: &list);
1271 while ((skb = __skb_dequeue(list: &list))) {
1272 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1273 ce_state->id, skb->len);
1274 ath10k_dbg_dump(ar, mask: ATH10K_DBG_PCI_DUMP, NULL, prefix: "pci rx: ",
1275 buf: skb->data, len: skb->len);
1276
1277 orig_len = skb->len;
1278 callback(ar, skb);
1279 skb_push(skb, len: orig_len - skb->len);
1280 skb_reset_tail_pointer(skb);
1281 skb_trim(skb, len: 0);
1282
1283 /*let device gain the buffer again*/
1284 dma_sync_single_for_device(dev: ar->dev, addr: ATH10K_SKB_RXCB(skb)->paddr,
1285 size: skb->len + skb_tailroom(skb),
1286 dir: DMA_FROM_DEVICE);
1287 }
1288 ath10k_ce_rx_update_write_idx(pipe: ce_pipe, nentries);
1289}
1290
1291/* Called by lower (CE) layer when data is received from the Target. */
1292static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1293{
1294 ath10k_pci_process_rx_cb(ce_state, callback: ath10k_htc_rx_completion_handler);
1295}
1296
1297static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1298{
1299 /* CE4 polling needs to be done whenever CE pipe which transports
1300 * HTT Rx (target->host) is processed.
1301 */
1302 ath10k_ce_per_engine_service(ar: ce_state->ar, ce_id: 4);
1303
1304 ath10k_pci_process_rx_cb(ce_state, callback: ath10k_htc_rx_completion_handler);
1305}
1306
1307/* Called by lower (CE) layer when data is received from the Target.
1308 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1309 */
1310static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1311{
1312 ath10k_pci_process_rx_cb(ce_state,
1313 callback: ath10k_htt_rx_pktlog_completion_handler);
1314}
1315
1316/* Called by lower (CE) layer when a send to HTT Target completes. */
1317static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1318{
1319 struct ath10k *ar = ce_state->ar;
1320 struct sk_buff *skb;
1321
1322 while (ath10k_ce_completed_send_next(ce_state, per_transfer_contextp: (void **)&skb) == 0) {
1323 /* no need to call tx completion for NULL pointers */
1324 if (!skb)
1325 continue;
1326
1327 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1328 skb->len, DMA_TO_DEVICE);
1329 ath10k_htt_hif_tx_complete(ar, skb);
1330 }
1331}
1332
1333static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1334{
1335 skb_pull(skb, len: sizeof(struct ath10k_htc_hdr));
1336 ath10k_htt_t2h_msg_handler(ar, skb);
1337}
1338
1339/* Called by lower (CE) layer when HTT data is received from the Target. */
1340static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1341{
1342 /* CE4 polling needs to be done whenever CE pipe which transports
1343 * HTT Rx (target->host) is processed.
1344 */
1345 ath10k_ce_per_engine_service(ar: ce_state->ar, ce_id: 4);
1346
1347 ath10k_pci_process_htt_rx_cb(ce_state, callback: ath10k_pci_htt_rx_deliver);
1348}
1349
1350int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1351 struct ath10k_hif_sg_item *items, int n_items)
1352{
1353 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1354 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1355 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1356 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1357 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1358 unsigned int nentries_mask;
1359 unsigned int sw_index;
1360 unsigned int write_index;
1361 int err, i = 0;
1362
1363 spin_lock_bh(lock: &ce->ce_lock);
1364
1365 nentries_mask = src_ring->nentries_mask;
1366 sw_index = src_ring->sw_index;
1367 write_index = src_ring->write_index;
1368
1369 if (unlikely(CE_RING_DELTA(nentries_mask,
1370 write_index, sw_index - 1) < n_items)) {
1371 err = -ENOBUFS;
1372 goto err;
1373 }
1374
1375 for (i = 0; i < n_items - 1; i++) {
1376 ath10k_dbg(ar, ATH10K_DBG_PCI,
1377 "pci tx item %d paddr %pad len %d n_items %d\n",
1378 i, &items[i].paddr, items[i].len, n_items);
1379 ath10k_dbg_dump(ar, mask: ATH10K_DBG_PCI_DUMP, NULL, prefix: "pci tx data: ",
1380 buf: items[i].vaddr, len: items[i].len);
1381
1382 err = ath10k_ce_send_nolock(ce_state: ce_pipe,
1383 per_transfer_context: items[i].transfer_context,
1384 buffer: items[i].paddr,
1385 nbytes: items[i].len,
1386 transfer_id: items[i].transfer_id,
1387 CE_SEND_FLAG_GATHER);
1388 if (err)
1389 goto err;
1390 }
1391
1392 /* `i` is equal to `n_items -1` after for() */
1393
1394 ath10k_dbg(ar, ATH10K_DBG_PCI,
1395 "pci tx item %d paddr %pad len %d n_items %d\n",
1396 i, &items[i].paddr, items[i].len, n_items);
1397 ath10k_dbg_dump(ar, mask: ATH10K_DBG_PCI_DUMP, NULL, prefix: "pci tx data: ",
1398 buf: items[i].vaddr, len: items[i].len);
1399
1400 err = ath10k_ce_send_nolock(ce_state: ce_pipe,
1401 per_transfer_context: items[i].transfer_context,
1402 buffer: items[i].paddr,
1403 nbytes: items[i].len,
1404 transfer_id: items[i].transfer_id,
1405 flags: 0);
1406 if (err)
1407 goto err;
1408
1409 spin_unlock_bh(lock: &ce->ce_lock);
1410 return 0;
1411
1412err:
1413 for (; i > 0; i--)
1414 __ath10k_ce_send_revert(pipe: ce_pipe);
1415
1416 spin_unlock_bh(lock: &ce->ce_lock);
1417 return err;
1418}
1419
1420int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1421 size_t buf_len)
1422{
1423 return ath10k_pci_diag_read_mem(ar, address, data: buf, nbytes: buf_len);
1424}
1425
1426u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1427{
1428 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1429
1430 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1431
1432 return ath10k_ce_num_free_src_entries(pipe: ar_pci->pipe_info[pipe].ce_hdl);
1433}
1434
1435static void ath10k_pci_dump_registers(struct ath10k *ar,
1436 struct ath10k_fw_crash_data *crash_data)
1437{
1438 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1439 int i, ret;
1440
1441 lockdep_assert_held(&ar->dump_mutex);
1442
1443 ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1444 hi_failure_state,
1445 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1446 if (ret) {
1447 ath10k_err(ar, fmt: "failed to read firmware dump area: %d\n", ret);
1448 return;
1449 }
1450
1451 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1452
1453 ath10k_err(ar, fmt: "firmware register dump:\n");
1454 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1455 ath10k_err(ar, fmt: "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1456 i,
1457 __le32_to_cpu(reg_dump_values[i]),
1458 __le32_to_cpu(reg_dump_values[i + 1]),
1459 __le32_to_cpu(reg_dump_values[i + 2]),
1460 __le32_to_cpu(reg_dump_values[i + 3]));
1461
1462 if (!crash_data)
1463 return;
1464
1465 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1466 crash_data->registers[i] = reg_dump_values[i];
1467}
1468
1469static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1470 const struct ath10k_mem_region *mem_region,
1471 u8 *buf, size_t buf_len)
1472{
1473 const struct ath10k_mem_section *cur_section, *next_section;
1474 unsigned int count, section_size, skip_size;
1475 int ret, i, j;
1476
1477 if (!mem_region || !buf)
1478 return 0;
1479
1480 cur_section = &mem_region->section_table.sections[0];
1481
1482 if (mem_region->start > cur_section->start) {
1483 ath10k_warn(ar, fmt: "incorrect memdump region 0x%x with section start address 0x%x.\n",
1484 mem_region->start, cur_section->start);
1485 return 0;
1486 }
1487
1488 skip_size = cur_section->start - mem_region->start;
1489
1490 /* fill the gap between the first register section and register
1491 * start address
1492 */
1493 for (i = 0; i < skip_size; i++) {
1494 *buf = ATH10K_MAGIC_NOT_COPIED;
1495 buf++;
1496 }
1497
1498 count = 0;
1499
1500 for (i = 0; cur_section != NULL; i++) {
1501 section_size = cur_section->end - cur_section->start;
1502
1503 if (section_size <= 0) {
1504 ath10k_warn(ar, fmt: "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1505 cur_section->start,
1506 cur_section->end);
1507 break;
1508 }
1509
1510 if ((i + 1) == mem_region->section_table.size) {
1511 /* last section */
1512 next_section = NULL;
1513 skip_size = 0;
1514 } else {
1515 next_section = cur_section + 1;
1516
1517 if (cur_section->end > next_section->start) {
1518 ath10k_warn(ar, fmt: "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1519 next_section->start,
1520 cur_section->end);
1521 break;
1522 }
1523
1524 skip_size = next_section->start - cur_section->end;
1525 }
1526
1527 if (buf_len < (skip_size + section_size)) {
1528 ath10k_warn(ar, fmt: "ramdump buffer is too small: %zu\n", buf_len);
1529 break;
1530 }
1531
1532 buf_len -= skip_size + section_size;
1533
1534 /* read section to dest memory */
1535 ret = ath10k_pci_diag_read_mem(ar, address: cur_section->start,
1536 data: buf, nbytes: section_size);
1537 if (ret) {
1538 ath10k_warn(ar, fmt: "failed to read ramdump from section 0x%x: %d\n",
1539 cur_section->start, ret);
1540 break;
1541 }
1542
1543 buf += section_size;
1544 count += section_size;
1545
1546 /* fill in the gap between this section and the next */
1547 for (j = 0; j < skip_size; j++) {
1548 *buf = ATH10K_MAGIC_NOT_COPIED;
1549 buf++;
1550 }
1551
1552 count += skip_size;
1553
1554 if (!next_section)
1555 /* this was the last section */
1556 break;
1557
1558 cur_section = next_section;
1559 }
1560
1561 return count;
1562}
1563
1564static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1565{
1566 u32 val;
1567
1568 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1569 FW_RAM_CONFIG_ADDRESS, value: config);
1570
1571 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1572 FW_RAM_CONFIG_ADDRESS);
1573 if (val != config) {
1574 ath10k_warn(ar, fmt: "failed to set RAM config from 0x%x to 0x%x\n",
1575 val, config);
1576 return -EIO;
1577 }
1578
1579 return 0;
1580}
1581
1582/* Always returns the length */
1583static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1584 const struct ath10k_mem_region *region,
1585 u8 *buf)
1586{
1587 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1588 u32 base_addr, i;
1589
1590 base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1591 base_addr += region->start;
1592
1593 for (i = 0; i < region->len; i += 4) {
1594 iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1595 *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1596 }
1597
1598 return region->len;
1599}
1600
1601/* if an error happened returns < 0, otherwise the length */
1602static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1603 const struct ath10k_mem_region *region,
1604 u8 *buf)
1605{
1606 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1607 u32 i;
1608 int ret;
1609
1610 mutex_lock(&ar->conf_mutex);
1611 if (ar->state != ATH10K_STATE_ON) {
1612 ath10k_warn(ar, fmt: "Skipping pci_dump_memory_reg invalid state\n");
1613 ret = -EIO;
1614 goto done;
1615 }
1616
1617 for (i = 0; i < region->len; i += 4)
1618 *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1619
1620 ret = region->len;
1621done:
1622 mutex_unlock(lock: &ar->conf_mutex);
1623 return ret;
1624}
1625
1626/* if an error happened returns < 0, otherwise the length */
1627static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1628 const struct ath10k_mem_region *current_region,
1629 u8 *buf)
1630{
1631 int ret;
1632
1633 if (current_region->section_table.size > 0)
1634 /* Copy each section individually. */
1635 return ath10k_pci_dump_memory_section(ar,
1636 mem_region: current_region,
1637 buf,
1638 buf_len: current_region->len);
1639
1640 /* No individual memory sections defined so we can
1641 * copy the entire memory region.
