1 | /* |
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
3 | * operating system. INET is implemented using the BSD Socket |
4 | * interface as the means of communication with the user level. |
5 | * |
6 | * The Internet Protocol (IP) output module. |
7 | * |
8 | * Authors: Ross Biro |
9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
10 | * Donald Becker, <becker@super.org> |
11 | * Alan Cox, <Alan.Cox@linux.org> |
12 | * Richard Underwood |
13 | * Stefan Becker, <stefanb@yello.ping.de> |
14 | * Jorge Cwik, <jorge@laser.satlink.net> |
15 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
16 | * Hirokazu Takahashi, <taka@valinux.co.jp> |
17 | * |
18 | * See ip_input.c for original log |
19 | * |
20 | * Fixes: |
21 | * Alan Cox : Missing nonblock feature in ip_build_xmit. |
22 | * Mike Kilburn : htons() missing in ip_build_xmit. |
23 | * Bradford Johnson: Fix faulty handling of some frames when |
24 | * no route is found. |
25 | * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit |
26 | * (in case if packet not accepted by |
27 | * output firewall rules) |
28 | * Mike McLagan : Routing by source |
29 | * Alexey Kuznetsov: use new route cache |
30 | * Andi Kleen: Fix broken PMTU recovery and remove |
31 | * some redundant tests. |
32 | * Vitaly E. Lavrov : Transparent proxy revived after year coma. |
33 | * Andi Kleen : Replace ip_reply with ip_send_reply. |
34 | * Andi Kleen : Split fast and slow ip_build_xmit path |
35 | * for decreased register pressure on x86 |
36 | * and more readibility. |
37 | * Marc Boucher : When call_out_firewall returns FW_QUEUE, |
38 | * silently drop skb instead of failing with -EPERM. |
39 | * Detlev Wengorz : Copy protocol for fragments. |
40 | * Hirokazu Takahashi: HW checksumming for outgoing UDP |
41 | * datagrams. |
42 | * Hirokazu Takahashi: sendfile() on UDP works now. |
43 | */ |
44 | |
45 | #include <linux/uaccess.h> |
46 | #include <linux/module.h> |
47 | #include <linux/types.h> |
48 | #include <linux/kernel.h> |
49 | #include <linux/mm.h> |
50 | #include <linux/string.h> |
51 | #include <linux/errno.h> |
52 | #include <linux/highmem.h> |
53 | #include <linux/slab.h> |
54 | |
55 | #include <linux/socket.h> |
56 | #include <linux/sockios.h> |
57 | #include <linux/in.h> |
58 | #include <linux/inet.h> |
59 | #include <linux/netdevice.h> |
60 | #include <linux/etherdevice.h> |
61 | #include <linux/proc_fs.h> |
62 | #include <linux/stat.h> |
63 | #include <linux/init.h> |
64 | |
65 | #include <net/snmp.h> |
66 | #include <net/ip.h> |
67 | #include <net/protocol.h> |
68 | #include <net/route.h> |
69 | #include <net/xfrm.h> |
70 | #include <linux/skbuff.h> |
71 | #include <net/sock.h> |
72 | #include <net/arp.h> |
73 | #include <net/icmp.h> |
74 | #include <net/checksum.h> |
75 | #include <net/inetpeer.h> |
76 | #include <net/lwtunnel.h> |
77 | #include <linux/bpf-cgroup.h> |
78 | #include <linux/igmp.h> |
79 | #include <linux/netfilter_ipv4.h> |
80 | #include <linux/netfilter_bridge.h> |
81 | #include <linux/netlink.h> |
82 | #include <linux/tcp.h> |
83 | |
84 | static int |
85 | ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
86 | unsigned int mtu, |
87 | int (*output)(struct net *, struct sock *, struct sk_buff *)); |
88 | |
89 | /* Generate a checksum for an outgoing IP datagram. */ |
90 | void ip_send_check(struct iphdr *iph) |
91 | { |
92 | iph->check = 0; |
93 | iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); |
94 | } |
95 | EXPORT_SYMBOL(ip_send_check); |
96 | |
97 | int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) |
98 | { |
99 | struct iphdr *iph = ip_hdr(skb); |
100 | |
101 | iph->tot_len = htons(skb->len); |
102 | ip_send_check(iph); |
103 | |
104 | /* if egress device is enslaved to an L3 master device pass the |
105 | * skb to its handler for processing |
106 | */ |
107 | skb = l3mdev_ip_out(sk, skb); |
108 | if (unlikely(!skb)) |
109 | return 0; |
110 | |
111 | skb->protocol = htons(ETH_P_IP); |
112 | |
113 | return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, |
114 | net, sk, skb, NULL, skb_dst(skb)->dev, |
115 | dst_output); |
116 | } |
117 | |
118 | int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) |
119 | { |
120 | int err; |
121 | |
122 | err = __ip_local_out(net, sk, skb); |
123 | if (likely(err == 1)) |
124 | err = dst_output(net, sk, skb); |
125 | |
126 | return err; |
127 | } |
128 | EXPORT_SYMBOL_GPL(ip_local_out); |
129 | |
130 | static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) |
131 | { |
132 | int ttl = inet->uc_ttl; |
133 | |
134 | if (ttl < 0) |
135 | ttl = ip4_dst_hoplimit(dst); |
136 | return ttl; |
137 | } |
138 | |
139 | /* |
140 | * Add an ip header to a skbuff and send it out. |
141 | * |
142 | */ |
143 | int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, |
144 | __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) |
145 | { |
146 | struct inet_sock *inet = inet_sk(sk); |
147 | struct rtable *rt = skb_rtable(skb); |
148 | struct net *net = sock_net(sk); |
149 | struct iphdr *iph; |
150 | |
151 | /* Build the IP header. */ |
152 | skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); |
153 | skb_reset_network_header(skb); |
154 | iph = ip_hdr(skb); |
155 | iph->version = 4; |
156 | iph->ihl = 5; |
157 | iph->tos = inet->tos; |
158 | iph->ttl = ip_select_ttl(inet, &rt->dst); |
159 | iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); |
160 | iph->saddr = saddr; |
161 | iph->protocol = sk->sk_protocol; |
162 | if (ip_dont_fragment(sk, &rt->dst)) { |
163 | iph->frag_off = htons(IP_DF); |
164 | iph->id = 0; |
165 | } else { |
166 | iph->frag_off = 0; |
167 | __ip_select_ident(net, iph, 1); |
168 | } |
169 | |
170 | if (opt && opt->opt.optlen) { |
171 | iph->ihl += opt->opt.optlen>>2; |
172 | ip_options_build(skb, &opt->opt, daddr, rt, 0); |
173 | } |
174 | |
175 | skb->priority = sk->sk_priority; |
176 | if (!skb->mark) |
177 | skb->mark = sk->sk_mark; |
178 | |
179 | /* Send it out. */ |
180 | return ip_local_out(net, skb->sk, skb); |
181 | } |
182 | EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); |
183 | |
184 | static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) |
185 | { |
186 | struct dst_entry *dst = skb_dst(skb); |
187 | struct rtable *rt = (struct rtable *)dst; |
188 | struct net_device *dev = dst->dev; |
189 | unsigned int hh_len = LL_RESERVED_SPACE(dev); |
190 | struct neighbour *neigh; |
191 | u32 nexthop; |
