1//===--- TargetInfo.h - Expose information about the target -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Defines the clang::TargetInfo interface.
11///
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_BASIC_TARGETINFO_H
15#define LLVM_CLANG_BASIC_TARGETINFO_H
16
17#include "clang/Basic/AddressSpaces.h"
18#include "clang/Basic/LLVM.h"
19#include "clang/Basic/Specifiers.h"
20#include "clang/Basic/TargetCXXABI.h"
21#include "clang/Basic/TargetOptions.h"
22#include "llvm/ADT/APInt.h"
23#include "llvm/ADT/IntrusiveRefCntPtr.h"
24#include "llvm/ADT/Optional.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/StringMap.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/ADT/Triple.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/Support/DataTypes.h"
31#include "llvm/Support/VersionTuple.h"
32#include <cassert>
33#include <string>
34#include <vector>
35
36namespace llvm {
37struct fltSemantics;
38}
39
40namespace clang {
41class DiagnosticsEngine;
42class LangOptions;
43class CodeGenOptions;
44class MacroBuilder;
45class QualType;
46class SourceLocation;
47class SourceManager;
48
49namespace Builtin { struct Info; }
50
51/// Fields controlling how types are laid out in memory; these may need to
52/// be copied for targets like AMDGPU that base their ABIs on an auxiliary
53/// CPU target.
54struct TransferrableTargetInfo {
55 unsigned char PointerWidth, PointerAlign;
56 unsigned char BoolWidth, BoolAlign;
57 unsigned char IntWidth, IntAlign;
58 unsigned char HalfWidth, HalfAlign;
59 unsigned char FloatWidth, FloatAlign;
60 unsigned char DoubleWidth, DoubleAlign;
61 unsigned char LongDoubleWidth, LongDoubleAlign, Float128Align;
62 unsigned char LargeArrayMinWidth, LargeArrayAlign;
63 unsigned char LongWidth, LongAlign;
64 unsigned char LongLongWidth, LongLongAlign;
65
66 // Fixed point bit widths
67 unsigned char ShortAccumWidth, ShortAccumAlign;
68 unsigned char AccumWidth, AccumAlign;
69 unsigned char LongAccumWidth, LongAccumAlign;
70 unsigned char ShortFractWidth, ShortFractAlign;
71 unsigned char FractWidth, FractAlign;
72 unsigned char LongFractWidth, LongFractAlign;
73
74 // If true, unsigned fixed point types have the same number of fractional bits
75 // as their signed counterparts, forcing the unsigned types to have one extra
76 // bit of padding. Otherwise, unsigned fixed point types have
77 // one more fractional bit than its corresponding signed type. This is false
78 // by default.
79 bool PaddingOnUnsignedFixedPoint;
80
81 // Fixed point integral and fractional bit sizes
82 // Saturated types share the same integral/fractional bits as their
83 // corresponding unsaturated types.
84 // For simplicity, the fractional bits in a _Fract type will be one less the
85 // width of that _Fract type. This leaves all signed _Fract types having no
86 // padding and unsigned _Fract types will only have 1 bit of padding after the
87 // sign if PaddingOnUnsignedFixedPoint is set.
88 unsigned char ShortAccumScale;
89 unsigned char AccumScale;
90 unsigned char LongAccumScale;
91
92 unsigned char SuitableAlign;
93 unsigned char DefaultAlignForAttributeAligned;
94 unsigned char MinGlobalAlign;
95
96 unsigned short NewAlign;
97 unsigned short MaxVectorAlign;
98 unsigned short MaxTLSAlign;
99
100 const llvm::fltSemantics *HalfFormat, *FloatFormat, *DoubleFormat,
101 *LongDoubleFormat, *Float128Format;
102
103 ///===---- Target Data Type Query Methods -------------------------------===//
104 enum IntType {
105 NoInt = 0,
106 SignedChar,
107 UnsignedChar,
108 SignedShort,
109 UnsignedShort,
110 SignedInt,
111 UnsignedInt,
112 SignedLong,
113 UnsignedLong,
114 SignedLongLong,
115 UnsignedLongLong
116 };
117
118 enum RealType {
119 NoFloat = 255,
120 Float = 0,
121 Double,
122 LongDouble,
123 Float128
124 };
125protected:
126 IntType SizeType, IntMaxType, PtrDiffType, IntPtrType, WCharType,
127 WIntType, Char16Type, Char32Type, Int64Type, SigAtomicType,
128 ProcessIDType;
129
130 /// Whether Objective-C's built-in boolean type should be signed char.
131 ///
132 /// Otherwise, when this flag is not set, the normal built-in boolean type is
133 /// used.
134 unsigned UseSignedCharForObjCBool : 1;
135
136 /// Control whether the alignment of bit-field types is respected when laying
137 /// out structures. If true, then the alignment of the bit-field type will be
138 /// used to (a) impact the alignment of the containing structure, and (b)
139 /// ensure that the individual bit-field will not straddle an alignment
140 /// boundary.
141 unsigned UseBitFieldTypeAlignment : 1;
142
143 /// Whether zero length bitfields (e.g., int : 0;) force alignment of
144 /// the next bitfield.
145 ///
146 /// If the alignment of the zero length bitfield is greater than the member
147 /// that follows it, `bar', `bar' will be aligned as the type of the
148 /// zero-length bitfield.
149 unsigned UseZeroLengthBitfieldAlignment : 1;
150
151 /// Whether explicit bit field alignment attributes are honored.
152 unsigned UseExplicitBitFieldAlignment : 1;
153
154 /// If non-zero, specifies a fixed alignment value for bitfields that follow
155 /// zero length bitfield, regardless of the zero length bitfield type.
156 unsigned ZeroLengthBitfieldBoundary;
157};
158
159/// Exposes information about the current target.
160///
161class TargetInfo : public virtual TransferrableTargetInfo,
162 public RefCountedBase<TargetInfo> {
163 std::shared_ptr<TargetOptions> TargetOpts;
164 llvm::Triple Triple;
165protected:
166 // Target values set by the ctor of the actual target implementation. Default
167 // values are specified by the TargetInfo constructor.
168 bool BigEndian;
169 bool TLSSupported;
170 bool VLASupported;
171 bool NoAsmVariants; // True if {|} are normal characters.
172 bool HasLegalHalfType; // True if the backend supports operations on the half
173 // LLVM IR type.
174 bool HasFloat128;
175 bool HasFloat16;
176
177 unsigned char MaxAtomicPromoteWidth, MaxAtomicInlineWidth;
178 unsigned short SimdDefaultAlign;
179 std::unique_ptr<llvm::DataLayout> DataLayout;
180 const char *MCountName;
181 unsigned char RegParmMax, SSERegParmMax;
182 TargetCXXABI TheCXXABI;
183 const LangASMap *AddrSpaceMap;
184
185 mutable StringRef PlatformName;
186 mutable VersionTuple PlatformMinVersion;
187
188 unsigned HasAlignMac68kSupport : 1;
189 unsigned RealTypeUsesObjCFPRet : 3;
190 unsigned ComplexLongDoubleUsesFP2Ret : 1;
191
192 unsigned HasBuiltinMSVaList : 1;
193
194 unsigned IsRenderScriptTarget : 1;
195
196 // TargetInfo Constructor. Default initializes all fields.
