1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#include <linux/bpf.h>
5#include <linux/btf.h>
6#include <linux/bpf-cgroup.h>
7#include <linux/cgroup.h>
8#include <linux/rcupdate.h>
9#include <linux/random.h>
10#include <linux/smp.h>
11#include <linux/topology.h>
12#include <linux/ktime.h>
13#include <linux/sched.h>
14#include <linux/uidgid.h>
15#include <linux/filter.h>
16#include <linux/ctype.h>
17#include <linux/jiffies.h>
18#include <linux/pid_namespace.h>
19#include <linux/poison.h>
20#include <linux/proc_ns.h>
21#include <linux/sched/task.h>
22#include <linux/security.h>
23#include <linux/btf_ids.h>
24#include <linux/bpf_mem_alloc.h>
25#include <linux/kasan.h>
26
27#include "../../lib/kstrtox.h"
28
29/* If kernel subsystem is allowing eBPF programs to call this function,
30 * inside its own verifier_ops->get_func_proto() callback it should return
31 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
32 *
33 * Different map implementations will rely on rcu in map methods
34 * lookup/update/delete, therefore eBPF programs must run under rcu lock
35 * if program is allowed to access maps, so check rcu_read_lock_held in
36 * all three functions.
37 */
38BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
39{
40 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
41 return (unsigned long) map->ops->map_lookup_elem(map, key);
42}
43
44const struct bpf_func_proto bpf_map_lookup_elem_proto = {
45 .func = bpf_map_lookup_elem,
46 .gpl_only = false,
47 .pkt_access = true,
48 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
49 .arg1_type = ARG_CONST_MAP_PTR,
50 .arg2_type = ARG_PTR_TO_MAP_KEY,
51};
52
53BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
54 void *, value, u64, flags)
55{
56 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
57 return map->ops->map_update_elem(map, key, value, flags);
58}
59
60const struct bpf_func_proto bpf_map_update_elem_proto = {
61 .func = bpf_map_update_elem,
62 .gpl_only = false,
63 .pkt_access = true,
64 .ret_type = RET_INTEGER,
65 .arg1_type = ARG_CONST_MAP_PTR,
66 .arg2_type = ARG_PTR_TO_MAP_KEY,
67 .arg3_type = ARG_PTR_TO_MAP_VALUE,
68 .arg4_type = ARG_ANYTHING,
69};
70
71BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
72{
73 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
74 return map->ops->map_delete_elem(map, key);
75}
76
77const struct bpf_func_proto bpf_map_delete_elem_proto = {
78 .func = bpf_map_delete_elem,
79 .gpl_only = false,
80 .pkt_access = true,
81 .ret_type = RET_INTEGER,
82 .arg1_type = ARG_CONST_MAP_PTR,
83 .arg2_type = ARG_PTR_TO_MAP_KEY,
84};
85
86BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
87{
88 return map->ops->map_push_elem(map, value, flags);
89}
90
91const struct bpf_func_proto bpf_map_push_elem_proto = {
92 .func = bpf_map_push_elem,
93 .gpl_only = false,
94 .pkt_access = true,
95 .ret_type = RET_INTEGER,
96 .arg1_type = ARG_CONST_MAP_PTR,
97 .arg2_type = ARG_PTR_TO_MAP_VALUE,
98 .arg3_type = ARG_ANYTHING,
99};
100
101BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
102{
103 return map->ops->map_pop_elem(map, value);
104}
105
106const struct bpf_func_proto bpf_map_pop_elem_proto = {
107 .func = bpf_map_pop_elem,
108 .gpl_only = false,
109 .ret_type = RET_INTEGER,
110 .arg1_type = ARG_CONST_MAP_PTR,
111 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
112};
113
114BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
115{
116 return map->ops->map_peek_elem(map, value);
117}
118
119const struct bpf_func_proto bpf_map_peek_elem_proto = {
120 .func = bpf_map_peek_elem,
121 .gpl_only = false,
122 .ret_type = RET_INTEGER,
123 .arg1_type = ARG_CONST_MAP_PTR,
124 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
125};
126
127BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
128{
129 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
130 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
131}
132
133const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
134 .func = bpf_map_lookup_percpu_elem,
135 .gpl_only = false,
136 .pkt_access = true,
137 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
138 .arg1_type = ARG_CONST_MAP_PTR,
139 .arg2_type = ARG_PTR_TO_MAP_KEY,
140 .arg3_type = ARG_ANYTHING,
141};
142
143const struct bpf_func_proto bpf_get_prandom_u32_proto = {
144 .func = bpf_user_rnd_u32,
145 .gpl_only = false,
146 .ret_type = RET_INTEGER,
147};
148
149BPF_CALL_0(bpf_get_smp_processor_id)
150{
151 return smp_processor_id();
152}
153
154const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
155 .func = bpf_get_smp_processor_id,
156 .gpl_only = false,
157 .ret_type = RET_INTEGER,
158};
159
160BPF_CALL_0(bpf_get_numa_node_id)
161{
162 return numa_node_id();
163}
164
165const struct bpf_func_proto bpf_get_numa_node_id_proto = {
166 .func = bpf_get_numa_node_id,
167 .gpl_only = false,
168 .ret_type = RET_INTEGER,
169};
170
171BPF_CALL_0(bpf_ktime_get_ns)
172{
173 /* NMI safe access to clock monotonic */
174 return ktime_get_mono_fast_ns();
175}
176
177const struct bpf_func_proto bpf_ktime_get_ns_proto = {
178 .func = bpf_ktime_get_ns,
179 .gpl_only = false,
180 .ret_type = RET_INTEGER,
181};
182
183BPF_CALL_0(bpf_ktime_get_boot_ns)
184{
185 /* NMI safe access to clock boottime */
186 return ktime_get_boot_fast_ns();
187}
188
189const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
190 .func = bpf_ktime_get_boot_ns,
191 .gpl_only = false,
192 .ret_type = RET_INTEGER,
193};
194
195BPF_CALL_0(bpf_ktime_get_coarse_ns)
196{
197 return ktime_get_coarse_ns();
198}
199
200const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
201 .func = bpf_ktime_get_coarse_ns,
202 .gpl_only = false,
203 .ret_type = RET_INTEGER,
204};
205
206BPF_CALL_0(bpf_ktime_get_tai_ns)
207{
208 /* NMI safe access to clock tai */
209 return ktime_get_tai_fast_ns();
210}
211
212const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
213 .func = bpf_ktime_get_tai_ns,
214 .gpl_only = false,
215 .ret_type = RET_INTEGER,
216};
217
218BPF_CALL_0(bpf_get_current_pid_tgid)
219{
220 struct task_struct *task = current;
221
222 if (unlikely(!task))
223 return -EINVAL;
224
225 return (u64) task->tgid << 32 | task->pid;
226}
227
228const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
229 .func = bpf_get_current_pid_tgid,
230 .gpl_only = false,
231 .ret_type = RET_INTEGER,
232};
233
234BPF_CALL_0(bpf_get_current_uid_gid)
235{
236 struct task_struct *task = current;
237 kuid_t uid;
238 kgid_t gid;
239
240 if (unlikely(!task))
241 return -EINVAL;
242
243 current_uid_gid(&uid, &gid);
244 return (u64) from_kgid(to: &init_user_ns, gid) << 32 |
245 from_kuid(to: &init_user_ns, uid);
246}
247
248const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
249 .func = bpf_get_current_uid_gid,
250 .gpl_only = false,
251 .ret_type = RET_INTEGER,
252};
253
254BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
255{
256 struct task_struct *task = current;
257
258 if (unlikely(!task))
259 goto err_clear;
260
261 /* Verifier guarantees that size > 0 */
262 strscpy_pad(dest: buf, src: task->comm, count: size);
263 return 0;
264err_clear:
265 memset(buf, 0, size);
266 return -EINVAL;
267}
268
269const struct bpf_func_proto bpf_get_current_comm_proto = {
270 .func = bpf_get_current_comm,
271 .gpl_only = false,
272 .ret_type = RET_INTEGER,
273 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
274 .arg2_type = ARG_CONST_SIZE,
275};
276
277#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
278
279static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
280{
281 arch_spinlock_t *l = (void *)lock;
282 union {
283 __u32 val;
284 arch_spinlock_t lock;
285 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
286
287 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
288 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
289 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
290 preempt_disable();
291 arch_spin_lock(l);
292}
293
294static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
295{
296 arch_spinlock_t *l = (void *)lock;
297
298 arch_spin_unlock(l);
299 preempt_enable();
300}
301
302#else
303
304static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
305{
306 atomic_t *l = (void *)lock;
307
308 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
309 do {
310 atomic_cond_read_relaxed(l, !VAL);
311 } while (atomic_xchg(l, 1));
312}
313
314static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
315{
316 atomic_t *l = (void *)lock;
317
318 atomic_set_release(l, 0);
319}
320
321#endif
322
323static DEFINE_PER_CPU(unsigned long, irqsave_flags);
324
325static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
326{
327 unsigned long flags;
328
329 local_irq_save(flags);
330 __bpf_spin_lock(lock);
331 __this_cpu_write(irqsave_flags, flags);
332}
333
334notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
335{
336 __bpf_spin_lock_irqsave(lock);
337 return 0;
338}
339
340const struct bpf_func_proto bpf_spin_lock_proto = {
341 .func = bpf_spin_lock,
342 .gpl_only = false,
343 .ret_type = RET_VOID,
344 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
345 .arg1_btf_id = BPF_PTR_POISON,
346};
347
348static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
349{
350 unsigned long flags;
351
352 flags = __this_cpu_read(irqsave_flags);
353 __bpf_spin_unlock(lock);
354 local_irq_restore(flags);
355}
356
357notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
358{
359 __bpf_spin_unlock_irqrestore(lock);
360 return 0;
361}
362
363const struct bpf_func_proto bpf_spin_unlock_proto = {
364 .func = bpf_spin_unlock,
365 .gpl_only = false,
366 .ret_type = RET_VOID,
367 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
368 .arg1_btf_id = BPF_PTR_POISON,
369};
370
371void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
372 bool lock_src)
373{
374 struct bpf_spin_lock *lock;
375
376 if (lock_src)
377 lock = src + map->record->spin_lock_off;
378 else
379 lock = dst + map->record->spin_lock_off;
380 preempt_disable();