192 | |
193 | if (rt->rt_type == RTN_MULTICAST) { |
194 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); |
195 | } else if (rt->rt_type == RTN_BROADCAST) |
196 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); |
197 | |
198 | /* Be paranoid, rather than too clever. */ |
199 | if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { |
200 | struct sk_buff *skb2; |
201 | |
202 | skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); |
203 | if (!skb2) { |
204 | kfree_skb(skb); |
205 | return -ENOMEM; |
206 | } |
207 | if (skb->sk) |
208 | skb_set_owner_w(skb2, skb->sk); |
209 | consume_skb(skb); |
210 | skb = skb2; |
211 | } |
212 | |
213 | if (lwtunnel_xmit_redirect(dst->lwtstate)) { |
214 | int res = lwtunnel_xmit(skb); |
215 | |
216 | if (res < 0 || res == LWTUNNEL_XMIT_DONE) |
217 | return res; |
218 | } |
219 | |
220 | rcu_read_lock_bh(); |
221 | nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); |
222 | neigh = __ipv4_neigh_lookup_noref(dev, nexthop); |
223 | if (unlikely(!neigh)) |
224 | neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); |
225 | if (!IS_ERR(neigh)) { |
226 | int res; |
227 | |
228 | sock_confirm_neigh(skb, neigh); |
229 | res = neigh_output(neigh, skb); |
230 | |
231 | rcu_read_unlock_bh(); |
232 | return res; |
233 | } |
234 | rcu_read_unlock_bh(); |
235 | |
236 | net_dbg_ratelimited("%s: No header cache and no neighbour!\n" , |
237 | __func__); |
238 | kfree_skb(skb); |
239 | return -EINVAL; |
240 | } |
241 | |
242 | static int ip_finish_output_gso(struct net *net, struct sock *sk, |
243 | struct sk_buff *skb, unsigned int mtu) |
244 | { |
245 | netdev_features_t features; |
246 | struct sk_buff *segs; |
247 | int ret = 0; |
248 | |
249 | /* common case: seglen is <= mtu |
250 | */ |
251 | if (skb_gso_validate_network_len(skb, mtu)) |
252 | return ip_finish_output2(net, sk, skb); |
253 | |
254 | /* Slowpath - GSO segment length exceeds the egress MTU. |
255 | * |
256 | * This can happen in several cases: |
257 | * - Forwarding of a TCP GRO skb, when DF flag is not set. |
258 | * - Forwarding of an skb that arrived on a virtualization interface |
259 | * (virtio-net/vhost/tap) with TSO/GSO size set by other network |
260 | * stack. |
261 | * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an |
262 | * interface with a smaller MTU. |
263 | * - Arriving GRO skb (or GSO skb in a virtualized environment) that is |
264 | * bridged to a NETIF_F_TSO tunnel stacked over an interface with an |
265 | * insufficent MTU. |
266 | */ |
267 | features = netif_skb_features(skb); |
268 | BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); |
269 | segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
270 | if (IS_ERR_OR_NULL(segs)) { |
271 | kfree_skb(skb); |
272 | return -ENOMEM; |
273 | } |
274 | |
275 | consume_skb(skb); |
276 | |
277 | do { |
278 | struct sk_buff *nskb = segs->next; |
279 | int err; |
280 | |
281 | skb_mark_not_on_list(segs); |
282 | err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); |
283 | |
284 | if (err && ret == 0) |
285 | ret = err; |
286 | segs = nskb; |
287 | } while (segs); |
288 | |
289 | return ret; |
290 | } |
291 | |
292 | static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
293 | { |
294 | unsigned int mtu; |
295 | int ret; |
296 | |
297 | ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); |
298 | if (ret) { |
299 | kfree_skb(skb); |
300 | return ret; |
301 | } |
302 | |
303 | #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) |
304 | /* Policy lookup after SNAT yielded a new policy */ |
305 | if (skb_dst(skb)->xfrm) { |
306 | IPCB(skb)->flags |= IPSKB_REROUTED; |
307 | return dst_output(net, sk, skb); |
308 | } |
309 | #endif |
310 | mtu = ip_skb_dst_mtu(sk, skb); |
311 | if (skb_is_gso(skb)) |
312 | return ip_finish_output_gso(net, sk, skb, mtu); |
313 | |
314 | if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) |
315 | return ip_fragment(net, sk, skb, mtu, ip_finish_output2); |
316 | |
317 | return ip_finish_output2(net, sk, skb); |
318 | } |
319 | |
320 | static int ip_mc_finish_output(struct net *net, struct sock *sk, |
321 | struct sk_buff *skb) |
322 | { |
323 | int ret; |
324 | |
325 | ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); |
326 | if (ret) { |
327 | kfree_skb(skb); |
328 | return ret; |
329 | } |
330 | |
331 | return dev_loopback_xmit(net, sk, skb); |
332 | } |
333 | |
334 | int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
335 | { |
336 | struct rtable *rt = skb_rtable(skb); |
337 | struct net_device *dev = rt->dst.dev; |
338 | |
339 | /* |
340 | * If the indicated interface is up and running, send the packet. |
341 | */ |
342 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); |
343 | |
344 | skb->dev = dev; |
345 | skb->protocol = htons(ETH_P_IP); |
346 | |
347 | /* |
348 | * Multicasts are looped back for other local users |
349 | */ |
350 | |
351 | if (rt->rt_flags&RTCF_MULTICAST) { |
352 | if (sk_mc_loop(sk) |
353 | #ifdef CONFIG_IP_MROUTE |
354 | /* Small optimization: do not loopback not local frames, |
355 | which returned after forwarding; they will be dropped |
356 | by ip_mr_input in any case. |
357 | Note, that local frames are looped back to be delivered |
358 | to local recipients. |
359 | |
360 | This check is duplicated in ip_mr_input at the moment. |
361 | */ |
362 | && |
363 | ((rt->rt_flags & RTCF_LOCAL) || |
364 | !(IPCB(skb)->flags & IPSKB_FORWARDED)) |
365 | #endif |
366 | ) { |
367 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); |
368 | if (newskb) |
369 | NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
370 | net, sk, newskb, NULL, newskb->dev, |
371 | ip_mc_finish_output); |
372 | } |
373 | |
374 | /* Multicasts with ttl 0 must not go beyond the host */ |
375 | |
376 | if (ip_hdr(skb)->ttl == 0) { |
377 | kfree_skb(skb); |
378 | return 0; |
379 | } |
380 | } |
381 | |
382 | if (rt->rt_flags&RTCF_BROADCAST) { |
383 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); |
384 | if (newskb) |
385 | NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
386 | net, sk, newskb, NULL, newskb->dev, |
387 | ip_mc_finish_output); |
388 | } |
389 | |
390 | return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
391 | net, sk, skb, NULL, skb->dev, |
392 | ip_finish_output, |
393 | !(IPCB(skb)->flags & IPSKB_REROUTED)); |
394 | } |
395 | |
396 | int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