1642 */
1643 ret = ath10k_pci_diag_read_mem(ar,
1644 address: current_region->start,
1645 data: buf,
1646 nbytes: current_region->len);
1647 if (ret) {
1648 ath10k_warn(ar, fmt: "failed to copy ramdump region %s: %d\n",
1649 current_region->name, ret);
1650 return ret;
1651 }
1652
1653 return current_region->len;
1654}
1655
1656static void ath10k_pci_dump_memory(struct ath10k *ar,
1657 struct ath10k_fw_crash_data *crash_data)
1658{
1659 const struct ath10k_hw_mem_layout *mem_layout;
1660 const struct ath10k_mem_region *current_region;
1661 struct ath10k_dump_ram_data_hdr *hdr;
1662 u32 count, shift;
1663 size_t buf_len;
1664 int ret, i;
1665 u8 *buf;
1666
1667 lockdep_assert_held(&ar->dump_mutex);
1668
1669 if (!crash_data)
1670 return;
1671
1672 mem_layout = ath10k_coredump_get_mem_layout(ar);
1673 if (!mem_layout)
1674 return;
1675
1676 current_region = &mem_layout->region_table.regions[0];
1677
1678 buf = crash_data->ramdump_buf;
1679 buf_len = crash_data->ramdump_buf_len;
1680
1681 memset(buf, 0, buf_len);
1682
1683 for (i = 0; i < mem_layout->region_table.size; i++) {
1684 count = 0;
1685
1686 if (current_region->len > buf_len) {
1687 ath10k_warn(ar, fmt: "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1688 current_region->name,
1689 current_region->len,
1690 buf_len);
1691 break;
1692 }
1693
1694 /* To get IRAM dump, the host driver needs to switch target
1695 * ram config from DRAM to IRAM.
1696 */
1697 if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1698 current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1699 shift = current_region->start >> 20;
1700
1701 ret = ath10k_pci_set_ram_config(ar, config: shift);
1702 if (ret) {
1703 ath10k_warn(ar, fmt: "failed to switch ram config to IRAM for section %s: %d\n",
1704 current_region->name, ret);
1705 break;
1706 }
1707 }
1708
1709 /* Reserve space for the header. */
1710 hdr = (void *)buf;
1711 buf += sizeof(*hdr);
1712 buf_len -= sizeof(*hdr);
1713
1714 switch (current_region->type) {
1715 case ATH10K_MEM_REGION_TYPE_IOSRAM:
1716 count = ath10k_pci_dump_memory_sram(ar, region: current_region, buf);
1717 break;
1718 case ATH10K_MEM_REGION_TYPE_IOREG:
1719 ret = ath10k_pci_dump_memory_reg(ar, region: current_region, buf);
1720 if (ret < 0)
1721 break;
1722
1723 count = ret;
1724 break;
1725 default:
1726 ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1727 if (ret < 0)
1728 break;
1729
1730 count = ret;
1731 break;
1732 }
1733
1734 hdr->region_type = cpu_to_le32(current_region->type);
1735 hdr->start = cpu_to_le32(current_region->start);
1736 hdr->length = cpu_to_le32(count);
1737
1738 if (count == 0)
1739 /* Note: the header remains, just with zero length. */
1740 break;
1741
1742 buf += count;
1743 buf_len -= count;
1744
1745 current_region++;
1746 }
1747}
1748
1749static void ath10k_pci_fw_dump_work(struct work_struct *work)
1750{
1751 struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1752 dump_work);
1753 struct ath10k_fw_crash_data *crash_data;
1754 struct ath10k *ar = ar_pci->ar;
1755 char guid[UUID_STRING_LEN + 1];
1756
1757 mutex_lock(&ar->dump_mutex);
1758
1759 spin_lock_bh(lock: &ar->data_lock);
1760 ar->stats.fw_crash_counter++;
1761 spin_unlock_bh(lock: &ar->data_lock);
1762
1763 crash_data = ath10k_coredump_new(ar);
1764
1765 if (crash_data)
1766 scnprintf(buf: guid, size: sizeof(guid), fmt: "%pUl", &crash_data->guid);
1767 else
1768 scnprintf(buf: guid, size: sizeof(guid), fmt: "n/a");
1769
1770 ath10k_err(ar, fmt: "firmware crashed! (guid %s)\n", guid);
1771 ath10k_print_driver_info(ar);
1772 ath10k_pci_dump_registers(ar, crash_data);
1773 ath10k_ce_dump_registers(ar, crash_data);
1774 ath10k_pci_dump_memory(ar, crash_data);
1775
1776 mutex_unlock(lock: &ar->dump_mutex);
1777
1778 ath10k_core_start_recovery(ar);
1779}
1780
1781static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1782{
1783 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1784
1785 queue_work(wq: ar->workqueue, work: &ar_pci->dump_work);
1786}
1787
1788void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1789 int force)
1790{
1791 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1792
1793 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1794
1795 if (!force) {
1796 int resources;
1797 /*
1798 * Decide whether to actually poll for completions, or just
1799 * wait for a later chance.
1800 * If there seem to be plenty of resources left, then just wait
1801 * since checking involves reading a CE register, which is a
1802 * relatively expensive operation.
1803 */
1804 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1805
1806 /*
1807 * If at least 50% of the total resources are still available,
1808 * don't bother checking again yet.
1809 */
1810 if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1811 return;
1812 }
1813 ath10k_ce_per_engine_service(ar, ce_id: pipe);
1814}
1815
1816static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1817{
1818 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1819
1820 del_timer_sync(timer: &ar_pci->rx_post_retry);
1821}
1822
1823int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1824 u8 *ul_pipe, u8 *dl_pipe)
1825{
1826 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1827 const struct ce_service_to_pipe *entry;
1828 bool ul_set = false, dl_set = false;
1829 int i;
1830
1831 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1832
1833 for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1834 entry = &ar_pci->serv_to_pipe[i];
1835
1836 if (__le32_to_cpu(entry->service_id) != service_id)
1837 continue;
1838
1839 switch (__le32_to_cpu(entry->pipedir)) {
1840 case PIPEDIR_NONE:
1841 break;
1842 case PIPEDIR_IN:
1843 WARN_ON(dl_set);
1844 *dl_pipe = __le32_to_cpu(entry->pipenum);
1845 dl_set = true;
1846 break;
1847 case PIPEDIR_OUT:
1848 WARN_ON(ul_set);
1849 *ul_pipe = __le32_to_cpu(entry->pipenum);
1850 ul_set = true;
1851 break;
1852 case PIPEDIR_INOUT:
1853 WARN_ON(dl_set);
1854 WARN_ON(ul_set);
1855 *dl_pipe = __le32_to_cpu(entry->pipenum);
1856 *ul_pipe = __le32_to_cpu(entry->pipenum);
1857 dl_set = true;
1858 ul_set = true;
1859 break;
1860 }
1861 }
1862
1863 if (!ul_set || !dl_set)
1864 return -ENOENT;
1865
1866 return 0;
1867}
1868
1869void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1870 u8 *ul_pipe, u8 *dl_pipe)
1871{
1872 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1873
1874 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1875 service_id: ATH10K_HTC_SVC_ID_RSVD_CTRL,
1876 ul_pipe, dl_pipe);
1877}
1878
1879void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1880{
1881 u32 val;
1882
1883 switch (ar->hw_rev) {
1884 case ATH10K_HW_QCA988X:
1885 case ATH10K_HW_QCA9887:
1886 case ATH10K_HW_QCA6174:
1887 case ATH10K_HW_QCA9377:
1888 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1889 CORE_CTRL_ADDRESS);
1890 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1891 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1892 CORE_CTRL_ADDRESS, value: val);
1893 break;
1894 case ATH10K_HW_QCA99X0:
1895 case ATH10K_HW_QCA9984:
1896 case ATH10K_HW_QCA9888:
1897 case ATH10K_HW_QCA4019:
1898 /* TODO: Find appropriate register configuration for QCA99X0
1899 * to mask irq/MSI.
