1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5#include <linux/bcd.h>
6
7#include "main.h"
8#include "reg.h"
9#include "fw.h"
10#include "phy.h"
11#include "debug.h"
12#include "regd.h"
13#include "sar.h"
14
15struct phy_cfg_pair {
16 u32 addr;
17 u32 data;
18};
19
20union phy_table_tile {
21 struct rtw_phy_cond cond;
22 struct phy_cfg_pair cfg;
23};
24
25static const u32 db_invert_table[12][8] = {
26 {10, 13, 16, 20,
27 25, 32, 40, 50},
28 {64, 80, 101, 128,
29 160, 201, 256, 318},
30 {401, 505, 635, 800,
31 1007, 1268, 1596, 2010},
32 {316, 398, 501, 631,
33 794, 1000, 1259, 1585},
34 {1995, 2512, 3162, 3981,
35 5012, 6310, 7943, 10000},
36 {12589, 15849, 19953, 25119,
37 31623, 39811, 50119, 63098},
38 {79433, 100000, 125893, 158489,
39 199526, 251189, 316228, 398107},
40 {501187, 630957, 794328, 1000000,
41 1258925, 1584893, 1995262, 2511886},
42 {3162278, 3981072, 5011872, 6309573,
43 7943282, 1000000, 12589254, 15848932},
44 {19952623, 25118864, 31622777, 39810717,
45 50118723, 63095734, 79432823, 100000000},
46 {125892541, 158489319, 199526232, 251188643,
47 316227766, 398107171, 501187234, 630957345},
48 {794328235, 1000000000, 1258925412, 1584893192,
49 1995262315, 2511886432U, 3162277660U, 3981071706U}
50};
51
52u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
53u8 rtw_ofdm_rates[] = {
54 DESC_RATE6M, DESC_RATE9M, DESC_RATE12M,
55 DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
56 DESC_RATE48M, DESC_RATE54M
57};
58u8 rtw_ht_1s_rates[] = {
59 DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
60 DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
61 DESC_RATEMCS6, DESC_RATEMCS7
62};
63u8 rtw_ht_2s_rates[] = {
64 DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10,
65 DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
66 DESC_RATEMCS14, DESC_RATEMCS15
67};
68u8 rtw_vht_1s_rates[] = {
69 DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
70 DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
71 DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
72 DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
73 DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
74};
75u8 rtw_vht_2s_rates[] = {
76 DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
77 DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
78 DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
79 DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
80 DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
81};
82u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
83 rtw_cck_rates, rtw_ofdm_rates,
84 rtw_ht_1s_rates, rtw_ht_2s_rates,
85 rtw_vht_1s_rates, rtw_vht_2s_rates
86};
87EXPORT_SYMBOL(rtw_rate_section);
88
89u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
90 ARRAY_SIZE(rtw_cck_rates),
91 ARRAY_SIZE(rtw_ofdm_rates),
92 ARRAY_SIZE(rtw_ht_1s_rates),
93 ARRAY_SIZE(rtw_ht_2s_rates),
94 ARRAY_SIZE(rtw_vht_1s_rates),
95 ARRAY_SIZE(rtw_vht_2s_rates)
96};
97EXPORT_SYMBOL(rtw_rate_size);
98
99static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
100static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
101static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
102static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
103static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
104static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
105
106enum rtw_phy_band_type {
107 PHY_BAND_2G = 0,
108 PHY_BAND_5G = 1,
109};
110
111static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
112{
113 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
114 u8 i, j;
115
116 for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
117 for (j = 0; j < RTW_RF_PATH_MAX; j++)
118 dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
119 }
120
121 dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
122}
123
124void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
125{
126 struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
127
128 rtw_write32_mask(rtwdev,
129 addr: edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
130 mask: edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
131 data: l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
132 rtw_write32_mask(rtwdev,
133 addr: edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
134 mask: edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
135 data: h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
136}
137EXPORT_SYMBOL(rtw_phy_set_edcca_th);
138
139void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
140{
141 const struct rtw_chip_info *chip = rtwdev->chip;
142 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
143
144 /* turn off in debugfs for debug usage */
145 if (!rtw_edcca_enabled) {
146 dm_info->edcca_mode = RTW_EDCCA_NORMAL;
147 rtw_dbg(rtwdev, mask: RTW_DBG_PHY, fmt: "EDCCA disabled, cannot be set\n");
148 return;
149 }
150
151 switch (rtwdev->regd.dfs_region) {
152 case NL80211_DFS_ETSI:
153 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
154 dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
155 break;
156 case NL80211_DFS_JP:
157 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
158 dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
159 break;
160 default:
161 dm_info->edcca_mode = RTW_EDCCA_NORMAL;
162 break;
163 }
164}
165
166static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
167{
168 const struct rtw_chip_info *chip = rtwdev->chip;
169
170 rtw_phy_adaptivity_set_mode(rtwdev);
171 if (chip->ops->adaptivity_init)
172 chip->ops->adaptivity_init(rtwdev);
173}
174
175static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
176{
177 if (rtwdev->chip->ops->adaptivity)
178 rtwdev->chip->ops->adaptivity(rtwdev);
179}
180
181static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
182{
183 const struct rtw_chip_info *chip = rtwdev->chip;
184
185 if (chip->ops->cfo_init)
186 chip->ops->cfo_init(rtwdev);
187}
188
189static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
190{
191 struct rtw_path_div *path_div = &rtwdev->dm_path_div;
192
193 path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
194 path_div->path_a_cnt = 0;
195 path_div->path_a_sum = 0;
196 path_div->path_b_cnt = 0;
197 path_div->path_b_sum = 0;
198}
199
200void rtw_phy_init(struct rtw_dev *rtwdev)
201{
202 const struct rtw_chip_info *chip = rtwdev->chip;
203 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
204 u32 addr, mask;
205
206 dm_info->fa_history[3] = 0;
207 dm_info->fa_history[2] = 0;
208 dm_info->fa_history[1] = 0;
209 dm_info->fa_history[0] = 0;
210 dm_info->igi_bitmap = 0;
211 dm_info->igi_history[3] = 0;
212 dm_info->igi_history[2] = 0;
213 dm_info->igi_history[1] = 0;
214
215 addr = chip->dig[0].addr;
216 mask = chip->dig[0].mask;
217 dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
218 rtw_phy_cck_pd_init(rtwdev);
219
220 dm_info->iqk.done = false;
221 rtw_phy_adaptivity_init(rtwdev);
222 rtw_phy_cfo_init(rtwdev);
223 rtw_phy_tx_path_div_init(rtwdev);
224}
225EXPORT_SYMBOL(rtw_phy_init);
226
227void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
228{
229 const struct rtw_chip_info *chip = rtwdev->chip;
230 struct rtw_hal *hal = &rtwdev->hal;
231 u32 addr, mask;
232 u8 path;
233
234 if (chip->dig_cck) {
235 const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
236 rtw_write32_mask(rtwdev, addr: dig_cck->addr, mask: dig_cck->mask, data: igi >> 1);
237 }
238
239 for (path = 0; path < hal->rf_path_num; path++) {
240 addr = chip->dig[path].addr;
241 mask = chip->dig[path].mask;
242 rtw_write32_mask(rtwdev, addr, mask, data: igi);
243 }
244}
245
246static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
247{
248 const struct rtw_chip_info *chip = rtwdev->chip;
249
250 chip->ops->false_alarm_statistics(rtwdev);
251}
252
253#define RA_FLOOR_TABLE_SIZE 7
254#define RA_FLOOR_UP_GAP 3
255
256static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
257{
258 u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
259 u8 new_level = 0;
260 int i;
261
262 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
263 if (i >= old_level)
264 table[i] += RA_FLOOR_UP_GAP;
265
266 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
267 if (rssi < table[i]) {
268 new_level = i;
269 break;
270 }
271 }
272
273 return new_level;
274}
275
276struct rtw_phy_stat_iter_data {
277 struct rtw_dev *rtwdev;
278 u8 min_rssi;
279};
280
281static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
282{
283 struct rtw_phy_stat_iter_data *iter_data = data;
284 struct rtw_dev *rtwdev = iter_data->rtwdev;
285 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
286 u8 rssi;
287
288 rssi = ewma_rssi_read(e: &si->avg_rssi);
289 si->rssi_level = rtw_phy_get_rssi_level(old_level: si->rssi_level, rssi);
290
291 rtw_fw_send_rssi_info(rtwdev, si);
292
293 iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
294}
295
296static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
297{
298 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
299 struct rtw_phy_stat_iter_data data = {};
300
301 data.rtwdev = rtwdev;
302 data.min_rssi = U8_MAX;
303 rtw_iterate_stas(rtwdev, iterator: rtw_phy_stat_rssi_iter, data: &data);
304
305 dm_info->pre_min_rssi = dm_info->min_rssi;
306 dm_info->min_rssi = data.min_rssi;