381 __bpf_spin_lock_irqsave(lock);
382 copy_map_value(map, dst, src);
383 __bpf_spin_unlock_irqrestore(lock);
384 preempt_enable();
385}
386
387BPF_CALL_0(bpf_jiffies64)
388{
389 return get_jiffies_64();
390}
391
392const struct bpf_func_proto bpf_jiffies64_proto = {
393 .func = bpf_jiffies64,
394 .gpl_only = false,
395 .ret_type = RET_INTEGER,
396};
397
398#ifdef CONFIG_CGROUPS
399BPF_CALL_0(bpf_get_current_cgroup_id)
400{
401 struct cgroup *cgrp;
402 u64 cgrp_id;
403
404 rcu_read_lock();
405 cgrp = task_dfl_cgroup(current);
406 cgrp_id = cgroup_id(cgrp);
407 rcu_read_unlock();
408
409 return cgrp_id;
410}
411
412const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
413 .func = bpf_get_current_cgroup_id,
414 .gpl_only = false,
415 .ret_type = RET_INTEGER,
416};
417
418BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
419{
420 struct cgroup *cgrp;
421 struct cgroup *ancestor;
422 u64 cgrp_id;
423
424 rcu_read_lock();
425 cgrp = task_dfl_cgroup(current);
426 ancestor = cgroup_ancestor(cgrp, ancestor_level);
427 cgrp_id = ancestor ? cgroup_id(cgrp: ancestor) : 0;
428 rcu_read_unlock();
429
430 return cgrp_id;
431}
432
433const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
434 .func = bpf_get_current_ancestor_cgroup_id,
435 .gpl_only = false,
436 .ret_type = RET_INTEGER,
437 .arg1_type = ARG_ANYTHING,
438};
439#endif /* CONFIG_CGROUPS */
440
441#define BPF_STRTOX_BASE_MASK 0x1F
442
443static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
444 unsigned long long *res, bool *is_negative)
445{
446 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
447 const char *cur_buf = buf;
448 size_t cur_len = buf_len;
449 unsigned int consumed;
450 size_t val_len;
451 char str[64];
452
453 if (!buf || !buf_len || !res || !is_negative)
454 return -EINVAL;
455
456 if (base != 0 && base != 8 && base != 10 && base != 16)
457 return -EINVAL;
458
459 if (flags & ~BPF_STRTOX_BASE_MASK)
460 return -EINVAL;
461
462 while (cur_buf < buf + buf_len && isspace(*cur_buf))
463 ++cur_buf;
464
465 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
466 if (*is_negative)
467 ++cur_buf;
468
469 consumed = cur_buf - buf;
470 cur_len -= consumed;
471 if (!cur_len)
472 return -EINVAL;
473
474 cur_len = min(cur_len, sizeof(str) - 1);
475 memcpy(str, cur_buf, cur_len);
476 str[cur_len] = '\0';
477 cur_buf = str;
478
479 cur_buf = _parse_integer_fixup_radix(s: cur_buf, base: &base);
480 val_len = _parse_integer(s: cur_buf, base, res);
481
482 if (val_len & KSTRTOX_OVERFLOW)
483 return -ERANGE;
484
485 if (val_len == 0)
486 return -EINVAL;
487
488 cur_buf += val_len;
489 consumed += cur_buf - str;
490
491 return consumed;
492}
493
494static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
495 long long *res)
496{
497 unsigned long long _res;
498 bool is_negative;
499 int err;
500
501 err = __bpf_strtoull(buf, buf_len, flags, res: &_res, is_negative: &is_negative);
502 if (err < 0)
503 return err;
504 if (is_negative) {
505 if ((long long)-_res > 0)
506 return -ERANGE;
507 *res = -_res;
508 } else {
509 if ((long long)_res < 0)
510 return -ERANGE;
511 *res = _res;
512 }
513 return err;
514}
515
516BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
517 long *, res)
518{
519 long long _res;
520 int err;
521
522 err = __bpf_strtoll(buf, buf_len, flags, res: &_res);
523 if (err < 0)
524 return err;
525 if (_res != (long)_res)
526 return -ERANGE;
527 *res = _res;
528 return err;
529}
530
531const struct bpf_func_proto bpf_strtol_proto = {
532 .func = bpf_strtol,
533 .gpl_only = false,
534 .ret_type = RET_INTEGER,
535 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
536 .arg2_type = ARG_CONST_SIZE,
537 .arg3_type = ARG_ANYTHING,
538 .arg4_type = ARG_PTR_TO_LONG,
539};
540
541BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
542 unsigned long *, res)
543{
544 unsigned long long _res;
545 bool is_negative;
546 int err;
547
548 err = __bpf_strtoull(buf, buf_len, flags, res: &_res, is_negative: &is_negative);
549 if (err < 0)
550 return err;
551 if (is_negative)
552 return -EINVAL;
553 if (_res != (unsigned long)_res)
554 return -ERANGE;
555 *res = _res;
556 return err;
557}
558
559const struct bpf_func_proto bpf_strtoul_proto = {
560 .func = bpf_strtoul,
561 .gpl_only = false,
562 .ret_type = RET_INTEGER,
563 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
564 .arg2_type = ARG_CONST_SIZE,
565 .arg3_type = ARG_ANYTHING,
566 .arg4_type = ARG_PTR_TO_LONG,
567};
568
569BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
570{
571 return strncmp(s1, s2, s1_sz);
572}
573
574static const struct bpf_func_proto bpf_strncmp_proto = {
575 .func = bpf_strncmp,
576 .gpl_only = false,
577 .ret_type = RET_INTEGER,
578 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
579 .arg2_type = ARG_CONST_SIZE,
580 .arg3_type = ARG_PTR_TO_CONST_STR,
581};
582
583BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
584 struct bpf_pidns_info *, nsdata, u32, size)
585{
586 struct task_struct *task = current;
587 struct pid_namespace *pidns;
588 int err = -EINVAL;
589
590 if (unlikely(size != sizeof(struct bpf_pidns_info)))
591 goto clear;
592
593 if (unlikely((u64)(dev_t)dev != dev))
594 goto clear;
595
596 if (unlikely(!task))
597 goto clear;
598
599 pidns = task_active_pid_ns(tsk: task);
600 if (unlikely(!pidns)) {
601 err = -ENOENT;
602 goto clear;
603 }
604
605 if (!ns_match(ns: &pidns->ns, dev: (dev_t)dev, ino))
606 goto clear;
607
608 nsdata->pid = task_pid_nr_ns(tsk: task, ns: pidns);
609 nsdata->tgid = task_tgid_nr_ns(tsk: task, ns: pidns);
610 return 0;
611clear:
612 memset((void *)nsdata, 0, (size_t) size);
613 return err;
614}
615
616const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
617 .func = bpf_get_ns_current_pid_tgid,
618 .gpl_only = false,
619 .ret_type = RET_INTEGER,
620 .arg1_type = ARG_ANYTHING,
621 .arg2_type = ARG_ANYTHING,
622 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
623 .arg4_type = ARG_CONST_SIZE,
624};
625
626static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
627 .func = bpf_get_raw_cpu_id,
628 .gpl_only = false,
629 .ret_type = RET_INTEGER,
630};
631
632BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
633 u64, flags, void *, data, u64, size)
634{
635 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
636 return -EINVAL;
637
638 return bpf_event_output(map, flags, meta: data, meta_size: size, NULL, ctx_size: 0, NULL);
639}
640
641const struct bpf_func_proto bpf_event_output_data_proto = {
642 .func = bpf_event_output_data,
643 .gpl_only = true,
644 .ret_type = RET_INTEGER,
645 .arg1_type = ARG_PTR_TO_CTX,
646 .arg2_type = ARG_CONST_MAP_PTR,
647 .arg3_type = ARG_ANYTHING,
648 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
649 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
650};
651
652BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
653 const void __user *, user_ptr)
654{
655 int ret = copy_from_user(to: dst, from: user_ptr, n: size);
656
657 if (unlikely(ret)) {
658 memset(dst, 0, size);
659 ret = -EFAULT;
660 }
661
662 return ret;
663}
664
665const struct bpf_func_proto bpf_copy_from_user_proto = {
666 .func = bpf_copy_from_user,
667 .gpl_only = false,
668 .might_sleep = true,
669 .ret_type = RET_INTEGER,
670 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
671 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
672 .arg3_type = ARG_ANYTHING,
673};
674
675BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
676 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
677{
678 int ret;
679
680 /* flags is not used yet */
681 if (unlikely(flags))
682 return -EINVAL;
683
684 if (unlikely(!size))
685 return 0;
686
687 ret = access_process_vm(tsk, addr: (unsigned long)user_ptr, buf: dst, len: size, gup_flags: 0);
688 if (ret == size)
689 return 0;
690
691 memset(dst, 0, size);
692 /* Return -EFAULT for partial read */
693 return ret < 0 ? ret : -EFAULT;
694}
695
696const struct bpf_func_proto bpf_copy_from_user_task_proto = {
697 .func = bpf_copy_from_user_task,
698 .gpl_only = true,
699 .might_sleep = true,
700 .ret_type = RET_INTEGER,
701 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
702 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
703 .arg3_type = ARG_ANYTHING,
704 .arg4_type = ARG_PTR_TO_BTF_ID,
705 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
706 .arg5_type = ARG_ANYTHING
707};
708
709BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
710{
711 if (cpu >= nr_cpu_ids)
712 return (unsigned long)NULL;
713
714 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
715}
716
717const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
718 .func = bpf_per_cpu_ptr,
719 .gpl_only = false,
720 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
721 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
722 .arg2_type = ARG_ANYTHING,
723};
724
725BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
726{
727 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
728}
729
730const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
731 .func = bpf_this_cpu_ptr,
732 .gpl_only = false,
733 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
734 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
735};
736
737static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
738 size_t bufsz)
739{
740 void __user *user_ptr = (__force void __user *)unsafe_ptr;
741
742 buf[0] = 0;
743
744 switch (fmt_ptype) {
745 case 's':
746#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
747 if ((unsigned long)unsafe_ptr < TASK_SIZE)
748 return strncpy_from_user_nofault(dst: buf, unsafe_addr: user_ptr, count: bufsz);
749 fallthrough;
750#endif
751 case 'k':
752 return strncpy_from_kernel_nofault(dst: buf, unsafe_addr: unsafe_ptr, count: bufsz);
753 case 'u':
754 return strncpy_from_user_nofault(dst: buf, unsafe_addr: user_ptr, count: bufsz);
755 }
756
757 return -EINVAL;
758}
759
760/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
761 * arguments representation.