197 TargetInfo(const llvm::Triple &T);
198
199 void resetDataLayout(StringRef DL) {
200 DataLayout.reset(new llvm::DataLayout(DL));
201 }
202
203public:
204 /// Construct a target for the given options.
205 ///
206 /// \param Opts - The options to use to initialize the target. The target may
207 /// modify the options to canonicalize the target feature information to match
208 /// what the backend expects.
209 static TargetInfo *
210 CreateTargetInfo(DiagnosticsEngine &Diags,
211 const std::shared_ptr<TargetOptions> &Opts);
212
213 virtual ~TargetInfo();
214
215 /// Retrieve the target options.
216 TargetOptions &getTargetOpts() const {
217 assert(TargetOpts && "Missing target options");
218 return *TargetOpts;
219 }
220
221 /// The different kinds of __builtin_va_list types defined by
222 /// the target implementation.
223 enum BuiltinVaListKind {
224 /// typedef char* __builtin_va_list;
225 CharPtrBuiltinVaList = 0,
226
227 /// typedef void* __builtin_va_list;
228 VoidPtrBuiltinVaList,
229
230 /// __builtin_va_list as defined by the AArch64 ABI
231 /// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055a/IHI0055A_aapcs64.pdf
232 AArch64ABIBuiltinVaList,
233
234 /// __builtin_va_list as defined by the PNaCl ABI:
235 /// http://www.chromium.org/nativeclient/pnacl/bitcode-abi#TOC-Machine-Types
236 PNaClABIBuiltinVaList,
237
238 /// __builtin_va_list as defined by the Power ABI:
239 /// https://www.power.org
240 /// /resources/downloads/Power-Arch-32-bit-ABI-supp-1.0-Embedded.pdf
241 PowerABIBuiltinVaList,
242
243 /// __builtin_va_list as defined by the x86-64 ABI:
244 /// http://refspecs.linuxbase.org/elf/x86_64-abi-0.21.pdf
245 X86_64ABIBuiltinVaList,
246
247 /// __builtin_va_list as defined by ARM AAPCS ABI
248 /// http://infocenter.arm.com
249 // /help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
250 AAPCSABIBuiltinVaList,
251
252 // typedef struct __va_list_tag
253 // {
254 // long __gpr;
255 // long __fpr;
256 // void *__overflow_arg_area;
257 // void *__reg_save_area;
258 // } va_list[1];
259 SystemZBuiltinVaList
260 };
261
262protected:
263 /// Specify if mangling based on address space map should be used or
264 /// not for language specific address spaces
265 bool UseAddrSpaceMapMangling;
266
267public:
268 IntType getSizeType() const { return SizeType; }
269 IntType getSignedSizeType() const {
270 switch (SizeType) {
271 case UnsignedShort:
272 return SignedShort;
273 case UnsignedInt:
274 return SignedInt;
275 case UnsignedLong:
276 return SignedLong;
277 case UnsignedLongLong:
278 return SignedLongLong;
279 default:
280 llvm_unreachable("Invalid SizeType");
281 }
282 }
283 IntType getIntMaxType() const { return IntMaxType; }
284 IntType getUIntMaxType() const {
285 return getCorrespondingUnsignedType(IntMaxType);
286 }
287 IntType getPtrDiffType(unsigned AddrSpace) const {
288 return AddrSpace == 0 ? PtrDiffType : getPtrDiffTypeV(AddrSpace);
289 }
290 IntType getUnsignedPtrDiffType(unsigned AddrSpace) const {
291 return getCorrespondingUnsignedType(getPtrDiffType(AddrSpace));
292 }
293 IntType getIntPtrType() const { return IntPtrType; }
294 IntType getUIntPtrType() const {
295 return getCorrespondingUnsignedType(IntPtrType);
296 }
297 IntType getWCharType() const { return WCharType; }
298 IntType getWIntType() const { return WIntType; }
299 IntType getChar16Type() const { return Char16Type; }
300 IntType getChar32Type() const { return Char32Type; }
301 IntType getInt64Type() const { return Int64Type; }
302 IntType getUInt64Type() const {
303 return getCorrespondingUnsignedType(Int64Type);
304 }
305 IntType getSigAtomicType() const { return SigAtomicType; }
306 IntType getProcessIDType() const { return ProcessIDType; }
307
308 static IntType getCorrespondingUnsignedType(IntType T) {
309 switch (T) {
310 case SignedChar:
311 return UnsignedChar;
312 case SignedShort:
313 return UnsignedShort;
314 case SignedInt:
315 return UnsignedInt;
316 case SignedLong:
317 return UnsignedLong;
318 case SignedLongLong:
319 return UnsignedLongLong;
320 default:
321 llvm_unreachable("Unexpected signed integer type");
322 }
323 }
324
325 /// In the event this target uses the same number of fractional bits for its
326 /// unsigned types as it does with its signed counterparts, there will be
327 /// exactly one bit of padding.
328 /// Return true if unsigned fixed point types have padding for this target.
329 bool doUnsignedFixedPointTypesHavePadding() const {
330 return PaddingOnUnsignedFixedPoint;
331 }
332
333 /// Return the width (in bits) of the specified integer type enum.
334 ///
335 /// For example, SignedInt -> getIntWidth().
336 unsigned getTypeWidth(IntType T) const;
337
338 /// Return integer type with specified width.
339 virtual IntType getIntTypeByWidth(unsigned BitWidth, bool IsSigned) const;
340
341 /// Return the smallest integer type with at least the specified width.
342 virtual IntType getLeastIntTypeByWidth(unsigned BitWidth,
343 bool IsSigned) const;
344
345 /// Return floating point type with specified width.
346 RealType getRealTypeByWidth(unsigned BitWidth) const;
347
348 /// Return the alignment (in bits) of the specified integer type enum.
349 ///
350 /// For example, SignedInt -> getIntAlign().
351 unsigned getTypeAlign(IntType T) const;
352
353 /// Returns true if the type is signed; false otherwise.
354 static bool isTypeSigned(IntType T);
355
356 /// Return the width of pointers on this target, for the
357 /// specified address space.
358 uint64_t getPointerWidth(unsigned AddrSpace) const {
359 return AddrSpace == 0 ? PointerWidth : getPointerWidthV(AddrSpace);
360 }
361 uint64_t getPointerAlign(unsigned AddrSpace) const {
362 return AddrSpace == 0 ? PointerAlign : getPointerAlignV(AddrSpace);
363 }
364
365 /// Return the maximum width of pointers on this target.
366 virtual uint64_t getMaxPointerWidth() const {
367 return PointerWidth;
368 }
369
370 /// Get integer value for null pointer.
371 /// \param AddrSpace address space of pointee in source language.