307}
308
309static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
310{
311 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
312
313 dm_info->last_pkt_count = dm_info->cur_pkt_count;
314 memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
315}
316
317static void rtw_phy_statistics(struct rtw_dev *rtwdev)
318{
319 rtw_phy_stat_rssi(rtwdev);
320 rtw_phy_stat_false_alarm(rtwdev);
321 rtw_phy_stat_rate_cnt(rtwdev);
322}
323
324#define DIG_PERF_FA_TH_LOW 250
325#define DIG_PERF_FA_TH_HIGH 500
326#define DIG_PERF_FA_TH_EXTRA_HIGH 750
327#define DIG_PERF_MAX 0x5a
328#define DIG_PERF_MID 0x40
329#define DIG_CVRG_FA_TH_LOW 2000
330#define DIG_CVRG_FA_TH_HIGH 4000
331#define DIG_CVRG_FA_TH_EXTRA_HIGH 5000
332#define DIG_CVRG_MAX 0x2a
333#define DIG_CVRG_MID 0x26
334#define DIG_CVRG_MIN 0x1c
335#define DIG_RSSI_GAIN_OFFSET 15
336
337static bool
338rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
339{
340 u16 fa_lo = DIG_PERF_FA_TH_LOW;
341 u16 fa_hi = DIG_PERF_FA_TH_HIGH;
342 u16 *fa_history;
343 u8 *igi_history;
344 u8 damping_rssi;
345 u8 min_rssi;
346 u8 diff;
347 u8 igi_bitmap;
348 bool damping = false;
349
350 min_rssi = dm_info->min_rssi;
351 if (dm_info->damping) {
352 damping_rssi = dm_info->damping_rssi;
353 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
354 damping_rssi - min_rssi;
355 if (diff > 3 || dm_info->damping_cnt++ > 20) {
356 dm_info->damping = false;
357 return false;
358 }
359
360 return true;
361 }
362
363 igi_history = dm_info->igi_history;
364 fa_history = dm_info->fa_history;
365 igi_bitmap = dm_info->igi_bitmap & 0xf;
366 switch (igi_bitmap) {
367 case 5:
368 /* down -> up -> down -> up */
369 if (igi_history[0] > igi_history[1] &&
370 igi_history[2] > igi_history[3] &&
371 igi_history[0] - igi_history[1] >= 2 &&
372 igi_history[2] - igi_history[3] >= 2 &&
373 fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
374 fa_history[2] > fa_hi && fa_history[3] < fa_lo)
375 damping = true;
376 break;
377 case 9:
378 /* up -> down -> down -> up */
379 if (igi_history[0] > igi_history[1] &&
380 igi_history[3] > igi_history[2] &&
381 igi_history[0] - igi_history[1] >= 4 &&
382 igi_history[3] - igi_history[2] >= 2 &&
383 fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
384 fa_history[2] < fa_lo && fa_history[3] > fa_hi)
385 damping = true;
386 break;
387 default:
388 return false;
389 }
390
391 if (damping) {
392 dm_info->damping = true;
393 dm_info->damping_cnt = 0;
394 dm_info->damping_rssi = min_rssi;
395 }
396
397 return damping;
398}
399
400static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
401 struct rtw_dm_info *dm_info,
402 u8 *upper, u8 *lower, bool linked)
403{
404 u8 dig_max, dig_min, dig_mid;
405 u8 min_rssi;
406
407 if (linked) {
408 dig_max = DIG_PERF_MAX;
409 dig_mid = DIG_PERF_MID;
410 dig_min = rtwdev->chip->dig_min;
411 min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
412 } else {
413 dig_max = DIG_CVRG_MAX;
414 dig_mid = DIG_CVRG_MID;
415 dig_min = DIG_CVRG_MIN;
416 min_rssi = dig_min;
417 }
418
419 /* DIG MAX should be bounded by minimum RSSI with offset +15 */
420 dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
421
422 *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
423 *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
424}
425
426static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
427 u16 *fa_th, u8 *step, bool linked)
428{
429 u8 min_rssi, pre_min_rssi;
430
431 min_rssi = dm_info->min_rssi;
432 pre_min_rssi = dm_info->pre_min_rssi;
433 step[0] = 4;
434 step[1] = 3;
435 step[2] = 2;
436
437 if (linked) {
438 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
439 fa_th[1] = DIG_PERF_FA_TH_HIGH;
440 fa_th[2] = DIG_PERF_FA_TH_LOW;
441 if (pre_min_rssi > min_rssi) {
442 step[0] = 6;
443 step[1] = 4;
444 step[2] = 2;
445 }
446 } else {
447 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
448 fa_th[1] = DIG_CVRG_FA_TH_HIGH;
449 fa_th[2] = DIG_CVRG_FA_TH_LOW;
450 }
451}
452
453static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
454{
455 u8 *igi_history;
456 u16 *fa_history;
457 u8 igi_bitmap;
458 bool up;
459
460 igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
461 igi_history = dm_info->igi_history;
462 fa_history = dm_info->fa_history;
463
464 up = igi > igi_history[0];
465 igi_bitmap |= up;
466
467 igi_history[3] = igi_history[2];
468 igi_history[2] = igi_history[1];
469 igi_history[1] = igi_history[0];
470 igi_history[0] = igi;
471
472 fa_history[3] = fa_history[2];
473 fa_history[2] = fa_history[1];
474 fa_history[1] = fa_history[0];
475 fa_history[0] = fa;
476
477 dm_info->igi_bitmap = igi_bitmap;
478}
479
480static void rtw_phy_dig(struct rtw_dev *rtwdev)
481{
482 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
483 u8 upper_bound, lower_bound;
484 u8 pre_igi, cur_igi;
485 u16 fa_th[3], fa_cnt;
486 u8 level;
487 u8 step[3];
488 bool linked;
489
490 if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
491 return;
492
493 if (rtw_phy_dig_check_damping(dm_info))
494 return;
495
496 linked = !!rtwdev->sta_cnt;
497
498 fa_cnt = dm_info->total_fa_cnt;
499 pre_igi = dm_info->igi_history[0];
500
501 rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
502
503 /* test the false alarm count from the highest threshold level first,
504 * and increase it by corresponding step size
505 *
506 * note that the step size is offset by -2, compensate it afterall
507 */
508 cur_igi = pre_igi;
509 for (level = 0; level < 3; level++) {
510 if (fa_cnt > fa_th[level]) {
511 cur_igi += step[level];
512 break;
513 }
514 }
515 cur_igi -= 2;
516
517 /* calculate the upper/lower bound by the minimum rssi we have among
518 * the peers connected with us, meanwhile make sure the igi value does
519 * not beyond the hardware limitation
520 */
521 rtw_phy_dig_get_boundary(rtwdev, dm_info, upper: &upper_bound, lower: &lower_bound,
522 linked);
523 cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
524
525 /* record current igi value and false alarm statistics for further
526 * damping checks, and record the trend of igi values
527 */
528 rtw_phy_dig_recorder(dm_info, igi: cur_igi, fa: fa_cnt);
529
530 if (cur_igi != pre_igi)
531 rtw_phy_dig_write(rtwdev, igi: cur_igi);
532}
533
534static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
535{
536 struct rtw_dev *rtwdev = data;
537 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
538
539 rtw_update_sta_info(rtwdev, si, reset_ra_mask: false);
540}
541
542static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
543{
544 if (rtwdev->watch_dog_cnt & 0x3)
545 return;
546
547 rtw_iterate_stas(rtwdev, iterator: rtw_phy_ra_info_update_iter, data: rtwdev);
548}
549
550static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
551{
552 u8 rate_order;
553
554 rate_order = rate_idx;
555
556 if (rate_idx >= DESC_RATEVHT4SS_MCS0)
557 rate_order -= DESC_RATEVHT4SS_MCS0;
558 else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
559 rate_order -= DESC_RATEVHT3SS_MCS0;
560 else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
561 rate_order -= DESC_RATEVHT2SS_MCS0;
562 else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
563 rate_order -= DESC_RATEVHT1SS_MCS0;
564 else if (rate_idx >= DESC_RATEMCS24)
565 rate_order -= DESC_RATEMCS24;
566 else if (rate_idx >= DESC_RATEMCS16)
567 rate_order -= DESC_RATEMCS16;
568 else if (rate_idx >= DESC_RATEMCS8)
569 rate_order -= DESC_RATEMCS8;
570 else if (rate_idx >= DESC_RATEMCS0)
571 rate_order -= DESC_RATEMCS0;
572 else if (rate_idx >= DESC_RATE6M)
573 rate_order -= DESC_RATE6M;
574 else
575 rate_order -= DESC_RATE1M;
576
577 if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
578 rate_order++;
579
580 return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
581}
582
583static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
584{
585 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
586 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
587 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
588 u32 mask = 0;
589
590 mask = rtw_phy_get_rrsr_mask(rtwdev, rate_idx: si->ra_report.desc_rate);
591 if (mask < dm_info->rrsr_mask_min)
592 dm_info->rrsr_mask_min = mask;
593}
594
595static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
596{
597 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
598
599 dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
600 rtw_iterate_stas(rtwdev, iterator: rtw_phy_rrsr_mask_min_iter, data: rtwdev);
601 rtw_write32(rtwdev, REG_RRSR, val: dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
602}
603
604static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
605{
606 const struct rtw_chip_info *chip = rtwdev->chip;
607
608 if (chip->ops->dpk_track)
609 chip->ops->dpk_track(rtwdev);
610}
611
612struct rtw_rx_addr_match_data {
613 struct rtw_dev *rtwdev;
614 struct ieee80211_hdr *hdr;
615 struct rtw_rx_pkt_stat *pkt_stat;
616 u8 *bssid;
617};
618
619static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
620 struct ieee80211_vif *vif)
621{
622 struct rtw_rx_addr_match_data *iter_data = data;
623 struct rtw_dev *rtwdev = iter_data->rtwdev;
624 struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
625 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
