1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3 *
4 * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
5 *
6 * Contact Information:
7 * Intel Linux Wireless <ilw@linux.intel.com>
8 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
9 *
10 *****************************************************************************/
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/pci.h>
15#include <linux/dma-mapping.h>
16#include <linux/delay.h>
17#include <linux/sched.h>
18#include <linux/skbuff.h>
19#include <linux/netdevice.h>
20#include <linux/units.h>
21#include <net/mac80211.h>
22#include <linux/etherdevice.h>
23#include <asm/unaligned.h>
24
25#include "common.h"
26#include "4965.h"
27
28/*
29 * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
30 * using sample data 100 bytes apart. If these sample points are good,
31 * it's a pretty good bet that everything between them is good, too.
32 */
33static int
34il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
35{
36 u32 val;
37 int ret = 0;
38 u32 errcnt = 0;
39 u32 i;
40
41 D_INFO("ucode inst image size is %u\n", len);
42
43 for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
44 /* read data comes through single port, auto-incr addr */
45 /* NOTE: Use the debugless read so we don't flood kernel log
46 * if IL_DL_IO is set */
47 il_wr(il, HBUS_TARG_MEM_RADDR, value: i + IL4965_RTC_INST_LOWER_BOUND);
48 val = _il_rd(il, HBUS_TARG_MEM_RDAT);
49 if (val != le32_to_cpu(*image)) {
50 ret = -EIO;
51 errcnt++;
52 if (errcnt >= 3)
53 break;
54 }
55 }
56
57 return ret;
58}
59
60/*
61 * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
62 * looking at all data.
63 */
64static int
65il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
66{
67 u32 val;
68 u32 save_len = len;
69 int ret = 0;
70 u32 errcnt;
71
72 D_INFO("ucode inst image size is %u\n", len);
73
74 il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
75
76 errcnt = 0;
77 for (; len > 0; len -= sizeof(u32), image++) {
78 /* read data comes through single port, auto-incr addr */
79 /* NOTE: Use the debugless read so we don't flood kernel log
80 * if IL_DL_IO is set */
81 val = _il_rd(il, HBUS_TARG_MEM_RDAT);
82 if (val != le32_to_cpu(*image)) {
83 IL_ERR("uCode INST section is invalid at "
84 "offset 0x%x, is 0x%x, s/b 0x%x\n",
85 save_len - len, val, le32_to_cpu(*image));
86 ret = -EIO;
87 errcnt++;
88 if (errcnt >= 20)
89 break;
90 }
91 }
92
93 if (!errcnt)
94 D_INFO("ucode image in INSTRUCTION memory is good\n");
95
96 return ret;
97}
98
99/*
100 * il4965_verify_ucode - determine which instruction image is in SRAM,
101 * and verify its contents
102 */
103int
104il4965_verify_ucode(struct il_priv *il)
105{
106 __le32 *image;
107 u32 len;
108 int ret;
109
110 /* Try bootstrap */
111 image = (__le32 *) il->ucode_boot.v_addr;
112 len = il->ucode_boot.len;
113 ret = il4965_verify_inst_sparse(il, image, len);
114 if (!ret) {
115 D_INFO("Bootstrap uCode is good in inst SRAM\n");
116 return 0;
117 }
118
119 /* Try initialize */
120 image = (__le32 *) il->ucode_init.v_addr;
121 len = il->ucode_init.len;
122 ret = il4965_verify_inst_sparse(il, image, len);
123 if (!ret) {
124 D_INFO("Initialize uCode is good in inst SRAM\n");
125 return 0;
126 }
127
128 /* Try runtime/protocol */
129 image = (__le32 *) il->ucode_code.v_addr;
130 len = il->ucode_code.len;
131 ret = il4965_verify_inst_sparse(il, image, len);
132 if (!ret) {
133 D_INFO("Runtime uCode is good in inst SRAM\n");
134 return 0;
135 }
136
137 IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
138
139 /* Since nothing seems to match, show first several data entries in
140 * instruction SRAM, so maybe visual inspection will give a clue.
141 * Selection of bootstrap image (vs. other images) is arbitrary. */
142 image = (__le32 *) il->ucode_boot.v_addr;
143 len = il->ucode_boot.len;
144 ret = il4965_verify_inst_full(il, image, len);
145
146 return ret;
147}
148
149/******************************************************************************
150 *
151 * EEPROM related functions
152 *
153******************************************************************************/
154
155/*
156 * The device's EEPROM semaphore prevents conflicts between driver and uCode
157 * when accessing the EEPROM; each access is a series of pulses to/from the
158 * EEPROM chip, not a single event, so even reads could conflict if they
159 * weren't arbitrated by the semaphore.
160 */
161int
162il4965_eeprom_acquire_semaphore(struct il_priv *il)
163{
164 u16 count;
165 int ret;
166
167 for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
168 /* Request semaphore */
169 il_set_bit(p: il, CSR_HW_IF_CONFIG_REG,
170 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
171
172 /* See if we got it */
173 ret =
174 _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
175 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
176 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
177 EEPROM_SEM_TIMEOUT);
178 if (ret >= 0)
179 return ret;
180 }
181
182 return ret;
183}
184
185void
186il4965_eeprom_release_semaphore(struct il_priv *il)
187{
188 il_clear_bit(p: il, CSR_HW_IF_CONFIG_REG,
189 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
190
191}
192
193int
194il4965_eeprom_check_version(struct il_priv *il)
195{
196 u16 eeprom_ver;
197 u16 calib_ver;
198
199 eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
200 calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
201
202 if (eeprom_ver < il->cfg->eeprom_ver ||
203 calib_ver < il->cfg->eeprom_calib_ver)
204 goto err;
205
206 IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
207
208 return 0;
209err:
210 IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
211 "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
212 calib_ver, il->cfg->eeprom_calib_ver);
213 return -EINVAL;
214
215}
216
217void
218il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
219{
220 const u8 *addr = il_eeprom_query_addr(il,
221 EEPROM_MAC_ADDRESS);
222 memcpy(mac, addr, ETH_ALEN);
223}
224
225/* Send led command */
226static int
227il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
228{
229 struct il_host_cmd cmd = {
230 .id = C_LEDS,
231 .len = sizeof(struct il_led_cmd),
232 .data = led_cmd,
233 .flags = CMD_ASYNC,
234 .callback = NULL,
235 };
236 u32 reg;
237
238 reg = _il_rd(il, CSR_LED_REG);
239 if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
240 _il_wr(il, CSR_LED_REG, val: reg & CSR_LED_BSM_CTRL_MSK);
241
242 return il_send_cmd(il, cmd: &cmd);
243}
244
245/* Set led register off */
246void
247il4965_led_enable(struct il_priv *il)
248{
249 _il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
250}
251
252static int il4965_send_tx_power(struct il_priv *il);
253static int il4965_hw_get_temperature(struct il_priv *il);
254
255/* Highest firmware API version supported */
256#define IL4965_UCODE_API_MAX 2
257
258/* Lowest firmware API version supported */
259#define IL4965_UCODE_API_MIN 2
260
261#define IL4965_FW_PRE "iwlwifi-4965-"
262#define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
263#define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
264
265/* check contents of special bootstrap uCode SRAM */
266static int
267il4965_verify_bsm(struct il_priv *il)
268{
269 __le32 *image = il->ucode_boot.v_addr;
270 u32 len = il->ucode_boot.len;
271 u32 reg;
272 u32 val;
273
274 D_INFO("Begin verify bsm\n");
275
276 /* verify BSM SRAM contents */
277 val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
278 for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
279 reg += sizeof(u32), image++) {
280 val = il_rd_prph(il, reg);
281 if (val != le32_to_cpu(*image)) {
282 IL_ERR("BSM uCode verification failed at "
283 "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
284 BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
285 len, val, le32_to_cpu(*image));
286 return -EIO;
287 }
288 }
289
290 D_INFO("BSM bootstrap uCode image OK\n");
291
292 return 0;
293}
294
295/*
296 * il4965_load_bsm - Load bootstrap instructions
297 *
298 * BSM operation:
299 *
300 * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
301 * in special SRAM that does not power down during RFKILL. When powering back
302 * up after power-saving sleeps (or during initial uCode load), the BSM loads
303 * the bootstrap program into the on-board processor, and starts it.
