1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
4 * Author: Alex Williamson <alex.williamson@redhat.com>
5 *
6 * Derived from original vfio:
7 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
8 * Author: Tom Lyon, pugs@cisco.com
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/aperture.h>
14#include <linux/device.h>
15#include <linux/eventfd.h>
16#include <linux/file.h>
17#include <linux/interrupt.h>
18#include <linux/iommu.h>
19#include <linux/module.h>
20#include <linux/mutex.h>
21#include <linux/notifier.h>
22#include <linux/pci.h>
23#include <linux/pm_runtime.h>
24#include <linux/slab.h>
25#include <linux/types.h>
26#include <linux/uaccess.h>
27#include <linux/vgaarb.h>
28#include <linux/nospec.h>
29#include <linux/sched/mm.h>
30#include <linux/iommufd.h>
31#if IS_ENABLED(CONFIG_EEH)
32#include <asm/eeh.h>
33#endif
34
35#include "vfio_pci_priv.h"
36
37#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
38#define DRIVER_DESC "core driver for VFIO based PCI devices"
39
40static bool nointxmask;
41static bool disable_vga;
42static bool disable_idle_d3;
43
44/* List of PF's that vfio_pci_core_sriov_configure() has been called on */
45static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
46static LIST_HEAD(vfio_pci_sriov_pfs);
47
48struct vfio_pci_dummy_resource {
49 struct resource resource;
50 int index;
51 struct list_head res_next;
52};
53
54struct vfio_pci_vf_token {
55 struct mutex lock;
56 uuid_t uuid;
57 int users;
58};
59
60struct vfio_pci_mmap_vma {
61 struct vm_area_struct *vma;
62 struct list_head vma_next;
63};
64
65static inline bool vfio_vga_disabled(void)
66{
67#ifdef CONFIG_VFIO_PCI_VGA
68 return disable_vga;
69#else
70 return true;
71#endif
72}
73
74/*
75 * Our VGA arbiter participation is limited since we don't know anything
76 * about the device itself. However, if the device is the only VGA device
77 * downstream of a bridge and VFIO VGA support is disabled, then we can
78 * safely return legacy VGA IO and memory as not decoded since the user
79 * has no way to get to it and routing can be disabled externally at the
80 * bridge.
81 */
82static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
83{
84 struct pci_dev *tmp = NULL;
85 unsigned char max_busnr;
86 unsigned int decodes;
87
88 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pbus: pdev->bus))
89 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
90 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
91
92 max_busnr = pci_bus_max_busnr(bus: pdev->bus);
93 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
94
95 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, from: tmp)) != NULL) {
96 if (tmp == pdev ||
97 pci_domain_nr(bus: tmp->bus) != pci_domain_nr(bus: pdev->bus) ||
98 pci_is_root_bus(pbus: tmp->bus))
99 continue;
100
101 if (tmp->bus->number >= pdev->bus->number &&
102 tmp->bus->number <= max_busnr) {
103 pci_dev_put(dev: tmp);
104 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
105 break;
106 }
107 }
108
109 return decodes;
110}
111
112static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
113{
114 struct resource *res;
115 int i;
116 struct vfio_pci_dummy_resource *dummy_res;
117
118 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
119 int bar = i + PCI_STD_RESOURCES;
120
121 res = &vdev->pdev->resource[bar];
122
123 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
124 goto no_mmap;
125
126 if (!(res->flags & IORESOURCE_MEM))
127 goto no_mmap;
128
129 /*
130 * The PCI core shouldn't set up a resource with a
131 * type but zero size. But there may be bugs that
132 * cause us to do that.
133 */
134 if (!resource_size(res))
135 goto no_mmap;
136
137 if (resource_size(res) >= PAGE_SIZE) {
138 vdev->bar_mmap_supported[bar] = true;
139 continue;
140 }
141
142 if (!(res->start & ~PAGE_MASK)) {
143 /*
144 * Add a dummy resource to reserve the remainder
145 * of the exclusive page in case that hot-add
146 * device's bar is assigned into it.
147 */
148 dummy_res =
149 kzalloc(size: sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
150 if (dummy_res == NULL)
151 goto no_mmap;
152
153 dummy_res->resource.name = "vfio sub-page reserved";
154 dummy_res->resource.start = res->end + 1;
155 dummy_res->resource.end = res->start + PAGE_SIZE - 1;
156 dummy_res->resource.flags = res->flags;
157 if (request_resource(root: res->parent,
158 new: &dummy_res->resource)) {
159 kfree(objp: dummy_res);
160 goto no_mmap;
161 }
162 dummy_res->index = bar;
163 list_add(new: &dummy_res->res_next,
164 head: &vdev->dummy_resources_list);
165 vdev->bar_mmap_supported[bar] = true;
166 continue;
167 }
168 /*
169 * Here we don't handle the case when the BAR is not page
170 * aligned because we can't expect the BAR will be
171 * assigned into the same location in a page in guest
172 * when we passthrough the BAR. And it's hard to access
173 * this BAR in userspace because we have no way to get
174 * the BAR's location in a page.
175 */
176no_mmap:
177 vdev->bar_mmap_supported[bar] = false;
178 }
179}
180
181struct vfio_pci_group_info;
182static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
183static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
184 struct vfio_pci_group_info *groups,
185 struct iommufd_ctx *iommufd_ctx);
186
187/*
188 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
189 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
190 * If a device implements the former but not the latter we would typically
191 * expect broken_intx_masking be set and require an exclusive interrupt.
192 * However since we do have control of the device's ability to assert INTx,
193 * we can instead pretend that the device does not implement INTx, virtualizing
194 * the pin register to report zero and maintaining DisINTx set on the host.
195 */
196static bool vfio_pci_nointx(struct pci_dev *pdev)
197{
198 switch (pdev->vendor) {
199 case PCI_VENDOR_ID_INTEL:
200 switch (pdev->device) {
201 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
202 case 0x1572:
203 case 0x1574:
204 case 0x1580 ... 0x1581:
205 case 0x1583 ... 0x158b:
206 case 0x37d0 ... 0x37d2:
207 /* X550 */
208 case 0x1563:
209 return true;
210 default:
211 return false;
212 }
213 }
214
215 return false;
216}
217
218static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
219{
220 struct pci_dev *pdev = vdev->pdev;
221 u16 pmcsr;
222
223 if (!pdev->pm_cap)
224 return;
225
226 pci_read_config_word(dev: pdev, where: pdev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
227
228 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
229}
230
231/*
232 * pci_set_power_state() wrapper handling devices which perform a soft reset on
233 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev,
234 * restore when returned to D0. Saved separately from pci_saved_state for use
235 * by PM capability emulation and separately from pci_dev internal saved state
236 * to avoid it being overwritten and consumed around other resets.
237 */
238int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
239{
240 struct pci_dev *pdev = vdev->pdev;
241 bool needs_restore = false, needs_save = false;
242 int ret;
243
244 /* Prevent changing power state for PFs with VFs enabled */
245 if (pci_num_vf(dev: pdev) && state > PCI_D0)
246 return -EBUSY;
247
248 if (vdev->needs_pm_restore) {
249 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
250 pci_save_state(dev: pdev);
251 needs_save = true;
252 }
253
254 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
255 needs_restore = true;
256 }
257
258 ret = pci_set_power_state(dev: pdev, state);
259
260 if (!ret) {
261 /* D3 might be unsupported via quirk, skip unless in D3 */
262 if (needs_save && pdev->current_state >= PCI_D3hot) {
263 /*
264 * The current PCI state will be saved locally in
265 * 'pm_save' during the D3hot transition. When the
266 * device state is changed to D0 again with the current
267 * function, then pci_store_saved_state() will restore
268 * the state and will free the memory pointed by
269 * 'pm_save'. There are few cases where the PCI power
270 * state can be changed to D0 without the involvement
271 * of the driver. For these cases, free the earlier
272 * allocated memory first before overwriting 'pm_save'
273 * to prevent the memory leak.
274 */
275 kfree(objp: vdev->pm_save);
276 vdev->pm_save = pci_store_saved_state(dev: pdev);
277 } else if (needs_restore) {
278 pci_load_and_free_saved_state(dev: pdev, state: &vdev->pm_save);
279 pci_restore_state(dev: pdev);
280 }
281 }
282
283 return ret;
284}
285
286static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
287 struct eventfd_ctx *efdctx)
288{
289 /*
290 * The vdev power related flags are protected with 'memory_lock'
291 * semaphore.
292 */
293 vfio_pci_zap_and_down_write_memory_lock(vdev);
294 if (vdev->pm_runtime_engaged) {
295 up_write(sem: &vdev->memory_lock);
296 return -EINVAL;
297 }
298
299 vdev->pm_runtime_engaged = true;
300 vdev->pm_wake_eventfd_ctx = efdctx;
301 pm_runtime_put_noidle(dev: &vdev->pdev->dev);
302 up_write(sem: &vdev->memory_lock);
303
304 return 0;
305}
306
307static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
308 void __user *arg, size_t argsz)
309{
310 struct vfio_pci_core_device *vdev =
311 container_of(device, struct vfio_pci_core_device, vdev);
312 int ret;
313
314 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, minsz: 0);
315 if (ret != 1)
316 return ret;
317
318 /*
319 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
320 * will be decremented. The pm_runtime_put() will be invoked again
321 * while returning from the ioctl and then the device can go into
322 * runtime suspended state.
323 */
324 return vfio_pci_runtime_pm_entry(vdev, NULL);
325}
326
327static int vfio_pci_core_pm_entry_with_wakeup(
328 struct vfio_device *device, u32 flags,
329 struct vfio_device_low_power_entry_with_wakeup __user *arg,
330 size_t argsz)
331{
332 struct vfio_pci_core_device *vdev =
333 container_of(device, struct vfio_pci_core_device, vdev);
334 struct vfio_device_low_power_entry_with_wakeup entry;
335 struct eventfd_ctx *efdctx;
336 int ret;
337
338 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
339 minsz: sizeof(entry));
340 if (ret != 1)
341 return ret;
342
343 if (copy_from_user(to: &entry, from: arg, n: sizeof(entry)))
344 return -EFAULT;
345
346 if (entry.wakeup_eventfd < 0)
347 return -EINVAL;
348
349 efdctx = eventfd_ctx_fdget(fd: entry.wakeup_eventfd);
350 if (IS_ERR(ptr: efdctx))
351 return PTR_ERR(ptr: efdctx);
352
353 ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
354 if (ret)
355 eventfd_ctx_put(ctx: efdctx);
356
357 return ret;
358}
359
360static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
361{
362 if (vdev->pm_runtime_engaged) {
363 vdev->pm_runtime_engaged = false;
364 pm_runtime_get_noresume(dev: &vdev->pdev->dev);
365
366 if (vdev->pm_wake_eventfd_ctx) {
367 eventfd_ctx_put(ctx: vdev->pm_wake_eventfd_ctx);
368 vdev->pm_wake_eventfd_ctx = NULL;
369 }
370 }
371}
372
373static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
374{
375 /*
376 * The vdev power related flags are protected with 'memory_lock'
377 * semaphore.
