1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* |
3 | * linux/fs/ext4/inode.c |
4 | * |
5 | * Copyright (C) 1992, 1993, 1994, 1995 |
6 | * Remy Card (card@masi.ibp.fr) |
7 | * Laboratoire MASI - Institut Blaise Pascal |
8 | * Universite Pierre et Marie Curie (Paris VI) |
9 | * |
10 | * from |
11 | * |
12 | * linux/fs/minix/inode.c |
13 | * |
14 | * Copyright (C) 1991, 1992 Linus Torvalds |
15 | * |
16 | * 64-bit file support on 64-bit platforms by Jakub Jelinek |
17 | * (jj@sunsite.ms.mff.cuni.cz) |
18 | * |
19 | * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 |
20 | */ |
21 | |
22 | #include <linux/fs.h> |
23 | #include <linux/time.h> |
24 | #include <linux/highuid.h> |
25 | #include <linux/pagemap.h> |
26 | #include <linux/dax.h> |
27 | #include <linux/quotaops.h> |
28 | #include <linux/string.h> |
29 | #include <linux/buffer_head.h> |
30 | #include <linux/writeback.h> |
31 | #include <linux/pagevec.h> |
32 | #include <linux/mpage.h> |
33 | #include <linux/namei.h> |
34 | #include <linux/uio.h> |
35 | #include <linux/bio.h> |
36 | #include <linux/workqueue.h> |
37 | #include <linux/kernel.h> |
38 | #include <linux/printk.h> |
39 | #include <linux/slab.h> |
40 | #include <linux/bitops.h> |
41 | #include <linux/iomap.h> |
42 | #include <linux/iversion.h> |
43 | |
44 | #include "ext4_jbd2.h" |
45 | #include "xattr.h" |
46 | #include "acl.h" |
47 | #include "truncate.h" |
48 | |
49 | #include <trace/events/ext4.h> |
50 | |
51 | #define MPAGE_DA_EXTENT_TAIL 0x01 |
52 | |
53 | static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, |
54 | struct ext4_inode_info *ei) |
55 | { |
56 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
57 | __u32 csum; |
58 | __u16 dummy_csum = 0; |
59 | int offset = offsetof(struct ext4_inode, i_checksum_lo); |
60 | unsigned int csum_size = sizeof(dummy_csum); |
61 | |
62 | csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); |
63 | csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); |
64 | offset += csum_size; |
65 | csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, |
66 | EXT4_GOOD_OLD_INODE_SIZE - offset); |
67 | |
68 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { |
69 | offset = offsetof(struct ext4_inode, i_checksum_hi); |
70 | csum = ext4_chksum(sbi, csum, (__u8 *)raw + |
71 | EXT4_GOOD_OLD_INODE_SIZE, |
72 | offset - EXT4_GOOD_OLD_INODE_SIZE); |
73 | if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { |
74 | csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, |
75 | csum_size); |
76 | offset += csum_size; |
77 | } |
78 | csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, |
79 | EXT4_INODE_SIZE(inode->i_sb) - offset); |
80 | } |
81 | |
82 | return csum; |
83 | } |
84 | |
85 | static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, |
86 | struct ext4_inode_info *ei) |
87 | { |
88 | __u32 provided, calculated; |
89 | |
90 | if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != |
91 | cpu_to_le32(EXT4_OS_LINUX) || |
92 | !ext4_has_metadata_csum(inode->i_sb)) |
93 | return 1; |
94 | |
95 | provided = le16_to_cpu(raw->i_checksum_lo); |
96 | calculated = ext4_inode_csum(inode, raw, ei); |
97 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && |
98 | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) |
99 | provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; |
100 | else |
101 | calculated &= 0xFFFF; |
102 | |
103 | return provided == calculated; |
104 | } |
105 | |
106 | static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, |
107 | struct ext4_inode_info *ei) |
108 | { |
109 | __u32 csum; |
110 | |
111 | if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != |
112 | cpu_to_le32(EXT4_OS_LINUX) || |
113 | !ext4_has_metadata_csum(inode->i_sb)) |
114 | return; |
115 | |
116 | csum = ext4_inode_csum(inode, raw, ei); |
117 | raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); |
118 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && |
119 | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) |
120 | raw->i_checksum_hi = cpu_to_le16(csum >> 16); |
121 | } |
122 | |
123 | static inline int ext4_begin_ordered_truncate(struct inode *inode, |
124 | loff_t new_size) |
125 | { |
126 | trace_ext4_begin_ordered_truncate(inode, new_size); |
127 | /* |
128 | * If jinode is zero, then we never opened the file for |
129 | * writing, so there's no need to call |
130 | * jbd2_journal_begin_ordered_truncate() since there's no |
131 | * outstanding writes we need to flush. |
132 | */ |
133 | if (!EXT4_I(inode)->jinode) |
134 | return 0; |
135 | return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), |
136 | EXT4_I(inode)->jinode, |
137 | new_size); |
138 | } |
139 | |
140 | static void ext4_invalidatepage(struct page *page, unsigned int offset, |
141 | unsigned int length); |
142 | static int __ext4_journalled_writepage(struct page *page, unsigned int len); |
143 | static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); |
144 | static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, |
145 | int pextents); |
146 | |
147 | /* |
148 | * Test whether an inode is a fast symlink. |
149 | * A fast symlink has its symlink data stored in ext4_inode_info->i_data. |
150 | */ |
151 | int ext4_inode_is_fast_symlink(struct inode *inode) |
152 | { |
153 | if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { |
154 | int ea_blocks = EXT4_I(inode)->i_file_acl ? |
155 | EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; |
156 | |
157 | if (ext4_has_inline_data(inode)) |
158 | return 0; |
159 | |
160 | return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); |
161 | } |
162 | return S_ISLNK(inode->i_mode) && inode->i_size && |
163 | (inode->i_size < EXT4_N_BLOCKS * 4); |
164 | } |
165 | |
166 | /* |
167 | * Restart the transaction associated with *handle. This does a commit, |
168 | * so before we call here everything must be consistently dirtied against |
169 | * this transaction. |
170 | */ |
171 | int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, |
172 | int nblocks) |
173 | { |
174 | int ret; |
175 | |
176 | /* |
177 | * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this |
178 | * moment, get_block can be called only for blocks inside i_size since |
179 | * page cache has been already dropped and writes are blocked by |
180 | * i_mutex. So we can safely drop the i_data_sem here. |
181 | */ |
182 | BUG_ON(EXT4_JOURNAL(inode) == NULL); |
183 | jbd_debug(2, "restarting handle %p\n" , handle); |
184 | up_write(&EXT4_I(inode)->i_data_sem); |
185 | ret = ext4_journal_restart(handle, nblocks); |
186 | down_write(&EXT4_I(inode)->i_data_sem); |
187 | ext4_discard_preallocations(inode); |
188 | |
189 | return ret; |
190 | } |
191 | |
192 | /* |
193 | * Called at the last iput() if i_nlink is zero. |
194 | */ |
195 | void ext4_evict_inode(struct inode *inode) |
196 | { |
197 | handle_t *handle; |
198 | int err; |
199 | int = 3; |
200 | struct ext4_xattr_inode_array *ea_inode_array = NULL; |
201 | |
202 | trace_ext4_evict_inode(inode); |
203 | |
204 | if (inode->i_nlink) { |
205 | /* |
206 | * When journalling data dirty buffers are tracked only in the |
207 | * journal. So although mm thinks everything is clean and |
208 | * ready for reaping the inode might still have some pages to |
209 | * write in the running transaction or waiting to be |
210 | * checkpointed. Thus calling jbd2_journal_invalidatepage() |
211 | * (via truncate_inode_pages()) to discard these buffers can |
212 | * cause data loss. Also even if we did not discard these |
213 | * buffers, we would have no way to find them after the inode |
214 | * is reaped and thus user could see stale data if he tries to |
215 | * read them before the transaction is checkpointed. So be |
216 | * careful and force everything to disk here... We use |
217 | * ei->i_datasync_tid to store the newest transaction |
218 | * containing inode's data. |
219 | * |
220 | * Note that directories do not have this problem because they |
221 | * don't use page cache. |
222 | */ |
223 | if (inode->i_ino != EXT4_JOURNAL_INO && |
224 | ext4_should_journal_data(inode) && |
225 | (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && |
226 | inode->i_data.nrpages) { |
227 | journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; |
228 | tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; |
229 | |
230 | jbd2_complete_transaction(journal, commit_tid); |
231 | filemap_write_and_wait(&inode->i_data); |
232 | } |
233 | truncate_inode_pages_final(&inode->i_data); |
234 | |
235 | goto no_delete; |
236 | } |
237 | |
238 | if (is_bad_inode(inode)) |
239 | goto no_delete; |
240 | dquot_initialize(inode); |
241 | |
242 | if (ext4_should_order_data(inode)) |
243 | ext4_begin_ordered_truncate(inode, 0); |
244 | truncate_inode_pages_final(&inode->i_data); |
245 | |
246 | /* |
247 | * Protect us against freezing - iput() caller didn't have to have any |
248 | * protection against it |
249 | */ |
250 | sb_start_intwrite(inode->i_sb); |
251 | |
252 | if (!IS_NOQUOTA(inode)) |
253 | extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); |
254 | |
255 | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, |
256 | ext4_blocks_for_truncate(inode)+extra_credits); |
257 | if (IS_ERR(handle)) { |
258 | ext4_std_error(inode->i_sb, PTR_ERR(handle)); |
259 | /* |
260 | * If we're going to skip the normal cleanup, we still need to |
261 | * make sure that the in-core orphan linked list is properly |
262 | * cleaned up. |
263 | */ |
264 | ext4_orphan_del(NULL, inode); |
265 | sb_end_intwrite(inode->i_sb); |
266 | goto no_delete; |
267 | } |
268 | |
269 | if (IS_SYNC(inode)) |
270 | ext4_handle_sync(handle); |
271 | |
272 | /* |
273 | * Set inode->i_size to 0 before calling ext4_truncate(). We need |
274 | * special handling of symlinks here because i_size is used to |
275 | * determine whether ext4_inode_info->i_data contains symlink data or |
276 | * block mappings. Setting i_size to 0 will remove its fast symlink |
277 | * status. Erase i_data so that it becomes a valid empty block map. |
278 | */ |
279 | if (ext4_inode_is_fast_symlink(inode)) |
280 | memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); |
281 | inode->i_size = 0; |
282 | err = ext4_mark_inode_dirty(handle, inode); |
283 | if (err) { |
284 | ext4_warning(inode->i_sb, |
285 | "couldn't mark inode dirty (err %d)" , err); |
286 | goto stop_handle; |
287 | } |
288 | if (inode->i_blocks) { |
289 | err = ext4_truncate(inode); |
290 | if (err) { |
291 | ext4_error(inode->i_sb, |
292 | "couldn't truncate inode %lu (err %d)" , |
293 | inode->i_ino, err); |
294 | goto stop_handle; |
295 | } |
296 | } |
297 | |
298 | /* Remove xattr references. */ |
299 | err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, |
300 | extra_credits); |
301 | if (err) { |
302 | ext4_warning(inode->i_sb, "xattr delete (err %d)" , err); |
303 | stop_handle: |
304 | ext4_journal_stop(handle); |
305 | ext4_orphan_del(NULL, inode); |
306 | sb_end_intwrite(inode->i_sb); |
307 | ext4_xattr_inode_array_free(ea_inode_array); |
308 | goto no_delete; |
309 | } |
310 | |
311 | /* |
312 | * Kill off the orphan record which ext4_truncate created. |
313 | * AKPM: I think this can be inside the above `if'. |
314 | * Note that ext4_orphan_del() has to be able to cope with the |
315 | * deletion of a non-existent orphan - this is because we don't |
316 | * know if ext4_truncate() actually created an orphan record. |
317 | * (Well, we could do this if we need to, but heck - it works) |
318 | */ |
319 | ext4_orphan_del(handle, inode); |
320 | EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); |
321 | |
322 | /* |
323 | * One subtle ordering requirement: if anything has gone wrong |
324 | * (transaction abort, IO errors, whatever), then we can still |
325 | * do these next steps (the fs will already have been marked as |
326 | * having errors), but we can't free the inode if the mark_dirty |
327 | * fails. |
328 | */ |
329 | if (ext4_mark_inode_dirty(handle, inode)) |
330 | /* If that failed, just do the required in-core inode clear. */ |
331 | ext4_clear_inode(inode); |
332 | else |
333 | ext4_free_inode(handle, inode); |
334 | ext4_journal_stop(handle); |
335 | sb_end_intwrite(inode->i_sb); |
336 | ext4_xattr_inode_array_free(ea_inode_array); |
337 | return; |
338 | no_delete: |
339 | ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ |
340 | } |
341 | |
342 | #ifdef CONFIG_QUOTA |
343 | qsize_t *ext4_get_reserved_space(struct inode *inode) |
344 | { |
345 | return &EXT4_I(inode)->i_reserved_quota; |
346 | } |
347 | #endif |
348 | |
349 | /* |
350 | * Called with i_data_sem down, which is important since we can call |
351 | * ext4_discard_preallocations() from here. |
352 | */ |
353 | void ext4_da_update_reserve_space(struct inode *inode, |
354 | int used, int quota_claim) |
355 | { |
356 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
357 | struct ext4_inode_info *ei = EXT4_I(inode); |
358 | |
359 | spin_lock(&ei->i_block_reservation_lock); |
360 | trace_ext4_da_update_reserve_space(inode, used, quota_claim); |
361 | if (unlikely(used > ei->i_reserved_data_blocks)) { |
362 | ext4_warning(inode->i_sb, "%s: ino %lu, used %d " |
363 | "with only %d reserved data blocks" , |
364 | __func__, inode->i_ino, used, |
365 | ei->i_reserved_data_blocks); |
366 | WARN_ON(1); |
367 | used = ei->i_reserved_data_blocks; |
368 | } |
369 | |
370 | /* Update per-inode reservations */ |
371 | ei->i_reserved_data_blocks -= used; |
372 | percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); |
373 | |
374 | spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); |
375 | |
376 | /* Update quota subsystem for data blocks */ |
377 | if (quota_claim) |
378 | dquot_claim_block(inode, EXT4_C2B(sbi, used)); |
379 | else { |
380 | /* |
381 | * We did fallocate with an offset that is already delayed |
382 | * allocated. So on delayed allocated writeback we should |
383 | * not re-claim the quota for fallocated blocks. |
384 | */ |
385 | dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); |
386 | } |
387 | |
388 | /* |
389 | * If we have done all the pending block allocations and if |
390 | * there aren't any writers on the inode, we can discard the |
391 | * inode's preallocations. |
392 | */ |
393 | if ((ei->i_reserved_data_blocks == 0) && |
394 | !inode_is_open_for_write(inode)) |
395 | ext4_discard_preallocations(inode); |
396 | } |
397 | |
398 | static int __check_block_validity(struct inode *inode, const char *func, |
399 | unsigned int line, |
400 | struct ext4_map_blocks *map) |
401 | { |
402 | if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, |
403 | map->m_len)) { |
404 | ext4_error_inode(inode, func, line, map->m_pblk, |
405 | "lblock %lu mapped to illegal pblock %llu " |
406 | "(length %d)" , (unsigned long) map->m_lblk, |
407 | map->m_pblk, map->m_len); |
408 | return -EFSCORRUPTED; |
409 | } |
410 | return 0; |
411 | } |
412 | |
413 | int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, |
414 | ext4_lblk_t len) |
415 | { |
416 | int ret; |
417 | |
418 | if (IS_ENCRYPTED(inode)) |
419 | return fscrypt_zeroout_range(inode, lblk, pblk, len); |
420 | |
421 | ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); |
422 | if (ret > 0) |
423 | ret = 0; |
424 | |
425 | return ret; |
426 | } |
427 | |
428 | #define check_block_validity(inode, map) \ |
429 | __check_block_validity((inode), __func__, __LINE__, (map)) |
430 | |
431 | #ifdef ES_AGGRESSIVE_TEST |
432 | static void ext4_map_blocks_es_recheck(handle_t *handle, |
433 | struct inode *inode, |
434 | struct ext4_map_blocks *es_map, |
435 | struct ext4_map_blocks *map, |
436 | int flags) |
437 | { |
438 | int retval; |
439 | |
440 | map->m_flags = 0; |
441 | /* |
442 | * There is a race window that the result is not the same. |
443 | * e.g. xfstests #223 when dioread_nolock enables. The reason |
444 | * is that we lookup a block mapping in extent status tree with |
445 | * out taking i_data_sem. So at the time the unwritten extent |
446 | * could be converted. |
447 | */ |
448 | down_read(&EXT4_I(inode)->i_data_sem); |
449 | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { |
450 | retval = ext4_ext_map_blocks(handle, inode, map, flags & |
451 | EXT4_GET_BLOCKS_KEEP_SIZE); |
452 | } else { |
453 | retval = ext4_ind_map_blocks(handle, inode, map, flags & |
454 | EXT4_GET_BLOCKS_KEEP_SIZE); |
455 | } |
456 | up_read((&EXT4_I(inode)->i_data_sem)); |
457 | |
458 | /* |
459 | * We don't check m_len because extent will be collpased in status |
460 | * tree. So the m_len might not equal. |
461 | */ |
462 | if (es_map->m_lblk != map->m_lblk || |
