1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, crc: ei->i_csum_seed, address: (__u8 *)raw, length: offset);
62 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)&dummy_csum, length: csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 length: offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)&dummy_csum,
74 length: csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(sb: inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(sb: inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(sb: inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(sb: inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137}
138
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
141
142/*
143 * Test whether an inode is a fast symlink.
144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145 */
146int ext4_inode_is_fast_symlink(struct inode *inode)
147{
148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152 if (ext4_has_inline_data(inode))
153 return 0;
154
155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 }
157 return S_ISLNK(inode->i_mode) && inode->i_size &&
158 (inode->i_size < EXT4_N_BLOCKS * 4);
159}
160
161/*
162 * Called at the last iput() if i_nlink is zero.
163 */
164void ext4_evict_inode(struct inode *inode)
165{
166 handle_t *handle;
167 int err;
168 /*
169 * Credits for final inode cleanup and freeing:
170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 */
173 int extra_credits = 6;
174 struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 bool freeze_protected = false;
176
177 trace_ext4_evict_inode(inode);
178
179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 ext4_evict_ea_inode(inode);
181 if (inode->i_nlink) {
182 truncate_inode_pages_final(&inode->i_data);
183
184 goto no_delete;
185 }
186
187 if (is_bad_inode(inode))
188 goto no_delete;
189 dquot_initialize(inode);
190
191 if (ext4_should_order_data(inode))
192 ext4_begin_ordered_truncate(inode, new_size: 0);
193 truncate_inode_pages_final(&inode->i_data);
194
195 /*
196 * For inodes with journalled data, transaction commit could have
197 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 * extents converting worker could merge extents and also have dirtied
199 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 * we still need to remove the inode from the writeback lists.
201 */
202 if (!list_empty_careful(head: &inode->i_io_list))
203 inode_io_list_del(inode);
204
205 /*
206 * Protect us against freezing - iput() caller didn't have to have any
207 * protection against it. When we are in a running transaction though,
208 * we are already protected against freezing and we cannot grab further
209 * protection due to lock ordering constraints.
210 */
211 if (!ext4_journal_current_handle()) {
212 sb_start_intwrite(sb: inode->i_sb);
213 freeze_protected = true;
214 }
215
216 if (!IS_NOQUOTA(inode))
217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219 /*
220 * Block bitmap, group descriptor, and inode are accounted in both
221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 */
223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 if (IS_ERR(ptr: handle)) {
226 ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 /*
228 * If we're going to skip the normal cleanup, we still need to
229 * make sure that the in-core orphan linked list is properly
230 * cleaned up.
231 */
232 ext4_orphan_del(NULL, inode);
233 if (freeze_protected)
234 sb_end_intwrite(sb: inode->i_sb);
235 goto no_delete;
236 }
237
238 if (IS_SYNC(inode))
239 ext4_handle_sync(handle);
240
241 /*
242 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 * special handling of symlinks here because i_size is used to
244 * determine whether ext4_inode_info->i_data contains symlink data or
245 * block mappings. Setting i_size to 0 will remove its fast symlink
246 * status. Erase i_data so that it becomes a valid empty block map.
247 */
248 if (ext4_inode_is_fast_symlink(inode))
249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 inode->i_size = 0;
251 err = ext4_mark_inode_dirty(handle, inode);
252 if (err) {
253 ext4_warning(inode->i_sb,
254 "couldn't mark inode dirty (err %d)", err);
255 goto stop_handle;
256 }
257 if (inode->i_blocks) {
258 err = ext4_truncate(inode);
259 if (err) {
260 ext4_error_err(inode->i_sb, -err,
261 "couldn't truncate inode %lu (err %d)",
262 inode->i_ino, err);
263 goto stop_handle;
264 }
265 }
266
267 /* Remove xattr references. */
268 err = ext4_xattr_delete_inode(handle, inode, array: &ea_inode_array,
269 extra_credits);
270 if (err) {
271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272stop_handle:
273 ext4_journal_stop(handle);
274 ext4_orphan_del(NULL, inode);
275 if (freeze_protected)
276 sb_end_intwrite(sb: inode->i_sb);
277 ext4_xattr_inode_array_free(array: ea_inode_array);
278 goto no_delete;
279 }
280
281 /*
282 * Kill off the orphan record which ext4_truncate created.
283 * AKPM: I think this can be inside the above `if'.
284 * Note that ext4_orphan_del() has to be able to cope with the
285 * deletion of a non-existent orphan - this is because we don't
286 * know if ext4_truncate() actually created an orphan record.
287 * (Well, we could do this if we need to, but heck - it works)
288 */
289 ext4_orphan_del(handle, inode);
290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
291
292 /*
293 * One subtle ordering requirement: if anything has gone wrong
294 * (transaction abort, IO errors, whatever), then we can still
295 * do these next steps (the fs will already have been marked as
296 * having errors), but we can't free the inode if the mark_dirty
297 * fails.
298 */
299 if (ext4_mark_inode_dirty(handle, inode))
300 /* If that failed, just do the required in-core inode clear. */
301 ext4_clear_inode(inode);
302 else
303 ext4_free_inode(handle, inode);
304 ext4_journal_stop(handle);
305 if (freeze_protected)
306 sb_end_intwrite(sb: inode->i_sb);
307 ext4_xattr_inode_array_free(array: ea_inode_array);
308 return;
309no_delete:
310 /*
311 * Check out some where else accidentally dirty the evicting inode,
312 * which may probably cause inode use-after-free issues later.
313 */
314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316 if (!list_empty(head: &EXT4_I(inode)->i_fc_list))
317 ext4_fc_mark_ineligible(sb: inode->i_sb, reason: EXT4_FC_REASON_NOMEM, NULL);
318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
319}
320
321#ifdef CONFIG_QUOTA
322qsize_t *ext4_get_reserved_space(struct inode *inode)
323{
324 return &EXT4_I(inode)->i_reserved_quota;
325}
326#endif
327
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
332void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
334{
335 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
336 struct ext4_inode_info *ei = EXT4_I(inode);
337
338 spin_lock(lock: &ei->i_block_reservation_lock);
339 trace_ext4_da_update_reserve_space(inode, used_blocks: used, quota_claim);
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
347 }
348
349 /* Update per-inode reservations */
350 ei->i_reserved_data_blocks -= used;
351 percpu_counter_sub(fbc: &sbi->s_dirtyclusters_counter, amount: used);
352
353 spin_unlock(lock: &ei->i_block_reservation_lock);
354
355 /* Update quota subsystem for data blocks */
356 if (quota_claim)
357 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 else {
359 /*
360 * We did fallocate with an offset that is already delayed
361 * allocated. So on delayed allocated writeback we should
362 * not re-claim the quota for fallocated blocks.
363 */
364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 }
366
367 /*
368 * If we have done all the pending block allocations and if
369 * there aren't any writers on the inode, we can discard the
370 * inode's preallocations.
371 */
372 if ((ei->i_reserved_data_blocks == 0) &&
373 !inode_is_open_for_write(inode))
374 ext4_discard_preallocations(inode, 0);
375}
376
377static int __check_block_validity(struct inode *inode, const char *func,
378 unsigned int line,
379 struct ext4_map_blocks *map)
380{
381 if (ext4_has_feature_journal(sb: inode->i_sb) &&
382 (inode->i_ino ==
383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 return 0;
385 if (!ext4_inode_block_valid(inode, start_blk: map->m_pblk, count: map->m_len)) {
386 ext4_error_inode(inode, func, line, map->m_pblk,
387 "lblock %lu mapped to illegal pblock %llu "
388 "(length %d)", (unsigned long) map->m_lblk,
389 map->m_pblk, map->m_len);
390 return -EFSCORRUPTED;
391 }
392 return 0;
393}
394
395int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 ext4_lblk_t len)
397{
398 int ret;
399
400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403 ret = sb_issue_zeroout(sb: inode->i_sb, block: pblk, nr_blocks: len, GFP_NOFS);
404 if (ret > 0)
405 ret = 0;
406
407 return ret;
408}
409
410#define check_block_validity(inode, map) \
411 __check_block_validity((inode), __func__, __LINE__, (map))
412
413#ifdef ES_AGGRESSIVE_TEST
414static void ext4_map_blocks_es_recheck(handle_t *handle,
415 struct inode *inode,
416 struct ext4_map_blocks *es_map,
417 struct ext4_map_blocks *map,
418 int flags)
419{
420 int retval;
421
422 map->m_flags = 0;
423 /*
424 * There is a race window that the result is not the same.
425 * e.g. xfstests #223 when dioread_nolock enables. The reason
426 * is that we lookup a block mapping in extent status tree with
427 * out taking i_data_sem. So at the time the unwritten extent
428 * could be converted.
429 */
430 down_read(&EXT4_I(inode)->i_data_sem);
431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 } else {
434 retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 }
436 up_read((&EXT4_I(inode)->i_data_sem));
437
438 /*
439 * We don't check m_len because extent will be collpased in status
440 * tree. So the m_len might not equal.
441 */
442 if (es_map->m_lblk != map->m_lblk ||
443 es_map->m_flags != map->m_flags ||
444 es_map->m_pblk != map->m_pblk) {
445 printk("ES cache assertion failed for inode: %lu "
446 "es_cached ex [%d/%d/%llu/%x] != "
447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 inode->i_ino, es_map->m_lblk, es_map->m_len,
449 es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 map->m_len, map->m_pblk, map->m_flags,
451 retval, flags);
452 }
453}
454#endif /* ES_AGGRESSIVE_TEST */
455
456/*
457 * The ext4_map_blocks() function tries to look up the requested blocks,
458 * and returns if the blocks are already mapped.
459 *
460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461 * and store the allocated blocks in the result buffer head and mark it
462 * mapped.
463 *
464 * If file type is extents based, it will call ext4_ext_map_blocks(),
465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466 * based files
467 *
468 * On success, it returns the number of blocks being mapped or allocated. if
469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
471 *
472 * It returns 0 if plain look up failed (blocks have not been allocated), in
473 * that case, @map is returned as unmapped but we still do fill map->m_len to
474 * indicate the length of a hole starting at map->m_lblk.
475 *
476 * It returns the error in case of allocation failure.
477 */
478int ext4_map_blocks(handle_t *handle, struct inode *inode,
479 struct ext4_map_blocks *map, int flags)
480{
481 struct extent_status es;
482 int retval;
483 int ret = 0;
484#ifdef ES_AGGRESSIVE_TEST
485 struct ext4_map_blocks orig_map;
486
487 memcpy(&orig_map, map, sizeof(*map));
488#endif
489
490 map->m_flags = 0;
491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492 flags, map->m_len, (unsigned long) map->m_lblk);
493
494 /*
495 * ext4_map_blocks returns an int, and m_len is an unsigned int
496 */
497 if (unlikely(map->m_len > INT_MAX))
498 map->m_len = INT_MAX;
499
500 /* We can handle the block number less than EXT_MAX_BLOCKS */
501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502 return -EFSCORRUPTED;
503
504 /* Lookup extent status tree firstly */
505 if (!(EXT4_SB(sb: inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506 ext4_es_lookup_extent(inode, lblk: map->m_lblk, NULL, es: &es)) {
507 if (ext4_es_is_written(es: &es) || ext4_es_is_unwritten(es: &es)) {
508 map->m_pblk = ext4_es_pblock(es: &es) +
509 map->m_lblk - es.es_lblk;
510 map->m_flags |= ext4_es_is_written(es: &es) ?
511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512 retval = es.es_len - (map->m_lblk - es.es_lblk);
513 if (retval > map->m_len)
514 retval = map->m_len;
515 map->m_len = retval;
516 } else if (ext4_es_is_delayed(es: &es) || ext4_es_is_hole(es: &es)) {
517 map->m_pblk = 0;
518 retval = es.es_len - (map->m_lblk - es.es_lblk);
519 if (retval > map->m_len)
520 retval = map->m_len;
521 map->m_len = retval;
522 retval = 0;
523 } else {
524 BUG();
525 }
526
527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
528 return retval;
529#ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532#endif
533 goto found;
534 }
535 /*
536 * In the query cache no-wait mode, nothing we can do more if we
537 * cannot find extent in the cache.
538 */
539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
540 return 0;
541
542 /*
543 * Try to see if we can get the block without requesting a new
544 * file system block.
545 */
546 down_read(sem: &EXT4_I(inode)->i_data_sem);
547 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags: 0);
549 } else {
550 retval = ext4_ind_map_blocks(handle, inode, map, flags: 0);
551 }
552 if (retval > 0) {
553 unsigned int status;
554
555 if (unlikely(retval != map->m_len)) {
556 ext4_warning(inode->i_sb,
557 "ES len assertion failed for inode "
558 "%lu: retval %d != map->m_len %d",
559 inode->i_ino, retval, map->m_len);
560 WARN_ON(1);
561 }
562
563 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566 !(status & EXTENT_STATUS_WRITTEN) &&
567 ext4_es_scan_range(inode, matching_fn: &ext4_es_is_delayed, lblk: map->m_lblk,
568 end: map->m_lblk + map->m_len - 1))
569 status |= EXTENT_STATUS_DELAYED;
570 ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len,
571 pblk: map->m_pblk, status);
572 }
573 up_read(sem: (&EXT4_I(inode)->i_data_sem));
574
575found:
576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 ret = check_block_validity(inode, map);
578 if (ret != 0)
579 return ret;
580 }
581
582 /* If it is only a block(s) look up */
583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 return retval;
585
586 /*
587 * Returns if the blocks have already allocated
588 *
589 * Note that if blocks have been preallocated
590 * ext4_ext_get_block() returns the create = 0
591 * with buffer head unmapped.
592 */
593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 /*
595 * If we need to convert extent to unwritten
596 * we continue and do the actual work in
597 * ext4_ext_map_blocks()
598 */
599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600 return retval;
601
602 /*
603 * Here we clear m_flags because after allocating an new extent,
604 * it will be set again.
605 */
606 map->m_flags &= ~EXT4_MAP_FLAGS;
607
608 /*
609 * New blocks allocate and/or writing to unwritten extent
610 * will possibly result in updating i_data, so we take
611 * the write lock of i_data_sem, and call get_block()
612 * with create == 1 flag.
613 */
614 down_write(sem: &EXT4_I(inode)->i_data_sem);
615
616 /*
617 * We need to check for EXT4 here because migrate
618 * could have changed the inode type in between
619 */
620 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) {
621 retval = ext4_ext_map_blocks(handle, inode, map, flags);
622 } else {
623 retval = ext4_ind_map_blocks(handle, inode, map, flags);
624
625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626 /*
627 * We allocated new blocks which will result in
628 * i_data's format changing. Force the migrate
629 * to fail by clearing migrate flags
630 */
631 ext4_clear_inode_state(inode, bit: EXT4_STATE_EXT_MIGRATE);
632 }
633 }
634
635 if (retval > 0) {
636 unsigned int status;
637
638 if (unlikely(retval != map->m_len)) {
639 ext4_warning(inode->i_sb,
640 "ES len assertion failed for inode "
641 "%lu: retval %d != map->m_len %d",
642 inode->i_ino, retval, map->m_len);
643 WARN_ON(1);
644 }
645
646 /*
647 * We have to zeroout blocks before inserting them into extent
648 * status tree. Otherwise someone could look them up there and
649 * use them before they are really zeroed. We also have to
650 * unmap metadata before zeroing as otherwise writeback can
651 * overwrite zeros with stale data from block device.
652 */
653 if (flags & EXT4_GET_BLOCKS_ZERO &&
654 map->m_flags & EXT4_MAP_MAPPED &&
655 map->m_flags & EXT4_MAP_NEW) {
656 ret = ext4_issue_zeroout(inode, lblk: map->m_lblk,
657 pblk: map->m_pblk, len: map->m_len);
658 if (ret) {
659 retval = ret;
660 goto out_sem;
661 }
662 }
663
664 /*
665 * If the extent has been zeroed out, we don't need to update
666 * extent status tree.
667 */
668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669 ext4_es_lookup_extent(inode, lblk: map->m_lblk, NULL, es: &es)) {
670 if (ext4_es_is_written(es: &es))
671 goto out_sem;
672 }
673 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676 !(status & EXTENT_STATUS_WRITTEN) &&
677 ext4_es_scan_range(inode, matching_fn: &ext4_es_is_delayed, lblk: map->m_lblk,
678 end: map->m_lblk + map->m_len - 1))
679 status |= EXTENT_STATUS_DELAYED;
680 ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len,
681 pblk: map->m_pblk, status);
682 }
683
684out_sem:
685 up_write(sem: (&EXT4_I(inode)->i_data_sem));
686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
687 ret = check_block_validity(inode, map);
688 if (ret != 0)
689 return ret;
690
691 /*
692 * Inodes with freshly allocated blocks where contents will be
693 * visible after transaction commit must be on transaction's
694 * ordered data list.
695 */
696 if (map->m_flags & EXT4_MAP_NEW &&
697 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
698 !(flags & EXT4_GET_BLOCKS_ZERO) &&
699 !ext4_is_quota_file(inode) &&
700 ext4_should_order_data(inode)) {
701 loff_t start_byte =
702 (loff_t)map->m_lblk << inode->i_blkbits;
703 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
704
705 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
706 ret = ext4_jbd2_inode_add_wait(handle, inode,
707 start_byte, length);
708 else
709 ret = ext4_jbd2_inode_add_write(handle, inode,
710 start_byte, length);
711 if (ret)
712 return ret;
713 }
714 }
715 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
716 map->m_flags & EXT4_MAP_MAPPED))
717 ext4_fc_track_range(handle, inode, start: map->m_lblk,
718 end: map->m_lblk + map->m_len - 1);
719 if (retval < 0)
720 ext_debug(inode, "failed with err %d\n", retval);
721 return retval;
722}
723
724/*
725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
726 * we have to be careful as someone else may be manipulating b_state as well.
727 */
728static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
729{
730 unsigned long old_state;
731 unsigned long new_state;
732
733 flags &= EXT4_MAP_FLAGS;
734
735 /* Dummy buffer_head? Set non-atomically. */
736 if (!bh->b_page) {
737 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
738 return;
739 }
740 /*
741 * Someone else may be modifying b_state. Be careful! This is ugly but
742 * once we get rid of using bh as a container for mapping information
743 * to pass to / from get_block functions, this can go away.
744 */
745 old_state = READ_ONCE(bh->b_state);
746 do {
747 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
748 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
749}
750
751static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 struct buffer_head *bh, int flags)
753{
754 struct ext4_map_blocks map;
755 int ret = 0;
756
757 if (ext4_has_inline_data(inode))
758 return -ERANGE;
759
760 map.m_lblk = iblock;
761 map.m_len = bh->b_size >> inode->i_blkbits;
762
763 ret = ext4_map_blocks(handle: ext4_journal_current_handle(), inode, map: &map,
764 flags);
765 if (ret > 0) {
766 map_bh(bh, sb: inode->i_sb, block: map.m_pblk);
767 ext4_update_bh_state(bh, flags: map.m_flags);
768 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769 ret = 0;
770 } else if (ret == 0) {
771 /* hole case, need to fill in bh->b_size */
772 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
773 }
774 return ret;
775}
776
777int ext4_get_block(struct inode *inode, sector_t iblock,
778 struct buffer_head *bh, int create)
779{
780 return _ext4_get_block(inode, iblock, bh,
781 flags: create ? EXT4_GET_BLOCKS_CREATE : 0);
782}
783
784/*
785 * Get block function used when preparing for buffered write if we require
786 * creating an unwritten extent if blocks haven't been allocated. The extent
787 * will be converted to written after the IO is complete.
788 */
789int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int create)
791{
792 int ret = 0;
793
794 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
795 inode->i_ino, create);
796 ret = _ext4_get_block(inode, iblock, bh: bh_result,
797 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
798
799 /*
800 * If the buffer is marked unwritten, mark it as new to make sure it is
801 * zeroed out correctly in case of partial writes. Otherwise, there is
802 * a chance of stale data getting exposed.
803 */
804 if (ret == 0 && buffer_unwritten(bh: bh_result))
805 set_buffer_new(bh_result);
806
807 return ret;
808}
809
810/* Maximum number of blocks we map for direct IO at once. */
811#define DIO_MAX_BLOCKS 4096
812
813/*
814 * `handle' can be NULL if create is zero
815 */
816struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
817 ext4_lblk_t block, int map_flags)
818{
819 struct ext4_map_blocks map;
820 struct buffer_head *bh;
821 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
822 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
823 int err;
824
825 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
826 || handle != NULL || create == 0);
827 ASSERT(create == 0 || !nowait);
828
829 map.m_lblk = block;
830 map.m_len = 1;
831 err = ext4_map_blocks(handle, inode, map: &map, flags: map_flags);
832
833 if (err == 0)
834 return create ? ERR_PTR(error: -ENOSPC) : NULL;
835 if (err < 0)
836 return ERR_PTR(error: err);
837
838 if (nowait)
839 return sb_find_get_block(sb: inode->i_sb, block: map.m_pblk);
840
841 bh = sb_getblk(sb: inode->i_sb, block: map.m_pblk);
842 if (unlikely(!bh))
843 return ERR_PTR(error: -ENOMEM);
844 if (map.m_flags & EXT4_MAP_NEW) {
845 ASSERT(create != 0);
846 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
847 || (handle != NULL));
848
849 /*
850 * Now that we do not always journal data, we should
851 * keep in mind whether this should always journal the
852 * new buffer as metadata. For now, regular file
853 * writes use ext4_get_block instead, so it's not a
854 * problem.
855 */
856 lock_buffer(bh);
857 BUFFER_TRACE(bh, "call get_create_access");
858 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
859 EXT4_JTR_NONE);
860 if (unlikely(err)) {
861 unlock_buffer(bh);
862 goto errout;
863 }
864 if (!buffer_uptodate(bh)) {
865 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
866 set_buffer_uptodate(bh);
867 }
868 unlock_buffer(bh);
869 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, bh);
871 if (unlikely(err))
872 goto errout;
873 } else
874 BUFFER_TRACE(bh, "not a new buffer");
875 return bh;
876errout:
877 brelse(bh);
878 return ERR_PTR(error: err);
879}
880
881struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
882 ext4_lblk_t block, int map_flags)
883{
884 struct buffer_head *bh;
885 int ret;
886
887 bh = ext4_getblk(handle, inode, block, map_flags);
888 if (IS_ERR(ptr: bh))
889 return bh;
890 if (!bh || ext4_buffer_uptodate(bh))
891 return bh;
892
893 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, wait: true);
894 if (ret) {
895 put_bh(bh);
896 return ERR_PTR(error: ret);
897 }
898 return bh;
899}
900
901/* Read a contiguous batch of blocks. */
902int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
903 bool wait, struct buffer_head **bhs)
904{
905 int i, err;
906
907 for (i = 0; i < bh_count; i++) {
908 bhs[i] = ext4_getblk(NULL, inode, block: block + i, map_flags: 0 /* map_flags */);
909 if (IS_ERR(ptr: bhs[i])) {
910 err = PTR_ERR(ptr: bhs[i]);
911 bh_count = i;
912 goto out_brelse;
913 }
914 }
915
916 for (i = 0; i < bh_count; i++)
917 /* Note that NULL bhs[i] is valid because of holes. */
918 if (bhs[i] && !ext4_buffer_uptodate(bh: bhs[i]))
919 ext4_read_bh_lock(bh: bhs[i], REQ_META | REQ_PRIO, wait: false);
920
921 if (!wait)
922 return 0;
923
924 for (i = 0; i < bh_count; i++)
925 if (bhs[i])
926 wait_on_buffer(bh: bhs[i]);
927
928 for (i = 0; i < bh_count; i++) {
929 if (bhs[i] && !buffer_uptodate(bh: bhs[i])) {
930 err = -EIO;
931 goto out_brelse;
932 }
933 }
934 return 0;
935
936out_brelse:
937 for (i = 0; i < bh_count; i++) {
938 brelse(bh: bhs[i]);
939 bhs[i] = NULL;
940 }
941 return err;
942}
943
944int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
945 struct buffer_head *head,
946 unsigned from,
947 unsigned to,
948 int *partial,
949 int (*fn)(handle_t *handle, struct inode *inode,
950 struct buffer_head *bh))
951{
952 struct buffer_head *bh;
953 unsigned block_start, block_end;
954 unsigned blocksize = head->b_size;
955 int err, ret = 0;
956 struct buffer_head *next;
957
958 for (bh = head, block_start = 0;
959 ret == 0 && (bh != head || !block_start);
960 block_start = block_end, bh = next) {
961 next = bh->b_this_page;
962 block_end = block_start + blocksize;
963 if (block_end <= from || block_start >= to) {
964 if (partial && !buffer_uptodate(bh))
965 *partial = 1;
966 continue;
967 }
968 err = (*fn)(handle, inode, bh);
969 if (!ret)
970 ret = err;
971 }
972 return ret;
973}
974
975/*
976 * Helper for handling dirtying of journalled data. We also mark the folio as
977 * dirty so that writeback code knows about this page (and inode) contains
978 * dirty data. ext4_writepages() then commits appropriate transaction to
979 * make data stable.