626 struct rtw_cfo_track *cfo = &dm_info->cfo_track;
627 u8 *bssid = iter_data->bssid;
628 u8 i;
629
630 if (!ether_addr_equal(addr1: vif->bss_conf.bssid, addr2: bssid))
631 return;
632
633 for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
634 cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
635 cfo->cfo_cnt[i]++;
636 }
637
638 cfo->packet_count++;
639}
640
641void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
642 struct rtw_rx_pkt_stat *pkt_stat)
643{
644 struct ieee80211_hdr *hdr = pkt_stat->hdr;
645 struct rtw_rx_addr_match_data data = {};
646
647 if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
648 ieee80211_is_ctl(fc: hdr->frame_control))
649 return;
650
651 data.rtwdev = rtwdev;
652 data.hdr = hdr;
653 data.pkt_stat = pkt_stat;
654 data.bssid = get_hdr_bssid(hdr);
655
656 rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
657}
658EXPORT_SYMBOL(rtw_phy_parsing_cfo);
659
660static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
661{
662 const struct rtw_chip_info *chip = rtwdev->chip;
663
664 if (chip->ops->cfo_track)
665 chip->ops->cfo_track(rtwdev);
666}
667
668#define CCK_PD_FA_LV1_MIN 1000
669#define CCK_PD_FA_LV0_MAX 500
670
671static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
672{
673 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
674 u32 cck_fa_avg = dm_info->cck_fa_avg;
675
676 if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
677 return CCK_PD_LV1;
678
679 if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
680 return CCK_PD_LV0;
681
682 return CCK_PD_LV_MAX;
683}
684
685#define CCK_PD_IGI_LV4_VAL 0x38
686#define CCK_PD_IGI_LV3_VAL 0x2a
687#define CCK_PD_IGI_LV2_VAL 0x24
688#define CCK_PD_RSSI_LV4_VAL 32
689#define CCK_PD_RSSI_LV3_VAL 32
690#define CCK_PD_RSSI_LV2_VAL 24
691
692static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
693{
694 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
695 u8 igi = dm_info->igi_history[0];
696 u8 rssi = dm_info->min_rssi;
697 u32 cck_fa_avg = dm_info->cck_fa_avg;
698
699 if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
700 return CCK_PD_LV4;
701 if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
702 return CCK_PD_LV3;
703 if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
704 return CCK_PD_LV2;
705 if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
706 return CCK_PD_LV1;
707 if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
708 return CCK_PD_LV0;
709
710 return CCK_PD_LV_MAX;
711}
712
713static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
714{
715 if (!rtw_is_assoc(rtwdev))
716 return rtw_phy_cck_pd_lv_unlink(rtwdev);
717 else
718 return rtw_phy_cck_pd_lv_link(rtwdev);
719}
720
721static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
722{
723 const struct rtw_chip_info *chip = rtwdev->chip;
724 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
725 u32 cck_fa = dm_info->cck_fa_cnt;
726 u8 level;
727
728 if (rtwdev->hal.current_band_type != RTW_BAND_2G)
729 return;
730
731 if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
732 dm_info->cck_fa_avg = cck_fa;
733 else
734 dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
735
736 rtw_dbg(rtwdev, mask: RTW_DBG_PHY, fmt: "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
737 dm_info->igi_history[0], dm_info->min_rssi,
738 dm_info->fa_history[0]);
739 rtw_dbg(rtwdev, mask: RTW_DBG_PHY, fmt: "cck_fa_avg=%d, cck_pd_default=%d\n",
740 dm_info->cck_fa_avg, dm_info->cck_pd_default);
741
742 level = rtw_phy_cck_pd_lv(rtwdev);
743
744 if (level >= CCK_PD_LV_MAX)
745 return;
746
747 if (chip->ops->cck_pd_set)
748 chip->ops->cck_pd_set(rtwdev, level);
749}
750
751static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
752{
753 rtwdev->chip->ops->pwr_track(rtwdev);
754}
755
756static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
757{
758 rtw_fw_update_wl_phy_info(rtwdev);
759 rtw_phy_ra_info_update(rtwdev);
760 rtw_phy_rrsr_update(rtwdev);
761}
762
763void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
764{
765 /* for further calculation */
766 rtw_phy_statistics(rtwdev);
767 rtw_phy_dig(rtwdev);
768 rtw_phy_cck_pd(rtwdev);
769 rtw_phy_ra_track(rtwdev);
770 rtw_phy_tx_path_diversity(rtwdev);
771 rtw_phy_cfo_track(rtwdev);
772 rtw_phy_dpk_track(rtwdev);
773 rtw_phy_pwr_track(rtwdev);
774
775 if (rtw_fw_feature_check(fw: &rtwdev->fw, feature: FW_FEATURE_ADAPTIVITY))
776 rtw_fw_adaptivity(rtwdev);
777 else
778 rtw_phy_adaptivity(rtwdev);
779}
780
781#define FRAC_BITS 3
782
783static u8 rtw_phy_power_2_db(s8 power)
784{
785 if (power <= -100 || power >= 20)
786 return 0;
787 else if (power >= 0)
788 return 100;
789 else
790 return 100 + power;
791}
792
793static u64 rtw_phy_db_2_linear(u8 power_db)
794{
795 u8 i, j;
796 u64 linear;
797
798 if (power_db > 96)
799 power_db = 96;
800 else if (power_db < 1)
801 return 1;
802
803 /* 1dB ~ 96dB */
804 i = (power_db - 1) >> 3;
805 j = (power_db - 1) - (i << 3);
806
807 linear = db_invert_table[i][j];
808 linear = i > 2 ? linear << FRAC_BITS : linear;
809
810 return linear;
811}
812
813static u8 rtw_phy_linear_2_db(u64 linear)
814{
815 u8 i;
816 u8 j;
817 u32 dB;
818
819 for (i = 0; i < 12; i++) {
820 for (j = 0; j < 8; j++) {
821 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
822 goto cnt;
823 else if (i > 2 && linear <= db_invert_table[i][j])
824 goto cnt;
825 }
826 }
827
828 return 96; /* maximum 96 dB */
829
830cnt:
831 if (j == 0 && i == 0)
832 goto end;
833
834 if (j == 0) {
835 if (i != 3) {
836 if (db_invert_table[i][0] - linear >
837 linear - db_invert_table[i - 1][7]) {
838 i = i - 1;
839 j = 7;
840 }
841 } else {
842 if (db_invert_table[3][0] - linear >
843 linear - db_invert_table[2][7]) {
844 i = 2;
845 j = 7;
846 }
847 }
848 } else {
849 if (db_invert_table[i][j] - linear >
850 linear - db_invert_table[i][j - 1]) {
851 j = j - 1;
852 }
853 }
854end:
855 dB = (i << 3) + j + 1;
856
857 return dB;
858}
859
860u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
861{
862 s8 power;
863 u8 power_db;
864 u64 linear;
865 u64 sum = 0;
866 u8 path;
867
868 for (path = 0; path < path_num; path++) {
869 power = rf_power[path];
870 power_db = rtw_phy_power_2_db(power);
871 linear = rtw_phy_db_2_linear(power_db);
872 sum += linear;
873 }
874
875 sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
876 switch (path_num) {
877 case 2:
878 sum >>= 1;
879 break;
880 case 3:
881 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
882 break;
883 case 4:
884 sum >>= 2;
885 break;
886 default:
887 break;
888 }
889
890 return rtw_phy_linear_2_db(linear: sum);
891}
892EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
893
894u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
895 u32 addr, u32 mask)
896{
897 struct rtw_hal *hal = &rtwdev->hal;
898 const struct rtw_chip_info *chip = rtwdev->chip;
899 const u32 *base_addr = chip->rf_base_addr;
900 u32 val, direct_addr;
901
902 if (rf_path >= hal->rf_phy_num) {
903 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
904 return INV_RF_DATA;
905 }
906
907 addr &= 0xff;
908 direct_addr = base_addr[rf_path] + (addr << 2);
909 mask &= RFREG_MASK;
910
911 val = rtw_read32_mask(rtwdev, addr: direct_addr, mask);
912
913 return val;
914}
915EXPORT_SYMBOL(rtw_phy_read_rf);
916
917u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
918 u32 addr, u32 mask)
919{
920 struct rtw_hal *hal = &rtwdev->hal;
921 const struct rtw_chip_info *chip = rtwdev->chip;
922 const struct rtw_rf_sipi_addr *rf_sipi_addr;
923 const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
924 u32 val32;
925 u32 en_pi;
926 u32 r_addr;
927 u32 shift;
928
929 if (rf_path >= hal->rf_phy_num) {
930 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
931 return INV_RF_DATA;
932 }
933
934 if (!chip->rf_sipi_read_addr) {
935 rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
936 return INV_RF_DATA;
937 }
938
939 rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
940 rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
941
942 addr &= 0xff;
943
944 val32 = rtw_read32(rtwdev, addr: rf_sipi_addr->hssi_2);
945 val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
946 rtw_write32(rtwdev, addr: rf_sipi_addr->hssi_2, val: val32);
947
948 /* toggle read edge of path A */
949 val32 = rtw_read32(rtwdev, addr: rf_sipi_addr_a->hssi_2);
950 rtw_write32(rtwdev, addr: rf_sipi_addr_a->hssi_2, val: val32 & ~LSSI_READ_EDGE_MASK);
951 rtw_write32(rtwdev, addr: rf_sipi_addr_a->hssi_2, val: val32 | LSSI_READ_EDGE_MASK);
952
953 udelay(120);
954
955 en_pi = rtw_read32_mask(rtwdev, addr: rf_sipi_addr->hssi_1, BIT(8));
956 r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
957
958 val32 = rtw_read32_mask(rtwdev, addr: r_addr, LSSI_READ_DATA_MASK);
959
960 shift = __ffs(mask);
961
962 return (val32 & mask) >> shift;
963}
964EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
965
966bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
967 u32 addr, u32 mask, u32 data)
968{
969 struct rtw_hal *hal = &rtwdev->hal;
970 const struct rtw_chip_info *chip = rtwdev->chip;
971 const u32 *sipi_addr = chip->rf_sipi_addr;
972 u32 data_and_addr;
973 u32 old_data = 0;
974 u32 shift;
975
976 if (rf_path >= hal->rf_phy_num) {