463 | es_map->m_flags != map->m_flags || |
464 | es_map->m_pblk != map->m_pblk) { |
465 | printk("ES cache assertion failed for inode: %lu " |
466 | "es_cached ex [%d/%d/%llu/%x] != " |
467 | "found ex [%d/%d/%llu/%x] retval %d flags %x\n" , |
468 | inode->i_ino, es_map->m_lblk, es_map->m_len, |
469 | es_map->m_pblk, es_map->m_flags, map->m_lblk, |
470 | map->m_len, map->m_pblk, map->m_flags, |
471 | retval, flags); |
472 | } |
473 | } |
474 | #endif /* ES_AGGRESSIVE_TEST */ |
475 | |
476 | /* |
477 | * The ext4_map_blocks() function tries to look up the requested blocks, |
478 | * and returns if the blocks are already mapped. |
479 | * |
480 | * Otherwise it takes the write lock of the i_data_sem and allocate blocks |
481 | * and store the allocated blocks in the result buffer head and mark it |
482 | * mapped. |
483 | * |
484 | * If file type is extents based, it will call ext4_ext_map_blocks(), |
485 | * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping |
486 | * based files |
487 | * |
488 | * On success, it returns the number of blocks being mapped or allocated. if |
489 | * create==0 and the blocks are pre-allocated and unwritten, the resulting @map |
490 | * is marked as unwritten. If the create == 1, it will mark @map as mapped. |
491 | * |
492 | * It returns 0 if plain look up failed (blocks have not been allocated), in |
493 | * that case, @map is returned as unmapped but we still do fill map->m_len to |
494 | * indicate the length of a hole starting at map->m_lblk. |
495 | * |
496 | * It returns the error in case of allocation failure. |
497 | */ |
498 | int ext4_map_blocks(handle_t *handle, struct inode *inode, |
499 | struct ext4_map_blocks *map, int flags) |
500 | { |
501 | struct extent_status es; |
502 | int retval; |
503 | int ret = 0; |
504 | #ifdef ES_AGGRESSIVE_TEST |
505 | struct ext4_map_blocks orig_map; |
506 | |
507 | memcpy(&orig_map, map, sizeof(*map)); |
508 | #endif |
509 | |
510 | map->m_flags = 0; |
511 | ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," |
512 | "logical block %lu\n" , inode->i_ino, flags, map->m_len, |
513 | (unsigned long) map->m_lblk); |
514 | |
515 | /* |
516 | * ext4_map_blocks returns an int, and m_len is an unsigned int |
517 | */ |
518 | if (unlikely(map->m_len > INT_MAX)) |
519 | map->m_len = INT_MAX; |
520 | |
521 | /* We can handle the block number less than EXT_MAX_BLOCKS */ |
522 | if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) |
523 | return -EFSCORRUPTED; |
524 | |
525 | /* Lookup extent status tree firstly */ |
526 | if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { |
527 | if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { |
528 | map->m_pblk = ext4_es_pblock(&es) + |
529 | map->m_lblk - es.es_lblk; |
530 | map->m_flags |= ext4_es_is_written(&es) ? |
531 | EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; |
532 | retval = es.es_len - (map->m_lblk - es.es_lblk); |
533 | if (retval > map->m_len) |
534 | retval = map->m_len; |
535 | map->m_len = retval; |
536 | } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { |
537 | map->m_pblk = 0; |
538 | retval = es.es_len - (map->m_lblk - es.es_lblk); |
539 | if (retval > map->m_len) |
540 | retval = map->m_len; |
541 | map->m_len = retval; |
542 | retval = 0; |
543 | } else { |
544 | BUG_ON(1); |
545 | } |
546 | #ifdef ES_AGGRESSIVE_TEST |
547 | ext4_map_blocks_es_recheck(handle, inode, map, |
548 | &orig_map, flags); |
549 | #endif |
550 | goto found; |
551 | } |
552 | |
553 | /* |
554 | * Try to see if we can get the block without requesting a new |
555 | * file system block. |
556 | */ |
557 | down_read(&EXT4_I(inode)->i_data_sem); |
558 | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { |
559 | retval = ext4_ext_map_blocks(handle, inode, map, flags & |
560 | EXT4_GET_BLOCKS_KEEP_SIZE); |
561 | } else { |
562 | retval = ext4_ind_map_blocks(handle, inode, map, flags & |
563 | EXT4_GET_BLOCKS_KEEP_SIZE); |
564 | } |
565 | if (retval > 0) { |
566 | unsigned int status; |
567 | |
568 | if (unlikely(retval != map->m_len)) { |
569 | ext4_warning(inode->i_sb, |
570 | "ES len assertion failed for inode " |
571 | "%lu: retval %d != map->m_len %d" , |
572 | inode->i_ino, retval, map->m_len); |
573 | WARN_ON(1); |
574 | } |
575 | |
576 | status = map->m_flags & EXT4_MAP_UNWRITTEN ? |
577 | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; |
578 | if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && |
579 | !(status & EXTENT_STATUS_WRITTEN) && |
580 | ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, |
581 | map->m_lblk + map->m_len - 1)) |
582 | status |= EXTENT_STATUS_DELAYED; |
583 | ret = ext4_es_insert_extent(inode, map->m_lblk, |
584 | map->m_len, map->m_pblk, status); |
585 | if (ret < 0) |
586 | retval = ret; |
587 | } |
588 | up_read((&EXT4_I(inode)->i_data_sem)); |
589 | |
590 | found: |
591 | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { |
592 | ret = check_block_validity(inode, map); |
593 | if (ret != 0) |
594 | return ret; |
595 | } |
596 | |
597 | /* If it is only a block(s) look up */ |
598 | if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) |
599 | return retval; |
600 | |
601 | /* |
602 | * Returns if the blocks have already allocated |
603 | * |
604 | * Note that if blocks have been preallocated |
605 | * ext4_ext_get_block() returns the create = 0 |
606 | * with buffer head unmapped. |
607 | */ |
608 | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) |
609 | /* |
610 | * If we need to convert extent to unwritten |
611 | * we continue and do the actual work in |
612 | * ext4_ext_map_blocks() |
613 | */ |
614 | if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) |
615 | return retval; |
616 | |
617 | /* |
618 | * Here we clear m_flags because after allocating an new extent, |
619 | * it will be set again. |
620 | */ |
621 | map->m_flags &= ~EXT4_MAP_FLAGS; |
622 | |
623 | /* |
624 | * New blocks allocate and/or writing to unwritten extent |
625 | * will possibly result in updating i_data, so we take |
626 | * the write lock of i_data_sem, and call get_block() |
627 | * with create == 1 flag. |
628 | */ |
629 | down_write(&EXT4_I(inode)->i_data_sem); |
630 | |
631 | /* |
632 | * We need to check for EXT4 here because migrate |
633 | * could have changed the inode type in between |
634 | */ |
635 | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { |
636 | retval = ext4_ext_map_blocks(handle, inode, map, flags); |
637 | } else { |
638 | retval = ext4_ind_map_blocks(handle, inode, map, flags); |
639 | |
640 | if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { |
641 | /* |
642 | * We allocated new blocks which will result in |
643 | * i_data's format changing. Force the migrate |
644 | * to fail by clearing migrate flags |
645 | */ |
646 | ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); |
647 | } |
648 | |
649 | /* |
650 | * Update reserved blocks/metadata blocks after successful |
651 | * block allocation which had been deferred till now. We don't |
652 | * support fallocate for non extent files. So we can update |
653 | * reserve space here. |
654 | */ |
655 | if ((retval > 0) && |
656 | (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) |
657 | ext4_da_update_reserve_space(inode, retval, 1); |
658 | } |
659 | |
660 | if (retval > 0) { |
661 | unsigned int status; |
662 | |
663 | if (unlikely(retval != map->m_len)) { |
664 | ext4_warning(inode->i_sb, |
665 | "ES len assertion failed for inode " |
666 | "%lu: retval %d != map->m_len %d" , |
667 | inode->i_ino, retval, map->m_len); |
668 | WARN_ON(1); |
669 | } |
670 | |
671 | /* |
672 | * We have to zeroout blocks before inserting them into extent |
673 | * status tree. Otherwise someone could look them up there and |
674 | * use them before they are really zeroed. We also have to |
675 | * unmap metadata before zeroing as otherwise writeback can |
676 | * overwrite zeros with stale data from block device. |
677 | */ |
678 | if (flags & EXT4_GET_BLOCKS_ZERO && |
679 | map->m_flags & EXT4_MAP_MAPPED && |
680 | map->m_flags & EXT4_MAP_NEW) { |
681 | ret = ext4_issue_zeroout(inode, map->m_lblk, |
682 | map->m_pblk, map->m_len); |
683 | if (ret) { |
684 | retval = ret; |
685 | goto out_sem; |
686 | } |
687 | } |
688 | |
689 | /* |
690 | * If the extent has been zeroed out, we don't need to update |
691 | * extent status tree. |
692 | */ |
693 | if ((flags & EXT4_GET_BLOCKS_PRE_IO) && |
694 | ext4_es_lookup_extent(inode, map->m_lblk, &es)) { |
695 | if (ext4_es_is_written(&es)) |
696 | goto out_sem; |
697 | } |
698 | status = map->m_flags & EXT4_MAP_UNWRITTEN ? |
699 | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; |
700 | if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && |
701 | !(status & EXTENT_STATUS_WRITTEN) && |
702 | ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, |
703 | map->m_lblk + map->m_len - 1)) |
704 | status |= EXTENT_STATUS_DELAYED; |
705 | ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, |
706 | map->m_pblk, status); |
707 | if (ret < 0) { |
708 | retval = ret; |
709 | goto out_sem; |
710 | } |
711 | } |
712 | |
713 | out_sem: |
714 | up_write((&EXT4_I(inode)->i_data_sem)); |
715 | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { |
716 | ret = check_block_validity(inode, map); |
717 | if (ret != 0) |
718 | return ret; |
719 | |
720 | /* |
721 | * Inodes with freshly allocated blocks where contents will be |
722 | * visible after transaction commit must be on transaction's |
723 | * ordered data list. |
724 | */ |
725 | if (map->m_flags & EXT4_MAP_NEW && |
726 | !(map->m_flags & EXT4_MAP_UNWRITTEN) && |
727 | !(flags & EXT4_GET_BLOCKS_ZERO) && |
728 | !ext4_is_quota_file(inode) && |
729 | ext4_should_order_data(inode)) { |
730 | if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) |
731 | ret = ext4_jbd2_inode_add_wait(handle, inode); |
732 | else |
733 | ret = ext4_jbd2_inode_add_write(handle, inode); |
734 | if (ret) |
735 | return ret; |
736 | } |
737 | } |
738 | return retval; |
739 | } |
740 | |
741 | /* |
742 | * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages |
743 | * we have to be careful as someone else may be manipulating b_state as well. |
744 | */ |
745 | static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) |
746 | { |
747 | unsigned long old_state; |
748 | unsigned long new_state; |
749 | |
750 | flags &= EXT4_MAP_FLAGS; |
751 | |
752 | /* Dummy buffer_head? Set non-atomically. */ |
753 | if (!bh->b_page) { |
754 | bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; |
755 | return; |
756 | } |
757 | /* |
758 | * Someone else may be modifying b_state. Be careful! This is ugly but |
759 | * once we get rid of using bh as a container for mapping information |
760 | * to pass to / from get_block functions, this can go away. |
761 | */ |
762 | do { |
763 | old_state = READ_ONCE(bh->b_state); |
764 | new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; |
765 | } while (unlikely( |
766 | cmpxchg(&bh->b_state, old_state, new_state) != old_state)); |
767 | } |
768 | |
769 | static int _ext4_get_block(struct inode *inode, sector_t iblock, |
770 | struct buffer_head *bh, int flags) |
771 | { |
772 | struct ext4_map_blocks map; |
773 | int ret = 0; |
774 | |
775 | if (ext4_has_inline_data(inode)) |
776 | return -ERANGE; |
777 | |
778 | map.m_lblk = iblock; |
779 | map.m_len = bh->b_size >> inode->i_blkbits; |
780 | |
781 | ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, |
782 | flags); |
783 | if (ret > 0) { |
784 | map_bh(bh, inode->i_sb, map.m_pblk); |
785 | ext4_update_bh_state(bh, map.m_flags); |
786 | bh->b_size = inode->i_sb->s_blocksize * map.m_len; |
787 | ret = 0; |
788 | } else if (ret == 0) { |
789 | /* hole case, need to fill in bh->b_size */ |
790 | bh->b_size = inode->i_sb->s_blocksize * map.m_len; |
791 | } |
792 | return ret; |
793 | } |
794 | |
795 | int ext4_get_block(struct inode *inode, sector_t iblock, |
796 | struct buffer_head *bh, int create) |
797 | { |
798 | return _ext4_get_block(inode, iblock, bh, |
799 | create ? EXT4_GET_BLOCKS_CREATE : 0); |
800 | } |
801 | |
802 | /* |
803 | * Get block function used when preparing for buffered write if we require |
804 | * creating an unwritten extent if blocks haven't been allocated. The extent |
805 | * will be converted to written after the IO is complete. |
806 | */ |
807 | int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, |
808 | struct buffer_head *bh_result, int create) |
809 | { |
810 | ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n" , |
811 | inode->i_ino, create); |
812 | return _ext4_get_block(inode, iblock, bh_result, |
813 | EXT4_GET_BLOCKS_IO_CREATE_EXT); |
814 | } |
815 | |
816 | /* Maximum number of blocks we map for direct IO at once. */ |
817 | #define DIO_MAX_BLOCKS 4096 |
818 | |
819 | /* |
820 | * Get blocks function for the cases that need to start a transaction - |
821 | * generally difference cases of direct IO and DAX IO. It also handles retries |
822 | * in case of ENOSPC. |
823 | */ |
824 | static int ext4_get_block_trans(struct inode *inode, sector_t iblock, |
825 | struct buffer_head *bh_result, int flags) |
826 | { |
827 | int dio_credits; |
828 | handle_t *handle; |
829 | int retries = 0; |
830 | int ret; |
831 | |
832 | /* Trim mapping request to maximum we can map at once for DIO */ |
833 | if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) |
834 | bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; |
835 | dio_credits = ext4_chunk_trans_blocks(inode, |
836 | bh_result->b_size >> inode->i_blkbits); |
837 | retry: |
838 | handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); |
839 | if (IS_ERR(handle)) |
840 | return PTR_ERR(handle); |
841 | |
842 | ret = _ext4_get_block(inode, iblock, bh_result, flags); |
843 | ext4_journal_stop(handle); |
844 | |
845 | if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) |
846 | goto retry; |
847 | return ret; |
848 | } |
849 | |
850 | /* Get block function for DIO reads and writes to inodes without extents */ |
851 | int ext4_dio_get_block(struct inode *inode, sector_t iblock, |
852 | struct buffer_head *bh, int create) |
853 | { |
854 | /* We don't expect handle for direct IO */ |
855 | WARN_ON_ONCE(ext4_journal_current_handle()); |
856 | |
857 | if (!create) |
858 | return _ext4_get_block(inode, iblock, bh, 0); |
859 | return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); |
860 | } |
861 | |
862 | /* |
863 | * Get block function for AIO DIO writes when we create unwritten extent if |
864 | * blocks are not allocated yet. The extent will be converted to written |
865 | * after IO is complete. |
866 | */ |
867 | static int ext4_dio_get_block_unwritten_async(struct inode *inode, |
868 | sector_t iblock, struct buffer_head *bh_result, int create) |
869 | { |
870 | int ret; |
871 | |
872 | /* We don't expect handle for direct IO */ |
873 | WARN_ON_ONCE(ext4_journal_current_handle()); |
874 | |
875 | ret = ext4_get_block_trans(inode, iblock, bh_result, |
876 | EXT4_GET_BLOCKS_IO_CREATE_EXT); |
877 | |
878 | /* |
879 | * When doing DIO using unwritten extents, we need io_end to convert |
880 | * unwritten extents to written on IO completion. We allocate io_end |
881 | * once we spot unwritten extent and store it in b_private. Generic |
882 | * DIO code keeps b_private set and furthermore passes the value to |
883 | * our completion callback in 'private' argument. |
884 | */ |
885 | if (!ret && buffer_unwritten(bh_result)) { |
886 | if (!bh_result->b_private) { |
887 | ext4_io_end_t *io_end; |
888 | |
889 | io_end = ext4_init_io_end(inode, GFP_KERNEL); |
890 | if (!io_end) |
891 | return -ENOMEM; |
892 | bh_result->b_private = io_end; |
893 | ext4_set_io_unwritten_flag(inode, io_end); |
894 | } |
895 | set_buffer_defer_completion(bh_result); |
896 | } |
897 | |
898 | return ret; |
899 | } |
900 | |
901 | /* |
902 | * Get block function for non-AIO DIO writes when we create unwritten extent if |
903 | * blocks are not allocated yet. The extent will be converted to written |
904 | * after IO is complete by ext4_direct_IO_write(). |
905 | */ |
906 | static int ext4_dio_get_block_unwritten_sync(struct inode *inode, |
907 | sector_t iblock, struct buffer_head *bh_result, int create) |
908 | { |
909 | int ret; |
910 | |
911 | /* We don't expect handle for direct IO */ |
912 | WARN_ON_ONCE(ext4_journal_current_handle()); |
913 | |
914 | ret = ext4_get_block_trans(inode, iblock, bh_result, |
915 | EXT4_GET_BLOCKS_IO_CREATE_EXT); |
916 | |
917 | /* |
918 | * Mark inode as having pending DIO writes to unwritten extents. |
919 | * ext4_direct_IO_write() checks this flag and converts extents to |
920 | * written. |