980 */
981static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
982{
983 folio_mark_dirty(folio: bh->b_folio);
984 return ext4_handle_dirty_metadata(handle, NULL, bh);
985}
986
987int do_journal_get_write_access(handle_t *handle, struct inode *inode,
988 struct buffer_head *bh)
989{
990 int dirty = buffer_dirty(bh);
991 int ret;
992
993 if (!buffer_mapped(bh) || buffer_freed(bh))
994 return 0;
995 /*
996 * __block_write_begin() could have dirtied some buffers. Clean
997 * the dirty bit as jbd2_journal_get_write_access() could complain
998 * otherwise about fs integrity issues. Setting of the dirty bit
999 * by __block_write_begin() isn't a real problem here as we clear
1000 * the bit before releasing a page lock and thus writeback cannot
1001 * ever write the buffer.
1002 */
1003 if (dirty)
1004 clear_buffer_dirty(bh);
1005 BUFFER_TRACE(bh, "get write access");
1006 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1007 EXT4_JTR_NONE);
1008 if (!ret && dirty)
1009 ret = ext4_dirty_journalled_data(handle, bh);
1010 return ret;
1011}
1012
1013#ifdef CONFIG_FS_ENCRYPTION
1014static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1015 get_block_t *get_block)
1016{
1017 unsigned from = pos & (PAGE_SIZE - 1);
1018 unsigned to = from + len;
1019 struct inode *inode = folio->mapping->host;
1020 unsigned block_start, block_end;
1021 sector_t block;
1022 int err = 0;
1023 unsigned blocksize = inode->i_sb->s_blocksize;
1024 unsigned bbits;
1025 struct buffer_head *bh, *head, *wait[2];
1026 int nr_wait = 0;
1027 int i;
1028
1029 BUG_ON(!folio_test_locked(folio));
1030 BUG_ON(from > PAGE_SIZE);
1031 BUG_ON(to > PAGE_SIZE);
1032 BUG_ON(from > to);
1033
1034 head = folio_buffers(folio);
1035 if (!head)
1036 head = create_empty_buffers(folio, blocksize, b_state: 0);
1037 bbits = ilog2(blocksize);
1038 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1039
1040 for (bh = head, block_start = 0; bh != head || !block_start;
1041 block++, block_start = block_end, bh = bh->b_this_page) {
1042 block_end = block_start + blocksize;
1043 if (block_end <= from || block_start >= to) {
1044 if (folio_test_uptodate(folio)) {
1045 set_buffer_uptodate(bh);
1046 }
1047 continue;
1048 }
1049 if (buffer_new(bh))
1050 clear_buffer_new(bh);
1051 if (!buffer_mapped(bh)) {
1052 WARN_ON(bh->b_size != blocksize);
1053 err = get_block(inode, block, bh, 1);
1054 if (err)
1055 break;
1056 if (buffer_new(bh)) {
1057 if (folio_test_uptodate(folio)) {
1058 clear_buffer_new(bh);
1059 set_buffer_uptodate(bh);
1060 mark_buffer_dirty(bh);
1061 continue;
1062 }
1063 if (block_end > to || block_start < from)
1064 folio_zero_segments(folio, start1: to,
1065 xend1: block_end,
1066 start2: block_start, xend2: from);
1067 continue;
1068 }
1069 }
1070 if (folio_test_uptodate(folio)) {
1071 set_buffer_uptodate(bh);
1072 continue;
1073 }
1074 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1075 !buffer_unwritten(bh) &&
1076 (block_start < from || block_end > to)) {
1077 ext4_read_bh_lock(bh, op_flags: 0, wait: false);
1078 wait[nr_wait++] = bh;
1079 }
1080 }
1081 /*
1082 * If we issued read requests, let them complete.
1083 */
1084 for (i = 0; i < nr_wait; i++) {
1085 wait_on_buffer(bh: wait[i]);
1086 if (!buffer_uptodate(bh: wait[i]))
1087 err = -EIO;
1088 }
1089 if (unlikely(err)) {
1090 folio_zero_new_buffers(folio, from, to);
1091 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1092 for (i = 0; i < nr_wait; i++) {
1093 int err2;
1094
1095 err2 = fscrypt_decrypt_pagecache_blocks(folio,
1096 len: blocksize, offs: bh_offset(bh: wait[i]));
1097 if (err2) {
1098 clear_buffer_uptodate(bh: wait[i]);
1099 err = err2;
1100 }
1101 }
1102 }
1103
1104 return err;
1105}
1106#endif
1107
1108/*
1109 * To preserve ordering, it is essential that the hole instantiation and
1110 * the data write be encapsulated in a single transaction. We cannot
1111 * close off a transaction and start a new one between the ext4_get_block()
1112 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of
1113 * ext4_write_begin() is the right place.
1114 */
1115static int ext4_write_begin(struct file *file, struct address_space *mapping,
1116 loff_t pos, unsigned len,
1117 struct page **pagep, void **fsdata)
1118{
1119 struct inode *inode = mapping->host;
1120 int ret, needed_blocks;
1121 handle_t *handle;
1122 int retries = 0;
1123 struct folio *folio;
1124 pgoff_t index;
1125 unsigned from, to;
1126
1127 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1128 return -EIO;
1129
1130 trace_ext4_write_begin(inode, pos, len);
1131 /*
1132 * Reserve one block more for addition to orphan list in case
1133 * we allocate blocks but write fails for some reason
1134 */
1135 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1136 index = pos >> PAGE_SHIFT;
1137 from = pos & (PAGE_SIZE - 1);
1138 to = from + len;
1139
1140 if (ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA)) {
1141 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1142 pagep);
1143 if (ret < 0)
1144 return ret;
1145 if (ret == 1)
1146 return 0;
1147 }
1148
1149 /*
1150 * __filemap_get_folio() can take a long time if the
1151 * system is thrashing due to memory pressure, or if the folio
1152 * is being written back. So grab it first before we start
1153 * the transaction handle. This also allows us to allocate
1154 * the folio (if needed) without using GFP_NOFS.
1155 */
1156retry_grab:
1157 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1158 gfp: mapping_gfp_mask(mapping));
1159 if (IS_ERR(ptr: folio))
1160 return PTR_ERR(ptr: folio);
1161 /*
1162 * The same as page allocation, we prealloc buffer heads before
1163 * starting the handle.
1164 */
1165 if (!folio_buffers(folio))
1166 create_empty_buffers(folio, blocksize: inode->i_sb->s_blocksize, b_state: 0);
1167
1168 folio_unlock(folio);
1169
1170retry_journal:
1171 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1172 if (IS_ERR(ptr: handle)) {
1173 folio_put(folio);
1174 return PTR_ERR(ptr: handle);
1175 }
1176
1177 folio_lock(folio);
1178 if (folio->mapping != mapping) {
1179 /* The folio got truncated from under us */
1180 folio_unlock(folio);
1181 folio_put(folio);
1182 ext4_journal_stop(handle);
1183 goto retry_grab;
1184 }
1185 /* In case writeback began while the folio was unlocked */
1186 folio_wait_stable(folio);
1187
1188#ifdef CONFIG_FS_ENCRYPTION
1189 if (ext4_should_dioread_nolock(inode))
1190 ret = ext4_block_write_begin(folio, pos, len,
1191 get_block: ext4_get_block_unwritten);
1192 else
1193 ret = ext4_block_write_begin(folio, pos, len, get_block: ext4_get_block);
1194#else
1195 if (ext4_should_dioread_nolock(inode))
1196 ret = __block_write_begin(&folio->page, pos, len,
1197 ext4_get_block_unwritten);
1198 else
1199 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1200#endif
1201 if (!ret && ext4_should_journal_data(inode)) {
1202 ret = ext4_walk_page_buffers(handle, inode,
1203 folio_buffers(folio), from, to,
1204 NULL, fn: do_journal_get_write_access);
1205 }
1206
1207 if (ret) {
1208 bool extended = (pos + len > inode->i_size) &&
1209 !ext4_verity_in_progress(inode);
1210
1211 folio_unlock(folio);
1212 /*
1213 * __block_write_begin may have instantiated a few blocks
1214 * outside i_size. Trim these off again. Don't need
1215 * i_size_read because we hold i_rwsem.
1216 *
1217 * Add inode to orphan list in case we crash before
1218 * truncate finishes
1219 */
1220 if (extended && ext4_can_truncate(inode))
1221 ext4_orphan_add(handle, inode);
1222
1223 ext4_journal_stop(handle);
1224 if (extended) {
1225 ext4_truncate_failed_write(inode);
1226 /*
1227 * If truncate failed early the inode might
1228 * still be on the orphan list; we need to
1229 * make sure the inode is removed from the
1230 * orphan list in that case.
1231 */
1232 if (inode->i_nlink)
1233 ext4_orphan_del(NULL, inode);
1234 }
1235
1236 if (ret == -ENOSPC &&
1237 ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries))
1238 goto retry_journal;
1239 folio_put(folio);
1240 return ret;
1241 }
1242 *pagep = &folio->page;
1243 return ret;
1244}
1245
1246/* For write_end() in data=journal mode */
1247static int write_end_fn(handle_t *handle, struct inode *inode,
1248 struct buffer_head *bh)
1249{
1250 int ret;
1251 if (!buffer_mapped(bh) || buffer_freed(bh))
1252 return 0;
1253 set_buffer_uptodate(bh);
1254 ret = ext4_dirty_journalled_data(handle, bh);
1255 clear_buffer_meta(bh);
1256 clear_buffer_prio(bh);
1257 return ret;
1258}
1259
1260/*
1261 * We need to pick up the new inode size which generic_commit_write gave us
1262 * `file' can be NULL - eg, when called from page_symlink().
1263 *
1264 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1265 * buffers are managed internally.
1266 */
1267static int ext4_write_end(struct file *file,
1268 struct address_space *mapping,
1269 loff_t pos, unsigned len, unsigned copied,
1270 struct page *page, void *fsdata)
1271{
1272 struct folio *folio = page_folio(page);
1273 handle_t *handle = ext4_journal_current_handle();
1274 struct inode *inode = mapping->host;
1275 loff_t old_size = inode->i_size;
1276 int ret = 0, ret2;
1277 int i_size_changed = 0;
1278 bool verity = ext4_verity_in_progress(inode);
1279
1280 trace_ext4_write_end(inode, pos, len, copied);
1281
1282 if (ext4_has_inline_data(inode) &&
1283 ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA))
1284 return ext4_write_inline_data_end(inode, pos, len, copied,
1285 folio);
1286
1287 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1288 /*
1289 * it's important to update i_size while still holding folio lock:
1290 * page writeout could otherwise come in and zero beyond i_size.
1291 *
1292 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1293 * blocks are being written past EOF, so skip the i_size update.
1294 */
1295 if (!verity)
1296 i_size_changed = ext4_update_inode_size(inode, newsize: pos + copied);
1297 folio_unlock(folio);
1298 folio_put(folio);
1299
1300 if (old_size < pos && !verity)
1301 pagecache_isize_extended(inode, from: old_size, to: pos);
1302 /*
1303 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1304 * makes the holding time of folio lock longer. Second, it forces lock
1305 * ordering of folio lock and transaction start for journaling
1306 * filesystems.
1307 */
1308 if (i_size_changed)
1309 ret = ext4_mark_inode_dirty(handle, inode);
1310
1311 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1312 /* if we have allocated more blocks and copied
1313 * less. We will have blocks allocated outside
1314 * inode->i_size. So truncate them
1315 */
1316 ext4_orphan_add(handle, inode);
1317
1318 ret2 = ext4_journal_stop(handle);
1319 if (!ret)
1320 ret = ret2;
1321
1322 if (pos + len > inode->i_size && !verity) {
1323 ext4_truncate_failed_write(inode);
1324 /*
1325 * If truncate failed early the inode might still be
1326 * on the orphan list; we need to make sure the inode
1327 * is removed from the orphan list in that case.
1328 */
1329 if (inode->i_nlink)
1330 ext4_orphan_del(NULL, inode);
1331 }
1332
1333 return ret ? ret : copied;
1334}
1335
1336/*
1337 * This is a private version of folio_zero_new_buffers() which doesn't
1338 * set the buffer to be dirty, since in data=journalled mode we need
1339 * to call ext4_dirty_journalled_data() instead.
1340 */
1341static void ext4_journalled_zero_new_buffers(handle_t *handle,
1342 struct inode *inode,
1343 struct folio *folio,
1344 unsigned from, unsigned to)
1345{
1346 unsigned int block_start = 0, block_end;
1347 struct buffer_head *head, *bh;
1348
1349 bh = head = folio_buffers(folio);
1350 do {
1351 block_end = block_start + bh->b_size;
1352 if (buffer_new(bh)) {
1353 if (block_end > from && block_start < to) {
1354 if (!folio_test_uptodate(folio)) {
1355 unsigned start, size;
1356
1357 start = max(from, block_start);
1358 size = min(to, block_end) - start;
1359
1360 folio_zero_range(folio, start, length: size);
1361 write_end_fn(handle, inode, bh);
1362 }
1363 clear_buffer_new(bh);
1364 }
1365 }
1366 block_start = block_end;
1367 bh = bh->b_this_page;
1368 } while (bh != head);
1369}
1370
1371static int ext4_journalled_write_end(struct file *file,
1372 struct address_space *mapping,
1373 loff_t pos, unsigned len, unsigned copied,
1374 struct page *page, void *fsdata)
1375{
1376 struct folio *folio = page_folio(page);
1377 handle_t *handle = ext4_journal_current_handle();
1378 struct inode *inode = mapping->host;
1379 loff_t old_size = inode->i_size;
1380 int ret = 0, ret2;
1381 int partial = 0;
1382 unsigned from, to;
1383 int size_changed = 0;
1384 bool verity = ext4_verity_in_progress(inode);
1385
1386 trace_ext4_journalled_write_end(inode, pos, len, copied);
1387 from = pos & (PAGE_SIZE - 1);
1388 to = from + len;
1389
1390 BUG_ON(!ext4_handle_valid(handle));
1391
1392 if (ext4_has_inline_data(inode))
1393 return ext4_write_inline_data_end(inode, pos, len, copied,
1394 folio);
1395
1396 if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1397 copied = 0;
1398 ext4_journalled_zero_new_buffers(handle, inode, folio,
1399 from, to);
1400 } else {
1401 if (unlikely(copied < len))
1402 ext4_journalled_zero_new_buffers(handle, inode, folio,
1403 from: from + copied, to);
1404 ret = ext4_walk_page_buffers(handle, inode,
1405 folio_buffers(folio),
1406 from, to: from + copied, partial: &partial,
1407 fn: write_end_fn);
1408 if (!partial)
1409 folio_mark_uptodate(folio);
1410 }
1411 if (!verity)
1412 size_changed = ext4_update_inode_size(inode, newsize: pos + copied);
1413 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1414 folio_unlock(folio);
1415 folio_put(folio);
1416
1417 if (old_size < pos && !verity)
1418 pagecache_isize_extended(inode, from: old_size, to: pos);
1419
1420 if (size_changed) {
1421 ret2 = ext4_mark_inode_dirty(handle, inode);
1422 if (!ret)
1423 ret = ret2;
1424 }
1425
1426 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1427 /* if we have allocated more blocks and copied
1428 * less. We will have blocks allocated outside
1429 * inode->i_size. So truncate them
1430 */
1431 ext4_orphan_add(handle, inode);
1432
1433 ret2 = ext4_journal_stop(handle);
1434 if (!ret)
1435 ret = ret2;
1436 if (pos + len > inode->i_size && !verity) {
1437 ext4_truncate_failed_write(inode);
1438 /*
1439 * If truncate failed early the inode might still be
1440 * on the orphan list; we need to make sure the inode
1441 * is removed from the orphan list in that case.
1442 */
1443 if (inode->i_nlink)
1444 ext4_orphan_del(NULL, inode);
1445 }
1446
1447 return ret ? ret : copied;
1448}
1449
1450/*
1451 * Reserve space for a single cluster
1452 */
1453static int ext4_da_reserve_space(struct inode *inode)
1454{
1455 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
1456 struct ext4_inode_info *ei = EXT4_I(inode);
1457 int ret;
1458
1459 /*
1460 * We will charge metadata quota at writeout time; this saves
1461 * us from metadata over-estimation, though we may go over by
1462 * a small amount in the end. Here we just reserve for data.
1463 */
1464 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1465 if (ret)
1466 return ret;
1467
1468 spin_lock(lock: &ei->i_block_reservation_lock);
1469 if (ext4_claim_free_clusters(sbi, nclusters: 1, flags: 0)) {
1470 spin_unlock(lock: &ei->i_block_reservation_lock);
1471 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1472 return -ENOSPC;
1473 }
1474 ei->i_reserved_data_blocks++;
1475 trace_ext4_da_reserve_space(inode);
1476 spin_unlock(lock: &ei->i_block_reservation_lock);
1477
1478 return 0; /* success */
1479}
1480
1481void ext4_da_release_space(struct inode *inode, int to_free)
1482{
1483 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
1484 struct ext4_inode_info *ei = EXT4_I(inode);
1485
1486 if (!to_free)
1487 return; /* Nothing to release, exit */
1488
1489 spin_lock(lock: &EXT4_I(inode)->i_block_reservation_lock);
1490
1491 trace_ext4_da_release_space(inode, freed_blocks: to_free);
1492 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1493 /*
1494 * if there aren't enough reserved blocks, then the
1495 * counter is messed up somewhere. Since this
1496 * function is called from invalidate page, it's
1497 * harmless to return without any action.
1498 */
1499 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1500 "ino %lu, to_free %d with only %d reserved "
1501 "data blocks", inode->i_ino, to_free,
1502 ei->i_reserved_data_blocks);
1503 WARN_ON(1);
1504 to_free = ei->i_reserved_data_blocks;
1505 }
1506 ei->i_reserved_data_blocks -= to_free;
1507
1508 /* update fs dirty data blocks counter */
1509 percpu_counter_sub(fbc: &sbi->s_dirtyclusters_counter, amount: to_free);
1510
1511 spin_unlock(lock: &EXT4_I(inode)->i_block_reservation_lock);
1512
1513 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1514}
1515
1516/*
1517 * Delayed allocation stuff
1518 */
1519
1520struct mpage_da_data {
1521 /* These are input fields for ext4_do_writepages() */
1522 struct inode *inode;
1523 struct writeback_control *wbc;
1524 unsigned int can_map:1; /* Can writepages call map blocks? */
1525
1526 /* These are internal state of ext4_do_writepages() */
1527 pgoff_t first_page; /* The first page to write */
1528 pgoff_t next_page; /* Current page to examine */
1529 pgoff_t last_page; /* Last page to examine */
1530 /*
1531 * Extent to map - this can be after first_page because that can be
1532 * fully mapped. We somewhat abuse m_flags to store whether the extent
1533 * is delalloc or unwritten.
1534 */
1535 struct ext4_map_blocks map;
1536 struct ext4_io_submit io_submit; /* IO submission data */
1537 unsigned int do_map:1;
1538 unsigned int scanned_until_end:1;
1539 unsigned int journalled_more_data:1;
1540};
1541
1542static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543 bool invalidate)
1544{
1545 unsigned nr, i;
1546 pgoff_t index, end;
1547 struct folio_batch fbatch;
1548 struct inode *inode = mpd->inode;
1549 struct address_space *mapping = inode->i_mapping;
1550
1551 /* This is necessary when next_page == 0. */
1552 if (mpd->first_page >= mpd->next_page)
1553 return;
1554
1555 mpd->scanned_until_end = 0;
1556 index = mpd->first_page;
1557 end = mpd->next_page - 1;
1558 if (invalidate) {
1559 ext4_lblk_t start, last;
1560 start = index << (PAGE_SHIFT - inode->i_blkbits);
1561 last = end << (PAGE_SHIFT - inode->i_blkbits);
1562
1563 /*
1564 * avoid racing with extent status tree scans made by
1565 * ext4_insert_delayed_block()
1566 */
1567 down_write(sem: &EXT4_I(inode)->i_data_sem);
1568 ext4_es_remove_extent(inode, lblk: start, len: last - start + 1);
1569 up_write(sem: &EXT4_I(inode)->i_data_sem);
1570 }
1571
1572 folio_batch_init(fbatch: &fbatch);
1573 while (index <= end) {
1574 nr = filemap_get_folios(mapping, start: &index, end, fbatch: &fbatch);
1575 if (nr == 0)
1576 break;
1577 for (i = 0; i < nr; i++) {
1578 struct folio *folio = fbatch.folios[i];
1579
1580 if (folio->index < mpd->first_page)
1581 continue;
1582 if (folio_next_index(folio) - 1 > end)
1583 continue;
1584 BUG_ON(!folio_test_locked(folio));
1585 BUG_ON(folio_test_writeback(folio));
1586 if (invalidate) {
1587 if (folio_mapped(folio))
1588 folio_clear_dirty_for_io(folio);
1589 block_invalidate_folio(folio, offset: 0,
1590 length: folio_size(folio));
1591 folio_clear_uptodate(folio);
1592 }
1593 folio_unlock(folio);
1594 }
1595 folio_batch_release(fbatch: &fbatch);
1596 }
1597}
1598
1599static void ext4_print_free_blocks(struct inode *inode)
1600{
1601 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
1602 struct super_block *sb = inode->i_sb;
1603 struct ext4_inode_info *ei = EXT4_I(inode);
1604
1605 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1606 EXT4_C2B(EXT4_SB(inode->i_sb),
1607 ext4_count_free_clusters(sb)));
1608 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1609 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1610 (long long) EXT4_C2B(EXT4_SB(sb),
1611 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1612 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1613 (long long) EXT4_C2B(EXT4_SB(sb),
1614 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1615 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1616 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1617 ei->i_reserved_data_blocks);
1618 return;
1619}
1620
1621/*
1622 * ext4_insert_delayed_block - adds a delayed block to the extents status
1623 * tree, incrementing the reserved cluster/block
1624 * count or making a pending reservation
1625 * where needed
1626 *
1627 * @inode - file containing the newly added block
1628 * @lblk - logical block to be added
1629 *
1630 * Returns 0 on success, negative error code on failure.
1631 */
1632static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1633{
1634 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
1635 int ret;
1636 bool allocated = false;
1637
1638 /*
1639 * If the cluster containing lblk is shared with a delayed,
1640 * written, or unwritten extent in a bigalloc file system, it's
1641 * already been accounted for and does not need to be reserved.
1642 * A pending reservation must be made for the cluster if it's
1643 * shared with a written or unwritten extent and doesn't already
1644 * have one. Written and unwritten extents can be purged from the
1645 * extents status tree if the system is under memory pressure, so
1646 * it's necessary to examine the extent tree if a search of the
1647 * extents status tree doesn't get a match.
1648 */
1649 if (sbi->s_cluster_ratio == 1) {
1650 ret = ext4_da_reserve_space(inode);
1651 if (ret != 0) /* ENOSPC */
1652 return ret;
1653 } else { /* bigalloc */
1654 if (!ext4_es_scan_clu(inode, matching_fn: &ext4_es_is_delonly, lblk)) {
1655 if (!ext4_es_scan_clu(inode,
1656 matching_fn: &ext4_es_is_mapped, lblk)) {
1657 ret = ext4_clu_mapped(inode,
1658 EXT4_B2C(sbi, lblk));
1659 if (ret < 0)
1660 return ret;
1661 if (ret == 0) {
1662 ret = ext4_da_reserve_space(inode);
1663 if (ret != 0) /* ENOSPC */
1664 return ret;
1665 } else {
1666 allocated = true;
1667 }
1668 } else {
1669 allocated = true;
1670 }
1671 }
1672 }
1673
1674 ext4_es_insert_delayed_block(inode, lblk, allocated);
1675 return 0;
1676}
1677
1678/*
1679 * This function is grabs code from the very beginning of
1680 * ext4_map_blocks, but assumes that the caller is from delayed write
1681 * time. This function looks up the requested blocks and sets the
1682 * buffer delay bit under the protection of i_data_sem.
1683 */
1684static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1685 struct ext4_map_blocks *map,
1686 struct buffer_head *bh)
1687{
1688 struct extent_status es;
1689 int retval;
1690 sector_t invalid_block = ~((sector_t) 0xffff);
1691#ifdef ES_AGGRESSIVE_TEST
1692 struct ext4_map_blocks orig_map;
1693
1694 memcpy(&orig_map, map, sizeof(*map));
1695#endif
1696
1697 if (invalid_block < ext4_blocks_count(es: EXT4_SB(sb: inode->i_sb)->s_es))
1698 invalid_block = ~0;
1699
1700 map->m_flags = 0;
1701 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1702 (unsigned long) map->m_lblk);
1703
1704 /* Lookup extent status tree firstly */
1705 if (ext4_es_lookup_extent(inode, lblk: iblock, NULL, es: &es)) {
1706 if (ext4_es_is_hole(es: &es)) {
1707 retval = 0;
1708 down_read(sem: &EXT4_I(inode)->i_data_sem);
1709 goto add_delayed;
1710 }
1711
1712 /*
1713 * Delayed extent could be allocated by fallocate.
1714 * So we need to check it.
1715 */
1716 if (ext4_es_is_delayed(es: &es) && !ext4_es_is_unwritten(es: &es)) {
1717 map_bh(bh, sb: inode->i_sb, block: invalid_block);
1718 set_buffer_new(bh);
1719 set_buffer_delay(bh);
1720 return 0;
1721 }
1722
1723 map->m_pblk = ext4_es_pblock(es: &es) + iblock - es.es_lblk;
1724 retval = es.es_len - (iblock - es.es_lblk);
1725 if (retval > map->m_len)
1726 retval = map->m_len;
1727 map->m_len = retval;
1728 if (ext4_es_is_written(es: &es))
1729 map->m_flags |= EXT4_MAP_MAPPED;
1730 else if (ext4_es_is_unwritten(es: &es))
1731 map->m_flags |= EXT4_MAP_UNWRITTEN;
1732 else
1733 BUG();
1734
1735#ifdef ES_AGGRESSIVE_TEST
1736 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1737#endif
1738 return retval;
1739 }
1740
1741 /*
1742 * Try to see if we can get the block without requesting a new
1743 * file system block.