304 *
305 * The bootstrap program loads (via DMA) instructions and data for a new
306 * program from host DRAM locations indicated by the host driver in the
307 * BSM_DRAM_* registers. Once the new program is loaded, it starts
308 * automatically.
309 *
310 * When initializing the NIC, the host driver points the BSM to the
311 * "initialize" uCode image. This uCode sets up some internal data, then
312 * notifies host via "initialize alive" that it is complete.
313 *
314 * The host then replaces the BSM_DRAM_* pointer values to point to the
315 * normal runtime uCode instructions and a backup uCode data cache buffer
316 * (filled initially with starting data values for the on-board processor),
317 * then triggers the "initialize" uCode to load and launch the runtime uCode,
318 * which begins normal operation.
319 *
320 * When doing a power-save shutdown, runtime uCode saves data SRAM into
321 * the backup data cache in DRAM before SRAM is powered down.
322 *
323 * When powering back up, the BSM loads the bootstrap program. This reloads
324 * the runtime uCode instructions and the backup data cache into SRAM,
325 * and re-launches the runtime uCode from where it left off.
326 */
327static int
328il4965_load_bsm(struct il_priv *il)
329{
330 __le32 *image = il->ucode_boot.v_addr;
331 u32 len = il->ucode_boot.len;
332 dma_addr_t pinst;
333 dma_addr_t pdata;
334 u32 inst_len;
335 u32 data_len;
336 int i;
337 u32 done;
338 u32 reg_offset;
339 int ret;
340
341 D_INFO("Begin load bsm\n");
342
343 il->ucode_type = UCODE_RT;
344
345 /* make sure bootstrap program is no larger than BSM's SRAM size */
346 if (len > IL49_MAX_BSM_SIZE)
347 return -EINVAL;
348
349 /* Tell bootstrap uCode where to find the "Initialize" uCode
350 * in host DRAM ... host DRAM physical address bits 35:4 for 4965.
351 * NOTE: il_init_alive_start() will replace these values,
352 * after the "initialize" uCode has run, to point to
353 * runtime/protocol instructions and backup data cache.
354 */
355 pinst = il->ucode_init.p_addr >> 4;
356 pdata = il->ucode_init_data.p_addr >> 4;
357 inst_len = il->ucode_init.len;
358 data_len = il->ucode_init_data.len;
359
360 il_wr_prph(il, BSM_DRAM_INST_PTR_REG, val: pinst);
361 il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, val: pdata);
362 il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, val: inst_len);
363 il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, val: data_len);
364
365 /* Fill BSM memory with bootstrap instructions */
366 for (reg_offset = BSM_SRAM_LOWER_BOUND;
367 reg_offset < BSM_SRAM_LOWER_BOUND + len;
368 reg_offset += sizeof(u32), image++)
369 _il_wr_prph(il, addr: reg_offset, le32_to_cpu(*image));
370
371 ret = il4965_verify_bsm(il);
372 if (ret)
373 return ret;
374
375 /* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
376 il_wr_prph(il, BSM_WR_MEM_SRC_REG, val: 0x0);
377 il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
378 il_wr_prph(il, BSM_WR_DWCOUNT_REG, val: len / sizeof(u32));
379
380 /* Load bootstrap code into instruction SRAM now,
381 * to prepare to load "initialize" uCode */
382 il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
383
384 /* Wait for load of bootstrap uCode to finish */
385 for (i = 0; i < 100; i++) {
386 done = il_rd_prph(il, BSM_WR_CTRL_REG);
387 if (!(done & BSM_WR_CTRL_REG_BIT_START))
388 break;
389 udelay(10);
390 }
391 if (i < 100)
392 D_INFO("BSM write complete, poll %d iterations\n", i);
393 else {
394 IL_ERR("BSM write did not complete!\n");
395 return -EIO;
396 }
397
398 /* Enable future boot loads whenever power management unit triggers it
399 * (e.g. when powering back up after power-save shutdown) */
400 il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
401
402 return 0;
403}
404
405/*
406 * il4965_set_ucode_ptrs - Set uCode address location
407 *
408 * Tell initialization uCode where to find runtime uCode.
409 *
410 * BSM registers initially contain pointers to initialization uCode.
411 * We need to replace them to load runtime uCode inst and data,
412 * and to save runtime data when powering down.
413 */
414static int
415il4965_set_ucode_ptrs(struct il_priv *il)
416{
417 dma_addr_t pinst;
418 dma_addr_t pdata;
419
420 /* bits 35:4 for 4965 */
421 pinst = il->ucode_code.p_addr >> 4;
422 pdata = il->ucode_data_backup.p_addr >> 4;
423
424 /* Tell bootstrap uCode where to find image to load */
425 il_wr_prph(il, BSM_DRAM_INST_PTR_REG, val: pinst);
426 il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, val: pdata);
427 il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, val: il->ucode_data.len);
428
429 /* Inst byte count must be last to set up, bit 31 signals uCode
430 * that all new ptr/size info is in place */
431 il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
432 val: il->ucode_code.len | BSM_DRAM_INST_LOAD);
433 D_INFO("Runtime uCode pointers are set.\n");
434
435 return 0;
436}
437
438/*
439 * il4965_init_alive_start - Called after N_ALIVE notification received
440 *
441 * Called after N_ALIVE notification received from "initialize" uCode.
442 *
443 * The 4965 "initialize" ALIVE reply contains calibration data for:
444 * Voltage, temperature, and MIMO tx gain correction, now stored in il
445 * (3945 does not contain this data).
446 *
447 * Tell "initialize" uCode to go ahead and load the runtime uCode.
448*/
449static void
450il4965_init_alive_start(struct il_priv *il)
451{
452 /* Bootstrap uCode has loaded initialize uCode ... verify inst image.
453 * This is a paranoid check, because we would not have gotten the
454 * "initialize" alive if code weren't properly loaded. */
455 if (il4965_verify_ucode(il)) {
456 /* Runtime instruction load was bad;
457 * take it all the way back down so we can try again */
458 D_INFO("Bad \"initialize\" uCode load.\n");
459 goto restart;
460 }
461
462 /* Calculate temperature */
463 il->temperature = il4965_hw_get_temperature(il);
464
465 /* Send pointers to protocol/runtime uCode image ... init code will
466 * load and launch runtime uCode, which will send us another "Alive"
467 * notification. */
468 D_INFO("Initialization Alive received.\n");
469 if (il4965_set_ucode_ptrs(il)) {
470 /* Runtime instruction load won't happen;
471 * take it all the way back down so we can try again */
472 D_INFO("Couldn't set up uCode pointers.\n");
473 goto restart;
474 }
475 return;
476
477restart:
478 queue_work(wq: il->workqueue, work: &il->restart);
479}
480
481static bool
482iw4965_is_ht40_channel(__le32 rxon_flags)
483{
484 int chan_mod =
485 le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
486 RXON_FLG_CHANNEL_MODE_POS;
487 return (chan_mod == CHANNEL_MODE_PURE_40 ||
488 chan_mod == CHANNEL_MODE_MIXED);
489}
490
491void
492il4965_nic_config(struct il_priv *il)
493{
494 unsigned long flags;
495 u16 radio_cfg;
496
497 spin_lock_irqsave(&il->lock, flags);
498
499 radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
500
501 /* write radio config values to register */
502 if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
503 il_set_bit(p: il, CSR_HW_IF_CONFIG_REG,
504 EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
505 EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
506 EEPROM_RF_CFG_DASH_MSK(radio_cfg));
507
508 /* set CSR_HW_CONFIG_REG for uCode use */
509 il_set_bit(p: il, CSR_HW_IF_CONFIG_REG,
510 CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
511 CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
512
513 il->calib_info =
514 (struct il_eeprom_calib_info *)
515 il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
516
517 spin_unlock_irqrestore(lock: &il->lock, flags);
518}
519
520/* Reset differential Rx gains in NIC to prepare for chain noise calibration.