1900 */
1901 break;
1902 case ATH10K_HW_WCN3990:
1903 break;
1904 }
1905}
1906
1907static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1908{
1909 u32 val;
1910
1911 switch (ar->hw_rev) {
1912 case ATH10K_HW_QCA988X:
1913 case ATH10K_HW_QCA9887:
1914 case ATH10K_HW_QCA6174:
1915 case ATH10K_HW_QCA9377:
1916 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1917 CORE_CTRL_ADDRESS);
1918 val |= CORE_CTRL_PCIE_REG_31_MASK;
1919 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1920 CORE_CTRL_ADDRESS, value: val);
1921 break;
1922 case ATH10K_HW_QCA99X0:
1923 case ATH10K_HW_QCA9984:
1924 case ATH10K_HW_QCA9888:
1925 case ATH10K_HW_QCA4019:
1926 /* TODO: Find appropriate register configuration for QCA99X0
1927 * to unmask irq/MSI.
1928 */
1929 break;
1930 case ATH10K_HW_WCN3990:
1931 break;
1932 }
1933}
1934
1935static void ath10k_pci_irq_disable(struct ath10k *ar)
1936{
1937 ath10k_ce_disable_interrupts(ar);
1938 ath10k_pci_disable_and_clear_legacy_irq(ar);
1939 ath10k_pci_irq_msi_fw_mask(ar);
1940}
1941
1942static void ath10k_pci_irq_sync(struct ath10k *ar)
1943{
1944 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1945
1946 synchronize_irq(irq: ar_pci->pdev->irq);
1947}
1948
1949static void ath10k_pci_irq_enable(struct ath10k *ar)
1950{
1951 ath10k_ce_enable_interrupts(ar);
1952 ath10k_pci_enable_legacy_irq(ar);
1953 ath10k_pci_irq_msi_fw_unmask(ar);
1954}
1955
1956static int ath10k_pci_hif_start(struct ath10k *ar)
1957{
1958 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1959
1960 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1961
1962 ath10k_core_napi_enable(ar);
1963
1964 ath10k_pci_irq_enable(ar);
1965 ath10k_pci_rx_post(ar);
1966
1967 pcie_capability_clear_and_set_word(dev: ar_pci->pdev, PCI_EXP_LNKCTL,
1968 PCI_EXP_LNKCTL_ASPMC,
1969 set: ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1970
1971 return 0;
1972}
1973
1974static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1975{
1976 struct ath10k *ar;
1977 struct ath10k_ce_pipe *ce_pipe;
1978 struct ath10k_ce_ring *ce_ring;
1979 struct sk_buff *skb;
1980 int i;
1981
1982 ar = pci_pipe->hif_ce_state;
1983 ce_pipe = pci_pipe->ce_hdl;
1984 ce_ring = ce_pipe->dest_ring;
1985
1986 if (!ce_ring)
1987 return;
1988
1989 if (!pci_pipe->buf_sz)
1990 return;
1991
1992 for (i = 0; i < ce_ring->nentries; i++) {
1993 skb = ce_ring->per_transfer_context[i];
1994 if (!skb)
1995 continue;
1996
1997 ce_ring->per_transfer_context[i] = NULL;
1998
1999 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2000 skb->len + skb_tailroom(skb),
2001 DMA_FROM_DEVICE);
2002 dev_kfree_skb_any(skb);
2003 }
2004}
2005
2006static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2007{
2008 struct ath10k *ar;
2009 struct ath10k_ce_pipe *ce_pipe;
2010 struct ath10k_ce_ring *ce_ring;
2011 struct sk_buff *skb;
2012 int i;
2013
2014 ar = pci_pipe->hif_ce_state;
2015 ce_pipe = pci_pipe->ce_hdl;
2016 ce_ring = ce_pipe->src_ring;
2017
2018 if (!ce_ring)
2019 return;
2020
2021 if (!pci_pipe->buf_sz)
2022 return;
2023
2024 for (i = 0; i < ce_ring->nentries; i++) {
2025 skb = ce_ring->per_transfer_context[i];
2026 if (!skb)
2027 continue;
2028
2029 ce_ring->per_transfer_context[i] = NULL;
2030
2031 ath10k_htc_tx_completion_handler(ar, skb);
2032 }
2033}
2034
2035/*
2036 * Cleanup residual buffers for device shutdown:
2037 * buffers that were enqueued for receive
2038 * buffers that were to be sent
2039 * Note: Buffers that had completed but which were
2040 * not yet processed are on a completion queue. They
2041 * are handled when the completion thread shuts down.
2042 */
2043static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2044{
2045 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2046 int pipe_num;
2047
2048 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2049 struct ath10k_pci_pipe *pipe_info;
2050
2051 pipe_info = &ar_pci->pipe_info[pipe_num];
2052 ath10k_pci_rx_pipe_cleanup(pci_pipe: pipe_info);
2053 ath10k_pci_tx_pipe_cleanup(pci_pipe: pipe_info);
2054 }
2055}
2056
2057void ath10k_pci_ce_deinit(struct ath10k *ar)
2058{
2059 int i;
2060
2061 for (i = 0; i < CE_COUNT; i++)
2062 ath10k_ce_deinit_pipe(ar, ce_id: i);
2063}
2064
2065void ath10k_pci_flush(struct ath10k *ar)
2066{
2067 ath10k_pci_rx_retry_sync(ar);
2068 ath10k_pci_buffer_cleanup(ar);
2069}
2070
2071static void ath10k_pci_hif_stop(struct ath10k *ar)
2072{
2073 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2074 unsigned long flags;
2075
2076 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2077
2078 ath10k_pci_irq_disable(ar);
2079 ath10k_pci_irq_sync(ar);
2080
2081 ath10k_core_napi_sync_disable(ar);
2082
2083 cancel_work_sync(work: &ar_pci->dump_work);
2084
2085 /* Most likely the device has HTT Rx ring configured. The only way to
2086 * prevent the device from accessing (and possible corrupting) host
2087 * memory is to reset the chip now.
2088 *
2089 * There's also no known way of masking MSI interrupts on the device.
2090 * For ranged MSI the CE-related interrupts can be masked. However
2091 * regardless how many MSI interrupts are assigned the first one
2092 * is always used for firmware indications (crashes) and cannot be
2093 * masked. To prevent the device from asserting the interrupt reset it
2094 * before proceeding with cleanup.
2095 */
2096 ath10k_pci_safe_chip_reset(ar);
2097
2098 ath10k_pci_flush(ar);
2099
2100 spin_lock_irqsave(&ar_pci->ps_lock, flags);
2101 WARN_ON(ar_pci->ps_wake_refcount > 0);
2102 spin_unlock_irqrestore(lock: &ar_pci->ps_lock, flags);
2103}
2104
2105int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2106 void *req, u32 req_len,
2107 void *resp, u32 *resp_len)
2108{
2109 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2110 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2111 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2112 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2113 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2114 dma_addr_t req_paddr = 0;
2115 dma_addr_t resp_paddr = 0;
2116 struct bmi_xfer xfer = {};
2117 void *treq, *tresp = NULL;
2118 int ret = 0;
2119
2120 might_sleep();
2121
2122 if (resp && !resp_len)
2123 return -EINVAL;
2124
2125 if (resp && resp_len && *resp_len == 0)
2126 return -EINVAL;
2127
2128 treq = kmemdup(p: req, size: req_len, GFP_KERNEL);
2129 if (!treq)
2130 return -ENOMEM;
2131
2132 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2133 ret = dma_mapping_error(dev: ar->dev, dma_addr: req_paddr);
2134 if (ret) {
2135 ret = -EIO;
2136 goto err_dma;
2137 }
2138
2139 if (resp && resp_len) {
2140 tresp = kzalloc(size: *resp_len, GFP_KERNEL);
2141 if (!tresp) {
2142 ret = -ENOMEM;
2143 goto err_req;
2144 }
2145
2146 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2147 DMA_FROM_DEVICE);
2148 ret = dma_mapping_error(dev: ar->dev, dma_addr: resp_paddr);
2149 if (ret) {
2150 ret = -EIO;
2151 goto err_req;
2152 }
2153
2154 xfer.wait_for_resp = true;
2155 xfer.resp_len = 0;
2156
2157 ath10k_ce_rx_post_buf(pipe: ce_rx, ctx: &xfer, paddr: resp_paddr);
2158 }
2159
2160 ret = ath10k_ce_send(ce_state: ce_tx, per_transfer_send_context: &xfer, buffer: req_paddr, nbytes: req_len, transfer_id: -1, flags: 0);
2161 if (ret)
2162 goto err_resp;
2163
2164 ret = ath10k_pci_bmi_wait(ar, tx_pipe: ce_tx, rx_pipe: ce_rx, xfer: &xfer);
2165 if (ret) {
2166 dma_addr_t unused_buffer;
2167 unsigned int unused_nbytes;
2168 unsigned int unused_id;
2169
2170 ath10k_ce_cancel_send_next(ce_state: ce_tx, NULL, bufferp: &unused_buffer,
2171 nbytesp: &unused_nbytes, transfer_idp: &unused_id);
2172 } else {
2173 /* non-zero means we did not time out */
2174 ret = 0;
2175 }
2176
2177err_resp:
2178 if (resp) {
2179 dma_addr_t unused_buffer;
2180
2181 ath10k_ce_revoke_recv_next(ce_state: ce_rx, NULL, bufferp: &unused_buffer);
2182 dma_unmap_single(ar->dev, resp_paddr,
2183 *resp_len, DMA_FROM_DEVICE);
2184 }
2185err_req:
2186 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2187
2188 if (ret == 0 && resp_len) {
2189 *resp_len = min(*resp_len, xfer.resp_len);
2190 memcpy(resp, tresp, *resp_len);
2191 }
2192err_dma:
2193 kfree(objp: treq);
2194 kfree(objp: tresp);
2195
2196 return ret;
2197}
2198
2199static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2200{
2201 struct bmi_xfer *xfer;
2202
2203 if (ath10k_ce_completed_send_next(ce_state, per_transfer_contextp: (void **)&xfer))
2204 return;
2205
2206 xfer->tx_done = true;
2207}
2208
2209static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2210{
2211 struct ath10k *ar = ce_state->ar;
2212 struct bmi_xfer *xfer;
2213 unsigned int nbytes;
2214
2215 if (ath10k_ce_completed_recv_next(ce_state, per_transfer_contextp: (void **)&xfer,
2216 nbytesp: &nbytes))
2217 return;
2218
2219 if (WARN_ON_ONCE(!xfer))
2220 return;
2221
2222 if (!xfer->wait_for_resp) {
2223 ath10k_warn(ar, fmt: "unexpected: BMI data received; ignoring\n");
2224 return;
2225 }
2226
2227 xfer->resp_len = nbytes;
2228 xfer->rx_done = true;
2229}
2230
2231static int ath10k_pci_bmi_wait(struct ath10k *ar,
2232 struct ath10k_ce_pipe *tx_pipe,
2233 struct ath10k_ce_pipe *rx_pipe,
2234 struct bmi_xfer *xfer)
2235{
2236 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2237 unsigned long started = jiffies;
2238 unsigned long dur;
2239 int ret;
2240
2241 while (time_before_eq(jiffies, timeout)) {
2242 ath10k_pci_bmi_send_done(ce_state: tx_pipe);
2243 ath10k_pci_bmi_recv_data(ce_state: rx_pipe);
2244
2245 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2246 ret = 0;
2247 goto out;
2248 }
2249
2250 schedule();
2251 }
2252
2253 ret = -ETIMEDOUT;
2254
2255out:
2256 dur = jiffies - started;
2257 if (dur > HZ)
2258 ath10k_dbg(ar, ATH10K_DBG_BMI,
2259 "bmi cmd took %lu jiffies hz %d ret %d\n",
2260 dur, HZ, ret);
2261 return ret;
2262}
2263
2264/*
2265 * Send an interrupt to the device to wake up the Target CPU
2266 * so it has an opportunity to notice any changed state.