397 | { |
398 | struct net_device *dev = skb_dst(skb)->dev; |
399 | |
400 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); |
401 | |
402 | skb->dev = dev; |
403 | skb->protocol = htons(ETH_P_IP); |
404 | |
405 | return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
406 | net, sk, skb, NULL, dev, |
407 | ip_finish_output, |
408 | !(IPCB(skb)->flags & IPSKB_REROUTED)); |
409 | } |
410 | |
411 | /* |
412 | * copy saddr and daddr, possibly using 64bit load/stores |
413 | * Equivalent to : |
414 | * iph->saddr = fl4->saddr; |
415 | * iph->daddr = fl4->daddr; |
416 | */ |
417 | static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) |
418 | { |
419 | BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != |
420 | offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); |
421 | memcpy(&iph->saddr, &fl4->saddr, |
422 | sizeof(fl4->saddr) + sizeof(fl4->daddr)); |
423 | } |
424 | |
425 | /* Note: skb->sk can be different from sk, in case of tunnels */ |
426 | int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, |
427 | __u8 tos) |
428 | { |
429 | struct inet_sock *inet = inet_sk(sk); |
430 | struct net *net = sock_net(sk); |
431 | struct ip_options_rcu *inet_opt; |
432 | struct flowi4 *fl4; |
433 | struct rtable *rt; |
434 | struct iphdr *iph; |
435 | int res; |
436 | |
437 | /* Skip all of this if the packet is already routed, |
438 | * f.e. by something like SCTP. |
439 | */ |
440 | rcu_read_lock(); |
441 | inet_opt = rcu_dereference(inet->inet_opt); |
442 | fl4 = &fl->u.ip4; |
443 | rt = skb_rtable(skb); |
444 | if (rt) |
445 | goto packet_routed; |
446 | |
447 | /* Make sure we can route this packet. */ |
448 | rt = (struct rtable *)__sk_dst_check(sk, 0); |
449 | if (!rt) { |
450 | __be32 daddr; |
451 | |
452 | /* Use correct destination address if we have options. */ |
453 | daddr = inet->inet_daddr; |
454 | if (inet_opt && inet_opt->opt.srr) |
455 | daddr = inet_opt->opt.faddr; |
456 | |
457 | /* If this fails, retransmit mechanism of transport layer will |
458 | * keep trying until route appears or the connection times |
459 | * itself out. |
460 | */ |
461 | rt = ip_route_output_ports(net, fl4, sk, |
462 | daddr, inet->inet_saddr, |
463 | inet->inet_dport, |
464 | inet->inet_sport, |
465 | sk->sk_protocol, |
466 | RT_CONN_FLAGS_TOS(sk, tos), |
467 | sk->sk_bound_dev_if); |
468 | if (IS_ERR(rt)) |
469 | goto no_route; |
470 | sk_setup_caps(sk, &rt->dst); |
471 | } |
472 | skb_dst_set_noref(skb, &rt->dst); |
473 | |
474 | packet_routed: |
475 | if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) |
476 | goto no_route; |
477 | |
478 | /* OK, we know where to send it, allocate and build IP header. */ |
479 | skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); |
480 | skb_reset_network_header(skb); |
481 | iph = ip_hdr(skb); |
482 | *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); |
483 | if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) |
484 | iph->frag_off = htons(IP_DF); |
485 | else |
486 | iph->frag_off = 0; |
487 | iph->ttl = ip_select_ttl(inet, &rt->dst); |
488 | iph->protocol = sk->sk_protocol; |
489 | ip_copy_addrs(iph, fl4); |
490 | |
491 | /* Transport layer set skb->h.foo itself. */ |
492 | |
493 | if (inet_opt && inet_opt->opt.optlen) { |
494 | iph->ihl += inet_opt->opt.optlen >> 2; |
495 | ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); |
496 | } |
497 | |
498 | ip_select_ident_segs(net, skb, sk, |
499 | skb_shinfo(skb)->gso_segs ?: 1); |
500 | |
501 | /* TODO : should we use skb->sk here instead of sk ? */ |
502 | skb->priority = sk->sk_priority; |
503 | skb->mark = sk->sk_mark; |
504 | |
505 | res = ip_local_out(net, sk, skb); |
506 | rcu_read_unlock(); |
507 | return res; |
508 | |
509 | no_route: |
510 | rcu_read_unlock(); |
511 | IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); |
512 | kfree_skb(skb); |
513 | return -EHOSTUNREACH; |
514 | } |
515 | EXPORT_SYMBOL(__ip_queue_xmit); |
516 | |
517 | static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) |
518 | { |
519 | to->pkt_type = from->pkt_type; |
520 | to->priority = from->priority; |
521 | to->protocol = from->protocol; |
522 | skb_dst_drop(to); |
523 | skb_dst_copy(to, from); |
524 | to->dev = from->dev; |
525 | to->mark = from->mark; |
526 | |
527 | skb_copy_hash(to, from); |
528 | |
529 | /* Copy the flags to each fragment. */ |
530 | IPCB(to)->flags = IPCB(from)->flags; |
531 | |
532 | #ifdef CONFIG_NET_SCHED |
533 | to->tc_index = from->tc_index; |
534 | #endif |
535 | nf_copy(to, from); |
536 | skb_ext_copy(to, from); |
537 | #if IS_ENABLED(CONFIG_IP_VS) |
538 | to->ipvs_property = from->ipvs_property; |
539 | #endif |
540 | skb_copy_secmark(to, from); |
541 | } |
542 | |
543 | static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
544 | unsigned int mtu, |
545 | int (*output)(struct net *, struct sock *, struct sk_buff *)) |
546 | { |
547 | struct iphdr *iph = ip_hdr(skb); |
548 | |
549 | if ((iph->frag_off & htons(IP_DF)) == 0) |
550 | return ip_do_fragment(net, sk, skb, output); |
551 | |
552 | if (unlikely(!skb->ignore_df || |
553 | (IPCB(skb)->frag_max_size && |
554 | IPCB(skb)->frag_max_size > mtu))) { |
555 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
556 | icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, |
557 | htonl(mtu)); |
558 | kfree_skb(skb); |
559 | return -EMSGSIZE; |
560 | } |
561 | |
562 | return ip_do_fragment(net, sk, skb, output); |
563 | } |
564 | |
565 | /* |
566 | * This IP datagram is too large to be sent in one piece. Break it up into |
567 | * smaller pieces (each of size equal to IP header plus |
568 | * a block of the data of the original IP data part) that will yet fit in a |
569 | * single device frame, and queue such a frame for sending. |
570 | */ |
571 | |
572 | int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
573 | int (*output)(struct net *, struct sock *, struct sk_buff *)) |
574 | { |
575 | struct iphdr *iph; |
576 | int ptr; |
577 | struct sk_buff *skb2; |
578 | unsigned int mtu, hlen, left, len, ll_rs; |
579 | int offset; |
580 | __be16 not_last_frag; |
581 | struct rtable *rt = skb_rtable(skb); |
582 | int err = 0; |
583 | |
584 | /* for offloaded checksums cleanup checksum before fragmentation */ |
585 | if (skb->ip_summed == CHECKSUM_PARTIAL && |
586 | (err = skb_checksum_help(skb))) |
587 | goto fail; |
588 | |
589 | /* |
590 | * Point into the IP datagram header. |