762 */
763#define MAX_BPRINTF_BIN_ARGS 512
764
765/* Support executing three nested bprintf helper calls on a given CPU */
766#define MAX_BPRINTF_NEST_LEVEL 3
767struct bpf_bprintf_buffers {
768 char bin_args[MAX_BPRINTF_BIN_ARGS];
769 char buf[MAX_BPRINTF_BUF];
770};
771
772static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
773static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
774
775static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
776{
777 int nest_level;
778
779 preempt_disable();
780 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
781 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
782 this_cpu_dec(bpf_bprintf_nest_level);
783 preempt_enable();
784 return -EBUSY;
785 }
786 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
787
788 return 0;
789}
790
791void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
792{
793 if (!data->bin_args && !data->buf)
794 return;
795 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
796 return;
797 this_cpu_dec(bpf_bprintf_nest_level);
798 preempt_enable();
799}
800
801/*
802 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
803 *
804 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
805 *
806 * This can be used in two ways:
807 * - Format string verification only: when data->get_bin_args is false
808 * - Arguments preparation: in addition to the above verification, it writes in
809 * data->bin_args a binary representation of arguments usable by bstr_printf
810 * where pointers from BPF have been sanitized.
811 *
812 * In argument preparation mode, if 0 is returned, safe temporary buffers are
813 * allocated and bpf_bprintf_cleanup should be called to free them after use.
814 */
815int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
816 u32 num_args, struct bpf_bprintf_data *data)
817{
818 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
819 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
820 struct bpf_bprintf_buffers *buffers = NULL;
821 size_t sizeof_cur_arg, sizeof_cur_ip;
822 int err, i, num_spec = 0;
823 u64 cur_arg;
824 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
825
826 fmt_end = strnchr(fmt, fmt_size, 0);
827 if (!fmt_end)
828 return -EINVAL;
829 fmt_size = fmt_end - fmt;
830
831 if (get_buffers && try_get_buffers(bufs: &buffers))
832 return -EBUSY;
833
834 if (data->get_bin_args) {
835 if (num_args)
836 tmp_buf = buffers->bin_args;
837 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
838 data->bin_args = (u32 *)tmp_buf;
839 }
840
841 if (data->get_buf)
842 data->buf = buffers->buf;
843
844 for (i = 0; i < fmt_size; i++) {
845 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
846 err = -EINVAL;
847 goto out;
848 }
849
850 if (fmt[i] != '%')
851 continue;
852
853 if (fmt[i + 1] == '%') {
854 i++;
855 continue;
856 }
857
858 if (num_spec >= num_args) {
859 err = -EINVAL;
860 goto out;
861 }
862
863 /* The string is zero-terminated so if fmt[i] != 0, we can
864 * always access fmt[i + 1], in the worst case it will be a 0
865 */
866 i++;
867
868 /* skip optional "[0 +-][num]" width formatting field */
869 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
870 fmt[i] == ' ')
871 i++;
872 if (fmt[i] >= '1' && fmt[i] <= '9') {
873 i++;
874 while (fmt[i] >= '0' && fmt[i] <= '9')
875 i++;
876 }
877
878 if (fmt[i] == 'p') {
879 sizeof_cur_arg = sizeof(long);
880
881 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
882 fmt[i + 2] == 's') {
883 fmt_ptype = fmt[i + 1];
884 i += 2;
885 goto fmt_str;
886 }
887
888 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
889 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
890 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
891 fmt[i + 1] == 'S') {
892 /* just kernel pointers */
893 if (tmp_buf)
894 cur_arg = raw_args[num_spec];
895 i++;
896 goto nocopy_fmt;
897 }
898
899 if (fmt[i + 1] == 'B') {
900 if (tmp_buf) {
901 err = snprintf(buf: tmp_buf,
902 size: (tmp_buf_end - tmp_buf),
903 fmt: "%pB",
904 (void *)(long)raw_args[num_spec]);
905 tmp_buf += (err + 1);
906 }
907
908 i++;
909 num_spec++;
910 continue;
911 }
912
913 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
914 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
915 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
916 err = -EINVAL;
917 goto out;
918 }
919
920 i += 2;
921 if (!tmp_buf)
922 goto nocopy_fmt;
923
924 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
925 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
926 err = -ENOSPC;
927 goto out;
928 }
929
930 unsafe_ptr = (char *)(long)raw_args[num_spec];
931 err = copy_from_kernel_nofault(dst: cur_ip, src: unsafe_ptr,
932 size: sizeof_cur_ip);
933 if (err < 0)
934 memset(cur_ip, 0, sizeof_cur_ip);
935
936 /* hack: bstr_printf expects IP addresses to be
937 * pre-formatted as strings, ironically, the easiest way
938 * to do that is to call snprintf.
939 */
940 ip_spec[2] = fmt[i - 1];
941 ip_spec[3] = fmt[i];
942 err = snprintf(buf: tmp_buf, size: tmp_buf_end - tmp_buf,
943 fmt: ip_spec, &cur_ip);
944
945 tmp_buf += err + 1;
946 num_spec++;
947
948 continue;
949 } else if (fmt[i] == 's') {
950 fmt_ptype = fmt[i];
951fmt_str:
952 if (fmt[i + 1] != 0 &&
953 !isspace(fmt[i + 1]) &&
954 !ispunct(fmt[i + 1])) {
955 err = -EINVAL;
956 goto out;
957 }
958
959 if (!tmp_buf)
960 goto nocopy_fmt;
961
962 if (tmp_buf_end == tmp_buf) {
963 err = -ENOSPC;
964 goto out;
965 }
966
967 unsafe_ptr = (char *)(long)raw_args[num_spec];
968 err = bpf_trace_copy_string(buf: tmp_buf, unsafe_ptr,
969 fmt_ptype,
970 bufsz: tmp_buf_end - tmp_buf);
971 if (err < 0) {
972 tmp_buf[0] = '\0';
973 err = 1;
974 }
975
976 tmp_buf += err;
977 num_spec++;
978
979 continue;
980 } else if (fmt[i] == 'c') {
981 if (!tmp_buf)
982 goto nocopy_fmt;
983
984 if (tmp_buf_end == tmp_buf) {
985 err = -ENOSPC;
986 goto out;
987 }
988
989 *tmp_buf = raw_args[num_spec];
990 tmp_buf++;
991 num_spec++;
992
993 continue;
994 }
995
996 sizeof_cur_arg = sizeof(int);
997
998 if (fmt[i] == 'l') {
999 sizeof_cur_arg = sizeof(long);
1000 i++;
1001 }
1002 if (fmt[i] == 'l') {
1003 sizeof_cur_arg = sizeof(long long);
1004 i++;
1005 }
1006
1007 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1008 fmt[i] != 'x' && fmt[i] != 'X') {
1009 err = -EINVAL;
1010 goto out;
1011 }
1012
1013 if (tmp_buf)
1014 cur_arg = raw_args[num_spec];
1015nocopy_fmt:
1016 if (tmp_buf) {
1017 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1018 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1019 err = -ENOSPC;
1020 goto out;
1021 }
1022
1023 if (sizeof_cur_arg == 8) {
1024 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1025 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1026 } else {
1027 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1028 }
1029 tmp_buf += sizeof_cur_arg;
1030 }
1031 num_spec++;
1032 }
1033
1034 err = 0;
1035out:
1036 if (err)
1037 bpf_bprintf_cleanup(data);
1038 return err;
1039}
1040
1041BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1042 const void *, args, u32, data_len)
1043{
1044 struct bpf_bprintf_data data = {
1045 .get_bin_args = true,
1046 };
1047 int err, num_args;
1048
1049 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1050 (data_len && !args))
1051 return -EINVAL;
1052 num_args = data_len / 8;
1053
1054 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1055 * can safely give an unbounded size.
1056 */
1057 err = bpf_bprintf_prepare(fmt, UINT_MAX, raw_args: args, num_args, data: &data);
1058 if (err < 0)
1059 return err;
1060
1061 err = bstr_printf(buf: str, size: str_size, fmt, bin_buf: data.bin_args);
1062
1063 bpf_bprintf_cleanup(data: &data);
1064
1065 return err + 1;
1066}
1067
1068const struct bpf_func_proto bpf_snprintf_proto = {
1069 .func = bpf_snprintf,
1070 .gpl_only = true,
1071 .ret_type = RET_INTEGER,
1072 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1073 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1074 .arg3_type = ARG_PTR_TO_CONST_STR,
1075 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1076 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1077};
1078
1079/* BPF map elements can contain 'struct bpf_timer'.
1080 * Such map owns all of its BPF timers.
1081 * 'struct bpf_timer' is allocated as part of map element allocation
1082 * and it's zero initialized.
1083 * That space is used to keep 'struct bpf_timer_kern'.
1084 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1085 * remembers 'struct bpf_map *' pointer it's part of.