378 */
379 down_write(sem: &vdev->memory_lock);
380 __vfio_pci_runtime_pm_exit(vdev);
381 up_write(sem: &vdev->memory_lock);
382}
383
384static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
385 void __user *arg, size_t argsz)
386{
387 struct vfio_pci_core_device *vdev =
388 container_of(device, struct vfio_pci_core_device, vdev);
389 int ret;
390
391 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, minsz: 0);
392 if (ret != 1)
393 return ret;
394
395 /*
396 * The device is always in the active state here due to pm wrappers
397 * around ioctls. If the device had entered a low power state and
398 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
399 * already signaled the eventfd and exited low power mode itself.
400 * pm_runtime_engaged protects the redundant call here.
401 */
402 vfio_pci_runtime_pm_exit(vdev);
403 return 0;
404}
405
406#ifdef CONFIG_PM
407static int vfio_pci_core_runtime_suspend(struct device *dev)
408{
409 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
410
411 down_write(sem: &vdev->memory_lock);
412 /*
413 * The user can move the device into D3hot state before invoking
414 * power management IOCTL. Move the device into D0 state here and then
415 * the pci-driver core runtime PM suspend function will move the device
416 * into the low power state. Also, for the devices which have
417 * NoSoftRst-, it will help in restoring the original state
418 * (saved locally in 'vdev->pm_save').
419 */
420 vfio_pci_set_power_state(vdev, PCI_D0);
421 up_write(sem: &vdev->memory_lock);
422
423 /*
424 * If INTx is enabled, then mask INTx before going into the runtime
425 * suspended state and unmask the same in the runtime resume.
426 * If INTx has already been masked by the user, then
427 * vfio_pci_intx_mask() will return false and in that case, INTx
428 * should not be unmasked in the runtime resume.
429 */
430 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
431 vfio_pci_intx_mask(vdev));
432
433 return 0;
434}
435
436static int vfio_pci_core_runtime_resume(struct device *dev)
437{
438 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
439
440 /*
441 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
442 * low power mode.
443 */
444 down_write(sem: &vdev->memory_lock);
445 if (vdev->pm_wake_eventfd_ctx) {
446 eventfd_signal(ctx: vdev->pm_wake_eventfd_ctx);
447 __vfio_pci_runtime_pm_exit(vdev);
448 }
449 up_write(sem: &vdev->memory_lock);
450
451 if (vdev->pm_intx_masked)
452 vfio_pci_intx_unmask(vdev);
453
454 return 0;
455}
456#endif /* CONFIG_PM */
457
458/*
459 * The pci-driver core runtime PM routines always save the device state
460 * before going into suspended state. If the device is going into low power
461 * state with only with runtime PM ops, then no explicit handling is needed
462 * for the devices which have NoSoftRst-.
463 */
464static const struct dev_pm_ops vfio_pci_core_pm_ops = {
465 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
466 vfio_pci_core_runtime_resume,
467 NULL)
468};
469
470int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
471{
472 struct pci_dev *pdev = vdev->pdev;
473 int ret;
474 u16 cmd;
475 u8 msix_pos;
476
477 if (!disable_idle_d3) {
478 ret = pm_runtime_resume_and_get(dev: &pdev->dev);
479 if (ret < 0)
480 return ret;
481 }
482
483 /* Don't allow our initial saved state to include busmaster */
484 pci_clear_master(dev: pdev);
485
486 ret = pci_enable_device(dev: pdev);
487 if (ret)
488 goto out_power;
489
490 /* If reset fails because of the device lock, fail this path entirely */
491 ret = pci_try_reset_function(dev: pdev);
492 if (ret == -EAGAIN)
493 goto out_disable_device;
494
495 vdev->reset_works = !ret;
496 pci_save_state(dev: pdev);
497 vdev->pci_saved_state = pci_store_saved_state(dev: pdev);
498 if (!vdev->pci_saved_state)
499 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
500
501 if (likely(!nointxmask)) {
502 if (vfio_pci_nointx(pdev)) {
503 pci_info(pdev, "Masking broken INTx support\n");
504 vdev->nointx = true;
505 pci_intx(dev: pdev, enable: 0);
506 } else
507 vdev->pci_2_3 = pci_intx_mask_supported(pdev);
508 }
509
510 pci_read_config_word(dev: pdev, PCI_COMMAND, val: &cmd);
511 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
512 cmd &= ~PCI_COMMAND_INTX_DISABLE;
513 pci_write_config_word(dev: pdev, PCI_COMMAND, val: cmd);
514 }
515
516 ret = vfio_pci_zdev_open_device(vdev);
517 if (ret)
518 goto out_free_state;
519
520 ret = vfio_config_init(vdev);
521 if (ret)
522 goto out_free_zdev;
523
524 msix_pos = pdev->msix_cap;
525 if (msix_pos) {
526 u16 flags;
527 u32 table;
528
529 pci_read_config_word(dev: pdev, where: msix_pos + PCI_MSIX_FLAGS, val: &flags);
530 pci_read_config_dword(dev: pdev, where: msix_pos + PCI_MSIX_TABLE, val: &table);
531
532 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
533 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
534 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
535 vdev->has_dyn_msix = pci_msix_can_alloc_dyn(dev: pdev);
536 } else {
537 vdev->msix_bar = 0xFF;
538 vdev->has_dyn_msix = false;
539 }
540
541 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
542 vdev->has_vga = true;
543
544
545 return 0;
546
547out_free_zdev:
548 vfio_pci_zdev_close_device(vdev);
549out_free_state:
550 kfree(objp: vdev->pci_saved_state);
551 vdev->pci_saved_state = NULL;
552out_disable_device:
553 pci_disable_device(dev: pdev);
554out_power:
555 if (!disable_idle_d3)
556 pm_runtime_put(dev: &pdev->dev);
557 return ret;
558}
559EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
560
561void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
562{
563 struct pci_dev *pdev = vdev->pdev;
564 struct vfio_pci_dummy_resource *dummy_res, *tmp;
565 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
566 int i, bar;
567
568 /* For needs_reset */
569 lockdep_assert_held(&vdev->vdev.dev_set->lock);
570
571 /*
572 * This function can be invoked while the power state is non-D0.
573 * This non-D0 power state can be with or without runtime PM.
574 * vfio_pci_runtime_pm_exit() will internally increment the usage
575 * count corresponding to pm_runtime_put() called during low power
576 * feature entry and then pm_runtime_resume() will wake up the device,
577 * if the device has already gone into the suspended state. Otherwise,
578 * the vfio_pci_set_power_state() will change the device power state
579 * to D0.
580 */
581 vfio_pci_runtime_pm_exit(vdev);
582 pm_runtime_resume(dev: &pdev->dev);
583
584 /*
585 * This function calls __pci_reset_function_locked() which internally
586 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
587 * fail if the power state is non-D0. Also, for the devices which
588 * have NoSoftRst-, the reset function can cause the PCI config space
589 * reset without restoring the original state (saved locally in
590 * 'vdev->pm_save').
591 */
592 vfio_pci_set_power_state(vdev, PCI_D0);
593
594 /* Stop the device from further DMA */
595 pci_clear_master(dev: pdev);
596
597 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
598 VFIO_IRQ_SET_ACTION_TRIGGER,
599 index: vdev->irq_type, start: 0, count: 0, NULL);
600
601 /* Device closed, don't need mutex here */
602 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
603 &vdev->ioeventfds_list, next) {
604 vfio_virqfd_disable(pvirqfd: &ioeventfd->virqfd);
605 list_del(entry: &ioeventfd->next);
606 kfree(objp: ioeventfd);
607 }
608 vdev->ioeventfds_nr = 0;
609
610 vdev->virq_disabled = false;
611
612 for (i = 0; i < vdev->num_regions; i++)
613 vdev->region[i].ops->release(vdev, &vdev->region[i]);
614
615 vdev->num_regions = 0;
616 kfree(objp: vdev->region);
617 vdev->region = NULL; /* don't krealloc a freed pointer */
618
619 vfio_config_free(vdev);
620
621 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
622 bar = i + PCI_STD_RESOURCES;
623 if (!vdev->barmap[bar])
624 continue;
625 pci_iounmap(dev: pdev, vdev->barmap[bar]);
626 pci_release_selected_regions(pdev, 1 << bar);
627 vdev->barmap[bar] = NULL;
628 }
629
630 list_for_each_entry_safe(dummy_res, tmp,
631 &vdev->dummy_resources_list, res_next) {
632 list_del(entry: &dummy_res->res_next);
633 release_resource(new: &dummy_res->resource);
634 kfree(objp: dummy_res);
635 }
636
637 vdev->needs_reset = true;
638
639 vfio_pci_zdev_close_device(vdev);
640
641 /*
642 * If we have saved state, restore it. If we can reset the device,
643 * even better. Resetting with current state seems better than
644 * nothing, but saving and restoring current state without reset
645 * is just busy work.
646 */
647 if (pci_load_and_free_saved_state(dev: pdev, state: &vdev->pci_saved_state)) {
648 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
649
650 if (!vdev->reset_works)
651 goto out;
652
653 pci_save_state(dev: pdev);
654 }
655
656 /*
657 * Disable INTx and MSI, presumably to avoid spurious interrupts
658 * during reset. Stolen from pci_reset_function()
659 */
660 pci_write_config_word(dev: pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
661
662 /*
663 * Try to get the locks ourselves to prevent a deadlock. The
664 * success of this is dependent on being able to lock the device,
665 * which is not always possible.
666 * We can not use the "try" reset interface here, which will
667 * overwrite the previously restored configuration information.