372 virtual uint64_t getNullPointerValue(LangAS AddrSpace) const { return 0; }
373
374 /// Return the size of '_Bool' and C++ 'bool' for this target, in bits.
375 unsigned getBoolWidth() const { return BoolWidth; }
376
377 /// Return the alignment of '_Bool' and C++ 'bool' for this target.
378 unsigned getBoolAlign() const { return BoolAlign; }
379
380 unsigned getCharWidth() const { return 8; } // FIXME
381 unsigned getCharAlign() const { return 8; } // FIXME
382
383 /// Return the size of 'signed short' and 'unsigned short' for this
384 /// target, in bits.
385 unsigned getShortWidth() const { return 16; } // FIXME
386
387 /// Return the alignment of 'signed short' and 'unsigned short' for
388 /// this target.
389 unsigned getShortAlign() const { return 16; } // FIXME
390
391 /// getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for
392 /// this target, in bits.
393 unsigned getIntWidth() const { return IntWidth; }
394 unsigned getIntAlign() const { return IntAlign; }
395
396 /// getLongWidth/Align - Return the size of 'signed long' and 'unsigned long'
397 /// for this target, in bits.
398 unsigned getLongWidth() const { return LongWidth; }
399 unsigned getLongAlign() const { return LongAlign; }
400
401 /// getLongLongWidth/Align - Return the size of 'signed long long' and
402 /// 'unsigned long long' for this target, in bits.
403 unsigned getLongLongWidth() const { return LongLongWidth; }
404 unsigned getLongLongAlign() const { return LongLongAlign; }
405
406 /// getShortAccumWidth/Align - Return the size of 'signed short _Accum' and
407 /// 'unsigned short _Accum' for this target, in bits.
408 unsigned getShortAccumWidth() const { return ShortAccumWidth; }
409 unsigned getShortAccumAlign() const { return ShortAccumAlign; }
410
411 /// getAccumWidth/Align - Return the size of 'signed _Accum' and
412 /// 'unsigned _Accum' for this target, in bits.
413 unsigned getAccumWidth() const { return AccumWidth; }
414 unsigned getAccumAlign() const { return AccumAlign; }
415
416 /// getLongAccumWidth/Align - Return the size of 'signed long _Accum' and
417 /// 'unsigned long _Accum' for this target, in bits.
418 unsigned getLongAccumWidth() const { return LongAccumWidth; }
419 unsigned getLongAccumAlign() const { return LongAccumAlign; }
420
421 /// getShortFractWidth/Align - Return the size of 'signed short _Fract' and
422 /// 'unsigned short _Fract' for this target, in bits.
423 unsigned getShortFractWidth() const { return ShortFractWidth; }
424 unsigned getShortFractAlign() const { return ShortFractAlign; }
425
426 /// getFractWidth/Align - Return the size of 'signed _Fract' and
427 /// 'unsigned _Fract' for this target, in bits.
428 unsigned getFractWidth() const { return FractWidth; }
429 unsigned getFractAlign() const { return FractAlign; }
430
431 /// getLongFractWidth/Align - Return the size of 'signed long _Fract' and
432 /// 'unsigned long _Fract' for this target, in bits.
433 unsigned getLongFractWidth() const { return LongFractWidth; }
434 unsigned getLongFractAlign() const { return LongFractAlign; }
435
436 /// getShortAccumScale/IBits - Return the number of fractional/integral bits
437 /// in a 'signed short _Accum' type.
438 unsigned getShortAccumScale() const { return ShortAccumScale; }
439 unsigned getShortAccumIBits() const {
440 return ShortAccumWidth - ShortAccumScale - 1;
441 }
442
443 /// getAccumScale/IBits - Return the number of fractional/integral bits
444 /// in a 'signed _Accum' type.
445 unsigned getAccumScale() const { return AccumScale; }
446 unsigned getAccumIBits() const { return AccumWidth - AccumScale - 1; }
447
448 /// getLongAccumScale/IBits - Return the number of fractional/integral bits
449 /// in a 'signed long _Accum' type.
450 unsigned getLongAccumScale() const { return LongAccumScale; }
451 unsigned getLongAccumIBits() const {
452 return LongAccumWidth - LongAccumScale - 1;
453 }
454
455 /// getUnsignedShortAccumScale/IBits - Return the number of
456 /// fractional/integral bits in a 'unsigned short _Accum' type.
457 unsigned getUnsignedShortAccumScale() const {
458 return PaddingOnUnsignedFixedPoint ? ShortAccumScale : ShortAccumScale + 1;
459 }
460 unsigned getUnsignedShortAccumIBits() const {
461 return PaddingOnUnsignedFixedPoint
462 ? getShortAccumIBits()
463 : ShortAccumWidth - getUnsignedShortAccumScale();
464 }
465
466 /// getUnsignedAccumScale/IBits - Return the number of fractional/integral
467 /// bits in a 'unsigned _Accum' type.
468 unsigned getUnsignedAccumScale() const {
469 return PaddingOnUnsignedFixedPoint ? AccumScale : AccumScale + 1;
470 }
471 unsigned getUnsignedAccumIBits() const {
472 return PaddingOnUnsignedFixedPoint ? getAccumIBits()
473 : AccumWidth - getUnsignedAccumScale();
474 }
475
476 /// getUnsignedLongAccumScale/IBits - Return the number of fractional/integral
477 /// bits in a 'unsigned long _Accum' type.
478 unsigned getUnsignedLongAccumScale() const {
479 return PaddingOnUnsignedFixedPoint ? LongAccumScale : LongAccumScale + 1;
480 }
481 unsigned getUnsignedLongAccumIBits() const {
482 return PaddingOnUnsignedFixedPoint
483 ? getLongAccumIBits()
484 : LongAccumWidth - getUnsignedLongAccumScale();
485 }
486
487 /// getShortFractScale - Return the number of fractional bits
488 /// in a 'signed short _Fract' type.
489 unsigned getShortFractScale() const { return ShortFractWidth - 1; }
490
491 /// getFractScale - Return the number of fractional bits
492 /// in a 'signed _Fract' type.
493 unsigned getFractScale() const { return FractWidth - 1; }
494
495 /// getLongFractScale - Return the number of fractional bits
496 /// in a 'signed long _Fract' type.
497 unsigned getLongFractScale() const { return LongFractWidth - 1; }
498
499 /// getUnsignedShortFractScale - Return the number of fractional bits
500 /// in a 'unsigned short _Fract' type.
501 unsigned getUnsignedShortFractScale() const {
502 return PaddingOnUnsignedFixedPoint ? getShortFractScale()
503 : getShortFractScale() + 1;
504 }
505
506 /// getUnsignedFractScale - Return the number of fractional bits
507 /// in a 'unsigned _Fract' type.
508 unsigned getUnsignedFractScale() const {
509 return PaddingOnUnsignedFixedPoint ? getFractScale() : getFractScale() + 1;
510 }
511
512 /// getUnsignedLongFractScale - Return the number of fractional bits
513 /// in a 'unsigned long _Fract' type.