2267 */
2268static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2269{
2270 u32 addr, val;
2271
2272 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2273 val = ath10k_pci_read32(ar, offset: addr);
2274 val |= CORE_CTRL_CPU_INTR_MASK;
2275 ath10k_pci_write32(ar, offset: addr, value: val);
2276
2277 return 0;
2278}
2279
2280static int ath10k_pci_get_num_banks(struct ath10k *ar)
2281{
2282 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2283
2284 switch (ar_pci->pdev->device) {
2285 case QCA988X_2_0_DEVICE_ID_UBNT:
2286 case QCA988X_2_0_DEVICE_ID:
2287 case QCA99X0_2_0_DEVICE_ID:
2288 case QCA9888_2_0_DEVICE_ID:
2289 case QCA9984_1_0_DEVICE_ID:
2290 case QCA9887_1_0_DEVICE_ID:
2291 return 1;
2292 case QCA6164_2_1_DEVICE_ID:
2293 case QCA6174_2_1_DEVICE_ID:
2294 switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2295 case QCA6174_HW_1_0_CHIP_ID_REV:
2296 case QCA6174_HW_1_1_CHIP_ID_REV:
2297 case QCA6174_HW_2_1_CHIP_ID_REV:
2298 case QCA6174_HW_2_2_CHIP_ID_REV:
2299 return 3;
2300 case QCA6174_HW_1_3_CHIP_ID_REV:
2301 return 2;
2302 case QCA6174_HW_3_0_CHIP_ID_REV:
2303 case QCA6174_HW_3_1_CHIP_ID_REV:
2304 case QCA6174_HW_3_2_CHIP_ID_REV:
2305 return 9;
2306 }
2307 break;
2308 case QCA9377_1_0_DEVICE_ID:
2309 return 9;
2310 }
2311
2312 ath10k_warn(ar, fmt: "unknown number of banks, assuming 1\n");
2313 return 1;
2314}
2315
2316static int ath10k_bus_get_num_banks(struct ath10k *ar)
2317{
2318 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2319
2320 return ce->bus_ops->get_num_banks(ar);
2321}
2322
2323int ath10k_pci_init_config(struct ath10k *ar)
2324{
2325 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2326 u32 interconnect_targ_addr;
2327 u32 pcie_state_targ_addr = 0;
2328 u32 pipe_cfg_targ_addr = 0;
2329 u32 svc_to_pipe_map = 0;
2330 u32 pcie_config_flags = 0;
2331 u32 ealloc_value;
2332 u32 ealloc_targ_addr;
2333 u32 flag2_value;
2334 u32 flag2_targ_addr;
2335 int ret = 0;
2336
2337 /* Download to Target the CE Config and the service-to-CE map */
2338 interconnect_targ_addr =
2339 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2340
2341 /* Supply Target-side CE configuration */
2342 ret = ath10k_pci_diag_read32(ar, address: interconnect_targ_addr,
2343 value: &pcie_state_targ_addr);
2344 if (ret != 0) {
2345 ath10k_err(ar, fmt: "Failed to get pcie state addr: %d\n", ret);
2346 return ret;
2347 }
2348
2349 if (pcie_state_targ_addr == 0) {
2350 ret = -EIO;
2351 ath10k_err(ar, fmt: "Invalid pcie state addr\n");
2352 return ret;
2353 }
2354
2355 ret = ath10k_pci_diag_read32(ar, address: (pcie_state_targ_addr +
2356 offsetof(struct pcie_state,
2357 pipe_cfg_addr)),
2358 value: &pipe_cfg_targ_addr);
2359 if (ret != 0) {
2360 ath10k_err(ar, fmt: "Failed to get pipe cfg addr: %d\n", ret);
2361 return ret;
2362 }
2363
2364 if (pipe_cfg_targ_addr == 0) {
2365 ret = -EIO;
2366 ath10k_err(ar, fmt: "Invalid pipe cfg addr\n");
2367 return ret;
2368 }
2369
2370 ret = ath10k_pci_diag_write_mem(ar, address: pipe_cfg_targ_addr,
2371 data: ar_pci->pipe_config,
2372 nbytes: sizeof(struct ce_pipe_config) *
2373 NUM_TARGET_CE_CONFIG_WLAN);
2374
2375 if (ret != 0) {
2376 ath10k_err(ar, fmt: "Failed to write pipe cfg: %d\n", ret);
2377 return ret;
2378 }
2379
2380 ret = ath10k_pci_diag_read32(ar, address: (pcie_state_targ_addr +
2381 offsetof(struct pcie_state,
2382 svc_to_pipe_map)),
2383 value: &svc_to_pipe_map);
2384 if (ret != 0) {
2385 ath10k_err(ar, fmt: "Failed to get svc/pipe map: %d\n", ret);
2386 return ret;
2387 }
2388
2389 if (svc_to_pipe_map == 0) {
2390 ret = -EIO;
2391 ath10k_err(ar, fmt: "Invalid svc_to_pipe map\n");
2392 return ret;
2393 }
2394
2395 ret = ath10k_pci_diag_write_mem(ar, address: svc_to_pipe_map,
2396 data: ar_pci->serv_to_pipe,
2397 nbytes: sizeof(pci_target_service_to_ce_map_wlan));
2398 if (ret != 0) {
2399 ath10k_err(ar, fmt: "Failed to write svc/pipe map: %d\n", ret);
2400 return ret;
2401 }
2402
2403 ret = ath10k_pci_diag_read32(ar, address: (pcie_state_targ_addr +
2404 offsetof(struct pcie_state,
2405 config_flags)),
2406 value: &pcie_config_flags);
2407 if (ret != 0) {
2408 ath10k_err(ar, fmt: "Failed to get pcie config_flags: %d\n", ret);
2409 return ret;
2410 }
2411
2412 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2413
2414 ret = ath10k_pci_diag_write32(ar, address: (pcie_state_targ_addr +
2415 offsetof(struct pcie_state,
2416 config_flags)),
2417 value: pcie_config_flags);
2418 if (ret != 0) {
2419 ath10k_err(ar, fmt: "Failed to write pcie config_flags: %d\n", ret);
2420 return ret;
2421 }
2422
2423 /* configure early allocation */
2424 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2425
2426 ret = ath10k_pci_diag_read32(ar, address: ealloc_targ_addr, value: &ealloc_value);
2427 if (ret != 0) {
2428 ath10k_err(ar, fmt: "Failed to get early alloc val: %d\n", ret);
2429 return ret;
2430 }
2431
2432 /* first bank is switched to IRAM */
2433 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2434 HI_EARLY_ALLOC_MAGIC_MASK);
2435 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2436 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2437 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2438
2439 ret = ath10k_pci_diag_write32(ar, address: ealloc_targ_addr, value: ealloc_value);
2440 if (ret != 0) {
2441 ath10k_err(ar, fmt: "Failed to set early alloc val: %d\n", ret);
2442 return ret;
2443 }
2444
2445 /* Tell Target to proceed with initialization */
2446 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2447
2448 ret = ath10k_pci_diag_read32(ar, address: flag2_targ_addr, value: &flag2_value);
2449 if (ret != 0) {
2450 ath10k_err(ar, fmt: "Failed to get option val: %d\n", ret);
2451 return ret;
2452 }
2453
2454 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2455
2456 ret = ath10k_pci_diag_write32(ar, address: flag2_targ_addr, value: flag2_value);
2457 if (ret != 0) {
2458 ath10k_err(ar, fmt: "Failed to set option val: %d\n", ret);
2459 return ret;
2460 }
2461
2462 return 0;
2463}
2464
2465static void ath10k_pci_override_ce_config(struct ath10k *ar)
2466{
2467 struct ce_attr *attr;
2468 struct ce_pipe_config *config;
2469 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2470
2471 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2472 * since it is currently used for other feature.