921 | */ |
922 | if (!ret && buffer_unwritten(bh_result)) |
923 | ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); |
924 | |
925 | return ret; |
926 | } |
927 | |
928 | static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, |
929 | struct buffer_head *bh_result, int create) |
930 | { |
931 | int ret; |
932 | |
933 | ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n" , |
934 | inode->i_ino, create); |
935 | /* We don't expect handle for direct IO */ |
936 | WARN_ON_ONCE(ext4_journal_current_handle()); |
937 | |
938 | ret = _ext4_get_block(inode, iblock, bh_result, 0); |
939 | /* |
940 | * Blocks should have been preallocated! ext4_file_write_iter() checks |
941 | * that. |
942 | */ |
943 | WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); |
944 | |
945 | return ret; |
946 | } |
947 | |
948 | |
949 | /* |
950 | * `handle' can be NULL if create is zero |
951 | */ |
952 | struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, |
953 | ext4_lblk_t block, int map_flags) |
954 | { |
955 | struct ext4_map_blocks map; |
956 | struct buffer_head *bh; |
957 | int create = map_flags & EXT4_GET_BLOCKS_CREATE; |
958 | int err; |
959 | |
960 | J_ASSERT(handle != NULL || create == 0); |
961 | |
962 | map.m_lblk = block; |
963 | map.m_len = 1; |
964 | err = ext4_map_blocks(handle, inode, &map, map_flags); |
965 | |
966 | if (err == 0) |
967 | return create ? ERR_PTR(-ENOSPC) : NULL; |
968 | if (err < 0) |
969 | return ERR_PTR(err); |
970 | |
971 | bh = sb_getblk(inode->i_sb, map.m_pblk); |
972 | if (unlikely(!bh)) |
973 | return ERR_PTR(-ENOMEM); |
974 | if (map.m_flags & EXT4_MAP_NEW) { |
975 | J_ASSERT(create != 0); |
976 | J_ASSERT(handle != NULL); |
977 | |
978 | /* |
979 | * Now that we do not always journal data, we should |
980 | * keep in mind whether this should always journal the |
981 | * new buffer as metadata. For now, regular file |
982 | * writes use ext4_get_block instead, so it's not a |
983 | * problem. |
984 | */ |
985 | lock_buffer(bh); |
986 | BUFFER_TRACE(bh, "call get_create_access" ); |
987 | err = ext4_journal_get_create_access(handle, bh); |
988 | if (unlikely(err)) { |
989 | unlock_buffer(bh); |
990 | goto errout; |
991 | } |
992 | if (!buffer_uptodate(bh)) { |
993 | memset(bh->b_data, 0, inode->i_sb->s_blocksize); |
994 | set_buffer_uptodate(bh); |
995 | } |
996 | unlock_buffer(bh); |
997 | BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata" ); |
998 | err = ext4_handle_dirty_metadata(handle, inode, bh); |
999 | if (unlikely(err)) |
1000 | goto errout; |
1001 | } else |
1002 | BUFFER_TRACE(bh, "not a new buffer" ); |
1003 | return bh; |
1004 | errout: |
1005 | brelse(bh); |
1006 | return ERR_PTR(err); |
1007 | } |
1008 | |
1009 | struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, |
1010 | ext4_lblk_t block, int map_flags) |
1011 | { |
1012 | struct buffer_head *bh; |
1013 | |
1014 | bh = ext4_getblk(handle, inode, block, map_flags); |
1015 | if (IS_ERR(bh)) |
1016 | return bh; |
1017 | if (!bh || buffer_uptodate(bh)) |
1018 | return bh; |
1019 | ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); |
1020 | wait_on_buffer(bh); |
1021 | if (buffer_uptodate(bh)) |
1022 | return bh; |
1023 | put_bh(bh); |
1024 | return ERR_PTR(-EIO); |
1025 | } |
1026 | |
1027 | /* Read a contiguous batch of blocks. */ |
1028 | int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, |
1029 | bool wait, struct buffer_head **bhs) |
1030 | { |
1031 | int i, err; |
1032 | |
1033 | for (i = 0; i < bh_count; i++) { |
1034 | bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); |
1035 | if (IS_ERR(bhs[i])) { |
1036 | err = PTR_ERR(bhs[i]); |
1037 | bh_count = i; |
1038 | goto out_brelse; |
1039 | } |
1040 | } |
1041 | |
1042 | for (i = 0; i < bh_count; i++) |
1043 | /* Note that NULL bhs[i] is valid because of holes. */ |
1044 | if (bhs[i] && !buffer_uptodate(bhs[i])) |
1045 | ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, |
1046 | &bhs[i]); |
1047 | |
1048 | if (!wait) |
1049 | return 0; |
1050 | |
1051 | for (i = 0; i < bh_count; i++) |
1052 | if (bhs[i]) |
1053 | wait_on_buffer(bhs[i]); |
1054 | |
1055 | for (i = 0; i < bh_count; i++) { |
1056 | if (bhs[i] && !buffer_uptodate(bhs[i])) { |
1057 | err = -EIO; |
1058 | goto out_brelse; |
1059 | } |
1060 | } |
1061 | return 0; |
1062 | |
1063 | out_brelse: |
1064 | for (i = 0; i < bh_count; i++) { |
1065 | brelse(bhs[i]); |
1066 | bhs[i] = NULL; |
1067 | } |
1068 | return err; |
1069 | } |
1070 | |
1071 | int ext4_walk_page_buffers(handle_t *handle, |
1072 | struct buffer_head *head, |
1073 | unsigned from, |
1074 | unsigned to, |
1075 | int *partial, |
1076 | int (*fn)(handle_t *handle, |
1077 | struct buffer_head *bh)) |
1078 | { |
1079 | struct buffer_head *bh; |
1080 | unsigned block_start, block_end; |
1081 | unsigned blocksize = head->b_size; |
1082 | int err, ret = 0; |
1083 | struct buffer_head *next; |
1084 | |
1085 | for (bh = head, block_start = 0; |
1086 | ret == 0 && (bh != head || !block_start); |
1087 | block_start = block_end, bh = next) { |
1088 | next = bh->b_this_page; |
1089 | block_end = block_start + blocksize; |
1090 | if (block_end <= from || block_start >= to) { |
1091 | if (partial && !buffer_uptodate(bh)) |
1092 | *partial = 1; |
1093 | continue; |
1094 | } |
1095 | err = (*fn)(handle, bh); |
1096 | if (!ret) |
1097 | ret = err; |
1098 | } |
1099 | return ret; |
1100 | } |
1101 | |
1102 | /* |
1103 | * To preserve ordering, it is essential that the hole instantiation and |
1104 | * the data write be encapsulated in a single transaction. We cannot |
1105 | * close off a transaction and start a new one between the ext4_get_block() |
1106 | * and the commit_write(). So doing the jbd2_journal_start at the start of |
1107 | * prepare_write() is the right place. |
1108 | * |
1109 | * Also, this function can nest inside ext4_writepage(). In that case, we |
1110 | * *know* that ext4_writepage() has generated enough buffer credits to do the |
1111 | * whole page. So we won't block on the journal in that case, which is good, |
1112 | * because the caller may be PF_MEMALLOC. |
1113 | * |
1114 | * By accident, ext4 can be reentered when a transaction is open via |
1115 | * quota file writes. If we were to commit the transaction while thus |
1116 | * reentered, there can be a deadlock - we would be holding a quota |
1117 | * lock, and the commit would never complete if another thread had a |
1118 | * transaction open and was blocking on the quota lock - a ranking |
1119 | * violation. |
1120 | * |
1121 | * So what we do is to rely on the fact that jbd2_journal_stop/journal_start |
1122 | * will _not_ run commit under these circumstances because handle->h_ref |
1123 | * is elevated. We'll still have enough credits for the tiny quotafile |
1124 | * write. |
1125 | */ |
1126 | int do_journal_get_write_access(handle_t *handle, |
1127 | struct buffer_head *bh) |
1128 | { |
1129 | int dirty = buffer_dirty(bh); |
1130 | int ret; |
1131 | |
1132 | if (!buffer_mapped(bh) || buffer_freed(bh)) |
1133 | return 0; |
1134 | /* |
1135 | * __block_write_begin() could have dirtied some buffers. Clean |
1136 | * the dirty bit as jbd2_journal_get_write_access() could complain |
1137 | * otherwise about fs integrity issues. Setting of the dirty bit |
1138 | * by __block_write_begin() isn't a real problem here as we clear |
1139 | * the bit before releasing a page lock and thus writeback cannot |
1140 | * ever write the buffer. |
1141 | */ |
1142 | if (dirty) |
1143 | clear_buffer_dirty(bh); |
1144 | BUFFER_TRACE(bh, "get write access" ); |
1145 | ret = ext4_journal_get_write_access(handle, bh); |
1146 | if (!ret && dirty) |
1147 | ret = ext4_handle_dirty_metadata(handle, NULL, bh); |
1148 | return ret; |
1149 | } |
1150 | |
1151 | #ifdef CONFIG_FS_ENCRYPTION |
1152 | static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, |
1153 | get_block_t *get_block) |
1154 | { |
1155 | unsigned from = pos & (PAGE_SIZE - 1); |
1156 | unsigned to = from + len; |
1157 | struct inode *inode = page->mapping->host; |
1158 | unsigned block_start, block_end; |
1159 | sector_t block; |
1160 | int err = 0; |
1161 | unsigned blocksize = inode->i_sb->s_blocksize; |
1162 | unsigned bbits; |
1163 | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; |
1164 | bool decrypt = false; |
1165 | |
1166 | BUG_ON(!PageLocked(page)); |
1167 | BUG_ON(from > PAGE_SIZE); |
1168 | BUG_ON(to > PAGE_SIZE); |
1169 | BUG_ON(from > to); |
1170 | |
1171 | if (!page_has_buffers(page)) |
1172 | create_empty_buffers(page, blocksize, 0); |
1173 | head = page_buffers(page); |
1174 | bbits = ilog2(blocksize); |
1175 | block = (sector_t)page->index << (PAGE_SHIFT - bbits); |
1176 | |
1177 | for (bh = head, block_start = 0; bh != head || !block_start; |
1178 | block++, block_start = block_end, bh = bh->b_this_page) { |
1179 | block_end = block_start + blocksize; |
1180 | if (block_end <= from || block_start >= to) { |
1181 | if (PageUptodate(page)) { |
1182 | if (!buffer_uptodate(bh)) |
1183 | set_buffer_uptodate(bh); |
1184 | } |
1185 | continue; |
1186 | } |
1187 | if (buffer_new(bh)) |
1188 | clear_buffer_new(bh); |
1189 | if (!buffer_mapped(bh)) { |
1190 | WARN_ON(bh->b_size != blocksize); |
1191 | err = get_block(inode, block, bh, 1); |
1192 | if (err) |
1193 | break; |
1194 | if (buffer_new(bh)) { |
1195 | if (PageUptodate(page)) { |
1196 | clear_buffer_new(bh); |
1197 | set_buffer_uptodate(bh); |
1198 | mark_buffer_dirty(bh); |
1199 | continue; |
1200 | } |
1201 | if (block_end > to || block_start < from) |
1202 | zero_user_segments(page, to, block_end, |
1203 | block_start, from); |
1204 | continue; |
1205 | } |
1206 | } |
1207 | if (PageUptodate(page)) { |
1208 | if (!buffer_uptodate(bh)) |
1209 | set_buffer_uptodate(bh); |
1210 | continue; |
1211 | } |
1212 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && |
1213 | !buffer_unwritten(bh) && |
1214 | (block_start < from || block_end > to)) { |
1215 | ll_rw_block(REQ_OP_READ, 0, 1, &bh); |
1216 | *wait_bh++ = bh; |
1217 | decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); |
1218 | } |
1219 | } |
1220 | /* |
1221 | * If we issued read requests, let them complete. |
1222 | */ |
1223 | while (wait_bh > wait) { |
1224 | wait_on_buffer(*--wait_bh); |
1225 | if (!buffer_uptodate(*wait_bh)) |
1226 | err = -EIO; |
1227 | } |
1228 | if (unlikely(err)) |
1229 | page_zero_new_buffers(page, from, to); |
1230 | else if (decrypt) |
1231 | err = fscrypt_decrypt_page(page->mapping->host, page, |
1232 | PAGE_SIZE, 0, page->index); |
1233 | return err; |
1234 | } |
1235 | #endif |
1236 | |
1237 | static int ext4_write_begin(struct file *file, struct address_space *mapping, |
1238 | loff_t pos, unsigned len, unsigned flags, |
1239 | struct page **pagep, void **fsdata) |
1240 | { |
1241 | struct inode *inode = mapping->host; |
1242 | int ret, needed_blocks; |
1243 | handle_t *handle; |
1244 | int retries = 0; |
1245 | struct page *page; |
1246 | pgoff_t index; |
1247 | unsigned from, to; |
1248 | |
1249 | if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) |
1250 | return -EIO; |
1251 | |
1252 | trace_ext4_write_begin(inode, pos, len, flags); |
1253 | /* |
1254 | * Reserve one block more for addition to orphan list in case |
1255 | * we allocate blocks but write fails for some reason |
1256 | */ |
1257 | needed_blocks = ext4_writepage_trans_blocks(inode) + 1; |
1258 | index = pos >> PAGE_SHIFT; |
1259 | from = pos & (PAGE_SIZE - 1); |
1260 | to = from + len; |
1261 | |
1262 | if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { |
1263 | ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, |
1264 | flags, pagep); |
1265 | if (ret < 0) |
1266 | return ret; |
1267 | if (ret == 1) |
1268 | return 0; |
1269 | } |
1270 | |
1271 | /* |
1272 | * grab_cache_page_write_begin() can take a long time if the |
1273 | * system is thrashing due to memory pressure, or if the page |
1274 | * is being written back. So grab it first before we start |
1275 | * the transaction handle. This also allows us to allocate |
1276 | * the page (if needed) without using GFP_NOFS. |
1277 | */ |
1278 | retry_grab: |
1279 | page = grab_cache_page_write_begin(mapping, index, flags); |
1280 | if (!page) |
1281 | return -ENOMEM; |
1282 | unlock_page(page); |
1283 | |
1284 | retry_journal: |
1285 | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); |
1286 | if (IS_ERR(handle)) { |
1287 | put_page(page); |
1288 | return PTR_ERR(handle); |
1289 | } |
1290 | |
1291 | lock_page(page); |
1292 | if (page->mapping != mapping) { |
1293 | /* The page got truncated from under us */ |
1294 | unlock_page(page); |
1295 | put_page(page); |
1296 | ext4_journal_stop(handle); |
1297 | goto retry_grab; |
1298 | } |
1299 | /* In case writeback began while the page was unlocked */ |
1300 | wait_for_stable_page(page); |
1301 | |
1302 | #ifdef CONFIG_FS_ENCRYPTION |
1303 | if (ext4_should_dioread_nolock(inode)) |
1304 | ret = ext4_block_write_begin(page, pos, len, |
1305 | ext4_get_block_unwritten); |
1306 | else |
1307 | ret = ext4_block_write_begin(page, pos, len, |
1308 | ext4_get_block); |
1309 | #else |
1310 | if (ext4_should_dioread_nolock(inode)) |
1311 | ret = __block_write_begin(page, pos, len, |
1312 | ext4_get_block_unwritten); |
1313 | else |
1314 | ret = __block_write_begin(page, pos, len, ext4_get_block); |
1315 | #endif |
1316 | if (!ret && ext4_should_journal_data(inode)) { |
1317 | ret = ext4_walk_page_buffers(handle, page_buffers(page), |
1318 | from, to, NULL, |
1319 | do_journal_get_write_access); |
1320 | } |
1321 | |
1322 | if (ret) { |
1323 | unlock_page(page); |
1324 | /* |
1325 | * __block_write_begin may have instantiated a few blocks |
1326 | * outside i_size. Trim these off again. Don't need |
1327 | * i_size_read because we hold i_mutex. |
1328 | * |
1329 | * Add inode to orphan list in case we crash before |
1330 | * truncate finishes |
1331 | */ |
1332 | if (pos + len > inode->i_size && ext4_can_truncate(inode)) |
1333 | ext4_orphan_add(handle, inode); |
1334 | |
1335 | ext4_journal_stop(handle); |
1336 | if (pos + len > inode->i_size) { |
1337 | ext4_truncate_failed_write(inode); |
1338 | /* |
1339 | * If truncate failed early the inode might |
1340 | * still be on the orphan list; we need to |
1341 | * make sure the inode is removed from the |
1342 | * orphan list in that case. |
1343 | */ |
1344 | if (inode->i_nlink) |
1345 | ext4_orphan_del(NULL, inode); |
1346 | } |
1347 | |
1348 | if (ret == -ENOSPC && |
1349 | ext4_should_retry_alloc(inode->i_sb, &retries)) |
1350 | goto retry_journal; |
1351 | put_page(page); |
1352 | return ret; |
1353 | } |
1354 | *pagep = page; |
1355 | return ret; |
1356 | } |
1357 | |
1358 | /* For write_end() in data=journal mode */ |
1359 | static int write_end_fn(handle_t *handle, struct buffer_head *bh) |
1360 | { |
1361 | int ret; |
1362 | if (!buffer_mapped(bh) || buffer_freed(bh)) |
1363 | return 0; |
1364 | set_buffer_uptodate(bh); |
1365 | ret = ext4_handle_dirty_metadata(handle, NULL, bh); |
1366 | clear_buffer_meta(bh); |
1367 | clear_buffer_prio(bh); |
1368 | return ret; |
1369 | } |
1370 | |
1371 | /* |
1372 | * We need to pick up the new inode size which generic_commit_write gave us |
1373 | * `file' can be NULL - eg, when called from page_symlink(). |
1374 | * |
1375 | * ext4 never places buffers on inode->i_mapping->private_list. metadata |
1376 | * buffers are managed internally. |
1377 | */ |
1378 | static int ext4_write_end(struct file *file, |
1379 | struct address_space *mapping, |
1380 | loff_t pos, unsigned len, unsigned copied, |
1381 | struct page *page, void *fsdata) |
1382 | { |
1383 | handle_t *handle = ext4_journal_current_handle(); |
1384 | struct inode *inode = mapping->host; |
1385 | loff_t old_size = inode->i_size; |
1386 | int ret = 0, ret2; |
1387 | int i_size_changed = 0; |
1388 | int inline_data = ext4_has_inline_data(inode); |
1389 | |
1390 | trace_ext4_write_end(inode, pos, len, copied); |
1391 | if (inline_data) { |
1392 | ret = ext4_write_inline_data_end(inode, pos, len, |
1393 | copied, page); |
1394 | if (ret < 0) { |
1395 | unlock_page(page); |
1396 | put_page(page); |
1397 | goto errout; |
1398 | } |
1399 | copied = ret; |
1400 | } else |
1401 | copied = block_write_end(file, mapping, pos, |
1402 | len, copied, page, fsdata); |
1403 | /* |
1404 | * it's important to update i_size while still holding page lock: |
1405 | * page writeout could otherwise come in and zero beyond i_size. |
1406 | */ |
1407 | i_size_changed = ext4_update_inode_size(inode, pos + copied); |
1408 | unlock_page(page); |
1409 | put_page(page); |
1410 | |
1411 | if (old_size < pos) |