668 */
669 if (vdev->reset_works && pci_dev_trylock(dev: pdev)) {
670 if (!__pci_reset_function_locked(dev: pdev))
671 vdev->needs_reset = false;
672 pci_dev_unlock(dev: pdev);
673 }
674
675 pci_restore_state(dev: pdev);
676out:
677 pci_disable_device(dev: pdev);
678
679 vfio_pci_dev_set_try_reset(dev_set: vdev->vdev.dev_set);
680
681 /* Put the pm-runtime usage counter acquired during enable */
682 if (!disable_idle_d3)
683 pm_runtime_put(dev: &pdev->dev);
684}
685EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
686
687void vfio_pci_core_close_device(struct vfio_device *core_vdev)
688{
689 struct vfio_pci_core_device *vdev =
690 container_of(core_vdev, struct vfio_pci_core_device, vdev);
691
692 if (vdev->sriov_pf_core_dev) {
693 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
694 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
695 vdev->sriov_pf_core_dev->vf_token->users--;
696 mutex_unlock(lock: &vdev->sriov_pf_core_dev->vf_token->lock);
697 }
698#if IS_ENABLED(CONFIG_EEH)
699 eeh_dev_release(vdev->pdev);
700#endif
701 vfio_pci_core_disable(vdev);
702
703 mutex_lock(&vdev->igate);
704 if (vdev->err_trigger) {
705 eventfd_ctx_put(ctx: vdev->err_trigger);
706 vdev->err_trigger = NULL;
707 }
708 if (vdev->req_trigger) {
709 eventfd_ctx_put(ctx: vdev->req_trigger);
710 vdev->req_trigger = NULL;
711 }
712 mutex_unlock(lock: &vdev->igate);
713}
714EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
715
716void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
717{
718 vfio_pci_probe_mmaps(vdev);
719#if IS_ENABLED(CONFIG_EEH)
720 eeh_dev_open(vdev->pdev);
721#endif
722
723 if (vdev->sriov_pf_core_dev) {
724 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
725 vdev->sriov_pf_core_dev->vf_token->users++;
726 mutex_unlock(lock: &vdev->sriov_pf_core_dev->vf_token->lock);
727 }
728}
729EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
730
731static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
732{
733 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
734 u8 pin;
735
736 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
737 vdev->nointx || vdev->pdev->is_virtfn)
738 return 0;
739
740 pci_read_config_byte(dev: vdev->pdev, PCI_INTERRUPT_PIN, val: &pin);
741
742 return pin ? 1 : 0;
743 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
744 u8 pos;
745 u16 flags;
746
747 pos = vdev->pdev->msi_cap;
748 if (pos) {
749 pci_read_config_word(dev: vdev->pdev,
750 where: pos + PCI_MSI_FLAGS, val: &flags);
751 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
752 }
753 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
754 u8 pos;
755 u16 flags;
756
757 pos = vdev->pdev->msix_cap;
758 if (pos) {
759 pci_read_config_word(dev: vdev->pdev,
760 where: pos + PCI_MSIX_FLAGS, val: &flags);
761
762 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
763 }
764 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
765 if (pci_is_pcie(dev: vdev->pdev))
766 return 1;
767 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
768 return 1;
769 }
770
771 return 0;
772}
773
774static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
775{
776 (*(int *)data)++;
777 return 0;
778}
779
780struct vfio_pci_fill_info {
781 struct vfio_pci_dependent_device __user *devices;
782 struct vfio_pci_dependent_device __user *devices_end;
783 struct vfio_device *vdev;
784 u32 count;
785 u32 flags;
786};
787
788static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
789{
790 struct vfio_pci_dependent_device info = {
791 .segment = pci_domain_nr(bus: pdev->bus),
792 .bus = pdev->bus->number,
793 .devfn = pdev->devfn,
794 };
795 struct vfio_pci_fill_info *fill = data;
796
797 fill->count++;
798 if (fill->devices >= fill->devices_end)
799 return 0;
800
801 if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) {
802 struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(vdev: fill->vdev);
803 struct vfio_device_set *dev_set = fill->vdev->dev_set;
804 struct vfio_device *vdev;
805
806 /*
807 * hot-reset requires all affected devices be represented in
808 * the dev_set.
809 */
810 vdev = vfio_find_device_in_devset(dev_set, dev: &pdev->dev);
811 if (!vdev) {
812 info.devid = VFIO_PCI_DEVID_NOT_OWNED;
813 } else {
814 int id = vfio_iommufd_get_dev_id(vdev, ictx: iommufd);
815
816 if (id > 0)
817 info.devid = id;
818 else if (id == -ENOENT)
819 info.devid = VFIO_PCI_DEVID_OWNED;
820 else
821 info.devid = VFIO_PCI_DEVID_NOT_OWNED;
822 }
823 /* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */
824 if (info.devid == VFIO_PCI_DEVID_NOT_OWNED)
825 fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
826 } else {
827 struct iommu_group *iommu_group;
828
829 iommu_group = iommu_group_get(dev: &pdev->dev);
830 if (!iommu_group)
831 return -EPERM; /* Cannot reset non-isolated devices */
832
833 info.group_id = iommu_group_id(group: iommu_group);
834 iommu_group_put(group: iommu_group);
835 }
836
837 if (copy_to_user(to: fill->devices, from: &info, n: sizeof(info)))
838 return -EFAULT;
839 fill->devices++;
840 return 0;
841}
842
843struct vfio_pci_group_info {
844 int count;
845 struct file **files;
846};
847
848static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
849{
850 for (; pdev; pdev = pdev->bus->self)
851 if (pdev->bus == slot->bus)
852 return (pdev->slot == slot);
853 return false;
854}
855
856struct vfio_pci_walk_info {
857 int (*fn)(struct pci_dev *pdev, void *data);
858 void *data;
859 struct pci_dev *pdev;
860 bool slot;
861 int ret;
862};
863
864static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
865{
866 struct vfio_pci_walk_info *walk = data;
867
868 if (!walk->slot || vfio_pci_dev_below_slot(pdev, slot: walk->pdev->slot))
869 walk->ret = walk->fn(pdev, walk->data);
870
871 return walk->ret;
872}
873
874static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
875 int (*fn)(struct pci_dev *,
876 void *data), void *data,
877 bool slot)
878{
879 struct vfio_pci_walk_info walk = {
880 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
881 };
882
883 pci_walk_bus(top: pdev->bus, cb: vfio_pci_walk_wrapper, userdata: &walk);
884
885 return walk.ret;
886}
887
888static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
889 struct vfio_info_cap *caps)
890{
891 struct vfio_info_cap_header header = {
892 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
893 .version = 1
894 };
895
896 return vfio_info_add_capability(caps, cap: &header, size: sizeof(header));
897}
898
899int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
900 unsigned int type, unsigned int subtype,
901 const struct vfio_pci_regops *ops,
902 size_t size, u32 flags, void *data)
903{
904 struct vfio_pci_region *region;
905
906 region = krealloc(objp: vdev->region,
907 new_size: (vdev->num_regions + 1) * sizeof(*region),
908 GFP_KERNEL_ACCOUNT);
909 if (!region)
910 return -ENOMEM;
911
912 vdev->region = region;
913 vdev->region[vdev->num_regions].type = type;
914 vdev->region[vdev->num_regions].subtype = subtype;
915 vdev->region[vdev->num_regions].ops = ops;
916 vdev->region[vdev->num_regions].size = size;
917 vdev->region[vdev->num_regions].flags = flags;
918 vdev->region[vdev->num_regions].data = data;
919
920 vdev->num_regions++;
921
922 return 0;
923}
924EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
925
926static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
927 struct vfio_info_cap *caps)
928{
929 struct vfio_device_info_cap_pci_atomic_comp cap = {
930 .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
931 .header.version = 1
932 };
933 struct pci_dev *pdev = pci_physfn(dev: vdev->pdev);
934 u32 devcap2;
935
936 pcie_capability_read_dword(dev: pdev, PCI_EXP_DEVCAP2, val: &devcap2);
937
938 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
939 !pci_enable_atomic_ops_to_root(dev: pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
940 cap.flags |= VFIO_PCI_ATOMIC_COMP32;
941
942 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
943 !pci_enable_atomic_ops_to_root(dev: pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
944 cap.flags |= VFIO_PCI_ATOMIC_COMP64;
945
946 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
947 !pci_enable_atomic_ops_to_root(dev: pdev,
948 PCI_EXP_DEVCAP2_ATOMIC_COMP128))
949 cap.flags |= VFIO_PCI_ATOMIC_COMP128;
950
951 if (!cap.flags)
952 return -ENODEV;
953
954 return vfio_info_add_capability(caps, cap: &cap.header, size: sizeof(cap));
955}
956
957static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
958 struct vfio_device_info __user *arg)
959{
960 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
961 struct vfio_device_info info = {};
962 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
963 int ret;
964
965 if (copy_from_user(to: &info, from: arg, n: minsz))
966 return -EFAULT;
967
968 if (info.argsz < minsz)
969 return -EINVAL;
970
971 minsz = min_t(size_t, info.argsz, sizeof(info));
972
973 info.flags = VFIO_DEVICE_FLAGS_PCI;
974
975 if (vdev->reset_works)
976 info.flags |= VFIO_DEVICE_FLAGS_RESET;
977
978 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
979 info.num_irqs = VFIO_PCI_NUM_IRQS;
980
981 ret = vfio_pci_info_zdev_add_caps(vdev, caps: &caps);
982 if (ret && ret != -ENODEV) {
983 pci_warn(vdev->pdev,
984 "Failed to setup zPCI info capabilities\n");
985 return ret;
986 }
987
988 ret = vfio_pci_info_atomic_cap(vdev, caps: &caps);
989 if (ret && ret != -ENODEV) {
990 pci_warn(vdev->pdev,
991 "Failed to setup AtomicOps info capability\n");
992 return ret;
993 }
994
995 if (caps.size) {
996 info.flags |= VFIO_DEVICE_FLAGS_CAPS;
997 if (info.argsz < sizeof(info) + caps.size) {
998 info.argsz = sizeof(info) + caps.size;
999 } else {
1000 vfio_info_cap_shift(caps: &caps, offset: sizeof(info));
1001 if (copy_to_user(to: arg + 1, from: caps.buf, n: caps.size)) {
1002 kfree(objp: caps.buf);
1003 return -EFAULT;
1004 }
1005 info.cap_offset = sizeof(*arg);
1006 }
1007
1008 kfree(objp: caps.buf);
1009 }
1010
1011 return copy_to_user(to: arg, from: &info, n: minsz) ? -EFAULT : 0;
1012}
1013
1014static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
1015 struct vfio_region_info __user *arg)
1016{
1017 unsigned long minsz = offsetofend(struct vfio_region_info, offset);
1018 struct pci_dev *pdev = vdev->pdev;
1019 struct vfio_region_info info;
1020 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1021 int i, ret;
1022
1023 if (copy_from_user(to: &info, from: arg, n: minsz))
1024 return -EFAULT;
1025
1026 if (info.argsz < minsz)
1027 return -EINVAL;
1028
1029 switch (info.index) {
1030 case VFIO_PCI_CONFIG_REGION_INDEX:
1031 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1032 info.size = pdev->cfg_size;
1033 info.flags = VFIO_REGION_INFO_FLAG_READ |
1034 VFIO_REGION_INFO_FLAG_WRITE;
1035 break;
1036 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1037 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1038 info.size = pci_resource_len(pdev, info.index);
1039 if (!info.size) {
1040 info.flags = 0;
1041 break;
1042 }
1043
1044 info.flags = VFIO_REGION_INFO_FLAG_READ |
1045 VFIO_REGION_INFO_FLAG_WRITE;
1046 if (vdev->bar_mmap_supported[info.index]) {
1047 info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
1048 if (info.index == vdev->msix_bar) {
1049 ret = msix_mmappable_cap(vdev, caps: &caps);
1050 if (ret)
1051 return ret;
1052 }
1053 }
1054
1055 break;
1056 case VFIO_PCI_ROM_REGION_INDEX: {
1057 void __iomem *io;
1058 size_t size;
1059 u16 cmd;
1060
1061 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1062 info.flags = 0;
1063
1064 /* Report the BAR size, not the ROM size */
1065 info.size = pci_resource_len(pdev, info.index);
1066 if (!info.size) {
1067 /* Shadow ROMs appear as PCI option ROMs */
1068 if (pdev->resource[PCI_ROM_RESOURCE].flags &
1069 IORESOURCE_ROM_SHADOW)
1070 info.size = 0x20000;
1071 else
1072 break;
1073 }
1074
1075 /*
1076 * Is it really there? Enable memory decode for implicit access
1077 * in pci_map_rom().