2473 */
2474
2475 /* Override Host's Copy Engine 5 configuration */
2476 attr = &ar_pci->attr[5];
2477 attr->src_sz_max = 0;
2478 attr->dest_nentries = 0;
2479
2480 /* Override Target firmware's Copy Engine configuration */
2481 config = &ar_pci->pipe_config[5];
2482 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2483 config->nbytes_max = __cpu_to_le32(2048);
2484
2485 /* Map from service/endpoint to Copy Engine */
2486 ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2487}
2488
2489int ath10k_pci_alloc_pipes(struct ath10k *ar)
2490{
2491 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2492 struct ath10k_pci_pipe *pipe;
2493 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2494 int i, ret;
2495
2496 for (i = 0; i < CE_COUNT; i++) {
2497 pipe = &ar_pci->pipe_info[i];
2498 pipe->ce_hdl = &ce->ce_states[i];
2499 pipe->pipe_num = i;
2500 pipe->hif_ce_state = ar;
2501
2502 ret = ath10k_ce_alloc_pipe(ar, ce_id: i, attr: &ar_pci->attr[i]);
2503 if (ret) {
2504 ath10k_err(ar, fmt: "failed to allocate copy engine pipe %d: %d\n",
2505 i, ret);
2506 return ret;
2507 }
2508
2509 /* Last CE is Diagnostic Window */
2510 if (i == CE_DIAG_PIPE) {
2511 ar_pci->ce_diag = pipe->ce_hdl;
2512 continue;
2513 }
2514
2515 pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2516 }
2517
2518 return 0;
2519}
2520
2521void ath10k_pci_free_pipes(struct ath10k *ar)
2522{
2523 int i;
2524
2525 for (i = 0; i < CE_COUNT; i++)
2526 ath10k_ce_free_pipe(ar, ce_id: i);
2527}
2528
2529int ath10k_pci_init_pipes(struct ath10k *ar)
2530{
2531 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2532 int i, ret;
2533
2534 for (i = 0; i < CE_COUNT; i++) {
2535 ret = ath10k_ce_init_pipe(ar, ce_id: i, attr: &ar_pci->attr[i]);
2536 if (ret) {
2537 ath10k_err(ar, fmt: "failed to initialize copy engine pipe %d: %d\n",
2538 i, ret);
2539 return ret;
2540 }
2541 }
2542
2543 return 0;
2544}
2545
2546static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2547{
2548 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2549 FW_IND_EVENT_PENDING;
2550}
2551
2552static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2553{
2554 u32 val;
2555
2556 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2557 val &= ~FW_IND_EVENT_PENDING;
2558 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, value: val);
2559}
2560
2561static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2562{
2563 u32 val;
2564
2565 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2566 return (val == 0xffffffff);
2567}
2568
2569/* this function effectively clears target memory controller assert line */
2570static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2571{
2572 u32 val;
2573
2574 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2575 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2576 val: val | SOC_RESET_CONTROL_SI0_RST_MASK);
2577 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2578
2579 msleep(msecs: 10);
2580
2581 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2582 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2583 val: val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2584 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2585
2586 msleep(msecs: 10);
2587}
2588
2589static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2590{
2591 u32 val;
2592
2593 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, value: 0);
2594
2595 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2596 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2597 val: val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2598}
2599
2600static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2601{
2602 u32 val;
2603
2604 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2605
2606 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2607 val: val | SOC_RESET_CONTROL_CE_RST_MASK);
2608 msleep(msecs: 10);
2609 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2610 val: val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2611}
2612
2613static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2614{
2615 u32 val;
2616
2617 val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2618 ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2619 val: val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2620}
2621
2622static int ath10k_pci_warm_reset(struct ath10k *ar)
2623{
2624 int ret;
2625
2626 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2627
2628 spin_lock_bh(lock: &ar->data_lock);
2629 ar->stats.fw_warm_reset_counter++;
2630 spin_unlock_bh(lock: &ar->data_lock);
2631
2632 ath10k_pci_irq_disable(ar);
2633
2634 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2635 * were to access copy engine while host performs copy engine reset
2636 * then it is possible for the device to confuse pci-e controller to
2637 * the point of bringing host system to a complete stop (i.e. hang).
2638 */
2639 ath10k_pci_warm_reset_si0(ar);
2640 ath10k_pci_warm_reset_cpu(ar);
2641 ath10k_pci_init_pipes(ar);
2642 ath10k_pci_wait_for_target_init(ar);
2643
2644 ath10k_pci_warm_reset_clear_lf(ar);
2645 ath10k_pci_warm_reset_ce(ar);
2646 ath10k_pci_warm_reset_cpu(ar);
2647 ath10k_pci_init_pipes(ar);
2648
2649 ret = ath10k_pci_wait_for_target_init(ar);
2650 if (ret) {
2651 ath10k_warn(ar, fmt: "failed to wait for target init: %d\n", ret);
2652 return ret;
2653 }
2654
2655 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2656
2657 return 0;
2658}
2659
2660static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2661{
2662 ath10k_pci_irq_disable(ar);
2663 return ath10k_pci_qca99x0_chip_reset(ar);
2664}
2665
2666static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2667{
2668 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2669
2670 if (!ar_pci->pci_soft_reset)
2671 return -EOPNOTSUPP;
2672
2673 return ar_pci->pci_soft_reset(ar);
2674}
2675
2676static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2677{
2678 int i, ret;
2679 u32 val;
2680
2681 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2682
2683 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2684 * It is thus preferred to use warm reset which is safer but may not be
2685 * able to recover the device from all possible fail scenarios.
2686 *
2687 * Warm reset doesn't always work on first try so attempt it a few
2688 * times before giving up.
2689 */
2690 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2691 ret = ath10k_pci_warm_reset(ar);
2692 if (ret) {
2693 ath10k_warn(ar, fmt: "failed to warm reset attempt %d of %d: %d\n",
2694 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2695 ret);
2696 continue;
2697 }
2698
2699 /* FIXME: Sometimes copy engine doesn't recover after warm
2700 * reset. In most cases this needs cold reset. In some of these
2701 * cases the device is in such a state that a cold reset may
2702 * lock up the host.
2703 *
2704 * Reading any host interest register via copy engine is
2705 * sufficient to verify if device is capable of booting
2706 * firmware blob.
2707 */
2708 ret = ath10k_pci_init_pipes(ar);
2709 if (ret) {
2710 ath10k_warn(ar, fmt: "failed to init copy engine: %d\n",
2711 ret);
2712 continue;
2713 }
2714
2715 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2716 value: &val);
2717 if (ret) {
2718 ath10k_warn(ar, fmt: "failed to poke copy engine: %d\n",
2719 ret);
2720 continue;
2721 }
2722
2723 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2724 return 0;
2725 }
2726
2727 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2728 ath10k_warn(ar, fmt: "refusing cold reset as requested\n");
2729 return -EPERM;
2730 }
2731
2732 ret = ath10k_pci_cold_reset(ar);
2733 if (ret) {
2734 ath10k_warn(ar, fmt: "failed to cold reset: %d\n", ret);
2735 return ret;
2736 }
2737
2738 ret = ath10k_pci_wait_for_target_init(ar);
2739 if (ret) {
2740 ath10k_warn(ar, fmt: "failed to wait for target after cold reset: %d\n",
2741 ret);
2742 return ret;
2743 }
2744
2745 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2746
2747 return 0;
2748}
2749
2750static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2751{
2752 int ret;
2753
2754 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2755
2756 /* FIXME: QCA6174 requires cold + warm reset to work. */
2757
2758 ret = ath10k_pci_cold_reset(ar);
2759 if (ret) {
2760 ath10k_warn(ar, fmt: "failed to cold reset: %d\n", ret);
2761 return ret;
2762 }
2763
2764 ret = ath10k_pci_wait_for_target_init(ar);
2765 if (ret) {
2766 ath10k_warn(ar, fmt: "failed to wait for target after cold reset: %d\n",
2767 ret);
2768 return ret;
2769 }
2770
2771 ret = ath10k_pci_warm_reset(ar);
2772 if (ret) {
2773 ath10k_warn(ar, fmt: "failed to warm reset: %d\n", ret);
2774 return ret;
2775 }
2776
2777 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2778
2779 return 0;
2780}
2781
2782static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2783{
2784 int ret;
2785
2786 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2787
2788 ret = ath10k_pci_cold_reset(ar);
2789 if (ret) {
2790 ath10k_warn(ar, fmt: "failed to cold reset: %d\n", ret);
2791 return ret;
2792 }
2793
2794 ret = ath10k_pci_wait_for_target_init(ar);
2795 if (ret) {
2796 ath10k_warn(ar, fmt: "failed to wait for target after cold reset: %d\n",
2797 ret);
2798 return ret;
2799 }
2800
2801 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2802
2803 return 0;
2804}
2805
2806static int ath10k_pci_chip_reset(struct ath10k *ar)
2807{
2808 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2809
2810 if (WARN_ON(!ar_pci->pci_hard_reset))
2811 return -EOPNOTSUPP;
2812
2813 return ar_pci->pci_hard_reset(ar);
2814}
2815
2816static int ath10k_pci_hif_power_up(struct ath10k *ar,
2817 enum ath10k_firmware_mode fw_mode)
2818{
2819 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2820 int ret;
2821
2822 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2823
2824 pcie_capability_read_word(dev: ar_pci->pdev, PCI_EXP_LNKCTL,
2825 val: &ar_pci->link_ctl);
2826 pcie_capability_clear_word(dev: ar_pci->pdev, PCI_EXP_LNKCTL,
2827 PCI_EXP_LNKCTL_ASPMC);
2828
2829 /*
2830 * Bring the target up cleanly.
2831 *
2832 * The target may be in an undefined state with an AUX-powered Target
2833 * and a Host in WoW mode. If the Host crashes, loses power, or is
2834 * restarted (without unloading the driver) then the Target is left
2835 * (aux) powered and running. On a subsequent driver load, the Target
2836 * is in an unexpected state. We try to catch that here in order to
2837 * reset the Target and retry the probe.
2838 */
2839 ret = ath10k_pci_chip_reset(ar);
2840 if (ret) {
2841 if (ath10k_pci_has_fw_crashed(ar)) {
2842 ath10k_warn(ar, fmt: "firmware crashed during chip reset\n");
2843 ath10k_pci_fw_crashed_clear(ar);
2844 ath10k_pci_fw_crashed_dump(ar);
2845 }
2846
2847 ath10k_err(ar, fmt: "failed to reset chip: %d\n", ret);
2848 goto err_sleep;
2849 }
2850
2851 ret = ath10k_pci_init_pipes(ar);
2852 if (ret) {
2853 ath10k_err(ar, fmt: "failed to initialize CE: %d\n", ret);
2854 goto err_sleep;
2855 }
2856
2857 ret = ath10k_pci_init_config(ar);
2858 if (ret) {
2859 ath10k_err(ar, fmt: "failed to setup init config: %d\n", ret);
2860 goto err_ce;
2861 }
2862
2863 ret = ath10k_pci_wake_target_cpu(ar);
2864 if (ret) {
2865 ath10k_err(ar, fmt: "could not wake up target CPU: %d\n", ret);
2866 goto err_ce;
2867 }
2868
2869 return 0;
2870
2871err_ce:
2872 ath10k_pci_ce_deinit(ar);
2873
2874err_sleep:
2875 return ret;
2876}
2877
2878void ath10k_pci_hif_power_down(struct ath10k *ar)
2879{
2880 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2881
2882 /* Currently hif_power_up performs effectively a reset and hif_stop
2883 * resets the chip as well so there's no point in resetting here.