977 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
978 return false;
979 }
980
981 addr &= 0xff;
982 mask &= RFREG_MASK;
983
984 if (mask != RFREG_MASK) {
985 old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
986
987 if (old_data == INV_RF_DATA) {
988 rtw_err(rtwdev, "Write fail, rf is disabled\n");
989 return false;
990 }
991
992 shift = __ffs(mask);
993 data = ((old_data) & (~mask)) | (data << shift);
994 }
995
996 data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
997
998 rtw_write32(rtwdev, addr: sipi_addr[rf_path], val: data_and_addr);
999
1000 udelay(13);
1001
1002 return true;
1003}
1004EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
1005
1006bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1007 u32 addr, u32 mask, u32 data)
1008{
1009 struct rtw_hal *hal = &rtwdev->hal;
1010 const struct rtw_chip_info *chip = rtwdev->chip;
1011 const u32 *base_addr = chip->rf_base_addr;
1012 u32 direct_addr;
1013
1014 if (rf_path >= hal->rf_phy_num) {
1015 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1016 return false;
1017 }
1018
1019 addr &= 0xff;
1020 direct_addr = base_addr[rf_path] + (addr << 2);
1021 mask &= RFREG_MASK;
1022
1023 rtw_write32_mask(rtwdev, addr: direct_addr, mask, data);
1024
1025 udelay(1);
1026
1027 return true;
1028}
1029
1030bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1031 u32 addr, u32 mask, u32 data)
1032{
1033 if (addr != 0x00)
1034 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
1035
1036 return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
1037}
1038EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
1039
1040void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
1041{
1042 struct rtw_hal *hal = &rtwdev->hal;
1043 struct rtw_efuse *efuse = &rtwdev->efuse;
1044 struct rtw_phy_cond cond = {0};
1045
1046 cond.cut = hal->cut_version ? hal->cut_version : 15;
1047 cond.pkg = pkg ? pkg : 15;
1048 cond.plat = 0x04;
1049 cond.rfe = efuse->rfe_option;
1050
1051 switch (rtw_hci_type(rtwdev)) {
1052 case RTW_HCI_TYPE_USB:
1053 cond.intf = INTF_USB;
1054 break;
1055 case RTW_HCI_TYPE_SDIO:
1056 cond.intf = INTF_SDIO;
1057 break;
1058 case RTW_HCI_TYPE_PCIE:
1059 default:
1060 cond.intf = INTF_PCIE;
1061 break;
1062 }
1063
1064 hal->phy_cond = cond;
1065
1066 rtw_dbg(rtwdev, mask: RTW_DBG_PHY, fmt: "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
1067}
1068
1069static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
1070{
1071 struct rtw_hal *hal = &rtwdev->hal;
1072 struct rtw_phy_cond drv_cond = hal->phy_cond;
1073
1074 if (cond.cut && cond.cut != drv_cond.cut)
1075 return false;
1076
1077 if (cond.pkg && cond.pkg != drv_cond.pkg)
1078 return false;
1079
1080 if (cond.intf && cond.intf != drv_cond.intf)
1081 return false;
1082
1083 if (cond.rfe != drv_cond.rfe)
1084 return false;
1085
1086 return true;
1087}
1088
1089void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1090{
1091 const union phy_table_tile *p = tbl->data;
1092 const union phy_table_tile *end = p + tbl->size / 2;
1093 struct rtw_phy_cond pos_cond = {0};
1094 bool is_matched = true, is_skipped = false;
1095
1096 BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1097
1098 for (; p < end; p++) {
1099 if (p->cond.pos) {
1100 switch (p->cond.branch) {
1101 case BRANCH_ENDIF:
1102 is_matched = true;
1103 is_skipped = false;
1104 break;
1105 case BRANCH_ELSE:
1106 is_matched = is_skipped ? false : true;
1107 break;
1108 case BRANCH_IF:
1109 case BRANCH_ELIF:
1110 default:
1111 pos_cond = p->cond;
1112 break;
1113 }
1114 } else if (p->cond.neg) {
1115 if (!is_skipped) {
1116 if (check_positive(rtwdev, cond: pos_cond)) {
1117 is_matched = true;
1118 is_skipped = true;
1119 } else {
1120 is_matched = false;
1121 is_skipped = false;
1122 }
1123 } else {
1124 is_matched = false;
1125 }
1126 } else if (is_matched) {
1127 (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1128 }
1129 }
1130}
1131EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1132
1133#define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1134
1135static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1136{
1137 if (rtwdev->chip->is_pwr_by_rate_dec)
1138 return bcd_to_dec_pwr_by_rate(hex, i);
1139
1140 return (hex >> (i * 8)) & 0xFF;
1141}
1142
1143static void
1144rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1145 u32 addr, u32 mask, u32 val, u8 *rate,
1146 u8 *pwr_by_rate, u8 *rate_num)
1147{
1148 int i;
1149
1150 switch (addr) {
1151 case 0xE00:
1152 case 0x830:
1153 rate[0] = DESC_RATE6M;
1154 rate[1] = DESC_RATE9M;
1155 rate[2] = DESC_RATE12M;
1156 rate[3] = DESC_RATE18M;
1157 for (i = 0; i < 4; ++i)
1158 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1159 *rate_num = 4;
1160 break;
1161 case 0xE04:
1162 case 0x834:
1163 rate[0] = DESC_RATE24M;
1164 rate[1] = DESC_RATE36M;
1165 rate[2] = DESC_RATE48M;
1166 rate[3] = DESC_RATE54M;
1167 for (i = 0; i < 4; ++i)
1168 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1169 *rate_num = 4;
1170 break;
1171 case 0xE08:
1172 rate[0] = DESC_RATE1M;
1173 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1174 *rate_num = 1;
1175 break;
1176 case 0x86C:
1177 if (mask == 0xffffff00) {
1178 rate[0] = DESC_RATE2M;
1179 rate[1] = DESC_RATE5_5M;
1180 rate[2] = DESC_RATE11M;
1181 for (i = 1; i < 4; ++i)
1182 pwr_by_rate[i - 1] =
1183 tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1184 *rate_num = 3;
1185 } else if (mask == 0x000000ff) {
1186 rate[0] = DESC_RATE11M;
1187 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1188 *rate_num = 1;
1189 }
1190 break;
1191 case 0xE10:
1192 case 0x83C:
1193 rate[0] = DESC_RATEMCS0;
1194 rate[1] = DESC_RATEMCS1;
1195 rate[2] = DESC_RATEMCS2;
1196 rate[3] = DESC_RATEMCS3;
1197 for (i = 0; i < 4; ++i)
1198 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1199 *rate_num = 4;
1200 break;
1201 case 0xE14:
1202 case 0x848:
1203 rate[0] = DESC_RATEMCS4;
1204 rate[1] = DESC_RATEMCS5;
1205 rate[2] = DESC_RATEMCS6;
1206 rate[3] = DESC_RATEMCS7;
1207 for (i = 0; i < 4; ++i)
1208 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1209 *rate_num = 4;
1210 break;
1211 case 0xE18:
1212 case 0x84C:
1213 rate[0] = DESC_RATEMCS8;
1214 rate[1] = DESC_RATEMCS9;
1215 rate[2] = DESC_RATEMCS10;
1216 rate[3] = DESC_RATEMCS11;
1217 for (i = 0; i < 4; ++i)
1218 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1219 *rate_num = 4;
1220 break;
1221 case 0xE1C:
1222 case 0x868:
1223 rate[0] = DESC_RATEMCS12;
1224 rate[1] = DESC_RATEMCS13;
1225 rate[2] = DESC_RATEMCS14;
1226 rate[3] = DESC_RATEMCS15;
1227 for (i = 0; i < 4; ++i)
1228 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1229 *rate_num = 4;
1230 break;
1231 case 0x838:
1232 rate[0] = DESC_RATE1M;
1233 rate[1] = DESC_RATE2M;
1234 rate[2] = DESC_RATE5_5M;
1235 for (i = 1; i < 4; ++i)
1236 pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1237 hex: val, i);
1238 *rate_num = 3;
1239 break;
1240 case 0xC20:
1241 case 0xE20:
1242 case 0x1820:
1243 case 0x1A20:
1244 rate[0] = DESC_RATE1M;
1245 rate[1] = DESC_RATE2M;
1246 rate[2] = DESC_RATE5_5M;
1247 rate[3] = DESC_RATE11M;
1248 for (i = 0; i < 4; ++i)
1249 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1250 *rate_num = 4;
1251 break;
1252 case 0xC24:
1253 case 0xE24:
1254 case 0x1824:
1255 case 0x1A24:
1256 rate[0] = DESC_RATE6M;
1257 rate[1] = DESC_RATE9M;
1258 rate[2] = DESC_RATE12M;
1259 rate[3] = DESC_RATE18M;
1260 for (i = 0; i < 4; ++i)
1261 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1262 *rate_num = 4;
1263 break;
1264 case 0xC28:
1265 case 0xE28:
1266 case 0x1828:
1267 case 0x1A28:
1268 rate[0] = DESC_RATE24M;
1269 rate[1] = DESC_RATE36M;
1270 rate[2] = DESC_RATE48M;
1271 rate[3] = DESC_RATE54M;
1272 for (i = 0; i < 4; ++i)
1273 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1274 *rate_num = 4;
1275 break;
1276 case 0xC2C:
1277 case 0xE2C:
1278 case 0x182C:
1279 case 0x1A2C:
1280 rate[0] = DESC_RATEMCS0;
1281 rate[1] = DESC_RATEMCS1;
1282 rate[2] = DESC_RATEMCS2;
1283 rate[3] = DESC_RATEMCS3;
1284 for (i = 0; i < 4; ++i)
1285 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1286 *rate_num = 4;
1287 break;
1288 case 0xC30:
1289 case 0xE30:
1290 case 0x1830:
1291 case 0x1A30:
1292 rate[0] = DESC_RATEMCS4;
1293 rate[1] = DESC_RATEMCS5;
1294 rate[2] = DESC_RATEMCS6;
1295 rate[3] = DESC_RATEMCS7;
1296 for (i = 0; i < 4; ++i)
1297 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1298 *rate_num = 4;
1299 break;
1300 case 0xC34:
1301 case 0xE34:
1302 case 0x1834:
1303 case 0x1A34:
1304 rate[0] = DESC_RATEMCS8;
1305 rate[1] = DESC_RATEMCS9;
1306 rate[2] = DESC_RATEMCS10;
1307 rate[3] = DESC_RATEMCS11;
1308 for (i = 0; i < 4; ++i)
1309 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1310 *rate_num = 4;
1311 break;
1312 case 0xC38:
1313 case 0xE38:
1314 case 0x1838:
1315 case 0x1A38:
1316 rate[0] = DESC_RATEMCS12;
1317 rate[1] = DESC_RATEMCS13;
1318 rate[2] = DESC_RATEMCS14;
1319 rate[3] = DESC_RATEMCS15;
1320 for (i = 0; i < 4; ++i)
1321 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1322 *rate_num = 4;
1323 break;
1324 case 0xC3C:
1325 case 0xE3C:
1326 case 0x183C:
1327 case 0x1A3C:
1328 rate[0] = DESC_RATEVHT1SS_MCS0;
1329 rate[1] = DESC_RATEVHT1SS_MCS1;
1330 rate[2] = DESC_RATEVHT1SS_MCS2;