1744 */
1745 down_read(sem: &EXT4_I(inode)->i_data_sem);
1746 if (ext4_has_inline_data(inode))
1747 retval = 0;
1748 else if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
1749 retval = ext4_ext_map_blocks(NULL, inode, map, flags: 0);
1750 else
1751 retval = ext4_ind_map_blocks(NULL, inode, map, flags: 0);
1752
1753add_delayed:
1754 if (retval == 0) {
1755 int ret;
1756
1757 /*
1758 * XXX: __block_prepare_write() unmaps passed block,
1759 * is it OK?
1760 */
1761
1762 ret = ext4_insert_delayed_block(inode, lblk: map->m_lblk);
1763 if (ret != 0) {
1764 retval = ret;
1765 goto out_unlock;
1766 }
1767
1768 map_bh(bh, sb: inode->i_sb, block: invalid_block);
1769 set_buffer_new(bh);
1770 set_buffer_delay(bh);
1771 } else if (retval > 0) {
1772 unsigned int status;
1773
1774 if (unlikely(retval != map->m_len)) {
1775 ext4_warning(inode->i_sb,
1776 "ES len assertion failed for inode "
1777 "%lu: retval %d != map->m_len %d",
1778 inode->i_ino, retval, map->m_len);
1779 WARN_ON(1);
1780 }
1781
1782 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1783 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1784 ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len,
1785 pblk: map->m_pblk, status);
1786 }
1787
1788out_unlock:
1789 up_read(sem: (&EXT4_I(inode)->i_data_sem));
1790
1791 return retval;
1792}
1793
1794/*
1795 * This is a special get_block_t callback which is used by
1796 * ext4_da_write_begin(). It will either return mapped block or
1797 * reserve space for a single block.
1798 *
1799 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1800 * We also have b_blocknr = -1 and b_bdev initialized properly
1801 *
1802 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1803 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1804 * initialized properly.
1805 */
1806int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1807 struct buffer_head *bh, int create)
1808{
1809 struct ext4_map_blocks map;
1810 int ret = 0;
1811
1812 BUG_ON(create == 0);
1813 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1814
1815 map.m_lblk = iblock;
1816 map.m_len = 1;
1817
1818 /*
1819 * first, we need to know whether the block is allocated already
1820 * preallocated blocks are unmapped but should treated
1821 * the same as allocated blocks.
1822 */
1823 ret = ext4_da_map_blocks(inode, iblock, map: &map, bh);
1824 if (ret <= 0)
1825 return ret;
1826
1827 map_bh(bh, sb: inode->i_sb, block: map.m_pblk);
1828 ext4_update_bh_state(bh, flags: map.m_flags);
1829
1830 if (buffer_unwritten(bh)) {
1831 /* A delayed write to unwritten bh should be marked
1832 * new and mapped. Mapped ensures that we don't do
1833 * get_block multiple times when we write to the same
1834 * offset and new ensures that we do proper zero out
1835 * for partial write.
1836 */
1837 set_buffer_new(bh);
1838 set_buffer_mapped(bh);
1839 }
1840 return 0;
1841}
1842
1843static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1844{
1845 mpd->first_page += folio_nr_pages(folio);
1846 folio_unlock(folio);
1847}
1848
1849static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1850{
1851 size_t len;
1852 loff_t size;
1853 int err;
1854
1855 BUG_ON(folio->index != mpd->first_page);
1856 folio_clear_dirty_for_io(folio);
1857 /*
1858 * We have to be very careful here! Nothing protects writeback path
1859 * against i_size changes and the page can be writeably mapped into
1860 * page tables. So an application can be growing i_size and writing
1861 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1862 * write-protects our page in page tables and the page cannot get
1863 * written to again until we release folio lock. So only after
1864 * folio_clear_dirty_for_io() we are safe to sample i_size for
1865 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1866 * on the barrier provided by folio_test_clear_dirty() in
1867 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1868 * after page tables are updated.
1869 */
1870 size = i_size_read(inode: mpd->inode);
1871 len = folio_size(folio);
1872 if (folio_pos(folio) + len > size &&
1873 !ext4_verity_in_progress(inode: mpd->inode))
1874 len = size & ~PAGE_MASK;
1875 err = ext4_bio_write_folio(io: &mpd->io_submit, page: folio, len);
1876 if (!err)
1877 mpd->wbc->nr_to_write--;
1878
1879 return err;
1880}
1881
1882#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1883
1884/*
1885 * mballoc gives us at most this number of blocks...
1886 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1887 * The rest of mballoc seems to handle chunks up to full group size.
1888 */
1889#define MAX_WRITEPAGES_EXTENT_LEN 2048
1890
1891/*
1892 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1893 *
1894 * @mpd - extent of blocks
1895 * @lblk - logical number of the block in the file
1896 * @bh - buffer head we want to add to the extent
1897 *
1898 * The function is used to collect contig. blocks in the same state. If the
1899 * buffer doesn't require mapping for writeback and we haven't started the
1900 * extent of buffers to map yet, the function returns 'true' immediately - the
1901 * caller can write the buffer right away. Otherwise the function returns true
1902 * if the block has been added to the extent, false if the block couldn't be
1903 * added.
1904 */
1905static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1906 struct buffer_head *bh)
1907{
1908 struct ext4_map_blocks *map = &mpd->map;
1909
1910 /* Buffer that doesn't need mapping for writeback? */
1911 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1912 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1913 /* So far no extent to map => we write the buffer right away */
1914 if (map->m_len == 0)
1915 return true;
1916 return false;
1917 }
1918
1919 /* First block in the extent? */
1920 if (map->m_len == 0) {
1921 /* We cannot map unless handle is started... */
1922 if (!mpd->do_map)
1923 return false;
1924 map->m_lblk = lblk;
1925 map->m_len = 1;
1926 map->m_flags = bh->b_state & BH_FLAGS;
1927 return true;
1928 }
1929
1930 /* Don't go larger than mballoc is willing to allocate */
1931 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1932 return false;
1933
1934 /* Can we merge the block to our big extent? */
1935 if (lblk == map->m_lblk + map->m_len &&
1936 (bh->b_state & BH_FLAGS) == map->m_flags) {
1937 map->m_len++;
1938 return true;
1939 }
1940 return false;
1941}
1942
1943/*
1944 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1945 *
1946 * @mpd - extent of blocks for mapping
1947 * @head - the first buffer in the page
1948 * @bh - buffer we should start processing from
1949 * @lblk - logical number of the block in the file corresponding to @bh
1950 *
1951 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1952 * the page for IO if all buffers in this page were mapped and there's no
1953 * accumulated extent of buffers to map or add buffers in the page to the
1954 * extent of buffers to map. The function returns 1 if the caller can continue
1955 * by processing the next page, 0 if it should stop adding buffers to the
1956 * extent to map because we cannot extend it anymore. It can also return value
1957 * < 0 in case of error during IO submission.
1958 */
1959static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1960 struct buffer_head *head,
1961 struct buffer_head *bh,
1962 ext4_lblk_t lblk)
1963{
1964 struct inode *inode = mpd->inode;
1965 int err;
1966 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(node: inode) - 1)
1967 >> inode->i_blkbits;
1968
1969 if (ext4_verity_in_progress(inode))
1970 blocks = EXT_MAX_BLOCKS;
1971
1972 do {
1973 BUG_ON(buffer_locked(bh));
1974
1975 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1976 /* Found extent to map? */
1977 if (mpd->map.m_len)
1978 return 0;
1979 /* Buffer needs mapping and handle is not started? */
1980 if (!mpd->do_map)
1981 return 0;
1982 /* Everything mapped so far and we hit EOF */
1983 break;
1984 }
1985 } while (lblk++, (bh = bh->b_this_page) != head);
1986 /* So far everything mapped? Submit the page for IO. */
1987 if (mpd->map.m_len == 0) {
1988 err = mpage_submit_folio(mpd, folio: head->b_folio);
1989 if (err < 0)
1990 return err;
1991 mpage_folio_done(mpd, folio: head->b_folio);
1992 }
1993 if (lblk >= blocks) {
1994 mpd->scanned_until_end = 1;
1995 return 0;
1996 }
1997 return 1;
1998}
1999
2000/*
2001 * mpage_process_folio - update folio buffers corresponding to changed extent
2002 * and may submit fully mapped page for IO
2003 * @mpd: description of extent to map, on return next extent to map
2004 * @folio: Contains these buffers.
2005 * @m_lblk: logical block mapping.
2006 * @m_pblk: corresponding physical mapping.
2007 * @map_bh: determines on return whether this page requires any further
2008 * mapping or not.
2009 *
2010 * Scan given folio buffers corresponding to changed extent and update buffer
2011 * state according to new extent state.
2012 * We map delalloc buffers to their physical location, clear unwritten bits.
2013 * If the given folio is not fully mapped, we update @mpd to the next extent in
2014 * the given folio that needs mapping & return @map_bh as true.
2015 */
2016static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2017 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2018 bool *map_bh)
2019{
2020 struct buffer_head *head, *bh;
2021 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2022 ext4_lblk_t lblk = *m_lblk;
2023 ext4_fsblk_t pblock = *m_pblk;
2024 int err = 0;
2025 int blkbits = mpd->inode->i_blkbits;
2026 ssize_t io_end_size = 0;
2027 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2028
2029 bh = head = folio_buffers(folio);
2030 do {
2031 if (lblk < mpd->map.m_lblk)
2032 continue;
2033 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2034 /*
2035 * Buffer after end of mapped extent.
2036 * Find next buffer in the folio to map.
2037 */
2038 mpd->map.m_len = 0;
2039 mpd->map.m_flags = 0;
2040 io_end_vec->size += io_end_size;
2041
2042 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2043 if (err > 0)
2044 err = 0;
2045 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2046 io_end_vec = ext4_alloc_io_end_vec(io_end);
2047 if (IS_ERR(ptr: io_end_vec)) {
2048 err = PTR_ERR(ptr: io_end_vec);
2049 goto out;
2050 }
2051 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2052 }
2053 *map_bh = true;
2054 goto out;
2055 }
2056 if (buffer_delay(bh)) {
2057 clear_buffer_delay(bh);
2058 bh->b_blocknr = pblock++;
2059 }
2060 clear_buffer_unwritten(bh);
2061 io_end_size += (1 << blkbits);
2062 } while (lblk++, (bh = bh->b_this_page) != head);
2063
2064 io_end_vec->size += io_end_size;
2065 *map_bh = false;
2066out:
2067 *m_lblk = lblk;
2068 *m_pblk = pblock;
2069 return err;
2070}
2071
2072/*
2073 * mpage_map_buffers - update buffers corresponding to changed extent and
2074 * submit fully mapped pages for IO
2075 *
2076 * @mpd - description of extent to map, on return next extent to map
2077 *
2078 * Scan buffers corresponding to changed extent (we expect corresponding pages
2079 * to be already locked) and update buffer state according to new extent state.
2080 * We map delalloc buffers to their physical location, clear unwritten bits,
2081 * and mark buffers as uninit when we perform writes to unwritten extents
2082 * and do extent conversion after IO is finished. If the last page is not fully
2083 * mapped, we update @map to the next extent in the last page that needs
2084 * mapping. Otherwise we submit the page for IO.
2085 */
2086static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2087{
2088 struct folio_batch fbatch;
2089 unsigned nr, i;
2090 struct inode *inode = mpd->inode;
2091 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2092 pgoff_t start, end;
2093 ext4_lblk_t lblk;
2094 ext4_fsblk_t pblock;
2095 int err;
2096 bool map_bh = false;
2097
2098 start = mpd->map.m_lblk >> bpp_bits;
2099 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2100 lblk = start << bpp_bits;
2101 pblock = mpd->map.m_pblk;
2102
2103 folio_batch_init(fbatch: &fbatch);
2104 while (start <= end) {
2105 nr = filemap_get_folios(mapping: inode->i_mapping, start: &start, end, fbatch: &fbatch);
2106 if (nr == 0)
2107 break;
2108 for (i = 0; i < nr; i++) {
2109 struct folio *folio = fbatch.folios[i];
2110
2111 err = mpage_process_folio(mpd, folio, m_lblk: &lblk, m_pblk: &pblock,
2112 map_bh: &map_bh);
2113 /*
2114 * If map_bh is true, means page may require further bh
2115 * mapping, or maybe the page was submitted for IO.
2116 * So we return to call further extent mapping.
2117 */
2118 if (err < 0 || map_bh)
2119 goto out;
2120 /* Page fully mapped - let IO run! */
2121 err = mpage_submit_folio(mpd, folio);
2122 if (err < 0)
2123 goto out;
2124 mpage_folio_done(mpd, folio);
2125 }
2126 folio_batch_release(fbatch: &fbatch);
2127 }
2128 /* Extent fully mapped and matches with page boundary. We are done. */
2129 mpd->map.m_len = 0;
2130 mpd->map.m_flags = 0;
2131 return 0;
2132out:
2133 folio_batch_release(fbatch: &fbatch);
2134 return err;
2135}
2136
2137static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2138{
2139 struct inode *inode = mpd->inode;
2140 struct ext4_map_blocks *map = &mpd->map;
2141 int get_blocks_flags;
2142 int err, dioread_nolock;
2143
2144 trace_ext4_da_write_pages_extent(inode, map);
2145 /*
2146 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2147 * to convert an unwritten extent to be initialized (in the case
2148 * where we have written into one or more preallocated blocks). It is
2149 * possible that we're going to need more metadata blocks than
2150 * previously reserved. However we must not fail because we're in
2151 * writeback and there is nothing we can do about it so it might result
2152 * in data loss. So use reserved blocks to allocate metadata if
2153 * possible.
2154 *
2155 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2156 * the blocks in question are delalloc blocks. This indicates
2157 * that the blocks and quotas has already been checked when
2158 * the data was copied into the page cache.
2159 */
2160 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2161 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2162 EXT4_GET_BLOCKS_IO_SUBMIT;
2163 dioread_nolock = ext4_should_dioread_nolock(inode);
2164 if (dioread_nolock)
2165 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2166 if (map->m_flags & BIT(BH_Delay))
2167 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2168
2169 err = ext4_map_blocks(handle, inode, map, flags: get_blocks_flags);
2170 if (err < 0)
2171 return err;
2172 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2173 if (!mpd->io_submit.io_end->handle &&
2174 ext4_handle_valid(handle)) {
2175 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2176 handle->h_rsv_handle = NULL;
2177 }
2178 ext4_set_io_unwritten_flag(inode, io_end: mpd->io_submit.io_end);
2179 }
2180
2181 BUG_ON(map->m_len == 0);
2182 return 0;
2183}
2184
2185/*
2186 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2187 * mpd->len and submit pages underlying it for IO
2188 *
2189 * @handle - handle for journal operations
2190 * @mpd - extent to map
2191 * @give_up_on_write - we set this to true iff there is a fatal error and there
2192 * is no hope of writing the data. The caller should discard
2193 * dirty pages to avoid infinite loops.
2194 *
2195 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2196 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2197 * them to initialized or split the described range from larger unwritten
2198 * extent. Note that we need not map all the described range since allocation
2199 * can return less blocks or the range is covered by more unwritten extents. We
2200 * cannot map more because we are limited by reserved transaction credits. On
2201 * the other hand we always make sure that the last touched page is fully
2202 * mapped so that it can be written out (and thus forward progress is
2203 * guaranteed). After mapping we submit all mapped pages for IO.
2204 */
2205static int mpage_map_and_submit_extent(handle_t *handle,
2206 struct mpage_da_data *mpd,
2207 bool *give_up_on_write)
2208{
2209 struct inode *inode = mpd->inode;
2210 struct ext4_map_blocks *map = &mpd->map;
2211 int err;
2212 loff_t disksize;
2213 int progress = 0;
2214 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2215 struct ext4_io_end_vec *io_end_vec;
2216
2217 io_end_vec = ext4_alloc_io_end_vec(io_end);
2218 if (IS_ERR(ptr: io_end_vec))
2219 return PTR_ERR(ptr: io_end_vec);
2220 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2221 do {
2222 err = mpage_map_one_extent(handle, mpd);
2223 if (err < 0) {
2224 struct super_block *sb = inode->i_sb;
2225
2226 if (ext4_forced_shutdown(sb))
2227 goto invalidate_dirty_pages;
2228 /*
2229 * Let the uper layers retry transient errors.
2230 * In the case of ENOSPC, if ext4_count_free_blocks()
2231 * is non-zero, a commit should free up blocks.
2232 */
2233 if ((err == -ENOMEM) ||
2234 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2235 if (progress)
2236 goto update_disksize;
2237 return err;
2238 }
2239 ext4_msg(sb, KERN_CRIT,
2240 "Delayed block allocation failed for "
2241 "inode %lu at logical offset %llu with"
2242 " max blocks %u with error %d",
2243 inode->i_ino,
2244 (unsigned long long)map->m_lblk,
2245 (unsigned)map->m_len, -err);
2246 ext4_msg(sb, KERN_CRIT,
2247 "This should not happen!! Data will "
2248 "be lost\n");
2249 if (err == -ENOSPC)
2250 ext4_print_free_blocks(inode);
2251 invalidate_dirty_pages:
2252 *give_up_on_write = true;
2253 return err;
2254 }
2255 progress = 1;
2256 /*
2257 * Update buffer state, submit mapped pages, and get us new
2258 * extent to map
2259 */
2260 err = mpage_map_and_submit_buffers(mpd);
2261 if (err < 0)
2262 goto update_disksize;
2263 } while (map->m_len);
2264
2265update_disksize:
2266 /*
2267 * Update on-disk size after IO is submitted. Races with
2268 * truncate are avoided by checking i_size under i_data_sem.
2269 */
2270 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2271 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2272 int err2;
2273 loff_t i_size;
2274
2275 down_write(sem: &EXT4_I(inode)->i_data_sem);
2276 i_size = i_size_read(inode);
2277 if (disksize > i_size)
2278 disksize = i_size;
2279 if (disksize > EXT4_I(inode)->i_disksize)
2280 EXT4_I(inode)->i_disksize = disksize;
2281 up_write(sem: &EXT4_I(inode)->i_data_sem);
2282 err2 = ext4_mark_inode_dirty(handle, inode);
2283 if (err2) {
2284 ext4_error_err(inode->i_sb, -err2,
2285 "Failed to mark inode %lu dirty",
2286 inode->i_ino);
2287 }
2288 if (!err)
2289 err = err2;
2290 }
2291 return err;
2292}
2293
2294/*
2295 * Calculate the total number of credits to reserve for one writepages
2296 * iteration. This is called from ext4_writepages(). We map an extent of
2297 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2298 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2299 * bpp - 1 blocks in bpp different extents.
2300 */
2301static int ext4_da_writepages_trans_blocks(struct inode *inode)
2302{
2303 int bpp = ext4_journal_blocks_per_page(inode);
2304
2305 return ext4_meta_trans_blocks(inode,
2306 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, pextents: bpp);
2307}
2308
2309static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2310 size_t len)
2311{
2312 struct buffer_head *page_bufs = folio_buffers(folio);
2313 struct inode *inode = folio->mapping->host;
2314 int ret, err;
2315
2316 ret = ext4_walk_page_buffers(handle, inode, head: page_bufs, from: 0, to: len,
2317 NULL, fn: do_journal_get_write_access);
2318 err = ext4_walk_page_buffers(handle, inode, head: page_bufs, from: 0, to: len,
2319 NULL, fn: write_end_fn);
2320 if (ret == 0)
2321 ret = err;
2322 err = ext4_jbd2_inode_add_write(handle, inode, start_byte: folio_pos(folio), length: len);
2323 if (ret == 0)
2324 ret = err;
2325 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2326
2327 return ret;
2328}
2329
2330static int mpage_journal_page_buffers(handle_t *handle,
2331 struct mpage_da_data *mpd,
2332 struct folio *folio)
2333{
2334 struct inode *inode = mpd->inode;
2335 loff_t size = i_size_read(inode);
2336 size_t len = folio_size(folio);
2337
2338 folio_clear_checked(folio);
2339 mpd->wbc->nr_to_write--;
2340
2341 if (folio_pos(folio) + len > size &&
2342 !ext4_verity_in_progress(inode))
2343 len = size - folio_pos(folio);
2344
2345 return ext4_journal_folio_buffers(handle, folio, len);
2346}
2347
2348/*
2349 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2350 * needing mapping, submit mapped pages
2351 *
2352 * @mpd - where to look for pages
2353 *
2354 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2355 * IO immediately. If we cannot map blocks, we submit just already mapped
2356 * buffers in the page for IO and keep page dirty. When we can map blocks and
2357 * we find a page which isn't mapped we start accumulating extent of buffers
2358 * underlying these pages that needs mapping (formed by either delayed or
2359 * unwritten buffers). We also lock the pages containing these buffers. The
2360 * extent found is returned in @mpd structure (starting at mpd->lblk with
2361 * length mpd->len blocks).
2362 *
2363 * Note that this function can attach bios to one io_end structure which are
2364 * neither logically nor physically contiguous. Although it may seem as an
2365 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2366 * case as we need to track IO to all buffers underlying a page in one io_end.
2367 */
2368static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2369{
2370 struct address_space *mapping = mpd->inode->i_mapping;
2371 struct folio_batch fbatch;
2372 unsigned int nr_folios;
2373 pgoff_t index = mpd->first_page;
2374 pgoff_t end = mpd->last_page;
2375 xa_mark_t tag;
2376 int i, err = 0;
2377 int blkbits = mpd->inode->i_blkbits;
2378 ext4_lblk_t lblk;
2379 struct buffer_head *head;
2380 handle_t *handle = NULL;
2381 int bpp = ext4_journal_blocks_per_page(inode: mpd->inode);
2382
2383 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2384 tag = PAGECACHE_TAG_TOWRITE;
2385 else
2386 tag = PAGECACHE_TAG_DIRTY;
2387
2388 mpd->map.m_len = 0;
2389 mpd->next_page = index;
2390 if (ext4_should_journal_data(inode: mpd->inode)) {
2391 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2392 bpp);
2393 if (IS_ERR(ptr: handle))
2394 return PTR_ERR(ptr: handle);
2395 }
2396 folio_batch_init(fbatch: &fbatch);
2397 while (index <= end) {
2398 nr_folios = filemap_get_folios_tag(mapping, start: &index, end,
2399 tag, fbatch: &fbatch);
2400 if (nr_folios == 0)
2401 break;
2402
2403 for (i = 0; i < nr_folios; i++) {
2404 struct folio *folio = fbatch.folios[i];
2405
2406 /*
2407 * Accumulated enough dirty pages? This doesn't apply
2408 * to WB_SYNC_ALL mode. For integrity sync we have to
2409 * keep going because someone may be concurrently
2410 * dirtying pages, and we might have synced a lot of
2411 * newly appeared dirty pages, but have not synced all
2412 * of the old dirty pages.
2413 */
2414 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2415 mpd->wbc->nr_to_write <=
2416 mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2417 goto out;
2418
2419 /* If we can't merge this page, we are done. */
2420 if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2421 goto out;
2422
2423 if (handle) {
2424 err = ext4_journal_ensure_credits(handle, credits: bpp,
2425 revoke_creds: 0);
2426 if (err < 0)
2427 goto out;
2428 }
2429
2430 folio_lock(folio);
2431 /*
2432 * If the page is no longer dirty, or its mapping no
2433 * longer corresponds to inode we are writing (which
2434 * means it has been truncated or invalidated), or the
2435 * page is already under writeback and we are not doing
2436 * a data integrity writeback, skip the page
2437 */
2438 if (!folio_test_dirty(folio) ||
2439 (folio_test_writeback(folio) &&
2440 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2441 unlikely(folio->mapping != mapping)) {
2442 folio_unlock(folio);
2443 continue;
2444 }
2445
2446 folio_wait_writeback(folio);
2447 BUG_ON(folio_test_writeback(folio));
2448
2449 /*
2450 * Should never happen but for buggy code in
2451 * other subsystems that call
2452 * set_page_dirty() without properly warning
2453 * the file system first. See [1] for more
2454 * information.
2455 *
2456 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2457 */
2458 if (!folio_buffers(folio)) {
2459 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2460 folio_clear_dirty(folio);
2461 folio_unlock(folio);
2462 continue;
2463 }
2464
2465 if (mpd->map.m_len == 0)
2466 mpd->first_page = folio->index;
2467 mpd->next_page = folio_next_index(folio);
2468 /*
2469 * Writeout when we cannot modify metadata is simple.
2470 * Just submit the page. For data=journal mode we
2471 * first handle writeout of the page for checkpoint and
2472 * only after that handle delayed page dirtying. This
2473 * makes sure current data is checkpointed to the final
2474 * location before possibly journalling it again which
2475 * is desirable when the page is frequently dirtied
2476 * through a pin.