591 | */ |
592 | |
593 | iph = ip_hdr(skb); |
594 | |
595 | mtu = ip_skb_dst_mtu(sk, skb); |
596 | if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) |
597 | mtu = IPCB(skb)->frag_max_size; |
598 | |
599 | /* |
600 | * Setup starting values. |
601 | */ |
602 | |
603 | hlen = iph->ihl * 4; |
604 | mtu = mtu - hlen; /* Size of data space */ |
605 | IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; |
606 | ll_rs = LL_RESERVED_SPACE(rt->dst.dev); |
607 | |
608 | /* When frag_list is given, use it. First, check its validity: |
609 | * some transformers could create wrong frag_list or break existing |
610 | * one, it is not prohibited. In this case fall back to copying. |
611 | * |
612 | * LATER: this step can be merged to real generation of fragments, |
613 | * we can switch to copy when see the first bad fragment. |
614 | */ |
615 | if (skb_has_frag_list(skb)) { |
616 | struct sk_buff *frag, *frag2; |
617 | unsigned int first_len = skb_pagelen(skb); |
618 | |
619 | if (first_len - hlen > mtu || |
620 | ((first_len - hlen) & 7) || |
621 | ip_is_fragment(iph) || |
622 | skb_cloned(skb) || |
623 | skb_headroom(skb) < ll_rs) |
624 | goto slow_path; |
625 | |
626 | skb_walk_frags(skb, frag) { |
627 | /* Correct geometry. */ |
628 | if (frag->len > mtu || |
629 | ((frag->len & 7) && frag->next) || |
630 | skb_headroom(frag) < hlen + ll_rs) |
631 | goto slow_path_clean; |
632 | |
633 | /* Partially cloned skb? */ |
634 | if (skb_shared(frag)) |
635 | goto slow_path_clean; |
636 | |
637 | BUG_ON(frag->sk); |
638 | if (skb->sk) { |
639 | frag->sk = skb->sk; |
640 | frag->destructor = sock_wfree; |
641 | } |
642 | skb->truesize -= frag->truesize; |
643 | } |
644 | |
645 | /* Everything is OK. Generate! */ |
646 | |
647 | err = 0; |
648 | offset = 0; |
649 | frag = skb_shinfo(skb)->frag_list; |
650 | skb_frag_list_init(skb); |
651 | skb->data_len = first_len - skb_headlen(skb); |
652 | skb->len = first_len; |
653 | iph->tot_len = htons(first_len); |
654 | iph->frag_off = htons(IP_MF); |
655 | ip_send_check(iph); |
656 | |
657 | for (;;) { |
658 | /* Prepare header of the next frame, |
659 | * before previous one went down. */ |
660 | if (frag) { |
661 | frag->ip_summed = CHECKSUM_NONE; |
662 | skb_reset_transport_header(frag); |
663 | __skb_push(frag, hlen); |
664 | skb_reset_network_header(frag); |
665 | memcpy(skb_network_header(frag), iph, hlen); |
666 | iph = ip_hdr(frag); |
667 | iph->tot_len = htons(frag->len); |
668 | ip_copy_metadata(frag, skb); |
669 | if (offset == 0) |
670 | ip_options_fragment(frag); |
671 | offset += skb->len - hlen; |
672 | iph->frag_off = htons(offset>>3); |
673 | if (frag->next) |
674 | iph->frag_off |= htons(IP_MF); |
675 | /* Ready, complete checksum */ |
676 | ip_send_check(iph); |
677 | } |
678 | |
679 | err = output(net, sk, skb); |
680 | |
681 | if (!err) |
682 | IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); |
683 | if (err || !frag) |
684 | break; |
685 | |
686 | skb = frag; |
687 | frag = skb->next; |
688 | skb_mark_not_on_list(skb); |
689 | } |
690 | |
691 | if (err == 0) { |
692 | IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); |
693 | return 0; |
694 | } |
695 | |
696 | while (frag) { |
697 | skb = frag->next; |
698 | kfree_skb(frag); |
699 | frag = skb; |
700 | } |
701 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
702 | return err; |
703 | |
704 | slow_path_clean: |
705 | skb_walk_frags(skb, frag2) { |
706 | if (frag2 == frag) |
707 | break; |
708 | frag2->sk = NULL; |
709 | frag2->destructor = NULL; |
710 | skb->truesize += frag2->truesize; |
711 | } |
712 | } |
713 | |
714 | slow_path: |
715 | iph = ip_hdr(skb); |
716 | |
717 | left = skb->len - hlen; /* Space per frame */ |
718 | ptr = hlen; /* Where to start from */ |
719 | |
720 | /* |
721 | * Fragment the datagram. |
722 | */ |
723 | |
724 | offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; |
725 | not_last_frag = iph->frag_off & htons(IP_MF); |
726 | |
727 | /* |
728 | * Keep copying data until we run out. |
729 | */ |
730 | |
731 | while (left > 0) { |
732 | len = left; |
733 | /* IF: it doesn't fit, use 'mtu' - the data space left */ |
734 | if (len > mtu) |
735 | len = mtu; |
736 | /* IF: we are not sending up to and including the packet end |
737 | then align the next start on an eight byte boundary */ |
738 | if (len < left) { |
739 | len &= ~7; |
740 | } |
741 | |
742 | /* Allocate buffer */ |
743 | skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); |
744 | if (!skb2) { |
745 | err = -ENOMEM; |
746 | goto fail; |
747 | } |
748 | |
749 | /* |
750 | * Set up data on packet |
751 | */ |
752 | |
753 | ip_copy_metadata(skb2, skb); |
754 | skb_reserve(skb2, ll_rs); |
755 | skb_put(skb2, len + hlen); |
756 | skb_reset_network_header(skb2); |
757 | skb2->transport_header = skb2->network_header + hlen; |
758 | |
759 | /* |
760 | * Charge the memory for the fragment to any owner |
761 | * it might possess |
762 | */ |
763 | |
764 | if (skb->sk) |
765 | skb_set_owner_w(skb2, skb->sk); |
766 | |
767 | /* |
768 | * Copy the packet header into the new buffer. |
769 | */ |
770 | |
771 | skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); |
772 | |
773 | /* |
774 | * Copy a block of the IP datagram. |
775 | */ |
776 | if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) |
777 | BUG(); |
778 | left -= len; |
779 | |
780 | /* |
781 | * Fill in the new header fields. |
782 | */ |
783 | iph = ip_hdr(skb2); |
784 | iph->frag_off = htons((offset >> 3)); |
785 | |
786 | if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) |
787 | iph->frag_off |= htons(IP_DF); |
788 | |
789 | /* ANK: dirty, but effective trick. Upgrade options only if |
790 | * the segment to be fragmented was THE FIRST (otherwise, |
791 | * options are already fixed) and make it ONCE |
792 | * on the initial skb, so that all the following fragments |
793 | * will inherit fixed options. |
794 | */ |
795 | if (offset == 0) |
796 | ip_options_fragment(skb); |
797 | |
798 | /* |
799 | * Added AC : If we are fragmenting a fragment that's not the |
800 | * last fragment then keep MF on each bit |
801 | */ |
802 | if (left > 0 || not_last_frag) |
803 | iph->frag_off |= htons(IP_MF); |
804 | ptr += len; |
805 | offset += len; |
806 | |
807 | /* |
808 | * Put this fragment into the sending queue. |
809 | */ |
810 | iph->tot_len = htons(len + hlen); |
811 | |