1086 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1087 * bpf_timer_start() arms the timer.
1088 * If user space reference to a map goes to zero at this point
1089 * ops->map_release_uref callback is responsible for cancelling the timers,
1090 * freeing their memory, and decrementing prog's refcnts.
1091 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1092 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1093 * freeing the timers when inner map is replaced or deleted by user space.
1094 */
1095struct bpf_hrtimer {
1096 struct hrtimer timer;
1097 struct bpf_map *map;
1098 struct bpf_prog *prog;
1099 void __rcu *callback_fn;
1100 void *value;
1101};
1102
1103/* the actual struct hidden inside uapi struct bpf_timer */
1104struct bpf_timer_kern {
1105 struct bpf_hrtimer *timer;
1106 /* bpf_spin_lock is used here instead of spinlock_t to make
1107 * sure that it always fits into space reserved by struct bpf_timer
1108 * regardless of LOCKDEP and spinlock debug flags.
1109 */
1110 struct bpf_spin_lock lock;
1111} __attribute__((aligned(8)));
1112
1113static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1114
1115static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1116{
1117 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1118 struct bpf_map *map = t->map;
1119 void *value = t->value;
1120 bpf_callback_t callback_fn;
1121 void *key;
1122 u32 idx;
1123
1124 BTF_TYPE_EMIT(struct bpf_timer);
1125 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1126 if (!callback_fn)
1127 goto out;
1128
1129 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1130 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1131 * Remember the timer this callback is servicing to prevent
1132 * deadlock if callback_fn() calls bpf_timer_cancel() or
1133 * bpf_map_delete_elem() on the same timer.
1134 */
1135 this_cpu_write(hrtimer_running, t);
1136 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1137 struct bpf_array *array = container_of(map, struct bpf_array, map);
1138
1139 /* compute the key */
1140 idx = ((char *)value - array->value) / array->elem_size;
1141 key = &idx;
1142 } else { /* hash or lru */
1143 key = value - round_up(map->key_size, 8);
1144 }
1145
1146 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1147 /* The verifier checked that return value is zero. */
1148
1149 this_cpu_write(hrtimer_running, NULL);
1150out:
1151 return HRTIMER_NORESTART;
1152}
1153
1154BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1155 u64, flags)
1156{
1157 clockid_t clockid = flags & (MAX_CLOCKS - 1);
1158 struct bpf_hrtimer *t;
1159 int ret = 0;
1160
1161 BUILD_BUG_ON(MAX_CLOCKS != 16);
1162 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1163 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1164
1165 if (in_nmi())
1166 return -EOPNOTSUPP;
1167
1168 if (flags >= MAX_CLOCKS ||
1169 /* similar to timerfd except _ALARM variants are not supported */
1170 (clockid != CLOCK_MONOTONIC &&
1171 clockid != CLOCK_REALTIME &&
1172 clockid != CLOCK_BOOTTIME))
1173 return -EINVAL;
1174 __bpf_spin_lock_irqsave(lock: &timer->lock);
1175 t = timer->timer;
1176 if (t) {
1177 ret = -EBUSY;
1178 goto out;
1179 }
1180 if (!atomic64_read(v: &map->usercnt)) {
1181 /* maps with timers must be either held by user space
1182 * or pinned in bpffs.
1183 */
1184 ret = -EPERM;
1185 goto out;
1186 }
1187 /* allocate hrtimer via map_kmalloc to use memcg accounting */
1188 t = bpf_map_kmalloc_node(map, size: sizeof(*t), GFP_ATOMIC, node: map->numa_node);
1189 if (!t) {
1190 ret = -ENOMEM;
1191 goto out;
1192 }
1193 t->value = (void *)timer - map->record->timer_off;
1194 t->map = map;
1195 t->prog = NULL;
1196 rcu_assign_pointer(t->callback_fn, NULL);
1197 hrtimer_init(timer: &t->timer, which_clock: clockid, mode: HRTIMER_MODE_REL_SOFT);
1198 t->timer.function = bpf_timer_cb;
1199 timer->timer = t;
1200out:
1201 __bpf_spin_unlock_irqrestore(lock: &timer->lock);
1202 return ret;
1203}
1204
1205static const struct bpf_func_proto bpf_timer_init_proto = {
1206 .func = bpf_timer_init,
1207 .gpl_only = true,
1208 .ret_type = RET_INTEGER,
1209 .arg1_type = ARG_PTR_TO_TIMER,
1210 .arg2_type = ARG_CONST_MAP_PTR,
1211 .arg3_type = ARG_ANYTHING,
1212};
1213
1214BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1215 struct bpf_prog_aux *, aux)
1216{
1217 struct bpf_prog *prev, *prog = aux->prog;
1218 struct bpf_hrtimer *t;
1219 int ret = 0;
1220
1221 if (in_nmi())
1222 return -EOPNOTSUPP;
1223 __bpf_spin_lock_irqsave(lock: &timer->lock);
1224 t = timer->timer;
1225 if (!t) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229 if (!atomic64_read(v: &t->map->usercnt)) {
1230 /* maps with timers must be either held by user space
1231 * or pinned in bpffs. Otherwise timer might still be
1232 * running even when bpf prog is detached and user space
1233 * is gone, since map_release_uref won't ever be called.
1234 */
1235 ret = -EPERM;
1236 goto out;
1237 }
1238 prev = t->prog;
1239 if (prev != prog) {
1240 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1241 * can pick different callback_fn-s within the same prog.
1242 */
1243 prog = bpf_prog_inc_not_zero(prog);
1244 if (IS_ERR(ptr: prog)) {
1245 ret = PTR_ERR(ptr: prog);
1246 goto out;
1247 }
1248 if (prev)
1249 /* Drop prev prog refcnt when swapping with new prog */
1250 bpf_prog_put(prog: prev);
1251 t->prog = prog;
1252 }
1253 rcu_assign_pointer(t->callback_fn, callback_fn);
1254out:
1255 __bpf_spin_unlock_irqrestore(lock: &timer->lock);
1256 return ret;
1257}
1258
1259static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1260 .func = bpf_timer_set_callback,
1261 .gpl_only = true,
1262 .ret_type = RET_INTEGER,
1263 .arg1_type = ARG_PTR_TO_TIMER,
1264 .arg2_type = ARG_PTR_TO_FUNC,
1265};
1266
1267BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1268{
1269 struct bpf_hrtimer *t;
1270 int ret = 0;
1271 enum hrtimer_mode mode;
1272
1273 if (in_nmi())
1274 return -EOPNOTSUPP;
1275 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1276 return -EINVAL;
1277 __bpf_spin_lock_irqsave(lock: &timer->lock);
1278 t = timer->timer;
1279 if (!t || !t->prog) {
1280 ret = -EINVAL;
1281 goto out;
1282 }
1283
1284 if (flags & BPF_F_TIMER_ABS)
1285 mode = HRTIMER_MODE_ABS_SOFT;
1286 else
1287 mode = HRTIMER_MODE_REL_SOFT;
1288
1289 if (flags & BPF_F_TIMER_CPU_PIN)
1290 mode |= HRTIMER_MODE_PINNED;
1291
1292 hrtimer_start(timer: &t->timer, tim: ns_to_ktime(ns: nsecs), mode);
1293out:
1294 __bpf_spin_unlock_irqrestore(lock: &timer->lock);
1295 return ret;
1296}
1297
1298static const struct bpf_func_proto bpf_timer_start_proto = {
1299 .func = bpf_timer_start,
1300 .gpl_only = true,
1301 .ret_type = RET_INTEGER,
1302 .arg1_type = ARG_PTR_TO_TIMER,
1303 .arg2_type = ARG_ANYTHING,
1304 .arg3_type = ARG_ANYTHING,
1305};
1306
1307static void drop_prog_refcnt(struct bpf_hrtimer *t)
1308{
1309 struct bpf_prog *prog = t->prog;
1310
1311 if (prog) {
1312 bpf_prog_put(prog);
1313 t->prog = NULL;
1314 rcu_assign_pointer(t->callback_fn, NULL);
1315 }
1316}
1317
1318BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1319{
1320 struct bpf_hrtimer *t;
1321 int ret = 0;
1322
1323 if (in_nmi())
1324 return -EOPNOTSUPP;
1325 __bpf_spin_lock_irqsave(lock: &timer->lock);
1326 t = timer->timer;
1327 if (!t) {
1328 ret = -EINVAL;
1329 goto out;
1330 }
1331 if (this_cpu_read(hrtimer_running) == t) {
1332 /* If bpf callback_fn is trying to bpf_timer_cancel()
1333 * its own timer the hrtimer_cancel() will deadlock
1334 * since it waits for callback_fn to finish
1335 */
1336 ret = -EDEADLK;
1337 goto out;
1338 }
1339 drop_prog_refcnt(t);
1340out:
1341 __bpf_spin_unlock_irqrestore(lock: &timer->lock);
1342 /* Cancel the timer and wait for associated callback to finish
1343 * if it was running.
1344 */
1345 ret = ret ?: hrtimer_cancel(timer: &t->timer);
1346 return ret;
1347}
1348
1349static const struct bpf_func_proto bpf_timer_cancel_proto = {
1350 .func = bpf_timer_cancel,
1351 .gpl_only = true,
1352 .ret_type = RET_INTEGER,
1353 .arg1_type = ARG_PTR_TO_TIMER,
1354};
1355
1356/* This function is called by map_delete/update_elem for individual element and
1357 * by ops->map_release_uref when the user space reference to a map reaches zero.
1358 */
1359void bpf_timer_cancel_and_free(void *val)
1360{
1361 struct bpf_timer_kern *timer = val;
1362 struct bpf_hrtimer *t;
1363
1364 /* Performance optimization: read timer->timer without lock first. */
1365 if (!READ_ONCE(timer->timer))
1366 return;
1367
1368 __bpf_spin_lock_irqsave(lock: &timer->lock);
1369 /* re-read it under lock */
1370 t = timer->timer;
1371 if (!t)
1372 goto out;
1373 drop_prog_refcnt(t);
1374 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1375 * this timer, since it won't be initialized.