2477 */
2478 if (!mpd->can_map) {
2479 err = mpage_submit_folio(mpd, folio);
2480 if (err < 0)
2481 goto out;
2482 /* Pending dirtying of journalled data? */
2483 if (folio_test_checked(folio)) {
2484 err = mpage_journal_page_buffers(handle,
2485 mpd, folio);
2486 if (err < 0)
2487 goto out;
2488 mpd->journalled_more_data = 1;
2489 }
2490 mpage_folio_done(mpd, folio);
2491 } else {
2492 /* Add all dirty buffers to mpd */
2493 lblk = ((ext4_lblk_t)folio->index) <<
2494 (PAGE_SHIFT - blkbits);
2495 head = folio_buffers(folio);
2496 err = mpage_process_page_bufs(mpd, head, bh: head,
2497 lblk);
2498 if (err <= 0)
2499 goto out;
2500 err = 0;
2501 }
2502 }
2503 folio_batch_release(fbatch: &fbatch);
2504 cond_resched();
2505 }
2506 mpd->scanned_until_end = 1;
2507 if (handle)
2508 ext4_journal_stop(handle);
2509 return 0;
2510out:
2511 folio_batch_release(fbatch: &fbatch);
2512 if (handle)
2513 ext4_journal_stop(handle);
2514 return err;
2515}
2516
2517static int ext4_do_writepages(struct mpage_da_data *mpd)
2518{
2519 struct writeback_control *wbc = mpd->wbc;
2520 pgoff_t writeback_index = 0;
2521 long nr_to_write = wbc->nr_to_write;
2522 int range_whole = 0;
2523 int cycled = 1;
2524 handle_t *handle = NULL;
2525 struct inode *inode = mpd->inode;
2526 struct address_space *mapping = inode->i_mapping;
2527 int needed_blocks, rsv_blocks = 0, ret = 0;
2528 struct ext4_sb_info *sbi = EXT4_SB(sb: mapping->host->i_sb);
2529 struct blk_plug plug;
2530 bool give_up_on_write = false;
2531
2532 trace_ext4_writepages(inode, wbc);
2533
2534 /*
2535 * No pages to write? This is mainly a kludge to avoid starting
2536 * a transaction for special inodes like journal inode on last iput()
2537 * because that could violate lock ordering on umount
2538 */
2539 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2540 goto out_writepages;
2541
2542 /*
2543 * If the filesystem has aborted, it is read-only, so return
2544 * right away instead of dumping stack traces later on that
2545 * will obscure the real source of the problem. We test
2546 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2547 * the latter could be true if the filesystem is mounted
2548 * read-only, and in that case, ext4_writepages should
2549 * *never* be called, so if that ever happens, we would want
2550 * the stack trace.
2551 */
2552 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2553 ret = -EROFS;
2554 goto out_writepages;
2555 }
2556
2557 /*
2558 * If we have inline data and arrive here, it means that
2559 * we will soon create the block for the 1st page, so
2560 * we'd better clear the inline data here.
2561 */
2562 if (ext4_has_inline_data(inode)) {
2563 /* Just inode will be modified... */
2564 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2565 if (IS_ERR(ptr: handle)) {
2566 ret = PTR_ERR(ptr: handle);
2567 goto out_writepages;
2568 }
2569 BUG_ON(ext4_test_inode_state(inode,
2570 EXT4_STATE_MAY_INLINE_DATA));
2571 ext4_destroy_inline_data(handle, inode);
2572 ext4_journal_stop(handle);
2573 }
2574
2575 /*
2576 * data=journal mode does not do delalloc so we just need to writeout /
2577 * journal already mapped buffers. On the other hand we need to commit
2578 * transaction to make data stable. We expect all the data to be
2579 * already in the journal (the only exception are DMA pinned pages
2580 * dirtied behind our back) so we commit transaction here and run the
2581 * writeback loop to checkpoint them. The checkpointing is not actually
2582 * necessary to make data persistent *but* quite a few places (extent
2583 * shifting operations, fsverity, ...) depend on being able to drop
2584 * pagecache pages after calling filemap_write_and_wait() and for that
2585 * checkpointing needs to happen.
2586 */
2587 if (ext4_should_journal_data(inode)) {
2588 mpd->can_map = 0;
2589 if (wbc->sync_mode == WB_SYNC_ALL)
2590 ext4_fc_commit(journal: sbi->s_journal,
2591 EXT4_I(inode)->i_datasync_tid);
2592 }
2593 mpd->journalled_more_data = 0;
2594
2595 if (ext4_should_dioread_nolock(inode)) {
2596 /*
2597 * We may need to convert up to one extent per block in
2598 * the page and we may dirty the inode.
2599 */
2600 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2601 PAGE_SIZE >> inode->i_blkbits);
2602 }
2603
2604 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2605 range_whole = 1;
2606
2607 if (wbc->range_cyclic) {
2608 writeback_index = mapping->writeback_index;
2609 if (writeback_index)
2610 cycled = 0;
2611 mpd->first_page = writeback_index;
2612 mpd->last_page = -1;
2613 } else {
2614 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2615 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2616 }
2617
2618 ext4_io_submit_init(io: &mpd->io_submit, wbc);
2619retry:
2620 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2621 tag_pages_for_writeback(mapping, start: mpd->first_page,
2622 end: mpd->last_page);
2623 blk_start_plug(&plug);
2624
2625 /*
2626 * First writeback pages that don't need mapping - we can avoid
2627 * starting a transaction unnecessarily and also avoid being blocked
2628 * in the block layer on device congestion while having transaction
2629 * started.
2630 */
2631 mpd->do_map = 0;
2632 mpd->scanned_until_end = 0;
2633 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2634 if (!mpd->io_submit.io_end) {
2635 ret = -ENOMEM;
2636 goto unplug;
2637 }
2638 ret = mpage_prepare_extent_to_map(mpd);
2639 /* Unlock pages we didn't use */
2640 mpage_release_unused_pages(mpd, invalidate: false);
2641 /* Submit prepared bio */
2642 ext4_io_submit(io: &mpd->io_submit);
2643 ext4_put_io_end_defer(io_end: mpd->io_submit.io_end);
2644 mpd->io_submit.io_end = NULL;
2645 if (ret < 0)
2646 goto unplug;
2647
2648 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2649 /* For each extent of pages we use new io_end */
2650 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2651 if (!mpd->io_submit.io_end) {
2652 ret = -ENOMEM;
2653 break;
2654 }
2655
2656 WARN_ON_ONCE(!mpd->can_map);
2657 /*
2658 * We have two constraints: We find one extent to map and we
2659 * must always write out whole page (makes a difference when
2660 * blocksize < pagesize) so that we don't block on IO when we
2661 * try to write out the rest of the page. Journalled mode is
2662 * not supported by delalloc.
2663 */
2664 BUG_ON(ext4_should_journal_data(inode));
2665 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2666
2667 /* start a new transaction */
2668 handle = ext4_journal_start_with_reserve(inode,
2669 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2670 if (IS_ERR(ptr: handle)) {
2671 ret = PTR_ERR(ptr: handle);
2672 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2673 "%ld pages, ino %lu; err %d", __func__,
2674 wbc->nr_to_write, inode->i_ino, ret);
2675 /* Release allocated io_end */
2676 ext4_put_io_end(io_end: mpd->io_submit.io_end);
2677 mpd->io_submit.io_end = NULL;
2678 break;
2679 }
2680 mpd->do_map = 1;
2681
2682 trace_ext4_da_write_pages(inode, first_page: mpd->first_page, wbc);
2683 ret = mpage_prepare_extent_to_map(mpd);
2684 if (!ret && mpd->map.m_len)
2685 ret = mpage_map_and_submit_extent(handle, mpd,
2686 give_up_on_write: &give_up_on_write);
2687 /*
2688 * Caution: If the handle is synchronous,
2689 * ext4_journal_stop() can wait for transaction commit
2690 * to finish which may depend on writeback of pages to
2691 * complete or on page lock to be released. In that
2692 * case, we have to wait until after we have
2693 * submitted all the IO, released page locks we hold,
2694 * and dropped io_end reference (for extent conversion
2695 * to be able to complete) before stopping the handle.
2696 */
2697 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2698 ext4_journal_stop(handle);
2699 handle = NULL;
2700 mpd->do_map = 0;
2701 }
2702 /* Unlock pages we didn't use */
2703 mpage_release_unused_pages(mpd, invalidate: give_up_on_write);
2704 /* Submit prepared bio */
2705 ext4_io_submit(io: &mpd->io_submit);
2706
2707 /*
2708 * Drop our io_end reference we got from init. We have
2709 * to be careful and use deferred io_end finishing if
2710 * we are still holding the transaction as we can
2711 * release the last reference to io_end which may end
2712 * up doing unwritten extent conversion.
2713 */
2714 if (handle) {
2715 ext4_put_io_end_defer(io_end: mpd->io_submit.io_end);
2716 ext4_journal_stop(handle);
2717 } else
2718 ext4_put_io_end(io_end: mpd->io_submit.io_end);
2719 mpd->io_submit.io_end = NULL;
2720
2721 if (ret == -ENOSPC && sbi->s_journal) {
2722 /*
2723 * Commit the transaction which would
2724 * free blocks released in the transaction
2725 * and try again
2726 */
2727 jbd2_journal_force_commit_nested(sbi->s_journal);
2728 ret = 0;
2729 continue;
2730 }
2731 /* Fatal error - ENOMEM, EIO... */
2732 if (ret)
2733 break;
2734 }
2735unplug:
2736 blk_finish_plug(&plug);
2737 if (!ret && !cycled && wbc->nr_to_write > 0) {
2738 cycled = 1;
2739 mpd->last_page = writeback_index - 1;
2740 mpd->first_page = 0;
2741 goto retry;
2742 }
2743
2744 /* Update index */
2745 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2746 /*
2747 * Set the writeback_index so that range_cyclic
2748 * mode will write it back later
2749 */
2750 mapping->writeback_index = mpd->first_page;
2751
2752out_writepages:
2753 trace_ext4_writepages_result(inode, wbc, ret,
2754 pages_written: nr_to_write - wbc->nr_to_write);
2755 return ret;
2756}
2757
2758static int ext4_writepages(struct address_space *mapping,
2759 struct writeback_control *wbc)
2760{
2761 struct super_block *sb = mapping->host->i_sb;
2762 struct mpage_da_data mpd = {
2763 .inode = mapping->host,
2764 .wbc = wbc,
2765 .can_map = 1,
2766 };
2767 int ret;
2768 int alloc_ctx;
2769
2770 if (unlikely(ext4_forced_shutdown(sb)))
2771 return -EIO;
2772
2773 alloc_ctx = ext4_writepages_down_read(sb);
2774 ret = ext4_do_writepages(mpd: &mpd);
2775 /*
2776 * For data=journal writeback we could have come across pages marked
2777 * for delayed dirtying (PageChecked) which were just added to the
2778 * running transaction. Try once more to get them to stable storage.
2779 */
2780 if (!ret && mpd.journalled_more_data)
2781 ret = ext4_do_writepages(mpd: &mpd);
2782 ext4_writepages_up_read(sb, ctx: alloc_ctx);
2783
2784 return ret;
2785}
2786
2787int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2788{
2789 struct writeback_control wbc = {
2790 .sync_mode = WB_SYNC_ALL,
2791 .nr_to_write = LONG_MAX,
2792 .range_start = jinode->i_dirty_start,
2793 .range_end = jinode->i_dirty_end,
2794 };
2795 struct mpage_da_data mpd = {
2796 .inode = jinode->i_vfs_inode,
2797 .wbc = &wbc,
2798 .can_map = 0,
2799 };
2800 return ext4_do_writepages(mpd: &mpd);
2801}
2802
2803static int ext4_dax_writepages(struct address_space *mapping,
2804 struct writeback_control *wbc)
2805{
2806 int ret;
2807 long nr_to_write = wbc->nr_to_write;
2808 struct inode *inode = mapping->host;
2809 int alloc_ctx;
2810
2811 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2812 return -EIO;
2813
2814 alloc_ctx = ext4_writepages_down_read(sb: inode->i_sb);
2815 trace_ext4_writepages(inode, wbc);
2816
2817 ret = dax_writeback_mapping_range(mapping,
2818 dax_dev: EXT4_SB(sb: inode->i_sb)->s_daxdev, wbc);
2819 trace_ext4_writepages_result(inode, wbc, ret,
2820 pages_written: nr_to_write - wbc->nr_to_write);
2821 ext4_writepages_up_read(sb: inode->i_sb, ctx: alloc_ctx);
2822 return ret;
2823}
2824
2825static int ext4_nonda_switch(struct super_block *sb)
2826{
2827 s64 free_clusters, dirty_clusters;
2828 struct ext4_sb_info *sbi = EXT4_SB(sb);
2829
2830 /*
2831 * switch to non delalloc mode if we are running low
2832 * on free block. The free block accounting via percpu
2833 * counters can get slightly wrong with percpu_counter_batch getting
2834 * accumulated on each CPU without updating global counters
2835 * Delalloc need an accurate free block accounting. So switch
2836 * to non delalloc when we are near to error range.
2837 */
2838 free_clusters =
2839 percpu_counter_read_positive(fbc: &sbi->s_freeclusters_counter);
2840 dirty_clusters =
2841 percpu_counter_read_positive(fbc: &sbi->s_dirtyclusters_counter);
2842 /*
2843 * Start pushing delalloc when 1/2 of free blocks are dirty.
2844 */
2845 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2846 try_to_writeback_inodes_sb(sb, reason: WB_REASON_FS_FREE_SPACE);
2847
2848 if (2 * free_clusters < 3 * dirty_clusters ||
2849 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2850 /*
2851 * free block count is less than 150% of dirty blocks
2852 * or free blocks is less than watermark
2853 */
2854 return 1;
2855 }
2856 return 0;
2857}
2858
2859static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2860 loff_t pos, unsigned len,
2861 struct page **pagep, void **fsdata)
2862{
2863 int ret, retries = 0;
2864 struct folio *folio;
2865 pgoff_t index;
2866 struct inode *inode = mapping->host;
2867
2868 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2869 return -EIO;
2870
2871 index = pos >> PAGE_SHIFT;
2872
2873 if (ext4_nonda_switch(sb: inode->i_sb) || ext4_verity_in_progress(inode)) {
2874 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2875 return ext4_write_begin(file, mapping, pos,
2876 len, pagep, fsdata);
2877 }
2878 *fsdata = (void *)0;
2879 trace_ext4_da_write_begin(inode, pos, len);
2880
2881 if (ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA)) {
2882 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2883 pagep, fsdata);
2884 if (ret < 0)
2885 return ret;
2886 if (ret == 1)
2887 return 0;
2888 }
2889
2890retry:
2891 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2892 gfp: mapping_gfp_mask(mapping));
2893 if (IS_ERR(ptr: folio))
2894 return PTR_ERR(ptr: folio);
2895
2896 /* In case writeback began while the folio was unlocked */
2897 folio_wait_stable(folio);
2898
2899#ifdef CONFIG_FS_ENCRYPTION
2900 ret = ext4_block_write_begin(folio, pos, len, get_block: ext4_da_get_block_prep);
2901#else
2902 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2903#endif
2904 if (ret < 0) {
2905 folio_unlock(folio);
2906 folio_put(folio);
2907 /*
2908 * block_write_begin may have instantiated a few blocks
2909 * outside i_size. Trim these off again. Don't need
2910 * i_size_read because we hold inode lock.
2911 */
2912 if (pos + len > inode->i_size)
2913 ext4_truncate_failed_write(inode);
2914
2915 if (ret == -ENOSPC &&
2916 ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries))
2917 goto retry;
2918 return ret;
2919 }
2920
2921 *pagep = &folio->page;
2922 return ret;
2923}
2924
2925/*
2926 * Check if we should update i_disksize
2927 * when write to the end of file but not require block allocation
2928 */
2929static int ext4_da_should_update_i_disksize(struct folio *folio,
2930 unsigned long offset)
2931{
2932 struct buffer_head *bh;
2933 struct inode *inode = folio->mapping->host;
2934 unsigned int idx;
2935 int i;
2936
2937 bh = folio_buffers(folio);
2938 idx = offset >> inode->i_blkbits;
2939
2940 for (i = 0; i < idx; i++)
2941 bh = bh->b_this_page;
2942
2943 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2944 return 0;
2945 return 1;
2946}
2947
2948static int ext4_da_do_write_end(struct address_space *mapping,
2949 loff_t pos, unsigned len, unsigned copied,
2950 struct page *page)
2951{
2952 struct inode *inode = mapping->host;
2953 loff_t old_size = inode->i_size;
2954 bool disksize_changed = false;
2955 loff_t new_i_size;
2956
2957 /*
2958 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2959 * flag, which all that's needed to trigger page writeback.
2960 */
2961 copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL);
2962 new_i_size = pos + copied;
2963
2964 /*
2965 * It's important to update i_size while still holding page lock,
2966 * because page writeout could otherwise come in and zero beyond
2967 * i_size.
2968 *
2969 * Since we are holding inode lock, we are sure i_disksize <=
2970 * i_size. We also know that if i_disksize < i_size, there are
2971 * delalloc writes pending in the range up to i_size. If the end of
2972 * the current write is <= i_size, there's no need to touch
2973 * i_disksize since writeback will push i_disksize up to i_size
2974 * eventually. If the end of the current write is > i_size and
2975 * inside an allocated block which ext4_da_should_update_i_disksize()
2976 * checked, we need to update i_disksize here as certain
2977 * ext4_writepages() paths not allocating blocks and update i_disksize.
2978 */
2979 if (new_i_size > inode->i_size) {
2980 unsigned long end;
2981
2982 i_size_write(inode, i_size: new_i_size);
2983 end = (new_i_size - 1) & (PAGE_SIZE - 1);
2984 if (copied && ext4_da_should_update_i_disksize(page_folio(page), offset: end)) {
2985 ext4_update_i_disksize(inode, newsize: new_i_size);
2986 disksize_changed = true;
2987 }
2988 }
2989
2990 unlock_page(page);
2991 put_page(page);
2992
2993 if (old_size < pos)
2994 pagecache_isize_extended(inode, from: old_size, to: pos);
2995
2996 if (disksize_changed) {
2997 handle_t *handle;
2998
2999 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3000 if (IS_ERR(ptr: handle))
3001 return PTR_ERR(ptr: handle);
3002 ext4_mark_inode_dirty(handle, inode);
3003 ext4_journal_stop(handle);
3004 }
3005
3006 return copied;
3007}
3008
3009static int ext4_da_write_end(struct file *file,
3010 struct address_space *mapping,
3011 loff_t pos, unsigned len, unsigned copied,
3012 struct page *page, void *fsdata)
3013{
3014 struct inode *inode = mapping->host;
3015 int write_mode = (int)(unsigned long)fsdata;
3016 struct folio *folio = page_folio(page);
3017
3018 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3019 return ext4_write_end(file, mapping, pos,
3020 len, copied, page: &folio->page, fsdata);
3021
3022 trace_ext4_da_write_end(inode, pos, len, copied);
3023
3024 if (write_mode != CONVERT_INLINE_DATA &&
3025 ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA) &&
3026 ext4_has_inline_data(inode))
3027 return ext4_write_inline_data_end(inode, pos, len, copied,
3028 folio);
3029
3030 if (unlikely(copied < len) && !PageUptodate(page))
3031 copied = 0;
3032
3033 return ext4_da_do_write_end(mapping, pos, len, copied, page: &folio->page);
3034}
3035
3036/*
3037 * Force all delayed allocation blocks to be allocated for a given inode.
3038 */
3039int ext4_alloc_da_blocks(struct inode *inode)
3040{
3041 trace_ext4_alloc_da_blocks(inode);
3042
3043 if (!EXT4_I(inode)->i_reserved_data_blocks)
3044 return 0;
3045
3046 /*
3047 * We do something simple for now. The filemap_flush() will
3048 * also start triggering a write of the data blocks, which is
3049 * not strictly speaking necessary (and for users of
3050 * laptop_mode, not even desirable). However, to do otherwise
3051 * would require replicating code paths in:
3052 *
3053 * ext4_writepages() ->
3054 * write_cache_pages() ---> (via passed in callback function)
3055 * __mpage_da_writepage() -->
3056 * mpage_add_bh_to_extent()
3057 * mpage_da_map_blocks()
3058 *
3059 * The problem is that write_cache_pages(), located in
3060 * mm/page-writeback.c, marks pages clean in preparation for
3061 * doing I/O, which is not desirable if we're not planning on
3062 * doing I/O at all.
3063 *
3064 * We could call write_cache_pages(), and then redirty all of
3065 * the pages by calling redirty_page_for_writepage() but that
3066 * would be ugly in the extreme. So instead we would need to
3067 * replicate parts of the code in the above functions,
3068 * simplifying them because we wouldn't actually intend to
3069 * write out the pages, but rather only collect contiguous
3070 * logical block extents, call the multi-block allocator, and
3071 * then update the buffer heads with the block allocations.
3072 *
3073 * For now, though, we'll cheat by calling filemap_flush(),
3074 * which will map the blocks, and start the I/O, but not
3075 * actually wait for the I/O to complete.
3076 */
3077 return filemap_flush(inode->i_mapping);
3078}
3079
3080/*
3081 * bmap() is special. It gets used by applications such as lilo and by
3082 * the swapper to find the on-disk block of a specific piece of data.
3083 *
3084 * Naturally, this is dangerous if the block concerned is still in the
3085 * journal. If somebody makes a swapfile on an ext4 data-journaling
3086 * filesystem and enables swap, then they may get a nasty shock when the
3087 * data getting swapped to that swapfile suddenly gets overwritten by
3088 * the original zero's written out previously to the journal and
3089 * awaiting writeback in the kernel's buffer cache.
3090 *
3091 * So, if we see any bmap calls here on a modified, data-journaled file,
3092 * take extra steps to flush any blocks which might be in the cache.
3093 */
3094static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3095{
3096 struct inode *inode = mapping->host;
3097 sector_t ret = 0;
3098
3099 inode_lock_shared(inode);
3100 /*
3101 * We can get here for an inline file via the FIBMAP ioctl
3102 */
3103 if (ext4_has_inline_data(inode))
3104 goto out;
3105
3106 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3107 (test_opt(inode->i_sb, DELALLOC) ||
3108 ext4_should_journal_data(inode))) {
3109 /*
3110 * With delalloc or journalled data we want to sync the file so
3111 * that we can make sure we allocate blocks for file and data
3112 * is in place for the user to see it
3113 */
3114 filemap_write_and_wait(mapping);
3115 }
3116
3117 ret = iomap_bmap(mapping, bno: block, ops: &ext4_iomap_ops);
3118
3119out:
3120 inode_unlock_shared(inode);
3121 return ret;
3122}
3123
3124static int ext4_read_folio(struct file *file, struct folio *folio)
3125{
3126 int ret = -EAGAIN;
3127 struct inode *inode = folio->mapping->host;
3128
3129 trace_ext4_read_folio(inode, folio);
3130
3131 if (ext4_has_inline_data(inode))
3132 ret = ext4_readpage_inline(inode, folio);
3133
3134 if (ret == -EAGAIN)
3135 return ext4_mpage_readpages(inode, NULL, folio);
3136
3137 return ret;
3138}
3139
3140static void ext4_readahead(struct readahead_control *rac)
3141{
3142 struct inode *inode = rac->mapping->host;
3143
3144 /* If the file has inline data, no need to do readahead. */
3145 if (ext4_has_inline_data(inode))
3146 return;
3147
3148 ext4_mpage_readpages(inode, rac, NULL);
3149}
3150
3151static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3152 size_t length)
3153{
3154 trace_ext4_invalidate_folio(folio, offset, length);
3155
3156 /* No journalling happens on data buffers when this function is used */
3157 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3158
3159 block_invalidate_folio(folio, offset, length);
3160}
3161
3162static int __ext4_journalled_invalidate_folio(struct folio *folio,
3163 size_t offset, size_t length)
3164{
3165 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3166
3167 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3168
3169 /*
3170 * If it's a full truncate we just forget about the pending dirtying
3171 */
3172 if (offset == 0 && length == folio_size(folio))
3173 folio_clear_checked(folio);
3174
3175 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3176}
3177
3178/* Wrapper for aops... */
3179static void ext4_journalled_invalidate_folio(struct folio *folio,
3180 size_t offset,
3181 size_t length)
3182{
3183 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3184}
3185
3186static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3187{
3188 struct inode *inode = folio->mapping->host;
3189 journal_t *journal = EXT4_JOURNAL(inode);
3190
3191 trace_ext4_release_folio(inode, folio);
3192
3193 /* Page has dirty journalled data -> cannot release */
3194 if (folio_test_checked(folio))
3195 return false;
3196 if (journal)
3197 return jbd2_journal_try_to_free_buffers(journal, folio);
3198 else
3199 return try_to_free_buffers(folio);
3200}
3201
3202static bool ext4_inode_datasync_dirty(struct inode *inode)
3203{
3204 journal_t *journal = EXT4_SB(sb: inode->i_sb)->s_journal;
3205
3206 if (journal) {
3207 if (jbd2_transaction_committed(journal,
3208 EXT4_I(inode)->i_datasync_tid))
3209 return false;
3210 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3211 return !list_empty(head: &EXT4_I(inode)->i_fc_list);
3212 return true;
3213 }
3214
3215 /* Any metadata buffers to write? */
3216 if (!list_empty(head: &inode->i_mapping->private_list))
3217 return true;
3218 return inode->i_state & I_DIRTY_DATASYNC;
3219}
3220
3221static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3222 struct ext4_map_blocks *map, loff_t offset,
3223 loff_t length, unsigned int flags)
3224{
3225 u8 blkbits = inode->i_blkbits;
3226
3227 /*
3228 * Writes that span EOF might trigger an I/O size update on completion,
3229 * so consider them to be dirty for the purpose of O_DSYNC, even if
3230 * there is no other metadata changes being made or are pending.