812 | ip_send_check(iph); |
813 | |
814 | err = output(net, sk, skb2); |
815 | if (err) |
816 | goto fail; |
817 | |
818 | IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); |
819 | } |
820 | consume_skb(skb); |
821 | IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); |
822 | return err; |
823 | |
824 | fail: |
825 | kfree_skb(skb); |
826 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
827 | return err; |
828 | } |
829 | EXPORT_SYMBOL(ip_do_fragment); |
830 | |
831 | int |
832 | ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) |
833 | { |
834 | struct msghdr *msg = from; |
835 | |
836 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
837 | if (!copy_from_iter_full(to, len, &msg->msg_iter)) |
838 | return -EFAULT; |
839 | } else { |
840 | __wsum csum = 0; |
841 | if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) |
842 | return -EFAULT; |
843 | skb->csum = csum_block_add(skb->csum, csum, odd); |
844 | } |
845 | return 0; |
846 | } |
847 | EXPORT_SYMBOL(ip_generic_getfrag); |
848 | |
849 | static inline __wsum |
850 | csum_page(struct page *page, int offset, int copy) |
851 | { |
852 | char *kaddr; |
853 | __wsum csum; |
854 | kaddr = kmap(page); |
855 | csum = csum_partial(kaddr + offset, copy, 0); |
856 | kunmap(page); |
857 | return csum; |
858 | } |
859 | |
860 | static int __ip_append_data(struct sock *sk, |
861 | struct flowi4 *fl4, |
862 | struct sk_buff_head *queue, |
863 | struct inet_cork *cork, |
864 | struct page_frag *pfrag, |
865 | int getfrag(void *from, char *to, int offset, |
866 | int len, int odd, struct sk_buff *skb), |
867 | void *from, int length, int transhdrlen, |
868 | unsigned int flags) |
869 | { |
870 | struct inet_sock *inet = inet_sk(sk); |
871 | struct ubuf_info *uarg = NULL; |
872 | struct sk_buff *skb; |
873 | |
874 | struct ip_options *opt = cork->opt; |
875 | int hh_len; |
876 | int exthdrlen; |
877 | int mtu; |
878 | int copy; |
879 | int err; |
880 | int offset = 0; |
881 | unsigned int maxfraglen, , maxnonfragsize; |
882 | int csummode = CHECKSUM_NONE; |
883 | struct rtable *rt = (struct rtable *)cork->dst; |
884 | unsigned int wmem_alloc_delta = 0; |
885 | bool paged, ; |
886 | u32 tskey = 0; |
887 | |
888 | skb = skb_peek_tail(queue); |
889 | |
890 | exthdrlen = !skb ? rt->dst.header_len : 0; |
891 | mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; |
892 | paged = !!cork->gso_size; |
893 | |
894 | if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && |
895 | sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) |
896 | tskey = sk->sk_tskey++; |
897 | |
898 | hh_len = LL_RESERVED_SPACE(rt->dst.dev); |
899 | |
900 | fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); |
901 | maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; |
902 | maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; |
903 | |
904 | if (cork->length + length > maxnonfragsize - fragheaderlen) { |
905 | ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, |
906 | mtu - (opt ? opt->optlen : 0)); |
907 | return -EMSGSIZE; |
908 | } |
909 | |
910 | /* |
911 | * transhdrlen > 0 means that this is the first fragment and we wish |
912 | * it won't be fragmented in the future. |
913 | */ |
914 | if (transhdrlen && |
915 | length + fragheaderlen <= mtu && |
916 | rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && |
917 | (!(flags & MSG_MORE) || cork->gso_size) && |
918 | (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) |
919 | csummode = CHECKSUM_PARTIAL; |
920 | |
921 | if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { |
922 | uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); |
923 | if (!uarg) |
924 | return -ENOBUFS; |
925 | extra_uref = true; |
926 | if (rt->dst.dev->features & NETIF_F_SG && |
927 | csummode == CHECKSUM_PARTIAL) { |
928 | paged = true; |
929 | } else { |
930 | uarg->zerocopy = 0; |
931 | skb_zcopy_set(skb, uarg, &extra_uref); |
932 | } |
933 | } |
934 | |
935 | cork->length += length; |
936 | |
937 | /* So, what's going on in the loop below? |
938 | * |
939 | * We use calculated fragment length to generate chained skb, |
940 | * each of segments is IP fragment ready for sending to network after |
941 | * adding appropriate IP header. |
942 | */ |
943 | |
944 | if (!skb) |
945 | goto alloc_new_skb; |
946 | |
947 | while (length > 0) { |
948 | /* Check if the remaining data fits into current packet. */ |
949 | copy = mtu - skb->len; |
950 | if (copy < length) |
951 | copy = maxfraglen - skb->len; |
952 | if (copy <= 0) { |
953 | char *data; |
954 | unsigned int datalen; |
955 | unsigned int fraglen; |
956 | unsigned int fraggap; |
957 | unsigned int alloclen; |
958 | unsigned int pagedlen; |
959 | struct sk_buff *skb_prev; |
960 | alloc_new_skb: |
961 | skb_prev = skb; |
962 | if (skb_prev) |
963 | fraggap = skb_prev->len - maxfraglen; |
964 | else |
965 | fraggap = 0; |
966 | |
967 | /* |
968 | * If remaining data exceeds the mtu, |
969 | * we know we need more fragment(s). |
970 | */ |
971 | datalen = length + fraggap; |
972 | if (datalen > mtu - fragheaderlen) |
973 | datalen = maxfraglen - fragheaderlen; |
974 | fraglen = datalen + fragheaderlen; |
975 | pagedlen = 0; |
976 | |
977 | if ((flags & MSG_MORE) && |
978 | !(rt->dst.dev->features&NETIF_F_SG)) |
979 | alloclen = mtu; |
980 | else if (!paged) |
981 | alloclen = fraglen; |
982 | else { |
983 | alloclen = min_t(int, fraglen, MAX_HEADER); |
984 | pagedlen = fraglen - alloclen; |
985 | } |
986 | |
987 | alloclen += exthdrlen; |
988 | |
989 | /* The last fragment gets additional space at tail. |
990 | * Note, with MSG_MORE we overallocate on fragments, |
991 | * because we have no idea what fragment will be |
992 | * the last. |
993 | */ |
994 | if (datalen == length + fraggap) |
995 | alloclen += rt->dst.trailer_len; |
996 | |
997 | if (transhdrlen) { |
998 | skb = sock_alloc_send_skb(sk, |
999 | alloclen + hh_len + 15, |
1000 | (flags & MSG_DONTWAIT), &err); |
1001 | } else { |
1002 | skb = NULL; |
1003 | if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= |
1004 | 2 * sk->sk_sndbuf) |
1005 | skb = alloc_skb(alloclen + hh_len + 15, |
1006 | sk->sk_allocation); |
1007 | if (unlikely(!skb)) |
1008 | err = -ENOBUFS; |
1009 | } |
1010 | if (!skb) |
1011 | goto error; |
1012 | |
1013 | /* |
1014 | * Fill in the control structures |
1015 | */ |
1016 | skb->ip_summed = csummode; |
1017 | skb->csum = 0; |
1018 | skb_reserve(skb, hh_len); |