1412 | pagecache_isize_extended(inode, old_size, pos); |
1413 | /* |
1414 | * Don't mark the inode dirty under page lock. First, it unnecessarily |
1415 | * makes the holding time of page lock longer. Second, it forces lock |
1416 | * ordering of page lock and transaction start for journaling |
1417 | * filesystems. |
1418 | */ |
1419 | if (i_size_changed || inline_data) |
1420 | ext4_mark_inode_dirty(handle, inode); |
1421 | |
1422 | if (pos + len > inode->i_size && ext4_can_truncate(inode)) |
1423 | /* if we have allocated more blocks and copied |
1424 | * less. We will have blocks allocated outside |
1425 | * inode->i_size. So truncate them |
1426 | */ |
1427 | ext4_orphan_add(handle, inode); |
1428 | errout: |
1429 | ret2 = ext4_journal_stop(handle); |
1430 | if (!ret) |
1431 | ret = ret2; |
1432 | |
1433 | if (pos + len > inode->i_size) { |
1434 | ext4_truncate_failed_write(inode); |
1435 | /* |
1436 | * If truncate failed early the inode might still be |
1437 | * on the orphan list; we need to make sure the inode |
1438 | * is removed from the orphan list in that case. |
1439 | */ |
1440 | if (inode->i_nlink) |
1441 | ext4_orphan_del(NULL, inode); |
1442 | } |
1443 | |
1444 | return ret ? ret : copied; |
1445 | } |
1446 | |
1447 | /* |
1448 | * This is a private version of page_zero_new_buffers() which doesn't |
1449 | * set the buffer to be dirty, since in data=journalled mode we need |
1450 | * to call ext4_handle_dirty_metadata() instead. |
1451 | */ |
1452 | static void ext4_journalled_zero_new_buffers(handle_t *handle, |
1453 | struct page *page, |
1454 | unsigned from, unsigned to) |
1455 | { |
1456 | unsigned int block_start = 0, block_end; |
1457 | struct buffer_head *head, *bh; |
1458 | |
1459 | bh = head = page_buffers(page); |
1460 | do { |
1461 | block_end = block_start + bh->b_size; |
1462 | if (buffer_new(bh)) { |
1463 | if (block_end > from && block_start < to) { |
1464 | if (!PageUptodate(page)) { |
1465 | unsigned start, size; |
1466 | |
1467 | start = max(from, block_start); |
1468 | size = min(to, block_end) - start; |
1469 | |
1470 | zero_user(page, start, size); |
1471 | write_end_fn(handle, bh); |
1472 | } |
1473 | clear_buffer_new(bh); |
1474 | } |
1475 | } |
1476 | block_start = block_end; |
1477 | bh = bh->b_this_page; |
1478 | } while (bh != head); |
1479 | } |
1480 | |
1481 | static int ext4_journalled_write_end(struct file *file, |
1482 | struct address_space *mapping, |
1483 | loff_t pos, unsigned len, unsigned copied, |
1484 | struct page *page, void *fsdata) |
1485 | { |
1486 | handle_t *handle = ext4_journal_current_handle(); |
1487 | struct inode *inode = mapping->host; |
1488 | loff_t old_size = inode->i_size; |
1489 | int ret = 0, ret2; |
1490 | int partial = 0; |
1491 | unsigned from, to; |
1492 | int size_changed = 0; |
1493 | int inline_data = ext4_has_inline_data(inode); |
1494 | |
1495 | trace_ext4_journalled_write_end(inode, pos, len, copied); |
1496 | from = pos & (PAGE_SIZE - 1); |
1497 | to = from + len; |
1498 | |
1499 | BUG_ON(!ext4_handle_valid(handle)); |
1500 | |
1501 | if (inline_data) { |
1502 | ret = ext4_write_inline_data_end(inode, pos, len, |
1503 | copied, page); |
1504 | if (ret < 0) { |
1505 | unlock_page(page); |
1506 | put_page(page); |
1507 | goto errout; |
1508 | } |
1509 | copied = ret; |
1510 | } else if (unlikely(copied < len) && !PageUptodate(page)) { |
1511 | copied = 0; |
1512 | ext4_journalled_zero_new_buffers(handle, page, from, to); |
1513 | } else { |
1514 | if (unlikely(copied < len)) |
1515 | ext4_journalled_zero_new_buffers(handle, page, |
1516 | from + copied, to); |
1517 | ret = ext4_walk_page_buffers(handle, page_buffers(page), from, |
1518 | from + copied, &partial, |
1519 | write_end_fn); |
1520 | if (!partial) |
1521 | SetPageUptodate(page); |
1522 | } |
1523 | size_changed = ext4_update_inode_size(inode, pos + copied); |
1524 | ext4_set_inode_state(inode, EXT4_STATE_JDATA); |
1525 | EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; |
1526 | unlock_page(page); |
1527 | put_page(page); |
1528 | |
1529 | if (old_size < pos) |
1530 | pagecache_isize_extended(inode, old_size, pos); |
1531 | |
1532 | if (size_changed || inline_data) { |
1533 | ret2 = ext4_mark_inode_dirty(handle, inode); |
1534 | if (!ret) |
1535 | ret = ret2; |
1536 | } |
1537 | |
1538 | if (pos + len > inode->i_size && ext4_can_truncate(inode)) |
1539 | /* if we have allocated more blocks and copied |
1540 | * less. We will have blocks allocated outside |
1541 | * inode->i_size. So truncate them |
1542 | */ |
1543 | ext4_orphan_add(handle, inode); |
1544 | |
1545 | errout: |
1546 | ret2 = ext4_journal_stop(handle); |
1547 | if (!ret) |
1548 | ret = ret2; |
1549 | if (pos + len > inode->i_size) { |
1550 | ext4_truncate_failed_write(inode); |
1551 | /* |
1552 | * If truncate failed early the inode might still be |
1553 | * on the orphan list; we need to make sure the inode |
1554 | * is removed from the orphan list in that case. |
1555 | */ |
1556 | if (inode->i_nlink) |
1557 | ext4_orphan_del(NULL, inode); |
1558 | } |
1559 | |
1560 | return ret ? ret : copied; |
1561 | } |
1562 | |
1563 | /* |
1564 | * Reserve space for a single cluster |
1565 | */ |
1566 | static int ext4_da_reserve_space(struct inode *inode) |
1567 | { |
1568 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
1569 | struct ext4_inode_info *ei = EXT4_I(inode); |
1570 | int ret; |
1571 | |
1572 | /* |
1573 | * We will charge metadata quota at writeout time; this saves |
1574 | * us from metadata over-estimation, though we may go over by |
1575 | * a small amount in the end. Here we just reserve for data. |
1576 | */ |
1577 | ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); |
1578 | if (ret) |
1579 | return ret; |
1580 | |
1581 | spin_lock(&ei->i_block_reservation_lock); |
1582 | if (ext4_claim_free_clusters(sbi, 1, 0)) { |
1583 | spin_unlock(&ei->i_block_reservation_lock); |
1584 | dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); |
1585 | return -ENOSPC; |
1586 | } |
1587 | ei->i_reserved_data_blocks++; |
1588 | trace_ext4_da_reserve_space(inode); |
1589 | spin_unlock(&ei->i_block_reservation_lock); |
1590 | |
1591 | return 0; /* success */ |
1592 | } |
1593 | |
1594 | void ext4_da_release_space(struct inode *inode, int to_free) |
1595 | { |
1596 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
1597 | struct ext4_inode_info *ei = EXT4_I(inode); |
1598 | |
1599 | if (!to_free) |
1600 | return; /* Nothing to release, exit */ |
1601 | |
1602 | spin_lock(&EXT4_I(inode)->i_block_reservation_lock); |
1603 | |
1604 | trace_ext4_da_release_space(inode, to_free); |
1605 | if (unlikely(to_free > ei->i_reserved_data_blocks)) { |
1606 | /* |
1607 | * if there aren't enough reserved blocks, then the |
1608 | * counter is messed up somewhere. Since this |
1609 | * function is called from invalidate page, it's |
1610 | * harmless to return without any action. |
1611 | */ |
1612 | ext4_warning(inode->i_sb, "ext4_da_release_space: " |
1613 | "ino %lu, to_free %d with only %d reserved " |
1614 | "data blocks" , inode->i_ino, to_free, |
1615 | ei->i_reserved_data_blocks); |
1616 | WARN_ON(1); |
1617 | to_free = ei->i_reserved_data_blocks; |
1618 | } |
1619 | ei->i_reserved_data_blocks -= to_free; |
1620 | |
1621 | /* update fs dirty data blocks counter */ |
1622 | percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); |
1623 | |
1624 | spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); |
1625 | |
1626 | dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); |
1627 | } |
1628 | |
1629 | static void ext4_da_page_release_reservation(struct page *page, |
1630 | unsigned int offset, |
1631 | unsigned int length) |
1632 | { |
1633 | int contiguous_blks = 0; |
1634 | struct buffer_head *head, *bh; |
1635 | unsigned int curr_off = 0; |
1636 | struct inode *inode = page->mapping->host; |
1637 | unsigned int stop = offset + length; |
1638 | ext4_fsblk_t lblk; |
1639 | |
1640 | BUG_ON(stop > PAGE_SIZE || stop < length); |
1641 | |
1642 | head = page_buffers(page); |
1643 | bh = head; |
1644 | do { |
1645 | unsigned int next_off = curr_off + bh->b_size; |
1646 | |
1647 | if (next_off > stop) |
1648 | break; |
1649 | |
1650 | if ((offset <= curr_off) && (buffer_delay(bh))) { |
1651 | contiguous_blks++; |
1652 | clear_buffer_delay(bh); |
1653 | } else if (contiguous_blks) { |
1654 | lblk = page->index << |
1655 | (PAGE_SHIFT - inode->i_blkbits); |
1656 | lblk += (curr_off >> inode->i_blkbits) - |
1657 | contiguous_blks; |
1658 | ext4_es_remove_blks(inode, lblk, contiguous_blks); |
1659 | contiguous_blks = 0; |
1660 | } |
1661 | curr_off = next_off; |
1662 | } while ((bh = bh->b_this_page) != head); |
1663 | |
1664 | if (contiguous_blks) { |
1665 | lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); |
1666 | lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; |
1667 | ext4_es_remove_blks(inode, lblk, contiguous_blks); |
1668 | } |
1669 | |
1670 | } |
1671 | |
1672 | /* |
1673 | * Delayed allocation stuff |
1674 | */ |
1675 | |
1676 | struct mpage_da_data { |
1677 | struct inode *inode; |
1678 | struct writeback_control *wbc; |
1679 | |
1680 | pgoff_t first_page; /* The first page to write */ |
1681 | pgoff_t next_page; /* Current page to examine */ |
1682 | pgoff_t last_page; /* Last page to examine */ |
1683 | /* |
1684 | * Extent to map - this can be after first_page because that can be |
1685 | * fully mapped. We somewhat abuse m_flags to store whether the extent |
1686 | * is delalloc or unwritten. |
1687 | */ |
1688 | struct ext4_map_blocks map; |
1689 | struct ext4_io_submit io_submit; /* IO submission data */ |
1690 | unsigned int do_map:1; |
1691 | }; |
1692 | |
1693 | static void mpage_release_unused_pages(struct mpage_da_data *mpd, |
1694 | bool invalidate) |
1695 | { |
1696 | int nr_pages, i; |
1697 | pgoff_t index, end; |
1698 | struct pagevec pvec; |
1699 | struct inode *inode = mpd->inode; |
1700 | struct address_space *mapping = inode->i_mapping; |
1701 | |
1702 | /* This is necessary when next_page == 0. */ |
1703 | if (mpd->first_page >= mpd->next_page) |
1704 | return; |
1705 | |
1706 | index = mpd->first_page; |
1707 | end = mpd->next_page - 1; |
1708 | if (invalidate) { |
1709 | ext4_lblk_t start, last; |
1710 | start = index << (PAGE_SHIFT - inode->i_blkbits); |
1711 | last = end << (PAGE_SHIFT - inode->i_blkbits); |
1712 | ext4_es_remove_extent(inode, start, last - start + 1); |
1713 | } |
1714 | |
1715 | pagevec_init(&pvec); |
1716 | while (index <= end) { |
1717 | nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); |
1718 | if (nr_pages == 0) |
1719 | break; |
1720 | for (i = 0; i < nr_pages; i++) { |
1721 | struct page *page = pvec.pages[i]; |
1722 | |
1723 | BUG_ON(!PageLocked(page)); |
1724 | BUG_ON(PageWriteback(page)); |
1725 | if (invalidate) { |
1726 | if (page_mapped(page)) |
1727 | clear_page_dirty_for_io(page); |
1728 | block_invalidatepage(page, 0, PAGE_SIZE); |
1729 | ClearPageUptodate(page); |
1730 | } |
1731 | unlock_page(page); |
1732 | } |
1733 | pagevec_release(&pvec); |
1734 | } |
1735 | } |
1736 | |
1737 | static void ext4_print_free_blocks(struct inode *inode) |
1738 | { |
1739 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
1740 | struct super_block *sb = inode->i_sb; |
1741 | struct ext4_inode_info *ei = EXT4_I(inode); |
1742 | |
1743 | ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld" , |
1744 | EXT4_C2B(EXT4_SB(inode->i_sb), |
1745 | ext4_count_free_clusters(sb))); |
1746 | ext4_msg(sb, KERN_CRIT, "Free/Dirty block details" ); |
1747 | ext4_msg(sb, KERN_CRIT, "free_blocks=%lld" , |
1748 | (long long) EXT4_C2B(EXT4_SB(sb), |
1749 | percpu_counter_sum(&sbi->s_freeclusters_counter))); |
1750 | ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld" , |
1751 | (long long) EXT4_C2B(EXT4_SB(sb), |
1752 | percpu_counter_sum(&sbi->s_dirtyclusters_counter))); |
1753 | ext4_msg(sb, KERN_CRIT, "Block reservation details" ); |
1754 | ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u" , |
1755 | ei->i_reserved_data_blocks); |
1756 | return; |
1757 | } |
1758 | |
1759 | static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) |
1760 | { |
1761 | return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); |
1762 | } |
1763 | |
1764 | /* |
1765 | * ext4_insert_delayed_block - adds a delayed block to the extents status |
1766 | * tree, incrementing the reserved cluster/block |
1767 | * count or making a pending reservation |
1768 | * where needed |
1769 | * |
1770 | * @inode - file containing the newly added block |
1771 | * @lblk - logical block to be added |
1772 | * |
1773 | * Returns 0 on success, negative error code on failure. |
1774 | */ |
1775 | static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) |
1776 | { |
1777 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
1778 | int ret; |
1779 | bool allocated = false; |
1780 | |
1781 | /* |
1782 | * If the cluster containing lblk is shared with a delayed, |
1783 | * written, or unwritten extent in a bigalloc file system, it's |
1784 | * already been accounted for and does not need to be reserved. |
1785 | * A pending reservation must be made for the cluster if it's |
1786 | * shared with a written or unwritten extent and doesn't already |
1787 | * have one. Written and unwritten extents can be purged from the |
1788 | * extents status tree if the system is under memory pressure, so |
1789 | * it's necessary to examine the extent tree if a search of the |
1790 | * extents status tree doesn't get a match. |
1791 | */ |
1792 | if (sbi->s_cluster_ratio == 1) { |
1793 | ret = ext4_da_reserve_space(inode); |
1794 | if (ret != 0) /* ENOSPC */ |
1795 | goto errout; |
1796 | } else { /* bigalloc */ |
1797 | if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { |
1798 | if (!ext4_es_scan_clu(inode, |
1799 | &ext4_es_is_mapped, lblk)) { |
1800 | ret = ext4_clu_mapped(inode, |
1801 | EXT4_B2C(sbi, lblk)); |
1802 | if (ret < 0) |
1803 | goto errout; |
1804 | if (ret == 0) { |
1805 | ret = ext4_da_reserve_space(inode); |
1806 | if (ret != 0) /* ENOSPC */ |
1807 | goto errout; |
1808 | } else { |
1809 | allocated = true; |
1810 | } |
1811 | } else { |
1812 | allocated = true; |
1813 | } |
1814 | } |
1815 | } |
1816 | |
1817 | ret = ext4_es_insert_delayed_block(inode, lblk, allocated); |
1818 | |
1819 | errout: |
1820 | return ret; |
1821 | } |
1822 | |
1823 | /* |
1824 | * This function is grabs code from the very beginning of |
1825 | * ext4_map_blocks, but assumes that the caller is from delayed write |
1826 | * time. This function looks up the requested blocks and sets the |
1827 | * buffer delay bit under the protection of i_data_sem. |
1828 | */ |
1829 | static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, |
1830 | struct ext4_map_blocks *map, |
1831 | struct buffer_head *bh) |
1832 | { |
1833 | struct extent_status es; |
1834 | int retval; |
1835 | sector_t invalid_block = ~((sector_t) 0xffff); |
1836 | #ifdef ES_AGGRESSIVE_TEST |
1837 | struct ext4_map_blocks orig_map; |
1838 | |
1839 | memcpy(&orig_map, map, sizeof(*map)); |
1840 | #endif |
1841 | |
1842 | if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) |
1843 | invalid_block = ~0; |
1844 | |
1845 | map->m_flags = 0; |
1846 | ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," |
1847 | "logical block %lu\n" , inode->i_ino, map->m_len, |
1848 | (unsigned long) map->m_lblk); |
1849 | |
1850 | /* Lookup extent status tree firstly */ |
1851 | if (ext4_es_lookup_extent(inode, iblock, &es)) { |
1852 | if (ext4_es_is_hole(&es)) { |
1853 | retval = 0; |
1854 | down_read(&EXT4_I(inode)->i_data_sem); |
1855 | goto add_delayed; |
1856 | } |
1857 | |
1858 | /* |
1859 | * Delayed extent could be allocated by fallocate. |
1860 | * So we need to check it. |
1861 | */ |
1862 | if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { |
1863 | map_bh(bh, inode->i_sb, invalid_block); |
1864 | set_buffer_new(bh); |
1865 | set_buffer_delay(bh); |
1866 | return 0; |
1867 | } |
1868 | |
1869 | map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; |
1870 | retval = es.es_len - (iblock - es.es_lblk); |
1871 | if (retval > map->m_len) |
1872 | retval = map->m_len; |
1873 | map->m_len = retval; |
1874 | if (ext4_es_is_written(&es)) |
1875 | map->m_flags |= EXT4_MAP_MAPPED; |
1876 | else if (ext4_es_is_unwritten(&es)) |
1877 | map->m_flags |= EXT4_MAP_UNWRITTEN; |
1878 | else |
1879 | BUG_ON(1); |
1880 | |
1881 | #ifdef ES_AGGRESSIVE_TEST |
1882 | ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); |
1883 | #endif |
1884 | return retval; |
1885 | } |
1886 | |
1887 | /* |