3231 */
3232 iomap->flags = 0;
3233 if (ext4_inode_datasync_dirty(inode) ||
3234 offset + length > i_size_read(inode))
3235 iomap->flags |= IOMAP_F_DIRTY;
3236
3237 if (map->m_flags & EXT4_MAP_NEW)
3238 iomap->flags |= IOMAP_F_NEW;
3239
3240 if (flags & IOMAP_DAX)
3241 iomap->dax_dev = EXT4_SB(sb: inode->i_sb)->s_daxdev;
3242 else
3243 iomap->bdev = inode->i_sb->s_bdev;
3244 iomap->offset = (u64) map->m_lblk << blkbits;
3245 iomap->length = (u64) map->m_len << blkbits;
3246
3247 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3248 !ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
3249 iomap->flags |= IOMAP_F_MERGED;
3250
3251 /*
3252 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3253 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3254 * set. In order for any allocated unwritten extents to be converted
3255 * into written extents correctly within the ->end_io() handler, we
3256 * need to ensure that the iomap->type is set appropriately. Hence, the
3257 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3258 * been set first.
3259 */
3260 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3261 iomap->type = IOMAP_UNWRITTEN;
3262 iomap->addr = (u64) map->m_pblk << blkbits;
3263 if (flags & IOMAP_DAX)
3264 iomap->addr += EXT4_SB(sb: inode->i_sb)->s_dax_part_off;
3265 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3266 iomap->type = IOMAP_MAPPED;
3267 iomap->addr = (u64) map->m_pblk << blkbits;
3268 if (flags & IOMAP_DAX)
3269 iomap->addr += EXT4_SB(sb: inode->i_sb)->s_dax_part_off;
3270 } else {
3271 iomap->type = IOMAP_HOLE;
3272 iomap->addr = IOMAP_NULL_ADDR;
3273 }
3274}
3275
3276static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3277 unsigned int flags)
3278{
3279 handle_t *handle;
3280 u8 blkbits = inode->i_blkbits;
3281 int ret, dio_credits, m_flags = 0, retries = 0;
3282
3283 /*
3284 * Trim the mapping request to the maximum value that we can map at
3285 * once for direct I/O.
3286 */
3287 if (map->m_len > DIO_MAX_BLOCKS)
3288 map->m_len = DIO_MAX_BLOCKS;
3289 dio_credits = ext4_chunk_trans_blocks(inode, nrblocks: map->m_len);
3290
3291retry:
3292 /*
3293 * Either we allocate blocks and then don't get an unwritten extent, so
3294 * in that case we have reserved enough credits. Or, the blocks are
3295 * already allocated and unwritten. In that case, the extent conversion
3296 * fits into the credits as well.
3297 */
3298 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3299 if (IS_ERR(ptr: handle))
3300 return PTR_ERR(ptr: handle);
3301
3302 /*
3303 * DAX and direct I/O are the only two operations that are currently
3304 * supported with IOMAP_WRITE.
3305 */
3306 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3307 if (flags & IOMAP_DAX)
3308 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3309 /*
3310 * We use i_size instead of i_disksize here because delalloc writeback
3311 * can complete at any point during the I/O and subsequently push the
3312 * i_disksize out to i_size. This could be beyond where direct I/O is
3313 * happening and thus expose allocated blocks to direct I/O reads.
3314 */
3315 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3316 m_flags = EXT4_GET_BLOCKS_CREATE;
3317 else if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
3318 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3319
3320 ret = ext4_map_blocks(handle, inode, map, flags: m_flags);
3321
3322 /*
3323 * We cannot fill holes in indirect tree based inodes as that could
3324 * expose stale data in the case of a crash. Use the magic error code
3325 * to fallback to buffered I/O.
3326 */
3327 if (!m_flags && !ret)
3328 ret = -ENOTBLK;
3329
3330 ext4_journal_stop(handle);
3331 if (ret == -ENOSPC && ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries))
3332 goto retry;
3333
3334 return ret;
3335}
3336
3337
3338static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3339 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3340{
3341 int ret;
3342 struct ext4_map_blocks map;
3343 u8 blkbits = inode->i_blkbits;
3344
3345 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3346 return -EINVAL;
3347
3348 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3349 return -ERANGE;
3350
3351 /*
3352 * Calculate the first and last logical blocks respectively.
3353 */
3354 map.m_lblk = offset >> blkbits;
3355 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3356 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3357
3358 if (flags & IOMAP_WRITE) {
3359 /*
3360 * We check here if the blocks are already allocated, then we
3361 * don't need to start a journal txn and we can directly return
3362 * the mapping information. This could boost performance
3363 * especially in multi-threaded overwrite requests.
3364 */
3365 if (offset + length <= i_size_read(inode)) {
3366 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
3367 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3368 goto out;
3369 }
3370 ret = ext4_iomap_alloc(inode, map: &map, flags);
3371 } else {
3372 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
3373 }
3374
3375 if (ret < 0)
3376 return ret;
3377out:
3378 /*
3379 * When inline encryption is enabled, sometimes I/O to an encrypted file
3380 * has to be broken up to guarantee DUN contiguity. Handle this by
3381 * limiting the length of the mapping returned.
3382 */
3383 map.m_len = fscrypt_limit_io_blocks(inode, lblk: map.m_lblk, nr_blocks: map.m_len);
3384
3385 ext4_set_iomap(inode, iomap, map: &map, offset, length, flags);
3386
3387 return 0;
3388}
3389
3390static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3391 loff_t length, unsigned flags, struct iomap *iomap,
3392 struct iomap *srcmap)
3393{
3394 int ret;
3395
3396 /*
3397 * Even for writes we don't need to allocate blocks, so just pretend
3398 * we are reading to save overhead of starting a transaction.
3399 */
3400 flags &= ~IOMAP_WRITE;
3401 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3402 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3403 return ret;
3404}
3405
3406static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3407 ssize_t written, unsigned flags, struct iomap *iomap)
3408{
3409 /*
3410 * Check to see whether an error occurred while writing out the data to
3411 * the allocated blocks. If so, return the magic error code so that we
3412 * fallback to buffered I/O and attempt to complete the remainder of
3413 * the I/O. Any blocks that may have been allocated in preparation for
3414 * the direct I/O will be reused during buffered I/O.
3415 */
3416 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3417 return -ENOTBLK;
3418
3419 return 0;
3420}
3421
3422const struct iomap_ops ext4_iomap_ops = {
3423 .iomap_begin = ext4_iomap_begin,
3424 .iomap_end = ext4_iomap_end,
3425};
3426
3427const struct iomap_ops ext4_iomap_overwrite_ops = {
3428 .iomap_begin = ext4_iomap_overwrite_begin,
3429 .iomap_end = ext4_iomap_end,
3430};
3431
3432static bool ext4_iomap_is_delalloc(struct inode *inode,
3433 struct ext4_map_blocks *map)
3434{
3435 struct extent_status es;
3436 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3437
3438 ext4_es_find_extent_range(inode, match_fn: &ext4_es_is_delayed,
3439 lblk: map->m_lblk, end, es: &es);
3440
3441 if (!es.es_len || es.es_lblk > end)
3442 return false;
3443
3444 if (es.es_lblk > map->m_lblk) {
3445 map->m_len = es.es_lblk - map->m_lblk;
3446 return false;
3447 }
3448
3449 offset = map->m_lblk - es.es_lblk;
3450 map->m_len = es.es_len - offset;
3451
3452 return true;
3453}
3454
3455static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3456 loff_t length, unsigned int flags,
3457 struct iomap *iomap, struct iomap *srcmap)
3458{
3459 int ret;
3460 bool delalloc = false;
3461 struct ext4_map_blocks map;
3462 u8 blkbits = inode->i_blkbits;
3463
3464 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3465 return -EINVAL;
3466
3467 if (ext4_has_inline_data(inode)) {
3468 ret = ext4_inline_data_iomap(inode, iomap);
3469 if (ret != -EAGAIN) {
3470 if (ret == 0 && offset >= iomap->length)
3471 ret = -ENOENT;
3472 return ret;
3473 }
3474 }
3475
3476 /*
3477 * Calculate the first and last logical block respectively.
3478 */
3479 map.m_lblk = offset >> blkbits;
3480 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3481 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3482
3483 /*
3484 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3485 * So handle it here itself instead of querying ext4_map_blocks().
3486 * Since ext4_map_blocks() will warn about it and will return
3487 * -EIO error.
3488 */
3489 if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))) {
3490 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
3491
3492 if (offset >= sbi->s_bitmap_maxbytes) {
3493 map.m_flags = 0;
3494 goto set_iomap;
3495 }
3496 }
3497
3498 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
3499 if (ret < 0)
3500 return ret;
3501 if (ret == 0)
3502 delalloc = ext4_iomap_is_delalloc(inode, map: &map);
3503
3504set_iomap:
3505 ext4_set_iomap(inode, iomap, map: &map, offset, length, flags);
3506 if (delalloc && iomap->type == IOMAP_HOLE)
3507 iomap->type = IOMAP_DELALLOC;
3508
3509 return 0;
3510}
3511
3512const struct iomap_ops ext4_iomap_report_ops = {
3513 .iomap_begin = ext4_iomap_begin_report,
3514};
3515
3516/*
3517 * For data=journal mode, folio should be marked dirty only when it was
3518 * writeably mapped. When that happens, it was already attached to the
3519 * transaction and marked as jbddirty (we take care of this in
3520 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3521 * so we should have nothing to do here, except for the case when someone
3522 * had the page pinned and dirtied the page through this pin (e.g. by doing
3523 * direct IO to it). In that case we'd need to attach buffers here to the
3524 * transaction but we cannot due to lock ordering. We cannot just dirty the
3525 * folio and leave attached buffers clean, because the buffers' dirty state is
3526 * "definitive". We cannot just set the buffers dirty or jbddirty because all
3527 * the journalling code will explode. So what we do is to mark the folio
3528 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3529 * to the transaction appropriately.
3530 */
3531static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3532 struct folio *folio)
3533{
3534 WARN_ON_ONCE(!folio_buffers(folio));
3535 if (folio_maybe_dma_pinned(folio))
3536 folio_set_checked(folio);
3537 return filemap_dirty_folio(mapping, folio);
3538}
3539
3540static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3541{
3542 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3543 WARN_ON_ONCE(!folio_buffers(folio));
3544 return block_dirty_folio(mapping, folio);
3545}
3546
3547static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3548 struct file *file, sector_t *span)
3549{
3550 return iomap_swapfile_activate(sis, swap_file: file, pagespan: span,
3551 ops: &ext4_iomap_report_ops);
3552}
3553
3554static const struct address_space_operations ext4_aops = {
3555 .read_folio = ext4_read_folio,
3556 .readahead = ext4_readahead,
3557 .writepages = ext4_writepages,
3558 .write_begin = ext4_write_begin,
3559 .write_end = ext4_write_end,
3560 .dirty_folio = ext4_dirty_folio,
3561 .bmap = ext4_bmap,
3562 .invalidate_folio = ext4_invalidate_folio,
3563 .release_folio = ext4_release_folio,
3564 .direct_IO = noop_direct_IO,
3565 .migrate_folio = buffer_migrate_folio,
3566 .is_partially_uptodate = block_is_partially_uptodate,
3567 .error_remove_page = generic_error_remove_page,
3568 .swap_activate = ext4_iomap_swap_activate,
3569};
3570
3571static const struct address_space_operations ext4_journalled_aops = {
3572 .read_folio = ext4_read_folio,
3573 .readahead = ext4_readahead,
3574 .writepages = ext4_writepages,
3575 .write_begin = ext4_write_begin,
3576 .write_end = ext4_journalled_write_end,
3577 .dirty_folio = ext4_journalled_dirty_folio,
3578 .bmap = ext4_bmap,
3579 .invalidate_folio = ext4_journalled_invalidate_folio,
3580 .release_folio = ext4_release_folio,
3581 .direct_IO = noop_direct_IO,
3582 .migrate_folio = buffer_migrate_folio_norefs,
3583 .is_partially_uptodate = block_is_partially_uptodate,
3584 .error_remove_page = generic_error_remove_page,
3585 .swap_activate = ext4_iomap_swap_activate,
3586};
3587
3588static const struct address_space_operations ext4_da_aops = {
3589 .read_folio = ext4_read_folio,
3590 .readahead = ext4_readahead,
3591 .writepages = ext4_writepages,
3592 .write_begin = ext4_da_write_begin,
3593 .write_end = ext4_da_write_end,
3594 .dirty_folio = ext4_dirty_folio,
3595 .bmap = ext4_bmap,
3596 .invalidate_folio = ext4_invalidate_folio,
3597 .release_folio = ext4_release_folio,
3598 .direct_IO = noop_direct_IO,
3599 .migrate_folio = buffer_migrate_folio,
3600 .is_partially_uptodate = block_is_partially_uptodate,
3601 .error_remove_page = generic_error_remove_page,
3602 .swap_activate = ext4_iomap_swap_activate,
3603};
3604
3605static const struct address_space_operations ext4_dax_aops = {
3606 .writepages = ext4_dax_writepages,
3607 .direct_IO = noop_direct_IO,
3608 .dirty_folio = noop_dirty_folio,
3609 .bmap = ext4_bmap,
3610 .swap_activate = ext4_iomap_swap_activate,
3611};
3612
3613void ext4_set_aops(struct inode *inode)
3614{
3615 switch (ext4_inode_journal_mode(inode)) {
3616 case EXT4_INODE_ORDERED_DATA_MODE:
3617 case EXT4_INODE_WRITEBACK_DATA_MODE:
3618 break;
3619 case EXT4_INODE_JOURNAL_DATA_MODE:
3620 inode->i_mapping->a_ops = &ext4_journalled_aops;
3621 return;
3622 default:
3623 BUG();
3624 }
3625 if (IS_DAX(inode))
3626 inode->i_mapping->a_ops = &ext4_dax_aops;
3627 else if (test_opt(inode->i_sb, DELALLOC))
3628 inode->i_mapping->a_ops = &ext4_da_aops;
3629 else
3630 inode->i_mapping->a_ops = &ext4_aops;
3631}
3632
3633static int __ext4_block_zero_page_range(handle_t *handle,
3634 struct address_space *mapping, loff_t from, loff_t length)
3635{
3636 ext4_fsblk_t index = from >> PAGE_SHIFT;
3637 unsigned offset = from & (PAGE_SIZE-1);
3638 unsigned blocksize, pos;
3639 ext4_lblk_t iblock;
3640 struct inode *inode = mapping->host;
3641 struct buffer_head *bh;
3642 struct folio *folio;
3643 int err = 0;
3644
3645 folio = __filemap_get_folio(mapping, index: from >> PAGE_SHIFT,
3646 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3647 gfp: mapping_gfp_constraint(mapping, gfp_mask: ~__GFP_FS));
3648 if (IS_ERR(ptr: folio))
3649 return PTR_ERR(ptr: folio);
3650
3651 blocksize = inode->i_sb->s_blocksize;
3652
3653 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3654
3655 bh = folio_buffers(folio);
3656 if (!bh)
3657 bh = create_empty_buffers(folio, blocksize, b_state: 0);
3658
3659 /* Find the buffer that contains "offset" */
3660 pos = blocksize;
3661 while (offset >= pos) {
3662 bh = bh->b_this_page;
3663 iblock++;
3664 pos += blocksize;
3665 }
3666 if (buffer_freed(bh)) {
3667 BUFFER_TRACE(bh, "freed: skip");
3668 goto unlock;
3669 }
3670 if (!buffer_mapped(bh)) {
3671 BUFFER_TRACE(bh, "unmapped");
3672 ext4_get_block(inode, iblock, bh, create: 0);
3673 /* unmapped? It's a hole - nothing to do */
3674 if (!buffer_mapped(bh)) {
3675 BUFFER_TRACE(bh, "still unmapped");
3676 goto unlock;
3677 }
3678 }
3679
3680 /* Ok, it's mapped. Make sure it's up-to-date */
3681 if (folio_test_uptodate(folio))
3682 set_buffer_uptodate(bh);
3683
3684 if (!buffer_uptodate(bh)) {
3685 err = ext4_read_bh_lock(bh, op_flags: 0, wait: true);
3686 if (err)
3687 goto unlock;
3688 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3689 /* We expect the key to be set. */
3690 BUG_ON(!fscrypt_has_encryption_key(inode));
3691 err = fscrypt_decrypt_pagecache_blocks(folio,
3692 len: blocksize,
3693 offs: bh_offset(bh));
3694 if (err) {
3695 clear_buffer_uptodate(bh);
3696 goto unlock;
3697 }
3698 }
3699 }
3700 if (ext4_should_journal_data(inode)) {
3701 BUFFER_TRACE(bh, "get write access");
3702 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3703 EXT4_JTR_NONE);
3704 if (err)
3705 goto unlock;
3706 }
3707 folio_zero_range(folio, start: offset, length);
3708 BUFFER_TRACE(bh, "zeroed end of block");
3709
3710 if (ext4_should_journal_data(inode)) {
3711 err = ext4_dirty_journalled_data(handle, bh);
3712 } else {
3713 err = 0;
3714 mark_buffer_dirty(bh);
3715 if (ext4_should_order_data(inode))
3716 err = ext4_jbd2_inode_add_write(handle, inode, start_byte: from,
3717 length);
3718 }
3719
3720unlock:
3721 folio_unlock(folio);
3722 folio_put(folio);
3723 return err;
3724}
3725
3726/*
3727 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3728 * starting from file offset 'from'. The range to be zero'd must
3729 * be contained with in one block. If the specified range exceeds
3730 * the end of the block it will be shortened to end of the block
3731 * that corresponds to 'from'
3732 */
3733static int ext4_block_zero_page_range(handle_t *handle,
3734 struct address_space *mapping, loff_t from, loff_t length)
3735{
3736 struct inode *inode = mapping->host;
3737 unsigned offset = from & (PAGE_SIZE-1);
3738 unsigned blocksize = inode->i_sb->s_blocksize;
3739 unsigned max = blocksize - (offset & (blocksize - 1));
3740
3741 /*
3742 * correct length if it does not fall between
3743 * 'from' and the end of the block
3744 */
3745 if (length > max || length < 0)
3746 length = max;
3747
3748 if (IS_DAX(inode)) {
3749 return dax_zero_range(inode, pos: from, len: length, NULL,
3750 ops: &ext4_iomap_ops);
3751 }
3752 return __ext4_block_zero_page_range(handle, mapping, from, length);
3753}
3754
3755/*
3756 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3757 * up to the end of the block which corresponds to `from'.
3758 * This required during truncate. We need to physically zero the tail end
3759 * of that block so it doesn't yield old data if the file is later grown.
3760 */
3761static int ext4_block_truncate_page(handle_t *handle,
3762 struct address_space *mapping, loff_t from)
3763{
3764 unsigned offset = from & (PAGE_SIZE-1);
3765 unsigned length;
3766 unsigned blocksize;
3767 struct inode *inode = mapping->host;
3768
3769 /* If we are processing an encrypted inode during orphan list handling */
3770 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3771 return 0;
3772
3773 blocksize = inode->i_sb->s_blocksize;
3774 length = blocksize - (offset & (blocksize - 1));
3775
3776 return ext4_block_zero_page_range(handle, mapping, from, length);
3777}
3778
3779int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3780 loff_t lstart, loff_t length)
3781{
3782 struct super_block *sb = inode->i_sb;
3783 struct address_space *mapping = inode->i_mapping;
3784 unsigned partial_start, partial_end;
3785 ext4_fsblk_t start, end;
3786 loff_t byte_end = (lstart + length - 1);
3787 int err = 0;
3788
3789 partial_start = lstart & (sb->s_blocksize - 1);
3790 partial_end = byte_end & (sb->s_blocksize - 1);
3791
3792 start = lstart >> sb->s_blocksize_bits;
3793 end = byte_end >> sb->s_blocksize_bits;
3794
3795 /* Handle partial zero within the single block */
3796 if (start == end &&
3797 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3798 err = ext4_block_zero_page_range(handle, mapping,
3799 from: lstart, length);
3800 return err;
3801 }
3802 /* Handle partial zero out on the start of the range */
3803 if (partial_start) {
3804 err = ext4_block_zero_page_range(handle, mapping,
3805 from: lstart, length: sb->s_blocksize);
3806 if (err)
3807 return err;
3808 }
3809 /* Handle partial zero out on the end of the range */
3810 if (partial_end != sb->s_blocksize - 1)
3811 err = ext4_block_zero_page_range(handle, mapping,
3812 from: byte_end - partial_end,
3813 length: partial_end + 1);
3814 return err;
3815}
3816
3817int ext4_can_truncate(struct inode *inode)
3818{
3819 if (S_ISREG(inode->i_mode))
3820 return 1;
3821 if (S_ISDIR(inode->i_mode))
3822 return 1;
3823 if (S_ISLNK(inode->i_mode))
3824 return !ext4_inode_is_fast_symlink(inode);
3825 return 0;
3826}
3827
3828/*
3829 * We have to make sure i_disksize gets properly updated before we truncate
3830 * page cache due to hole punching or zero range. Otherwise i_disksize update
3831 * can get lost as it may have been postponed to submission of writeback but
3832 * that will never happen after we truncate page cache.
3833 */
3834int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3835 loff_t len)
3836{
3837 handle_t *handle;
3838 int ret;
3839
3840 loff_t size = i_size_read(inode);
3841
3842 WARN_ON(!inode_is_locked(inode));
3843 if (offset > size || offset + len < size)
3844 return 0;
3845
3846 if (EXT4_I(inode)->i_disksize >= size)
3847 return 0;
3848
3849 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3850 if (IS_ERR(ptr: handle))
3851 return PTR_ERR(ptr: handle);
3852 ext4_update_i_disksize(inode, newsize: size);
3853 ret = ext4_mark_inode_dirty(handle, inode);
3854 ext4_journal_stop(handle);
3855
3856 return ret;
3857}
3858
3859static void ext4_wait_dax_page(struct inode *inode)
3860{
3861 filemap_invalidate_unlock(mapping: inode->i_mapping);
3862 schedule();
3863 filemap_invalidate_lock(mapping: inode->i_mapping);
3864}
3865
3866int ext4_break_layouts(struct inode *inode)
3867{
3868 struct page *page;
3869 int error;
3870
3871 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3872 return -EINVAL;
3873
3874 do {
3875 page = dax_layout_busy_page(mapping: inode->i_mapping);
3876 if (!page)
3877 return 0;
3878
3879 error = ___wait_var_event(&page->_refcount,
3880 atomic_read(&page->_refcount) == 1,
3881 TASK_INTERRUPTIBLE, 0, 0,
3882 ext4_wait_dax_page(inode));
3883 } while (error == 0);
3884
3885 return error;
3886}
3887
3888/*
3889 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3890 * associated with the given offset and length
3891 *
3892 * @inode: File inode
3893 * @offset: The offset where the hole will begin
3894 * @len: The length of the hole
3895 *
3896 * Returns: 0 on success or negative on failure
3897 */
3898
3899int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3900{
3901 struct inode *inode = file_inode(f: file);
3902 struct super_block *sb = inode->i_sb;
3903 ext4_lblk_t first_block, stop_block;
3904 struct address_space *mapping = inode->i_mapping;
3905 loff_t first_block_offset, last_block_offset, max_length;
3906 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
3907 handle_t *handle;
3908 unsigned int credits;
3909 int ret = 0, ret2 = 0;
3910
3911 trace_ext4_punch_hole(inode, offset, len: length, mode: 0);
3912
3913 /*
3914 * Write out all dirty pages to avoid race conditions
3915 * Then release them.
3916 */
3917 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3918 ret = filemap_write_and_wait_range(mapping, lstart: offset,
3919 lend: offset + length - 1);
3920 if (ret)
3921 return ret;
3922 }
3923
3924 inode_lock(inode);
3925
3926 /* No need to punch hole beyond i_size */
3927 if (offset >= inode->i_size)
3928 goto out_mutex;
3929
3930 /*
3931 * If the hole extends beyond i_size, set the hole
3932 * to end after the page that contains i_size
3933 */
3934 if (offset + length > inode->i_size) {
3935 length = inode->i_size +
3936 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3937 offset;
3938 }
3939
3940 /*
3941 * For punch hole the length + offset needs to be within one block
3942 * before last range. Adjust the length if it goes beyond that limit.
3943 */
3944 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3945 if (offset + length > max_length)
3946 length = max_length - offset;
3947
3948 if (offset & (sb->s_blocksize - 1) ||
3949 (offset + length) & (sb->s_blocksize - 1)) {
3950 /*
3951 * Attach jinode to inode for jbd2 if we do any zeroing of
3952 * partial block
3953 */
3954 ret = ext4_inode_attach_jinode(inode);
3955 if (ret < 0)
3956 goto out_mutex;
3957
3958 }
3959
3960 /* Wait all existing dio workers, newcomers will block on i_rwsem */
3961 inode_dio_wait(inode);
3962
3963 ret = file_modified(file);
3964 if (ret)
3965 goto out_mutex;
3966
3967 /*
3968 * Prevent page faults from reinstantiating pages we have released from
3969 * page cache.