521 * Called after every association, but this runs only once!
522 * ... once chain noise is calibrated the first time, it's good forever. */
523static void
524il4965_chain_noise_reset(struct il_priv *il)
525{
526 struct il_chain_noise_data *data = &(il->chain_noise_data);
527
528 if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
529 struct il_calib_diff_gain_cmd cmd;
530
531 /* clear data for chain noise calibration algorithm */
532 data->chain_noise_a = 0;
533 data->chain_noise_b = 0;
534 data->chain_noise_c = 0;
535 data->chain_signal_a = 0;
536 data->chain_signal_b = 0;
537 data->chain_signal_c = 0;
538 data->beacon_count = 0;
539
540 memset(&cmd, 0, sizeof(cmd));
541 cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
542 cmd.diff_gain_a = 0;
543 cmd.diff_gain_b = 0;
544 cmd.diff_gain_c = 0;
545 if (il_send_cmd_pdu(il, id: C_PHY_CALIBRATION, len: sizeof(cmd), data: &cmd))
546 IL_ERR("Could not send C_PHY_CALIBRATION\n");
547 data->state = IL_CHAIN_NOISE_ACCUMULATE;
548 D_CALIB("Run chain_noise_calibrate\n");
549 }
550}
551
552static s32
553il4965_math_div_round(s32 num, s32 denom, s32 * res)
554{
555 s32 sign = 1;
556
557 if (num < 0) {
558 sign = -sign;
559 num = -num;
560 }
561 if (denom < 0) {
562 sign = -sign;
563 denom = -denom;
564 }
565 *res = ((num * 2 + denom) / (denom * 2)) * sign;
566
567 return 1;
568}
569
570/*
571 * il4965_get_voltage_compensation - Power supply voltage comp for txpower
572 *
573 * Determines power supply voltage compensation for txpower calculations.
574 * Returns number of 1/2-dB steps to subtract from gain table idx,
575 * to compensate for difference between power supply voltage during
576 * factory measurements, vs. current power supply voltage.
577 *
578 * Voltage indication is higher for lower voltage.
579 * Lower voltage requires more gain (lower gain table idx).
580 */
581static s32
582il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
583{
584 s32 comp = 0;
585
586 if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
587 TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
588 return 0;
589
590 il4965_math_div_round(num: current_voltage - eeprom_voltage,
591 TX_POWER_IL_VOLTAGE_CODES_PER_03V, res: &comp);
592
593 if (current_voltage > eeprom_voltage)
594 comp *= 2;
595 if ((comp < -2) || (comp > 2))
596 comp = 0;
597
598 return comp;
599}
600
601static s32
602il4965_get_tx_atten_grp(u16 channel)
603{
604 if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
605 channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
606 return CALIB_CH_GROUP_5;
607
608 if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
609 channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
610 return CALIB_CH_GROUP_1;
611
612 if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
613 channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
614 return CALIB_CH_GROUP_2;
615
616 if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
617 channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
618 return CALIB_CH_GROUP_3;
619
620 if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
621 channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
622 return CALIB_CH_GROUP_4;
623
624 return -EINVAL;
625}
626
627static u32
628il4965_get_sub_band(const struct il_priv *il, u32 channel)
629{
630 s32 b = -1;
631
632 for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
633 if (il->calib_info->band_info[b].ch_from == 0)
634 continue;
635
636 if (channel >= il->calib_info->band_info[b].ch_from &&
637 channel <= il->calib_info->band_info[b].ch_to)
638 break;
639 }
640
641 return b;
642}
643
644static s32
645il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
646{
647 s32 val;
648
649 if (x2 == x1)
650 return y1;
651 else {
652 il4965_math_div_round(num: (x2 - x) * (y1 - y2), denom: (x2 - x1), res: &val);
653 return val + y2;
654 }
655}
656
657/*
658 * il4965_interpolate_chan - Interpolate factory measurements for one channel
659 *
660 * Interpolates factory measurements from the two sample channels within a
661 * sub-band, to apply to channel of interest. Interpolation is proportional to
662 * differences in channel frequencies, which is proportional to differences
663 * in channel number.
664 */
665static int
666il4965_interpolate_chan(struct il_priv *il, u32 channel,
667 struct il_eeprom_calib_ch_info *chan_info)
668{
669 s32 s = -1;
670 u32 c;
671 u32 m;
672 const struct il_eeprom_calib_measure *m1;
673 const struct il_eeprom_calib_measure *m2;
674 struct il_eeprom_calib_measure *omeas;
675 u32 ch_i1;
676 u32 ch_i2;
677
678 s = il4965_get_sub_band(il, channel);
679 if (s >= EEPROM_TX_POWER_BANDS) {
680 IL_ERR("Tx Power can not find channel %d\n", channel);
681 return -1;
682 }
683
684 ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
685 ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
686 chan_info->ch_num = (u8) channel;
687
688 D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
689 ch_i1, ch_i2);
690
691 for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
692 for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
693 m1 = &(il->calib_info->band_info[s].ch1.
694 measurements[c][m]);
695 m2 = &(il->calib_info->band_info[s].ch2.
696 measurements[c][m]);
697 omeas = &(chan_info->measurements[c][m]);
698
699 omeas->actual_pow =
700 (u8) il4965_interpolate_value(x: channel, x1: ch_i1,
701 y1: m1->actual_pow, x2: ch_i2,
702 y2: m2->actual_pow);
703 omeas->gain_idx =
704 (u8) il4965_interpolate_value(x: channel, x1: ch_i1,
705 y1: m1->gain_idx, x2: ch_i2,
706 y2: m2->gain_idx);
707 omeas->temperature =
708 (u8) il4965_interpolate_value(x: channel, x1: ch_i1,
709 y1: m1->temperature,
710 x2: ch_i2,
711 y2: m2->temperature);
712 omeas->pa_det =
713 (s8) il4965_interpolate_value(x: channel, x1: ch_i1,
714 y1: m1->pa_det, x2: ch_i2,
715 y2: m2->pa_det);
716
717 D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
718 m, m1->actual_pow, m2->actual_pow,
719 omeas->actual_pow);
720 D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
721 m, m1->gain_idx, m2->gain_idx,
722 omeas->gain_idx);
723 D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
724 m, m1->pa_det, m2->pa_det, omeas->pa_det);
725 D_TXPOWER("chain %d meas %d T1=%d T2=%d T=%d\n", c,
726 m, m1->temperature, m2->temperature,
727 omeas->temperature);
728 }
729 }
730
731 return 0;
732}
733
734/* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
735 * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
736static s32 back_off_table[] = {
737 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */
738 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */
739 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */
740 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */
741 10 /* CCK */
742};
743
744/* Thermal compensation values for txpower for various frequency ranges ...