1019 | |
1020 | /* |
1021 | * Find where to start putting bytes. |
1022 | */ |
1023 | data = skb_put(skb, fraglen + exthdrlen - pagedlen); |
1024 | skb_set_network_header(skb, exthdrlen); |
1025 | skb->transport_header = (skb->network_header + |
1026 | fragheaderlen); |
1027 | data += fragheaderlen + exthdrlen; |
1028 | |
1029 | if (fraggap) { |
1030 | skb->csum = skb_copy_and_csum_bits( |
1031 | skb_prev, maxfraglen, |
1032 | data + transhdrlen, fraggap, 0); |
1033 | skb_prev->csum = csum_sub(skb_prev->csum, |
1034 | skb->csum); |
1035 | data += fraggap; |
1036 | pskb_trim_unique(skb_prev, maxfraglen); |
1037 | } |
1038 | |
1039 | copy = datalen - transhdrlen - fraggap - pagedlen; |
1040 | if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { |
1041 | err = -EFAULT; |
1042 | kfree_skb(skb); |
1043 | goto error; |
1044 | } |
1045 | |
1046 | offset += copy; |
1047 | length -= copy + transhdrlen; |
1048 | transhdrlen = 0; |
1049 | exthdrlen = 0; |
1050 | csummode = CHECKSUM_NONE; |
1051 | |
1052 | /* only the initial fragment is time stamped */ |
1053 | skb_shinfo(skb)->tx_flags = cork->tx_flags; |
1054 | cork->tx_flags = 0; |
1055 | skb_shinfo(skb)->tskey = tskey; |
1056 | tskey = 0; |
1057 | skb_zcopy_set(skb, uarg, &extra_uref); |
1058 | |
1059 | if ((flags & MSG_CONFIRM) && !skb_prev) |
1060 | skb_set_dst_pending_confirm(skb, 1); |
1061 | |
1062 | /* |
1063 | * Put the packet on the pending queue. |
1064 | */ |
1065 | if (!skb->destructor) { |
1066 | skb->destructor = sock_wfree; |
1067 | skb->sk = sk; |
1068 | wmem_alloc_delta += skb->truesize; |
1069 | } |
1070 | __skb_queue_tail(queue, skb); |
1071 | continue; |
1072 | } |
1073 | |
1074 | if (copy > length) |
1075 | copy = length; |
1076 | |
1077 | if (!(rt->dst.dev->features&NETIF_F_SG) && |
1078 | skb_tailroom(skb) >= copy) { |
1079 | unsigned int off; |
1080 | |
1081 | off = skb->len; |
1082 | if (getfrag(from, skb_put(skb, copy), |
1083 | offset, copy, off, skb) < 0) { |
1084 | __skb_trim(skb, off); |
1085 | err = -EFAULT; |
1086 | goto error; |
1087 | } |
1088 | } else if (!uarg || !uarg->zerocopy) { |
1089 | int i = skb_shinfo(skb)->nr_frags; |
1090 | |
1091 | err = -ENOMEM; |
1092 | if (!sk_page_frag_refill(sk, pfrag)) |
1093 | goto error; |
1094 | |
1095 | if (!skb_can_coalesce(skb, i, pfrag->page, |
1096 | pfrag->offset)) { |
1097 | err = -EMSGSIZE; |
1098 | if (i == MAX_SKB_FRAGS) |
1099 | goto error; |
1100 | |
1101 | __skb_fill_page_desc(skb, i, pfrag->page, |
1102 | pfrag->offset, 0); |
1103 | skb_shinfo(skb)->nr_frags = ++i; |
1104 | get_page(pfrag->page); |
1105 | } |
1106 | copy = min_t(int, copy, pfrag->size - pfrag->offset); |
1107 | if (getfrag(from, |
1108 | page_address(pfrag->page) + pfrag->offset, |
1109 | offset, copy, skb->len, skb) < 0) |
1110 | goto error_efault; |
1111 | |
1112 | pfrag->offset += copy; |
1113 | skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); |
1114 | skb->len += copy; |
1115 | skb->data_len += copy; |
1116 | skb->truesize += copy; |
1117 | wmem_alloc_delta += copy; |
1118 | } else { |
1119 | err = skb_zerocopy_iter_dgram(skb, from, copy); |
1120 | if (err < 0) |
1121 | goto error; |
1122 | } |
1123 | offset += copy; |
1124 | length -= copy; |
1125 | } |
1126 | |
1127 | if (wmem_alloc_delta) |
1128 | refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); |
1129 | return 0; |
1130 | |
1131 | error_efault: |
1132 | err = -EFAULT; |
1133 | error: |
1134 | if (uarg) |
1135 | sock_zerocopy_put_abort(uarg, extra_uref); |
1136 | cork->length -= length; |
1137 | IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); |
1138 | refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); |
1139 | return err; |
1140 | } |
1141 | |
1142 | static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, |
1143 | struct ipcm_cookie *ipc, struct rtable **rtp) |
1144 | { |
1145 | struct ip_options_rcu *opt; |
1146 | struct rtable *rt; |
1147 | |
1148 | rt = *rtp; |
1149 | if (unlikely(!rt)) |
1150 | return -EFAULT; |
1151 | |
1152 | /* |
1153 | * setup for corking. |
1154 | */ |
1155 | opt = ipc->opt; |
1156 | if (opt) { |
1157 | if (!cork->opt) { |
1158 | cork->opt = kmalloc(sizeof(struct ip_options) + 40, |
1159 | sk->sk_allocation); |
1160 | if (unlikely(!cork->opt)) |
1161 | return -ENOBUFS; |
1162 | } |
1163 | memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); |
1164 | cork->flags |= IPCORK_OPT; |
1165 | cork->addr = ipc->addr; |
1166 | } |
1167 | |
1168 | /* |
1169 | * We steal reference to this route, caller should not release it |
1170 | */ |
1171 | *rtp = NULL; |
1172 | cork->fragsize = ip_sk_use_pmtu(sk) ? |
1173 | dst_mtu(&rt->dst) : rt->dst.dev->mtu; |
1174 | |
1175 | cork->gso_size = ipc->gso_size; |
1176 | cork->dst = &rt->dst; |
1177 | cork->length = 0; |
1178 | cork->ttl = ipc->ttl; |
1179 | cork->tos = ipc->tos; |
1180 | cork->priority = ipc->priority; |
1181 | cork->transmit_time = ipc->sockc.transmit_time; |
1182 | cork->tx_flags = 0; |
1183 | sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); |
1184 | |
1185 | return 0; |
1186 | } |
1187 | |
1188 | /* |
1189 | * ip_append_data() and ip_append_page() can make one large IP datagram |
1190 | * from many pieces of data. Each pieces will be holded on the socket |
1191 | * until ip_push_pending_frames() is called. Each piece can be a page |
1192 | * or non-page data. |
1193 | * |
1194 | * Not only UDP, other transport protocols - e.g. raw sockets - can use |
1195 | * this interface potentially. |
1196 | * |
1197 | * LATER: length must be adjusted by pad at tail, when it is required. |
1198 | */ |
1199 | int ip_append_data(struct sock *sk, struct flowi4 *fl4, |
1200 | int getfrag(void *from, char *to, int offset, int len, |
1201 | int odd, struct sk_buff *skb), |
1202 | void *from, int length, int transhdrlen, |
1203 | struct ipcm_cookie *ipc, struct rtable **rtp, |
1204 | unsigned int flags) |
1205 | { |
1206 | struct inet_sock *inet = inet_sk(sk); |
1207 | int err; |
1208 | |
1209 | if (flags&MSG_PROBE) |
1210 | return 0; |
1211 | |
1212 | if (skb_queue_empty(&sk->sk_write_queue)) { |
1213 | err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); |
1214 | if (err) |
1215 | return err; |
1216 | } else { |
1217 | transhdrlen = 0; |
1218 | } |
1219 | |
1220 | return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, |
1221 | sk_page_frag(sk), getfrag, |
1222 | from, length, transhdrlen, flags); |