1078 */
1079 cmd = vfio_pci_memory_lock_and_enable(vdev);
1080 io = pci_map_rom(pdev, size: &size);
1081 if (io) {
1082 info.flags = VFIO_REGION_INFO_FLAG_READ;
1083 pci_unmap_rom(pdev, rom: io);
1084 } else {
1085 info.size = 0;
1086 }
1087 vfio_pci_memory_unlock_and_restore(vdev, cmd);
1088
1089 break;
1090 }
1091 case VFIO_PCI_VGA_REGION_INDEX:
1092 if (!vdev->has_vga)
1093 return -EINVAL;
1094
1095 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1096 info.size = 0xc0000;
1097 info.flags = VFIO_REGION_INFO_FLAG_READ |
1098 VFIO_REGION_INFO_FLAG_WRITE;
1099
1100 break;
1101 default: {
1102 struct vfio_region_info_cap_type cap_type = {
1103 .header.id = VFIO_REGION_INFO_CAP_TYPE,
1104 .header.version = 1
1105 };
1106
1107 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1108 return -EINVAL;
1109 info.index = array_index_nospec(
1110 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1111
1112 i = info.index - VFIO_PCI_NUM_REGIONS;
1113
1114 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1115 info.size = vdev->region[i].size;
1116 info.flags = vdev->region[i].flags;
1117
1118 cap_type.type = vdev->region[i].type;
1119 cap_type.subtype = vdev->region[i].subtype;
1120
1121 ret = vfio_info_add_capability(caps: &caps, cap: &cap_type.header,
1122 size: sizeof(cap_type));
1123 if (ret)
1124 return ret;
1125
1126 if (vdev->region[i].ops->add_capability) {
1127 ret = vdev->region[i].ops->add_capability(
1128 vdev, &vdev->region[i], &caps);
1129 if (ret)
1130 return ret;
1131 }
1132 }
1133 }
1134
1135 if (caps.size) {
1136 info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1137 if (info.argsz < sizeof(info) + caps.size) {
1138 info.argsz = sizeof(info) + caps.size;
1139 info.cap_offset = 0;
1140 } else {
1141 vfio_info_cap_shift(caps: &caps, offset: sizeof(info));
1142 if (copy_to_user(to: arg + 1, from: caps.buf, n: caps.size)) {
1143 kfree(objp: caps.buf);
1144 return -EFAULT;
1145 }
1146 info.cap_offset = sizeof(*arg);
1147 }
1148
1149 kfree(objp: caps.buf);
1150 }
1151
1152 return copy_to_user(to: arg, from: &info, n: minsz) ? -EFAULT : 0;
1153}
1154
1155static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1156 struct vfio_irq_info __user *arg)
1157{
1158 unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1159 struct vfio_irq_info info;
1160
1161 if (copy_from_user(to: &info, from: arg, n: minsz))
1162 return -EFAULT;
1163
1164 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1165 return -EINVAL;
1166
1167 switch (info.index) {
1168 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1169 case VFIO_PCI_REQ_IRQ_INDEX:
1170 break;
1171 case VFIO_PCI_ERR_IRQ_INDEX:
1172 if (pci_is_pcie(dev: vdev->pdev))
1173 break;
1174 fallthrough;
1175 default:
1176 return -EINVAL;
1177 }
1178
1179 info.flags = VFIO_IRQ_INFO_EVENTFD;
1180
1181 info.count = vfio_pci_get_irq_count(vdev, irq_type: info.index);
1182
1183 if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1184 info.flags |=
1185 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1186 else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
1187 info.flags |= VFIO_IRQ_INFO_NORESIZE;
1188
1189 return copy_to_user(to: arg, from: &info, n: minsz) ? -EFAULT : 0;
1190}
1191
1192static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1193 struct vfio_irq_set __user *arg)
1194{
1195 unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1196 struct vfio_irq_set hdr;
1197 u8 *data = NULL;
1198 int max, ret = 0;
1199 size_t data_size = 0;
1200
1201 if (copy_from_user(to: &hdr, from: arg, n: minsz))
1202 return -EFAULT;
1203
1204 max = vfio_pci_get_irq_count(vdev, irq_type: hdr.index);
1205
1206 ret = vfio_set_irqs_validate_and_prepare(hdr: &hdr, num_irqs: max, max_irq_type: VFIO_PCI_NUM_IRQS,
1207 data_size: &data_size);
1208 if (ret)
1209 return ret;
1210
1211 if (data_size) {
1212 data = memdup_user(&arg->data, data_size);
1213 if (IS_ERR(ptr: data))
1214 return PTR_ERR(ptr: data);
1215 }
1216
1217 mutex_lock(&vdev->igate);
1218
1219 ret = vfio_pci_set_irqs_ioctl(vdev, flags: hdr.flags, index: hdr.index, start: hdr.start,
1220 count: hdr.count, data);
1221
1222 mutex_unlock(lock: &vdev->igate);
1223 kfree(objp: data);
1224
1225 return ret;
1226}
1227
1228static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1229 void __user *arg)
1230{
1231 int ret;
1232
1233 if (!vdev->reset_works)
1234 return -EINVAL;
1235
1236 vfio_pci_zap_and_down_write_memory_lock(vdev);
1237
1238 /*
1239 * This function can be invoked while the power state is non-D0. If
1240 * pci_try_reset_function() has been called while the power state is
1241 * non-D0, then pci_try_reset_function() will internally set the power
1242 * state to D0 without vfio driver involvement. For the devices which
1243 * have NoSoftRst-, the reset function can cause the PCI config space
1244 * reset without restoring the original state (saved locally in
1245 * 'vdev->pm_save').
1246 */
1247 vfio_pci_set_power_state(vdev, PCI_D0);
1248
1249 ret = pci_try_reset_function(dev: vdev->pdev);
1250 up_write(sem: &vdev->memory_lock);
1251
1252 return ret;
1253}
1254
1255static int vfio_pci_ioctl_get_pci_hot_reset_info(
1256 struct vfio_pci_core_device *vdev,
1257 struct vfio_pci_hot_reset_info __user *arg)
1258{
1259 unsigned long minsz =
1260 offsetofend(struct vfio_pci_hot_reset_info, count);
1261 struct vfio_pci_hot_reset_info hdr;
1262 struct vfio_pci_fill_info fill = {};
1263 bool slot = false;
1264 int ret = 0;
1265
1266 if (copy_from_user(to: &hdr, from: arg, n: minsz))
1267 return -EFAULT;
1268
1269 if (hdr.argsz < minsz)
1270 return -EINVAL;
1271
1272 hdr.flags = 0;
1273
1274 /* Can we do a slot or bus reset or neither? */
1275 if (!pci_probe_reset_slot(slot: vdev->pdev->slot))
1276 slot = true;
1277 else if (pci_probe_reset_bus(bus: vdev->pdev->bus))
1278 return -ENODEV;
1279
1280 fill.devices = arg->devices;
1281 fill.devices_end = arg->devices +
1282 (hdr.argsz - sizeof(hdr)) / sizeof(arg->devices[0]);
1283 fill.vdev = &vdev->vdev;
1284
1285 if (vfio_device_cdev_opened(device: &vdev->vdev))
1286 fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID |
1287 VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
1288
1289 mutex_lock(&vdev->vdev.dev_set->lock);
1290 ret = vfio_pci_for_each_slot_or_bus(pdev: vdev->pdev, fn: vfio_pci_fill_devs,
1291 data: &fill, slot);
1292 mutex_unlock(lock: &vdev->vdev.dev_set->lock);
1293 if (ret)
1294 return ret;
1295
1296 hdr.count = fill.count;
1297 hdr.flags = fill.flags;
1298 if (copy_to_user(to: arg, from: &hdr, n: minsz))
1299 return -EFAULT;
1300
1301 if (fill.count > fill.devices - arg->devices)
1302 return -ENOSPC;
1303 return 0;
1304}
1305
1306static int
1307vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev,
1308 int array_count, bool slot,
1309 struct vfio_pci_hot_reset __user *arg)
1310{
1311 int32_t *group_fds;
1312 struct file **files;
1313 struct vfio_pci_group_info info;
1314 int file_idx, count = 0, ret = 0;
1315
1316 /*
1317 * We can't let userspace give us an arbitrarily large buffer to copy,
1318 * so verify how many we think there could be. Note groups can have
1319 * multiple devices so one group per device is the max.