3970 */
3971 filemap_invalidate_lock(mapping);
3972
3973 ret = ext4_break_layouts(inode);
3974 if (ret)
3975 goto out_dio;
3976
3977 first_block_offset = round_up(offset, sb->s_blocksize);
3978 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3979
3980 /* Now release the pages and zero block aligned part of pages*/
3981 if (last_block_offset > first_block_offset) {
3982 ret = ext4_update_disksize_before_punch(inode, offset, len: length);
3983 if (ret)
3984 goto out_dio;
3985 truncate_pagecache_range(inode, offset: first_block_offset,
3986 end: last_block_offset);
3987 }
3988
3989 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
3990 credits = ext4_writepage_trans_blocks(inode);
3991 else
3992 credits = ext4_blocks_for_truncate(inode);
3993 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3994 if (IS_ERR(ptr: handle)) {
3995 ret = PTR_ERR(ptr: handle);
3996 ext4_std_error(sb, ret);
3997 goto out_dio;
3998 }
3999
4000 ret = ext4_zero_partial_blocks(handle, inode, lstart: offset,
4001 length);
4002 if (ret)
4003 goto out_stop;
4004
4005 first_block = (offset + sb->s_blocksize - 1) >>
4006 EXT4_BLOCK_SIZE_BITS(sb);
4007 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4008
4009 /* If there are blocks to remove, do it */
4010 if (stop_block > first_block) {
4011
4012 down_write(sem: &EXT4_I(inode)->i_data_sem);
4013 ext4_discard_preallocations(inode, 0);
4014
4015 ext4_es_remove_extent(inode, lblk: first_block,
4016 len: stop_block - first_block);
4017
4018 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
4019 ret = ext4_ext_remove_space(inode, start: first_block,
4020 end: stop_block - 1);
4021 else
4022 ret = ext4_ind_remove_space(handle, inode, start: first_block,
4023 end: stop_block);
4024
4025 up_write(sem: &EXT4_I(inode)->i_data_sem);
4026 }
4027 ext4_fc_track_range(handle, inode, start: first_block, end: stop_block);
4028 if (IS_SYNC(inode))
4029 ext4_handle_sync(handle);
4030
4031 inode_set_mtime_to_ts(inode, ts: inode_set_ctime_current(inode));
4032 ret2 = ext4_mark_inode_dirty(handle, inode);
4033 if (unlikely(ret2))
4034 ret = ret2;
4035 if (ret >= 0)
4036 ext4_update_inode_fsync_trans(handle, inode, datasync: 1);
4037out_stop:
4038 ext4_journal_stop(handle);
4039out_dio:
4040 filemap_invalidate_unlock(mapping);
4041out_mutex:
4042 inode_unlock(inode);
4043 return ret;
4044}
4045
4046int ext4_inode_attach_jinode(struct inode *inode)
4047{
4048 struct ext4_inode_info *ei = EXT4_I(inode);
4049 struct jbd2_inode *jinode;
4050
4051 if (ei->jinode || !EXT4_SB(sb: inode->i_sb)->s_journal)
4052 return 0;
4053
4054 jinode = jbd2_alloc_inode(GFP_KERNEL);
4055 spin_lock(lock: &inode->i_lock);
4056 if (!ei->jinode) {
4057 if (!jinode) {
4058 spin_unlock(lock: &inode->i_lock);
4059 return -ENOMEM;
4060 }
4061 ei->jinode = jinode;
4062 jbd2_journal_init_jbd_inode(jinode: ei->jinode, inode);
4063 jinode = NULL;
4064 }
4065 spin_unlock(lock: &inode->i_lock);
4066 if (unlikely(jinode != NULL))
4067 jbd2_free_inode(jinode);
4068 return 0;
4069}
4070
4071/*
4072 * ext4_truncate()
4073 *
4074 * We block out ext4_get_block() block instantiations across the entire
4075 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4076 * simultaneously on behalf of the same inode.
4077 *
4078 * As we work through the truncate and commit bits of it to the journal there
4079 * is one core, guiding principle: the file's tree must always be consistent on
4080 * disk. We must be able to restart the truncate after a crash.
4081 *
4082 * The file's tree may be transiently inconsistent in memory (although it
4083 * probably isn't), but whenever we close off and commit a journal transaction,
4084 * the contents of (the filesystem + the journal) must be consistent and
4085 * restartable. It's pretty simple, really: bottom up, right to left (although
4086 * left-to-right works OK too).
4087 *
4088 * Note that at recovery time, journal replay occurs *before* the restart of
4089 * truncate against the orphan inode list.
4090 *
4091 * The committed inode has the new, desired i_size (which is the same as
4092 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4093 * that this inode's truncate did not complete and it will again call
4094 * ext4_truncate() to have another go. So there will be instantiated blocks
4095 * to the right of the truncation point in a crashed ext4 filesystem. But
4096 * that's fine - as long as they are linked from the inode, the post-crash
4097 * ext4_truncate() run will find them and release them.
4098 */
4099int ext4_truncate(struct inode *inode)
4100{
4101 struct ext4_inode_info *ei = EXT4_I(inode);
4102 unsigned int credits;
4103 int err = 0, err2;
4104 handle_t *handle;
4105 struct address_space *mapping = inode->i_mapping;
4106
4107 /*
4108 * There is a possibility that we're either freeing the inode
4109 * or it's a completely new inode. In those cases we might not
4110 * have i_rwsem locked because it's not necessary.
4111 */
4112 if (!(inode->i_state & (I_NEW|I_FREEING)))
4113 WARN_ON(!inode_is_locked(inode));
4114 trace_ext4_truncate_enter(inode);
4115
4116 if (!ext4_can_truncate(inode))
4117 goto out_trace;
4118
4119 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4120 ext4_set_inode_state(inode, bit: EXT4_STATE_DA_ALLOC_CLOSE);
4121
4122 if (ext4_has_inline_data(inode)) {
4123 int has_inline = 1;
4124
4125 err = ext4_inline_data_truncate(inode, has_inline: &has_inline);
4126 if (err || has_inline)
4127 goto out_trace;
4128 }
4129
4130 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4131 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4132 err = ext4_inode_attach_jinode(inode);
4133 if (err)
4134 goto out_trace;
4135 }
4136
4137 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
4138 credits = ext4_writepage_trans_blocks(inode);
4139 else
4140 credits = ext4_blocks_for_truncate(inode);
4141
4142 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4143 if (IS_ERR(ptr: handle)) {
4144 err = PTR_ERR(ptr: handle);
4145 goto out_trace;
4146 }
4147
4148 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4149 ext4_block_truncate_page(handle, mapping, from: inode->i_size);
4150
4151 /*
4152 * We add the inode to the orphan list, so that if this
4153 * truncate spans multiple transactions, and we crash, we will
4154 * resume the truncate when the filesystem recovers. It also
4155 * marks the inode dirty, to catch the new size.
4156 *
4157 * Implication: the file must always be in a sane, consistent
4158 * truncatable state while each transaction commits.
4159 */
4160 err = ext4_orphan_add(handle, inode);
4161 if (err)
4162 goto out_stop;
4163
4164 down_write(sem: &EXT4_I(inode)->i_data_sem);
4165
4166 ext4_discard_preallocations(inode, 0);
4167
4168 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
4169 err = ext4_ext_truncate(handle, inode);
4170 else
4171 ext4_ind_truncate(handle, inode);
4172
4173 up_write(sem: &ei->i_data_sem);
4174 if (err)
4175 goto out_stop;
4176
4177 if (IS_SYNC(inode))
4178 ext4_handle_sync(handle);
4179
4180out_stop:
4181 /*
4182 * If this was a simple ftruncate() and the file will remain alive,
4183 * then we need to clear up the orphan record which we created above.
4184 * However, if this was a real unlink then we were called by
4185 * ext4_evict_inode(), and we allow that function to clean up the
4186 * orphan info for us.
4187 */
4188 if (inode->i_nlink)
4189 ext4_orphan_del(handle, inode);
4190
4191 inode_set_mtime_to_ts(inode, ts: inode_set_ctime_current(inode));
4192 err2 = ext4_mark_inode_dirty(handle, inode);
4193 if (unlikely(err2 && !err))
4194 err = err2;
4195 ext4_journal_stop(handle);
4196
4197out_trace:
4198 trace_ext4_truncate_exit(inode);
4199 return err;
4200}
4201
4202static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4203{
4204 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4205 return inode_peek_iversion_raw(inode);
4206 else
4207 return inode_peek_iversion(inode);
4208}
4209
4210static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4211 struct ext4_inode_info *ei)
4212{
4213 struct inode *inode = &(ei->vfs_inode);
4214 u64 i_blocks = READ_ONCE(inode->i_blocks);
4215 struct super_block *sb = inode->i_sb;
4216
4217 if (i_blocks <= ~0U) {
4218 /*
4219 * i_blocks can be represented in a 32 bit variable
4220 * as multiple of 512 bytes
4221 */
4222 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4223 raw_inode->i_blocks_high = 0;
4224 ext4_clear_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE);
4225 return 0;
4226 }
4227
4228 /*
4229 * This should never happen since sb->s_maxbytes should not have
4230 * allowed this, sb->s_maxbytes was set according to the huge_file
4231 * feature in ext4_fill_super().
4232 */
4233 if (!ext4_has_feature_huge_file(sb))
4234 return -EFSCORRUPTED;
4235
4236 if (i_blocks <= 0xffffffffffffULL) {
4237 /*
4238 * i_blocks can be represented in a 48 bit variable
4239 * as multiple of 512 bytes
4240 */
4241 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4242 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4243 ext4_clear_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE);
4244 } else {
4245 ext4_set_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE);
4246 /* i_block is stored in file system block size */
4247 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4248 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4249 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4250 }
4251 return 0;
4252}
4253
4254static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4255{
4256 struct ext4_inode_info *ei = EXT4_I(inode);
4257 uid_t i_uid;
4258 gid_t i_gid;
4259 projid_t i_projid;
4260 int block;
4261 int err;
4262
4263 err = ext4_inode_blocks_set(raw_inode, ei);
4264
4265 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4266 i_uid = i_uid_read(inode);
4267 i_gid = i_gid_read(inode);
4268 i_projid = from_kprojid(to: &init_user_ns, projid: ei->i_projid);
4269 if (!(test_opt(inode->i_sb, NO_UID32))) {
4270 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4271 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4272 /*
4273 * Fix up interoperability with old kernels. Otherwise,
4274 * old inodes get re-used with the upper 16 bits of the
4275 * uid/gid intact.
4276 */
4277 if (ei->i_dtime && list_empty(head: &ei->i_orphan)) {
4278 raw_inode->i_uid_high = 0;
4279 raw_inode->i_gid_high = 0;
4280 } else {
4281 raw_inode->i_uid_high =
4282 cpu_to_le16(high_16_bits(i_uid));
4283 raw_inode->i_gid_high =
4284 cpu_to_le16(high_16_bits(i_gid));
4285 }
4286 } else {
4287 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4288 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4289 raw_inode->i_uid_high = 0;
4290 raw_inode->i_gid_high = 0;
4291 }
4292 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4293
4294 EXT4_INODE_SET_CTIME(inode, raw_inode);
4295 EXT4_INODE_SET_MTIME(inode, raw_inode);
4296 EXT4_INODE_SET_ATIME(inode, raw_inode);
4297 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4298
4299 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4300 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4301 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4302 raw_inode->i_file_acl_high =
4303 cpu_to_le16(ei->i_file_acl >> 32);
4304 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4305 ext4_isize_set(raw_inode, i_size: ei->i_disksize);
4306
4307 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4308 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4309 if (old_valid_dev(dev: inode->i_rdev)) {
4310 raw_inode->i_block[0] =
4311 cpu_to_le32(old_encode_dev(inode->i_rdev));
4312 raw_inode->i_block[1] = 0;
4313 } else {
4314 raw_inode->i_block[0] = 0;
4315 raw_inode->i_block[1] =
4316 cpu_to_le32(new_encode_dev(inode->i_rdev));
4317 raw_inode->i_block[2] = 0;
4318 }
4319 } else if (!ext4_has_inline_data(inode)) {
4320 for (block = 0; block < EXT4_N_BLOCKS; block++)
4321 raw_inode->i_block[block] = ei->i_data[block];
4322 }
4323
4324 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4325 u64 ivers = ext4_inode_peek_iversion(inode);
4326
4327 raw_inode->i_disk_version = cpu_to_le32(ivers);
4328 if (ei->i_extra_isize) {
4329 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4330 raw_inode->i_version_hi =
4331 cpu_to_le32(ivers >> 32);
4332 raw_inode->i_extra_isize =
4333 cpu_to_le16(ei->i_extra_isize);
4334 }
4335 }
4336
4337 if (i_projid != EXT4_DEF_PROJID &&
4338 !ext4_has_feature_project(sb: inode->i_sb))
4339 err = err ?: -EFSCORRUPTED;
4340
4341 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4342 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4343 raw_inode->i_projid = cpu_to_le32(i_projid);
4344
4345 ext4_inode_csum_set(inode, raw: raw_inode, ei);
4346 return err;
4347}
4348
4349/*
4350 * ext4_get_inode_loc returns with an extra refcount against the inode's
4351 * underlying buffer_head on success. If we pass 'inode' and it does not
4352 * have in-inode xattr, we have all inode data in memory that is needed
4353 * to recreate the on-disk version of this inode.
4354 */
4355static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4356 struct inode *inode, struct ext4_iloc *iloc,
4357 ext4_fsblk_t *ret_block)
4358{
4359 struct ext4_group_desc *gdp;
4360 struct buffer_head *bh;
4361 ext4_fsblk_t block;
4362 struct blk_plug plug;
4363 int inodes_per_block, inode_offset;
4364
4365 iloc->bh = NULL;
4366 if (ino < EXT4_ROOT_INO ||
4367 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4368 return -EFSCORRUPTED;
4369
4370 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4371 gdp = ext4_get_group_desc(sb, block_group: iloc->block_group, NULL);
4372 if (!gdp)
4373 return -EIO;
4374
4375 /*
4376 * Figure out the offset within the block group inode table
4377 */
4378 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4379 inode_offset = ((ino - 1) %
4380 EXT4_INODES_PER_GROUP(sb));
4381 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4382
4383 block = ext4_inode_table(sb, bg: gdp);
4384 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4385 (block >= ext4_blocks_count(es: EXT4_SB(sb)->s_es))) {
4386 ext4_error(sb, "Invalid inode table block %llu in "
4387 "block_group %u", block, iloc->block_group);
4388 return -EFSCORRUPTED;
4389 }
4390 block += (inode_offset / inodes_per_block);
4391
4392 bh = sb_getblk(sb, block);
4393 if (unlikely(!bh))
4394 return -ENOMEM;
4395 if (ext4_buffer_uptodate(bh))
4396 goto has_buffer;
4397
4398 lock_buffer(bh);
4399 if (ext4_buffer_uptodate(bh)) {
4400 /* Someone brought it uptodate while we waited */
4401 unlock_buffer(bh);
4402 goto has_buffer;
4403 }
4404
4405 /*
4406 * If we have all information of the inode in memory and this
4407 * is the only valid inode in the block, we need not read the
4408 * block.
4409 */
4410 if (inode && !ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR)) {
4411 struct buffer_head *bitmap_bh;
4412 int i, start;
4413
4414 start = inode_offset & ~(inodes_per_block - 1);
4415
4416 /* Is the inode bitmap in cache? */
4417 bitmap_bh = sb_getblk(sb, block: ext4_inode_bitmap(sb, bg: gdp));
4418 if (unlikely(!bitmap_bh))
4419 goto make_io;
4420
4421 /*
4422 * If the inode bitmap isn't in cache then the
4423 * optimisation may end up performing two reads instead
4424 * of one, so skip it.
4425 */
4426 if (!buffer_uptodate(bh: bitmap_bh)) {
4427 brelse(bh: bitmap_bh);
4428 goto make_io;
4429 }
4430 for (i = start; i < start + inodes_per_block; i++) {
4431 if (i == inode_offset)
4432 continue;
4433 if (ext4_test_bit(nr: i, addr: bitmap_bh->b_data))
4434 break;
4435 }
4436 brelse(bh: bitmap_bh);
4437 if (i == start + inodes_per_block) {
4438 struct ext4_inode *raw_inode =
4439 (struct ext4_inode *) (bh->b_data + iloc->offset);
4440
4441 /* all other inodes are free, so skip I/O */
4442 memset(bh->b_data, 0, bh->b_size);
4443 if (!ext4_test_inode_state(inode, bit: EXT4_STATE_NEW))
4444 ext4_fill_raw_inode(inode, raw_inode);
4445 set_buffer_uptodate(bh);
4446 unlock_buffer(bh);
4447 goto has_buffer;
4448 }
4449 }
4450
4451make_io:
4452 /*
4453 * If we need to do any I/O, try to pre-readahead extra
4454 * blocks from the inode table.
4455 */
4456 blk_start_plug(&plug);
4457 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4458 ext4_fsblk_t b, end, table;
4459 unsigned num;
4460 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4461
4462 table = ext4_inode_table(sb, bg: gdp);
4463 /* s_inode_readahead_blks is always a power of 2 */
4464 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4465 if (table > b)
4466 b = table;
4467 end = b + ra_blks;
4468 num = EXT4_INODES_PER_GROUP(sb);
4469 if (ext4_has_group_desc_csum(sb))
4470 num -= ext4_itable_unused_count(sb, bg: gdp);
4471 table += num / inodes_per_block;
4472 if (end > table)
4473 end = table;
4474 while (b <= end)
4475 ext4_sb_breadahead_unmovable(sb, block: b++);
4476 }
4477
4478 /*
4479 * There are other valid inodes in the buffer, this inode
4480 * has in-inode xattrs, or we don't have this inode in memory.
4481 * Read the block from disk.
4482 */
4483 trace_ext4_load_inode(sb, ino);
4484 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4485 blk_finish_plug(&plug);
4486 wait_on_buffer(bh);
4487 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4488 if (!buffer_uptodate(bh)) {
4489 if (ret_block)
4490 *ret_block = block;
4491 brelse(bh);
4492 return -EIO;
4493 }
4494has_buffer:
4495 iloc->bh = bh;
4496 return 0;
4497}
4498
4499static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4500 struct ext4_iloc *iloc)
4501{
4502 ext4_fsblk_t err_blk = 0;
4503 int ret;
4504
4505 ret = __ext4_get_inode_loc(sb: inode->i_sb, ino: inode->i_ino, NULL, iloc,
4506 ret_block: &err_blk);
4507
4508 if (ret == -EIO)
4509 ext4_error_inode_block(inode, err_blk, EIO,
4510 "unable to read itable block");
4511
4512 return ret;
4513}
4514
4515int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4516{
4517 ext4_fsblk_t err_blk = 0;
4518 int ret;
4519
4520 ret = __ext4_get_inode_loc(sb: inode->i_sb, ino: inode->i_ino, inode, iloc,
4521 ret_block: &err_blk);
4522
4523 if (ret == -EIO)
4524 ext4_error_inode_block(inode, err_blk, EIO,
4525 "unable to read itable block");
4526
4527 return ret;
4528}
4529
4530
4531int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4532 struct ext4_iloc *iloc)
4533{
4534 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4535}
4536
4537static bool ext4_should_enable_dax(struct inode *inode)
4538{
4539 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
4540
4541 if (test_opt2(inode->i_sb, DAX_NEVER))
4542 return false;
4543 if (!S_ISREG(inode->i_mode))
4544 return false;
4545 if (ext4_should_journal_data(inode))
4546 return false;
4547 if (ext4_has_inline_data(inode))
4548 return false;
4549 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_ENCRYPT))
4550 return false;
4551 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_VERITY))
4552 return false;
4553 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4554 return false;
4555 if (test_opt(inode->i_sb, DAX_ALWAYS))
4556 return true;
4557
4558 return ext4_test_inode_flag(inode, bit: EXT4_INODE_DAX);
4559}
4560
4561void ext4_set_inode_flags(struct inode *inode, bool init)
4562{
4563 unsigned int flags = EXT4_I(inode)->i_flags;
4564 unsigned int new_fl = 0;
4565
4566 WARN_ON_ONCE(IS_DAX(inode) && init);
4567
4568 if (flags & EXT4_SYNC_FL)
4569 new_fl |= S_SYNC;
4570 if (flags & EXT4_APPEND_FL)
4571 new_fl |= S_APPEND;
4572 if (flags & EXT4_IMMUTABLE_FL)
4573 new_fl |= S_IMMUTABLE;
4574 if (flags & EXT4_NOATIME_FL)
4575 new_fl |= S_NOATIME;
4576 if (flags & EXT4_DIRSYNC_FL)
4577 new_fl |= S_DIRSYNC;
4578
4579 /* Because of the way inode_set_flags() works we must preserve S_DAX
4580 * here if already set. */
4581 new_fl |= (inode->i_flags & S_DAX);
4582 if (init && ext4_should_enable_dax(inode))
4583 new_fl |= S_DAX;
4584
4585 if (flags & EXT4_ENCRYPT_FL)
4586 new_fl |= S_ENCRYPTED;
4587 if (flags & EXT4_CASEFOLD_FL)
4588 new_fl |= S_CASEFOLD;
4589 if (flags & EXT4_VERITY_FL)
4590 new_fl |= S_VERITY;
4591 inode_set_flags(inode, flags: new_fl,
4592 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4593 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4594}
4595
4596static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4597 struct ext4_inode_info *ei)
4598{
4599 blkcnt_t i_blocks ;
4600 struct inode *inode = &(ei->vfs_inode);
4601 struct super_block *sb = inode->i_sb;
4602
4603 if (ext4_has_feature_huge_file(sb)) {
4604 /* we are using combined 48 bit field */
4605 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4606 le32_to_cpu(raw_inode->i_blocks_lo);
4607 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE)) {
4608 /* i_blocks represent file system block size */
4609 return i_blocks << (inode->i_blkbits - 9);
4610 } else {
4611 return i_blocks;
4612 }
4613 } else {
4614 return le32_to_cpu(raw_inode->i_blocks_lo);
4615 }
4616}
4617
4618static inline int ext4_iget_extra_inode(struct inode *inode,
4619 struct ext4_inode *raw_inode,
4620 struct ext4_inode_info *ei)
4621{
4622 __le32 *magic = (void *)raw_inode +
4623 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4624
4625 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4626 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4627 int err;
4628
4629 ext4_set_inode_state(inode, bit: EXT4_STATE_XATTR);
4630 err = ext4_find_inline_data_nolock(inode);
4631 if (!err && ext4_has_inline_data(inode))
4632 ext4_set_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA);
4633 return err;
4634 } else
4635 EXT4_I(inode)->i_inline_off = 0;
4636 return 0;
4637}
4638
4639int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4640{
4641 if (!ext4_has_feature_project(sb: inode->i_sb))
4642 return -EOPNOTSUPP;
4643 *projid = EXT4_I(inode)->i_projid;
4644 return 0;
4645}
4646
4647/*
4648 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4649 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4650 * set.
4651 */
4652static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4653{
4654 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4655 inode_set_iversion_raw(inode, val);
4656 else
4657 inode_set_iversion_queried(inode, val);
4658}
4659
4660static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4661
4662{
4663 if (flags & EXT4_IGET_EA_INODE) {
4664 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4665 return "missing EA_INODE flag";
4666 if (ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR) ||
4667 EXT4_I(inode)->i_file_acl)
4668 return "ea_inode with extended attributes";
4669 } else {
4670 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4671 return "unexpected EA_INODE flag";
4672 }
4673 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4674 return "unexpected bad inode w/o EXT4_IGET_BAD";
4675 return NULL;
4676}
4677
4678struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4679 ext4_iget_flags flags, const char *function,
4680 unsigned int line)
4681{
4682 struct ext4_iloc iloc;
4683 struct ext4_inode *raw_inode;
4684 struct ext4_inode_info *ei;
4685 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4686 struct inode *inode;
4687 const char *err_str;
4688 journal_t *journal = EXT4_SB(sb)->s_journal;
4689 long ret;
4690 loff_t size;
4691 int block;
4692 uid_t i_uid;
4693 gid_t i_gid;
4694 projid_t i_projid;
4695
4696 if ((!(flags & EXT4_IGET_SPECIAL) &&
4697 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4698 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4699 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4700 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4701 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4702 (ino < EXT4_ROOT_INO) ||
4703 (ino > le32_to_cpu(es->s_inodes_count))) {
4704 if (flags & EXT4_IGET_HANDLE)
4705 return ERR_PTR(error: -ESTALE);
4706 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4707 "inode #%lu: comm %s: iget: illegal inode #",
4708 ino, current->comm);
4709 return ERR_PTR(error: -EFSCORRUPTED);
4710 }
4711
4712 inode = iget_locked(sb, ino);
4713 if (!inode)
4714 return ERR_PTR(error: -ENOMEM);
4715 if (!(inode->i_state & I_NEW)) {
4716 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4717 ext4_error_inode(inode, function, line, 0, err_str);
4718 iput(inode);
4719 return ERR_PTR(error: -EFSCORRUPTED);
4720 }
4721 return inode;
4722 }
4723
4724 ei = EXT4_I(inode);
4725 iloc.bh = NULL;
4726
4727 ret = __ext4_get_inode_loc_noinmem(inode, iloc: &iloc);
4728 if (ret < 0)
4729 goto bad_inode;
4730 raw_inode = ext4_raw_inode(iloc: &iloc);
4731
4732 if ((flags & EXT4_IGET_HANDLE) &&
4733 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4734 ret = -ESTALE;
4735 goto bad_inode;
4736 }
4737
4738 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4739 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4740 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4741 EXT4_INODE_SIZE(inode->i_sb) ||
4742 (ei->i_extra_isize & 3)) {
4743 ext4_error_inode(inode, function, line, 0,
4744 "iget: bad extra_isize %u "
4745 "(inode size %u)",
4746 ei->i_extra_isize,
4747 EXT4_INODE_SIZE(inode->i_sb));
4748 ret = -EFSCORRUPTED;
4749 goto bad_inode;
4750 }
4751 } else
4752 ei->i_extra_isize = 0;
4753
4754 /* Precompute checksum seed for inode metadata */
4755 if (ext4_has_metadata_csum(sb)) {
4756 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
4757 __u32 csum;
4758 __le32 inum = cpu_to_le32(inode->i_ino);
4759 __le32 gen = raw_inode->i_generation;
4760 csum = ext4_chksum(sbi, crc: sbi->s_csum_seed, address: (__u8 *)&inum,
4761 length: sizeof(inum));
4762 ei->i_csum_seed = ext4_chksum(sbi, crc: csum, address: (__u8 *)&gen,
4763 length: sizeof(gen));
4764 }
4765
4766 if ((!ext4_inode_csum_verify(inode, raw: raw_inode, ei) ||
4767 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4768 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4769 ext4_error_inode_err(inode, function, line, 0,
4770 EFSBADCRC, "iget: checksum invalid");
4771 ret = -EFSBADCRC;
4772 goto bad_inode;
4773 }
4774
4775 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4776 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4777 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4778 if (ext4_has_feature_project(sb) &&
4779 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4780 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4781 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4782 else
4783 i_projid = EXT4_DEF_PROJID;
4784
4785 if (!(test_opt(inode->i_sb, NO_UID32))) {
4786 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4787 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4788 }
4789 i_uid_write(inode, uid: i_uid);
4790 i_gid_write(inode, gid: i_gid);
4791 ei->i_projid = make_kprojid(from: &init_user_ns, projid: i_projid);
4792 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4793
4794 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4795 ei->i_inline_off = 0;
4796 ei->i_dir_start_lookup = 0;
4797 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4798 /* We now have enough fields to check if the inode was active or not.