1223 | } |
1224 | |
1225 | ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, |
1226 | int offset, size_t size, int flags) |
1227 | { |
1228 | struct inet_sock *inet = inet_sk(sk); |
1229 | struct sk_buff *skb; |
1230 | struct rtable *rt; |
1231 | struct ip_options *opt = NULL; |
1232 | struct inet_cork *cork; |
1233 | int hh_len; |
1234 | int mtu; |
1235 | int len; |
1236 | int err; |
1237 | unsigned int maxfraglen, , fraggap, maxnonfragsize; |
1238 | |
1239 | if (inet->hdrincl) |
1240 | return -EPERM; |
1241 | |
1242 | if (flags&MSG_PROBE) |
1243 | return 0; |
1244 | |
1245 | if (skb_queue_empty(&sk->sk_write_queue)) |
1246 | return -EINVAL; |
1247 | |
1248 | cork = &inet->cork.base; |
1249 | rt = (struct rtable *)cork->dst; |
1250 | if (cork->flags & IPCORK_OPT) |
1251 | opt = cork->opt; |
1252 | |
1253 | if (!(rt->dst.dev->features&NETIF_F_SG)) |
1254 | return -EOPNOTSUPP; |
1255 | |
1256 | hh_len = LL_RESERVED_SPACE(rt->dst.dev); |
1257 | mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; |
1258 | |
1259 | fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); |
1260 | maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; |
1261 | maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; |
1262 | |
1263 | if (cork->length + size > maxnonfragsize - fragheaderlen) { |
1264 | ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, |
1265 | mtu - (opt ? opt->optlen : 0)); |
1266 | return -EMSGSIZE; |
1267 | } |
1268 | |
1269 | skb = skb_peek_tail(&sk->sk_write_queue); |
1270 | if (!skb) |
1271 | return -EINVAL; |
1272 | |
1273 | cork->length += size; |
1274 | |
1275 | while (size > 0) { |
1276 | /* Check if the remaining data fits into current packet. */ |
1277 | len = mtu - skb->len; |
1278 | if (len < size) |
1279 | len = maxfraglen - skb->len; |
1280 | |
1281 | if (len <= 0) { |
1282 | struct sk_buff *skb_prev; |
1283 | int alloclen; |
1284 | |
1285 | skb_prev = skb; |
1286 | fraggap = skb_prev->len - maxfraglen; |
1287 | |
1288 | alloclen = fragheaderlen + hh_len + fraggap + 15; |
1289 | skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); |
1290 | if (unlikely(!skb)) { |
1291 | err = -ENOBUFS; |
1292 | goto error; |
1293 | } |
1294 | |
1295 | /* |
1296 | * Fill in the control structures |
1297 | */ |
1298 | skb->ip_summed = CHECKSUM_NONE; |
1299 | skb->csum = 0; |
1300 | skb_reserve(skb, hh_len); |
1301 | |
1302 | /* |
1303 | * Find where to start putting bytes. |
1304 | */ |
1305 | skb_put(skb, fragheaderlen + fraggap); |
1306 | skb_reset_network_header(skb); |
1307 | skb->transport_header = (skb->network_header + |
1308 | fragheaderlen); |
1309 | if (fraggap) { |
1310 | skb->csum = skb_copy_and_csum_bits(skb_prev, |
1311 | maxfraglen, |
1312 | skb_transport_header(skb), |
1313 | fraggap, 0); |
1314 | skb_prev->csum = csum_sub(skb_prev->csum, |
1315 | skb->csum); |
1316 | pskb_trim_unique(skb_prev, maxfraglen); |
1317 | } |
1318 | |
1319 | /* |
1320 | * Put the packet on the pending queue. |
1321 | */ |
1322 | __skb_queue_tail(&sk->sk_write_queue, skb); |
1323 | continue; |
1324 | } |
1325 | |
1326 | if (len > size) |
1327 | len = size; |
1328 | |
1329 | if (skb_append_pagefrags(skb, page, offset, len)) { |
1330 | err = -EMSGSIZE; |
1331 | goto error; |
1332 | } |
1333 | |
1334 | if (skb->ip_summed == CHECKSUM_NONE) { |
1335 | __wsum csum; |
1336 | csum = csum_page(page, offset, len); |
1337 | skb->csum = csum_block_add(skb->csum, csum, skb->len); |
1338 | } |
1339 | |
1340 | skb->len += len; |
1341 | skb->data_len += len; |
1342 | skb->truesize += len; |
1343 | refcount_add(len, &sk->sk_wmem_alloc); |
1344 | offset += len; |
1345 | size -= len; |
1346 | } |
1347 | return 0; |
1348 | |
1349 | error: |
1350 | cork->length -= size; |
1351 | IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); |
1352 | return err; |
1353 | } |
1354 | |
1355 | static void ip_cork_release(struct inet_cork *cork) |
1356 | { |
1357 | cork->flags &= ~IPCORK_OPT; |
1358 | kfree(cork->opt); |
1359 | cork->opt = NULL; |
1360 | dst_release(cork->dst); |
1361 | cork->dst = NULL; |
1362 | } |
1363 | |
1364 | /* |
1365 | * Combined all pending IP fragments on the socket as one IP datagram |
1366 | * and push them out. |
1367 | */ |
1368 | struct sk_buff *__ip_make_skb(struct sock *sk, |
1369 | struct flowi4 *fl4, |
1370 | struct sk_buff_head *queue, |
1371 | struct inet_cork *cork) |
1372 | { |
1373 | struct sk_buff *skb, *tmp_skb; |
1374 | struct sk_buff **tail_skb; |
1375 | struct inet_sock *inet = inet_sk(sk); |
1376 | struct net *net = sock_net(sk); |
1377 | struct ip_options *opt = NULL; |
1378 | struct rtable *rt = (struct rtable *)cork->dst; |
1379 | struct iphdr *iph; |
1380 | __be16 df = 0; |
1381 | __u8 ttl; |
1382 | |
1383 | skb = __skb_dequeue(queue); |
1384 | if (!skb) |
1385 | goto out; |
1386 | tail_skb = &(skb_shinfo(skb)->frag_list); |
1387 | |
1388 | /* move skb->data to ip header from ext header */ |
1389 | if (skb->data < skb_network_header(skb)) |
1390 | __skb_pull(skb, skb_network_offset(skb)); |
1391 | while ((tmp_skb = __skb_dequeue(queue)) != NULL) { |
1392 | __skb_pull(tmp_skb, skb_network_header_len(skb)); |
1393 | *tail_skb = tmp_skb; |
1394 | tail_skb = &(tmp_skb->next); |
1395 | skb->len += tmp_skb->len; |
1396 | skb->data_len += tmp_skb->len; |
1397 | skb->truesize += tmp_skb->truesize; |
1398 | tmp_skb->destructor = NULL; |
1399 | tmp_skb->sk = NULL; |
1400 | } |
1401 | |
1402 | /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow |
1403 | * to fragment the frame generated here. No matter, what transforms |
1404 | * how transforms change size of the packet, it will come out. |
1405 | */ |
1406 | skb->ignore_df = ip_sk_ignore_df(sk); |
1407 | |
1408 | /* DF bit is set when we want to see DF on outgoing frames. |
1409 | * If ignore_df is set too, we still allow to fragment this frame |
1410 | * locally. */ |
1411 | if (inet->pmtudisc == IP_PMTUDISC_DO || |
1412 | inet->pmtudisc == IP_PMTUDISC_PROBE || |
1413 | (skb->len <= dst_mtu(&rt->dst) && |
1414 | ip_dont_fragment(sk, &rt->dst))) |
1415 | df = htons(IP_DF); |
1416 | |
1417 | if (cork->flags & IPCORK_OPT) |
1418 | opt = cork->opt; |
1419 | |
1420 | if (cork->ttl != 0) |
1421 | ttl = cork->ttl; |
1422 | else if (rt->rt_type == RTN_MULTICAST) |
1423 | ttl = inet->mc_ttl; |
1424 | else |
1425 | ttl = ip_select_ttl(inet, &rt->dst); |
1426 | |
1427 | iph = ip_hdr(skb); |
1428 | iph->version = 4; |