1320 */
1321 ret = vfio_pci_for_each_slot_or_bus(pdev: vdev->pdev, fn: vfio_pci_count_devs,
1322 data: &count, slot);
1323 if (ret)
1324 return ret;
1325
1326 if (array_count > count)
1327 return -EINVAL;
1328
1329 group_fds = kcalloc(n: array_count, size: sizeof(*group_fds), GFP_KERNEL);
1330 files = kcalloc(n: array_count, size: sizeof(*files), GFP_KERNEL);
1331 if (!group_fds || !files) {
1332 kfree(objp: group_fds);
1333 kfree(objp: files);
1334 return -ENOMEM;
1335 }
1336
1337 if (copy_from_user(to: group_fds, from: arg->group_fds,
1338 n: array_count * sizeof(*group_fds))) {
1339 kfree(objp: group_fds);
1340 kfree(objp: files);
1341 return -EFAULT;
1342 }
1343
1344 /*
1345 * Get the group file for each fd to ensure the group is held across
1346 * the reset
1347 */
1348 for (file_idx = 0; file_idx < array_count; file_idx++) {
1349 struct file *file = fget(fd: group_fds[file_idx]);
1350
1351 if (!file) {
1352 ret = -EBADF;
1353 break;
1354 }
1355
1356 /* Ensure the FD is a vfio group FD.*/
1357 if (!vfio_file_is_group(file)) {
1358 fput(file);
1359 ret = -EINVAL;
1360 break;
1361 }
1362
1363 files[file_idx] = file;
1364 }
1365
1366 kfree(objp: group_fds);
1367
1368 /* release reference to groups on error */
1369 if (ret)
1370 goto hot_reset_release;
1371
1372 info.count = array_count;
1373 info.files = files;
1374
1375 ret = vfio_pci_dev_set_hot_reset(dev_set: vdev->vdev.dev_set, groups: &info, NULL);
1376
1377hot_reset_release:
1378 for (file_idx--; file_idx >= 0; file_idx--)
1379 fput(files[file_idx]);
1380
1381 kfree(objp: files);
1382 return ret;
1383}
1384
1385static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1386 struct vfio_pci_hot_reset __user *arg)
1387{
1388 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1389 struct vfio_pci_hot_reset hdr;
1390 bool slot = false;
1391
1392 if (copy_from_user(to: &hdr, from: arg, n: minsz))
1393 return -EFAULT;
1394
1395 if (hdr.argsz < minsz || hdr.flags)
1396 return -EINVAL;
1397
1398 /* zero-length array is only for cdev opened devices */
1399 if (!!hdr.count == vfio_device_cdev_opened(device: &vdev->vdev))
1400 return -EINVAL;
1401
1402 /* Can we do a slot or bus reset or neither? */
1403 if (!pci_probe_reset_slot(slot: vdev->pdev->slot))
1404 slot = true;
1405 else if (pci_probe_reset_bus(bus: vdev->pdev->bus))
1406 return -ENODEV;
1407
1408 if (hdr.count)
1409 return vfio_pci_ioctl_pci_hot_reset_groups(vdev, array_count: hdr.count, slot, arg);
1410
1411 return vfio_pci_dev_set_hot_reset(dev_set: vdev->vdev.dev_set, NULL,
1412 iommufd_ctx: vfio_iommufd_device_ictx(vdev: &vdev->vdev));
1413}
1414
1415static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1416 struct vfio_device_ioeventfd __user *arg)
1417{
1418 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1419 struct vfio_device_ioeventfd ioeventfd;
1420 int count;
1421
1422 if (copy_from_user(to: &ioeventfd, from: arg, n: minsz))
1423 return -EFAULT;
1424
1425 if (ioeventfd.argsz < minsz)
1426 return -EINVAL;
1427
1428 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1429 return -EINVAL;
1430
1431 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1432
1433 if (hweight8(count) != 1 || ioeventfd.fd < -1)
1434 return -EINVAL;
1435
1436 return vfio_pci_ioeventfd(vdev, offset: ioeventfd.offset, data: ioeventfd.data, count,
1437 fd: ioeventfd.fd);
1438}
1439
1440long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1441 unsigned long arg)
1442{
1443 struct vfio_pci_core_device *vdev =
1444 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1445 void __user *uarg = (void __user *)arg;
1446
1447 switch (cmd) {
1448 case VFIO_DEVICE_GET_INFO:
1449 return vfio_pci_ioctl_get_info(vdev, arg: uarg);
1450 case VFIO_DEVICE_GET_IRQ_INFO:
1451 return vfio_pci_ioctl_get_irq_info(vdev, arg: uarg);
1452 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1453 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, arg: uarg);
1454 case VFIO_DEVICE_GET_REGION_INFO:
1455 return vfio_pci_ioctl_get_region_info(vdev, arg: uarg);
1456 case VFIO_DEVICE_IOEVENTFD:
1457 return vfio_pci_ioctl_ioeventfd(vdev, arg: uarg);
1458 case VFIO_DEVICE_PCI_HOT_RESET:
1459 return vfio_pci_ioctl_pci_hot_reset(vdev, arg: uarg);
1460 case VFIO_DEVICE_RESET:
1461 return vfio_pci_ioctl_reset(vdev, arg: uarg);
1462 case VFIO_DEVICE_SET_IRQS:
1463 return vfio_pci_ioctl_set_irqs(vdev, arg: uarg);
1464 default:
1465 return -ENOTTY;
1466 }
1467}
1468EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1469
1470static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1471 uuid_t __user *arg, size_t argsz)
1472{
1473 struct vfio_pci_core_device *vdev =
1474 container_of(device, struct vfio_pci_core_device, vdev);
1475 uuid_t uuid;
1476 int ret;
1477
1478 if (!vdev->vf_token)
1479 return -ENOTTY;
1480 /*
1481 * We do not support GET of the VF Token UUID as this could
1482 * expose the token of the previous device user.
1483 */
1484 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1485 minsz: sizeof(uuid));
1486 if (ret != 1)
1487 return ret;
1488
1489 if (copy_from_user(to: &uuid, from: arg, n: sizeof(uuid)))
1490 return -EFAULT;
1491
1492 mutex_lock(&vdev->vf_token->lock);
1493 uuid_copy(dst: &vdev->vf_token->uuid, src: &uuid);
1494 mutex_unlock(lock: &vdev->vf_token->lock);
1495 return 0;
1496}
1497
1498int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1499 void __user *arg, size_t argsz)
1500{
1501 switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1502 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1503 return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1504 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1505 return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1506 arg, argsz);
1507 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1508 return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1509 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1510 return vfio_pci_core_feature_token(device, flags, arg, argsz);
1511 default:
1512 return -ENOTTY;
1513 }
1514}
1515EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1516
1517static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1518 size_t count, loff_t *ppos, bool iswrite)
1519{
1520 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1521 int ret;
1522
1523 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1524 return -EINVAL;
1525
1526 ret = pm_runtime_resume_and_get(dev: &vdev->pdev->dev);
1527 if (ret) {
1528 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1529 ret);
1530 return -EIO;
1531 }
1532
1533 switch (index) {
1534 case VFIO_PCI_CONFIG_REGION_INDEX:
1535 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1536 break;
1537
1538 case VFIO_PCI_ROM_REGION_INDEX:
1539 if (iswrite)
1540 ret = -EINVAL;
1541 else
1542 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite: false);
1543 break;
1544
1545 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1546 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1547 break;
1548
1549 case VFIO_PCI_VGA_REGION_INDEX:
1550 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1551 break;
1552
1553 default:
1554 index -= VFIO_PCI_NUM_REGIONS;
1555 ret = vdev->region[index].ops->rw(vdev, buf,
1556 count, ppos, iswrite);
1557 break;
1558 }
1559
1560 pm_runtime_put(dev: &vdev->pdev->dev);
1561 return ret;
1562}
1563
1564ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1565 size_t count, loff_t *ppos)
1566{
1567 struct vfio_pci_core_device *vdev =
1568 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1569
1570 if (!count)
1571 return 0;
1572
1573 return vfio_pci_rw(vdev, buf, count, ppos, iswrite: false);
1574}
1575EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1576
1577ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1578 size_t count, loff_t *ppos)
1579{
1580 struct vfio_pci_core_device *vdev =
1581 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1582
1583 if (!count)
1584 return 0;
1585
1586 return vfio_pci_rw(vdev, buf: (char __user *)buf, count, ppos, iswrite: true);
1587}
1588EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1589
1590/* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
1591static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
1592{
1593 struct vfio_pci_mmap_vma *mmap_vma, *tmp;
1594
1595 /*
1596 * Lock ordering:
1597 * vma_lock is nested under mmap_lock for vm_ops callback paths.
1598 * The memory_lock semaphore is used by both code paths calling
1599 * into this function to zap vmas and the vm_ops.fault callback
1600 * to protect the memory enable state of the device.
1601 *
1602 * When zapping vmas we need to maintain the mmap_lock => vma_lock
1603 * ordering, which requires using vma_lock to walk vma_list to
1604 * acquire an mm, then dropping vma_lock to get the mmap_lock and
1605 * reacquiring vma_lock. This logic is derived from similar
1606 * requirements in uverbs_user_mmap_disassociate().
1607 *
1608 * mmap_lock must always be the top-level lock when it is taken.
1609 * Therefore we can only hold the memory_lock write lock when
1610 * vma_list is empty, as we'd need to take mmap_lock to clear
1611 * entries. vma_list can only be guaranteed empty when holding
1612 * vma_lock, thus memory_lock is nested under vma_lock.
1613 *
1614 * This enables the vm_ops.fault callback to acquire vma_lock,
1615 * followed by memory_lock read lock, while already holding
1616 * mmap_lock without risk of deadlock.
1617 */
1618 while (1) {
1619 struct mm_struct *mm = NULL;
1620
1621 if (try) {
1622 if (!mutex_trylock(lock: &vdev->vma_lock))
1623 return 0;
1624 } else {
1625 mutex_lock(&vdev->vma_lock);
1626 }
1627 while (!list_empty(head: &vdev->vma_list)) {
1628 mmap_vma = list_first_entry(&vdev->vma_list,
1629 struct vfio_pci_mmap_vma,
1630 vma_next);
1631 mm = mmap_vma->vma->vm_mm;
1632 if (mmget_not_zero(mm))
1633 break;
1634
1635 list_del(entry: &mmap_vma->vma_next);
1636 kfree(objp: mmap_vma);
1637 mm = NULL;
1638 }
1639 if (!mm)
1640 return 1;
1641 mutex_unlock(lock: &vdev->vma_lock);
1642
1643 if (try) {
1644 if (!mmap_read_trylock(mm)) {
1645 mmput(mm);
1646 return 0;
1647 }
1648 } else {
1649 mmap_read_lock(mm);
1650 }
1651 if (try) {
1652 if (!mutex_trylock(lock: &vdev->vma_lock)) {
1653 mmap_read_unlock(mm);
1654 mmput(mm);
1655 return 0;
1656 }
1657 } else {
1658 mutex_lock(&vdev->vma_lock);
1659 }
1660 list_for_each_entry_safe(mmap_vma, tmp,
1661 &vdev->vma_list, vma_next) {
1662 struct vm_area_struct *vma = mmap_vma->vma;
1663
1664 if (vma->vm_mm != mm)
1665 continue;
1666
1667 list_del(entry: &mmap_vma->vma_next);
1668 kfree(objp: mmap_vma);
1669
1670 zap_vma_ptes(vma, address: vma->vm_start,
1671 size: vma->vm_end - vma->vm_start);
1672 }
1673 mutex_unlock(lock: &vdev->vma_lock);
1674 mmap_read_unlock(mm);
1675 mmput(mm);
1676 }
1677}
1678
1679void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1680{
1681 vfio_pci_zap_and_vma_lock(vdev, try: false);
1682 down_write(sem: &vdev->memory_lock);
1683 mutex_unlock(lock: &vdev->vma_lock);
1684}
1685
1686u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1687{
1688 u16 cmd;
1689
1690 down_write(sem: &vdev->memory_lock);
1691 pci_read_config_word(dev: vdev->pdev, PCI_COMMAND, val: &cmd);
1692 if (!(cmd & PCI_COMMAND_MEMORY))
1693 pci_write_config_word(dev: vdev->pdev, PCI_COMMAND,
1694 val: cmd | PCI_COMMAND_MEMORY);
1695
1696 return cmd;
1697}
1698
1699void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1700{
1701 pci_write_config_word(dev: vdev->pdev, PCI_COMMAND, val: cmd);
1702 up_write(sem: &vdev->memory_lock);
1703}
1704
1705/* Caller holds vma_lock */
1706static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
1707 struct vm_area_struct *vma)
1708{
1709 struct vfio_pci_mmap_vma *mmap_vma;
1710
1711 mmap_vma = kmalloc(size: sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
1712 if (!mmap_vma)
1713 return -ENOMEM;
1714
1715 mmap_vma->vma = vma;
1716 list_add(new: &mmap_vma->vma_next, head: &vdev->vma_list);
1717
1718 return 0;
1719}
1720
1721/*
1722 * Zap mmaps on open so that we can fault them in on access and therefore
1723 * our vma_list only tracks mappings accessed since last zap.