4799 * This is needed because nfsd might try to access dead inodes
4800 * the test is that same one that e2fsck uses
4801 * NeilBrown 1999oct15
4802 */
4803 if (inode->i_nlink == 0) {
4804 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4805 !(EXT4_SB(sb: inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4806 ino != EXT4_BOOT_LOADER_INO) {
4807 /* this inode is deleted or unallocated */
4808 if (flags & EXT4_IGET_SPECIAL) {
4809 ext4_error_inode(inode, function, line, 0,
4810 "iget: special inode unallocated");
4811 ret = -EFSCORRUPTED;
4812 } else
4813 ret = -ESTALE;
4814 goto bad_inode;
4815 }
4816 /* The only unlinked inodes we let through here have
4817 * valid i_mode and are being read by the orphan
4818 * recovery code: that's fine, we're about to complete
4819 * the process of deleting those.
4820 * OR it is the EXT4_BOOT_LOADER_INO which is
4821 * not initialized on a new filesystem. */
4822 }
4823 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4824 ext4_set_inode_flags(inode, init: true);
4825 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4826 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4827 if (ext4_has_feature_64bit(sb))
4828 ei->i_file_acl |=
4829 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4830 inode->i_size = ext4_isize(sb, raw_inode);
4831 if ((size = i_size_read(inode)) < 0) {
4832 ext4_error_inode(inode, function, line, 0,
4833 "iget: bad i_size value: %lld", size);
4834 ret = -EFSCORRUPTED;
4835 goto bad_inode;
4836 }
4837 /*
4838 * If dir_index is not enabled but there's dir with INDEX flag set,
4839 * we'd normally treat htree data as empty space. But with metadata
4840 * checksumming that corrupts checksums so forbid that.
4841 */
4842 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4843 ext4_test_inode_flag(inode, bit: EXT4_INODE_INDEX)) {
4844 ext4_error_inode(inode, function, line, 0,
4845 "iget: Dir with htree data on filesystem without dir_index feature.");
4846 ret = -EFSCORRUPTED;
4847 goto bad_inode;
4848 }
4849 ei->i_disksize = inode->i_size;
4850#ifdef CONFIG_QUOTA
4851 ei->i_reserved_quota = 0;
4852#endif
4853 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854 ei->i_block_group = iloc.block_group;
4855 ei->i_last_alloc_group = ~0;
4856 /*
4857 * NOTE! The in-memory inode i_data array is in little-endian order
4858 * even on big-endian machines: we do NOT byteswap the block numbers!
4859 */
4860 for (block = 0; block < EXT4_N_BLOCKS; block++)
4861 ei->i_data[block] = raw_inode->i_block[block];
4862 INIT_LIST_HEAD(list: &ei->i_orphan);
4863 ext4_fc_init_inode(inode: &ei->vfs_inode);
4864
4865 /*
4866 * Set transaction id's of transactions that have to be committed
4867 * to finish f[data]sync. We set them to currently running transaction
4868 * as we cannot be sure that the inode or some of its metadata isn't
4869 * part of the transaction - the inode could have been reclaimed and
4870 * now it is reread from disk.
4871 */
4872 if (journal) {
4873 transaction_t *transaction;
4874 tid_t tid;
4875
4876 read_lock(&journal->j_state_lock);
4877 if (journal->j_running_transaction)
4878 transaction = journal->j_running_transaction;
4879 else
4880 transaction = journal->j_committing_transaction;
4881 if (transaction)
4882 tid = transaction->t_tid;
4883 else
4884 tid = journal->j_commit_sequence;
4885 read_unlock(&journal->j_state_lock);
4886 ei->i_sync_tid = tid;
4887 ei->i_datasync_tid = tid;
4888 }
4889
4890 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4891 if (ei->i_extra_isize == 0) {
4892 /* The extra space is currently unused. Use it. */
4893 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4894 ei->i_extra_isize = sizeof(struct ext4_inode) -
4895 EXT4_GOOD_OLD_INODE_SIZE;
4896 } else {
4897 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4898 if (ret)
4899 goto bad_inode;
4900 }
4901 }
4902
4903 EXT4_INODE_GET_CTIME(inode, raw_inode);
4904 EXT4_INODE_GET_ATIME(inode, raw_inode);
4905 EXT4_INODE_GET_MTIME(inode, raw_inode);
4906 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4907
4908 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4909 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4910
4911 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4912 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4913 ivers |=
4914 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4915 }
4916 ext4_inode_set_iversion_queried(inode, val: ivers);
4917 }
4918
4919 ret = 0;
4920 if (ei->i_file_acl &&
4921 !ext4_inode_block_valid(inode, start_blk: ei->i_file_acl, count: 1)) {
4922 ext4_error_inode(inode, function, line, 0,
4923 "iget: bad extended attribute block %llu",
4924 ei->i_file_acl);
4925 ret = -EFSCORRUPTED;
4926 goto bad_inode;
4927 } else if (!ext4_has_inline_data(inode)) {
4928 /* validate the block references in the inode */
4929 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4930 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4931 (S_ISLNK(inode->i_mode) &&
4932 !ext4_inode_is_fast_symlink(inode)))) {
4933 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
4934 ret = ext4_ext_check_inode(inode);
4935 else
4936 ret = ext4_ind_check_inode(inode);
4937 }
4938 }
4939 if (ret)
4940 goto bad_inode;
4941
4942 if (S_ISREG(inode->i_mode)) {
4943 inode->i_op = &ext4_file_inode_operations;
4944 inode->i_fop = &ext4_file_operations;
4945 ext4_set_aops(inode);
4946 } else if (S_ISDIR(inode->i_mode)) {
4947 inode->i_op = &ext4_dir_inode_operations;
4948 inode->i_fop = &ext4_dir_operations;
4949 } else if (S_ISLNK(inode->i_mode)) {
4950 /* VFS does not allow setting these so must be corruption */
4951 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4952 ext4_error_inode(inode, function, line, 0,
4953 "iget: immutable or append flags "
4954 "not allowed on symlinks");
4955 ret = -EFSCORRUPTED;
4956 goto bad_inode;
4957 }
4958 if (IS_ENCRYPTED(inode)) {
4959 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4960 } else if (ext4_inode_is_fast_symlink(inode)) {
4961 inode->i_link = (char *)ei->i_data;
4962 inode->i_op = &ext4_fast_symlink_inode_operations;
4963 nd_terminate_link(name: ei->i_data, len: inode->i_size,
4964 maxlen: sizeof(ei->i_data) - 1);
4965 } else {
4966 inode->i_op = &ext4_symlink_inode_operations;
4967 }
4968 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4969 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4970 inode->i_op = &ext4_special_inode_operations;
4971 if (raw_inode->i_block[0])
4972 init_special_inode(inode, inode->i_mode,
4973 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4974 else
4975 init_special_inode(inode, inode->i_mode,
4976 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4977 } else if (ino == EXT4_BOOT_LOADER_INO) {
4978 make_bad_inode(inode);
4979 } else {
4980 ret = -EFSCORRUPTED;
4981 ext4_error_inode(inode, function, line, 0,
4982 "iget: bogus i_mode (%o)", inode->i_mode);
4983 goto bad_inode;
4984 }
4985 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(sb: inode->i_sb)) {
4986 ext4_error_inode(inode, function, line, 0,
4987 "casefold flag without casefold feature");
4988 ret = -EFSCORRUPTED;
4989 goto bad_inode;
4990 }
4991 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4992 ext4_error_inode(inode, function, line, 0, err_str);
4993 ret = -EFSCORRUPTED;
4994 goto bad_inode;
4995 }
4996
4997 brelse(bh: iloc.bh);
4998 unlock_new_inode(inode);
4999 return inode;
5000
5001bad_inode:
5002 brelse(bh: iloc.bh);
5003 iget_failed(inode);
5004 return ERR_PTR(error: ret);
5005}
5006
5007static void __ext4_update_other_inode_time(struct super_block *sb,
5008 unsigned long orig_ino,
5009 unsigned long ino,
5010 struct ext4_inode *raw_inode)
5011{
5012 struct inode *inode;
5013
5014 inode = find_inode_by_ino_rcu(sb, ino);
5015 if (!inode)
5016 return;
5017
5018 if (!inode_is_dirtytime_only(inode))
5019 return;
5020
5021 spin_lock(lock: &inode->i_lock);
5022 if (inode_is_dirtytime_only(inode)) {
5023 struct ext4_inode_info *ei = EXT4_I(inode);
5024
5025 inode->i_state &= ~I_DIRTY_TIME;
5026 spin_unlock(lock: &inode->i_lock);
5027
5028 spin_lock(lock: &ei->i_raw_lock);
5029 EXT4_INODE_SET_CTIME(inode, raw_inode);
5030 EXT4_INODE_SET_MTIME(inode, raw_inode);
5031 EXT4_INODE_SET_ATIME(inode, raw_inode);
5032 ext4_inode_csum_set(inode, raw: raw_inode, ei);
5033 spin_unlock(lock: &ei->i_raw_lock);
5034 trace_ext4_other_inode_update_time(inode, orig_ino);
5035 return;
5036 }
5037 spin_unlock(lock: &inode->i_lock);
5038}
5039
5040/*
5041 * Opportunistically update the other time fields for other inodes in
5042 * the same inode table block.
5043 */
5044static void ext4_update_other_inodes_time(struct super_block *sb,
5045 unsigned long orig_ino, char *buf)
5046{
5047 unsigned long ino;
5048 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5049 int inode_size = EXT4_INODE_SIZE(sb);
5050
5051 /*
5052 * Calculate the first inode in the inode table block. Inode
5053 * numbers are one-based. That is, the first inode in a block
5054 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5055 */
5056 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5057 rcu_read_lock();
5058 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5059 if (ino == orig_ino)
5060 continue;
5061 __ext4_update_other_inode_time(sb, orig_ino, ino,
5062 raw_inode: (struct ext4_inode *)buf);
5063 }
5064 rcu_read_unlock();
5065}
5066
5067/*
5068 * Post the struct inode info into an on-disk inode location in the
5069 * buffer-cache. This gobbles the caller's reference to the
5070 * buffer_head in the inode location struct.
5071 *
5072 * The caller must have write access to iloc->bh.
5073 */
5074static int ext4_do_update_inode(handle_t *handle,
5075 struct inode *inode,
5076 struct ext4_iloc *iloc)
5077{
5078 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5079 struct ext4_inode_info *ei = EXT4_I(inode);
5080 struct buffer_head *bh = iloc->bh;
5081 struct super_block *sb = inode->i_sb;
5082 int err;
5083 int need_datasync = 0, set_large_file = 0;
5084
5085 spin_lock(lock: &ei->i_raw_lock);
5086
5087 /*
5088 * For fields not tracked in the in-memory inode, initialise them
5089 * to zero for new inodes.
5090 */
5091 if (ext4_test_inode_state(inode, bit: EXT4_STATE_NEW))
5092 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5093
5094 if (READ_ONCE(ei->i_disksize) != ext4_isize(sb: inode->i_sb, raw_inode))
5095 need_datasync = 1;
5096 if (ei->i_disksize > 0x7fffffffULL) {
5097 if (!ext4_has_feature_large_file(sb) ||
5098 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5099 set_large_file = 1;
5100 }
5101
5102 err = ext4_fill_raw_inode(inode, raw_inode);
5103 spin_unlock(lock: &ei->i_raw_lock);
5104 if (err) {
5105 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5106 goto out_brelse;
5107 }
5108
5109 if (inode->i_sb->s_flags & SB_LAZYTIME)
5110 ext4_update_other_inodes_time(sb: inode->i_sb, orig_ino: inode->i_ino,
5111 buf: bh->b_data);
5112
5113 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5114 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5115 if (err)
5116 goto out_error;
5117 ext4_clear_inode_state(inode, bit: EXT4_STATE_NEW);
5118 if (set_large_file) {
5119 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5120 err = ext4_journal_get_write_access(handle, sb,
5121 EXT4_SB(sb)->s_sbh,
5122 EXT4_JTR_NONE);
5123 if (err)
5124 goto out_error;
5125 lock_buffer(bh: EXT4_SB(sb)->s_sbh);
5126 ext4_set_feature_large_file(sb);
5127 ext4_superblock_csum_set(sb);
5128 unlock_buffer(bh: EXT4_SB(sb)->s_sbh);
5129 ext4_handle_sync(handle);
5130 err = ext4_handle_dirty_metadata(handle, NULL,
5131 EXT4_SB(sb)->s_sbh);
5132 }
5133 ext4_update_inode_fsync_trans(handle, inode, datasync: need_datasync);
5134out_error:
5135 ext4_std_error(inode->i_sb, err);
5136out_brelse:
5137 brelse(bh);
5138 return err;
5139}
5140
5141/*
5142 * ext4_write_inode()
5143 *
5144 * We are called from a few places:
5145 *
5146 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5147 * Here, there will be no transaction running. We wait for any running
5148 * transaction to commit.
5149 *
5150 * - Within flush work (sys_sync(), kupdate and such).
5151 * We wait on commit, if told to.
5152 *
5153 * - Within iput_final() -> write_inode_now()
5154 * We wait on commit, if told to.
5155 *
5156 * In all cases it is actually safe for us to return without doing anything,
5157 * because the inode has been copied into a raw inode buffer in
5158 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5159 * writeback.
5160 *
5161 * Note that we are absolutely dependent upon all inode dirtiers doing the
5162 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5163 * which we are interested.
5164 *
5165 * It would be a bug for them to not do this. The code:
5166 *
5167 * mark_inode_dirty(inode)
5168 * stuff();
5169 * inode->i_size = expr;
5170 *
5171 * is in error because write_inode() could occur while `stuff()' is running,
5172 * and the new i_size will be lost. Plus the inode will no longer be on the
5173 * superblock's dirty inode list.
5174 */
5175int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5176{
5177 int err;
5178
5179 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5180 return 0;
5181
5182 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5183 return -EIO;
5184
5185 if (EXT4_SB(sb: inode->i_sb)->s_journal) {
5186 if (ext4_journal_current_handle()) {
5187 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5188 dump_stack();
5189 return -EIO;
5190 }
5191
5192 /*
5193 * No need to force transaction in WB_SYNC_NONE mode. Also
5194 * ext4_sync_fs() will force the commit after everything is
5195 * written.
5196 */
5197 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5198 return 0;
5199
5200 err = ext4_fc_commit(journal: EXT4_SB(sb: inode->i_sb)->s_journal,
5201 EXT4_I(inode)->i_sync_tid);
5202 } else {
5203 struct ext4_iloc iloc;
5204
5205 err = __ext4_get_inode_loc_noinmem(inode, iloc: &iloc);
5206 if (err)
5207 return err;
5208 /*
5209 * sync(2) will flush the whole buffer cache. No need to do
5210 * it here separately for each inode.
5211 */
5212 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5213 sync_dirty_buffer(bh: iloc.bh);
5214 if (buffer_req(bh: iloc.bh) && !buffer_uptodate(bh: iloc.bh)) {
5215 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5216 "IO error syncing inode");
5217 err = -EIO;
5218 }
5219 brelse(bh: iloc.bh);
5220 }
5221 return err;
5222}
5223
5224/*
5225 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5226 * buffers that are attached to a folio straddling i_size and are undergoing
5227 * commit. In that case we have to wait for commit to finish and try again.
5228 */
5229static void ext4_wait_for_tail_page_commit(struct inode *inode)
5230{
5231 unsigned offset;
5232 journal_t *journal = EXT4_SB(sb: inode->i_sb)->s_journal;
5233 tid_t commit_tid = 0;
5234 int ret;
5235
5236 offset = inode->i_size & (PAGE_SIZE - 1);
5237 /*
5238 * If the folio is fully truncated, we don't need to wait for any commit
5239 * (and we even should not as __ext4_journalled_invalidate_folio() may
5240 * strip all buffers from the folio but keep the folio dirty which can then
5241 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5242 * buffers). Also we don't need to wait for any commit if all buffers in
5243 * the folio remain valid. This is most beneficial for the common case of
5244 * blocksize == PAGESIZE.
5245 */
5246 if (!offset || offset > (PAGE_SIZE - i_blocksize(node: inode)))
5247 return;
5248 while (1) {
5249 struct folio *folio = filemap_lock_folio(mapping: inode->i_mapping,
5250 index: inode->i_size >> PAGE_SHIFT);
5251 if (IS_ERR(ptr: folio))
5252 return;
5253 ret = __ext4_journalled_invalidate_folio(folio, offset,
5254 length: folio_size(folio) - offset);
5255 folio_unlock(folio);
5256 folio_put(folio);
5257 if (ret != -EBUSY)
5258 return;
5259 commit_tid = 0;
5260 read_lock(&journal->j_state_lock);
5261 if (journal->j_committing_transaction)
5262 commit_tid = journal->j_committing_transaction->t_tid;
5263 read_unlock(&journal->j_state_lock);
5264 if (commit_tid)
5265 jbd2_log_wait_commit(journal, tid: commit_tid);
5266 }
5267}
5268
5269/*
5270 * ext4_setattr()
5271 *
5272 * Called from notify_change.
5273 *
5274 * We want to trap VFS attempts to truncate the file as soon as
5275 * possible. In particular, we want to make sure that when the VFS
5276 * shrinks i_size, we put the inode on the orphan list and modify
5277 * i_disksize immediately, so that during the subsequent flushing of
5278 * dirty pages and freeing of disk blocks, we can guarantee that any
5279 * commit will leave the blocks being flushed in an unused state on
5280 * disk. (On recovery, the inode will get truncated and the blocks will
5281 * be freed, so we have a strong guarantee that no future commit will
5282 * leave these blocks visible to the user.)
5283 *
5284 * Another thing we have to assure is that if we are in ordered mode
5285 * and inode is still attached to the committing transaction, we must
5286 * we start writeout of all the dirty pages which are being truncated.
5287 * This way we are sure that all the data written in the previous
5288 * transaction are already on disk (truncate waits for pages under
5289 * writeback).
5290 *
5291 * Called with inode->i_rwsem down.
5292 */
5293int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5294 struct iattr *attr)
5295{
5296 struct inode *inode = d_inode(dentry);
5297 int error, rc = 0;
5298 int orphan = 0;
5299 const unsigned int ia_valid = attr->ia_valid;
5300 bool inc_ivers = true;
5301
5302 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5303 return -EIO;
5304
5305 if (unlikely(IS_IMMUTABLE(inode)))
5306 return -EPERM;
5307
5308 if (unlikely(IS_APPEND(inode) &&
5309 (ia_valid & (ATTR_MODE | ATTR_UID |
5310 ATTR_GID | ATTR_TIMES_SET))))
5311 return -EPERM;
5312
5313 error = setattr_prepare(idmap, dentry, attr);
5314 if (error)
5315 return error;
5316
5317 error = fscrypt_prepare_setattr(dentry, attr);
5318 if (error)
5319 return error;
5320
5321 error = fsverity_prepare_setattr(dentry, attr);
5322 if (error)
5323 return error;
5324
5325 if (is_quota_modification(idmap, inode, ia: attr)) {
5326 error = dquot_initialize(inode);
5327 if (error)
5328 return error;
5329 }
5330
5331 if (i_uid_needs_update(idmap, attr, inode) ||
5332 i_gid_needs_update(idmap, attr, inode)) {
5333 handle_t *handle;
5334
5335 /* (user+group)*(old+new) structure, inode write (sb,
5336 * inode block, ? - but truncate inode update has it) */
5337 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5338 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5339 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5340 if (IS_ERR(ptr: handle)) {
5341 error = PTR_ERR(ptr: handle);
5342 goto err_out;
5343 }
5344
5345 /* dquot_transfer() calls back ext4_get_inode_usage() which
5346 * counts xattr inode references.
5347 */
5348 down_read(sem: &EXT4_I(inode)->xattr_sem);
5349 error = dquot_transfer(idmap, inode, iattr: attr);
5350 up_read(sem: &EXT4_I(inode)->xattr_sem);
5351
5352 if (error) {
5353 ext4_journal_stop(handle);
5354 return error;
5355 }
5356 /* Update corresponding info in inode so that everything is in
5357 * one transaction */
5358 i_uid_update(idmap, attr, inode);
5359 i_gid_update(idmap, attr, inode);
5360 error = ext4_mark_inode_dirty(handle, inode);
5361 ext4_journal_stop(handle);
5362 if (unlikely(error)) {
5363 return error;
5364 }
5365 }
5366
5367 if (attr->ia_valid & ATTR_SIZE) {
5368 handle_t *handle;
5369 loff_t oldsize = inode->i_size;
5370 loff_t old_disksize;
5371 int shrink = (attr->ia_size < inode->i_size);
5372
5373 if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))) {
5374 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
5375
5376 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5377 return -EFBIG;
5378 }
5379 }
5380 if (!S_ISREG(inode->i_mode)) {
5381 return -EINVAL;
5382 }
5383
5384 if (attr->ia_size == inode->i_size)
5385 inc_ivers = false;
5386
5387 if (shrink) {
5388 if (ext4_should_order_data(inode)) {
5389 error = ext4_begin_ordered_truncate(inode,
5390 new_size: attr->ia_size);
5391 if (error)
5392 goto err_out;
5393 }
5394 /*
5395 * Blocks are going to be removed from the inode. Wait
5396 * for dio in flight.
5397 */
5398 inode_dio_wait(inode);
5399 }
5400
5401 filemap_invalidate_lock(mapping: inode->i_mapping);
5402
5403 rc = ext4_break_layouts(inode);
5404 if (rc) {
5405 filemap_invalidate_unlock(mapping: inode->i_mapping);
5406 goto err_out;
5407 }
5408
5409 if (attr->ia_size != inode->i_size) {
5410 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5411 if (IS_ERR(ptr: handle)) {
5412 error = PTR_ERR(ptr: handle);
5413 goto out_mmap_sem;
5414 }
5415 if (ext4_handle_valid(handle) && shrink) {
5416 error = ext4_orphan_add(handle, inode);
5417 orphan = 1;
5418 }
5419 /*
5420 * Update c/mtime on truncate up, ext4_truncate() will
5421 * update c/mtime in shrink case below
5422 */
5423 if (!shrink)
5424 inode_set_mtime_to_ts(inode,
5425 ts: inode_set_ctime_current(inode));
5426
5427 if (shrink)
5428 ext4_fc_track_range(handle, inode,
5429 start: (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5430 inode->i_sb->s_blocksize_bits,
5431 EXT_MAX_BLOCKS - 1);
5432 else
5433 ext4_fc_track_range(
5434 handle, inode,
5435 start: (oldsize > 0 ? oldsize - 1 : oldsize) >>
5436 inode->i_sb->s_blocksize_bits,
5437 end: (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5438 inode->i_sb->s_blocksize_bits);
5439
5440 down_write(sem: &EXT4_I(inode)->i_data_sem);
5441 old_disksize = EXT4_I(inode)->i_disksize;
5442 EXT4_I(inode)->i_disksize = attr->ia_size;
5443 rc = ext4_mark_inode_dirty(handle, inode);
5444 if (!error)
5445 error = rc;
5446 /*
5447 * We have to update i_size under i_data_sem together
5448 * with i_disksize to avoid races with writeback code
5449 * running ext4_wb_update_i_disksize().