514 unsigned getUnsignedLongFractScale() const {
515 return PaddingOnUnsignedFixedPoint ? getLongFractScale()
516 : getLongFractScale() + 1;
517 }
518
519 /// Determine whether the __int128 type is supported on this target.
520 virtual bool hasInt128Type() const {
521 return (getPointerWidth(0) >= 64) || getTargetOpts().ForceEnableInt128;
522 } // FIXME
523
524 /// Determine whether _Float16 is supported on this target.
525 virtual bool hasLegalHalfType() const { return HasLegalHalfType; }
526
527 /// Determine whether the __float128 type is supported on this target.
528 virtual bool hasFloat128Type() const { return HasFloat128; }
529
530 /// Determine whether the _Float16 type is supported on this target.
531 virtual bool hasFloat16Type() const { return HasFloat16; }
532
533 /// Return the alignment that is suitable for storing any
534 /// object with a fundamental alignment requirement.
535 unsigned getSuitableAlign() const { return SuitableAlign; }
536
537 /// Return the default alignment for __attribute__((aligned)) on
538 /// this target, to be used if no alignment value is specified.
539 unsigned getDefaultAlignForAttributeAligned() const {
540 return DefaultAlignForAttributeAligned;
541 }
542
543 /// getMinGlobalAlign - Return the minimum alignment of a global variable,
544 /// unless its alignment is explicitly reduced via attributes.
545 unsigned getMinGlobalAlign() const { return MinGlobalAlign; }
546
547 /// Return the largest alignment for which a suitably-sized allocation with
548 /// '::operator new(size_t)' is guaranteed to produce a correctly-aligned
549 /// pointer.
550 unsigned getNewAlign() const {
551 return NewAlign ? NewAlign : std::max(LongDoubleAlign, LongLongAlign);
552 }
553
554 /// getWCharWidth/Align - Return the size of 'wchar_t' for this target, in
555 /// bits.
556 unsigned getWCharWidth() const { return getTypeWidth(WCharType); }
557 unsigned getWCharAlign() const { return getTypeAlign(WCharType); }
558
559 /// getChar16Width/Align - Return the size of 'char16_t' for this target, in
560 /// bits.
561 unsigned getChar16Width() const { return getTypeWidth(Char16Type); }
562 unsigned getChar16Align() const { return getTypeAlign(Char16Type); }
563
564 /// getChar32Width/Align - Return the size of 'char32_t' for this target, in
565 /// bits.
566 unsigned getChar32Width() const { return getTypeWidth(Char32Type); }
567 unsigned getChar32Align() const { return getTypeAlign(Char32Type); }
568
569 /// getHalfWidth/Align/Format - Return the size/align/format of 'half'.
570 unsigned getHalfWidth() const { return HalfWidth; }
571 unsigned getHalfAlign() const { return HalfAlign; }
572 const llvm::fltSemantics &getHalfFormat() const { return *HalfFormat; }
573
574 /// getFloatWidth/Align/Format - Return the size/align/format of 'float'.
575 unsigned getFloatWidth() const { return FloatWidth; }
576 unsigned getFloatAlign() const { return FloatAlign; }
577 const llvm::fltSemantics &getFloatFormat() const { return *FloatFormat; }
578
579 /// getDoubleWidth/Align/Format - Return the size/align/format of 'double'.
580 unsigned getDoubleWidth() const { return DoubleWidth; }
581 unsigned getDoubleAlign() const { return DoubleAlign; }
582 const llvm::fltSemantics &getDoubleFormat() const { return *DoubleFormat; }
583
584 /// getLongDoubleWidth/Align/Format - Return the size/align/format of 'long
585 /// double'.
586 unsigned getLongDoubleWidth() const { return LongDoubleWidth; }
587 unsigned getLongDoubleAlign() const { return LongDoubleAlign; }
588 const llvm::fltSemantics &getLongDoubleFormat() const {
589 return *LongDoubleFormat;
590 }
591
592 /// getFloat128Width/Align/Format - Return the size/align/format of
593 /// '__float128'.
594 unsigned getFloat128Width() const { return 128; }
595 unsigned getFloat128Align() const { return Float128Align; }
596 const llvm::fltSemantics &getFloat128Format() const {
597 return *Float128Format;
598 }
599
600 /// Return true if the 'long double' type should be mangled like
601 /// __float128.
602 virtual bool useFloat128ManglingForLongDouble() const { return false; }
603
604 /// Return the value for the C99 FLT_EVAL_METHOD macro.
605 virtual unsigned getFloatEvalMethod() const { return 0; }
606
607 // getLargeArrayMinWidth/Align - Return the minimum array size that is
608 // 'large' and its alignment.
609 unsigned getLargeArrayMinWidth() const { return LargeArrayMinWidth; }
610 unsigned getLargeArrayAlign() const { return LargeArrayAlign; }
611
612 /// Return the maximum width lock-free atomic operation which will
613 /// ever be supported for the given target
614 unsigned getMaxAtomicPromoteWidth() const { return MaxAtomicPromoteWidth; }
615 /// Return the maximum width lock-free atomic operation which can be
616 /// inlined given the supported features of the given target.
617 unsigned getMaxAtomicInlineWidth() const { return MaxAtomicInlineWidth; }
618 /// Set the maximum inline or promote width lock-free atomic operation
619 /// for the given target.
620 virtual void setMaxAtomicWidth() {}
621 /// Returns true if the given target supports lock-free atomic
622 /// operations at the specified width and alignment.
623 virtual bool hasBuiltinAtomic(uint64_t AtomicSizeInBits,
624 uint64_t AlignmentInBits) const {
625 return AtomicSizeInBits <= AlignmentInBits &&
626 AtomicSizeInBits <= getMaxAtomicInlineWidth() &&
627 (AtomicSizeInBits <= getCharWidth() ||
628 llvm::isPowerOf2_64(AtomicSizeInBits / getCharWidth()));
629 }
630
631 /// Return the maximum vector alignment supported for the given target.
632 unsigned getMaxVectorAlign() const { return MaxVectorAlign; }
633 /// Return default simd alignment for the given target. Generally, this
634 /// value is type-specific, but this alignment can be used for most of the
635 /// types for the given target.
636 unsigned getSimdDefaultAlign() const { return SimdDefaultAlign; }
637
638 /// Return the size of intmax_t and uintmax_t for this target, in bits.
639 unsigned getIntMaxTWidth() const {
640 return getTypeWidth(IntMaxType);
641 }
642
643 // Return the size of unwind_word for this target.
644 virtual unsigned getUnwindWordWidth() const { return getPointerWidth(0); }
645
646 /// Return the "preferred" register width on this target.
647 virtual unsigned getRegisterWidth() const {
648 // Currently we assume the register width on the target matches the pointer
649 // width, we can introduce a new variable for this if/when some target wants
650 // it.
651 return PointerWidth;
652 }
653
654 /// Returns the name of the mcount instrumentation function.
655 const char *getMCountName() const {
656 return MCountName;
657 }
658
659 /// Check if the Objective-C built-in boolean type should be signed
660 /// char.