745 * ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
746static struct il4965_txpower_comp_entry {
747 s32 degrees_per_05db_a;
748 s32 degrees_per_05db_a_denom;
749} tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
750 {
751 9, 2}, /* group 0 5.2, ch 34-43 */
752 {
753 4, 1}, /* group 1 5.2, ch 44-70 */
754 {
755 4, 1}, /* group 2 5.2, ch 71-124 */
756 {
757 4, 1}, /* group 3 5.2, ch 125-200 */
758 {
759 3, 1} /* group 4 2.4, ch all */
760};
761
762static s32
763get_min_power_idx(s32 rate_power_idx, u32 band)
764{
765 if (!band) {
766 if ((rate_power_idx & 7) <= 4)
767 return MIN_TX_GAIN_IDX_52GHZ_EXT;
768 }
769 return MIN_TX_GAIN_IDX;
770}
771
772struct gain_entry {
773 u8 dsp;
774 u8 radio;
775};
776
777static const struct gain_entry gain_table[2][108] = {
778 /* 5.2GHz power gain idx table */
779 {
780 {123, 0x3F}, /* highest txpower */
781 {117, 0x3F},
782 {110, 0x3F},
783 {104, 0x3F},
784 {98, 0x3F},
785 {110, 0x3E},
786 {104, 0x3E},
787 {98, 0x3E},
788 {110, 0x3D},
789 {104, 0x3D},
790 {98, 0x3D},
791 {110, 0x3C},
792 {104, 0x3C},
793 {98, 0x3C},
794 {110, 0x3B},
795 {104, 0x3B},
796 {98, 0x3B},
797 {110, 0x3A},
798 {104, 0x3A},
799 {98, 0x3A},
800 {110, 0x39},
801 {104, 0x39},
802 {98, 0x39},
803 {110, 0x38},
804 {104, 0x38},
805 {98, 0x38},
806 {110, 0x37},
807 {104, 0x37},
808 {98, 0x37},
809 {110, 0x36},
810 {104, 0x36},
811 {98, 0x36},
812 {110, 0x35},
813 {104, 0x35},
814 {98, 0x35},
815 {110, 0x34},
816 {104, 0x34},
817 {98, 0x34},
818 {110, 0x33},
819 {104, 0x33},
820 {98, 0x33},
821 {110, 0x32},
822 {104, 0x32},
823 {98, 0x32},
824 {110, 0x31},
825 {104, 0x31},
826 {98, 0x31},
827 {110, 0x30},
828 {104, 0x30},
829 {98, 0x30},
830 {110, 0x25},
831 {104, 0x25},
832 {98, 0x25},
833 {110, 0x24},
834 {104, 0x24},
835 {98, 0x24},
836 {110, 0x23},
837 {104, 0x23},
838 {98, 0x23},
839 {110, 0x22},
840 {104, 0x18},
841 {98, 0x18},
842 {110, 0x17},
843 {104, 0x17},
844 {98, 0x17},
845 {110, 0x16},
846 {104, 0x16},
847 {98, 0x16},
848 {110, 0x15},
849 {104, 0x15},
850 {98, 0x15},
851 {110, 0x14},
852 {104, 0x14},
853 {98, 0x14},
854 {110, 0x13},
855 {104, 0x13},
856 {98, 0x13},
857 {110, 0x12},
858 {104, 0x08},
859 {98, 0x08},
860 {110, 0x07},
861 {104, 0x07},
862 {98, 0x07},
863 {110, 0x06},
864 {104, 0x06},
865 {98, 0x06},
866 {110, 0x05},
867 {104, 0x05},
868 {98, 0x05},
869 {110, 0x04},
870 {104, 0x04},
871 {98, 0x04},
872 {110, 0x03},
873 {104, 0x03},
874 {98, 0x03},
875 {110, 0x02},
876 {104, 0x02},
877 {98, 0x02},
878 {110, 0x01},
879 {104, 0x01},
880 {98, 0x01},
881 {110, 0x00},
882 {104, 0x00},
883 {98, 0x00},
884 {93, 0x00},
885 {88, 0x00},
886 {83, 0x00},
887 {78, 0x00},
888 },
889 /* 2.4GHz power gain idx table */
890 {
891 {110, 0x3f}, /* highest txpower */
892 {104, 0x3f},
893 {98, 0x3f},
894 {110, 0x3e},
895 {104, 0x3e},
896 {98, 0x3e},
897 {110, 0x3d},
898 {104, 0x3d},
899 {98, 0x3d},
900 {110, 0x3c},
901 {104, 0x3c},
902 {98, 0x3c},
903 {110, 0x3b},
904 {104, 0x3b},
905 {98, 0x3b},
906 {110, 0x3a},
907 {104, 0x3a},
908 {98, 0x3a},
909 {110, 0x39},
910 {104, 0x39},
911 {98, 0x39},
912 {110, 0x38},
913 {104, 0x38},
914 {98, 0x38},
915 {110, 0x37},
916 {104, 0x37},
917 {98, 0x37},
918 {110, 0x36},
919 {104, 0x36},
920 {98, 0x36},
921 {110, 0x35},
922 {104, 0x35},
923 {98, 0x35},
924 {110, 0x34},
925 {104, 0x34},
926 {98, 0x34},
927 {110, 0x33},
928 {104, 0x33},
929 {98, 0x33},
930 {110, 0x32},
931 {104, 0x32},
932 {98, 0x32},
933 {110, 0x31},
934 {104, 0x31},
935 {98, 0x31},
936 {110, 0x30},
937 {104, 0x30},
938 {98, 0x30},
939 {110, 0x6},
940 {104, 0x6},
941 {98, 0x6},
942 {110, 0x5},
943 {104, 0x5},
944 {98, 0x5},
945 {110, 0x4},
946 {104, 0x4},
947 {98, 0x4},
948 {110, 0x3},
949 {104, 0x3},
950 {98, 0x3},
951 {110, 0x2},
952 {104, 0x2},
953 {98, 0x2},
954 {110, 0x1},
955 {104, 0x1},
956 {98, 0x1},
957 {110, 0x0},
958 {104, 0x0},
959 {98, 0x0},
960 {97, 0},
961 {96, 0},
962 {95, 0},
963 {94, 0},
964 {93, 0},
965 {92, 0},
966 {91, 0},
967 {90, 0},
968 {89, 0},
969 {88, 0},
970 {87, 0},
971 {86, 0},
972 {85, 0},
973 {84, 0},
974 {83, 0},
975 {82, 0},
976 {81, 0},
977 {80, 0},
978 {79, 0},
979 {78, 0},
980 {77, 0},
981 {76, 0},
982 {75, 0},
983 {74, 0},
984 {73, 0},
985 {72, 0},
986 {71, 0},
987 {70, 0},
988 {69, 0},
989 {68, 0},
990 {67, 0},
991 {66, 0},
992 {65, 0},
993 {64, 0},
994 {63, 0},
995 {62, 0},
996 {61, 0},
997 {60, 0},
998 {59, 0},
999 }
1000};
1001
1002static int
1003il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1004 u8 ctrl_chan_high,
1005 struct il4965_tx_power_db *tx_power_tbl)
1006{
1007 u8 saturation_power;
1008 s32 target_power;
1009 s32 user_target_power;
1010 s32 power_limit;
1011 s32 current_temp;
1012 s32 reg_limit;
1013 s32 current_regulatory;
1014 s32 txatten_grp = CALIB_CH_GROUP_MAX;
1015 int i;
1016 int c;
1017 const struct il_channel_info *ch_info = NULL;
1018 struct il_eeprom_calib_ch_info ch_eeprom_info;
1019 const struct il_eeprom_calib_measure *measurement;
1020 s16 voltage;
1021 s32 init_voltage;
1022 s32 voltage_compensation;
1023 s32 degrees_per_05db_num;
1024 s32 degrees_per_05db_denom;
1025 s32 factory_temp;
1026 s32 temperature_comp[2];
1027 s32 factory_gain_idx[2];
1028 s32 factory_actual_pwr[2];
1029 s32 power_idx;
1030
1031 /* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1032 * are used for idxing into txpower table) */
1033 user_target_power = 2 * il->tx_power_user_lmt;
1034
1035 /* Get current (RXON) channel, band, width */
1036 D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1037
1038 ch_info = il_get_channel_info(il, band: il->band, channel);
1039
1040 if (!il_is_channel_valid(ch_info))
1041 return -EINVAL;
1042
1043 /* get txatten group, used to select 1) thermal txpower adjustment
1044 * and 2) mimo txpower balance between Tx chains. */
1045 txatten_grp = il4965_get_tx_atten_grp(channel);
1046 if (txatten_grp < 0) {
1047 IL_ERR("Can't find txatten group for channel %d.\n", channel);
1048 return txatten_grp;
1049 }
1050
1051 D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1052 txatten_grp);
1053
1054 if (is_ht40) {
1055 if (ctrl_chan_high)
1056 channel -= 2;
1057 else
1058 channel += 2;
1059 }
1060
1061 /* hardware txpower limits ...