1888 | * Try to see if we can get the block without requesting a new |
1889 | * file system block. |
1890 | */ |
1891 | down_read(&EXT4_I(inode)->i_data_sem); |
1892 | if (ext4_has_inline_data(inode)) |
1893 | retval = 0; |
1894 | else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) |
1895 | retval = ext4_ext_map_blocks(NULL, inode, map, 0); |
1896 | else |
1897 | retval = ext4_ind_map_blocks(NULL, inode, map, 0); |
1898 | |
1899 | add_delayed: |
1900 | if (retval == 0) { |
1901 | int ret; |
1902 | |
1903 | /* |
1904 | * XXX: __block_prepare_write() unmaps passed block, |
1905 | * is it OK? |
1906 | */ |
1907 | |
1908 | ret = ext4_insert_delayed_block(inode, map->m_lblk); |
1909 | if (ret != 0) { |
1910 | retval = ret; |
1911 | goto out_unlock; |
1912 | } |
1913 | |
1914 | map_bh(bh, inode->i_sb, invalid_block); |
1915 | set_buffer_new(bh); |
1916 | set_buffer_delay(bh); |
1917 | } else if (retval > 0) { |
1918 | int ret; |
1919 | unsigned int status; |
1920 | |
1921 | if (unlikely(retval != map->m_len)) { |
1922 | ext4_warning(inode->i_sb, |
1923 | "ES len assertion failed for inode " |
1924 | "%lu: retval %d != map->m_len %d" , |
1925 | inode->i_ino, retval, map->m_len); |
1926 | WARN_ON(1); |
1927 | } |
1928 | |
1929 | status = map->m_flags & EXT4_MAP_UNWRITTEN ? |
1930 | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; |
1931 | ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, |
1932 | map->m_pblk, status); |
1933 | if (ret != 0) |
1934 | retval = ret; |
1935 | } |
1936 | |
1937 | out_unlock: |
1938 | up_read((&EXT4_I(inode)->i_data_sem)); |
1939 | |
1940 | return retval; |
1941 | } |
1942 | |
1943 | /* |
1944 | * This is a special get_block_t callback which is used by |
1945 | * ext4_da_write_begin(). It will either return mapped block or |
1946 | * reserve space for a single block. |
1947 | * |
1948 | * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. |
1949 | * We also have b_blocknr = -1 and b_bdev initialized properly |
1950 | * |
1951 | * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. |
1952 | * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev |
1953 | * initialized properly. |
1954 | */ |
1955 | int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, |
1956 | struct buffer_head *bh, int create) |
1957 | { |
1958 | struct ext4_map_blocks map; |
1959 | int ret = 0; |
1960 | |
1961 | BUG_ON(create == 0); |
1962 | BUG_ON(bh->b_size != inode->i_sb->s_blocksize); |
1963 | |
1964 | map.m_lblk = iblock; |
1965 | map.m_len = 1; |
1966 | |
1967 | /* |
1968 | * first, we need to know whether the block is allocated already |
1969 | * preallocated blocks are unmapped but should treated |
1970 | * the same as allocated blocks. |
1971 | */ |
1972 | ret = ext4_da_map_blocks(inode, iblock, &map, bh); |
1973 | if (ret <= 0) |
1974 | return ret; |
1975 | |
1976 | map_bh(bh, inode->i_sb, map.m_pblk); |
1977 | ext4_update_bh_state(bh, map.m_flags); |
1978 | |
1979 | if (buffer_unwritten(bh)) { |
1980 | /* A delayed write to unwritten bh should be marked |
1981 | * new and mapped. Mapped ensures that we don't do |
1982 | * get_block multiple times when we write to the same |
1983 | * offset and new ensures that we do proper zero out |
1984 | * for partial write. |
1985 | */ |
1986 | set_buffer_new(bh); |
1987 | set_buffer_mapped(bh); |
1988 | } |
1989 | return 0; |
1990 | } |
1991 | |
1992 | static int bget_one(handle_t *handle, struct buffer_head *bh) |
1993 | { |
1994 | get_bh(bh); |
1995 | return 0; |
1996 | } |
1997 | |
1998 | static int bput_one(handle_t *handle, struct buffer_head *bh) |
1999 | { |
2000 | put_bh(bh); |
2001 | return 0; |
2002 | } |
2003 | |
2004 | static int __ext4_journalled_writepage(struct page *page, |
2005 | unsigned int len) |
2006 | { |
2007 | struct address_space *mapping = page->mapping; |
2008 | struct inode *inode = mapping->host; |
2009 | struct buffer_head *page_bufs = NULL; |
2010 | handle_t *handle = NULL; |
2011 | int ret = 0, err = 0; |
2012 | int inline_data = ext4_has_inline_data(inode); |
2013 | struct buffer_head *inode_bh = NULL; |
2014 | |
2015 | ClearPageChecked(page); |
2016 | |
2017 | if (inline_data) { |
2018 | BUG_ON(page->index != 0); |
2019 | BUG_ON(len > ext4_get_max_inline_size(inode)); |
2020 | inode_bh = ext4_journalled_write_inline_data(inode, len, page); |
2021 | if (inode_bh == NULL) |
2022 | goto out; |
2023 | } else { |
2024 | page_bufs = page_buffers(page); |
2025 | if (!page_bufs) { |
2026 | BUG(); |
2027 | goto out; |
2028 | } |
2029 | ext4_walk_page_buffers(handle, page_bufs, 0, len, |
2030 | NULL, bget_one); |
2031 | } |
2032 | /* |
2033 | * We need to release the page lock before we start the |
2034 | * journal, so grab a reference so the page won't disappear |
2035 | * out from under us. |
2036 | */ |
2037 | get_page(page); |
2038 | unlock_page(page); |
2039 | |
2040 | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, |
2041 | ext4_writepage_trans_blocks(inode)); |
2042 | if (IS_ERR(handle)) { |
2043 | ret = PTR_ERR(handle); |
2044 | put_page(page); |
2045 | goto out_no_pagelock; |
2046 | } |
2047 | BUG_ON(!ext4_handle_valid(handle)); |
2048 | |
2049 | lock_page(page); |
2050 | put_page(page); |
2051 | if (page->mapping != mapping) { |
2052 | /* The page got truncated from under us */ |
2053 | ext4_journal_stop(handle); |
2054 | ret = 0; |
2055 | goto out; |
2056 | } |
2057 | |
2058 | if (inline_data) { |
2059 | ret = ext4_mark_inode_dirty(handle, inode); |
2060 | } else { |
2061 | ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, |
2062 | do_journal_get_write_access); |
2063 | |
2064 | err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, |
2065 | write_end_fn); |
2066 | } |
2067 | if (ret == 0) |
2068 | ret = err; |
2069 | EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; |
2070 | err = ext4_journal_stop(handle); |
2071 | if (!ret) |
2072 | ret = err; |
2073 | |
2074 | if (!ext4_has_inline_data(inode)) |
2075 | ext4_walk_page_buffers(NULL, page_bufs, 0, len, |
2076 | NULL, bput_one); |
2077 | ext4_set_inode_state(inode, EXT4_STATE_JDATA); |
2078 | out: |
2079 | unlock_page(page); |
2080 | out_no_pagelock: |
2081 | brelse(inode_bh); |
2082 | return ret; |
2083 | } |
2084 | |
2085 | /* |
2086 | * Note that we don't need to start a transaction unless we're journaling data |
2087 | * because we should have holes filled from ext4_page_mkwrite(). We even don't |
2088 | * need to file the inode to the transaction's list in ordered mode because if |
2089 | * we are writing back data added by write(), the inode is already there and if |
2090 | * we are writing back data modified via mmap(), no one guarantees in which |
2091 | * transaction the data will hit the disk. In case we are journaling data, we |
2092 | * cannot start transaction directly because transaction start ranks above page |
2093 | * lock so we have to do some magic. |
2094 | * |
2095 | * This function can get called via... |
2096 | * - ext4_writepages after taking page lock (have journal handle) |
2097 | * - journal_submit_inode_data_buffers (no journal handle) |
2098 | * - shrink_page_list via the kswapd/direct reclaim (no journal handle) |
2099 | * - grab_page_cache when doing write_begin (have journal handle) |
2100 | * |
2101 | * We don't do any block allocation in this function. If we have page with |
2102 | * multiple blocks we need to write those buffer_heads that are mapped. This |
2103 | * is important for mmaped based write. So if we do with blocksize 1K |
2104 | * truncate(f, 1024); |
2105 | * a = mmap(f, 0, 4096); |
2106 | * a[0] = 'a'; |
2107 | * truncate(f, 4096); |
2108 | * we have in the page first buffer_head mapped via page_mkwrite call back |
2109 | * but other buffer_heads would be unmapped but dirty (dirty done via the |
2110 | * do_wp_page). So writepage should write the first block. If we modify |
2111 | * the mmap area beyond 1024 we will again get a page_fault and the |
2112 | * page_mkwrite callback will do the block allocation and mark the |
2113 | * buffer_heads mapped. |
2114 | * |
2115 | * We redirty the page if we have any buffer_heads that is either delay or |
2116 | * unwritten in the page. |
2117 | * |
2118 | * We can get recursively called as show below. |
2119 | * |
2120 | * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> |
2121 | * ext4_writepage() |
2122 | * |
2123 | * But since we don't do any block allocation we should not deadlock. |
2124 | * Page also have the dirty flag cleared so we don't get recurive page_lock. |
2125 | */ |
2126 | static int ext4_writepage(struct page *page, |
2127 | struct writeback_control *wbc) |
2128 | { |
2129 | int ret = 0; |
2130 | loff_t size; |
2131 | unsigned int len; |
2132 | struct buffer_head *page_bufs = NULL; |
2133 | struct inode *inode = page->mapping->host; |
2134 | struct ext4_io_submit io_submit; |
2135 | bool keep_towrite = false; |
2136 | |
2137 | if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { |
2138 | ext4_invalidatepage(page, 0, PAGE_SIZE); |
2139 | unlock_page(page); |
2140 | return -EIO; |
2141 | } |
2142 | |
2143 | trace_ext4_writepage(page); |
2144 | size = i_size_read(inode); |
2145 | if (page->index == size >> PAGE_SHIFT) |
2146 | len = size & ~PAGE_MASK; |
2147 | else |
2148 | len = PAGE_SIZE; |
2149 | |
2150 | page_bufs = page_buffers(page); |
2151 | /* |
2152 | * We cannot do block allocation or other extent handling in this |
2153 | * function. If there are buffers needing that, we have to redirty |
2154 | * the page. But we may reach here when we do a journal commit via |
2155 | * journal_submit_inode_data_buffers() and in that case we must write |
2156 | * allocated buffers to achieve data=ordered mode guarantees. |
2157 | * |
2158 | * Also, if there is only one buffer per page (the fs block |
2159 | * size == the page size), if one buffer needs block |
2160 | * allocation or needs to modify the extent tree to clear the |
2161 | * unwritten flag, we know that the page can't be written at |
2162 | * all, so we might as well refuse the write immediately. |
2163 | * Unfortunately if the block size != page size, we can't as |
2164 | * easily detect this case using ext4_walk_page_buffers(), but |
2165 | * for the extremely common case, this is an optimization that |
2166 | * skips a useless round trip through ext4_bio_write_page(). |
2167 | */ |
2168 | if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, |
2169 | ext4_bh_delay_or_unwritten)) { |
2170 | redirty_page_for_writepage(wbc, page); |
2171 | if ((current->flags & PF_MEMALLOC) || |
2172 | (inode->i_sb->s_blocksize == PAGE_SIZE)) { |
2173 | /* |
2174 | * For memory cleaning there's no point in writing only |
2175 | * some buffers. So just bail out. Warn if we came here |
2176 | * from direct reclaim. |
2177 | */ |
2178 | WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) |
2179 | == PF_MEMALLOC); |
2180 | unlock_page(page); |
2181 | return 0; |
2182 | } |
2183 | keep_towrite = true; |
2184 | } |
2185 | |
2186 | if (PageChecked(page) && ext4_should_journal_data(inode)) |
2187 | /* |
2188 | * It's mmapped pagecache. Add buffers and journal it. There |
2189 | * doesn't seem much point in redirtying the page here. |
2190 | */ |
2191 | return __ext4_journalled_writepage(page, len); |
2192 | |
2193 | ext4_io_submit_init(&io_submit, wbc); |
2194 | io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); |
2195 | if (!io_submit.io_end) { |
2196 | redirty_page_for_writepage(wbc, page); |
2197 | unlock_page(page); |
2198 | return -ENOMEM; |
2199 | } |
2200 | ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); |
2201 | ext4_io_submit(&io_submit); |
2202 | /* Drop io_end reference we got from init */ |
2203 | ext4_put_io_end_defer(io_submit.io_end); |
2204 | return ret; |
2205 | } |
2206 | |
2207 | static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) |
2208 | { |
2209 | int len; |
2210 | loff_t size; |
2211 | int err; |
2212 | |
2213 | BUG_ON(page->index != mpd->first_page); |
2214 | clear_page_dirty_for_io(page); |
2215 | /* |
2216 | * We have to be very careful here! Nothing protects writeback path |
2217 | * against i_size changes and the page can be writeably mapped into |
2218 | * page tables. So an application can be growing i_size and writing |
2219 | * data through mmap while writeback runs. clear_page_dirty_for_io() |
2220 | * write-protects our page in page tables and the page cannot get |
2221 | * written to again until we release page lock. So only after |
2222 | * clear_page_dirty_for_io() we are safe to sample i_size for |
2223 | * ext4_bio_write_page() to zero-out tail of the written page. We rely |
2224 | * on the barrier provided by TestClearPageDirty in |
2225 | * clear_page_dirty_for_io() to make sure i_size is really sampled only |
2226 | * after page tables are updated. |
2227 | */ |
2228 | size = i_size_read(mpd->inode); |
2229 | if (page->index == size >> PAGE_SHIFT) |
2230 | len = size & ~PAGE_MASK; |
2231 | else |
2232 | len = PAGE_SIZE; |
2233 | err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); |
2234 | if (!err) |
2235 | mpd->wbc->nr_to_write--; |
2236 | mpd->first_page++; |
2237 | |
2238 | return err; |
2239 | } |
2240 | |
2241 | #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) |
2242 | |
2243 | /* |
2244 | * mballoc gives us at most this number of blocks... |
2245 | * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). |
2246 | * The rest of mballoc seems to handle chunks up to full group size. |
2247 | */ |
2248 | #define MAX_WRITEPAGES_EXTENT_LEN 2048 |
2249 | |
2250 | /* |
2251 | * mpage_add_bh_to_extent - try to add bh to extent of blocks to map |
2252 | * |
2253 | * @mpd - extent of blocks |
2254 | * @lblk - logical number of the block in the file |
2255 | * @bh - buffer head we want to add to the extent |
2256 | * |
2257 | * The function is used to collect contig. blocks in the same state. If the |
2258 | * buffer doesn't require mapping for writeback and we haven't started the |
2259 | * extent of buffers to map yet, the function returns 'true' immediately - the |
2260 | * caller can write the buffer right away. Otherwise the function returns true |
2261 | * if the block has been added to the extent, false if the block couldn't be |
2262 | * added. |
2263 | */ |
2264 | static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, |
2265 | struct buffer_head *bh) |
2266 | { |
2267 | struct ext4_map_blocks *map = &mpd->map; |
2268 | |
2269 | /* Buffer that doesn't need mapping for writeback? */ |
2270 | if (!buffer_dirty(bh) || !buffer_mapped(bh) || |
2271 | (!buffer_delay(bh) && !buffer_unwritten(bh))) { |
2272 | /* So far no extent to map => we write the buffer right away */ |
2273 | if (map->m_len == 0) |
2274 | return true; |
2275 | return false; |
2276 | } |
2277 | |
2278 | /* First block in the extent? */ |
2279 | if (map->m_len == 0) { |
2280 | /* We cannot map unless handle is started... */ |
2281 | if (!mpd->do_map) |
2282 | return false; |
2283 | map->m_lblk = lblk; |
2284 | map->m_len = 1; |
2285 | map->m_flags = bh->b_state & BH_FLAGS; |
2286 | return true; |
2287 | } |
2288 | |
2289 | /* Don't go larger than mballoc is willing to allocate */ |
2290 | if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) |
2291 | return false; |
2292 | |
2293 | /* Can we merge the block to our big extent? */ |
2294 | if (lblk == map->m_lblk + map->m_len && |
2295 | (bh->b_state & BH_FLAGS) == map->m_flags) { |
2296 | map->m_len++; |
2297 | return true; |
2298 | } |
2299 | return false; |
2300 | } |
2301 | |
2302 | /* |
2303 | * mpage_process_page_bufs - submit page buffers for IO or add them to extent |
2304 | * |
2305 | * @mpd - extent of blocks for mapping |
2306 | * @head - the first buffer in the page |
2307 | * @bh - buffer we should start processing from |
2308 | * @lblk - logical number of the block in the file corresponding to @bh |
2309 | * |
2310 | * Walk through page buffers from @bh upto @head (exclusive) and either submit |
2311 | * the page for IO if all buffers in this page were mapped and there's no |
2312 | * accumulated extent of buffers to map or add buffers in the page to the |
2313 | * extent of buffers to map. The function returns 1 if the caller can continue |
2314 | * by processing the next page, 0 if it should stop adding buffers to the |
2315 | * extent to map because we cannot extend it anymore. It can also return value |
2316 | * < 0 in case of error during IO submission. |
2317 | */ |
2318 | static int mpage_process_page_bufs(struct mpage_da_data *mpd, |
2319 | struct buffer_head *head, |
2320 | struct buffer_head *bh, |
2321 | ext4_lblk_t lblk) |
2322 | { |
2323 | struct inode *inode = mpd->inode; |