1429 | iph->ihl = 5; |
1430 | iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; |
1431 | iph->frag_off = df; |
1432 | iph->ttl = ttl; |
1433 | iph->protocol = sk->sk_protocol; |
1434 | ip_copy_addrs(iph, fl4); |
1435 | ip_select_ident(net, skb, sk); |
1436 | |
1437 | if (opt) { |
1438 | iph->ihl += opt->optlen>>2; |
1439 | ip_options_build(skb, opt, cork->addr, rt, 0); |
1440 | } |
1441 | |
1442 | skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; |
1443 | skb->mark = sk->sk_mark; |
1444 | skb->tstamp = cork->transmit_time; |
1445 | /* |
1446 | * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec |
1447 | * on dst refcount |
1448 | */ |
1449 | cork->dst = NULL; |
1450 | skb_dst_set(skb, &rt->dst); |
1451 | |
1452 | if (iph->protocol == IPPROTO_ICMP) |
1453 | icmp_out_count(net, ((struct icmphdr *) |
1454 | skb_transport_header(skb))->type); |
1455 | |
1456 | ip_cork_release(cork); |
1457 | out: |
1458 | return skb; |
1459 | } |
1460 | |
1461 | int ip_send_skb(struct net *net, struct sk_buff *skb) |
1462 | { |
1463 | int err; |
1464 | |
1465 | err = ip_local_out(net, skb->sk, skb); |
1466 | if (err) { |
1467 | if (err > 0) |
1468 | err = net_xmit_errno(err); |
1469 | if (err) |
1470 | IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); |
1471 | } |
1472 | |
1473 | return err; |
1474 | } |
1475 | |
1476 | int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) |
1477 | { |
1478 | struct sk_buff *skb; |
1479 | |
1480 | skb = ip_finish_skb(sk, fl4); |
1481 | if (!skb) |
1482 | return 0; |
1483 | |
1484 | /* Netfilter gets whole the not fragmented skb. */ |
1485 | return ip_send_skb(sock_net(sk), skb); |
1486 | } |
1487 | |
1488 | /* |
1489 | * Throw away all pending data on the socket. |
1490 | */ |
1491 | static void __ip_flush_pending_frames(struct sock *sk, |
1492 | struct sk_buff_head *queue, |
1493 | struct inet_cork *cork) |
1494 | { |
1495 | struct sk_buff *skb; |
1496 | |
1497 | while ((skb = __skb_dequeue_tail(queue)) != NULL) |
1498 | kfree_skb(skb); |
1499 | |
1500 | ip_cork_release(cork); |
1501 | } |
1502 | |
1503 | void ip_flush_pending_frames(struct sock *sk) |
1504 | { |
1505 | __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); |
1506 | } |
1507 | |
1508 | struct sk_buff *ip_make_skb(struct sock *sk, |
1509 | struct flowi4 *fl4, |
1510 | int getfrag(void *from, char *to, int offset, |
1511 | int len, int odd, struct sk_buff *skb), |
1512 | void *from, int length, int transhdrlen, |
1513 | struct ipcm_cookie *ipc, struct rtable **rtp, |
1514 | struct inet_cork *cork, unsigned int flags) |
1515 | { |
1516 | struct sk_buff_head queue; |
1517 | int err; |
1518 | |
1519 | if (flags & MSG_PROBE) |
1520 | return NULL; |
1521 | |
1522 | __skb_queue_head_init(&queue); |
1523 | |
1524 | cork->flags = 0; |
1525 | cork->addr = 0; |
1526 | cork->opt = NULL; |
1527 | err = ip_setup_cork(sk, cork, ipc, rtp); |
1528 | if (err) |
1529 | return ERR_PTR(err); |
1530 | |
1531 | err = __ip_append_data(sk, fl4, &queue, cork, |
1532 | ¤t->task_frag, getfrag, |
1533 | from, length, transhdrlen, flags); |
1534 | if (err) { |
1535 | __ip_flush_pending_frames(sk, &queue, cork); |
1536 | return ERR_PTR(err); |
1537 | } |
1538 | |
1539 | return __ip_make_skb(sk, fl4, &queue, cork); |
1540 | } |
1541 | |
1542 | /* |
1543 | * Fetch data from kernel space and fill in checksum if needed. |
1544 | */ |
1545 | static int ip_reply_glue_bits(void *dptr, char *to, int offset, |
1546 | int len, int odd, struct sk_buff *skb) |
1547 | { |
1548 | __wsum csum; |
1549 | |
1550 | csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); |
1551 | skb->csum = csum_block_add(skb->csum, csum, odd); |
1552 | return 0; |
1553 | } |
1554 | |
1555 | /* |
1556 | * Generic function to send a packet as reply to another packet. |
1557 | * Used to send some TCP resets/acks so far. |
1558 | */ |
1559 | void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, |
1560 | const struct ip_options *sopt, |
1561 | __be32 daddr, __be32 saddr, |
1562 | const struct ip_reply_arg *arg, |
1563 | unsigned int len) |
1564 | { |
1565 | struct ip_options_data replyopts; |
1566 | struct ipcm_cookie ipc; |
1567 | struct flowi4 fl4; |
1568 | struct rtable *rt = skb_rtable(skb); |
1569 | struct net *net = sock_net(sk); |
1570 | struct sk_buff *nskb; |
1571 | int err; |
1572 | int oif; |
1573 | |
1574 | if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) |
1575 | return; |
1576 | |
1577 | ipcm_init(&ipc); |
1578 | ipc.addr = daddr; |
1579 | |
1580 | if (replyopts.opt.opt.optlen) { |
1581 | ipc.opt = &replyopts.opt; |
1582 | |
1583 | if (replyopts.opt.opt.srr) |
1584 | daddr = replyopts.opt.opt.faddr; |
1585 | } |
1586 | |
1587 | oif = arg->bound_dev_if; |
1588 | if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) |
1589 | oif = skb->skb_iif; |
1590 | |
1591 | flowi4_init_output(&fl4, oif, |
1592 | IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, |
1593 | RT_TOS(arg->tos), |
1594 | RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, |
1595 | ip_reply_arg_flowi_flags(arg), |
1596 | daddr, saddr, |
1597 | tcp_hdr(skb)->source, tcp_hdr(skb)->dest, |
1598 | arg->uid); |
1599 | security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); |
1600 | rt = ip_route_output_key(net, &fl4); |
1601 | if (IS_ERR(rt)) |
1602 | return; |
1603 | |
1604 | inet_sk(sk)->tos = arg->tos; |
1605 | |
1606 | sk->sk_priority = skb->priority; |
1607 | sk->sk_protocol = ip_hdr(skb)->protocol; |
1608 | sk->sk_bound_dev_if = arg->bound_dev_if; |
1609 | sk->sk_sndbuf = sysctl_wmem_default; |
1610 | sk->sk_mark = fl4.flowi4_mark; |
1611 | err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, |
1612 | len, 0, &ipc, &rt, MSG_DONTWAIT); |
1613 | if (unlikely(err)) { |
1614 | ip_flush_pending_frames(sk); |
1615 | goto out; |
1616 | } |
1617 | |
1618 | nskb = skb_peek(&sk->sk_write_queue); |
1619 | if (nskb) { |
1620 | if (arg->csumoffset >= 0) |
1621 | *((__sum16 *)skb_transport_header(nskb) + |
1622 | arg->csumoffset) = csum_fold(csum_add(nskb->csum, |
1623 | arg->csum)); |
1624 | nskb->ip_summed = CHECKSUM_NONE; |
1625 | ip_push_pending_frames(sk, &fl4); |
1626 | } |
1627 | out: |
1628 | ip_rt_put(rt); |
1629 | } |
1630 | |
1631 | void __init ip_init(void) |
1632 | { |
1633 | ip_rt_init(); |
1634 | inet_initpeers(); |
1635 | |
1636 | #if defined(CONFIG_IP_MULTICAST) |
1637 | igmp_mc_init(); |
1638 | #endif |
1639 | } |
1640 | |