1331 rate[3] = DESC_RATEVHT1SS_MCS3;
1332 for (i = 0; i < 4; ++i)
1333 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1334 *rate_num = 4;
1335 break;
1336 case 0xC40:
1337 case 0xE40:
1338 case 0x1840:
1339 case 0x1A40:
1340 rate[0] = DESC_RATEVHT1SS_MCS4;
1341 rate[1] = DESC_RATEVHT1SS_MCS5;
1342 rate[2] = DESC_RATEVHT1SS_MCS6;
1343 rate[3] = DESC_RATEVHT1SS_MCS7;
1344 for (i = 0; i < 4; ++i)
1345 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1346 *rate_num = 4;
1347 break;
1348 case 0xC44:
1349 case 0xE44:
1350 case 0x1844:
1351 case 0x1A44:
1352 rate[0] = DESC_RATEVHT1SS_MCS8;
1353 rate[1] = DESC_RATEVHT1SS_MCS9;
1354 rate[2] = DESC_RATEVHT2SS_MCS0;
1355 rate[3] = DESC_RATEVHT2SS_MCS1;
1356 for (i = 0; i < 4; ++i)
1357 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1358 *rate_num = 4;
1359 break;
1360 case 0xC48:
1361 case 0xE48:
1362 case 0x1848:
1363 case 0x1A48:
1364 rate[0] = DESC_RATEVHT2SS_MCS2;
1365 rate[1] = DESC_RATEVHT2SS_MCS3;
1366 rate[2] = DESC_RATEVHT2SS_MCS4;
1367 rate[3] = DESC_RATEVHT2SS_MCS5;
1368 for (i = 0; i < 4; ++i)
1369 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1370 *rate_num = 4;
1371 break;
1372 case 0xC4C:
1373 case 0xE4C:
1374 case 0x184C:
1375 case 0x1A4C:
1376 rate[0] = DESC_RATEVHT2SS_MCS6;
1377 rate[1] = DESC_RATEVHT2SS_MCS7;
1378 rate[2] = DESC_RATEVHT2SS_MCS8;
1379 rate[3] = DESC_RATEVHT2SS_MCS9;
1380 for (i = 0; i < 4; ++i)
1381 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1382 *rate_num = 4;
1383 break;
1384 case 0xCD8:
1385 case 0xED8:
1386 case 0x18D8:
1387 case 0x1AD8:
1388 rate[0] = DESC_RATEMCS16;
1389 rate[1] = DESC_RATEMCS17;
1390 rate[2] = DESC_RATEMCS18;
1391 rate[3] = DESC_RATEMCS19;
1392 for (i = 0; i < 4; ++i)
1393 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1394 *rate_num = 4;
1395 break;
1396 case 0xCDC:
1397 case 0xEDC:
1398 case 0x18DC:
1399 case 0x1ADC:
1400 rate[0] = DESC_RATEMCS20;
1401 rate[1] = DESC_RATEMCS21;
1402 rate[2] = DESC_RATEMCS22;
1403 rate[3] = DESC_RATEMCS23;
1404 for (i = 0; i < 4; ++i)
1405 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1406 *rate_num = 4;
1407 break;
1408 case 0xCE0:
1409 case 0xEE0:
1410 case 0x18E0:
1411 case 0x1AE0:
1412 rate[0] = DESC_RATEVHT3SS_MCS0;
1413 rate[1] = DESC_RATEVHT3SS_MCS1;
1414 rate[2] = DESC_RATEVHT3SS_MCS2;
1415 rate[3] = DESC_RATEVHT3SS_MCS3;
1416 for (i = 0; i < 4; ++i)
1417 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1418 *rate_num = 4;
1419 break;
1420 case 0xCE4:
1421 case 0xEE4:
1422 case 0x18E4:
1423 case 0x1AE4:
1424 rate[0] = DESC_RATEVHT3SS_MCS4;
1425 rate[1] = DESC_RATEVHT3SS_MCS5;
1426 rate[2] = DESC_RATEVHT3SS_MCS6;
1427 rate[3] = DESC_RATEVHT3SS_MCS7;
1428 for (i = 0; i < 4; ++i)
1429 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1430 *rate_num = 4;
1431 break;
1432 case 0xCE8:
1433 case 0xEE8:
1434 case 0x18E8:
1435 case 0x1AE8:
1436 rate[0] = DESC_RATEVHT3SS_MCS8;
1437 rate[1] = DESC_RATEVHT3SS_MCS9;
1438 for (i = 0; i < 2; ++i)
1439 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, hex: val, i);
1440 *rate_num = 2;
1441 break;
1442 default:
1443 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1444 break;
1445 }
1446}
1447
1448static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1449 u32 band, u32 rfpath, u32 txnum,
1450 u32 regaddr, u32 bitmask, u32 data)
1451{
1452 struct rtw_hal *hal = &rtwdev->hal;
1453 u8 rate_num = 0;
1454 u8 rate;
1455 u8 rates[RTW_RF_PATH_MAX] = {0};
1456 s8 offset;
1457 s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1458 int i;
1459
1460 rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, addr: regaddr, mask: bitmask, val: data,
1461 rate: rates, pwr_by_rate, rate_num: &rate_num);
1462
1463 if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1464 (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1465 rate_num > RTW_RF_PATH_MAX))
1466 return;
1467
1468 for (i = 0; i < rate_num; i++) {
1469 offset = pwr_by_rate[i];
1470 rate = rates[i];
1471 if (band == PHY_BAND_2G)
1472 hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1473 else if (band == PHY_BAND_5G)
1474 hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1475 else
1476 continue;
1477 }
1478}
1479
1480void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1481{
1482 const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1483 const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1484
1485 for (; p < end; p++) {
1486 if (p->addr == 0xfe || p->addr == 0xffe) {
1487 msleep(msecs: 50);
1488 continue;
1489 }
1490 rtw_phy_store_tx_power_by_rate(rtwdev, band: p->band, rfpath: p->rf_path,
1491 txnum: p->tx_num, regaddr: p->addr, bitmask: p->bitmask,
1492 data: p->data);
1493 }
1494}
1495EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1496
1497static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1498 36, 38, 40, 42, 44, 46, 48, /* Band 1 */
1499 52, 54, 56, 58, 60, 62, 64, /* Band 2 */
1500 100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1501 116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1502 132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1503 149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1504 165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1505
1506static int rtw_channel_to_idx(u8 band, u8 channel)
1507{
1508 int ch_idx;
1509 u8 n_channel;
1510
1511 if (band == PHY_BAND_2G) {
1512 ch_idx = channel - 1;
1513 n_channel = RTW_MAX_CHANNEL_NUM_2G;
1514 } else if (band == PHY_BAND_5G) {
1515 n_channel = RTW_MAX_CHANNEL_NUM_5G;
1516 for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1517 if (rtw_channel_idx_5g[ch_idx] == channel)
1518 break;
1519 } else {
1520 return -1;
1521 }
1522
1523 if (ch_idx >= n_channel)
1524 return -1;
1525
1526 return ch_idx;
1527}
1528
1529static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1530 u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1531{
1532 struct rtw_hal *hal = &rtwdev->hal;
1533 u8 max_power_index = rtwdev->chip->max_power_index;
1534 s8 ww;
1535 int ch_idx;
1536
1537 pwr_limit = clamp_t(s8, pwr_limit,
1538 -max_power_index, max_power_index);
1539 ch_idx = rtw_channel_to_idx(band, channel: ch);
1540
1541 if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1542 rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1543 WARN(1,
1544 "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1545 regd, band, bw, rs, ch_idx, pwr_limit);
1546 return;
1547 }
1548
1549 if (band == PHY_BAND_2G) {
1550 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1551 ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1552 ww = min_t(s8, ww, pwr_limit);
1553 hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1554 } else if (band == PHY_BAND_5G) {
1555 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1556 ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1557 ww = min_t(s8, ww, pwr_limit);
1558 hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1559 }
1560}
1561
1562/* cross-reference 5G power limits if values are not assigned */
1563static void
1564rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1565 u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1566{
1567 struct rtw_hal *hal = &rtwdev->hal;
1568 u8 max_power_index = rtwdev->chip->max_power_index;
1569 s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1570 s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1571
1572 if (lmt_ht == lmt_vht)
1573 return;
1574
1575 if (lmt_ht == max_power_index)
1576 hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1577
1578 else if (lmt_vht == max_power_index)
1579 hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1580}
1581
1582/* cross-reference power limits for ht and vht */
1583static void
1584rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1585{
1586 u8 rs_idx, rs_ht, rs_vht;
1587 u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1588 {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1589
1590 for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1591 rs_ht = rs_cmp[rs_idx][0];
1592 rs_vht = rs_cmp[rs_idx][1];
1593
1594 rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1595 }
1596}
1597
1598/* cross-reference power limits for 5G channels */
1599static void
1600rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1601{
1602 u8 ch_idx;
1603
1604 for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1605 rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1606}
1607
1608/* cross-reference power limits for 20/40M bandwidth */
1609static void
1610rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1611{
1612 u8 bw;
1613
1614 for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1615 rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1616}
1617
1618/* cross-reference power limits */
1619static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1620{
1621 u8 regd;
1622
1623 for (regd = 0; regd < RTW_REGD_MAX; regd++)
1624 rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1625}
1626
1627static void
1628__cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
1629{
1630 u8 ch;
1631
1632 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1633 hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
1634 hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
1635