1376 */
1377 timer->timer = NULL;
1378out:
1379 __bpf_spin_unlock_irqrestore(lock: &timer->lock);
1380 if (!t)
1381 return;
1382 /* Cancel the timer and wait for callback to complete if it was running.
1383 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1384 * right after for both preallocated and non-preallocated maps.
1385 * The timer->timer = NULL was already done and no code path can
1386 * see address 't' anymore.
1387 *
1388 * Check that bpf_map_delete/update_elem() wasn't called from timer
1389 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1390 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1391 * return -1). Though callback_fn is still running on this cpu it's
1392 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1393 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1394 * since timer->timer = NULL was already done. The timer will be
1395 * effectively cancelled because bpf_timer_cb() will return
1396 * HRTIMER_NORESTART.
1397 */
1398 if (this_cpu_read(hrtimer_running) != t)
1399 hrtimer_cancel(timer: &t->timer);
1400 kfree(objp: t);
1401}
1402
1403BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1404{
1405 unsigned long *kptr = map_value;
1406
1407 return xchg(kptr, (unsigned long)ptr);
1408}
1409
1410/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1411 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1412 * denote type that verifier will determine.
1413 */
1414static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1415 .func = bpf_kptr_xchg,
1416 .gpl_only = false,
1417 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1418 .ret_btf_id = BPF_PTR_POISON,
1419 .arg1_type = ARG_PTR_TO_KPTR,
1420 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1421 .arg2_btf_id = BPF_PTR_POISON,
1422};
1423
1424/* Since the upper 8 bits of dynptr->size is reserved, the
1425 * maximum supported size is 2^24 - 1.
1426 */
1427#define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1428#define DYNPTR_TYPE_SHIFT 28
1429#define DYNPTR_SIZE_MASK 0xFFFFFF
1430#define DYNPTR_RDONLY_BIT BIT(31)
1431
1432static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1433{
1434 return ptr->size & DYNPTR_RDONLY_BIT;
1435}
1436
1437void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1438{
1439 ptr->size |= DYNPTR_RDONLY_BIT;
1440}
1441
1442static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1443{
1444 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1445}
1446
1447static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1448{
1449 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1450}
1451
1452u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1453{
1454 return ptr->size & DYNPTR_SIZE_MASK;
1455}
1456
1457static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1458{
1459 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1460
1461 ptr->size = new_size | metadata;
1462}
1463
1464int bpf_dynptr_check_size(u32 size)
1465{
1466 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1467}
1468
1469void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1470 enum bpf_dynptr_type type, u32 offset, u32 size)
1471{
1472 ptr->data = data;
1473 ptr->offset = offset;
1474 ptr->size = size;
1475 bpf_dynptr_set_type(ptr, type);
1476}
1477
1478void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1479{
1480 memset(ptr, 0, sizeof(*ptr));
1481}
1482
1483static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1484{
1485 u32 size = __bpf_dynptr_size(ptr);
1486
1487 if (len > size || offset > size - len)
1488 return -E2BIG;
1489
1490 return 0;
1491}
1492
1493BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1494{
1495 int err;
1496
1497 BTF_TYPE_EMIT(struct bpf_dynptr);
1498
1499 err = bpf_dynptr_check_size(size);
1500 if (err)
1501 goto error;
1502
1503 /* flags is currently unsupported */
1504 if (flags) {
1505 err = -EINVAL;
1506 goto error;
1507 }
1508
1509 bpf_dynptr_init(ptr, data, type: BPF_DYNPTR_TYPE_LOCAL, offset: 0, size);
1510
1511 return 0;
1512
1513error:
1514 bpf_dynptr_set_null(ptr);
1515 return err;
1516}
1517
1518static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1519 .func = bpf_dynptr_from_mem,
1520 .gpl_only = false,
1521 .ret_type = RET_INTEGER,
1522 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1523 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1524 .arg3_type = ARG_ANYTHING,
1525 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1526};
1527
1528BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1529 u32, offset, u64, flags)
1530{
1531 enum bpf_dynptr_type type;
1532 int err;
1533
1534 if (!src->data || flags)
1535 return -EINVAL;
1536
1537 err = bpf_dynptr_check_off_len(ptr: src, offset, len);
1538 if (err)
1539 return err;
1540
1541 type = bpf_dynptr_get_type(ptr: src);
1542
1543 switch (type) {
1544 case BPF_DYNPTR_TYPE_LOCAL:
1545 case BPF_DYNPTR_TYPE_RINGBUF:
1546 /* Source and destination may possibly overlap, hence use memmove to
1547 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1548 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1549 */
1550 memmove(dst, src->data + src->offset + offset, len);
1551 return 0;
1552 case BPF_DYNPTR_TYPE_SKB:
1553 return __bpf_skb_load_bytes(skb: src->data, offset: src->offset + offset, to: dst, len);
1554 case BPF_DYNPTR_TYPE_XDP:
1555 return __bpf_xdp_load_bytes(xdp: src->data, offset: src->offset + offset, buf: dst, len);
1556 default:
1557 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1558 return -EFAULT;
1559 }
1560}
1561
1562static const struct bpf_func_proto bpf_dynptr_read_proto = {
1563 .func = bpf_dynptr_read,
1564 .gpl_only = false,
1565 .ret_type = RET_INTEGER,
1566 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1567 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1568 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1569 .arg4_type = ARG_ANYTHING,
1570 .arg5_type = ARG_ANYTHING,
1571};
1572
1573BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1574 u32, len, u64, flags)
1575{
1576 enum bpf_dynptr_type type;
1577 int err;
1578
1579 if (!dst->data || __bpf_dynptr_is_rdonly(ptr: dst))
1580 return -EINVAL;
1581
1582 err = bpf_dynptr_check_off_len(ptr: dst, offset, len);
1583 if (err)
1584 return err;
1585
1586 type = bpf_dynptr_get_type(ptr: dst);
1587
1588 switch (type) {
1589 case BPF_DYNPTR_TYPE_LOCAL:
1590 case BPF_DYNPTR_TYPE_RINGBUF:
1591 if (flags)
1592 return -EINVAL;
1593 /* Source and destination may possibly overlap, hence use memmove to
1594 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1595 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1596 */
1597 memmove(dst->data + dst->offset + offset, src, len);
1598 return 0;
1599 case BPF_DYNPTR_TYPE_SKB:
1600 return __bpf_skb_store_bytes(skb: dst->data, offset: dst->offset + offset, from: src, len,
1601 flags);
1602 case BPF_DYNPTR_TYPE_XDP:
1603 if (flags)
1604 return -EINVAL;
1605 return __bpf_xdp_store_bytes(xdp: dst->data, offset: dst->offset + offset, buf: src, len);
1606 default:
1607 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1608 return -EFAULT;
1609 }
1610}
1611
1612static const struct bpf_func_proto bpf_dynptr_write_proto = {
1613 .func = bpf_dynptr_write,
1614 .gpl_only = false,
1615 .ret_type = RET_INTEGER,
1616 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1617 .arg2_type = ARG_ANYTHING,
1618 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1619 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1620 .arg5_type = ARG_ANYTHING,
1621};
1622
1623BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1624{
1625 enum bpf_dynptr_type type;
1626 int err;
1627
1628 if (!ptr->data)
1629 return 0;
1630
1631 err = bpf_dynptr_check_off_len(ptr, offset, len);
1632 if (err)
1633 return 0;
1634
1635 if (__bpf_dynptr_is_rdonly(ptr))
1636 return 0;
1637
1638 type = bpf_dynptr_get_type(ptr);
1639
1640 switch (type) {
1641 case BPF_DYNPTR_TYPE_LOCAL:
1642 case BPF_DYNPTR_TYPE_RINGBUF:
1643 return (unsigned long)(ptr->data + ptr->offset + offset);
1644 case BPF_DYNPTR_TYPE_SKB:
1645 case BPF_DYNPTR_TYPE_XDP:
1646 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1647 return 0;
1648 default:
1649 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1650 return 0;
1651 }
1652}
1653
1654static const struct bpf_func_proto bpf_dynptr_data_proto = {
1655 .func = bpf_dynptr_data,
1656 .gpl_only = false,
1657 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1658 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1659 .arg2_type = ARG_ANYTHING,
1660 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1661};
1662
1663const struct bpf_func_proto bpf_get_current_task_proto __weak;
1664const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1665const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1666const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1667const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1668const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1669const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1670
1671const struct bpf_func_proto *
1672bpf_base_func_proto(enum bpf_func_id func_id)
1673{
1674 switch (func_id) {
1675 case BPF_FUNC_map_lookup_elem:
1676 return &bpf_map_lookup_elem_proto;
1677 case BPF_FUNC_map_update_elem:
1678 return &bpf_map_update_elem_proto;
1679 case BPF_FUNC_map_delete_elem:
1680 return &bpf_map_delete_elem_proto;
1681 case BPF_FUNC_map_push_elem:
1682 return &bpf_map_push_elem_proto;
1683 case BPF_FUNC_map_pop_elem:
1684 return &bpf_map_pop_elem_proto;