661 ///
662 /// Otherwise, if this returns false, the normal built-in boolean type
663 /// should also be used for Objective-C.
664 bool useSignedCharForObjCBool() const {
665 return UseSignedCharForObjCBool;
666 }
667 void noSignedCharForObjCBool() {
668 UseSignedCharForObjCBool = false;
669 }
670
671 /// Check whether the alignment of bit-field types is respected
672 /// when laying out structures.
673 bool useBitFieldTypeAlignment() const {
674 return UseBitFieldTypeAlignment;
675 }
676
677 /// Check whether zero length bitfields should force alignment of
678 /// the next member.
679 bool useZeroLengthBitfieldAlignment() const {
680 return UseZeroLengthBitfieldAlignment;
681 }
682
683 /// Get the fixed alignment value in bits for a member that follows
684 /// a zero length bitfield.
685 unsigned getZeroLengthBitfieldBoundary() const {
686 return ZeroLengthBitfieldBoundary;
687 }
688
689 /// Check whether explicit bitfield alignment attributes should be
690 // honored, as in "__attribute__((aligned(2))) int b : 1;".
691 bool useExplicitBitFieldAlignment() const {
692 return UseExplicitBitFieldAlignment;
693 }
694
695 /// Check whether this target support '\#pragma options align=mac68k'.
696 bool hasAlignMac68kSupport() const {
697 return HasAlignMac68kSupport;
698 }
699
700 /// Return the user string for the specified integer type enum.
701 ///
702 /// For example, SignedShort -> "short".
703 static const char *getTypeName(IntType T);
704
705 /// Return the constant suffix for the specified integer type enum.
706 ///
707 /// For example, SignedLong -> "L".
708 const char *getTypeConstantSuffix(IntType T) const;
709
710 /// Return the printf format modifier for the specified
711 /// integer type enum.
712 ///
713 /// For example, SignedLong -> "l".
714 static const char *getTypeFormatModifier(IntType T);
715
716 /// Check whether the given real type should use the "fpret" flavor of
717 /// Objective-C message passing on this target.
718 bool useObjCFPRetForRealType(RealType T) const {
719 return RealTypeUsesObjCFPRet & (1 << T);
720 }
721
722 /// Check whether _Complex long double should use the "fp2ret" flavor
723 /// of Objective-C message passing on this target.
724 bool useObjCFP2RetForComplexLongDouble() const {
725 return ComplexLongDoubleUsesFP2Ret;
726 }
727
728 /// Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used
729 /// to convert to and from __fp16.
730 /// FIXME: This function should be removed once all targets stop using the
731 /// conversion intrinsics.
732 virtual bool useFP16ConversionIntrinsics() const {
733 return true;
734 }
735
736 /// Specify if mangling based on address space map should be used or
737 /// not for language specific address spaces
738 bool useAddressSpaceMapMangling() const {
739 return UseAddrSpaceMapMangling;
740 }
741
742 ///===---- Other target property query methods --------------------------===//
743
744 /// Appends the target-specific \#define values for this
745 /// target set to the specified buffer.
746 virtual void getTargetDefines(const LangOptions &Opts,
747 MacroBuilder &Builder) const = 0;
748
749
750 /// Return information about target-specific builtins for
751 /// the current primary target, and info about which builtins are non-portable
752 /// across the current set of primary and secondary targets.
753 virtual ArrayRef<Builtin::Info> getTargetBuiltins() const = 0;
754
755 /// The __builtin_clz* and __builtin_ctz* built-in
756 /// functions are specified to have undefined results for zero inputs, but
757 /// on targets that support these operations in a way that provides
758 /// well-defined results for zero without loss of performance, it is a good
759 /// idea to avoid optimizing based on that undef behavior.
760 virtual bool isCLZForZeroUndef() const { return true; }
761
762 /// Returns the kind of __builtin_va_list type that should be used
763 /// with this target.
764 virtual BuiltinVaListKind getBuiltinVaListKind() const = 0;
765
766 /// Returns whether or not type \c __builtin_ms_va_list type is
767 /// available on this target.
768 bool hasBuiltinMSVaList() const { return HasBuiltinMSVaList; }
769
770 /// Returns true for RenderScript.
771 bool isRenderScriptTarget() const { return IsRenderScriptTarget; }
772
773 /// Returns whether the passed in string is a valid clobber in an
774 /// inline asm statement.
775 ///
776 /// This is used by Sema.
777 bool isValidClobber(StringRef Name) const;
778
779 /// Returns whether the passed in string is a valid register name
780 /// according to GCC.
781 ///
782 /// This is used by Sema for inline asm statements.
783 virtual bool isValidGCCRegisterName(StringRef Name) const;
784
785 /// Returns the "normalized" GCC register name.
786 ///
787 /// ReturnCannonical true will return the register name without any additions
788 /// such as "{}" or "%" in it's canonical form, for example:
789 /// ReturnCanonical = true and Name = "rax", will return "ax".
790 StringRef getNormalizedGCCRegisterName(StringRef Name,
791 bool ReturnCanonical = false) const;
792
793 /// Extracts a register from the passed constraint (if it is a
794 /// single-register constraint) and the asm label expression related to a
795 /// variable in the input or output list of an inline asm statement.
796 ///
797 /// This function is used by Sema in order to diagnose conflicts between
798 /// the clobber list and the input/output lists.
799 virtual StringRef getConstraintRegister(StringRef Constraint,
800 StringRef Expression) const {
801 return "";
802 }
803
804 struct ConstraintInfo {
805 enum {
806 CI_None = 0x00,
807 CI_AllowsMemory = 0x01,
808 CI_AllowsRegister = 0x02,
809 CI_ReadWrite = 0x04, // "+r" output constraint (read and write).
810 CI_HasMatchingInput = 0x08, // This output operand has a matching input.
811 CI_ImmediateConstant = 0x10, // This operand must be an immediate constant
812 CI_EarlyClobber = 0x20, // "&" output constraint (early clobber).
813 };
814 unsigned Flags;
815 int TiedOperand;
816 struct {
817 int Min;
818 int Max;
819 } ImmRange;
820 llvm::SmallSet<int, 4> ImmSet;
821
822 std::string ConstraintStr; // constraint: "=rm"
823 std::string Name; // Operand name: [foo] with no []'s.
824 public:
825 ConstraintInfo(StringRef ConstraintStr, StringRef Name)
826 : Flags(0), TiedOperand(-1), ConstraintStr(ConstraintStr.str()),
827 Name(Name.str()) {
828 ImmRange.Min = ImmRange.Max = 0;
829 }
830
831 const std::string &getConstraintStr() const { return ConstraintStr; }
832 const std::string &getName() const { return Name; }
833 bool isReadWrite() const { return (Flags & CI_ReadWrite) != 0; }
834 bool earlyClobber() { return (Flags & CI_EarlyClobber) != 0; }
835 bool allowsRegister() const { return (Flags & CI_AllowsRegister) != 0; }
836 bool allowsMemory() const { return (Flags & CI_AllowsMemory) != 0; }
837
838 /// Return true if this output operand has a matching
839 /// (tied) input operand.