1636 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1637 hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
1638 hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
1639}
1640
1641static void
1642rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
1643{
1644 u8 bw, rs;
1645
1646 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1647 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1648 __cfg_txpwr_lmt_by_alt(hal: &rtwdev->hal, regd, regd_alt,
1649 bw, rs);
1650}
1651
1652void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1653 const struct rtw_table *tbl)
1654{
1655 const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1656 const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1657 u32 regd_cfg_flag = 0;
1658 u8 regd_alt;
1659 u8 i;
1660
1661 for (; p < end; p++) {
1662 regd_cfg_flag |= BIT(p->regd);
1663 rtw_phy_set_tx_power_limit(rtwdev, regd: p->regd, band: p->band,
1664 bw: p->bw, rs: p->rs, ch: p->ch, pwr_limit: p->txpwr_lmt);
1665 }
1666
1667 for (i = 0; i < RTW_REGD_MAX; i++) {
1668 if (i == RTW_REGD_WW)
1669 continue;
1670
1671 if (regd_cfg_flag & BIT(i))
1672 continue;
1673
1674 rtw_dbg(rtwdev, mask: RTW_DBG_REGD,
1675 fmt: "txpwr regd %d does not be configured\n", i);
1676
1677 if (rtw_regd_has_alt(regd: i, regd_alt: &regd_alt) &&
1678 regd_cfg_flag & BIT(regd_alt)) {
1679 rtw_dbg(rtwdev, mask: RTW_DBG_REGD,
1680 fmt: "cfg txpwr regd %d by regd %d as alternative\n",
1681 i, regd_alt);
1682
1683 rtw_cfg_txpwr_lmt_by_alt(rtwdev, regd: i, regd_alt);
1684 continue;
1685 }
1686
1687 rtw_dbg(rtwdev, mask: RTW_DBG_REGD, fmt: "cfg txpwr regd %d by WW\n", i);
1688 rtw_cfg_txpwr_lmt_by_alt(rtwdev, regd: i, regd_alt: RTW_REGD_WW);
1689 }
1690
1691 rtw_xref_txpwr_lmt(rtwdev);
1692}
1693EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1694
1695void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1696 u32 addr, u32 data)
1697{
1698 rtw_write8(rtwdev, addr, val: data);
1699}
1700EXPORT_SYMBOL(rtw_phy_cfg_mac);
1701
1702void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1703 u32 addr, u32 data)
1704{
1705 rtw_write32(rtwdev, addr, val: data);
1706}
1707EXPORT_SYMBOL(rtw_phy_cfg_agc);
1708
1709void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1710 u32 addr, u32 data)
1711{
1712 if (addr == 0xfe)
1713 msleep(msecs: 50);
1714 else if (addr == 0xfd)
1715 mdelay(5);
1716 else if (addr == 0xfc)
1717 mdelay(1);
1718 else if (addr == 0xfb)
1719 usleep_range(min: 50, max: 60);
1720 else if (addr == 0xfa)
1721 udelay(5);
1722 else if (addr == 0xf9)
1723 udelay(1);
1724 else
1725 rtw_write32(rtwdev, addr, val: data);
1726}
1727EXPORT_SYMBOL(rtw_phy_cfg_bb);
1728
1729void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1730 u32 addr, u32 data)
1731{
1732 if (addr == 0xffe) {
1733 msleep(msecs: 50);
1734 } else if (addr == 0xfe) {
1735 usleep_range(min: 100, max: 110);
1736 } else {
1737 rtw_write_rf(rtwdev, rf_path: tbl->rf_path, addr, RFREG_MASK, data);
1738 udelay(1);
1739 }
1740}
1741EXPORT_SYMBOL(rtw_phy_cfg_rf);
1742
1743static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1744{
1745 const struct rtw_chip_info *chip = rtwdev->chip;
1746 struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1747
1748 if (!chip->rfk_init_tbl)
1749 return;
1750
1751 rtw_write32_mask(rtwdev, addr: 0x1e24, BIT(17), data: 0x1);
1752 rtw_write32_mask(rtwdev, addr: 0x1cd0, BIT(28), data: 0x1);
1753 rtw_write32_mask(rtwdev, addr: 0x1cd0, BIT(29), data: 0x1);
1754 rtw_write32_mask(rtwdev, addr: 0x1cd0, BIT(30), data: 0x1);
1755 rtw_write32_mask(rtwdev, addr: 0x1cd0, BIT(31), data: 0x0);
1756
1757 rtw_load_table(rtwdev, tbl: chip->rfk_init_tbl);
1758
1759 dpk_info->is_dpk_pwr_on = true;
1760}
1761
1762void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1763{
1764 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1765 const struct rtw_chip_info *chip = rtwdev->chip;
1766 u8 rf_path;
1767
1768 rtw_load_table(rtwdev, tbl: chip->mac_tbl);
1769 rtw_load_table(rtwdev, tbl: chip->bb_tbl);
1770 rtw_load_table(rtwdev, tbl: chip->agc_tbl);
1771 if (rfe_def->agc_btg_tbl)
1772 rtw_load_table(rtwdev, tbl: rfe_def->agc_btg_tbl);
1773 rtw_load_rfk_table(rtwdev);
1774
1775 for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1776 const struct rtw_table *tbl;
1777
1778 tbl = chip->rf_tbl[rf_path];
1779 rtw_load_table(rtwdev, tbl);
1780 }
1781}
1782EXPORT_SYMBOL(rtw_phy_load_tables);
1783
1784static u8 rtw_get_channel_group(u8 channel, u8 rate)
1785{
1786 switch (channel) {
1787 default:
1788 WARN_ON(1);
1789 fallthrough;
1790 case 1:
1791 case 2:
1792 case 36:
1793 case 38:
1794 case 40:
1795 case 42:
1796 return 0;
1797 case 3:
1798 case 4:
1799 case 5:
1800 case 44:
1801 case 46:
1802 case 48:
1803 case 50:
1804 return 1;
1805 case 6:
1806 case 7:
1807 case 8:
1808 case 52:
1809 case 54:
1810 case 56:
1811 case 58:
1812 return 2;
1813 case 9:
1814 case 10:
1815 case 11:
1816 case 60:
1817 case 62:
1818 case 64:
1819 return 3;
1820 case 12:
1821 case 13:
1822 case 100:
1823 case 102:
1824 case 104:
1825 case 106:
1826 return 4;
1827 case 14:
1828 return rate <= DESC_RATE11M ? 5 : 4;
1829 case 108:
1830 case 110:
1831 case 112:
1832 case 114:
1833 return 5;
1834 case 116:
1835 case 118:
1836 case 120:
1837 case 122:
1838 return 6;
1839 case 124:
1840 case 126:
1841 case 128:
1842 case 130:
1843 return 7;
1844 case 132:
1845 case 134:
1846 case 136:
1847 case 138:
1848 return 8;
1849 case 140:
1850 case 142:
1851 case 144:
1852 return 9;
1853 case 149:
1854 case 151:
1855 case 153:
1856 case 155:
1857 return 10;
1858 case 157:
1859 case 159:
1860 case 161:
1861 return 11;
1862 case 165:
1863 case 167:
1864 case 169:
1865 case 171:
1866 return 12;
1867 case 173:
1868 case 175:
1869 case 177:
1870 return 13;
1871 }
1872}
1873
1874static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1875{
1876 const struct rtw_chip_info *chip = rtwdev->chip;
1877 s8 dpd_diff = 0;
1878
1879 if (!chip->en_dis_dpd)
1880 return 0;
1881
1882#define RTW_DPD_RATE_CHECK(_rate) \
1883 case DESC_RATE ## _rate: \
1884 if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \
1885 dpd_diff = -6 * chip->txgi_factor; \
1886 break
1887
1888 switch (rate) {
1889 RTW_DPD_RATE_CHECK(6M);
1890 RTW_DPD_RATE_CHECK(9M);
1891 RTW_DPD_RATE_CHECK(MCS0);
1892 RTW_DPD_RATE_CHECK(MCS1);
1893 RTW_DPD_RATE_CHECK(MCS8);
1894 RTW_DPD_RATE_CHECK(MCS9);
1895 RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1896 RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1897 RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1898 RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1899 }
1900#undef RTW_DPD_RATE_CHECK
1901
1902 return dpd_diff;
1903}
1904
1905static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1906 struct rtw_2g_txpwr_idx *pwr_idx_2g,
1907 enum rtw_bandwidth bandwidth,
1908 u8 rate, u8 group)
1909{
1910 const struct rtw_chip_info *chip = rtwdev->chip;
1911 u8 tx_power;
1912 bool mcs_rate;
1913 bool above_2ss;
1914 u8 factor = chip->txgi_factor;
1915
1916 if (rate <= DESC_RATE11M)
1917 tx_power = pwr_idx_2g->cck_base[group];
1918 else
1919 tx_power = pwr_idx_2g->bw40_base[group];
1920
1921 if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1922 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1923
1924 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1925 (rate >= DESC_RATEVHT1SS_MCS0 &&
1926 rate <= DESC_RATEVHT2SS_MCS9);
1927 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1928 (rate >= DESC_RATEVHT2SS_MCS0);
1929
1930 if (!mcs_rate)
1931 return tx_power;
1932
1933 switch (bandwidth) {
1934 default:
1935 WARN_ON(1);
1936 fallthrough;
1937 case RTW_CHANNEL_WIDTH_20:
1938 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1939 if (above_2ss)
1940 tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1941 break;
1942 case RTW_CHANNEL_WIDTH_40:
1943 /* bw40 is the base power */
1944 if (above_2ss)
1945 tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1946 break;
1947 }
1948
1949 return tx_power;
1950}
1951
1952static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1953 struct rtw_5g_txpwr_idx *pwr_idx_5g,
1954 enum rtw_bandwidth bandwidth,
1955 u8 rate, u8 group)
1956{
1957 const struct rtw_chip_info *chip = rtwdev->chip;
1958 u8 tx_power;
1959 u8 upper, lower;
1960 bool mcs_rate;
1961 bool above_2ss;
1962 u8 factor = chip->txgi_factor;
1963
1964 tx_power = pwr_idx_5g->bw40_base[group];
1965
1966 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1967 (rate >= DESC_RATEVHT1SS_MCS0 &&
1968 rate <= DESC_RATEVHT2SS_MCS9);
1969 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1970 (rate >= DESC_RATEVHT2SS_MCS0);
1971
1972 if (!mcs_rate) {
1973 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1974 return tx_power;
1975 }
1976
1977 switch (bandwidth) {
1978 default:
1979 WARN_ON(1);
1980 fallthrough;
1981 case RTW_CHANNEL_WIDTH_20:
1982 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1983 if (above_2ss)
1984 tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1985 break;
1986 case RTW_CHANNEL_WIDTH_40:
1987 /* bw40 is the base power */
1988 if (above_2ss)
1989 tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1990 break;
1991 case RTW_CHANNEL_WIDTH_80:
1992 /* the base idx of bw80 is the average of bw40+/bw40- */