1724 */
1725static void vfio_pci_mmap_open(struct vm_area_struct *vma)
1726{
1727 zap_vma_ptes(vma, address: vma->vm_start, size: vma->vm_end - vma->vm_start);
1728}
1729
1730static void vfio_pci_mmap_close(struct vm_area_struct *vma)
1731{
1732 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1733 struct vfio_pci_mmap_vma *mmap_vma;
1734
1735 mutex_lock(&vdev->vma_lock);
1736 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1737 if (mmap_vma->vma == vma) {
1738 list_del(entry: &mmap_vma->vma_next);
1739 kfree(objp: mmap_vma);
1740 break;
1741 }
1742 }
1743 mutex_unlock(lock: &vdev->vma_lock);
1744}
1745
1746static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
1747{
1748 struct vm_area_struct *vma = vmf->vma;
1749 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1750 struct vfio_pci_mmap_vma *mmap_vma;
1751 vm_fault_t ret = VM_FAULT_NOPAGE;
1752
1753 mutex_lock(&vdev->vma_lock);
1754 down_read(sem: &vdev->memory_lock);
1755
1756 /*
1757 * Memory region cannot be accessed if the low power feature is engaged
1758 * or memory access is disabled.
1759 */
1760 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
1761 ret = VM_FAULT_SIGBUS;
1762 goto up_out;
1763 }
1764
1765 /*
1766 * We populate the whole vma on fault, so we need to test whether
1767 * the vma has already been mapped, such as for concurrent faults
1768 * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if
1769 * we ask it to fill the same range again.
1770 */
1771 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1772 if (mmap_vma->vma == vma)
1773 goto up_out;
1774 }
1775
1776 if (io_remap_pfn_range(vma, addr: vma->vm_start, pfn: vma->vm_pgoff,
1777 size: vma->vm_end - vma->vm_start,
1778 prot: vma->vm_page_prot)) {
1779 ret = VM_FAULT_SIGBUS;
1780 zap_vma_ptes(vma, address: vma->vm_start, size: vma->vm_end - vma->vm_start);
1781 goto up_out;
1782 }
1783
1784 if (__vfio_pci_add_vma(vdev, vma)) {
1785 ret = VM_FAULT_OOM;
1786 zap_vma_ptes(vma, address: vma->vm_start, size: vma->vm_end - vma->vm_start);
1787 }
1788
1789up_out:
1790 up_read(sem: &vdev->memory_lock);
1791 mutex_unlock(lock: &vdev->vma_lock);
1792 return ret;
1793}
1794
1795static const struct vm_operations_struct vfio_pci_mmap_ops = {
1796 .open = vfio_pci_mmap_open,
1797 .close = vfio_pci_mmap_close,
1798 .fault = vfio_pci_mmap_fault,
1799};
1800
1801int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1802{
1803 struct vfio_pci_core_device *vdev =
1804 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1805 struct pci_dev *pdev = vdev->pdev;
1806 unsigned int index;
1807 u64 phys_len, req_len, pgoff, req_start;
1808 int ret;
1809
1810 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1811
1812 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1813 return -EINVAL;
1814 if (vma->vm_end < vma->vm_start)
1815 return -EINVAL;
1816 if ((vma->vm_flags & VM_SHARED) == 0)
1817 return -EINVAL;
1818 if (index >= VFIO_PCI_NUM_REGIONS) {
1819 int regnum = index - VFIO_PCI_NUM_REGIONS;
1820 struct vfio_pci_region *region = vdev->region + regnum;
1821
1822 if (region->ops && region->ops->mmap &&
1823 (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1824 return region->ops->mmap(vdev, region, vma);
1825 return -EINVAL;
1826 }
1827 if (index >= VFIO_PCI_ROM_REGION_INDEX)
1828 return -EINVAL;
1829 if (!vdev->bar_mmap_supported[index])
1830 return -EINVAL;
1831
1832 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1833 req_len = vma->vm_end - vma->vm_start;
1834 pgoff = vma->vm_pgoff &
1835 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1836 req_start = pgoff << PAGE_SHIFT;
1837
1838 if (req_start + req_len > phys_len)
1839 return -EINVAL;
1840
1841 /*
1842 * Even though we don't make use of the barmap for the mmap,
1843 * we need to request the region and the barmap tracks that.
1844 */
1845 if (!vdev->barmap[index]) {
1846 ret = pci_request_selected_regions(pdev,
1847 1 << index, "vfio-pci");
1848 if (ret)
1849 return ret;
1850
1851 vdev->barmap[index] = pci_iomap(dev: pdev, bar: index, max: 0);
1852 if (!vdev->barmap[index]) {
1853 pci_release_selected_regions(pdev, 1 << index);
1854 return -ENOMEM;
1855 }
1856 }
1857
1858 vma->vm_private_data = vdev;
1859 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1860 vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
1861
1862 /*
1863 * See remap_pfn_range(), called from vfio_pci_fault() but we can't
1864 * change vm_flags within the fault handler. Set them now.
1865 *
1866 * VM_ALLOW_ANY_UNCACHED: The VMA flag is implemented for ARM64,
1867 * allowing KVM stage 2 device mapping attributes to use Normal-NC
1868 * rather than DEVICE_nGnRE, which allows guest mappings
1869 * supporting write-combining attributes (WC). ARM does not
1870 * architecturally guarantee this is safe, and indeed some MMIO
1871 * regions like the GICv2 VCPU interface can trigger uncontained
1872 * faults if Normal-NC is used.
1873 *
1874 * To safely use VFIO in KVM the platform must guarantee full
1875 * safety in the guest where no action taken against a MMIO
1876 * mapping can trigger an uncontained failure. The assumption is
1877 * that most VFIO PCI platforms support this for both mapping types,
1878 * at least in common flows, based on some expectations of how
1879 * PCI IP is integrated. Hence VM_ALLOW_ANY_UNCACHED is set in
1880 * the VMA flags.
1881 */
1882 vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED | VM_IO | VM_PFNMAP |
1883 VM_DONTEXPAND | VM_DONTDUMP);
1884 vma->vm_ops = &vfio_pci_mmap_ops;
1885
1886 return 0;
1887}
1888EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1889
1890void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1891{
1892 struct vfio_pci_core_device *vdev =
1893 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1894 struct pci_dev *pdev = vdev->pdev;
1895
1896 mutex_lock(&vdev->igate);
1897
1898 if (vdev->req_trigger) {
1899 if (!(count % 10))
1900 pci_notice_ratelimited(pdev,
1901 "Relaying device request to user (#%u)\n",
1902 count);
1903 eventfd_signal(ctx: vdev->req_trigger);
1904 } else if (count == 0) {
1905 pci_warn(pdev,
1906 "No device request channel registered, blocked until released by user\n");
1907 }
1908
1909 mutex_unlock(lock: &vdev->igate);
1910}
1911EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1912
1913static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1914 bool vf_token, uuid_t *uuid)
1915{
1916 /*
1917 * There's always some degree of trust or collaboration between SR-IOV
1918 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1919 * can disrupt VFs with a reset, but often the PF has more explicit
1920 * access to deny service to the VF or access data passed through the
1921 * VF. We therefore require an opt-in via a shared VF token (UUID) to
1922 * represent this trust. This both prevents that a VF driver might
1923 * assume the PF driver is a trusted, in-kernel driver, and also that
1924 * a PF driver might be replaced with a rogue driver, unknown to in-use
1925 * VF drivers.
1926 *
1927 * Therefore when presented with a VF, if the PF is a vfio device and
1928 * it is bound to the vfio-pci driver, the user needs to provide a VF
1929 * token to access the device, in the form of appending a vf_token to
1930 * the device name, for example:
1931 *
1932 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1933 *
1934 * When presented with a PF which has VFs in use, the user must also
1935 * provide the current VF token to prove collaboration with existing
1936 * VF users. If VFs are not in use, the VF token provided for the PF
1937 * device will act to set the VF token.
1938 *
1939 * If the VF token is provided but unused, an error is generated.
1940 */
1941 if (vdev->pdev->is_virtfn) {
1942 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1943 bool match;
1944
1945 if (!pf_vdev) {
1946 if (!vf_token)
1947 return 0; /* PF is not vfio-pci, no VF token */
1948
1949 pci_info_ratelimited(vdev->pdev,
1950 "VF token incorrectly provided, PF not bound to vfio-pci\n");
1951 return -EINVAL;
1952 }
1953
1954 if (!vf_token) {
1955 pci_info_ratelimited(vdev->pdev,
1956 "VF token required to access device\n");
1957 return -EACCES;
1958 }
1959
1960 mutex_lock(&pf_vdev->vf_token->lock);
1961 match = uuid_equal(u1: uuid, u2: &pf_vdev->vf_token->uuid);
1962 mutex_unlock(lock: &pf_vdev->vf_token->lock);
1963
1964 if (!match) {
1965 pci_info_ratelimited(vdev->pdev,
1966 "Incorrect VF token provided for device\n");
1967 return -EACCES;
1968 }
1969 } else if (vdev->vf_token) {
1970 mutex_lock(&vdev->vf_token->lock);
1971 if (vdev->vf_token->users) {
1972 if (!vf_token) {
1973 mutex_unlock(lock: &vdev->vf_token->lock);
1974 pci_info_ratelimited(vdev->pdev,
1975 "VF token required to access device\n");
1976 return -EACCES;
1977 }
1978
1979 if (!uuid_equal(u1: uuid, u2: &vdev->vf_token->uuid)) {
1980 mutex_unlock(lock: &vdev->vf_token->lock);
1981 pci_info_ratelimited(vdev->pdev,
1982 "Incorrect VF token provided for device\n");
1983 return -EACCES;
1984 }
1985 } else if (vf_token) {
1986 uuid_copy(dst: &vdev->vf_token->uuid, src: uuid);
1987 }
1988
1989 mutex_unlock(lock: &vdev->vf_token->lock);
1990 } else if (vf_token) {
1991 pci_info_ratelimited(vdev->pdev,
1992 "VF token incorrectly provided, not a PF or VF\n");
1993 return -EINVAL;
1994 }
1995
1996 return 0;
1997}
1998
1999#define VF_TOKEN_ARG "vf_token="
2000
2001int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
2002{
2003 struct vfio_pci_core_device *vdev =
2004 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2005 bool vf_token = false;
2006 uuid_t uuid;
2007 int ret;
2008
2009 if (strncmp(pci_name(pdev: vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
2010 return 0; /* No match */
2011
2012 if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
2013 buf += strlen(pci_name(vdev->pdev));
2014
2015 if (*buf != ' ')
2016 return 0; /* No match: non-whitespace after name */
2017
2018 while (*buf) {
2019 if (*buf == ' ') {
2020 buf++;
2021 continue;
2022 }
2023
2024 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
2025 strlen(VF_TOKEN_ARG))) {
2026 buf += strlen(VF_TOKEN_ARG);
2027
2028 if (strlen(buf) < UUID_STRING_LEN)
2029 return -EINVAL;
2030
2031 ret = uuid_parse(uuid: buf, u: &uuid);
2032 if (ret)
2033 return ret;
2034
2035 vf_token = true;
2036 buf += UUID_STRING_LEN;
2037 } else {
2038 /* Unknown/duplicate option */
2039 return -EINVAL;
2040 }
2041 }
2042 }
2043
2044 ret = vfio_pci_validate_vf_token(vdev, vf_token, uuid: &uuid);
2045 if (ret)
2046 return ret;
2047
2048 return 1; /* Match */
2049}
2050EXPORT_SYMBOL_GPL(vfio_pci_core_match);
2051
2052static int vfio_pci_bus_notifier(struct notifier_block *nb,
2053 unsigned long action, void *data)
2054{
2055 struct vfio_pci_core_device *vdev = container_of(nb,
2056 struct vfio_pci_core_device, nb);
2057 struct device *dev = data;
2058 struct pci_dev *pdev = to_pci_dev(dev);
2059 struct pci_dev *physfn = pci_physfn(dev: pdev);
2060
2061 if (action == BUS_NOTIFY_ADD_DEVICE &&
2062 pdev->is_virtfn && physfn == vdev->pdev) {
2063 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
2064 pci_name(pdev));
2065 pdev->driver_override = kasprintf(GFP_KERNEL, fmt: "%s",
2066 vdev->vdev.ops->name);
2067 WARN_ON(!pdev->driver_override);
2068 } else if (action == BUS_NOTIFY_BOUND_DRIVER &&
2069 pdev->is_virtfn && physfn == vdev->pdev) {
2070 struct pci_driver *drv = pci_dev_driver(dev: pdev);
2071
2072 if (drv && drv != pci_dev_driver(dev: vdev->pdev))
2073 pci_warn(vdev->pdev,
2074 "VF %s bound to driver %s while PF bound to driver %s\n",
2075 pci_name(pdev), drv->name,
2076 pci_dev_driver(vdev->pdev)->name);
2077 }
2078
2079 return 0;
2080}
2081
2082static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
2083{
2084 struct pci_dev *pdev = vdev->pdev;
2085 struct vfio_pci_core_device *cur;
2086 struct pci_dev *physfn;
2087 int ret;
2088
2089 if (pdev->is_virtfn) {
2090 /*
2091 * If this VF was created by our vfio_pci_core_sriov_configure()
2092 * then we can find the PF vfio_pci_core_device now, and due to
2093 * the locking in pci_disable_sriov() it cannot change until
2094 * this VF device driver is removed.
