1//===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declarations of classes that represent "derived
10// types". These are things like "arrays of x" or "structure of x, y, z" or
11// "function returning x taking (y,z) as parameters", etc...
12//
13// The implementations of these classes live in the Type.cpp file.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_IR_DERIVEDTYPES_H
18#define LLVM_IR_DERIVEDTYPES_H
19
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/IR/Type.h"
24#include "llvm/Support/Casting.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/TypeSize.h"
27#include <cassert>
28#include <cstdint>
29
30namespace llvm {
31
32class Value;
33class APInt;
34class LLVMContext;
35
36/// Class to represent integer types. Note that this class is also used to
37/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38/// Int64Ty.
39/// Integer representation type
40class IntegerType : public Type {
41 friend class LLVMContextImpl;
42
43protected:
44 explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45 setSubclassData(NumBits);
46 }
47
48public:
49 /// This enum is just used to hold constants we need for IntegerType.
50 enum {
51 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
52 MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
53 ///< Note that bit width is stored in the Type classes SubclassData field
54 ///< which has 24 bits. This yields a maximum bit width of 16,777,215
55 ///< bits.
56 };
57
58 /// This static method is the primary way of constructing an IntegerType.
59 /// If an IntegerType with the same NumBits value was previously instantiated,
60 /// that instance will be returned. Otherwise a new one will be created. Only
61 /// one instance with a given NumBits value is ever created.
62 /// Get or create an IntegerType instance.
63 static IntegerType *get(LLVMContext &C, unsigned NumBits);
64
65 /// Returns type twice as wide the input type.
66 IntegerType *getExtendedType() const {
67 return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
68 }
69
70 /// Get the number of bits in this IntegerType
71 unsigned getBitWidth() const { return getSubclassData(); }
72
73 /// Return a bitmask with ones set for all of the bits that can be set by an
74 /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
75 uint64_t getBitMask() const {
76 return ~uint64_t(0UL) >> (64-getBitWidth());
77 }
78
79 /// Return a uint64_t with just the most significant bit set (the sign bit, if
80 /// the value is treated as a signed number).
81 uint64_t getSignBit() const {
82 return 1ULL << (getBitWidth()-1);
83 }
84
85 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
86 /// @returns a bit mask with ones set for all the bits of this type.
87 /// Get a bit mask for this type.
88 APInt getMask() const;
89
90 /// Methods for support type inquiry through isa, cast, and dyn_cast.
91 static bool classof(const Type *T) {
92 return T->getTypeID() == IntegerTyID;
93 }
94};
95
96unsigned Type::getIntegerBitWidth() const {
97 return cast<IntegerType>(this)->getBitWidth();
98}
99
100/// Class to represent function types
101///
102class FunctionType : public Type {
103 FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
104
105public:
106 FunctionType(const FunctionType &) = delete;
107 FunctionType &operator=(const FunctionType &) = delete;
108
109 /// This static method is the primary way of constructing a FunctionType.
110 static FunctionType *get(Type *Result,
111 ArrayRef<Type*> Params, bool isVarArg);
112
113 /// Create a FunctionType taking no parameters.
114 static FunctionType *get(Type *Result, bool isVarArg);
115
116 /// Return true if the specified type is valid as a return type.
117 static bool isValidReturnType(Type *RetTy);
118
119 /// Return true if the specified type is valid as an argument type.
120 static bool isValidArgumentType(Type *ArgTy);
121
122 bool isVarArg() const { return getSubclassData()!=0; }
123 Type *getReturnType() const { return ContainedTys[0]; }
124
125 using param_iterator = Type::subtype_iterator;
126
127 param_iterator param_begin() const { return ContainedTys + 1; }
128 param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
129 ArrayRef<Type *> params() const {
130 return makeArrayRef(param_begin(), param_end());
131 }
132
133 /// Parameter type accessors.
134 Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
135
136 /// Return the number of fixed parameters this function type requires.
137 /// This does not consider varargs.
138 unsigned getNumParams() const { return NumContainedTys - 1; }
139
140 /// Methods for support type inquiry through isa, cast, and dyn_cast.
141 static bool classof(const Type *T) {
142 return T->getTypeID() == FunctionTyID;
143 }
144};
145static_assert(alignof(FunctionType) >= alignof(Type *),
146 "Alignment sufficient for objects appended to FunctionType");
147
148bool Type::isFunctionVarArg() const {
149 return cast<FunctionType>(this)->isVarArg();
150}
151
152Type *Type::getFunctionParamType(unsigned i) const {
153 return cast<FunctionType>(this)->getParamType(i);
154}
155
156unsigned Type::getFunctionNumParams() const {
157 return cast<FunctionType>(this)->getNumParams();
158}
159
160/// A handy container for a FunctionType+Callee-pointer pair, which can be
161/// passed around as a single entity. This assists in replacing the use of
162/// PointerType::getElementType() to access the function's type, since that's
163/// slated for removal as part of the [opaque pointer types] project.