1993 lower = pwr_idx_5g->bw40_base[group];
1994 upper = pwr_idx_5g->bw40_base[group + 1];
1995
1996 tx_power = (lower + upper) / 2;
1997 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1998 if (above_2ss)
1999 tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
2000 break;
2001 }
2002
2003 return tx_power;
2004}
2005
2006/* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
2007static u8 rtw_phy_rate_to_rate_section(u8 rate)
2008{
2009 if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
2010 return RTW_RATE_SECTION_CCK;
2011 else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2012 return RTW_RATE_SECTION_OFDM;
2013 else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
2014 return RTW_RATE_SECTION_HT_1S;
2015 else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
2016 return RTW_RATE_SECTION_HT_2S;
2017 else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
2018 return RTW_RATE_SECTION_VHT_1S;
2019 else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
2020 return RTW_RATE_SECTION_VHT_2S;
2021 else
2022 return RTW_RATE_SECTION_MAX;
2023}
2024
2025static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
2026 enum rtw_bandwidth bw, u8 rf_path,
2027 u8 rate, u8 channel, u8 regd)
2028{
2029 struct rtw_hal *hal = &rtwdev->hal;
2030 u8 *cch_by_bw = hal->cch_by_bw;
2031 s8 power_limit = (s8)rtwdev->chip->max_power_index;
2032 u8 rs = rtw_phy_rate_to_rate_section(rate);
2033 int ch_idx;
2034 u8 cur_bw, cur_ch;
2035 s8 cur_lmt;
2036
2037 if (regd > RTW_REGD_WW)
2038 return power_limit;
2039
2040 if (rs == RTW_RATE_SECTION_MAX)
2041 goto err;
2042
2043 /* only 20M BW with cck and ofdm */
2044 if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
2045 bw = RTW_CHANNEL_WIDTH_20;
2046
2047 /* only 20/40M BW with ht */
2048 if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
2049 bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
2050
2051 /* select min power limit among [20M BW ~ current BW] */
2052 for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
2053 cur_ch = cch_by_bw[cur_bw];
2054
2055 ch_idx = rtw_channel_to_idx(band, channel: cur_ch);
2056 if (ch_idx < 0)
2057 goto err;
2058
2059 cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
2060 hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
2061 hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
2062
2063 power_limit = min_t(s8, cur_lmt, power_limit);
2064 }
2065
2066 return power_limit;
2067
2068err:
2069 WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
2070 band, bw, rf_path, rate, channel);
2071 return (s8)rtwdev->chip->max_power_index;
2072}
2073
2074static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
2075 u8 rf_path, u8 rate)
2076{
2077 u8 rs = rtw_phy_rate_to_rate_section(rate);
2078 struct rtw_sar_arg arg = {
2079 .sar_band = sar_band,
2080 .path = rf_path,
2081 .rs = rs,
2082 };
2083
2084 if (rs == RTW_RATE_SECTION_MAX)
2085 goto err;
2086
2087 return rtw_query_sar(rtwdev, arg: &arg);
2088
2089err:
2090 WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
2091 sar_band, rf_path, rate);
2092 return (s8)rtwdev->chip->max_power_index;
2093}
2094
2095void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
2096 u8 ch, u8 regd, struct rtw_power_params *pwr_param)
2097{
2098 struct rtw_hal *hal = &rtwdev->hal;
2099 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2100 struct rtw_txpwr_idx *pwr_idx;
2101 u8 group, band;
2102 u8 *base = &pwr_param->pwr_base;
2103 s8 *offset = &pwr_param->pwr_offset;
2104 s8 *limit = &pwr_param->pwr_limit;
2105 s8 *remnant = &pwr_param->pwr_remnant;
2106 s8 *sar = &pwr_param->pwr_sar;
2107
2108 pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
2109 group = rtw_get_channel_group(channel: ch, rate);
2110
2111 /* base power index for 2.4G/5G */
2112 if (IS_CH_2G_BAND(ch)) {
2113 band = PHY_BAND_2G;
2114 *base = rtw_phy_get_2g_tx_power_index(rtwdev,
2115 pwr_idx_2g: &pwr_idx->pwr_idx_2g,
2116 bandwidth: bw, rate, group);
2117 *offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
2118 } else {
2119 band = PHY_BAND_5G;
2120 *base = rtw_phy_get_5g_tx_power_index(rtwdev,
2121 pwr_idx_5g: &pwr_idx->pwr_idx_5g,
2122 bandwidth: bw, rate, group);
2123 *offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
2124 }
2125
2126 *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, rf_path: path,
2127 rate, channel: ch, regd);
2128 *remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
2129 dm_info->txagc_remnant_ofdm);
2130 *sar = rtw_phy_get_tx_power_sar(rtwdev, sar_band: hal->sar_band, rf_path: path, rate);
2131}
2132
2133u8
2134rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
2135 enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
2136{
2137 struct rtw_power_params pwr_param = {0};
2138 u8 tx_power;
2139 s8 offset;
2140
2141 rtw_get_tx_power_params(rtwdev, path: rf_path, rate, bw: bandwidth,
2142 ch: channel, regd, pwr_param: &pwr_param);
2143
2144 tx_power = pwr_param.pwr_base;
2145 offset = min3(pwr_param.pwr_offset,
2146 pwr_param.pwr_limit,
2147 pwr_param.pwr_sar);
2148
2149 if (rtwdev->chip->en_dis_dpd)
2150 offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2151
2152 tx_power += offset + pwr_param.pwr_remnant;
2153
2154 if (tx_power > rtwdev->chip->max_power_index)
2155 tx_power = rtwdev->chip->max_power_index;
2156
2157 return tx_power;
2158}
2159EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2160
2161static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2162 u8 ch, u8 path, u8 rs)
2163{
2164 struct rtw_hal *hal = &rtwdev->hal;
2165 u8 regd = rtw_regd_get(rtwdev);
2166 u8 *rates;
2167 u8 size;
2168 u8 rate;
2169 u8 pwr_idx;
2170 u8 bw;
2171 int i;
2172
2173 if (rs >= RTW_RATE_SECTION_MAX)
2174 return;
2175
2176 rates = rtw_rate_section[rs];
2177 size = rtw_rate_size[rs];
2178 bw = hal->current_band_width;
2179 for (i = 0; i < size; i++) {
2180 rate = rates[i];
2181 pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2182 bw, ch, regd);
2183 hal->tx_pwr_tbl[path][rate] = pwr_idx;
2184 }
2185}
2186
2187/* set tx power level by path for each rates, note that the order of the rates
2188 * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2189 * power index into a four-byte power index register, and calls set_tx_agc to
2190 * write these values into hardware
2191 */
2192static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2193 u8 ch, u8 path)
2194{
2195 struct rtw_hal *hal = &rtwdev->hal;
2196 u8 rs;
2197
2198 /* do not need cck rates if we are not in 2.4G */
2199 if (hal->current_band_type == RTW_BAND_2G)
2200 rs = RTW_RATE_SECTION_CCK;
2201 else
2202 rs = RTW_RATE_SECTION_OFDM;
2203
2204 for (; rs < RTW_RATE_SECTION_MAX; rs++)
2205 rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2206}
2207
2208void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2209{
2210 const struct rtw_chip_info *chip = rtwdev->chip;
2211 struct rtw_hal *hal = &rtwdev->hal;
2212 u8 path;
2213
2214 mutex_lock(&hal->tx_power_mutex);
2215
2216 for (path = 0; path < hal->rf_path_num; path++)
2217 rtw_phy_set_tx_power_level_by_path(rtwdev, ch: channel, path);
2218
2219 chip->ops->set_tx_power_index(rtwdev);
2220 mutex_unlock(lock: &hal->tx_power_mutex);
2221}
2222EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2223
2224static void
2225rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2226 u8 rs, u8 size, u8 *rates)
2227{
2228 u8 rate;
2229 u8 base_idx, rate_idx;
2230 s8 base_2g, base_5g;
2231
2232 if (rs >= RTW_RATE_SECTION_VHT_1S)
2233 base_idx = rates[size - 3];
2234 else
2235 base_idx = rates[size - 1];
2236 base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2237 base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2238 hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2239 hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2240 for (rate = 0; rate < size; rate++) {
2241 rate_idx = rates[rate];
2242 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2243 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2244 }
2245}
2246
2247void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2248{
2249 u8 path;
2250
2251 for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2252 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2253 rs: RTW_RATE_SECTION_CCK,
2254 size: rtw_cck_size, rates: rtw_cck_rates);
2255 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2256 rs: RTW_RATE_SECTION_OFDM,
2257 size: rtw_ofdm_size, rates: rtw_ofdm_rates);
2258 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2259 rs: RTW_RATE_SECTION_HT_1S,
2260 size: rtw_ht_1s_size, rates: rtw_ht_1s_rates);
2261 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2262 rs: RTW_RATE_SECTION_HT_2S,
2263 size: rtw_ht_2s_size, rates: rtw_ht_2s_rates);
2264 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2265 rs: RTW_RATE_SECTION_VHT_1S,
2266 size: rtw_vht_1s_size, rates: rtw_vht_1s_rates);
2267 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2268 rs: RTW_RATE_SECTION_VHT_2S,
2269 size: rtw_vht_2s_size, rates: rtw_vht_2s_rates);
2270 }
2271}
2272
2273static void
2274__rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2275{
2276 s8 base;
2277 u8 ch;
2278
2279 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2280 base = hal->tx_pwr_by_rate_base_2g[0][rs];