2884 */
2885}
2886
2887static int ath10k_pci_hif_suspend(struct ath10k *ar)
2888{
2889 /* Nothing to do; the important stuff is in the driver suspend. */
2890 return 0;
2891}
2892
2893static int ath10k_pci_suspend(struct ath10k *ar)
2894{
2895 /* The grace timer can still be counting down and ar->ps_awake be true.
2896 * It is known that the device may be asleep after resuming regardless
2897 * of the SoC powersave state before suspending. Hence make sure the
2898 * device is asleep before proceeding.
2899 */
2900 ath10k_pci_sleep_sync(ar);
2901
2902 return 0;
2903}
2904
2905static int ath10k_pci_hif_resume(struct ath10k *ar)
2906{
2907 /* Nothing to do; the important stuff is in the driver resume. */
2908 return 0;
2909}
2910
2911static int ath10k_pci_resume(struct ath10k *ar)
2912{
2913 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2914 struct pci_dev *pdev = ar_pci->pdev;
2915 u32 val;
2916 int ret = 0;
2917
2918 ret = ath10k_pci_force_wake(ar);
2919 if (ret) {
2920 ath10k_err(ar, fmt: "failed to wake up target: %d\n", ret);
2921 return ret;
2922 }
2923
2924 /* Suspend/Resume resets the PCI configuration space, so we have to
2925 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2926 * from interfering with C3 CPU state. pci_restore_state won't help
2927 * here since it only restores the first 64 bytes pci config header.
2928 */
2929 pci_read_config_dword(dev: pdev, where: 0x40, val: &val);
2930 if ((val & 0x0000ff00) != 0)
2931 pci_write_config_dword(dev: pdev, where: 0x40, val: val & 0xffff00ff);
2932
2933 return ret;
2934}
2935
2936static bool ath10k_pci_validate_cal(void *data, size_t size)
2937{
2938 __le16 *cal_words = data;
2939 u16 checksum = 0;
2940 size_t i;
2941
2942 if (size % 2 != 0)
2943 return false;
2944
2945 for (i = 0; i < size / 2; i++)
2946 checksum ^= le16_to_cpu(cal_words[i]);
2947
2948 return checksum == 0xffff;
2949}
2950
2951static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2952{
2953 /* Enable SI clock */
2954 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, val: 0x0);
2955
2956 /* Configure GPIOs for I2C operation */
2957 ath10k_pci_write32(ar,
2958 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2959 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2960 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2961 GPIO_PIN0_CONFIG) |
2962 SM(1, GPIO_PIN0_PAD_PULL));
2963
2964 ath10k_pci_write32(ar,
2965 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2966 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2967 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2968 SM(1, GPIO_PIN0_PAD_PULL));
2969
2970 ath10k_pci_write32(ar,
2971 GPIO_BASE_ADDRESS +
2972 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2973 value: 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2974
2975 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2976 ath10k_pci_write32(ar,
2977 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2978 SM(1, SI_CONFIG_ERR_INT) |
2979 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2980 SM(1, SI_CONFIG_I2C) |
2981 SM(1, SI_CONFIG_POS_SAMPLE) |
2982 SM(1, SI_CONFIG_INACTIVE_DATA) |
2983 SM(1, SI_CONFIG_INACTIVE_CLK) |
2984 SM(8, SI_CONFIG_DIVIDER));
2985}
2986
2987static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2988{
2989 u32 reg;
2990 int wait_limit;
2991
2992 /* set device select byte and for the read operation */
2993 reg = QCA9887_EEPROM_SELECT_READ |
2994 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2995 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2996 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, value: reg);
2997
2998 /* write transmit data, transfer length, and START bit */
2999 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3000 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3001 SM(4, SI_CS_TX_CNT));
3002
3003 /* wait max 1 sec */
3004 wait_limit = 100000;
3005
3006 /* wait for SI_CS_DONE_INT */
3007 do {
3008 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3009 if (MS(reg, SI_CS_DONE_INT))
3010 break;
3011
3012 wait_limit--;
3013 udelay(10);
3014 } while (wait_limit > 0);
3015
3016 if (!MS(reg, SI_CS_DONE_INT)) {
3017 ath10k_err(ar, fmt: "timeout while reading device EEPROM at %04x\n",
3018 addr);
3019 return -ETIMEDOUT;
3020 }
3021
3022 /* clear SI_CS_DONE_INT */
3023 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, value: reg);
3024
3025 if (MS(reg, SI_CS_DONE_ERR)) {
3026 ath10k_err(ar, fmt: "failed to read device EEPROM at %04x\n", addr);
3027 return -EIO;
3028 }
3029
3030 /* extract receive data */
3031 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3032 *out = reg;
3033
3034 return 0;
3035}
3036
3037static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3038 size_t *data_len)
3039{
3040 u8 *caldata = NULL;
3041 size_t calsize, i;
3042 int ret;
3043
3044 if (!QCA_REV_9887(ar))
3045 return -EOPNOTSUPP;
3046
3047 calsize = ar->hw_params.cal_data_len;
3048 caldata = kmalloc(size: calsize, GFP_KERNEL);
3049 if (!caldata)
3050 return -ENOMEM;
3051
3052 ath10k_pci_enable_eeprom(ar);
3053
3054 for (i = 0; i < calsize; i++) {
3055 ret = ath10k_pci_read_eeprom(ar, addr: i, out: &caldata[i]);
3056 if (ret)
3057 goto err_free;
3058 }
3059
3060 if (!ath10k_pci_validate_cal(data: caldata, size: calsize))
3061 goto err_free;
3062
3063 *data = caldata;
3064 *data_len = calsize;
3065
3066 return 0;
3067
3068err_free:
3069 kfree(objp: caldata);
3070
3071 return -EINVAL;
3072}
3073
3074static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3075 .tx_sg = ath10k_pci_hif_tx_sg,
3076 .diag_read = ath10k_pci_hif_diag_read,
3077 .diag_write = ath10k_pci_diag_write_mem,
3078 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
3079 .start = ath10k_pci_hif_start,
3080 .stop = ath10k_pci_hif_stop,
3081 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
3082 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
3083 .send_complete_check = ath10k_pci_hif_send_complete_check,
3084 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
3085 .power_up = ath10k_pci_hif_power_up,
3086 .power_down = ath10k_pci_hif_power_down,
3087 .read32 = ath10k_pci_read32,
3088 .write32 = ath10k_pci_write32,
3089 .suspend = ath10k_pci_hif_suspend,
3090 .resume = ath10k_pci_hif_resume,
3091 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
3092};
3093
3094/*
3095 * Top-level interrupt handler for all PCI interrupts from a Target.
3096 * When a block of MSI interrupts is allocated, this top-level handler
3097 * is not used; instead, we directly call the correct sub-handler.
3098 */
3099static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3100{
3101 struct ath10k *ar = arg;
3102 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3103 int ret;
3104
3105 if (ath10k_pci_has_device_gone(ar))
3106 return IRQ_NONE;
3107
3108 ret = ath10k_pci_force_wake(ar);
3109 if (ret) {
3110 ath10k_warn(ar, fmt: "failed to wake device up on irq: %d\n", ret);
3111 return IRQ_NONE;
3112 }
3113
3114 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3115 !ath10k_pci_irq_pending(ar))
3116 return IRQ_NONE;
3117
3118 ath10k_pci_disable_and_clear_legacy_irq(ar);
3119 ath10k_pci_irq_msi_fw_mask(ar);
3120 napi_schedule(n: &ar->napi);
3121
3122 return IRQ_HANDLED;
3123}
3124
3125static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3126{
3127 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3128 int done = 0;
3129
3130 if (ath10k_pci_has_fw_crashed(ar)) {
3131 ath10k_pci_fw_crashed_clear(ar);
3132 ath10k_pci_fw_crashed_dump(ar);
3133 napi_complete(n: ctx);
3134 return done;
3135 }
3136
3137 ath10k_ce_per_engine_service_any(ar);
3138
3139 done = ath10k_htt_txrx_compl_task(ar, budget);
3140
3141 if (done < budget) {
3142 napi_complete_done(n: ctx, work_done: done);
3143 /* In case of MSI, it is possible that interrupts are received
3144 * while NAPI poll is inprogress. So pending interrupts that are
3145 * received after processing all copy engine pipes by NAPI poll
3146 * will not be handled again. This is causing failure to
3147 * complete boot sequence in x86 platform. So before enabling
3148 * interrupts safer to check for pending interrupts for
3149 * immediate servicing.