1062 * saturation (clipping distortion) txpowers are in half-dBm */
1063 if (band)
1064 saturation_power = il->calib_info->saturation_power24;
1065 else
1066 saturation_power = il->calib_info->saturation_power52;
1067
1068 if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1069 saturation_power > IL_TX_POWER_SATURATION_MAX) {
1070 if (band)
1071 saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1072 else
1073 saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1074 }
1075
1076 /* regulatory txpower limits ... reg_limit values are in half-dBm,
1077 * max_power_avg values are in dBm, convert * 2 */
1078 if (is_ht40)
1079 reg_limit = ch_info->ht40_max_power_avg * 2;
1080 else
1081 reg_limit = ch_info->max_power_avg * 2;
1082
1083 if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1084 (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1085 if (band)
1086 reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1087 else
1088 reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1089 }
1090
1091 /* Interpolate txpower calibration values for this channel,
1092 * based on factory calibration tests on spaced channels. */
1093 il4965_interpolate_chan(il, channel, chan_info: &ch_eeprom_info);
1094
1095 /* calculate tx gain adjustment based on power supply voltage */
1096 voltage = le16_to_cpu(il->calib_info->voltage);
1097 init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1098 voltage_compensation =
1099 il4965_get_voltage_compensation(eeprom_voltage: voltage, current_voltage: init_voltage);
1100
1101 D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1102 voltage, voltage_compensation);
1103
1104 /* get current temperature (Celsius) */
1105 current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1106 current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1107 current_temp = kelvin_to_celsius(t: current_temp);
1108
1109 /* select thermal txpower adjustment params, based on channel group
1110 * (same frequency group used for mimo txatten adjustment) */
1111 degrees_per_05db_num =
1112 tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1113 degrees_per_05db_denom =
1114 tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1115
1116 /* get per-chain txpower values from factory measurements */
1117 for (c = 0; c < 2; c++) {
1118 measurement = &ch_eeprom_info.measurements[c][1];
1119
1120 /* txgain adjustment (in half-dB steps) based on difference
1121 * between factory and current temperature */
1122 factory_temp = measurement->temperature;
1123 il4965_math_div_round(num: (current_temp -
1124 factory_temp) * degrees_per_05db_denom,
1125 denom: degrees_per_05db_num,
1126 res: &temperature_comp[c]);
1127
1128 factory_gain_idx[c] = measurement->gain_idx;
1129 factory_actual_pwr[c] = measurement->actual_pow;
1130
1131 D_TXPOWER("chain = %d\n", c);
1132 D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1133 factory_temp, current_temp, temperature_comp[c]);
1134
1135 D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1136 factory_actual_pwr[c]);
1137 }
1138
1139 /* for each of 33 bit-rates (including 1 for CCK) */
1140 for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1141 u8 is_mimo_rate;
1142 union il4965_tx_power_dual_stream tx_power;
1143
1144 /* for mimo, reduce each chain's txpower by half
1145 * (3dB, 6 steps), so total output power is regulatory
1146 * compliant. */
1147 if (i & 0x8) {
1148 current_regulatory =
1149 reg_limit -
1150 IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1151 is_mimo_rate = 1;
1152 } else {
1153 current_regulatory = reg_limit;
1154 is_mimo_rate = 0;
1155 }
1156
1157 /* find txpower limit, either hardware or regulatory */
1158 power_limit = saturation_power - back_off_table[i];
1159 if (power_limit > current_regulatory)
1160 power_limit = current_regulatory;
1161
1162 /* reduce user's txpower request if necessary
1163 * for this rate on this channel */
1164 target_power = user_target_power;
1165 if (target_power > power_limit)
1166 target_power = power_limit;
1167
1168 D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1169 saturation_power - back_off_table[i],
1170 current_regulatory, user_target_power, target_power);
1171
1172 /* for each of 2 Tx chains (radio transmitters) */
1173 for (c = 0; c < 2; c++) {
1174 s32 atten_value;
1175
1176 if (is_mimo_rate)
1177 atten_value =
1178 (s32) le32_to_cpu(il->card_alive_init.
1179 tx_atten[txatten_grp][c]);
1180 else
1181 atten_value = 0;
1182
1183 /* calculate idx; higher idx means lower txpower */
1184 power_idx =
1185 (u8) (factory_gain_idx[c] -
1186 (target_power - factory_actual_pwr[c]) -
1187 temperature_comp[c] - voltage_compensation +
1188 atten_value);
1189
1190/* D_TXPOWER("calculated txpower idx %d\n",
1191 power_idx); */
1192
1193 if (power_idx < get_min_power_idx(rate_power_idx: i, band))
1194 power_idx = get_min_power_idx(rate_power_idx: i, band);
1195
1196 /* adjust 5 GHz idx to support negative idxes */
1197 if (!band)
1198 power_idx += 9;
1199
1200 /* CCK, rate 32, reduce txpower for CCK */
1201 if (i == POWER_TBL_CCK_ENTRY)
1202 power_idx +=
1203 IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1204
1205 /* stay within the table! */
1206 if (power_idx > 107) {
1207 IL_WARN("txpower idx %d > 107\n", power_idx);
1208 power_idx = 107;
1209 }
1210 if (power_idx < 0) {
1211 IL_WARN("txpower idx %d < 0\n", power_idx);
1212 power_idx = 0;
1213 }
1214
1215 /* fill txpower command for this rate/chain */
1216 tx_power.s.radio_tx_gain[c] =
1217 gain_table[band][power_idx].radio;
1218 tx_power.s.dsp_predis_atten[c] =
1219 gain_table[band][power_idx].dsp;
1220
1221 D_TXPOWER("chain %d mimo %d idx %d "
1222 "gain 0x%02x dsp %d\n", c, atten_value,
1223 power_idx, tx_power.s.radio_tx_gain[c],
1224 tx_power.s.dsp_predis_atten[c]);
1225 } /* for each chain */
1226
1227 tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1228
1229 } /* for each rate */
1230
1231 return 0;
1232}
1233
1234/*
1235 * il4965_send_tx_power - Configure the TXPOWER level user limit
1236 *
1237 * Uses the active RXON for channel, band, and characteristics (ht40, high)
1238 * The power limit is taken from il->tx_power_user_lmt.