2324 | int err; |
2325 | ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) |
2326 | >> inode->i_blkbits; |
2327 | |
2328 | do { |
2329 | BUG_ON(buffer_locked(bh)); |
2330 | |
2331 | if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { |
2332 | /* Found extent to map? */ |
2333 | if (mpd->map.m_len) |
2334 | return 0; |
2335 | /* Buffer needs mapping and handle is not started? */ |
2336 | if (!mpd->do_map) |
2337 | return 0; |
2338 | /* Everything mapped so far and we hit EOF */ |
2339 | break; |
2340 | } |
2341 | } while (lblk++, (bh = bh->b_this_page) != head); |
2342 | /* So far everything mapped? Submit the page for IO. */ |
2343 | if (mpd->map.m_len == 0) { |
2344 | err = mpage_submit_page(mpd, head->b_page); |
2345 | if (err < 0) |
2346 | return err; |
2347 | } |
2348 | return lblk < blocks; |
2349 | } |
2350 | |
2351 | /* |
2352 | * mpage_map_buffers - update buffers corresponding to changed extent and |
2353 | * submit fully mapped pages for IO |
2354 | * |
2355 | * @mpd - description of extent to map, on return next extent to map |
2356 | * |
2357 | * Scan buffers corresponding to changed extent (we expect corresponding pages |
2358 | * to be already locked) and update buffer state according to new extent state. |
2359 | * We map delalloc buffers to their physical location, clear unwritten bits, |
2360 | * and mark buffers as uninit when we perform writes to unwritten extents |
2361 | * and do extent conversion after IO is finished. If the last page is not fully |
2362 | * mapped, we update @map to the next extent in the last page that needs |
2363 | * mapping. Otherwise we submit the page for IO. |
2364 | */ |
2365 | static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) |
2366 | { |
2367 | struct pagevec pvec; |
2368 | int nr_pages, i; |
2369 | struct inode *inode = mpd->inode; |
2370 | struct buffer_head *head, *bh; |
2371 | int bpp_bits = PAGE_SHIFT - inode->i_blkbits; |
2372 | pgoff_t start, end; |
2373 | ext4_lblk_t lblk; |
2374 | sector_t pblock; |
2375 | int err; |
2376 | |
2377 | start = mpd->map.m_lblk >> bpp_bits; |
2378 | end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; |
2379 | lblk = start << bpp_bits; |
2380 | pblock = mpd->map.m_pblk; |
2381 | |
2382 | pagevec_init(&pvec); |
2383 | while (start <= end) { |
2384 | nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, |
2385 | &start, end); |
2386 | if (nr_pages == 0) |
2387 | break; |
2388 | for (i = 0; i < nr_pages; i++) { |
2389 | struct page *page = pvec.pages[i]; |
2390 | |
2391 | bh = head = page_buffers(page); |
2392 | do { |
2393 | if (lblk < mpd->map.m_lblk) |
2394 | continue; |
2395 | if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { |
2396 | /* |
2397 | * Buffer after end of mapped extent. |
2398 | * Find next buffer in the page to map. |
2399 | */ |
2400 | mpd->map.m_len = 0; |
2401 | mpd->map.m_flags = 0; |
2402 | /* |
2403 | * FIXME: If dioread_nolock supports |
2404 | * blocksize < pagesize, we need to make |
2405 | * sure we add size mapped so far to |
2406 | * io_end->size as the following call |
2407 | * can submit the page for IO. |
2408 | */ |
2409 | err = mpage_process_page_bufs(mpd, head, |
2410 | bh, lblk); |
2411 | pagevec_release(&pvec); |
2412 | if (err > 0) |
2413 | err = 0; |
2414 | return err; |
2415 | } |
2416 | if (buffer_delay(bh)) { |
2417 | clear_buffer_delay(bh); |
2418 | bh->b_blocknr = pblock++; |
2419 | } |
2420 | clear_buffer_unwritten(bh); |
2421 | } while (lblk++, (bh = bh->b_this_page) != head); |
2422 | |
2423 | /* |
2424 | * FIXME: This is going to break if dioread_nolock |
2425 | * supports blocksize < pagesize as we will try to |
2426 | * convert potentially unmapped parts of inode. |
2427 | */ |
2428 | mpd->io_submit.io_end->size += PAGE_SIZE; |
2429 | /* Page fully mapped - let IO run! */ |
2430 | err = mpage_submit_page(mpd, page); |
2431 | if (err < 0) { |
2432 | pagevec_release(&pvec); |
2433 | return err; |
2434 | } |
2435 | } |
2436 | pagevec_release(&pvec); |
2437 | } |
2438 | /* Extent fully mapped and matches with page boundary. We are done. */ |
2439 | mpd->map.m_len = 0; |
2440 | mpd->map.m_flags = 0; |
2441 | return 0; |
2442 | } |
2443 | |
2444 | static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) |
2445 | { |
2446 | struct inode *inode = mpd->inode; |
2447 | struct ext4_map_blocks *map = &mpd->map; |
2448 | int get_blocks_flags; |
2449 | int err, dioread_nolock; |
2450 | |
2451 | trace_ext4_da_write_pages_extent(inode, map); |
2452 | /* |
2453 | * Call ext4_map_blocks() to allocate any delayed allocation blocks, or |
2454 | * to convert an unwritten extent to be initialized (in the case |
2455 | * where we have written into one or more preallocated blocks). It is |
2456 | * possible that we're going to need more metadata blocks than |
2457 | * previously reserved. However we must not fail because we're in |
2458 | * writeback and there is nothing we can do about it so it might result |
2459 | * in data loss. So use reserved blocks to allocate metadata if |
2460 | * possible. |
2461 | * |
2462 | * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if |
2463 | * the blocks in question are delalloc blocks. This indicates |
2464 | * that the blocks and quotas has already been checked when |
2465 | * the data was copied into the page cache. |
2466 | */ |
2467 | get_blocks_flags = EXT4_GET_BLOCKS_CREATE | |
2468 | EXT4_GET_BLOCKS_METADATA_NOFAIL | |
2469 | EXT4_GET_BLOCKS_IO_SUBMIT; |
2470 | dioread_nolock = ext4_should_dioread_nolock(inode); |
2471 | if (dioread_nolock) |
2472 | get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; |
2473 | if (map->m_flags & (1 << BH_Delay)) |
2474 | get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; |
2475 | |
2476 | err = ext4_map_blocks(handle, inode, map, get_blocks_flags); |
2477 | if (err < 0) |
2478 | return err; |
2479 | if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { |
2480 | if (!mpd->io_submit.io_end->handle && |
2481 | ext4_handle_valid(handle)) { |
2482 | mpd->io_submit.io_end->handle = handle->h_rsv_handle; |
2483 | handle->h_rsv_handle = NULL; |
2484 | } |
2485 | ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); |
2486 | } |
2487 | |
2488 | BUG_ON(map->m_len == 0); |
2489 | return 0; |
2490 | } |
2491 | |
2492 | /* |
2493 | * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length |
2494 | * mpd->len and submit pages underlying it for IO |
2495 | * |
2496 | * @handle - handle for journal operations |
2497 | * @mpd - extent to map |
2498 | * @give_up_on_write - we set this to true iff there is a fatal error and there |
2499 | * is no hope of writing the data. The caller should discard |
2500 | * dirty pages to avoid infinite loops. |
2501 | * |
2502 | * The function maps extent starting at mpd->lblk of length mpd->len. If it is |
2503 | * delayed, blocks are allocated, if it is unwritten, we may need to convert |
2504 | * them to initialized or split the described range from larger unwritten |
2505 | * extent. Note that we need not map all the described range since allocation |
2506 | * can return less blocks or the range is covered by more unwritten extents. We |
2507 | * cannot map more because we are limited by reserved transaction credits. On |
2508 | * the other hand we always make sure that the last touched page is fully |
2509 | * mapped so that it can be written out (and thus forward progress is |
2510 | * guaranteed). After mapping we submit all mapped pages for IO. |
2511 | */ |
2512 | static int mpage_map_and_submit_extent(handle_t *handle, |
2513 | struct mpage_da_data *mpd, |
2514 | bool *give_up_on_write) |
2515 | { |
2516 | struct inode *inode = mpd->inode; |
2517 | struct ext4_map_blocks *map = &mpd->map; |
2518 | int err; |
2519 | loff_t disksize; |
2520 | int progress = 0; |
2521 | |
2522 | mpd->io_submit.io_end->offset = |
2523 | ((loff_t)map->m_lblk) << inode->i_blkbits; |
2524 | do { |
2525 | err = mpage_map_one_extent(handle, mpd); |
2526 | if (err < 0) { |
2527 | struct super_block *sb = inode->i_sb; |
2528 | |
2529 | if (ext4_forced_shutdown(EXT4_SB(sb)) || |
2530 | EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) |
2531 | goto invalidate_dirty_pages; |
2532 | /* |
2533 | * Let the uper layers retry transient errors. |
2534 | * In the case of ENOSPC, if ext4_count_free_blocks() |
2535 | * is non-zero, a commit should free up blocks. |
2536 | */ |
2537 | if ((err == -ENOMEM) || |
2538 | (err == -ENOSPC && ext4_count_free_clusters(sb))) { |
2539 | if (progress) |
2540 | goto update_disksize; |
2541 | return err; |
2542 | } |
2543 | ext4_msg(sb, KERN_CRIT, |
2544 | "Delayed block allocation failed for " |
2545 | "inode %lu at logical offset %llu with" |
2546 | " max blocks %u with error %d" , |
2547 | inode->i_ino, |
2548 | (unsigned long long)map->m_lblk, |
2549 | (unsigned)map->m_len, -err); |
2550 | ext4_msg(sb, KERN_CRIT, |
2551 | "This should not happen!! Data will " |
2552 | "be lost\n" ); |
2553 | if (err == -ENOSPC) |
2554 | ext4_print_free_blocks(inode); |
2555 | invalidate_dirty_pages: |
2556 | *give_up_on_write = true; |
2557 | return err; |
2558 | } |
2559 | progress = 1; |
2560 | /* |
2561 | * Update buffer state, submit mapped pages, and get us new |
2562 | * extent to map |
2563 | */ |
2564 | err = mpage_map_and_submit_buffers(mpd); |
2565 | if (err < 0) |
2566 | goto update_disksize; |
2567 | } while (map->m_len); |
2568 | |
2569 | update_disksize: |
2570 | /* |
2571 | * Update on-disk size after IO is submitted. Races with |
2572 | * truncate are avoided by checking i_size under i_data_sem. |
2573 | */ |
2574 | disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; |
2575 | if (disksize > EXT4_I(inode)->i_disksize) { |
2576 | int err2; |
2577 | loff_t i_size; |
2578 | |
2579 | down_write(&EXT4_I(inode)->i_data_sem); |
2580 | i_size = i_size_read(inode); |
2581 | if (disksize > i_size) |
2582 | disksize = i_size; |
2583 | if (disksize > EXT4_I(inode)->i_disksize) |
2584 | EXT4_I(inode)->i_disksize = disksize; |
2585 | up_write(&EXT4_I(inode)->i_data_sem); |
2586 | err2 = ext4_mark_inode_dirty(handle, inode); |
2587 | if (err2) |
2588 | ext4_error(inode->i_sb, |
2589 | "Failed to mark inode %lu dirty" , |
2590 | inode->i_ino); |
2591 | if (!err) |
2592 | err = err2; |
2593 | } |
2594 | return err; |
2595 | } |
2596 | |
2597 | /* |
2598 | * Calculate the total number of credits to reserve for one writepages |
2599 | * iteration. This is called from ext4_writepages(). We map an extent of |
2600 | * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping |
2601 | * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + |
2602 | * bpp - 1 blocks in bpp different extents. |
2603 | */ |
2604 | static int ext4_da_writepages_trans_blocks(struct inode *inode) |
2605 | { |
2606 | int bpp = ext4_journal_blocks_per_page(inode); |
2607 | |
2608 | return ext4_meta_trans_blocks(inode, |
2609 | MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); |
2610 | } |
2611 | |
2612 | /* |
2613 | * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages |
2614 | * and underlying extent to map |
2615 | * |
2616 | * @mpd - where to look for pages |
2617 | * |
2618 | * Walk dirty pages in the mapping. If they are fully mapped, submit them for |
2619 | * IO immediately. When we find a page which isn't mapped we start accumulating |
2620 | * extent of buffers underlying these pages that needs mapping (formed by |
2621 | * either delayed or unwritten buffers). We also lock the pages containing |
2622 | * these buffers. The extent found is returned in @mpd structure (starting at |
2623 | * mpd->lblk with length mpd->len blocks). |
2624 | * |
2625 | * Note that this function can attach bios to one io_end structure which are |
2626 | * neither logically nor physically contiguous. Although it may seem as an |
2627 | * unnecessary complication, it is actually inevitable in blocksize < pagesize |
2628 | * case as we need to track IO to all buffers underlying a page in one io_end. |
2629 | */ |
2630 | static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) |
2631 | { |
2632 | struct address_space *mapping = mpd->inode->i_mapping; |
2633 | struct pagevec pvec; |
2634 | unsigned int nr_pages; |
2635 | long left = mpd->wbc->nr_to_write; |
2636 | pgoff_t index = mpd->first_page; |
2637 | pgoff_t end = mpd->last_page; |
2638 | xa_mark_t tag; |
2639 | int i, err = 0; |
2640 | int blkbits = mpd->inode->i_blkbits; |
2641 | ext4_lblk_t lblk; |
2642 | struct buffer_head *head; |
2643 | |
2644 | if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) |
2645 | tag = PAGECACHE_TAG_TOWRITE; |
2646 | else |
2647 | tag = PAGECACHE_TAG_DIRTY; |
2648 | |
2649 | pagevec_init(&pvec); |
2650 | mpd->map.m_len = 0; |
2651 | mpd->next_page = index; |
2652 | while (index <= end) { |
2653 | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, |
2654 | tag); |
2655 | if (nr_pages == 0) |
2656 | goto out; |
2657 | |
2658 | for (i = 0; i < nr_pages; i++) { |
2659 | struct page *page = pvec.pages[i]; |
2660 | |
2661 | /* |
2662 | * Accumulated enough dirty pages? This doesn't apply |
2663 | * to WB_SYNC_ALL mode. For integrity sync we have to |
2664 | * keep going because someone may be concurrently |
2665 | * dirtying pages, and we might have synced a lot of |
2666 | * newly appeared dirty pages, but have not synced all |
2667 | * of the old dirty pages. |
2668 | */ |
2669 | if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) |
2670 | goto out; |
2671 | |
2672 | /* If we can't merge this page, we are done. */ |
2673 | if (mpd->map.m_len > 0 && mpd->next_page != page->index) |
2674 | goto out; |
2675 | |
2676 | lock_page(page); |
2677 | /* |
2678 | * If the page is no longer dirty, or its mapping no |
2679 | * longer corresponds to inode we are writing (which |
2680 | * means it has been truncated or invalidated), or the |
2681 | * page is already under writeback and we are not doing |
2682 | * a data integrity writeback, skip the page |
2683 | */ |
2684 | if (!PageDirty(page) || |
2685 | (PageWriteback(page) && |
2686 | (mpd->wbc->sync_mode == WB_SYNC_NONE)) || |
2687 | unlikely(page->mapping != mapping)) { |
2688 | unlock_page(page); |
2689 | continue; |
2690 | } |
2691 | |
2692 | wait_on_page_writeback(page); |
2693 | BUG_ON(PageWriteback(page)); |
2694 | |
2695 | if (mpd->map.m_len == 0) |
2696 | mpd->first_page = page->index; |
2697 | mpd->next_page = page->index + 1; |
2698 | /* Add all dirty buffers to mpd */ |
2699 | lblk = ((ext4_lblk_t)page->index) << |
2700 | (PAGE_SHIFT - blkbits); |
2701 | head = page_buffers(page); |
2702 | err = mpage_process_page_bufs(mpd, head, head, lblk); |
2703 | if (err <= 0) |
2704 | goto out; |
2705 | err = 0; |
2706 | left--; |
2707 | } |
2708 | pagevec_release(&pvec); |
2709 | cond_resched(); |
2710 | } |
2711 | return 0; |
2712 | out: |
2713 | pagevec_release(&pvec); |
2714 | return err; |
2715 | } |
2716 | |
2717 | static int ext4_writepages(struct address_space *mapping, |
2718 | struct writeback_control *wbc) |
2719 | { |
2720 | pgoff_t writeback_index = 0; |
2721 | long nr_to_write = wbc->nr_to_write; |
2722 | int range_whole = 0; |
2723 | int cycled = 1; |
2724 | handle_t *handle = NULL; |
2725 | struct mpage_da_data mpd; |
2726 | struct inode *inode = mapping->host; |
2727 | int needed_blocks, rsv_blocks = 0, ret = 0; |
2728 | struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); |
2729 | bool done; |
2730 | struct blk_plug plug; |
2731 | bool give_up_on_write = false; |
2732 | |
2733 | if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) |
2734 | return -EIO; |
2735 | |
2736 | percpu_down_read(&sbi->s_journal_flag_rwsem); |
2737 | trace_ext4_writepages(inode, wbc); |
2738 | |
2739 | /* |
2740 | * No pages to write? This is mainly a kludge to avoid starting |
2741 | * a transaction for special inodes like journal inode on last iput() |
2742 | * because that could violate lock ordering on umount |
2743 | */ |
2744 | if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) |
2745 | goto out_writepages; |
2746 | |
2747 | if (ext4_should_journal_data(inode)) { |
2748 | ret = generic_writepages(mapping, wbc); |
2749 | goto out_writepages; |
2750 | } |
2751 | |
2752 | /* |
2753 | * If the filesystem has aborted, it is read-only, so return |
2754 | * right away instead of dumping stack traces later on that |
2755 | * will obscure the real source of the problem. We test |
2756 | * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because |
2757 | * the latter could be true if the filesystem is mounted |
2758 | * read-only, and in that case, ext4_writepages should |
2759 | * *never* be called, so if that ever happens, we would want |