2095 */
2096 physfn = pci_physfn(dev: vdev->pdev);
2097 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2098 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2099 if (cur->pdev == physfn) {
2100 vdev->sriov_pf_core_dev = cur;
2101 break;
2102 }
2103 }
2104 mutex_unlock(lock: &vfio_pci_sriov_pfs_mutex);
2105 return 0;
2106 }
2107
2108 /* Not a SRIOV PF */
2109 if (!pdev->is_physfn)
2110 return 0;
2111
2112 vdev->vf_token = kzalloc(size: sizeof(*vdev->vf_token), GFP_KERNEL);
2113 if (!vdev->vf_token)
2114 return -ENOMEM;
2115
2116 mutex_init(&vdev->vf_token->lock);
2117 uuid_gen(u: &vdev->vf_token->uuid);
2118
2119 vdev->nb.notifier_call = vfio_pci_bus_notifier;
2120 ret = bus_register_notifier(bus: &pci_bus_type, nb: &vdev->nb);
2121 if (ret) {
2122 kfree(objp: vdev->vf_token);
2123 return ret;
2124 }
2125 return 0;
2126}
2127
2128static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2129{
2130 if (!vdev->vf_token)
2131 return;
2132
2133 bus_unregister_notifier(bus: &pci_bus_type, nb: &vdev->nb);
2134 WARN_ON(vdev->vf_token->users);
2135 mutex_destroy(lock: &vdev->vf_token->lock);
2136 kfree(objp: vdev->vf_token);
2137}
2138
2139static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2140{
2141 struct pci_dev *pdev = vdev->pdev;
2142 int ret;
2143
2144 if (!vfio_pci_is_vga(pdev))
2145 return 0;
2146
2147 ret = aperture_remove_conflicting_pci_devices(pdev, name: vdev->vdev.ops->name);
2148 if (ret)
2149 return ret;
2150
2151 ret = vga_client_register(pdev, set_decode: vfio_pci_set_decode);
2152 if (ret)
2153 return ret;
2154 vga_set_legacy_decoding(pdev, decodes: vfio_pci_set_decode(pdev, single_vga: false));
2155 return 0;
2156}
2157
2158static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2159{
2160 struct pci_dev *pdev = vdev->pdev;
2161
2162 if (!vfio_pci_is_vga(pdev))
2163 return;
2164 vga_client_unregister(pdev);
2165 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2166 VGA_RSRC_LEGACY_IO |
2167 VGA_RSRC_LEGACY_MEM);
2168}
2169
2170int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2171{
2172 struct vfio_pci_core_device *vdev =
2173 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2174
2175 vdev->pdev = to_pci_dev(core_vdev->dev);
2176 vdev->irq_type = VFIO_PCI_NUM_IRQS;
2177 mutex_init(&vdev->igate);
2178 spin_lock_init(&vdev->irqlock);
2179 mutex_init(&vdev->ioeventfds_lock);
2180 INIT_LIST_HEAD(list: &vdev->dummy_resources_list);
2181 INIT_LIST_HEAD(list: &vdev->ioeventfds_list);
2182 mutex_init(&vdev->vma_lock);
2183 INIT_LIST_HEAD(list: &vdev->vma_list);
2184 INIT_LIST_HEAD(list: &vdev->sriov_pfs_item);
2185 init_rwsem(&vdev->memory_lock);
2186 xa_init(xa: &vdev->ctx);
2187
2188 return 0;
2189}
2190EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2191
2192void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2193{
2194 struct vfio_pci_core_device *vdev =
2195 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2196
2197 mutex_destroy(lock: &vdev->igate);
2198 mutex_destroy(lock: &vdev->ioeventfds_lock);
2199 mutex_destroy(lock: &vdev->vma_lock);
2200 kfree(objp: vdev->region);
2201 kfree(objp: vdev->pm_save);
2202}
2203EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2204
2205int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2206{
2207 struct pci_dev *pdev = vdev->pdev;
2208 struct device *dev = &pdev->dev;
2209 int ret;
2210
2211 /* Drivers must set the vfio_pci_core_device to their drvdata */
2212 if (WARN_ON(vdev != dev_get_drvdata(dev)))
2213 return -EINVAL;
2214
2215 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2216 return -EINVAL;
2217
2218 if (vdev->vdev.mig_ops) {
2219 if (!(vdev->vdev.mig_ops->migration_get_state &&
2220 vdev->vdev.mig_ops->migration_set_state &&
2221 vdev->vdev.mig_ops->migration_get_data_size) ||
2222 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2223 return -EINVAL;
2224 }
2225
2226 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2227 vdev->vdev.log_ops->log_stop &&
2228 vdev->vdev.log_ops->log_read_and_clear))
2229 return -EINVAL;
2230
2231 /*
2232 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2233 * by the host or other users. We cannot capture the VFs if they
2234 * already exist, nor can we track VF users. Disabling SR-IOV here
2235 * would initiate removing the VFs, which would unbind the driver,
2236 * which is prone to blocking if that VF is also in use by vfio-pci.
2237 * Just reject these PFs and let the user sort it out.
2238 */
2239 if (pci_num_vf(dev: pdev)) {
2240 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2241 return -EBUSY;
2242 }
2243
2244 if (pci_is_root_bus(pbus: pdev->bus)) {
2245 ret = vfio_assign_device_set(device: &vdev->vdev, set_id: vdev);
2246 } else if (!pci_probe_reset_slot(slot: pdev->slot)) {
2247 ret = vfio_assign_device_set(device: &vdev->vdev, set_id: pdev->slot);
2248 } else {
2249 /*
2250 * If there is no slot reset support for this device, the whole
2251 * bus needs to be grouped together to support bus-wide resets.
2252 */
2253 ret = vfio_assign_device_set(device: &vdev->vdev, set_id: pdev->bus);
2254 }
2255
2256 if (ret)
2257 return ret;
2258 ret = vfio_pci_vf_init(vdev);
2259 if (ret)
2260 return ret;
2261 ret = vfio_pci_vga_init(vdev);
2262 if (ret)
2263 goto out_vf;
2264
2265 vfio_pci_probe_power_state(vdev);
2266
2267 /*
2268 * pci-core sets the device power state to an unknown value at
2269 * bootup and after being removed from a driver. The only
2270 * transition it allows from this unknown state is to D0, which
2271 * typically happens when a driver calls pci_enable_device().
2272 * We're not ready to enable the device yet, but we do want to
2273 * be able to get to D3. Therefore first do a D0 transition
2274 * before enabling runtime PM.
2275 */
2276 vfio_pci_set_power_state(vdev, PCI_D0);
2277
2278 dev->driver->pm = &vfio_pci_core_pm_ops;
2279 pm_runtime_allow(dev);
2280 if (!disable_idle_d3)
2281 pm_runtime_put(dev);
2282
2283 ret = vfio_register_group_dev(device: &vdev->vdev);
2284 if (ret)
2285 goto out_power;
2286 return 0;
2287
2288out_power:
2289 if (!disable_idle_d3)
2290 pm_runtime_get_noresume(dev);
2291
2292 pm_runtime_forbid(dev);
2293out_vf:
2294 vfio_pci_vf_uninit(vdev);
2295 return ret;
2296}
2297EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2298
2299void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2300{
2301 vfio_pci_core_sriov_configure(vdev, nr_virtfn: 0);
2302
2303 vfio_unregister_group_dev(device: &vdev->vdev);
2304
2305 vfio_pci_vf_uninit(vdev);
2306 vfio_pci_vga_uninit(vdev);
2307
2308 if (!disable_idle_d3)
2309 pm_runtime_get_noresume(dev: &vdev->pdev->dev);
2310
2311 pm_runtime_forbid(dev: &vdev->pdev->dev);
2312}
2313EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2314
2315pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2316 pci_channel_state_t state)
2317{
2318 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev: &pdev->dev);
2319
2320 mutex_lock(&vdev->igate);
2321
2322 if (vdev->err_trigger)
2323 eventfd_signal(ctx: vdev->err_trigger);
2324
2325 mutex_unlock(lock: &vdev->igate);
2326
2327 return PCI_ERS_RESULT_CAN_RECOVER;
2328}
2329EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2330
2331int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2332 int nr_virtfn)
2333{
2334 struct pci_dev *pdev = vdev->pdev;
2335 int ret = 0;
2336
2337 device_lock_assert(dev: &pdev->dev);
2338
2339 if (nr_virtfn) {
2340 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2341 /*
2342 * The thread that adds the vdev to the list is the only thread
2343 * that gets to call pci_enable_sriov() and we will only allow
2344 * it to be called once without going through
2345 * pci_disable_sriov()
2346 */
2347 if (!list_empty(head: &vdev->sriov_pfs_item)) {
2348 ret = -EINVAL;
2349 goto out_unlock;
2350 }
2351 list_add_tail(new: &vdev->sriov_pfs_item, head: &vfio_pci_sriov_pfs);
2352 mutex_unlock(lock: &vfio_pci_sriov_pfs_mutex);
2353
2354 /*
2355 * The PF power state should always be higher than the VF power
2356 * state. The PF can be in low power state either with runtime
2357 * power management (when there is no user) or PCI_PM_CTRL
2358 * register write by the user. If PF is in the low power state,
2359 * then change the power state to D0 first before enabling
2360 * SR-IOV. Also, this function can be called at any time, and
2361 * userspace PCI_PM_CTRL write can race against this code path,
2362 * so protect the same with 'memory_lock'.