1685 case BPF_FUNC_map_peek_elem:
1686 return &bpf_map_peek_elem_proto;
1687 case BPF_FUNC_map_lookup_percpu_elem:
1688 return &bpf_map_lookup_percpu_elem_proto;
1689 case BPF_FUNC_get_prandom_u32:
1690 return &bpf_get_prandom_u32_proto;
1691 case BPF_FUNC_get_smp_processor_id:
1692 return &bpf_get_raw_smp_processor_id_proto;
1693 case BPF_FUNC_get_numa_node_id:
1694 return &bpf_get_numa_node_id_proto;
1695 case BPF_FUNC_tail_call:
1696 return &bpf_tail_call_proto;
1697 case BPF_FUNC_ktime_get_ns:
1698 return &bpf_ktime_get_ns_proto;
1699 case BPF_FUNC_ktime_get_boot_ns:
1700 return &bpf_ktime_get_boot_ns_proto;
1701 case BPF_FUNC_ktime_get_tai_ns:
1702 return &bpf_ktime_get_tai_ns_proto;
1703 case BPF_FUNC_ringbuf_output:
1704 return &bpf_ringbuf_output_proto;
1705 case BPF_FUNC_ringbuf_reserve:
1706 return &bpf_ringbuf_reserve_proto;
1707 case BPF_FUNC_ringbuf_submit:
1708 return &bpf_ringbuf_submit_proto;
1709 case BPF_FUNC_ringbuf_discard:
1710 return &bpf_ringbuf_discard_proto;
1711 case BPF_FUNC_ringbuf_query:
1712 return &bpf_ringbuf_query_proto;
1713 case BPF_FUNC_strncmp:
1714 return &bpf_strncmp_proto;
1715 case BPF_FUNC_strtol:
1716 return &bpf_strtol_proto;
1717 case BPF_FUNC_strtoul:
1718 return &bpf_strtoul_proto;
1719 default:
1720 break;
1721 }
1722
1723 if (!bpf_capable())
1724 return NULL;
1725
1726 switch (func_id) {
1727 case BPF_FUNC_spin_lock:
1728 return &bpf_spin_lock_proto;
1729 case BPF_FUNC_spin_unlock:
1730 return &bpf_spin_unlock_proto;
1731 case BPF_FUNC_jiffies64:
1732 return &bpf_jiffies64_proto;
1733 case BPF_FUNC_per_cpu_ptr:
1734 return &bpf_per_cpu_ptr_proto;
1735 case BPF_FUNC_this_cpu_ptr:
1736 return &bpf_this_cpu_ptr_proto;
1737 case BPF_FUNC_timer_init:
1738 return &bpf_timer_init_proto;
1739 case BPF_FUNC_timer_set_callback:
1740 return &bpf_timer_set_callback_proto;
1741 case BPF_FUNC_timer_start:
1742 return &bpf_timer_start_proto;
1743 case BPF_FUNC_timer_cancel:
1744 return &bpf_timer_cancel_proto;
1745 case BPF_FUNC_kptr_xchg:
1746 return &bpf_kptr_xchg_proto;
1747 case BPF_FUNC_for_each_map_elem:
1748 return &bpf_for_each_map_elem_proto;
1749 case BPF_FUNC_loop:
1750 return &bpf_loop_proto;
1751 case BPF_FUNC_user_ringbuf_drain:
1752 return &bpf_user_ringbuf_drain_proto;
1753 case BPF_FUNC_ringbuf_reserve_dynptr:
1754 return &bpf_ringbuf_reserve_dynptr_proto;
1755 case BPF_FUNC_ringbuf_submit_dynptr:
1756 return &bpf_ringbuf_submit_dynptr_proto;
1757 case BPF_FUNC_ringbuf_discard_dynptr:
1758 return &bpf_ringbuf_discard_dynptr_proto;
1759 case BPF_FUNC_dynptr_from_mem:
1760 return &bpf_dynptr_from_mem_proto;
1761 case BPF_FUNC_dynptr_read:
1762 return &bpf_dynptr_read_proto;
1763 case BPF_FUNC_dynptr_write:
1764 return &bpf_dynptr_write_proto;
1765 case BPF_FUNC_dynptr_data:
1766 return &bpf_dynptr_data_proto;
1767#ifdef CONFIG_CGROUPS
1768 case BPF_FUNC_cgrp_storage_get:
1769 return &bpf_cgrp_storage_get_proto;
1770 case BPF_FUNC_cgrp_storage_delete:
1771 return &bpf_cgrp_storage_delete_proto;
1772 case BPF_FUNC_get_current_cgroup_id:
1773 return &bpf_get_current_cgroup_id_proto;
1774 case BPF_FUNC_get_current_ancestor_cgroup_id:
1775 return &bpf_get_current_ancestor_cgroup_id_proto;
1776#endif
1777 default:
1778 break;
1779 }
1780
1781 if (!perfmon_capable())
1782 return NULL;
1783
1784 switch (func_id) {
1785 case BPF_FUNC_trace_printk:
1786 return bpf_get_trace_printk_proto();
1787 case BPF_FUNC_get_current_task:
1788 return &bpf_get_current_task_proto;
1789 case BPF_FUNC_get_current_task_btf:
1790 return &bpf_get_current_task_btf_proto;
1791 case BPF_FUNC_probe_read_user:
1792 return &bpf_probe_read_user_proto;
1793 case BPF_FUNC_probe_read_kernel:
1794 return security_locked_down(what: LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1795 NULL : &bpf_probe_read_kernel_proto;
1796 case BPF_FUNC_probe_read_user_str:
1797 return &bpf_probe_read_user_str_proto;
1798 case BPF_FUNC_probe_read_kernel_str:
1799 return security_locked_down(what: LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1800 NULL : &bpf_probe_read_kernel_str_proto;
1801 case BPF_FUNC_snprintf_btf:
1802 return &bpf_snprintf_btf_proto;
1803 case BPF_FUNC_snprintf:
1804 return &bpf_snprintf_proto;
1805 case BPF_FUNC_task_pt_regs:
1806 return &bpf_task_pt_regs_proto;
1807 case BPF_FUNC_trace_vprintk:
1808 return bpf_get_trace_vprintk_proto();
1809 default:
1810 return NULL;
1811 }
1812}
1813
1814void bpf_list_head_free(const struct btf_field *field, void *list_head,
1815 struct bpf_spin_lock *spin_lock)
1816{
1817 struct list_head *head = list_head, *orig_head = list_head;
1818
1819 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1820 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1821
1822 /* Do the actual list draining outside the lock to not hold the lock for
1823 * too long, and also prevent deadlocks if tracing programs end up
1824 * executing on entry/exit of functions called inside the critical
1825 * section, and end up doing map ops that call bpf_list_head_free for
1826 * the same map value again.
1827 */
1828 __bpf_spin_lock_irqsave(lock: spin_lock);
1829 if (!head->next || list_empty(head))
1830 goto unlock;
1831 head = head->next;
1832unlock:
1833 INIT_LIST_HEAD(list: orig_head);
1834 __bpf_spin_unlock_irqrestore(lock: spin_lock);
1835
1836 while (head != orig_head) {
1837 void *obj = head;
1838
1839 obj -= field->graph_root.node_offset;
1840 head = head->next;
1841 /* The contained type can also have resources, including a
1842 * bpf_list_head which needs to be freed.
1843 */
1844 migrate_disable();
1845 __bpf_obj_drop_impl(p: obj, rec: field->graph_root.value_rec, percpu: false);
1846 migrate_enable();
1847 }
1848}
1849
1850/* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1851 * 'rb_node *', so field name of rb_node within containing struct is not
1852 * needed.
1853 *
1854 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1855 * graph_root.node_offset, it's not necessary to know field name
1856 * or type of node struct
1857 */
1858#define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1859 for (pos = rb_first_postorder(root); \
1860 pos && ({ n = rb_next_postorder(pos); 1; }); \
1861 pos = n)
1862
1863void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1864 struct bpf_spin_lock *spin_lock)
1865{
1866 struct rb_root_cached orig_root, *root = rb_root;
1867 struct rb_node *pos, *n;
1868 void *obj;
1869
1870 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1871 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1872
1873 __bpf_spin_lock_irqsave(lock: spin_lock);
1874 orig_root = *root;
1875 *root = RB_ROOT_CACHED;
1876 __bpf_spin_unlock_irqrestore(lock: spin_lock);
1877
1878 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1879 obj = pos;
1880 obj -= field->graph_root.node_offset;
1881
1882
1883 migrate_disable();
1884 __bpf_obj_drop_impl(p: obj, rec: field->graph_root.value_rec, percpu: false);
1885 migrate_enable();
1886 }
1887}
1888
1889__diag_push();
1890__diag_ignore_all("-Wmissing-prototypes",
1891 "Global functions as their definitions will be in vmlinux BTF");
1892
1893__bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1894{
1895 struct btf_struct_meta *meta = meta__ign;
1896 u64 size = local_type_id__k;
1897 void *p;
1898
1899 p = bpf_mem_alloc(ma: &bpf_global_ma, size);
1900 if (!p)
1901 return NULL;
1902 if (meta)
1903 bpf_obj_init(rec: meta->record, obj: p);
1904 return p;
1905}
1906
1907__bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1908{
1909 u64 size = local_type_id__k;
1910
1911 /* The verifier has ensured that meta__ign must be NULL */
1912 return bpf_mem_alloc(ma: &bpf_global_percpu_ma, size);
1913}
1914
1915/* Must be called under migrate_disable(), as required by bpf_mem_free */
1916void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
1917{
1918 struct bpf_mem_alloc *ma;
1919
1920 if (rec && rec->refcount_off >= 0 &&
1921 !refcount_dec_and_test(r: (refcount_t *)(p + rec->refcount_off))) {
1922 /* Object is refcounted and refcount_dec didn't result in 0
1923 * refcount. Return without freeing the object
1924 */
1925 return;
1926 }
1927
1928 if (rec)
1929 bpf_obj_free_fields(rec, obj: p);
1930
1931 if (percpu)
1932 ma = &bpf_global_percpu_ma;
1933 else
1934 ma = &bpf_global_ma;
1935 if (rec && rec->refcount_off >= 0)
1936 bpf_mem_free_rcu(ma, ptr: p);
1937 else
1938 bpf_mem_free(ma, ptr: p);
1939}
1940
1941__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
1942{
1943 struct btf_struct_meta *meta = meta__ign;
1944 void *p = p__alloc;
1945
1946 __bpf_obj_drop_impl(p, rec: meta ? meta->record : NULL, percpu: false);
1947}
1948
1949__bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
1950{
1951 /* The verifier has ensured that meta__ign must be NULL */
1952 bpf_mem_free_rcu(ma: &bpf_global_percpu_ma, ptr: p__alloc);
1953}
1954
1955__bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
1956{
1957 struct btf_struct_meta *meta = meta__ign;
1958 struct bpf_refcount *ref;
1959
1960 /* Could just cast directly to refcount_t *, but need some code using
1961 * bpf_refcount type so that it is emitted in vmlinux BTF
1962 */
1963 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
1964 if (!refcount_inc_not_zero(r: (refcount_t *)ref))
1965 return NULL;
1966
1967 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
1968 * in verifier.c
1969 */
1970 return (void *)p__refcounted_kptr;
1971}
1972
1973static int __bpf_list_add(struct bpf_list_node_kern *node,