2281 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2282 }
2283
2284 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2285 base = hal->tx_pwr_by_rate_base_5g[0][rs];
2286 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2287 }
2288}
2289
2290void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2291{
2292 u8 regd, bw, rs;
2293
2294 /* default at channel 1 */
2295 hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2296
2297 for (regd = 0; regd < RTW_REGD_MAX; regd++)
2298 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2299 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2300 __rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2301}
2302
2303static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2304 u8 regd, u8 bw, u8 rs)
2305{
2306 struct rtw_hal *hal = &rtwdev->hal;
2307 s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2308 u8 ch;
2309
2310 /* 2.4G channels */
2311 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2312 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2313
2314 /* 5G channels */
2315 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2316 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2317}
2318
2319void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2320{
2321 struct rtw_hal *hal = &rtwdev->hal;
2322 u8 regd, path, rate, rs, bw;
2323
2324 /* init tx power by rate offset */
2325 for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2326 for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2327 hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2328 hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2329 }
2330 }
2331
2332 /* init tx power limit */
2333 for (regd = 0; regd < RTW_REGD_MAX; regd++)
2334 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2335 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2336 rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2337 rs);
2338}
2339
2340void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2341 struct rtw_swing_table *swing_table)
2342{
2343 const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2344 u8 channel = rtwdev->hal.current_channel;
2345
2346 if (IS_CH_2G_BAND(channel)) {
2347 if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2348 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2349 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2350 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2351 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2352 } else {
2353 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2354 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2355 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2356 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2357 }
2358 } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2359 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2360 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2361 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2362 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2363 } else if (IS_CH_5G_BAND_3(channel)) {
2364 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2365 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2366 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2367 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2368 } else if (IS_CH_5G_BAND_4(channel)) {
2369 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2370 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2371 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2372 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2373 } else {
2374 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2375 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2376 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2377 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2378 }
2379}
2380EXPORT_SYMBOL(rtw_phy_config_swing_table);
2381
2382void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2383{
2384 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2385
2386 ewma_thermal_add(e: &dm_info->avg_thermal[path], val: thermal);
2387 dm_info->thermal_avg[path] =
2388 ewma_thermal_read(e: &dm_info->avg_thermal[path]);
2389}
2390EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2391
2392bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2393 u8 path)
2394{
2395 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2396 u8 avg = ewma_thermal_read(e: &dm_info->avg_thermal[path]);
2397
2398 if (avg == thermal)
2399 return false;
2400
2401 return true;
2402}
2403EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2404
2405u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2406{
2407 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2408 u8 therm_avg, therm_efuse, therm_delta;
2409
2410 therm_avg = dm_info->thermal_avg[path];
2411 therm_efuse = rtwdev->efuse.thermal_meter[path];
2412 therm_delta = abs(therm_avg - therm_efuse);
2413
2414 return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2415}
2416EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2417
2418s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2419 struct rtw_swing_table *swing_table,
2420 u8 tbl_path, u8 therm_path, u8 delta)
2421{
2422 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2423 const u8 *delta_swing_table_idx_pos;
2424 const u8 *delta_swing_table_idx_neg;
2425
2426 if (delta >= RTW_PWR_TRK_TBL_SZ) {
2427 rtw_warn(rtwdev, "power track table overflow\n");
2428 return 0;
2429 }
2430
2431 if (!swing_table) {
2432 rtw_warn(rtwdev, "swing table not configured\n");
2433 return 0;
2434 }
2435
2436 delta_swing_table_idx_pos = swing_table->p[tbl_path];
2437 delta_swing_table_idx_neg = swing_table->n[tbl_path];
2438
2439 if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2440 rtw_warn(rtwdev, "invalid swing table index\n");
2441 return 0;
2442 }
2443
2444 if (dm_info->thermal_avg[therm_path] >
2445 rtwdev->efuse.thermal_meter[therm_path])
2446 return delta_swing_table_idx_pos[delta];
2447 else
2448 return -delta_swing_table_idx_neg[delta];
2449}
2450EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2451
2452bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2453{
2454 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2455 u8 delta_lck;
2456
2457 delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2458 if (delta_lck >= rtwdev->chip->lck_threshold) {
2459 dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2460 return true;
2461 }
2462 return false;
2463}
2464EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2465
2466bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2467{
2468 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2469 u8 delta_iqk;
2470
2471 delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2472 if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2473 dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2474 return true;
2475 }
2476 return false;
2477}
2478EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2479
2480static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2481 enum rtw_bb_path tx_path_sel_1ss)
2482{
2483 struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2484 enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2485 const struct rtw_chip_info *chip = rtwdev->chip;
2486
2487 if (tx_path_sel_1ss == path_div->current_tx_path)
2488 return;
2489
2490 path_div->current_tx_path = tx_path_sel_1ss;
2491 rtw_dbg(rtwdev, mask: RTW_DBG_PATH_DIV, fmt: "Switch TX path=%s\n",
2492 tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2493 chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2494 tx_path_sel_1ss, tx_path_sel_cck, false);
2495}
2496
2497static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2498{
2499 struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2500 enum rtw_bb_path path = path_div->current_tx_path;
2501 s32 rssi_a = 0, rssi_b = 0;
2502
2503 if (path_div->path_a_cnt)
2504 rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2505 else
2506 rssi_a = 0;
2507 if (path_div->path_b_cnt)
2508 rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2509 else
2510 rssi_b = 0;
2511
2512 if (rssi_a != rssi_b)
2513 path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2514
2515 path_div->path_a_cnt = 0;
2516 path_div->path_a_sum = 0;
2517 path_div->path_b_cnt = 0;
2518 path_div->path_b_sum = 0;
2519 rtw_phy_set_tx_path_by_reg(rtwdev, tx_path_sel_1ss: path);
2520}
2521
2522static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2523{
2524 if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2525 rtw_dbg(rtwdev, mask: RTW_DBG_PATH_DIV,
2526 fmt: "[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2527 rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2528 return;
2529 }
2530 if (rtwdev->sta_cnt == 0) {
2531 rtw_dbg(rtwdev, mask: RTW_DBG_PATH_DIV, fmt: "No Link\n");
2532 return;
2533 }
2534
2535 rtw_phy_tx_path_div_select(rtwdev);
2536}
2537
2538void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2539{
2540 const struct rtw_chip_info *chip = rtwdev->chip;
2541
2542 if (!chip->path_div_supported)
2543 return;
2544
2545 rtw_phy_tx_path_diversity_2ss(rtwdev);
2546}
2547

source code of linux/drivers/net/wireless/realtek/rtw88/phy.c