2760 | * the stack trace. |
2761 | */ |
2762 | if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || |
2763 | sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { |
2764 | ret = -EROFS; |
2765 | goto out_writepages; |
2766 | } |
2767 | |
2768 | if (ext4_should_dioread_nolock(inode)) { |
2769 | /* |
2770 | * We may need to convert up to one extent per block in |
2771 | * the page and we may dirty the inode. |
2772 | */ |
2773 | rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, |
2774 | PAGE_SIZE >> inode->i_blkbits); |
2775 | } |
2776 | |
2777 | /* |
2778 | * If we have inline data and arrive here, it means that |
2779 | * we will soon create the block for the 1st page, so |
2780 | * we'd better clear the inline data here. |
2781 | */ |
2782 | if (ext4_has_inline_data(inode)) { |
2783 | /* Just inode will be modified... */ |
2784 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); |
2785 | if (IS_ERR(handle)) { |
2786 | ret = PTR_ERR(handle); |
2787 | goto out_writepages; |
2788 | } |
2789 | BUG_ON(ext4_test_inode_state(inode, |
2790 | EXT4_STATE_MAY_INLINE_DATA)); |
2791 | ext4_destroy_inline_data(handle, inode); |
2792 | ext4_journal_stop(handle); |
2793 | } |
2794 | |
2795 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) |
2796 | range_whole = 1; |
2797 | |
2798 | if (wbc->range_cyclic) { |
2799 | writeback_index = mapping->writeback_index; |
2800 | if (writeback_index) |
2801 | cycled = 0; |
2802 | mpd.first_page = writeback_index; |
2803 | mpd.last_page = -1; |
2804 | } else { |
2805 | mpd.first_page = wbc->range_start >> PAGE_SHIFT; |
2806 | mpd.last_page = wbc->range_end >> PAGE_SHIFT; |
2807 | } |
2808 | |
2809 | mpd.inode = inode; |
2810 | mpd.wbc = wbc; |
2811 | ext4_io_submit_init(&mpd.io_submit, wbc); |
2812 | retry: |
2813 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
2814 | tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); |
2815 | done = false; |
2816 | blk_start_plug(&plug); |
2817 | |
2818 | /* |
2819 | * First writeback pages that don't need mapping - we can avoid |
2820 | * starting a transaction unnecessarily and also avoid being blocked |
2821 | * in the block layer on device congestion while having transaction |
2822 | * started. |
2823 | */ |
2824 | mpd.do_map = 0; |
2825 | mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); |
2826 | if (!mpd.io_submit.io_end) { |
2827 | ret = -ENOMEM; |
2828 | goto unplug; |
2829 | } |
2830 | ret = mpage_prepare_extent_to_map(&mpd); |
2831 | /* Unlock pages we didn't use */ |
2832 | mpage_release_unused_pages(&mpd, false); |
2833 | /* Submit prepared bio */ |
2834 | ext4_io_submit(&mpd.io_submit); |
2835 | ext4_put_io_end_defer(mpd.io_submit.io_end); |
2836 | mpd.io_submit.io_end = NULL; |
2837 | if (ret < 0) |
2838 | goto unplug; |
2839 | |
2840 | while (!done && mpd.first_page <= mpd.last_page) { |
2841 | /* For each extent of pages we use new io_end */ |
2842 | mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); |
2843 | if (!mpd.io_submit.io_end) { |
2844 | ret = -ENOMEM; |
2845 | break; |
2846 | } |
2847 | |
2848 | /* |
2849 | * We have two constraints: We find one extent to map and we |
2850 | * must always write out whole page (makes a difference when |
2851 | * blocksize < pagesize) so that we don't block on IO when we |
2852 | * try to write out the rest of the page. Journalled mode is |
2853 | * not supported by delalloc. |
2854 | */ |
2855 | BUG_ON(ext4_should_journal_data(inode)); |
2856 | needed_blocks = ext4_da_writepages_trans_blocks(inode); |
2857 | |
2858 | /* start a new transaction */ |
2859 | handle = ext4_journal_start_with_reserve(inode, |
2860 | EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); |
2861 | if (IS_ERR(handle)) { |
2862 | ret = PTR_ERR(handle); |
2863 | ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " |
2864 | "%ld pages, ino %lu; err %d" , __func__, |
2865 | wbc->nr_to_write, inode->i_ino, ret); |
2866 | /* Release allocated io_end */ |
2867 | ext4_put_io_end(mpd.io_submit.io_end); |
2868 | mpd.io_submit.io_end = NULL; |
2869 | break; |
2870 | } |
2871 | mpd.do_map = 1; |
2872 | |
2873 | trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); |
2874 | ret = mpage_prepare_extent_to_map(&mpd); |
2875 | if (!ret) { |
2876 | if (mpd.map.m_len) |
2877 | ret = mpage_map_and_submit_extent(handle, &mpd, |
2878 | &give_up_on_write); |
2879 | else { |
2880 | /* |
2881 | * We scanned the whole range (or exhausted |
2882 | * nr_to_write), submitted what was mapped and |
2883 | * didn't find anything needing mapping. We are |
2884 | * done. |
2885 | */ |
2886 | done = true; |
2887 | } |
2888 | } |
2889 | /* |
2890 | * Caution: If the handle is synchronous, |
2891 | * ext4_journal_stop() can wait for transaction commit |
2892 | * to finish which may depend on writeback of pages to |
2893 | * complete or on page lock to be released. In that |
2894 | * case, we have to wait until after after we have |
2895 | * submitted all the IO, released page locks we hold, |
2896 | * and dropped io_end reference (for extent conversion |
2897 | * to be able to complete) before stopping the handle. |
2898 | */ |
2899 | if (!ext4_handle_valid(handle) || handle->h_sync == 0) { |
2900 | ext4_journal_stop(handle); |
2901 | handle = NULL; |
2902 | mpd.do_map = 0; |
2903 | } |
2904 | /* Unlock pages we didn't use */ |
2905 | mpage_release_unused_pages(&mpd, give_up_on_write); |
2906 | /* Submit prepared bio */ |
2907 | ext4_io_submit(&mpd.io_submit); |
2908 | |
2909 | /* |
2910 | * Drop our io_end reference we got from init. We have |
2911 | * to be careful and use deferred io_end finishing if |
2912 | * we are still holding the transaction as we can |
2913 | * release the last reference to io_end which may end |
2914 | * up doing unwritten extent conversion. |
2915 | */ |
2916 | if (handle) { |
2917 | ext4_put_io_end_defer(mpd.io_submit.io_end); |
2918 | ext4_journal_stop(handle); |
2919 | } else |
2920 | ext4_put_io_end(mpd.io_submit.io_end); |
2921 | mpd.io_submit.io_end = NULL; |
2922 | |
2923 | if (ret == -ENOSPC && sbi->s_journal) { |
2924 | /* |
2925 | * Commit the transaction which would |
2926 | * free blocks released in the transaction |
2927 | * and try again |
2928 | */ |
2929 | jbd2_journal_force_commit_nested(sbi->s_journal); |
2930 | ret = 0; |
2931 | continue; |
2932 | } |
2933 | /* Fatal error - ENOMEM, EIO... */ |
2934 | if (ret) |
2935 | break; |
2936 | } |
2937 | unplug: |
2938 | blk_finish_plug(&plug); |
2939 | if (!ret && !cycled && wbc->nr_to_write > 0) { |
2940 | cycled = 1; |
2941 | mpd.last_page = writeback_index - 1; |
2942 | mpd.first_page = 0; |
2943 | goto retry; |
2944 | } |
2945 | |
2946 | /* Update index */ |
2947 | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) |
2948 | /* |
2949 | * Set the writeback_index so that range_cyclic |
2950 | * mode will write it back later |
2951 | */ |
2952 | mapping->writeback_index = mpd.first_page; |
2953 | |
2954 | out_writepages: |
2955 | trace_ext4_writepages_result(inode, wbc, ret, |
2956 | nr_to_write - wbc->nr_to_write); |
2957 | percpu_up_read(&sbi->s_journal_flag_rwsem); |
2958 | return ret; |
2959 | } |
2960 | |
2961 | static int ext4_dax_writepages(struct address_space *mapping, |
2962 | struct writeback_control *wbc) |
2963 | { |
2964 | int ret; |
2965 | long nr_to_write = wbc->nr_to_write; |
2966 | struct inode *inode = mapping->host; |
2967 | struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); |
2968 | |
2969 | if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) |
2970 | return -EIO; |
2971 | |
2972 | percpu_down_read(&sbi->s_journal_flag_rwsem); |
2973 | trace_ext4_writepages(inode, wbc); |
2974 | |
2975 | ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); |
2976 | trace_ext4_writepages_result(inode, wbc, ret, |
2977 | nr_to_write - wbc->nr_to_write); |
2978 | percpu_up_read(&sbi->s_journal_flag_rwsem); |
2979 | return ret; |
2980 | } |
2981 | |
2982 | static int ext4_nonda_switch(struct super_block *sb) |
2983 | { |
2984 | s64 free_clusters, dirty_clusters; |
2985 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
2986 | |
2987 | /* |
2988 | * switch to non delalloc mode if we are running low |
2989 | * on free block. The free block accounting via percpu |
2990 | * counters can get slightly wrong with percpu_counter_batch getting |
2991 | * accumulated on each CPU without updating global counters |
2992 | * Delalloc need an accurate free block accounting. So switch |
2993 | * to non delalloc when we are near to error range. |
2994 | */ |
2995 | free_clusters = |
2996 | percpu_counter_read_positive(&sbi->s_freeclusters_counter); |
2997 | dirty_clusters = |
2998 | percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); |
2999 | /* |
3000 | * Start pushing delalloc when 1/2 of free blocks are dirty. |
3001 | */ |
3002 | if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) |
3003 | try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); |
3004 | |
3005 | if (2 * free_clusters < 3 * dirty_clusters || |
3006 | free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { |
3007 | /* |
3008 | * free block count is less than 150% of dirty blocks |
3009 | * or free blocks is less than watermark |
3010 | */ |
3011 | return 1; |
3012 | } |
3013 | return 0; |
3014 | } |
3015 | |
3016 | /* We always reserve for an inode update; the superblock could be there too */ |
3017 | static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) |
3018 | { |
3019 | if (likely(ext4_has_feature_large_file(inode->i_sb))) |
3020 | return 1; |
3021 | |
3022 | if (pos + len <= 0x7fffffffULL) |
3023 | return 1; |
3024 | |
3025 | /* We might need to update the superblock to set LARGE_FILE */ |
3026 | return 2; |
3027 | } |
3028 | |
3029 | static int ext4_da_write_begin(struct file *file, struct address_space *mapping, |
3030 | loff_t pos, unsigned len, unsigned flags, |
3031 | struct page **pagep, void **fsdata) |
3032 | { |
3033 | int ret, retries = 0; |
3034 | struct page *page; |
3035 | pgoff_t index; |
3036 | struct inode *inode = mapping->host; |
3037 | handle_t *handle; |
3038 | |
3039 | if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) |
3040 | return -EIO; |
3041 | |
3042 | index = pos >> PAGE_SHIFT; |
3043 | |
3044 | if (ext4_nonda_switch(inode->i_sb) || |
3045 | S_ISLNK(inode->i_mode)) { |
3046 | *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; |
3047 | return ext4_write_begin(file, mapping, pos, |
3048 | len, flags, pagep, fsdata); |
3049 | } |
3050 | *fsdata = (void *)0; |
3051 | trace_ext4_da_write_begin(inode, pos, len, flags); |
3052 | |
3053 | if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { |
3054 | ret = ext4_da_write_inline_data_begin(mapping, inode, |
3055 | pos, len, flags, |
3056 | pagep, fsdata); |
3057 | if (ret < 0) |
3058 | return ret; |
3059 | if (ret == 1) |
3060 | return 0; |
3061 | } |
3062 | |
3063 | /* |
3064 | * grab_cache_page_write_begin() can take a long time if the |
3065 | * system is thrashing due to memory pressure, or if the page |
3066 | * is being written back. So grab it first before we start |
3067 | * the transaction handle. This also allows us to allocate |
3068 | * the page (if needed) without using GFP_NOFS. |
3069 | */ |
3070 | retry_grab: |
3071 | page = grab_cache_page_write_begin(mapping, index, flags); |
3072 | if (!page) |
3073 | return -ENOMEM; |
3074 | unlock_page(page); |
3075 | |
3076 | /* |
3077 | * With delayed allocation, we don't log the i_disksize update |
3078 | * if there is delayed block allocation. But we still need |
3079 | * to journalling the i_disksize update if writes to the end |
3080 | * of file which has an already mapped buffer. |
3081 | */ |
3082 | retry_journal: |
3083 | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, |
3084 | ext4_da_write_credits(inode, pos, len)); |
3085 | if (IS_ERR(handle)) { |
3086 | put_page(page); |
3087 | return PTR_ERR(handle); |
3088 | } |
3089 | |
3090 | lock_page(page); |
3091 | if (page->mapping != mapping) { |
3092 | /* The page got truncated from under us */ |
3093 | unlock_page(page); |
3094 | put_page(page); |
3095 | ext4_journal_stop(handle); |
3096 | goto retry_grab; |
3097 | } |
3098 | /* In case writeback began while the page was unlocked */ |
3099 | wait_for_stable_page(page); |
3100 | |
3101 | #ifdef CONFIG_FS_ENCRYPTION |
3102 | ret = ext4_block_write_begin(page, pos, len, |
3103 | ext4_da_get_block_prep); |
3104 | #else |
3105 | ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); |
3106 | #endif |
3107 | if (ret < 0) { |
3108 | unlock_page(page); |
3109 | ext4_journal_stop(handle); |
3110 | /* |
3111 | * block_write_begin may have instantiated a few blocks |
3112 | * outside i_size. Trim these off again. Don't need |
3113 | * i_size_read because we hold i_mutex. |
3114 | */ |
3115 | if (pos + len > inode->i_size) |
3116 | ext4_truncate_failed_write(inode); |
3117 | |
3118 | if (ret == -ENOSPC && |
3119 | ext4_should_retry_alloc(inode->i_sb, &retries)) |
3120 | goto retry_journal; |
3121 | |
3122 | put_page(page); |
3123 | return ret; |
3124 | } |
3125 | |
3126 | *pagep = page; |
3127 | return ret; |
3128 | } |
3129 | |
3130 | /* |
3131 | * Check if we should update i_disksize |
3132 | * when write to the end of file but not require block allocation |
3133 | */ |
3134 | static int ext4_da_should_update_i_disksize(struct page *page, |
3135 | unsigned long offset) |
3136 | { |
3137 | struct buffer_head *bh; |
3138 | struct inode *inode = page->mapping->host; |
3139 | unsigned int idx; |
3140 | int i; |
3141 | |
3142 | bh = page_buffers(page); |
3143 | idx = offset >> inode->i_blkbits; |
3144 | |
3145 | for (i = 0; i < idx; i++) |
3146 | bh = bh->b_this_page; |
3147 | |
3148 | if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) |
3149 | return 0; |
3150 | return 1; |
3151 | } |
3152 | |
3153 | static int ext4_da_write_end(struct file *file, |
3154 | struct address_space *mapping, |
3155 | loff_t pos, unsigned len, unsigned copied, |
3156 | struct page *page, void *fsdata) |
3157 | { |
3158 | struct inode *inode = mapping->host; |
3159 | int ret = 0, ret2; |
3160 | handle_t *handle = ext4_journal_current_handle(); |
3161 | loff_t new_i_size; |
3162 | unsigned long start, end; |
3163 | int write_mode = (int)(unsigned long)fsdata; |
3164 | |
3165 | if (write_mode == FALL_BACK_TO_NONDELALLOC) |
3166 | return ext4_write_end(file, mapping, pos, |
3167 | len, copied, page, fsdata); |
3168 | |
3169 | trace_ext4_da_write_end(inode, pos, len, copied); |
3170 | start = pos & (PAGE_SIZE - 1); |
3171 | end = start + copied - 1; |
3172 | |
3173 | /* |
3174 | * generic_write_end() will run mark_inode_dirty() if i_size |
3175 | * changes. So let's piggyback the i_disksize mark_inode_dirty |
3176 | * into that. |
3177 | */ |
3178 | new_i_size = pos + copied; |
3179 | if (copied && new_i_size > EXT4_I(inode)->i_disksize) { |
3180 | if (ext4_has_inline_data(inode) || |
3181 | ext4_da_should_update_i_disksize(page, end)) { |
3182 | ext4_update_i_disksize(inode, new_i_size); |
3183 | /* We need to mark inode dirty even if |
3184 | * new_i_size is less that inode->i_size |
3185 | * bu greater than i_disksize.(hint delalloc) |
3186 | */ |
3187 | ext4_mark_inode_dirty(handle, inode); |
3188 | } |
3189 | } |
3190 | |
3191 | if (write_mode != CONVERT_INLINE_DATA && |
3192 | ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && |
3193 | ext4_has_inline_data(inode)) |
3194 | ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, |
3195 | page); |
3196 | else |
3197 | ret2 = generic_write_end(file, mapping, pos, len, copied, |
3198 | page, fsdata); |
3199 | |
3200 | copied = ret2; |
3201 | if (ret2 < 0) |
3202 | ret = ret2; |
3203 | ret2 = ext4_journal_stop(handle); |
3204 | if (!ret) |
3205 | ret = ret2; |
3206 | |
3207 | return ret ? ret : copied; |
3208 | } |
3209 | |
3210 | static void ext4_da_invalidatepage(struct page *page, unsigned int offset, |
3211 | unsigned int length) |
3212 | { |
3213 | /* |
3214 | * Drop reserved blocks |
3215 | */ |
3216 | BUG_ON(!PageLocked(page)); |
3217 | if (!page_has_buffers(page)) |
3218 | goto out; |
3219 | |
3220 | ext4_da_page_release_reservation(page, offset, length); |
3221 | |
3222 | out: |
3223 | ext4_invalidatepage(page, offset, length); |
3224 | |
3225 | return; |
3226 | } |
3227 | |
3228 | /* |
3229 | * Force all delayed allocation blocks to be allocated for a given inode. |
3230 | */ |
3231 | int ext4_alloc_da_blocks(struct inode *inode) |
3232 | { |
3233 | trace_ext4_alloc_da_blocks(inode); |
3234 | |
3235 | if (!EXT4_I(inode)->i_reserved_data_blocks) |
3236 | return 0; |
3237 | |
3238 | /* |