3150 */
3151 if (ath10k_ce_interrupt_summary(ar)) {
3152 napi_schedule(n: ctx);
3153 goto out;
3154 }
3155 ath10k_pci_enable_legacy_irq(ar);
3156 ath10k_pci_irq_msi_fw_unmask(ar);
3157 }
3158
3159out:
3160 return done;
3161}
3162
3163static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3164{
3165 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3166 int ret;
3167
3168 ret = request_irq(irq: ar_pci->pdev->irq,
3169 handler: ath10k_pci_interrupt_handler,
3170 IRQF_SHARED, name: "ath10k_pci", dev: ar);
3171 if (ret) {
3172 ath10k_warn(ar, fmt: "failed to request MSI irq %d: %d\n",
3173 ar_pci->pdev->irq, ret);
3174 return ret;
3175 }
3176
3177 return 0;
3178}
3179
3180static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3181{
3182 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3183 int ret;
3184
3185 ret = request_irq(irq: ar_pci->pdev->irq,
3186 handler: ath10k_pci_interrupt_handler,
3187 IRQF_SHARED, name: "ath10k_pci", dev: ar);
3188 if (ret) {
3189 ath10k_warn(ar, fmt: "failed to request legacy irq %d: %d\n",
3190 ar_pci->pdev->irq, ret);
3191 return ret;
3192 }
3193
3194 return 0;
3195}
3196
3197static int ath10k_pci_request_irq(struct ath10k *ar)
3198{
3199 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3200
3201 switch (ar_pci->oper_irq_mode) {
3202 case ATH10K_PCI_IRQ_LEGACY:
3203 return ath10k_pci_request_irq_legacy(ar);
3204 case ATH10K_PCI_IRQ_MSI:
3205 return ath10k_pci_request_irq_msi(ar);
3206 default:
3207 return -EINVAL;
3208 }
3209}
3210
3211static void ath10k_pci_free_irq(struct ath10k *ar)
3212{
3213 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3214
3215 free_irq(ar_pci->pdev->irq, ar);
3216}
3217
3218void ath10k_pci_init_napi(struct ath10k *ar)
3219{
3220 netif_napi_add(dev: &ar->napi_dev, napi: &ar->napi, poll: ath10k_pci_napi_poll);
3221}
3222
3223static int ath10k_pci_init_irq(struct ath10k *ar)
3224{
3225 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3226 int ret;
3227
3228 ath10k_pci_init_napi(ar);
3229
3230 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3231 ath10k_info(ar, fmt: "limiting irq mode to: %d\n",
3232 ath10k_pci_irq_mode);
3233
3234 /* Try MSI */
3235 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3236 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3237 ret = pci_enable_msi(dev: ar_pci->pdev);
3238 if (ret == 0)
3239 return 0;
3240
3241 /* MHI failed, try legacy irq next */
3242 }
3243
3244 /* Try legacy irq
3245 *
3246 * A potential race occurs here: The CORE_BASE write
3247 * depends on target correctly decoding AXI address but
3248 * host won't know when target writes BAR to CORE_CTRL.
3249 * This write might get lost if target has NOT written BAR.
3250 * For now, fix the race by repeating the write in below
3251 * synchronization checking.
3252 */
3253 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3254
3255 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3256 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3257
3258 return 0;
3259}
3260
3261static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3262{
3263 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3264 value: 0);
3265}
3266
3267static int ath10k_pci_deinit_irq(struct ath10k *ar)
3268{
3269 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3270
3271 switch (ar_pci->oper_irq_mode) {
3272 case ATH10K_PCI_IRQ_LEGACY:
3273 ath10k_pci_deinit_irq_legacy(ar);
3274 break;
3275 default:
3276 pci_disable_msi(dev: ar_pci->pdev);
3277 break;
3278 }
3279
3280 return 0;
3281}
3282
3283int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3284{
3285 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3286 unsigned long timeout;
3287 u32 val;
3288
3289 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3290
3291 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3292
3293 do {
3294 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3295
3296 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3297 val);
3298
3299 /* target should never return this */
3300 if (val == 0xffffffff)
3301 continue;
3302
3303 /* the device has crashed so don't bother trying anymore */
3304 if (val & FW_IND_EVENT_PENDING)
3305 break;
3306
3307 if (val & FW_IND_INITIALIZED)
3308 break;
3309
3310 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3311 /* Fix potential race by repeating CORE_BASE writes */
3312 ath10k_pci_enable_legacy_irq(ar);
3313
3314 mdelay(10);
3315 } while (time_before(jiffies, timeout));
3316
3317 ath10k_pci_disable_and_clear_legacy_irq(ar);
3318 ath10k_pci_irq_msi_fw_mask(ar);
3319
3320 if (val == 0xffffffff) {
3321 ath10k_err(ar, fmt: "failed to read device register, device is gone\n");
3322 return -EIO;
3323 }
3324
3325 if (val & FW_IND_EVENT_PENDING) {
3326 ath10k_warn(ar, fmt: "device has crashed during init\n");
3327 return -ECOMM;
3328 }
3329
3330 if (!(val & FW_IND_INITIALIZED)) {
3331 ath10k_err(ar, fmt: "failed to receive initialized event from target: %08x\n",
3332 val);
3333 return -ETIMEDOUT;
3334 }
3335
3336 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3337 return 0;
3338}
3339
3340static int ath10k_pci_cold_reset(struct ath10k *ar)
3341{
3342 u32 val;
3343
3344 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3345
3346 spin_lock_bh(lock: &ar->data_lock);
3347
3348 ar->stats.fw_cold_reset_counter++;
3349
3350 spin_unlock_bh(lock: &ar->data_lock);
3351
3352 /* Put Target, including PCIe, into RESET. */
3353 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3354 val |= 1;
3355 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3356
3357 /* After writing into SOC_GLOBAL_RESET to put device into
3358 * reset and pulling out of reset pcie may not be stable
3359 * for any immediate pcie register access and cause bus error,
3360 * add delay before any pcie access request to fix this issue.
3361 */
3362 msleep(msecs: 20);
3363
3364 /* Pull Target, including PCIe, out of RESET. */
3365 val &= ~1;
3366 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3367
3368 msleep(msecs: 20);
3369
3370 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3371
3372 return 0;
3373}
3374
3375static int ath10k_pci_claim(struct ath10k *ar)
3376{
3377 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3378 struct pci_dev *pdev = ar_pci->pdev;
3379 int ret;
3380
3381 pci_set_drvdata(pdev, data: ar);
3382
3383 ret = pci_enable_device(dev: pdev);
3384 if (ret) {
3385 ath10k_err(ar, fmt: "failed to enable pci device: %d\n", ret);
3386 return ret;
3387 }
3388
3389 ret = pci_request_region(pdev, BAR_NUM, "ath");
3390 if (ret) {
3391 ath10k_err(ar, fmt: "failed to request region BAR%d: %d\n", BAR_NUM,
3392 ret);
3393 goto err_device;
3394 }
3395
3396 /* Target expects 32 bit DMA. Enforce it. */
3397 ret = dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(32));
3398 if (ret) {
3399 ath10k_err(ar, fmt: "failed to set dma mask to 32-bit: %d\n", ret);
3400 goto err_region;
3401 }
3402
3403 pci_set_master(dev: pdev);
3404
3405 /* Arrange for access to Target SoC registers. */
3406 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3407 ar_pci->mem = pci_iomap(dev: pdev, BAR_NUM, max: 0);
3408 if (!ar_pci->mem) {
3409 ath10k_err(ar, fmt: "failed to iomap BAR%d\n", BAR_NUM);
3410 ret = -EIO;
3411 goto err_region;
3412 }
3413
3414 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3415 return 0;
3416
3417err_region:
3418 pci_release_region(pdev, BAR_NUM);
3419
3420err_device:
3421 pci_disable_device(dev: pdev);
3422
3423 return ret;
3424}
3425
3426static void ath10k_pci_release(struct ath10k *ar)
3427{
3428 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3429 struct pci_dev *pdev = ar_pci->pdev;
3430
3431 pci_iounmap(dev: pdev, ar_pci->mem);
3432 pci_release_region(pdev, BAR_NUM);
3433 pci_disable_device(dev: pdev);
3434}
3435
3436static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3437{
3438 const struct ath10k_pci_supp_chip *supp_chip;
3439 int i;
3440 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3441
3442 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3443 supp_chip = &ath10k_pci_supp_chips[i];
3444
3445 if (supp_chip->dev_id == dev_id &&
3446 supp_chip->rev_id == rev_id)
3447 return true;
3448 }
3449
3450 return false;
3451}
3452
3453int ath10k_pci_setup_resource(struct ath10k *ar)
3454{
3455 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3456 struct ath10k_ce *ce = ath10k_ce_priv(ar);
3457 int ret;
3458
3459 spin_lock_init(&ce->ce_lock);
3460 spin_lock_init(&ar_pci->ps_lock);
3461 mutex_init(&ar_pci->ce_diag_mutex);
3462
3463 INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3464
3465 timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3466
3467 ar_pci->attr = kmemdup(p: pci_host_ce_config_wlan,
3468 size: sizeof(pci_host_ce_config_wlan),
3469 GFP_KERNEL);
3470 if (!ar_pci->attr)
3471 return -ENOMEM;
3472
3473 ar_pci->pipe_config = kmemdup(p: pci_target_ce_config_wlan,
3474 size: sizeof(pci_target_ce_config_wlan),
3475 GFP_KERNEL);
3476 if (!ar_pci->pipe_config) {
3477 ret = -ENOMEM;
3478 goto err_free_attr;
3479 }
3480
3481 ar_pci->serv_to_pipe = kmemdup(p: pci_target_service_to_ce_map_wlan,
3482 size: sizeof(pci_target_service_to_ce_map_wlan),
3483 GFP_KERNEL);
3484 if (!ar_pci->serv_to_pipe) {
3485 ret = -ENOMEM;
3486 goto err_free_pipe_config;
3487 }
3488
3489 if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3490 ath10k_pci_override_ce_config(ar);
3491
3492 ret = ath10k_pci_alloc_pipes(ar);
3493 if (ret) {
3494 ath10k_err(ar, fmt: "failed to allocate copy engine pipes: %d\n",
3495 ret);
3496 goto err_free_serv_to_pipe;
3497 }
3498
3499 return 0;
3500
3501err_free_serv_to_pipe:
3502 kfree(objp: ar_pci->serv_to_pipe);
3503err_free_pipe_config:
3504 kfree(objp: ar_pci->pipe_config);
3505err_free_attr:
3506 kfree(objp: ar_pci->attr);
3507 return ret;
3508}
3509
3510void ath10k_pci_release_resource(struct ath10k *ar)
3511{
3512 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3513
3514 ath10k_pci_rx_retry_sync(ar);
3515 netif_napi_del(napi: &ar->napi);
3516 ath10k_pci_ce_deinit(ar);
3517 ath10k_pci_free_pipes(ar);
3518 kfree(objp: ar_pci->attr);
3519 kfree(objp: ar_pci->pipe_config);
3520 kfree(objp: ar_pci->serv_to_pipe);
3521}
3522
3523static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3524 .read32 = ath10k_bus_pci_read32,