840 bool hasMatchingInput() const { return (Flags & CI_HasMatchingInput) != 0; }
841
842 /// Return true if this input operand is a matching
843 /// constraint that ties it to an output operand.
844 ///
845 /// If this returns true then getTiedOperand will indicate which output
846 /// operand this is tied to.
847 bool hasTiedOperand() const { return TiedOperand != -1; }
848 unsigned getTiedOperand() const {
849 assert(hasTiedOperand() && "Has no tied operand!");
850 return (unsigned)TiedOperand;
851 }
852
853 bool requiresImmediateConstant() const {
854 return (Flags & CI_ImmediateConstant) != 0;
855 }
856 bool isValidAsmImmediate(const llvm::APInt &Value) const {
857 return (Value.sge(ImmRange.Min) && Value.sle(ImmRange.Max)) ||
858 ImmSet.count(Value.getZExtValue()) != 0;
859 }
860
861 void setIsReadWrite() { Flags |= CI_ReadWrite; }
862 void setEarlyClobber() { Flags |= CI_EarlyClobber; }
863 void setAllowsMemory() { Flags |= CI_AllowsMemory; }
864 void setAllowsRegister() { Flags |= CI_AllowsRegister; }
865 void setHasMatchingInput() { Flags |= CI_HasMatchingInput; }
866 void setRequiresImmediate(int Min, int Max) {
867 Flags |= CI_ImmediateConstant;
868 ImmRange.Min = Min;
869 ImmRange.Max = Max;
870 }
871 void setRequiresImmediate(llvm::ArrayRef<int> Exacts) {
872 Flags |= CI_ImmediateConstant;
873 for (int Exact : Exacts)
874 ImmSet.insert(Exact);
875 }
876 void setRequiresImmediate(int Exact) {
877 Flags |= CI_ImmediateConstant;
878 ImmSet.insert(Exact);
879 }
880 void setRequiresImmediate() {
881 Flags |= CI_ImmediateConstant;
882 ImmRange.Min = INT_MIN;
883 ImmRange.Max = INT_MAX;
884 }
885
886 /// Indicate that this is an input operand that is tied to
887 /// the specified output operand.
888 ///
889 /// Copy over the various constraint information from the output.
890 void setTiedOperand(unsigned N, ConstraintInfo &Output) {
891 Output.setHasMatchingInput();
892 Flags = Output.Flags;
893 TiedOperand = N;
894 // Don't copy Name or constraint string.
895 }
896 };
897
898 /// Validate register name used for global register variables.
899 ///
900 /// This function returns true if the register passed in RegName can be used
901 /// for global register variables on this target. In addition, it returns
902 /// true in HasSizeMismatch if the size of the register doesn't match the
903 /// variable size passed in RegSize.
904 virtual bool validateGlobalRegisterVariable(StringRef RegName,
905 unsigned RegSize,
906 bool &HasSizeMismatch) const {
907 HasSizeMismatch = false;
908 return true;
909 }
910
911 // validateOutputConstraint, validateInputConstraint - Checks that
912 // a constraint is valid and provides information about it.
913 // FIXME: These should return a real error instead of just true/false.
914 bool validateOutputConstraint(ConstraintInfo &Info) const;
915 bool validateInputConstraint(MutableArrayRef<ConstraintInfo> OutputConstraints,
916 ConstraintInfo &info) const;
917
918 virtual bool validateOutputSize(StringRef /*Constraint*/,
919 unsigned /*Size*/) const {
920 return true;
921 }
922
923 virtual bool validateInputSize(StringRef /*Constraint*/,
924 unsigned /*Size*/) const {
925 return true;
926 }
927 virtual bool
928 validateConstraintModifier(StringRef /*Constraint*/,
929 char /*Modifier*/,
930 unsigned /*Size*/,
931 std::string &/*SuggestedModifier*/) const {
932 return true;
933 }
934 virtual bool
935 validateAsmConstraint(const char *&Name,
936 TargetInfo::ConstraintInfo &info) const = 0;
937
938 bool resolveSymbolicName(const char *&Name,
939 ArrayRef<ConstraintInfo> OutputConstraints,
940 unsigned &Index) const;
941
942 // Constraint parm will be left pointing at the last character of
943 // the constraint. In practice, it won't be changed unless the
944 // constraint is longer than one character.
945 virtual std::string convertConstraint(const char *&Constraint) const {
946 // 'p' defaults to 'r', but can be overridden by targets.
947 if (*Constraint == 'p')
948 return std::string("r");
949 return std::string(1, *Constraint);
950 }
951
952 /// Returns a string of target-specific clobbers, in LLVM format.
953 virtual const char *getClobbers() const = 0;
954
955 /// Returns true if NaN encoding is IEEE 754-2008.
956 /// Only MIPS allows a different encoding.
957 virtual bool isNan2008() const {
958 return true;
959 }
960
961 /// Returns the target triple of the primary target.
962 const llvm::Triple &getTriple() const {
963 return Triple;
964 }
965
966 const llvm::DataLayout &getDataLayout() const {
967 assert(DataLayout && "Uninitialized DataLayout!");
968 return *DataLayout;
969 }
970
971 struct GCCRegAlias {
972 const char * const Aliases[5];
973 const char * const Register;
974 };
975
976 struct AddlRegName {
977 const char * const Names[5];
978 const unsigned RegNum;
979 };
980
981 /// Does this target support "protected" visibility?
982 ///
983 /// Any target which dynamic libraries will naturally support
984 /// something like "default" (meaning that the symbol is visible
985 /// outside this shared object) and "hidden" (meaning that it isn't)
986 /// visibilities, but "protected" is really an ELF-specific concept
987 /// with weird semantics designed around the convenience of dynamic
988 /// linker implementations. Which is not to suggest that there's
989 /// consistent target-independent semantics for "default" visibility
990 /// either; the entire thing is pretty badly mangled.
991 virtual bool hasProtectedVisibility() const { return true; }
992
993 /// An optional hook that targets can implement to perform semantic
994 /// checking on attribute((section("foo"))) specifiers.
995 ///
996 /// In this case, "foo" is passed in to be checked. If the section
997 /// specifier is invalid, the backend should return a non-empty string
998 /// that indicates the problem.
999 ///
1000 /// This hook is a simple quality of implementation feature to catch errors
1001 /// and give good diagnostics in cases when the assembler or code generator
1002 /// would otherwise reject the section specifier.
1003 ///
1004 virtual std::string isValidSectionSpecifier(StringRef SR) const {
1005 return "";
1006 }
1007
1008 /// Set forced language options.
1009 ///
1010 /// Apply changes to the target information with respect to certain
1011 /// language options which change the target configuration and adjust
1012 /// the language based on the target options where applicable.
1013 virtual void adjust(LangOptions &Opts);
1014
1015 /// Adjust target options based on codegen options.