1239 */
1240static int
1241il4965_send_tx_power(struct il_priv *il)
1242{
1243 struct il4965_txpowertable_cmd cmd = { 0 };
1244 int ret;
1245 u8 band = 0;
1246 bool is_ht40 = false;
1247 u8 ctrl_chan_high = 0;
1248
1249 if (WARN_ONCE
1250 (test_bit(S_SCAN_HW, &il->status),
1251 "TX Power requested while scanning!\n"))
1252 return -EAGAIN;
1253
1254 band = il->band == NL80211_BAND_2GHZ;
1255
1256 is_ht40 = iw4965_is_ht40_channel(rxon_flags: il->active.flags);
1257
1258 if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1259 ctrl_chan_high = 1;
1260
1261 cmd.band = band;
1262 cmd.channel = il->active.channel;
1263
1264 ret =
1265 il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
1266 is_ht40, ctrl_chan_high, tx_power_tbl: &cmd.tx_power);
1267 if (ret)
1268 goto out;
1269
1270 ret = il_send_cmd_pdu(il, id: C_TX_PWR_TBL, len: sizeof(cmd), data: &cmd);
1271
1272out:
1273 return ret;
1274}
1275
1276static int
1277il4965_send_rxon_assoc(struct il_priv *il)
1278{
1279 int ret = 0;
1280 struct il4965_rxon_assoc_cmd rxon_assoc;
1281 const struct il_rxon_cmd *rxon1 = &il->staging;
1282 const struct il_rxon_cmd *rxon2 = &il->active;
1283
1284 lockdep_assert_held(&il->mutex);
1285
1286 if (rxon1->flags == rxon2->flags &&
1287 rxon1->filter_flags == rxon2->filter_flags &&
1288 rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1289 rxon1->ofdm_ht_single_stream_basic_rates ==
1290 rxon2->ofdm_ht_single_stream_basic_rates &&
1291 rxon1->ofdm_ht_dual_stream_basic_rates ==
1292 rxon2->ofdm_ht_dual_stream_basic_rates &&
1293 rxon1->rx_chain == rxon2->rx_chain &&
1294 rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1295 D_INFO("Using current RXON_ASSOC. Not resending.\n");
1296 return 0;
1297 }
1298
1299 rxon_assoc.flags = il->staging.flags;
1300 rxon_assoc.filter_flags = il->staging.filter_flags;
1301 rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1302 rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1303 rxon_assoc.reserved = 0;
1304 rxon_assoc.ofdm_ht_single_stream_basic_rates =
1305 il->staging.ofdm_ht_single_stream_basic_rates;
1306 rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1307 il->staging.ofdm_ht_dual_stream_basic_rates;
1308 rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
1309
1310 ret =
1311 il_send_cmd_pdu_async(il, id: C_RXON_ASSOC, len: sizeof(rxon_assoc),
1312 data: &rxon_assoc, NULL);
1313
1314 return ret;
1315}
1316
1317static int
1318il4965_commit_rxon(struct il_priv *il)
1319{
1320 /* cast away the const for active_rxon in this function */
1321 struct il_rxon_cmd *active_rxon = (void *)&il->active;
1322 int ret;
1323 bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1324
1325 if (!il_is_alive(il))
1326 return -EBUSY;
1327
1328 /* always get timestamp with Rx frame */
1329 il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1330
1331 ret = il_check_rxon_cmd(il);
1332 if (ret) {
1333 IL_ERR("Invalid RXON configuration. Not committing.\n");
1334 return -EINVAL;
1335 }
1336
1337 /*
1338 * receive commit_rxon request
1339 * abort any previous channel switch if still in process
1340 */
1341 if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1342 il->switch_channel != il->staging.channel) {
1343 D_11H("abort channel switch on %d\n",
1344 le16_to_cpu(il->switch_channel));
1345 il_chswitch_done(il, is_success: false);
1346 }
1347
1348 /* If we don't need to send a full RXON, we can use
1349 * il_rxon_assoc_cmd which is used to reconfigure filter
1350 * and other flags for the current radio configuration. */
1351 if (!il_full_rxon_required(il)) {
1352 ret = il_send_rxon_assoc(il);
1353 if (ret) {
1354 IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1355 return ret;
1356 }
1357
1358 memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1359 il_print_rx_config_cmd(il);
1360 /*
1361 * We do not commit tx power settings while channel changing,
1362 * do it now if tx power changed.
1363 */
1364 il_set_tx_power(il, tx_power: il->tx_power_next, force: false);
1365 return 0;
1366 }
1367
1368 /* If we are currently associated and the new config requires
1369 * an RXON_ASSOC and the new config wants the associated mask enabled,
1370 * we must clear the associated from the active configuration
1371 * before we apply the new config */
1372 if (il_is_associated(il) && new_assoc) {
1373 D_INFO("Toggling associated bit on current RXON\n");
1374 active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1375
1376 ret =
1377 il_send_cmd_pdu(il, id: C_RXON,
1378 len: sizeof(struct il_rxon_cmd), data: active_rxon);
1379
1380 /* If the mask clearing failed then we set
1381 * active_rxon back to what it was previously */
1382 if (ret) {
1383 active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1384 IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1385 return ret;
1386 }
1387 il_clear_ucode_stations(il);
1388 il_restore_stations(il);
1389 ret = il4965_restore_default_wep_keys(il);
1390 if (ret) {
1391 IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1392 return ret;
1393 }
1394 }
1395
1396 D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1397 "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1398 le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
1399
1400 il_set_rxon_hwcrypto(il, hw_decrypt: !il->cfg->mod_params->sw_crypto);
1401
1402 /* Apply the new configuration
1403 * RXON unassoc clears the station table in uCode so restoration of
1404 * stations is needed after it (the RXON command) completes
1405 */
1406 if (!new_assoc) {
1407 ret =
1408 il_send_cmd_pdu(il, id: C_RXON,
1409 len: sizeof(struct il_rxon_cmd), data: &il->staging);
1410 if (ret) {
1411 IL_ERR("Error setting new RXON (%d)\n", ret);
1412 return ret;
1413 }
1414 D_INFO("Return from !new_assoc RXON.\n");
1415 memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1416 il_clear_ucode_stations(il);
1417 il_restore_stations(il);
1418 ret = il4965_restore_default_wep_keys(il);
1419 if (ret) {
1420 IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1421 return ret;
1422 }
1423 }
1424 if (new_assoc) {
1425 il->start_calib = 0;
1426 /* Apply the new configuration
1427 * RXON assoc doesn't clear the station table in uCode,
1428 */
1429 ret =
1430 il_send_cmd_pdu(il, id: C_RXON,
1431 len: sizeof(struct il_rxon_cmd), data: &il->staging);
1432 if (ret) {
1433 IL_ERR("Error setting new RXON (%d)\n", ret);
1434 return ret;
1435 }
1436 memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1437 }
1438 il_print_rx_config_cmd(il);
1439
1440 il4965_init_sensitivity(il);
1441
1442 /* If we issue a new RXON command which required a tune then we must
1443 * send a new TXPOWER command or we won't be able to Tx any frames */
1444 ret = il_set_tx_power(il, tx_power: il->tx_power_next, force: true);
1445 if (ret) {
1446 IL_ERR("Error sending TX power (%d)\n", ret);
1447 return ret;
1448 }
1449
1450 return 0;
1451}
1452
1453static int
1454il4965_hw_channel_switch(struct il_priv *il,
1455 struct ieee80211_channel_switch *ch_switch)
1456{
1457 int rc;
1458 u8 band = 0;
1459 bool is_ht40 = false;
1460 u8 ctrl_chan_high = 0;
1461 struct il4965_channel_switch_cmd cmd;
1462 const struct il_channel_info *ch_info;
1463 u32 switch_time_in_usec, ucode_switch_time;
1464 u16 ch;
1465 u32 tsf_low;
1466 u8 switch_count;
1467 u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
1468 struct ieee80211_vif *vif = il->vif;
1469 band = (il->band == NL80211_BAND_2GHZ);
1470
1471 if (WARN_ON_ONCE(vif == NULL))