3525 .write32 = ath10k_bus_pci_write32,
3526 .get_num_banks = ath10k_pci_get_num_banks,
3527};
3528
3529static int ath10k_pci_probe(struct pci_dev *pdev,
3530 const struct pci_device_id *pci_dev)
3531{
3532 int ret = 0;
3533 struct ath10k *ar;
3534 struct ath10k_pci *ar_pci;
3535 enum ath10k_hw_rev hw_rev;
3536 struct ath10k_bus_params bus_params = {};
3537 bool pci_ps, is_qca988x = false;
3538 int (*pci_soft_reset)(struct ath10k *ar);
3539 int (*pci_hard_reset)(struct ath10k *ar);
3540 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3541
3542 switch (pci_dev->device) {
3543 case QCA988X_2_0_DEVICE_ID_UBNT:
3544 case QCA988X_2_0_DEVICE_ID:
3545 hw_rev = ATH10K_HW_QCA988X;
3546 pci_ps = false;
3547 is_qca988x = true;
3548 pci_soft_reset = ath10k_pci_warm_reset;
3549 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3550 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3551 break;
3552 case QCA9887_1_0_DEVICE_ID:
3553 hw_rev = ATH10K_HW_QCA9887;
3554 pci_ps = false;
3555 pci_soft_reset = ath10k_pci_warm_reset;
3556 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3557 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3558 break;
3559 case QCA6164_2_1_DEVICE_ID:
3560 case QCA6174_2_1_DEVICE_ID:
3561 hw_rev = ATH10K_HW_QCA6174;
3562 pci_ps = true;
3563 pci_soft_reset = ath10k_pci_warm_reset;
3564 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3565 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3566 break;
3567 case QCA99X0_2_0_DEVICE_ID:
3568 hw_rev = ATH10K_HW_QCA99X0;
3569 pci_ps = false;
3570 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3571 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3572 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3573 break;
3574 case QCA9984_1_0_DEVICE_ID:
3575 hw_rev = ATH10K_HW_QCA9984;
3576 pci_ps = false;
3577 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3578 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3579 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3580 break;
3581 case QCA9888_2_0_DEVICE_ID:
3582 hw_rev = ATH10K_HW_QCA9888;
3583 pci_ps = false;
3584 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3585 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3586 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3587 break;
3588 case QCA9377_1_0_DEVICE_ID:
3589 hw_rev = ATH10K_HW_QCA9377;
3590 pci_ps = true;
3591 pci_soft_reset = ath10k_pci_warm_reset;
3592 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3593 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3594 break;
3595 default:
3596 WARN_ON(1);
3597 return -EOPNOTSUPP;
3598 }
3599
3600 ar = ath10k_core_create(priv_size: sizeof(*ar_pci), dev: &pdev->dev, bus: ATH10K_BUS_PCI,
3601 hw_rev, hif_ops: &ath10k_pci_hif_ops);
3602 if (!ar) {
3603 dev_err(&pdev->dev, "failed to allocate core\n");
3604 return -ENOMEM;
3605 }
3606
3607 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3608 pdev->vendor, pdev->device,
3609 pdev->subsystem_vendor, pdev->subsystem_device);
3610
3611 ar_pci = ath10k_pci_priv(ar);
3612 ar_pci->pdev = pdev;
3613 ar_pci->dev = &pdev->dev;
3614 ar_pci->ar = ar;
3615 ar->dev_id = pci_dev->device;
3616 ar_pci->pci_ps = pci_ps;
3617 ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3618 ar_pci->pci_soft_reset = pci_soft_reset;
3619 ar_pci->pci_hard_reset = pci_hard_reset;
3620 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3621 ar->ce_priv = &ar_pci->ce;
3622
3623 ar->id.vendor = pdev->vendor;
3624 ar->id.device = pdev->device;
3625 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3626 ar->id.subsystem_device = pdev->subsystem_device;
3627
3628 timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3629
3630 ret = ath10k_pci_setup_resource(ar);
3631 if (ret) {
3632 ath10k_err(ar, fmt: "failed to setup resource: %d\n", ret);
3633 goto err_core_destroy;
3634 }
3635
3636 ret = ath10k_pci_claim(ar);
3637 if (ret) {
3638 ath10k_err(ar, fmt: "failed to claim device: %d\n", ret);
3639 goto err_free_pipes;
3640 }
3641
3642 ret = ath10k_pci_force_wake(ar);
3643 if (ret) {
3644 ath10k_warn(ar, fmt: "failed to wake up device : %d\n", ret);
3645 goto err_sleep;
3646 }
3647
3648 ath10k_pci_ce_deinit(ar);
3649 ath10k_pci_irq_disable(ar);
3650
3651 ret = ath10k_pci_init_irq(ar);
3652 if (ret) {
3653 ath10k_err(ar, fmt: "failed to init irqs: %d\n", ret);
3654 goto err_sleep;
3655 }
3656
3657 ath10k_info(ar, fmt: "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3658 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3659 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3660
3661 ret = ath10k_pci_request_irq(ar);
3662 if (ret) {
3663 ath10k_warn(ar, fmt: "failed to request irqs: %d\n", ret);
3664 goto err_deinit_irq;
3665 }
3666
3667 bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3668 bus_params.link_can_suspend = true;
3669 /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3670 * fall off the bus during chip_reset. These chips have the same pci
3671 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3672 */
3673 if (is_qca988x) {
3674 bus_params.chip_id =
3675 ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3676 if (bus_params.chip_id != 0xffffffff) {
3677 if (!ath10k_pci_chip_is_supported(dev_id: pdev->device,
3678 chip_id: bus_params.chip_id)) {
3679 ret = -ENODEV;
3680 goto err_unsupported;
3681 }
3682 }
3683 }
3684
3685 ret = ath10k_pci_chip_reset(ar);
3686 if (ret) {
3687 ath10k_err(ar, fmt: "failed to reset chip: %d\n", ret);
3688 goto err_free_irq;
3689 }
3690
3691 bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3692 if (bus_params.chip_id == 0xffffffff) {
3693 ret = -ENODEV;
3694 goto err_unsupported;
3695 }
3696
3697 if (!ath10k_pci_chip_is_supported(dev_id: pdev->device, chip_id: bus_params.chip_id)) {
3698 ret = -ENODEV;
3699 goto err_unsupported;
3700 }
3701
3702 ret = ath10k_core_register(ar, bus_params: &bus_params);
3703 if (ret) {
3704 ath10k_err(ar, fmt: "failed to register driver core: %d\n", ret);
3705 goto err_free_irq;
3706 }
3707
3708 return 0;
3709
3710err_unsupported:
3711 ath10k_err(ar, fmt: "device %04x with chip_id %08x isn't supported\n",
3712 pdev->device, bus_params.chip_id);
3713
3714err_free_irq:
3715 ath10k_pci_free_irq(ar);
3716
3717err_deinit_irq:
3718 ath10k_pci_release_resource(ar);
3719
3720err_sleep:
3721 ath10k_pci_sleep_sync(ar);
3722 ath10k_pci_release(ar);
3723
3724err_free_pipes:
3725 ath10k_pci_free_pipes(ar);
3726
3727err_core_destroy:
3728 ath10k_core_destroy(ar);
3729
3730 return ret;
3731}
3732
3733static void ath10k_pci_remove(struct pci_dev *pdev)
3734{
3735 struct ath10k *ar = pci_get_drvdata(pdev);
3736
3737 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3738
3739 if (!ar)
3740 return;
3741
3742 ath10k_core_unregister(ar);
3743 ath10k_pci_free_irq(ar);
3744 ath10k_pci_deinit_irq(ar);
3745 ath10k_pci_release_resource(ar);
3746 ath10k_pci_sleep_sync(ar);
3747 ath10k_pci_release(ar);
3748 ath10k_core_destroy(ar);
3749}
3750
3751MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3752
3753static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3754{
3755 struct ath10k *ar = dev_get_drvdata(dev);
3756 int ret;
3757
3758 ret = ath10k_pci_suspend(ar);
3759 if (ret)
3760 ath10k_warn(ar, fmt: "failed to suspend hif: %d\n", ret);
3761
3762 return ret;
3763}
3764
3765static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3766{
3767 struct ath10k *ar = dev_get_drvdata(dev);
3768 int ret;
3769
3770 ret = ath10k_pci_resume(ar);
3771 if (ret)
3772 ath10k_warn(ar, fmt: "failed to resume hif: %d\n", ret);
3773
3774 return ret;
3775}
3776
3777static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3778 ath10k_pci_pm_suspend,
3779 ath10k_pci_pm_resume);
3780
3781static struct pci_driver ath10k_pci_driver = {
3782 .name = "ath10k_pci",
3783 .id_table = ath10k_pci_id_table,
3784 .probe = ath10k_pci_probe,
3785 .remove = ath10k_pci_remove,
3786#ifdef CONFIG_PM
3787 .driver.pm = &ath10k_pci_pm_ops,
3788#endif
3789};
3790
3791static int __init ath10k_pci_init(void)
3792{
3793 int ret1, ret2;
3794
3795 ret1 = pci_register_driver(&ath10k_pci_driver);
3796 if (ret1)
3797 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3798 ret1);
3799
3800 ret2 = ath10k_ahb_init();
3801 if (ret2)
3802 printk(KERN_ERR "ahb init failed: %d\n", ret2);
3803
3804 if (ret1 && ret2)
3805 return ret1;
3806
3807 /* registered to at least one bus */
3808 return 0;
3809}
3810module_init(ath10k_pci_init);
3811
3812static void __exit ath10k_pci_exit(void)
3813{
3814 pci_unregister_driver(dev: &ath10k_pci_driver);
3815 ath10k_ahb_exit();
3816}
3817
3818module_exit(ath10k_pci_exit);
3819
3820MODULE_AUTHOR("Qualcomm Atheros");
3821MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3822MODULE_LICENSE("Dual BSD/GPL");
3823
3824/* QCA988x 2.0 firmware files */
3825MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3826MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3827MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3828MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3829MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3830MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3831
3832/* QCA9887 1.0 firmware files */
3833MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3834MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3835MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3836
3837/* QCA6174 2.1 firmware files */
3838MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3839MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3840MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3841MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3842
3843/* QCA6174 3.1 firmware files */
3844MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3845MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3846MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3847MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3848MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3849
3850/* QCA9377 1.0 firmware files */
3851MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3852MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3853MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3854

source code of linux/drivers/net/wireless/ath/ath10k/pci.c