1016 virtual void adjustTargetOptions(const CodeGenOptions &CGOpts,
1017 TargetOptions &TargetOpts) const {}
1018
1019 /// Initialize the map with the default set of target features for the
1020 /// CPU this should include all legal feature strings on the target.
1021 ///
1022 /// \return False on error (invalid features).
1023 virtual bool initFeatureMap(llvm::StringMap<bool> &Features,
1024 DiagnosticsEngine &Diags, StringRef CPU,
1025 const std::vector<std::string> &FeatureVec) const;
1026
1027 /// Get the ABI currently in use.
1028 virtual StringRef getABI() const { return StringRef(); }
1029
1030 /// Get the C++ ABI currently in use.
1031 TargetCXXABI getCXXABI() const {
1032 return TheCXXABI;
1033 }
1034
1035 /// Target the specified CPU.
1036 ///
1037 /// \return False on error (invalid CPU name).
1038 virtual bool setCPU(const std::string &Name) {
1039 return false;
1040 }
1041
1042 /// Fill a SmallVectorImpl with the valid values to setCPU.
1043 virtual void fillValidCPUList(SmallVectorImpl<StringRef> &Values) const {}
1044
1045 /// brief Determine whether this TargetInfo supports the given CPU name.
1046 virtual bool isValidCPUName(StringRef Name) const {
1047 return true;
1048 }
1049
1050 /// Use the specified ABI.
1051 ///
1052 /// \return False on error (invalid ABI name).
1053 virtual bool setABI(const std::string &Name) {
1054 return false;
1055 }
1056
1057 /// Use the specified unit for FP math.
1058 ///
1059 /// \return False on error (invalid unit name).
1060 virtual bool setFPMath(StringRef Name) {
1061 return false;
1062 }
1063
1064 /// Enable or disable a specific target feature;
1065 /// the feature name must be valid.
1066 virtual void setFeatureEnabled(llvm::StringMap<bool> &Features,
1067 StringRef Name,
1068 bool Enabled) const {
1069 Features[Name] = Enabled;
1070 }
1071
1072 /// Determine whether this TargetInfo supports the given feature.
1073 virtual bool isValidFeatureName(StringRef Feature) const {
1074 return true;
1075 }
1076
1077 /// Perform initialization based on the user configured
1078 /// set of features (e.g., +sse4).
1079 ///
1080 /// The list is guaranteed to have at most one entry per feature.
1081 ///
1082 /// The target may modify the features list, to change which options are
1083 /// passed onwards to the backend.
1084 /// FIXME: This part should be fixed so that we can change handleTargetFeatures
1085 /// to merely a TargetInfo initialization routine.
1086 ///
1087 /// \return False on error.
1088 virtual bool handleTargetFeatures(std::vector<std::string> &Features,
1089 DiagnosticsEngine &Diags) {
1090 return true;
1091 }
1092
1093 /// Determine whether the given target has the given feature.
1094 virtual bool hasFeature(StringRef Feature) const {
1095 return false;
1096 }
1097
1098 /// Identify whether this target supports multiversioning of functions,
1099 /// which requires support for cpu_supports and cpu_is functionality.
1100 bool supportsMultiVersioning() const {
1101 return getTriple().getArch() == llvm::Triple::x86 ||
1102 getTriple().getArch() == llvm::Triple::x86_64;
1103 }
1104
1105 /// Identify whether this target supports IFuncs.
1106 bool supportsIFunc() const { return getTriple().isOSBinFormatELF(); }
1107
1108 // Validate the contents of the __builtin_cpu_supports(const char*)
1109 // argument.
1110 virtual bool validateCpuSupports(StringRef Name) const { return false; }
1111
1112 // Return the target-specific priority for features/cpus/vendors so
1113 // that they can be properly sorted for checking.
1114 virtual unsigned multiVersionSortPriority(StringRef Name) const {
1115 return 0;
1116 }
1117
1118 // Validate the contents of the __builtin_cpu_is(const char*)
1119 // argument.
1120 virtual bool validateCpuIs(StringRef Name) const { return false; }
1121
1122 // Validate a cpu_dispatch/cpu_specific CPU option, which is a different list
1123 // from cpu_is, since it checks via features rather than CPUs directly.
1124 virtual bool validateCPUSpecificCPUDispatch(StringRef Name) const {
1125 return false;
1126 }
1127
1128 // Get the character to be added for mangling purposes for cpu_specific.
1129 virtual char CPUSpecificManglingCharacter(StringRef Name) const {
1130 llvm_unreachable(
1131 "cpu_specific Multiversioning not implemented on this target");
1132 }
1133
1134 // Get a list of the features that make up the CPU option for
1135 // cpu_specific/cpu_dispatch so that it can be passed to llvm as optimization
1136 // options.
1137 virtual void getCPUSpecificCPUDispatchFeatures(
1138 StringRef Name, llvm::SmallVectorImpl<StringRef> &Features) const {
1139 llvm_unreachable(
1140 "cpu_specific Multiversioning not implemented on this target");
1141 }
1142
1143 // Returns maximal number of args passed in registers.
1144 unsigned getRegParmMax() const {
1145 assert(RegParmMax < 7 && "RegParmMax value is larger than AST can handle");
1146 return RegParmMax;
1147 }
1148
1149 /// Whether the target supports thread-local storage.
1150 bool isTLSSupported() const {
1151 return TLSSupported;
1152 }
1153
1154 /// Return the maximum alignment (in bits) of a TLS variable
1155 ///
1156 /// Gets the maximum alignment (in bits) of a TLS variable on this target.
1157 /// Returns zero if there is no such constraint.
1158 unsigned short getMaxTLSAlign() const {
1159 return MaxTLSAlign;
1160 }
1161
1162 /// Whether target supports variable-length arrays.
1163 bool isVLASupported() const { return VLASupported; }
1164
1165 /// Whether the target supports SEH __try.
1166 bool isSEHTrySupported() const {
1167 return getTriple().isOSWindows() &&
1168 (getTriple().getArch() == llvm::Triple::x86 ||
1169 getTriple().getArch() == llvm::Triple::x86_64 ||
1170 getTriple().getArch() == llvm::Triple::aarch64);
1171 }
1172
1173 /// Return true if {|} are normal characters in the asm string.
1174 ///
1175 /// If this returns false (the default), then {abc|xyz} is syntax
1176 /// that says that when compiling for asm variant #0, "abc" should be
1177 /// generated, but when compiling for asm variant #1, "xyz" should be
1178 /// generated.
1179 bool hasNoAsmVariants() const {
1180 return NoAsmVariants;
1181 }
1182
1183 /// Return the register number that __builtin_eh_return_regno would
1184 /// return with the specified argument.
1185 /// This corresponds with TargetLowering's getExceptionPointerRegister
1186 /// and getExceptionSelectorRegister in the backend.
1187 virtual int getEHDataRegisterNumber(unsigned RegNo) const {
1188 return -1;
1189 }
1190
1191 /// Return the section to use for C++ static initialization functions.