1472 return -EIO;
1473
1474 is_ht40 = iw4965_is_ht40_channel(rxon_flags: il->staging.flags);
1475
1476 if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1477 ctrl_chan_high = 1;
1478
1479 cmd.band = band;
1480 cmd.expect_beacon = 0;
1481 ch = ch_switch->chandef.chan->hw_value;
1482 cmd.channel = cpu_to_le16(ch);
1483 cmd.rxon_flags = il->staging.flags;
1484 cmd.rxon_filter_flags = il->staging.filter_flags;
1485 switch_count = ch_switch->count;
1486 tsf_low = ch_switch->timestamp & 0x0ffffffff;
1487 /*
1488 * calculate the ucode channel switch time
1489 * adding TSF as one of the factor for when to switch
1490 */
1491 if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1492 if (switch_count >
1493 ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1494 switch_count -=
1495 (il->ucode_beacon_time - tsf_low) / beacon_interval;
1496 } else
1497 switch_count = 0;
1498 }
1499 if (switch_count <= 1)
1500 cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1501 else {
1502 switch_time_in_usec =
1503 vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1504 ucode_switch_time =
1505 il_usecs_to_beacons(il, usec: switch_time_in_usec,
1506 beacon_interval);
1507 cmd.switch_time =
1508 il_add_beacon_time(il, base: il->ucode_beacon_time,
1509 addon: ucode_switch_time, beacon_interval);
1510 }
1511 D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1512 ch_info = il_get_channel_info(il, band: il->band, channel: ch);
1513 if (ch_info)
1514 cmd.expect_beacon = il_is_channel_radar(ch_info);
1515 else {
1516 IL_ERR("invalid channel switch from %u to %u\n",
1517 il->active.channel, ch);
1518 return -EFAULT;
1519 }
1520
1521 rc = il4965_fill_txpower_tbl(il, band, channel: ch, is_ht40, ctrl_chan_high,
1522 tx_power_tbl: &cmd.tx_power);
1523 if (rc) {
1524 D_11H("error:%d fill txpower_tbl\n", rc);
1525 return rc;
1526 }
1527
1528 return il_send_cmd_pdu(il, id: C_CHANNEL_SWITCH, len: sizeof(cmd), data: &cmd);
1529}
1530
1531/*
1532 * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1533 */
1534static void
1535il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1536 u16 byte_cnt)
1537{
1538 struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1539 int txq_id = txq->q.id;
1540 int write_ptr = txq->q.write_ptr;
1541 int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1542 __le16 bc_ent;
1543
1544 WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1545
1546 bc_ent = cpu_to_le16(len & 0xFFF);
1547 /* Set up byte count within first 256 entries */
1548 scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1549
1550 /* If within first 64 entries, duplicate at end */
1551 if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1552 scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1553 bc_ent;
1554}
1555
1556/*
1557 * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1558 *
1559 * A return of <0 indicates bogus data in the stats
1560 */
1561static int
1562il4965_hw_get_temperature(struct il_priv *il)
1563{
1564 s32 temperature;
1565 s32 vt;
1566 s32 R1, R2, R3;
1567 u32 R4;
1568
1569 if (test_bit(S_TEMPERATURE, &il->status) &&
1570 (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1571 D_TEMP("Running HT40 temperature calibration\n");
1572 R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1573 R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1574 R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1575 R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1576 } else {
1577 D_TEMP("Running temperature calibration\n");
1578 R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1579 R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1580 R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1581 R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1582 }
1583
1584 /*
1585 * Temperature is only 23 bits, so sign extend out to 32.
1586 *
1587 * NOTE If we haven't received a stats notification yet
1588 * with an updated temperature, use R4 provided to us in the
1589 * "initialize" ALIVE response.
1590 */
1591 if (!test_bit(S_TEMPERATURE, &il->status))
1592 vt = sign_extend32(value: R4, index: 23);
1593 else
1594 vt = sign_extend32(le32_to_cpu
1595 (il->_4965.stats.general.common.temperature),
1596 index: 23);
1597
1598 D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1599
1600 if (R3 == R1) {
1601 IL_ERR("Calibration conflict R1 == R3\n");
1602 return -1;
1603 }
1604
1605 /* Calculate temperature in degrees Kelvin, adjust by 97%.
1606 * Add offset to center the adjustment around 0 degrees Centigrade. */
1607 temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1608 temperature /= (R3 - R1);
1609 temperature =
1610 (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1611
1612 D_TEMP("Calibrated temperature: %dK, %ldC\n", temperature,
1613 kelvin_to_celsius(temperature));
1614
1615 return temperature;
1616}
1617
1618/* Adjust Txpower only if temperature variance is greater than threshold. */
1619#define IL_TEMPERATURE_THRESHOLD 3
1620
1621/*
1622 * il4965_is_temp_calib_needed - determines if new calibration is needed
1623 *
1624 * If the temperature changed has changed sufficiently, then a recalibration
1625 * is needed.
1626 *
1627 * Assumes caller will replace il->last_temperature once calibration
1628 * executed.
1629 */
1630static int
1631il4965_is_temp_calib_needed(struct il_priv *il)
1632{
1633 int temp_diff;
1634
1635 if (!test_bit(S_STATS, &il->status)) {
1636 D_TEMP("Temperature not updated -- no stats.\n");
1637 return 0;
1638 }
1639
1640 temp_diff = il->temperature - il->last_temperature;
1641
1642 /* get absolute value */
1643 if (temp_diff < 0) {
1644 D_POWER("Getting cooler, delta %d\n", temp_diff);
1645 temp_diff = -temp_diff;
1646 } else if (temp_diff == 0)
1647 D_POWER("Temperature unchanged\n");
1648 else
1649 D_POWER("Getting warmer, delta %d\n", temp_diff);
1650
1651 if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1652 D_POWER(" => thermal txpower calib not needed\n");
1653 return 0;
1654 }
1655
1656 D_POWER(" => thermal txpower calib needed\n");
1657
1658 return 1;
1659}
1660
1661void
1662il4965_temperature_calib(struct il_priv *il)
1663{
1664 s32 temp;
1665
1666 temp = il4965_hw_get_temperature(il);
1667 if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1668 return;
1669
1670 if (il->temperature != temp) {
1671 if (il->temperature)
1672 D_TEMP("Temperature changed " "from %ldC to %ldC\n",
1673 kelvin_to_celsius(il->temperature),
1674 kelvin_to_celsius(temp));
1675 else
1676 D_TEMP("Temperature " "initialized to %ldC\n",
1677 kelvin_to_celsius(temp));
1678 }
1679
1680 il->temperature = temp;
1681 set_bit(S_TEMPERATURE, addr: &il->status);
1682
1683 if (!il->disable_tx_power_cal &&
1684 unlikely(!test_bit(S_SCANNING, &il->status)) &&
1685 il4965_is_temp_calib_needed(il))
1686 queue_work(wq: il->workqueue, work: &il->txpower_work);
1687}
1688
1689static u16
1690il4965_get_hcmd_size(u8 cmd_id, u16 len)
1691{
1692 switch (cmd_id) {
1693 case C_RXON:
1694 return (u16) sizeof(struct il4965_rxon_cmd);
1695 default:
1696 return len;
1697 }
1698}
1699
1700static u16
1701il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1702{
1703 struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1704 addsta->mode = cmd->mode;
1705 memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1706 memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1707 addsta->station_flags = cmd->station_flags;
1708 addsta->station_flags_msk = cmd->station_flags_msk;