3239 | * We do something simple for now. The filemap_flush() will |
3240 | * also start triggering a write of the data blocks, which is |
3241 | * not strictly speaking necessary (and for users of |
3242 | * laptop_mode, not even desirable). However, to do otherwise |
3243 | * would require replicating code paths in: |
3244 | * |
3245 | * ext4_writepages() -> |
3246 | * write_cache_pages() ---> (via passed in callback function) |
3247 | * __mpage_da_writepage() --> |
3248 | * mpage_add_bh_to_extent() |
3249 | * mpage_da_map_blocks() |
3250 | * |
3251 | * The problem is that write_cache_pages(), located in |
3252 | * mm/page-writeback.c, marks pages clean in preparation for |
3253 | * doing I/O, which is not desirable if we're not planning on |
3254 | * doing I/O at all. |
3255 | * |
3256 | * We could call write_cache_pages(), and then redirty all of |
3257 | * the pages by calling redirty_page_for_writepage() but that |
3258 | * would be ugly in the extreme. So instead we would need to |
3259 | * replicate parts of the code in the above functions, |
3260 | * simplifying them because we wouldn't actually intend to |
3261 | * write out the pages, but rather only collect contiguous |
3262 | * logical block extents, call the multi-block allocator, and |
3263 | * then update the buffer heads with the block allocations. |
3264 | * |
3265 | * For now, though, we'll cheat by calling filemap_flush(), |
3266 | * which will map the blocks, and start the I/O, but not |
3267 | * actually wait for the I/O to complete. |
3268 | */ |
3269 | return filemap_flush(inode->i_mapping); |
3270 | } |
3271 | |
3272 | /* |
3273 | * bmap() is special. It gets used by applications such as lilo and by |
3274 | * the swapper to find the on-disk block of a specific piece of data. |
3275 | * |
3276 | * Naturally, this is dangerous if the block concerned is still in the |
3277 | * journal. If somebody makes a swapfile on an ext4 data-journaling |
3278 | * filesystem and enables swap, then they may get a nasty shock when the |
3279 | * data getting swapped to that swapfile suddenly gets overwritten by |
3280 | * the original zero's written out previously to the journal and |
3281 | * awaiting writeback in the kernel's buffer cache. |
3282 | * |
3283 | * So, if we see any bmap calls here on a modified, data-journaled file, |
3284 | * take extra steps to flush any blocks which might be in the cache. |
3285 | */ |
3286 | static sector_t ext4_bmap(struct address_space *mapping, sector_t block) |
3287 | { |
3288 | struct inode *inode = mapping->host; |
3289 | journal_t *journal; |
3290 | int err; |
3291 | |
3292 | /* |
3293 | * We can get here for an inline file via the FIBMAP ioctl |
3294 | */ |
3295 | if (ext4_has_inline_data(inode)) |
3296 | return 0; |
3297 | |
3298 | if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && |
3299 | test_opt(inode->i_sb, DELALLOC)) { |
3300 | /* |
3301 | * With delalloc we want to sync the file |
3302 | * so that we can make sure we allocate |
3303 | * blocks for file |
3304 | */ |
3305 | filemap_write_and_wait(mapping); |
3306 | } |
3307 | |
3308 | if (EXT4_JOURNAL(inode) && |
3309 | ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { |
3310 | /* |
3311 | * This is a REALLY heavyweight approach, but the use of |
3312 | * bmap on dirty files is expected to be extremely rare: |
3313 | * only if we run lilo or swapon on a freshly made file |
3314 | * do we expect this to happen. |
3315 | * |
3316 | * (bmap requires CAP_SYS_RAWIO so this does not |
3317 | * represent an unprivileged user DOS attack --- we'd be |
3318 | * in trouble if mortal users could trigger this path at |
3319 | * will.) |
3320 | * |
3321 | * NB. EXT4_STATE_JDATA is not set on files other than |
3322 | * regular files. If somebody wants to bmap a directory |
3323 | * or symlink and gets confused because the buffer |
3324 | * hasn't yet been flushed to disk, they deserve |
3325 | * everything they get. |
3326 | */ |
3327 | |
3328 | ext4_clear_inode_state(inode, EXT4_STATE_JDATA); |
3329 | journal = EXT4_JOURNAL(inode); |
3330 | jbd2_journal_lock_updates(journal); |
3331 | err = jbd2_journal_flush(journal); |
3332 | jbd2_journal_unlock_updates(journal); |
3333 | |
3334 | if (err) |
3335 | return 0; |
3336 | } |
3337 | |
3338 | return generic_block_bmap(mapping, block, ext4_get_block); |
3339 | } |
3340 | |
3341 | static int ext4_readpage(struct file *file, struct page *page) |
3342 | { |
3343 | int ret = -EAGAIN; |
3344 | struct inode *inode = page->mapping->host; |
3345 | |
3346 | trace_ext4_readpage(page); |
3347 | |
3348 | if (ext4_has_inline_data(inode)) |
3349 | ret = ext4_readpage_inline(inode, page); |
3350 | |
3351 | if (ret == -EAGAIN) |
3352 | return ext4_mpage_readpages(page->mapping, NULL, page, 1, |
3353 | false); |
3354 | |
3355 | return ret; |
3356 | } |
3357 | |
3358 | static int |
3359 | ext4_readpages(struct file *file, struct address_space *mapping, |
3360 | struct list_head *pages, unsigned nr_pages) |
3361 | { |
3362 | struct inode *inode = mapping->host; |
3363 | |
3364 | /* If the file has inline data, no need to do readpages. */ |
3365 | if (ext4_has_inline_data(inode)) |
3366 | return 0; |
3367 | |
3368 | return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); |
3369 | } |
3370 | |
3371 | static void ext4_invalidatepage(struct page *page, unsigned int offset, |
3372 | unsigned int length) |
3373 | { |
3374 | trace_ext4_invalidatepage(page, offset, length); |
3375 | |
3376 | /* No journalling happens on data buffers when this function is used */ |
3377 | WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); |
3378 | |
3379 | block_invalidatepage(page, offset, length); |
3380 | } |
3381 | |
3382 | static int __ext4_journalled_invalidatepage(struct page *page, |
3383 | unsigned int offset, |
3384 | unsigned int length) |
3385 | { |
3386 | journal_t *journal = EXT4_JOURNAL(page->mapping->host); |
3387 | |
3388 | trace_ext4_journalled_invalidatepage(page, offset, length); |
3389 | |
3390 | /* |
3391 | * If it's a full truncate we just forget about the pending dirtying |
3392 | */ |
3393 | if (offset == 0 && length == PAGE_SIZE) |
3394 | ClearPageChecked(page); |
3395 | |
3396 | return jbd2_journal_invalidatepage(journal, page, offset, length); |
3397 | } |
3398 | |
3399 | /* Wrapper for aops... */ |
3400 | static void ext4_journalled_invalidatepage(struct page *page, |
3401 | unsigned int offset, |
3402 | unsigned int length) |
3403 | { |
3404 | WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); |
3405 | } |
3406 | |
3407 | static int ext4_releasepage(struct page *page, gfp_t wait) |
3408 | { |
3409 | journal_t *journal = EXT4_JOURNAL(page->mapping->host); |
3410 | |
3411 | trace_ext4_releasepage(page); |
3412 | |
3413 | /* Page has dirty journalled data -> cannot release */ |
3414 | if (PageChecked(page)) |
3415 | return 0; |
3416 | if (journal) |
3417 | return jbd2_journal_try_to_free_buffers(journal, page, wait); |
3418 | else |
3419 | return try_to_free_buffers(page); |
3420 | } |
3421 | |
3422 | static bool ext4_inode_datasync_dirty(struct inode *inode) |
3423 | { |
3424 | journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; |
3425 | |
3426 | if (journal) |
3427 | return !jbd2_transaction_committed(journal, |
3428 | EXT4_I(inode)->i_datasync_tid); |
3429 | /* Any metadata buffers to write? */ |
3430 | if (!list_empty(&inode->i_mapping->private_list)) |
3431 | return true; |
3432 | return inode->i_state & I_DIRTY_DATASYNC; |
3433 | } |
3434 | |
3435 | static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, |
3436 | unsigned flags, struct iomap *iomap) |
3437 | { |
3438 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
3439 | unsigned int blkbits = inode->i_blkbits; |
3440 | unsigned long first_block, last_block; |
3441 | struct ext4_map_blocks map; |
3442 | bool delalloc = false; |
3443 | int ret; |
3444 | |
3445 | if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) |
3446 | return -EINVAL; |
3447 | first_block = offset >> blkbits; |
3448 | last_block = min_t(loff_t, (offset + length - 1) >> blkbits, |
3449 | EXT4_MAX_LOGICAL_BLOCK); |
3450 | |
3451 | if (flags & IOMAP_REPORT) { |
3452 | if (ext4_has_inline_data(inode)) { |
3453 | ret = ext4_inline_data_iomap(inode, iomap); |
3454 | if (ret != -EAGAIN) { |
3455 | if (ret == 0 && offset >= iomap->length) |
3456 | ret = -ENOENT; |
3457 | return ret; |
3458 | } |
3459 | } |
3460 | } else { |
3461 | if (WARN_ON_ONCE(ext4_has_inline_data(inode))) |
3462 | return -ERANGE; |
3463 | } |
3464 | |
3465 | map.m_lblk = first_block; |
3466 | map.m_len = last_block - first_block + 1; |
3467 | |
3468 | if (flags & IOMAP_REPORT) { |
3469 | ret = ext4_map_blocks(NULL, inode, &map, 0); |
3470 | if (ret < 0) |
3471 | return ret; |
3472 | |
3473 | if (ret == 0) { |
3474 | ext4_lblk_t end = map.m_lblk + map.m_len - 1; |
3475 | struct extent_status es; |
3476 | |
3477 | ext4_es_find_extent_range(inode, &ext4_es_is_delayed, |
3478 | map.m_lblk, end, &es); |
3479 | |
3480 | if (!es.es_len || es.es_lblk > end) { |
3481 | /* entire range is a hole */ |
3482 | } else if (es.es_lblk > map.m_lblk) { |
3483 | /* range starts with a hole */ |
3484 | map.m_len = es.es_lblk - map.m_lblk; |
3485 | } else { |
3486 | ext4_lblk_t offs = 0; |
3487 | |
3488 | if (es.es_lblk < map.m_lblk) |
3489 | offs = map.m_lblk - es.es_lblk; |
3490 | map.m_lblk = es.es_lblk + offs; |
3491 | map.m_len = es.es_len - offs; |
3492 | delalloc = true; |
3493 | } |
3494 | } |
3495 | } else if (flags & IOMAP_WRITE) { |
3496 | int dio_credits; |
3497 | handle_t *handle; |
3498 | int retries = 0; |
3499 | |
3500 | /* Trim mapping request to maximum we can map at once for DIO */ |
3501 | if (map.m_len > DIO_MAX_BLOCKS) |
3502 | map.m_len = DIO_MAX_BLOCKS; |
3503 | dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); |
3504 | retry: |
3505 | /* |
3506 | * Either we allocate blocks and then we don't get unwritten |
3507 | * extent so we have reserved enough credits, or the blocks |
3508 | * are already allocated and unwritten and in that case |
3509 | * extent conversion fits in the credits as well. |
3510 | */ |
3511 | handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, |
3512 | dio_credits); |
3513 | if (IS_ERR(handle)) |
3514 | return PTR_ERR(handle); |
3515 | |
3516 | ret = ext4_map_blocks(handle, inode, &map, |
3517 | EXT4_GET_BLOCKS_CREATE_ZERO); |
3518 | if (ret < 0) { |
3519 | ext4_journal_stop(handle); |
3520 | if (ret == -ENOSPC && |
3521 | ext4_should_retry_alloc(inode->i_sb, &retries)) |
3522 | goto retry; |
3523 | return ret; |
3524 | } |
3525 | |
3526 | /* |
3527 | * If we added blocks beyond i_size, we need to make sure they |
3528 | * will get truncated if we crash before updating i_size in |
3529 | * ext4_iomap_end(). For faults we don't need to do that (and |
3530 | * even cannot because for orphan list operations inode_lock is |
3531 | * required) - if we happen to instantiate block beyond i_size, |
3532 | * it is because we race with truncate which has already added |
3533 | * the inode to the orphan list. |
3534 | */ |
3535 | if (!(flags & IOMAP_FAULT) && first_block + map.m_len > |
3536 | (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { |
3537 | int err; |
3538 | |
3539 | err = ext4_orphan_add(handle, inode); |
3540 | if (err < 0) { |
3541 | ext4_journal_stop(handle); |
3542 | return err; |
3543 | } |
3544 | } |
3545 | ext4_journal_stop(handle); |
3546 | } else { |
3547 | ret = ext4_map_blocks(NULL, inode, &map, 0); |
3548 | if (ret < 0) |
3549 | return ret; |
3550 | } |
3551 | |
3552 | iomap->flags = 0; |
3553 | if (ext4_inode_datasync_dirty(inode)) |
3554 | iomap->flags |= IOMAP_F_DIRTY; |
3555 | iomap->bdev = inode->i_sb->s_bdev; |
3556 | iomap->dax_dev = sbi->s_daxdev; |
3557 | iomap->offset = (u64)first_block << blkbits; |
3558 | iomap->length = (u64)map.m_len << blkbits; |
3559 | |
3560 | if (ret == 0) { |
3561 | iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; |
3562 | iomap->addr = IOMAP_NULL_ADDR; |
3563 | } else { |
3564 | if (map.m_flags & EXT4_MAP_MAPPED) { |
3565 | iomap->type = IOMAP_MAPPED; |
3566 | } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { |
3567 | iomap->type = IOMAP_UNWRITTEN; |
3568 | } else { |
3569 | WARN_ON_ONCE(1); |
3570 | return -EIO; |
3571 | } |
3572 | iomap->addr = (u64)map.m_pblk << blkbits; |
3573 | } |
3574 | |
3575 | if (map.m_flags & EXT4_MAP_NEW) |
3576 | iomap->flags |= IOMAP_F_NEW; |
3577 | |
3578 | return 0; |
3579 | } |
3580 | |
3581 | static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, |
3582 | ssize_t written, unsigned flags, struct iomap *iomap) |
3583 | { |
3584 | int ret = 0; |
3585 | handle_t *handle; |
3586 | int blkbits = inode->i_blkbits; |
3587 | bool truncate = false; |
3588 | |
3589 | if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) |
3590 | return 0; |
3591 | |
3592 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); |
3593 | if (IS_ERR(handle)) { |
3594 | ret = PTR_ERR(handle); |
3595 | goto orphan_del; |
3596 | } |
3597 | if (ext4_update_inode_size(inode, offset + written)) |
3598 | ext4_mark_inode_dirty(handle, inode); |
3599 | /* |
3600 | * We may need to truncate allocated but not written blocks beyond EOF. |
3601 | */ |
3602 | if (iomap->offset + iomap->length > |
3603 | ALIGN(inode->i_size, 1 << blkbits)) { |
3604 | ext4_lblk_t written_blk, end_blk; |
3605 | |
3606 | written_blk = (offset + written) >> blkbits; |
3607 | end_blk = (offset + length) >> blkbits; |
3608 | if (written_blk < end_blk && ext4_can_truncate(inode)) |
3609 | truncate = true; |
3610 | } |
3611 | /* |
3612 | * Remove inode from orphan list if we were extending a inode and |
3613 | * everything went fine. |
3614 | */ |
3615 | if (!truncate && inode->i_nlink && |
3616 | !list_empty(&EXT4_I(inode)->i_orphan)) |
3617 | ext4_orphan_del(handle, inode); |
3618 | ext4_journal_stop(handle); |
3619 | if (truncate) { |
3620 | ext4_truncate_failed_write(inode); |
3621 | orphan_del: |
3622 | /* |
3623 | * If truncate failed early the inode might still be on the |
3624 | * orphan list; we need to make sure the inode is removed from |
3625 | * the orphan list in that case. |
3626 | */ |
3627 | if (inode->i_nlink) |
3628 | ext4_orphan_del(NULL, inode); |
3629 | } |
3630 | return ret; |
3631 | } |
3632 | |
3633 | const struct iomap_ops ext4_iomap_ops = { |
3634 | .iomap_begin = ext4_iomap_begin, |
3635 | .iomap_end = ext4_iomap_end, |
3636 | }; |
3637 | |
3638 | static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, |
3639 | ssize_t size, void *private) |
3640 | { |
3641 | ext4_io_end_t *io_end = private; |
3642 | |
3643 | /* if not async direct IO just return */ |
3644 | if (!io_end) |
3645 | return 0; |
3646 | |
3647 | ext_debug("ext4_end_io_dio(): io_end 0x%p " |
3648 | "for inode %lu, iocb 0x%p, offset %llu, size %zd\n" , |
3649 | io_end, io_end->inode->i_ino, iocb, offset, size); |
3650 | |
3651 | /* |
3652 | * Error during AIO DIO. We cannot convert unwritten extents as the |
3653 | * data was not written. Just clear the unwritten flag and drop io_end. |
3654 | */ |
3655 | if (size <= 0) { |
3656 | ext4_clear_io_unwritten_flag(io_end); |
3657 | size = 0; |
3658 | } |
3659 | io_end->offset = offset; |
3660 | io_end->size = size; |
3661 | ext4_put_io_end(io_end); |
3662 | |
3663 | return 0; |
3664 | } |
3665 | |
3666 | /* |
3667 | * Handling of direct IO writes. |
3668 | * |
3669 | * For ext4 extent files, ext4 will do direct-io write even to holes, |
3670 | * preallocated extents, and those write extend the file, no need to |
3671 | * fall back to buffered IO. |
3672 | * |
3673 | * For holes, we fallocate those blocks, mark them as unwritten |
3674 | * If those blocks were preallocated, we mark sure they are split, but |
3675 | * still keep the range to write as unwritten. |
3676 | * |
3677 | * The unwritten extents will be converted to written when DIO is completed. |
3678 | * For async direct IO, since the IO may still pending when return, we |
3679 | * set up an end_io call back function, which will do the conversion |
3680 | * when async direct IO completed. |
3681 | * |
3682 | * If the O_DIRECT write will extend the file then add this inode to the |
3683 | * orphan list. So recovery will truncate it back to the original size |
3684 | * if the machine crashes during the write. |
3685 | * |
3686 | */ |
3687 | static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) |
3688 | { |
3689 | struct file *file = iocb->ki_filp; |
3690 | struct inode *inode = file->f_mapping->host; |
3691 | struct ext4_inode_info *ei = EXT4_I(inode); |
3692 | ssize_t ret; |
3693 | loff_t offset = iocb->ki_pos; |
3694 | size_t |
---|