5450 */
5451 if (!error)
5452 i_size_write(inode, i_size: attr->ia_size);
5453 else
5454 EXT4_I(inode)->i_disksize = old_disksize;
5455 up_write(sem: &EXT4_I(inode)->i_data_sem);
5456 ext4_journal_stop(handle);
5457 if (error)
5458 goto out_mmap_sem;
5459 if (!shrink) {
5460 pagecache_isize_extended(inode, from: oldsize,
5461 to: inode->i_size);
5462 } else if (ext4_should_journal_data(inode)) {
5463 ext4_wait_for_tail_page_commit(inode);
5464 }
5465 }
5466
5467 /*
5468 * Truncate pagecache after we've waited for commit
5469 * in data=journal mode to make pages freeable.
5470 */
5471 truncate_pagecache(inode, new: inode->i_size);
5472 /*
5473 * Call ext4_truncate() even if i_size didn't change to
5474 * truncate possible preallocated blocks.
5475 */
5476 if (attr->ia_size <= oldsize) {
5477 rc = ext4_truncate(inode);
5478 if (rc)
5479 error = rc;
5480 }
5481out_mmap_sem:
5482 filemap_invalidate_unlock(mapping: inode->i_mapping);
5483 }
5484
5485 if (!error) {
5486 if (inc_ivers)
5487 inode_inc_iversion(inode);
5488 setattr_copy(idmap, inode, attr);
5489 mark_inode_dirty(inode);
5490 }
5491
5492 /*
5493 * If the call to ext4_truncate failed to get a transaction handle at
5494 * all, we need to clean up the in-core orphan list manually.
5495 */
5496 if (orphan && inode->i_nlink)
5497 ext4_orphan_del(NULL, inode);
5498
5499 if (!error && (ia_valid & ATTR_MODE))
5500 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5501
5502err_out:
5503 if (error)
5504 ext4_std_error(inode->i_sb, error);
5505 if (!error)
5506 error = rc;
5507 return error;
5508}
5509
5510u32 ext4_dio_alignment(struct inode *inode)
5511{
5512 if (fsverity_active(inode))
5513 return 0;
5514 if (ext4_should_journal_data(inode))
5515 return 0;
5516 if (ext4_has_inline_data(inode))
5517 return 0;
5518 if (IS_ENCRYPTED(inode)) {
5519 if (!fscrypt_dio_supported(inode))
5520 return 0;
5521 return i_blocksize(node: inode);
5522 }
5523 return 1; /* use the iomap defaults */
5524}
5525
5526int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5527 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5528{
5529 struct inode *inode = d_inode(dentry: path->dentry);
5530 struct ext4_inode *raw_inode;
5531 struct ext4_inode_info *ei = EXT4_I(inode);
5532 unsigned int flags;
5533
5534 if ((request_mask & STATX_BTIME) &&
5535 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5536 stat->result_mask |= STATX_BTIME;
5537 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5538 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5539 }
5540
5541 /*
5542 * Return the DIO alignment restrictions if requested. We only return
5543 * this information when requested, since on encrypted files it might
5544 * take a fair bit of work to get if the file wasn't opened recently.
5545 */
5546 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5547 u32 dio_align = ext4_dio_alignment(inode);
5548
5549 stat->result_mask |= STATX_DIOALIGN;
5550 if (dio_align == 1) {
5551 struct block_device *bdev = inode->i_sb->s_bdev;
5552
5553 /* iomap defaults */
5554 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5555 stat->dio_offset_align = bdev_logical_block_size(bdev);
5556 } else {
5557 stat->dio_mem_align = dio_align;
5558 stat->dio_offset_align = dio_align;
5559 }
5560 }
5561
5562 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5563 if (flags & EXT4_APPEND_FL)
5564 stat->attributes |= STATX_ATTR_APPEND;
5565 if (flags & EXT4_COMPR_FL)
5566 stat->attributes |= STATX_ATTR_COMPRESSED;
5567 if (flags & EXT4_ENCRYPT_FL)
5568 stat->attributes |= STATX_ATTR_ENCRYPTED;
5569 if (flags & EXT4_IMMUTABLE_FL)
5570 stat->attributes |= STATX_ATTR_IMMUTABLE;
5571 if (flags & EXT4_NODUMP_FL)
5572 stat->attributes |= STATX_ATTR_NODUMP;
5573 if (flags & EXT4_VERITY_FL)
5574 stat->attributes |= STATX_ATTR_VERITY;
5575
5576 stat->attributes_mask |= (STATX_ATTR_APPEND |
5577 STATX_ATTR_COMPRESSED |
5578 STATX_ATTR_ENCRYPTED |
5579 STATX_ATTR_IMMUTABLE |
5580 STATX_ATTR_NODUMP |
5581 STATX_ATTR_VERITY);
5582
5583 generic_fillattr(idmap, request_mask, inode, stat);
5584 return 0;
5585}
5586
5587int ext4_file_getattr(struct mnt_idmap *idmap,
5588 const struct path *path, struct kstat *stat,
5589 u32 request_mask, unsigned int query_flags)
5590{
5591 struct inode *inode = d_inode(dentry: path->dentry);
5592 u64 delalloc_blocks;
5593
5594 ext4_getattr(idmap, path, stat, request_mask, query_flags);
5595
5596 /*
5597 * If there is inline data in the inode, the inode will normally not
5598 * have data blocks allocated (it may have an external xattr block).
5599 * Report at least one sector for such files, so tools like tar, rsync,
5600 * others don't incorrectly think the file is completely sparse.
5601 */
5602 if (unlikely(ext4_has_inline_data(inode)))
5603 stat->blocks += (stat->size + 511) >> 9;
5604
5605 /*
5606 * We can't update i_blocks if the block allocation is delayed
5607 * otherwise in the case of system crash before the real block
5608 * allocation is done, we will have i_blocks inconsistent with
5609 * on-disk file blocks.
5610 * We always keep i_blocks updated together with real
5611 * allocation. But to not confuse with user, stat
5612 * will return the blocks that include the delayed allocation
5613 * blocks for this file.
5614 */
5615 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5616 EXT4_I(inode)->i_reserved_data_blocks);
5617 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5618 return 0;
5619}
5620
5621static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5622 int pextents)
5623{
5624 if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)))
5625 return ext4_ind_trans_blocks(inode, nrblocks: lblocks);
5626 return ext4_ext_index_trans_blocks(inode, extents: pextents);
5627}
5628
5629/*
5630 * Account for index blocks, block groups bitmaps and block group
5631 * descriptor blocks if modify datablocks and index blocks
5632 * worse case, the indexs blocks spread over different block groups
5633 *
5634 * If datablocks are discontiguous, they are possible to spread over
5635 * different block groups too. If they are contiguous, with flexbg,
5636 * they could still across block group boundary.
5637 *
5638 * Also account for superblock, inode, quota and xattr blocks
5639 */
5640static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5641 int pextents)
5642{
5643 ext4_group_t groups, ngroups = ext4_get_groups_count(sb: inode->i_sb);
5644 int gdpblocks;
5645 int idxblocks;
5646 int ret;
5647
5648 /*
5649 * How many index blocks need to touch to map @lblocks logical blocks
5650 * to @pextents physical extents?
5651 */
5652 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5653
5654 ret = idxblocks;
5655
5656 /*
5657 * Now let's see how many group bitmaps and group descriptors need
5658 * to account
5659 */
5660 groups = idxblocks + pextents;
5661 gdpblocks = groups;
5662 if (groups > ngroups)
5663 groups = ngroups;
5664 if (groups > EXT4_SB(sb: inode->i_sb)->s_gdb_count)
5665 gdpblocks = EXT4_SB(sb: inode->i_sb)->s_gdb_count;
5666
5667 /* bitmaps and block group descriptor blocks */
5668 ret += groups + gdpblocks;
5669
5670 /* Blocks for super block, inode, quota and xattr blocks */
5671 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5672
5673 return ret;
5674}
5675
5676/*
5677 * Calculate the total number of credits to reserve to fit
5678 * the modification of a single pages into a single transaction,
5679 * which may include multiple chunks of block allocations.
5680 *
5681 * This could be called via ext4_write_begin()
5682 *
5683 * We need to consider the worse case, when
5684 * one new block per extent.
5685 */
5686int ext4_writepage_trans_blocks(struct inode *inode)
5687{
5688 int bpp = ext4_journal_blocks_per_page(inode);
5689 int ret;
5690
5691 ret = ext4_meta_trans_blocks(inode, lblocks: bpp, pextents: bpp);
5692
5693 /* Account for data blocks for journalled mode */
5694 if (ext4_should_journal_data(inode))
5695 ret += bpp;
5696 return ret;
5697}
5698
5699/*
5700 * Calculate the journal credits for a chunk of data modification.
5701 *
5702 * This is called from DIO, fallocate or whoever calling
5703 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5704 *
5705 * journal buffers for data blocks are not included here, as DIO
5706 * and fallocate do no need to journal data buffers.
5707 */
5708int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5709{
5710 return ext4_meta_trans_blocks(inode, lblocks: nrblocks, pextents: 1);
5711}
5712
5713/*
5714 * The caller must have previously called ext4_reserve_inode_write().
5715 * Give this, we know that the caller already has write access to iloc->bh.
5716 */
5717int ext4_mark_iloc_dirty(handle_t *handle,
5718 struct inode *inode, struct ext4_iloc *iloc)
5719{
5720 int err = 0;
5721
5722 if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5723 put_bh(bh: iloc->bh);
5724 return -EIO;
5725 }
5726 ext4_fc_track_inode(handle, inode);
5727
5728 /* the do_update_inode consumes one bh->b_count */
5729 get_bh(bh: iloc->bh);
5730
5731 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5732 err = ext4_do_update_inode(handle, inode, iloc);
5733 put_bh(bh: iloc->bh);
5734 return err;
5735}
5736
5737/*
5738 * On success, We end up with an outstanding reference count against
5739 * iloc->bh. This _must_ be cleaned up later.
5740 */
5741
5742int
5743ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5744 struct ext4_iloc *iloc)
5745{
5746 int err;
5747
5748 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5749 return -EIO;
5750
5751 err = ext4_get_inode_loc(inode, iloc);
5752 if (!err) {
5753 BUFFER_TRACE(iloc->bh, "get_write_access");
5754 err = ext4_journal_get_write_access(handle, inode->i_sb,
5755 iloc->bh, EXT4_JTR_NONE);
5756 if (err) {
5757 brelse(bh: iloc->bh);
5758 iloc->bh = NULL;
5759 }
5760 }
5761 ext4_std_error(inode->i_sb, err);
5762 return err;
5763}
5764
5765static int __ext4_expand_extra_isize(struct inode *inode,
5766 unsigned int new_extra_isize,
5767 struct ext4_iloc *iloc,
5768 handle_t *handle, int *no_expand)
5769{
5770 struct ext4_inode *raw_inode;
5771 struct ext4_xattr_ibody_header *header;
5772 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5773 struct ext4_inode_info *ei = EXT4_I(inode);
5774 int error;
5775
5776 /* this was checked at iget time, but double check for good measure */
5777 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5778 (ei->i_extra_isize & 3)) {
5779 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5780 ei->i_extra_isize,
5781 EXT4_INODE_SIZE(inode->i_sb));
5782 return -EFSCORRUPTED;
5783 }
5784 if ((new_extra_isize < ei->i_extra_isize) ||
5785 (new_extra_isize < 4) ||
5786 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5787 return -EINVAL; /* Should never happen */
5788
5789 raw_inode = ext4_raw_inode(iloc);
5790
5791 header = IHDR(inode, raw_inode);
5792
5793 /* No extended attributes present */
5794 if (!ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR) ||
5795 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5796 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5797 EXT4_I(inode)->i_extra_isize, 0,
5798 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5799 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5800 return 0;
5801 }
5802
5803 /*
5804 * We may need to allocate external xattr block so we need quotas
5805 * initialized. Here we can be called with various locks held so we
5806 * cannot affort to initialize quotas ourselves. So just bail.
5807 */
5808 if (dquot_initialize_needed(inode))
5809 return -EAGAIN;
5810
5811 /* try to expand with EAs present */
5812 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5813 raw_inode, handle);
5814 if (error) {
5815 /*
5816 * Inode size expansion failed; don't try again
5817 */
5818 *no_expand = 1;
5819 }
5820
5821 return error;
5822}
5823
5824/*
5825 * Expand an inode by new_extra_isize bytes.
5826 * Returns 0 on success or negative error number on failure.
5827 */
5828static int ext4_try_to_expand_extra_isize(struct inode *inode,
5829 unsigned int new_extra_isize,
5830 struct ext4_iloc iloc,
5831 handle_t *handle)
5832{
5833 int no_expand;
5834 int error;
5835
5836 if (ext4_test_inode_state(inode, bit: EXT4_STATE_NO_EXPAND))
5837 return -EOVERFLOW;
5838
5839 /*
5840 * In nojournal mode, we can immediately attempt to expand
5841 * the inode. When journaled, we first need to obtain extra
5842 * buffer credits since we may write into the EA block
5843 * with this same handle. If journal_extend fails, then it will
5844 * only result in a minor loss of functionality for that inode.
5845 * If this is felt to be critical, then e2fsck should be run to
5846 * force a large enough s_min_extra_isize.
5847 */
5848 if (ext4_journal_extend(handle,
5849 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), revoke: 0) != 0)
5850 return -ENOSPC;
5851
5852 if (ext4_write_trylock_xattr(inode, save: &no_expand) == 0)
5853 return -EBUSY;
5854
5855 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc: &iloc,
5856 handle, no_expand: &no_expand);
5857 ext4_write_unlock_xattr(inode, save: &no_expand);
5858
5859 return error;
5860}
5861
5862int ext4_expand_extra_isize(struct inode *inode,
5863 unsigned int new_extra_isize,
5864 struct ext4_iloc *iloc)
5865{
5866 handle_t *handle;
5867 int no_expand;
5868 int error, rc;
5869
5870 if (ext4_test_inode_state(inode, bit: EXT4_STATE_NO_EXPAND)) {
5871 brelse(bh: iloc->bh);
5872 return -EOVERFLOW;
5873 }
5874
5875 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5876 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5877 if (IS_ERR(ptr: handle)) {
5878 error = PTR_ERR(ptr: handle);
5879 brelse(bh: iloc->bh);
5880 return error;
5881 }
5882
5883 ext4_write_lock_xattr(inode, save: &no_expand);
5884
5885 BUFFER_TRACE(iloc->bh, "get_write_access");
5886 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5887 EXT4_JTR_NONE);
5888 if (error) {
5889 brelse(bh: iloc->bh);
5890 goto out_unlock;
5891 }
5892
5893 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5894 handle, no_expand: &no_expand);
5895
5896 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5897 if (!error)
5898 error = rc;
5899
5900out_unlock:
5901 ext4_write_unlock_xattr(inode, save: &no_expand);
5902 ext4_journal_stop(handle);
5903 return error;
5904}
5905
5906/*
5907 * What we do here is to mark the in-core inode as clean with respect to inode
5908 * dirtiness (it may still be data-dirty).
5909 * This means that the in-core inode may be reaped by prune_icache
5910 * without having to perform any I/O. This is a very good thing,
5911 * because *any* task may call prune_icache - even ones which
5912 * have a transaction open against a different journal.
5913 *
5914 * Is this cheating? Not really. Sure, we haven't written the
5915 * inode out, but prune_icache isn't a user-visible syncing function.
5916 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5917 * we start and wait on commits.
5918 */
5919int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5920 const char *func, unsigned int line)
5921{
5922 struct ext4_iloc iloc;
5923 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
5924 int err;
5925
5926 might_sleep();
5927 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5928 err = ext4_reserve_inode_write(handle, inode, iloc: &iloc);
5929 if (err)
5930 goto out;
5931
5932 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5933 ext4_try_to_expand_extra_isize(inode, new_extra_isize: sbi->s_want_extra_isize,
5934 iloc, handle);
5935
5936 err = ext4_mark_iloc_dirty(handle, inode, iloc: &iloc);
5937out:
5938 if (unlikely(err))
5939 ext4_error_inode_err(inode, func, line, 0, err,
5940 "mark_inode_dirty error");
5941 return err;
5942}
5943
5944/*
5945 * ext4_dirty_inode() is called from __mark_inode_dirty()
5946 *
5947 * We're really interested in the case where a file is being extended.
5948 * i_size has been changed by generic_commit_write() and we thus need
5949 * to include the updated inode in the current transaction.
5950 *
5951 * Also, dquot_alloc_block() will always dirty the inode when blocks
5952 * are allocated to the file.
5953 *
5954 * If the inode is marked synchronous, we don't honour that here - doing
5955 * so would cause a commit on atime updates, which we don't bother doing.
5956 * We handle synchronous inodes at the highest possible level.
5957 */
5958void ext4_dirty_inode(struct inode *inode, int flags)
5959{
5960 handle_t *handle;
5961
5962 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5963 if (IS_ERR(ptr: handle))
5964 return;
5965 ext4_mark_inode_dirty(handle, inode);
5966 ext4_journal_stop(handle);
5967}
5968
5969int ext4_change_inode_journal_flag(struct inode *inode, int val)
5970{
5971 journal_t *journal;
5972 handle_t *handle;
5973 int err;
5974 int alloc_ctx;
5975
5976 /*
5977 * We have to be very careful here: changing a data block's
5978 * journaling status dynamically is dangerous. If we write a
5979 * data block to the journal, change the status and then delete
5980 * that block, we risk forgetting to revoke the old log record
5981 * from the journal and so a subsequent replay can corrupt data.
5982 * So, first we make sure that the journal is empty and that
5983 * nobody is changing anything.
5984 */
5985
5986 journal = EXT4_JOURNAL(inode);
5987 if (!journal)
5988 return 0;
5989 if (is_journal_aborted(journal))
5990 return -EROFS;
5991
5992 /* Wait for all existing dio workers */
5993 inode_dio_wait(inode);
5994
5995 /*
5996 * Before flushing the journal and switching inode's aops, we have
5997 * to flush all dirty data the inode has. There can be outstanding
5998 * delayed allocations, there can be unwritten extents created by
5999 * fallocate or buffered writes in dioread_nolock mode covered by
6000 * dirty data which can be converted only after flushing the dirty
6001 * data (and journalled aops don't know how to handle these cases).
6002 */
6003 if (val) {
6004 filemap_invalidate_lock(mapping: inode->i_mapping);
6005 err = filemap_write_and_wait(mapping: inode->i_mapping);
6006 if (err < 0) {
6007 filemap_invalidate_unlock(mapping: inode->i_mapping);
6008 return err;
6009 }
6010 }
6011
6012 alloc_ctx = ext4_writepages_down_write(sb: inode->i_sb);
6013 jbd2_journal_lock_updates(journal);
6014
6015 /*
6016 * OK, there are no updates running now, and all cached data is
6017 * synced to disk. We are now in a completely consistent state
6018 * which doesn't have anything in the journal, and we know that
6019 * no filesystem updates are running, so it is safe to modify
6020 * the inode's in-core data-journaling state flag now.
6021 */
6022
6023 if (val)
6024 ext4_set_inode_flag(inode, bit: EXT4_INODE_JOURNAL_DATA);
6025 else {
6026 err = jbd2_journal_flush(journal, flags: 0);
6027 if (err < 0) {
6028 jbd2_journal_unlock_updates(journal);
6029 ext4_writepages_up_write(sb: inode->i_sb, ctx: alloc_ctx);
6030 return err;
6031 }
6032 ext4_clear_inode_flag(inode, bit: EXT4_INODE_JOURNAL_DATA);
6033 }
6034 ext4_set_aops(inode);
6035
6036 jbd2_journal_unlock_updates(journal);
6037 ext4_writepages_up_write(sb: inode->i_sb, ctx: alloc_ctx);
6038
6039 if (val)
6040 filemap_invalidate_unlock(mapping: inode->i_mapping);
6041
6042 /* Finally we can mark the inode as dirty. */
6043
6044 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6045 if (IS_ERR(ptr: handle))
6046 return PTR_ERR(ptr: handle);
6047
6048 ext4_fc_mark_ineligible(sb: inode->i_sb,
6049 reason: EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6050 err = ext4_mark_inode_dirty(handle, inode);
6051 ext4_handle_sync(handle);
6052 ext4_journal_stop(handle);
6053 ext4_std_error(inode->i_sb, err);
6054
6055 return err;
6056}
6057
6058static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6059 struct buffer_head *bh)
6060{
6061 return !buffer_mapped(bh);
6062}
6063
6064vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6065{
6066 struct vm_area_struct *vma = vmf->vma;
6067 struct folio *folio = page_folio(vmf->page);
6068 loff_t size;
6069 unsigned long len;
6070 int err;
6071 vm_fault_t ret;
6072 struct file *file = vma->vm_file;
6073 struct inode *inode = file_inode(f: file);
6074 struct address_space *mapping = inode->i_mapping;
6075 handle_t *handle;
6076 get_block_t *get_block;
6077 int retries = 0;
6078
6079 if (unlikely(IS_IMMUTABLE(inode)))
6080 return VM_FAULT_SIGBUS;
6081
6082 sb_start_pagefault(sb: inode->i_sb);
6083 file_update_time(file: vma->vm_file);
6084
6085 filemap_invalidate_lock_shared(mapping);
6086
6087 err = ext4_convert_inline_data(inode);
6088 if (err)
6089 goto out_ret;
6090
6091 /*
6092 * On data journalling we skip straight to the transaction handle:
6093 * there's no delalloc; page truncated will be checked later; the
6094 * early return w/ all buffers mapped (calculates size/len) can't
6095 * be used; and there's no dioread_nolock, so only ext4_get_block.
6096 */
6097 if (ext4_should_journal_data(inode))
6098 goto retry_alloc;
6099
6100 /* Delalloc case is easy... */
6101 if (test_opt(inode->i_sb, DELALLOC) &&
6102 !ext4_nonda_switch(sb: inode->i_sb)) {
6103 do {
6104 err = block_page_mkwrite(vma, vmf,
6105 get_block: ext4_da_get_block_prep);
6106 } while (err == -ENOSPC &&
6107 ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries));
6108 goto out_ret;
6109 }
6110
6111 folio_lock(folio);
6112 size = i_size_read(inode);
6113 /* Page got truncated from under us? */
6114 if (folio->mapping != mapping || folio_pos(folio) > size) {
6115 folio_unlock(folio);
6116 ret = VM_FAULT_NOPAGE;
6117 goto out;
6118 }
6119
6120 len = folio_size(folio);
6121 if (folio_pos(folio) + len > size)
6122 len = size - folio_pos(folio);
6123 /*
6124 * Return if we have all the buffers mapped. This avoids the need to do
6125 * journal_start/journal_stop which can block and take a long time
6126 *
6127 * This cannot be done for data journalling, as we have to add the
6128 * inode to the transaction's list to writeprotect pages on commit.
6129 */
6130 if (folio_buffers(folio)) {
6131 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6132 from: 0, to: len, NULL,
6133 fn: ext4_bh_unmapped)) {
6134 /* Wait so that we don't change page under IO */
6135 folio_wait_stable(folio);
6136 ret = VM_FAULT_LOCKED;
6137 goto out;
6138 }
6139 }
6140 folio_unlock(folio);
6141 /* OK, we need to fill the hole... */
6142 if (ext4_should_dioread_nolock(inode))
6143 get_block = ext4_get_block_unwritten;
6144 else
6145 get_block = ext4_get_block;
6146retry_alloc:
6147 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6148 ext4_writepage_trans_blocks(inode));
6149 if (IS_ERR(ptr: handle)) {
6150 ret = VM_FAULT_SIGBUS;
6151 goto out;
6152 }
6153 /*
6154 * Data journalling can't use block_page_mkwrite() because it
6155 * will set_buffer_dirty() before do_journal_get_write_access()
6156 * thus might hit warning messages for dirty metadata buffers.
6157 */
6158 if (!ext4_should_journal_data(inode)) {
6159 err = block_page_mkwrite(vma, vmf, get_block);
6160 } else {
6161 folio_lock(folio);
6162 size = i_size_read(inode);
6163 /* Page got truncated from under us? */
6164 if (folio->mapping != mapping || folio_pos(folio) > size) {
6165 ret = VM_FAULT_NOPAGE;
6166 goto out_error;
6167 }
6168
6169 len = folio_size(folio);
6170 if (folio_pos(folio) + len > size)
6171 len = size - folio_pos(folio);
6172
6173 err = __block_write_begin(page: &folio->page, pos: 0, len, get_block: ext4_get_block);
6174 if (!err) {
6175 ret = VM_FAULT_SIGBUS;
6176 if (ext4_journal_folio_buffers(handle, folio, len))
6177 goto out_error;
6178 } else {
6179 folio_unlock(folio);
6180 }
6181 }
6182 ext4_journal_stop(handle);
6183 if (err == -ENOSPC && ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries))
6184 goto retry_alloc;
6185out_ret:
6186 ret = vmf_fs_error(err);
6187out:
6188 filemap_invalidate_unlock_shared(mapping);
6189 sb_end_pagefault(sb: inode->i_sb);
6190 return ret;
6191out_error:
6192 folio_unlock(folio);
6193 ext4_journal_stop(handle);
6194 goto out;
6195}
6196

source code of linux/fs/ext4/inode.c