1974 struct bpf_list_head *head,
1975 bool tail, struct btf_record *rec, u64 off)
1976{
1977 struct list_head *n = &node->list_head, *h = (void *)head;
1978
1979 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
1980 * called on its fields, so init here
1981 */
1982 if (unlikely(!h->next))
1983 INIT_LIST_HEAD(list: h);
1984
1985 /* node->owner != NULL implies !list_empty(n), no need to separately
1986 * check the latter
1987 */
1988 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
1989 /* Only called from BPF prog, no need to migrate_disable */
1990 __bpf_obj_drop_impl(p: (void *)n - off, rec, percpu: false);
1991 return -EINVAL;
1992 }
1993
1994 tail ? list_add_tail(new: n, head: h) : list_add(new: n, head: h);
1995 WRITE_ONCE(node->owner, head);
1996
1997 return 0;
1998}
1999
2000__bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2001 struct bpf_list_node *node,
2002 void *meta__ign, u64 off)
2003{
2004 struct bpf_list_node_kern *n = (void *)node;
2005 struct btf_struct_meta *meta = meta__ign;
2006
2007 return __bpf_list_add(node: n, head, tail: false, rec: meta ? meta->record : NULL, off);
2008}
2009
2010__bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2011 struct bpf_list_node *node,
2012 void *meta__ign, u64 off)
2013{
2014 struct bpf_list_node_kern *n = (void *)node;
2015 struct btf_struct_meta *meta = meta__ign;
2016
2017 return __bpf_list_add(node: n, head, tail: true, rec: meta ? meta->record : NULL, off);
2018}
2019
2020static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2021{
2022 struct list_head *n, *h = (void *)head;
2023 struct bpf_list_node_kern *node;
2024
2025 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2026 * called on its fields, so init here
2027 */
2028 if (unlikely(!h->next))
2029 INIT_LIST_HEAD(list: h);
2030 if (list_empty(head: h))
2031 return NULL;
2032
2033 n = tail ? h->prev : h->next;
2034 node = container_of(n, struct bpf_list_node_kern, list_head);
2035 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2036 return NULL;
2037
2038 list_del_init(entry: n);
2039 WRITE_ONCE(node->owner, NULL);
2040 return (struct bpf_list_node *)n;
2041}
2042
2043__bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2044{
2045 return __bpf_list_del(head, tail: false);
2046}
2047
2048__bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2049{
2050 return __bpf_list_del(head, tail: true);
2051}
2052
2053__bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2054 struct bpf_rb_node *node)
2055{
2056 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2057 struct rb_root_cached *r = (struct rb_root_cached *)root;
2058 struct rb_node *n = &node_internal->rb_node;
2059
2060 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2061 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2062 */
2063 if (READ_ONCE(node_internal->owner) != root)
2064 return NULL;
2065
2066 rb_erase_cached(node: n, root: r);
2067 RB_CLEAR_NODE(n);
2068 WRITE_ONCE(node_internal->owner, NULL);
2069 return (struct bpf_rb_node *)n;
2070}
2071
2072/* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2073 * program
2074 */
2075static int __bpf_rbtree_add(struct bpf_rb_root *root,
2076 struct bpf_rb_node_kern *node,
2077 void *less, struct btf_record *rec, u64 off)
2078{
2079 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2080 struct rb_node *parent = NULL, *n = &node->rb_node;
2081 bpf_callback_t cb = (bpf_callback_t)less;
2082 bool leftmost = true;
2083
2084 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2085 * check the latter
2086 */
2087 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2088 /* Only called from BPF prog, no need to migrate_disable */
2089 __bpf_obj_drop_impl(p: (void *)n - off, rec, percpu: false);
2090 return -EINVAL;
2091 }
2092
2093 while (*link) {
2094 parent = *link;
2095 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2096 link = &parent->rb_left;
2097 } else {
2098 link = &parent->rb_right;
2099 leftmost = false;
2100 }
2101 }
2102
2103 rb_link_node(node: n, parent, rb_link: link);
2104 rb_insert_color_cached(node: n, root: (struct rb_root_cached *)root, leftmost);
2105 WRITE_ONCE(node->owner, root);
2106 return 0;
2107}
2108
2109__bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2110 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2111 void *meta__ign, u64 off)
2112{
2113 struct btf_struct_meta *meta = meta__ign;
2114 struct bpf_rb_node_kern *n = (void *)node;
2115
2116 return __bpf_rbtree_add(root, node: n, less: (void *)less, rec: meta ? meta->record : NULL, off);
2117}
2118
2119__bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2120{
2121 struct rb_root_cached *r = (struct rb_root_cached *)root;
2122
2123 return (struct bpf_rb_node *)rb_first_cached(r);
2124}
2125
2126/**
2127 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2128 * kfunc which is not stored in a map as a kptr, must be released by calling
2129 * bpf_task_release().
2130 * @p: The task on which a reference is being acquired.
2131 */
2132__bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2133{
2134 if (refcount_inc_not_zero(r: &p->rcu_users))
2135 return p;
2136 return NULL;
2137}
2138
2139/**
2140 * bpf_task_release - Release the reference acquired on a task.
2141 * @p: The task on which a reference is being released.
2142 */
2143__bpf_kfunc void bpf_task_release(struct task_struct *p)
2144{
2145 put_task_struct_rcu_user(task: p);
2146}
2147
2148#ifdef CONFIG_CGROUPS
2149/**
2150 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2151 * this kfunc which is not stored in a map as a kptr, must be released by
2152 * calling bpf_cgroup_release().
2153 * @cgrp: The cgroup on which a reference is being acquired.
2154 */
2155__bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2156{
2157 return cgroup_tryget(cgrp) ? cgrp : NULL;
2158}
2159
2160/**
2161 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2162 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2163 * not be freed until the current grace period has ended, even if its refcount
2164 * drops to 0.
2165 * @cgrp: The cgroup on which a reference is being released.
2166 */
2167__bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2168{
2169 cgroup_put(cgrp);
2170}
2171
2172/**
2173 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2174 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2175 * map, must be released by calling bpf_cgroup_release().
2176 * @cgrp: The cgroup for which we're performing a lookup.
2177 * @level: The level of ancestor to look up.
2178 */
2179__bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2180{
2181 struct cgroup *ancestor;
2182
2183 if (level > cgrp->level || level < 0)
2184 return NULL;
2185
2186 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2187 ancestor = cgrp->ancestors[level];
2188 if (!cgroup_tryget(cgrp: ancestor))
2189 return NULL;
2190 return ancestor;
2191}
2192
2193/**
2194 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2195 * kfunc which is not subsequently stored in a map, must be released by calling
2196 * bpf_cgroup_release().
2197 * @cgid: cgroup id.
2198 */
2199__bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2200{
2201 struct cgroup *cgrp;
2202
2203 cgrp = cgroup_get_from_id(id: cgid);
2204 if (IS_ERR(ptr: cgrp))
2205 return NULL;
2206 return cgrp;
2207}
2208
2209/**
2210 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2211 * task's membership of cgroup ancestry.
2212 * @task: the task to be tested
2213 * @ancestor: possible ancestor of @task's cgroup
2214 *
2215 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2216 * It follows all the same rules as cgroup_is_descendant, and only applies
2217 * to the default hierarchy.
2218 */
2219__bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2220 struct cgroup *ancestor)
2221{
2222 long ret;
2223
2224 rcu_read_lock();
2225 ret = task_under_cgroup_hierarchy(task, ancestor);
2226 rcu_read_unlock();
2227 return ret;
2228}
2229#endif /* CONFIG_CGROUPS */
2230
2231/**
2232 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2233 * in the root pid namespace idr. If a task is returned, it must either be
2234 * stored in a map, or released with bpf_task_release().
2235 * @pid: The pid of the task being looked up.
2236 */
2237__bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2238{
2239 struct task_struct *p;
2240
2241 rcu_read_lock();
2242 p = find_task_by_pid_ns(nr: pid, ns: &init_pid_ns);
2243 if (p)
2244 p = bpf_task_acquire(p);
2245 rcu_read_unlock();
2246
2247 return p;
2248}
2249
2250/**
2251 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2252 * @ptr: The dynptr whose data slice to retrieve
2253 * @offset: Offset into the dynptr
2254 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2255 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2256 * length of the requested slice. This must be a constant.
2257 *
2258 * For non-skb and non-xdp type dynptrs, there is no difference between
2259 * bpf_dynptr_slice and bpf_dynptr_data.
2260 *
2261 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2262 *
2263 * If the intention is to write to the data slice, please use
2264 * bpf_dynptr_slice_rdwr.
2265 *
2266 * The user must check that the returned pointer is not null before using it.
2267 *
2268 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2269 * does not change the underlying packet data pointers, so a call to
2270 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2271 * the bpf program.