1709 addsta->tid_disable_tx = cmd->tid_disable_tx;
1710 addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1711 addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1712 addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1713 addsta->sleep_tx_count = cmd->sleep_tx_count;
1714 addsta->reserved1 = cpu_to_le16(0);
1715 addsta->reserved2 = cpu_to_le16(0);
1716
1717 return (u16) sizeof(struct il4965_addsta_cmd);
1718}
1719
1720static void
1721il4965_post_scan(struct il_priv *il)
1722{
1723 /*
1724 * Since setting the RXON may have been deferred while
1725 * performing the scan, fire one off if needed
1726 */
1727 if (memcmp(p: &il->staging, q: &il->active, size: sizeof(il->staging)))
1728 il_commit_rxon(il);
1729}
1730
1731static void
1732il4965_post_associate(struct il_priv *il)
1733{
1734 struct ieee80211_vif *vif = il->vif;
1735 int ret = 0;
1736
1737 if (!vif || !il->is_open)
1738 return;
1739
1740 if (test_bit(S_EXIT_PENDING, &il->status))
1741 return;
1742
1743 il_scan_cancel_timeout(il, ms: 200);
1744
1745 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1746 il_commit_rxon(il);
1747
1748 ret = il_send_rxon_timing(il);
1749 if (ret)
1750 IL_WARN("RXON timing - " "Attempting to continue.\n");
1751
1752 il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1753
1754 il_set_rxon_ht(il, ht_conf: &il->current_ht_config);
1755
1756 if (il->ops->set_rxon_chain)
1757 il->ops->set_rxon_chain(il);
1758
1759 il->staging.assoc_id = cpu_to_le16(vif->cfg.aid);
1760
1761 D_ASSOC("assoc id %d beacon interval %d\n", vif->cfg.aid,
1762 vif->bss_conf.beacon_int);
1763
1764 if (vif->bss_conf.use_short_preamble)
1765 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1766 else
1767 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1768
1769 if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1770 if (vif->bss_conf.use_short_slot)
1771 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1772 else
1773 il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1774 }
1775
1776 il_commit_rxon(il);
1777
1778 D_ASSOC("Associated as %d to: %pM\n", vif->cfg.aid,
1779 il->active.bssid_addr);
1780
1781 switch (vif->type) {
1782 case NL80211_IFTYPE_STATION:
1783 break;
1784 case NL80211_IFTYPE_ADHOC:
1785 il4965_send_beacon_cmd(il);
1786 break;
1787 default:
1788 IL_ERR("%s Should not be called in %d mode\n", __func__,
1789 vif->type);
1790 break;
1791 }
1792
1793 /* the chain noise calibration will enabled PM upon completion
1794 * If chain noise has already been run, then we need to enable
1795 * power management here */
1796 if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
1797 il_power_update_mode(il, force: false);
1798
1799 /* Enable Rx differential gain and sensitivity calibrations */
1800 il4965_chain_noise_reset(il);
1801 il->start_calib = 1;
1802}
1803
1804static void
1805il4965_config_ap(struct il_priv *il)
1806{
1807 struct ieee80211_vif *vif = il->vif;
1808 int ret = 0;
1809
1810 lockdep_assert_held(&il->mutex);
1811
1812 if (test_bit(S_EXIT_PENDING, &il->status))
1813 return;
1814
1815 /* The following should be done only at AP bring up */
1816 if (!il_is_associated(il)) {
1817
1818 /* RXON - unassoc (to set timing command) */
1819 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1820 il_commit_rxon(il);
1821
1822 /* RXON Timing */
1823 ret = il_send_rxon_timing(il);
1824 if (ret)
1825 IL_WARN("RXON timing failed - "
1826 "Attempting to continue.\n");
1827
1828 /* AP has all antennas */
1829 il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
1830 il_set_rxon_ht(il, ht_conf: &il->current_ht_config);
1831 if (il->ops->set_rxon_chain)
1832 il->ops->set_rxon_chain(il);
1833
1834 il->staging.assoc_id = 0;
1835
1836 if (vif->bss_conf.use_short_preamble)
1837 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1838 else
1839 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1840
1841 if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1842 if (vif->bss_conf.use_short_slot)
1843 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1844 else
1845 il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1846 }
1847 /* need to send beacon cmd before committing assoc RXON! */
1848 il4965_send_beacon_cmd(il);
1849 /* restore RXON assoc */
1850 il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1851 il_commit_rxon(il);
1852 }
1853 il4965_send_beacon_cmd(il);
1854}
1855
1856const struct il_ops il4965_ops = {
1857 .txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
1858 .txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
1859 .txq_free_tfd = il4965_hw_txq_free_tfd,
1860 .txq_init = il4965_hw_tx_queue_init,
1861 .is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
1862 .init_alive_start = il4965_init_alive_start,
1863 .load_ucode = il4965_load_bsm,
1864 .dump_nic_error_log = il4965_dump_nic_error_log,
1865 .dump_fh = il4965_dump_fh,
1866 .set_channel_switch = il4965_hw_channel_switch,
1867 .apm_init = il_apm_init,
1868 .send_tx_power = il4965_send_tx_power,
1869 .update_chain_flags = il4965_update_chain_flags,
1870 .eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
1871 .eeprom_release_semaphore = il4965_eeprom_release_semaphore,
1872
1873 .rxon_assoc = il4965_send_rxon_assoc,
1874 .commit_rxon = il4965_commit_rxon,
1875 .set_rxon_chain = il4965_set_rxon_chain,
1876
1877 .get_hcmd_size = il4965_get_hcmd_size,
1878 .build_addsta_hcmd = il4965_build_addsta_hcmd,
1879 .request_scan = il4965_request_scan,
1880 .post_scan = il4965_post_scan,
1881
1882 .post_associate = il4965_post_associate,
1883 .config_ap = il4965_config_ap,
1884 .manage_ibss_station = il4965_manage_ibss_station,
1885 .update_bcast_stations = il4965_update_bcast_stations,
1886
1887 .send_led_cmd = il4965_send_led_cmd,
1888};
1889
1890struct il_cfg il4965_cfg = {
1891 .name = "Intel(R) Wireless WiFi Link 4965AGN",
1892 .fw_name_pre = IL4965_FW_PRE,
1893 .ucode_api_max = IL4965_UCODE_API_MAX,
1894 .ucode_api_min = IL4965_UCODE_API_MIN,
1895 .sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
1896 .valid_tx_ant = ANT_AB,
1897 .valid_rx_ant = ANT_ABC,
1898 .eeprom_ver = EEPROM_4965_EEPROM_VERSION,
1899 .eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
1900 .mod_params = &il4965_mod_params,
1901 .led_mode = IL_LED_BLINK,
1902 /*
1903 * Force use of chains B and C for scan RX on 5 GHz band
1904 * because the device has off-channel reception on chain A.
1905 */
1906 .scan_rx_antennas[NL80211_BAND_5GHZ] = ANT_BC,
1907
1908 .eeprom_size = IL4965_EEPROM_IMG_SIZE,
1909 .num_of_queues = IL49_NUM_QUEUES,
1910 .num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
1911 .pll_cfg_val = 0,
1912 .set_l0s = true,
1913 .use_bsm = true,
1914 .led_compensation = 61,
1915 .chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
1916 .wd_timeout = IL_DEF_WD_TIMEOUT,
1917 .temperature_kelvin = true,
1918 .ucode_tracing = true,
1919 .sensitivity_calib_by_driver = true,
1920 .chain_noise_calib_by_driver = true,
1921
1922 .regulatory_bands = {
1923 EEPROM_REGULATORY_BAND_1_CHANNELS,
1924 EEPROM_REGULATORY_BAND_2_CHANNELS,
1925 EEPROM_REGULATORY_BAND_3_CHANNELS,
1926 EEPROM_REGULATORY_BAND_4_CHANNELS,
1927 EEPROM_REGULATORY_BAND_5_CHANNELS,
1928 EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
1929 EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
1930 },
1931
1932};
1933
1934/* Module firmware */
1935MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));
1936

source code of linux/drivers/net/wireless/intel/iwlegacy/4965.c