2363 */
2364 ret = pm_runtime_resume_and_get(dev: &pdev->dev);
2365 if (ret)
2366 goto out_del;
2367
2368 down_write(sem: &vdev->memory_lock);
2369 vfio_pci_set_power_state(vdev, PCI_D0);
2370 ret = pci_enable_sriov(dev: pdev, nr_virtfn);
2371 up_write(sem: &vdev->memory_lock);
2372 if (ret) {
2373 pm_runtime_put(dev: &pdev->dev);
2374 goto out_del;
2375 }
2376 return nr_virtfn;
2377 }
2378
2379 if (pci_num_vf(dev: pdev)) {
2380 pci_disable_sriov(dev: pdev);
2381 pm_runtime_put(dev: &pdev->dev);
2382 }
2383
2384out_del:
2385 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2386 list_del_init(entry: &vdev->sriov_pfs_item);
2387out_unlock:
2388 mutex_unlock(lock: &vfio_pci_sriov_pfs_mutex);
2389 return ret;
2390}
2391EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2392
2393const struct pci_error_handlers vfio_pci_core_err_handlers = {
2394 .error_detected = vfio_pci_core_aer_err_detected,
2395};
2396EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2397
2398static bool vfio_dev_in_groups(struct vfio_device *vdev,
2399 struct vfio_pci_group_info *groups)
2400{
2401 unsigned int i;
2402
2403 if (!groups)
2404 return false;
2405
2406 for (i = 0; i < groups->count; i++)
2407 if (vfio_file_has_dev(file: groups->files[i], device: vdev))
2408 return true;
2409 return false;
2410}
2411
2412static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2413{
2414 struct vfio_device_set *dev_set = data;
2415
2416 return vfio_find_device_in_devset(dev_set, dev: &pdev->dev) ? 0 : -ENODEV;
2417}
2418
2419/*
2420 * vfio-core considers a group to be viable and will create a vfio_device even
2421 * if some devices are bound to drivers like pci-stub or pcieport. Here we
2422 * require all PCI devices to be inside our dev_set since that ensures they stay
2423 * put and that every driver controlling the device can co-ordinate with the
2424 * device reset.
2425 *
2426 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2427 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2428 */
2429static struct pci_dev *
2430vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2431{
2432 struct pci_dev *pdev;
2433
2434 lockdep_assert_held(&dev_set->lock);
2435
2436 /*
2437 * By definition all PCI devices in the dev_set share the same PCI
2438 * reset, so any pci_dev will have the same outcomes for
2439 * pci_probe_reset_*() and pci_reset_bus().
2440 */
2441 pdev = list_first_entry(&dev_set->device_list,
2442 struct vfio_pci_core_device,
2443 vdev.dev_set_list)->pdev;
2444
2445 /* pci_reset_bus() is supported */
2446 if (pci_probe_reset_slot(slot: pdev->slot) && pci_probe_reset_bus(bus: pdev->bus))
2447 return NULL;
2448
2449 if (vfio_pci_for_each_slot_or_bus(pdev, fn: vfio_pci_is_device_in_set,
2450 data: dev_set,
2451 slot: !pci_probe_reset_slot(slot: pdev->slot)))
2452 return NULL;
2453 return pdev;
2454}
2455
2456static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2457{
2458 struct vfio_pci_core_device *cur;
2459 int ret;
2460
2461 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2462 ret = pm_runtime_resume_and_get(dev: &cur->pdev->dev);
2463 if (ret)
2464 goto unwind;
2465 }
2466
2467 return 0;
2468
2469unwind:
2470 list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2471 vdev.dev_set_list)
2472 pm_runtime_put(dev: &cur->pdev->dev);
2473
2474 return ret;
2475}
2476
2477/*
2478 * We need to get memory_lock for each device, but devices can share mmap_lock,
2479 * therefore we need to zap and hold the vma_lock for each device, and only then
2480 * get each memory_lock.
2481 */
2482static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2483 struct vfio_pci_group_info *groups,
2484 struct iommufd_ctx *iommufd_ctx)
2485{
2486 struct vfio_pci_core_device *cur_mem;
2487 struct vfio_pci_core_device *cur_vma;
2488 struct vfio_pci_core_device *cur;
2489 struct pci_dev *pdev;
2490 bool is_mem = true;
2491 int ret;
2492
2493 mutex_lock(&dev_set->lock);
2494 cur_mem = list_first_entry(&dev_set->device_list,
2495 struct vfio_pci_core_device,
2496 vdev.dev_set_list);
2497
2498 pdev = vfio_pci_dev_set_resettable(dev_set);
2499 if (!pdev) {
2500 ret = -EINVAL;
2501 goto err_unlock;
2502 }
2503
2504 /*
2505 * Some of the devices in the dev_set can be in the runtime suspended
2506 * state. Increment the usage count for all the devices in the dev_set
2507 * before reset and decrement the same after reset.
2508 */
2509 ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2510 if (ret)
2511 goto err_unlock;
2512
2513 list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
2514 bool owned;
2515
2516 /*
2517 * Test whether all the affected devices can be reset by the
2518 * user.
2519 *
2520 * If called from a group opened device and the user provides
2521 * a set of groups, all the devices in the dev_set should be
2522 * contained by the set of groups provided by the user.
2523 *
2524 * If called from a cdev opened device and the user provides
2525 * a zero-length array, all the devices in the dev_set must
2526 * be bound to the same iommufd_ctx as the input iommufd_ctx.
2527 * If there is any device that has not been bound to any
2528 * iommufd_ctx yet, check if its iommu_group has any device
2529 * bound to the input iommufd_ctx. Such devices can be
2530 * considered owned by the input iommufd_ctx as the device
2531 * cannot be owned by another iommufd_ctx when its iommu_group
2532 * is owned.
2533 *
2534 * Otherwise, reset is not allowed.
2535 */
2536 if (iommufd_ctx) {
2537 int devid = vfio_iommufd_get_dev_id(vdev: &cur_vma->vdev,
2538 ictx: iommufd_ctx);
2539
2540 owned = (devid > 0 || devid == -ENOENT);
2541 } else {
2542 owned = vfio_dev_in_groups(vdev: &cur_vma->vdev, groups);
2543 }
2544
2545 if (!owned) {
2546 ret = -EINVAL;
2547 goto err_undo;
2548 }
2549
2550 /*
2551 * Locking multiple devices is prone to deadlock, runaway and
2552 * unwind if we hit contention.
2553 */
2554 if (!vfio_pci_zap_and_vma_lock(vdev: cur_vma, try: true)) {
2555 ret = -EBUSY;
2556 goto err_undo;
2557 }
2558 }
2559 cur_vma = NULL;
2560
2561 list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
2562 if (!down_write_trylock(sem: &cur_mem->memory_lock)) {
2563 ret = -EBUSY;
2564 goto err_undo;
2565 }
2566 mutex_unlock(lock: &cur_mem->vma_lock);
2567 }
2568 cur_mem = NULL;
2569
2570 /*
2571 * The pci_reset_bus() will reset all the devices in the bus.
2572 * The power state can be non-D0 for some of the devices in the bus.
2573 * For these devices, the pci_reset_bus() will internally set
2574 * the power state to D0 without vfio driver involvement.
2575 * For the devices which have NoSoftRst-, the reset function can
2576 * cause the PCI config space reset without restoring the original
2577 * state (saved locally in 'vdev->pm_save').
2578 */
2579 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2580 vfio_pci_set_power_state(vdev: cur, PCI_D0);
2581
2582 ret = pci_reset_bus(dev: pdev);
2583
2584err_undo:
2585 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2586 if (cur == cur_mem)
2587 is_mem = false;
2588 if (cur == cur_vma)
2589 break;
2590 if (is_mem)
2591 up_write(sem: &cur->memory_lock);
2592 else
2593 mutex_unlock(lock: &cur->vma_lock);
2594 }
2595
2596 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2597 pm_runtime_put(dev: &cur->pdev->dev);
2598err_unlock:
2599 mutex_unlock(lock: &dev_set->lock);
2600 return ret;
2601}
2602
2603static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2604{
2605 struct vfio_pci_core_device *cur;
2606 bool needs_reset = false;
2607
2608 /* No other VFIO device in the set can be open. */
2609 if (vfio_device_set_open_count(dev_set) > 1)
2610 return false;
2611
2612 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2613 needs_reset |= cur->needs_reset;
2614 return needs_reset;
2615}
2616
2617/*
2618 * If a bus or slot reset is available for the provided dev_set and:
2619 * - All of the devices affected by that bus or slot reset are unused
2620 * - At least one of the affected devices is marked dirty via
2621 * needs_reset (such as by lack of FLR support)
2622 * Then attempt to perform that bus or slot reset.
2623 */
2624static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2625{
2626 struct vfio_pci_core_device *cur;
2627 struct pci_dev *pdev;
2628 bool reset_done = false;
2629
2630 if (!vfio_pci_dev_set_needs_reset(dev_set))
2631 return;
2632
2633 pdev = vfio_pci_dev_set_resettable(dev_set);
2634 if (!pdev)
2635 return;
2636
2637 /*
2638 * Some of the devices in the bus can be in the runtime suspended
2639 * state. Increment the usage count for all the devices in the dev_set
2640 * before reset and decrement the same after reset.
2641 */
2642 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2643 return;
2644
2645 if (!pci_reset_bus(dev: pdev))
2646 reset_done = true;
2647
2648 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2649 if (reset_done)
2650 cur->needs_reset = false;
2651
2652 if (!disable_idle_d3)
2653 pm_runtime_put(dev: &cur->pdev->dev);
2654 }
2655}
2656
2657void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2658 bool is_disable_idle_d3)
2659{
2660 nointxmask = is_nointxmask;
2661 disable_vga = is_disable_vga;
2662 disable_idle_d3 = is_disable_idle_d3;
2663}
2664EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2665
2666static void vfio_pci_core_cleanup(void)
2667{
2668 vfio_pci_uninit_perm_bits();
2669}
2670
2671static int __init vfio_pci_core_init(void)
2672{
2673 /* Allocate shared config space permission data used by all devices */
2674 return vfio_pci_init_perm_bits();
2675}
2676
2677module_init(vfio_pci_core_init);
2678module_exit(vfio_pci_core_cleanup);
2679
2680MODULE_LICENSE("GPL v2");
2681MODULE_AUTHOR(DRIVER_AUTHOR);
2682MODULE_DESCRIPTION(DRIVER_DESC);
2683

source code of linux/drivers/vfio/pci/vfio_pci_core.c