2272 *
2273 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2274 * data slice (can be either direct pointer to the data or a pointer to the user
2275 * provided buffer, with its contents containing the data, if unable to obtain
2276 * direct pointer)
2277 */
2278__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2279 void *buffer__opt, u32 buffer__szk)
2280{
2281 enum bpf_dynptr_type type;
2282 u32 len = buffer__szk;
2283 int err;
2284
2285 if (!ptr->data)
2286 return NULL;
2287
2288 err = bpf_dynptr_check_off_len(ptr, offset, len);
2289 if (err)
2290 return NULL;
2291
2292 type = bpf_dynptr_get_type(ptr);
2293
2294 switch (type) {
2295 case BPF_DYNPTR_TYPE_LOCAL:
2296 case BPF_DYNPTR_TYPE_RINGBUF:
2297 return ptr->data + ptr->offset + offset;
2298 case BPF_DYNPTR_TYPE_SKB:
2299 if (buffer__opt)
2300 return skb_header_pointer(skb: ptr->data, offset: ptr->offset + offset, len, buffer: buffer__opt);
2301 else
2302 return skb_pointer_if_linear(skb: ptr->data, offset: ptr->offset + offset, len);
2303 case BPF_DYNPTR_TYPE_XDP:
2304 {
2305 void *xdp_ptr = bpf_xdp_pointer(xdp: ptr->data, offset: ptr->offset + offset, len);
2306 if (!IS_ERR_OR_NULL(ptr: xdp_ptr))
2307 return xdp_ptr;
2308
2309 if (!buffer__opt)
2310 return NULL;
2311 bpf_xdp_copy_buf(xdp: ptr->data, off: ptr->offset + offset, buf: buffer__opt, len, flush: false);
2312 return buffer__opt;
2313 }
2314 default:
2315 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2316 return NULL;
2317 }
2318}
2319
2320/**
2321 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2322 * @ptr: The dynptr whose data slice to retrieve
2323 * @offset: Offset into the dynptr
2324 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2325 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2326 * length of the requested slice. This must be a constant.
2327 *
2328 * For non-skb and non-xdp type dynptrs, there is no difference between
2329 * bpf_dynptr_slice and bpf_dynptr_data.
2330 *
2331 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2332 *
2333 * The returned pointer is writable and may point to either directly the dynptr
2334 * data at the requested offset or to the buffer if unable to obtain a direct
2335 * data pointer to (example: the requested slice is to the paged area of an skb
2336 * packet). In the case where the returned pointer is to the buffer, the user
2337 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2338 * usually looks something like this pattern:
2339 *
2340 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2341 * if (!eth)
2342 * return TC_ACT_SHOT;
2343 *
2344 * // mutate eth header //
2345 *
2346 * if (eth == buffer)
2347 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2348 *
2349 * Please note that, as in the example above, the user must check that the
2350 * returned pointer is not null before using it.
2351 *
2352 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2353 * does not change the underlying packet data pointers, so a call to
2354 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2355 * the bpf program.
2356 *
2357 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2358 * data slice (can be either direct pointer to the data or a pointer to the user
2359 * provided buffer, with its contents containing the data, if unable to obtain
2360 * direct pointer)
2361 */
2362__bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2363 void *buffer__opt, u32 buffer__szk)
2364{
2365 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2366 return NULL;
2367
2368 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2369 *
2370 * For skb-type dynptrs, it is safe to write into the returned pointer
2371 * if the bpf program allows skb data writes. There are two possiblities
2372 * that may occur when calling bpf_dynptr_slice_rdwr:
2373 *
2374 * 1) The requested slice is in the head of the skb. In this case, the
2375 * returned pointer is directly to skb data, and if the skb is cloned, the
2376 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2377 * The pointer can be directly written into.
2378 *
2379 * 2) Some portion of the requested slice is in the paged buffer area.
2380 * In this case, the requested data will be copied out into the buffer
2381 * and the returned pointer will be a pointer to the buffer. The skb
2382 * will not be pulled. To persist the write, the user will need to call
2383 * bpf_dynptr_write(), which will pull the skb and commit the write.
2384 *
2385 * Similarly for xdp programs, if the requested slice is not across xdp
2386 * fragments, then a direct pointer will be returned, otherwise the data
2387 * will be copied out into the buffer and the user will need to call
2388 * bpf_dynptr_write() to commit changes.
2389 */
2390 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2391}
2392
2393__bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2394{
2395 u32 size;
2396
2397 if (!ptr->data || start > end)
2398 return -EINVAL;
2399
2400 size = __bpf_dynptr_size(ptr);
2401
2402 if (start > size || end > size)
2403 return -ERANGE;
2404
2405 ptr->offset += start;
2406 bpf_dynptr_set_size(ptr, new_size: end - start);
2407
2408 return 0;
2409}
2410
2411__bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2412{
2413 return !ptr->data;
2414}
2415
2416__bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2417{
2418 if (!ptr->data)
2419 return false;
2420
2421 return __bpf_dynptr_is_rdonly(ptr);
2422}
2423
2424__bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2425{
2426 if (!ptr->data)
2427 return -EINVAL;
2428
2429 return __bpf_dynptr_size(ptr);
2430}
2431
2432__bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2433 struct bpf_dynptr_kern *clone__uninit)
2434{
2435 if (!ptr->data) {
2436 bpf_dynptr_set_null(ptr: clone__uninit);
2437 return -EINVAL;
2438 }
2439
2440 *clone__uninit = *ptr;
2441
2442 return 0;
2443}
2444
2445__bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2446{
2447 return obj;
2448}
2449
2450__bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2451{
2452 return obj__ign;
2453}
2454
2455__bpf_kfunc void bpf_rcu_read_lock(void)
2456{
2457 rcu_read_lock();
2458}
2459
2460__bpf_kfunc void bpf_rcu_read_unlock(void)
2461{
2462 rcu_read_unlock();
2463}
2464
2465struct bpf_throw_ctx {
2466 struct bpf_prog_aux *aux;
2467 u64 sp;
2468 u64 bp;
2469 int cnt;
2470};
2471
2472static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2473{
2474 struct bpf_throw_ctx *ctx = cookie;
2475 struct bpf_prog *prog;
2476
2477 if (!is_bpf_text_address(addr: ip))
2478 return !ctx->cnt;
2479 prog = bpf_prog_ksym_find(addr: ip);
2480 ctx->cnt++;
2481 if (bpf_is_subprog(prog))
2482 return true;
2483 ctx->aux = prog->aux;
2484 ctx->sp = sp;
2485 ctx->bp = bp;
2486 return false;
2487}
2488
2489__bpf_kfunc void bpf_throw(u64 cookie)
2490{
2491 struct bpf_throw_ctx ctx = {};
2492
2493 arch_bpf_stack_walk(consume_fn: bpf_stack_walker, cookie: &ctx);
2494 WARN_ON_ONCE(!ctx.aux);
2495 if (ctx.aux)
2496 WARN_ON_ONCE(!ctx.aux->exception_boundary);
2497 WARN_ON_ONCE(!ctx.bp);
2498 WARN_ON_ONCE(!ctx.cnt);
2499 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
2500 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
2501 * which skips compiler generated instrumentation to do the same.
2502 */
2503 kasan_unpoison_task_stack_below(watermark: (void *)(long)ctx.sp);
2504 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp);
2505 WARN(1, "A call to BPF exception callback should never return\n");
2506}
2507
2508__diag_pop();
2509
2510BTF_SET8_START(generic_btf_ids)
2511#ifdef CONFIG_KEXEC_CORE
2512BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2513#endif
2514BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2515BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2516BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2517BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
2518BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL)
2519BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2520BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2521BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2522BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2523BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2524BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2525BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2526BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2527BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2528
2529#ifdef CONFIG_CGROUPS
2530BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2531BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2532BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2533BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2534BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2535#endif
2536BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2537BTF_ID_FLAGS(func, bpf_throw)
2538BTF_SET8_END(generic_btf_ids)
2539
2540static const struct btf_kfunc_id_set generic_kfunc_set = {
2541 .owner = THIS_MODULE,
2542 .set = &generic_btf_ids,
2543};
2544
2545
2546BTF_ID_LIST(generic_dtor_ids)
2547BTF_ID(struct, task_struct)
2548BTF_ID(func, bpf_task_release)
2549#ifdef CONFIG_CGROUPS
2550BTF_ID(struct, cgroup)
2551BTF_ID(func, bpf_cgroup_release)
2552#endif
2553
2554BTF_SET8_START(common_btf_ids)
2555BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2556BTF_ID_FLAGS(func, bpf_rdonly_cast)
2557BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2558BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2559BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2560BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2561BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2562BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2563BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2564BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
2565BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
2566BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
2567BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
2568BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
2569BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
2570BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
2571BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
2572BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
2573BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
2574BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
2575BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
2576BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2577BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2578BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2579BTF_ID_FLAGS(func, bpf_dynptr_size)
2580BTF_ID_FLAGS(func, bpf_dynptr_clone)
2581BTF_SET8_END(common_btf_ids)
2582
2583static const struct btf_kfunc_id_set common_kfunc_set = {
2584 .owner = THIS_MODULE,
2585 .set = &common_btf_ids,
2586};
2587
2588static int __init kfunc_init(void)
2589{
2590 int ret;
2591 const struct btf_id_dtor_kfunc generic_dtors[] = {
2592 {
2593 .btf_id = generic_dtor_ids[0],
2594 .kfunc_btf_id = generic_dtor_ids[1]
2595 },
2596#ifdef CONFIG_CGROUPS
2597 {
2598 .btf_id = generic_dtor_ids[2],
2599 .kfunc_btf_id = generic_dtor_ids[3]
2600 },
2601#endif
2602 };
2603
2604 ret = register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_TRACING, s: &generic_kfunc_set);
2605 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_SCHED_CLS, s: &generic_kfunc_set);
2606 ret = ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_STRUCT_OPS, s: &generic_kfunc_set);
2607 ret = ret ?: register_btf_id_dtor_kfuncs(dtors: generic_dtors,
2608 ARRAY_SIZE(generic_dtors),
2609 THIS_MODULE);
2610 return ret ?: register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_UNSPEC, s: &common_kfunc_set);
2611}
2612
2613late_initcall(kfunc_init);
2614

source code of linux/kernel/bpf/helpers.c