1192 virtual const char *getStaticInitSectionSpecifier() const {
1193 return nullptr;
1194 }
1195
1196 const LangASMap &getAddressSpaceMap() const { return *AddrSpaceMap; }
1197
1198 /// Map from the address space field in builtin description strings to the
1199 /// language address space.
1200 virtual LangAS getOpenCLBuiltinAddressSpace(unsigned AS) const {
1201 return getLangASFromTargetAS(AS);
1202 }
1203
1204 /// Map from the address space field in builtin description strings to the
1205 /// language address space.
1206 virtual LangAS getCUDABuiltinAddressSpace(unsigned AS) const {
1207 return getLangASFromTargetAS(AS);
1208 }
1209
1210 /// Return an AST address space which can be used opportunistically
1211 /// for constant global memory. It must be possible to convert pointers into
1212 /// this address space to LangAS::Default. If no such address space exists,
1213 /// this may return None, and such optimizations will be disabled.
1214 virtual llvm::Optional<LangAS> getConstantAddressSpace() const {
1215 return LangAS::Default;
1216 }
1217
1218 /// Retrieve the name of the platform as it is used in the
1219 /// availability attribute.
1220 StringRef getPlatformName() const { return PlatformName; }
1221
1222 /// Retrieve the minimum desired version of the platform, to
1223 /// which the program should be compiled.
1224 VersionTuple getPlatformMinVersion() const { return PlatformMinVersion; }
1225
1226 bool isBigEndian() const { return BigEndian; }
1227 bool isLittleEndian() const { return !BigEndian; }
1228
1229 enum CallingConvMethodType {
1230 CCMT_Unknown,
1231 CCMT_Member,
1232 CCMT_NonMember
1233 };
1234
1235 /// Gets the default calling convention for the given target and
1236 /// declaration context.
1237 virtual CallingConv getDefaultCallingConv(CallingConvMethodType MT) const {
1238 // Not all targets will specify an explicit calling convention that we can
1239 // express. This will always do the right thing, even though it's not
1240 // an explicit calling convention.
1241 return CC_C;
1242 }
1243
1244 enum CallingConvCheckResult {
1245 CCCR_OK,
1246 CCCR_Warning,
1247 CCCR_Ignore,
1248 };
1249
1250 /// Determines whether a given calling convention is valid for the
1251 /// target. A calling convention can either be accepted, produce a warning
1252 /// and be substituted with the default calling convention, or (someday)
1253 /// produce an error (such as using thiscall on a non-instance function).
1254 virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const {
1255 switch (CC) {
1256 default:
1257 return CCCR_Warning;
1258 case CC_C:
1259 return CCCR_OK;
1260 }
1261 }
1262
1263 enum CallingConvKind {
1264 CCK_Default,
1265 CCK_ClangABI4OrPS4,
1266 CCK_MicrosoftWin64
1267 };
1268
1269 virtual CallingConvKind getCallingConvKind(bool ClangABICompat4) const;
1270
1271 /// Controls if __builtin_longjmp / __builtin_setjmp can be lowered to
1272 /// llvm.eh.sjlj.longjmp / llvm.eh.sjlj.setjmp.
1273 virtual bool hasSjLjLowering() const {
1274 return false;
1275 }
1276
1277 /// Check if the target supports CFProtection branch.
1278 virtual bool
1279 checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const;
1280
1281 /// Check if the target supports CFProtection branch.
1282 virtual bool
1283 checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const;
1284
1285 /// Whether target allows to overalign ABI-specified preferred alignment
1286 virtual bool allowsLargerPreferedTypeAlignment() const { return true; }
1287
1288 /// Set supported OpenCL extensions and optional core features.
1289 virtual void setSupportedOpenCLOpts() {}
1290
1291 /// Set supported OpenCL extensions as written on command line
1292 virtual void setOpenCLExtensionOpts() {
1293 for (const auto &Ext : getTargetOpts().OpenCLExtensionsAsWritten) {
1294 getTargetOpts().SupportedOpenCLOptions.support(Ext);
1295 }
1296 }
1297
1298 /// Get supported OpenCL extensions and optional core features.
1299 OpenCLOptions &getSupportedOpenCLOpts() {
1300 return getTargetOpts().SupportedOpenCLOptions;
1301 }
1302
1303 /// Get const supported OpenCL extensions and optional core features.
1304 const OpenCLOptions &getSupportedOpenCLOpts() const {
1305 return getTargetOpts().SupportedOpenCLOptions;
1306 }
1307
1308 enum OpenCLTypeKind {
1309 OCLTK_Default,
1310 OCLTK_ClkEvent,
1311 OCLTK_Event,
1312 OCLTK_Image,
1313 OCLTK_Pipe,
1314 OCLTK_Queue,
1315 OCLTK_ReserveID,
1316 OCLTK_Sampler,
1317 };
1318
1319 /// Get address space for OpenCL type.
1320 virtual LangAS getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const;
1321
1322 /// \returns Target specific vtbl ptr address space.
1323 virtual unsigned getVtblPtrAddressSpace() const {
1324 return 0;
1325 }
1326
1327 /// \returns If a target requires an address within a target specific address
1328 /// space \p AddressSpace to be converted in order to be used, then return the
1329 /// corresponding target specific DWARF address space.
1330 ///
1331 /// \returns Otherwise return None and no conversion will be emitted in the
1332 /// DWARF.
1333 virtual Optional<unsigned> getDWARFAddressSpace(unsigned AddressSpace) const {
1334 return None;
1335 }
1336
1337 /// \returns The version of the SDK which was used during the compilation if
1338 /// one was specified, or an empty version otherwise.
1339 const llvm::VersionTuple &getSDKVersion() const {
1340 return getTargetOpts().SDKVersion;
1341 }
1342
1343 /// Check the target is valid after it is fully initialized.
1344 virtual bool validateTarget(DiagnosticsEngine &Diags) const {
1345 return true;
1346 }
1347
1348 virtual void setAuxTarget(const TargetInfo *Aux) {}
1349
1350protected:
1351 /// Copy type and layout related info.
1352 void copyAuxTarget(const TargetInfo *Aux);
1353 virtual uint64_t getPointerWidthV(unsigned AddrSpace) const {
1354 return PointerWidth;
1355 }
1356 virtual uint64_t getPointerAlignV(unsigned AddrSpace) const {
1357 return PointerAlign;
1358 }
1359 virtual enum IntType getPtrDiffTypeV(unsigned AddrSpace) const {
1360 return PtrDiffType;
1361 }
1362 virtual ArrayRef<const char *> getGCCRegNames() const = 0;
1363 virtual ArrayRef<GCCRegAlias> getGCCRegAliases() const = 0;
1364 virtual ArrayRef<AddlRegName> getGCCAddlRegNames() const {
1365 return None;
1366 }
1367
1368 private:
1369 // Assert the values for the fractional and integral bits for each fixed point
1370 // type follow the restrictions given in clause 6.2.6.3 of N1169.
1371 void CheckFixedPointBits() const;
1372};
1373
1374} // end namespace clang
1375
1376#endif
1377