164class FunctionCallee {
165public:
166 // Allow implicit conversion from types which have a getFunctionType member
167 // (e.g. Function and InlineAsm).
168 template <typename T, typename U = decltype(&T::getFunctionType)>
169 FunctionCallee(T *Fn)
170 : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
171
172 FunctionCallee(FunctionType *FnTy, Value *Callee)
173 : FnTy(FnTy), Callee(Callee) {
174 assert((FnTy == nullptr) == (Callee == nullptr));
175 }
176
177 FunctionCallee(std::nullptr_t) {}
178
179 FunctionCallee() = default;
180
181 FunctionType *getFunctionType() { return FnTy; }
182
183 Value *getCallee() { return Callee; }
184
185 explicit operator bool() { return Callee; }
186
187private:
188 FunctionType *FnTy = nullptr;
189 Value *Callee = nullptr;
190};
191
192/// Class to represent struct types. There are two different kinds of struct
193/// types: Literal structs and Identified structs.
194///
195/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
196/// always have a body when created. You can get one of these by using one of
197/// the StructType::get() forms.
198///
199/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
200/// uniqued. The names for identified structs are managed at the LLVMContext
201/// level, so there can only be a single identified struct with a given name in
202/// a particular LLVMContext. Identified structs may also optionally be opaque
203/// (have no body specified). You get one of these by using one of the
204/// StructType::create() forms.
205///
206/// Independent of what kind of struct you have, the body of a struct type are
207/// laid out in memory consecutively with the elements directly one after the
208/// other (if the struct is packed) or (if not packed) with padding between the
209/// elements as defined by DataLayout (which is required to match what the code
210/// generator for a target expects).
211///
212class StructType : public Type {
213 StructType(LLVMContext &C) : Type(C, StructTyID) {}
214
215 enum {
216 /// This is the contents of the SubClassData field.
217 SCDB_HasBody = 1,
218 SCDB_Packed = 2,
219 SCDB_IsLiteral = 4,
220 SCDB_IsSized = 8
221 };
222
223 /// For a named struct that actually has a name, this is a pointer to the
224 /// symbol table entry (maintained by LLVMContext) for the struct.
225 /// This is null if the type is an literal struct or if it is a identified
226 /// type that has an empty name.
227 void *SymbolTableEntry = nullptr;
228
229public:
230 StructType(const StructType &) = delete;
231 StructType &operator=(const StructType &) = delete;
232
233 /// This creates an identified struct.
234 static StructType *create(LLVMContext &Context, StringRef Name);
235 static StructType *create(LLVMContext &Context);
236
237 static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
238 bool isPacked = false);
239 static StructType *create(ArrayRef<Type *> Elements);
240 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
241 StringRef Name, bool isPacked = false);
242 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
243 template <class... Tys>
244 static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
245 create(StringRef Name, Type *elt1, Tys *... elts) {
246 assert(elt1 && "Cannot create a struct type with no elements with this");
247 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
248 return create(StructFields, Name);
249 }
250
251 /// This static method is the primary way to create a literal StructType.
252 static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
253 bool isPacked = false);
254
255 /// Create an empty structure type.
256 static StructType *get(LLVMContext &Context, bool isPacked = false);
257
258 /// This static method is a convenience method for creating structure types by
259 /// specifying the elements as arguments. Note that this method always returns
260 /// a non-packed struct, and requires at least one element type.
261 template <class... Tys>
262 static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
263 get(Type *elt1, Tys *... elts) {
264 assert(elt1 && "Cannot create a struct type with no elements with this");
265 LLVMContext &Ctx = elt1->getContext();
266 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
267 return llvm::StructType::get(Ctx, StructFields);
268 }
269
270 /// Return the type with the specified name, or null if there is none by that
271 /// name.
272 static StructType *getTypeByName(LLVMContext &C, StringRef Name);
273
274 bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
275
276 /// Return true if this type is uniqued by structural equivalence, false if it
277 /// is a struct definition.
278 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
279
280 /// Return true if this is a type with an identity that has no body specified
281 /// yet. These prints as 'opaque' in .ll files.
282 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
283
284 /// isSized - Return true if this is a sized type.
285 bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
286
287 /// Returns true if this struct contains a scalable vector.
288 bool containsScalableVectorType() const;
289
290 /// Return true if this is a named struct that has a non-empty name.
291 bool hasName() const { return SymbolTableEntry != nullptr; }
292
293 /// Return the name for this struct type if it has an identity.
294 /// This may return an empty string for an unnamed struct type. Do not call
295 /// this on an literal type.
296 StringRef getName() const;
297
298 /// Change the name of this type to the specified name, or to a name with a
299 /// suffix if there is a collision. Do not call this on an literal type.
300 void setName(StringRef Name);
301
302 /// Specify a body for an opaque identified type.
303 void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
304
305 template <typename... Tys>
306 std::enable_if_t<are_base_of<Type, Tys...>::value, void>
307 setBody(Type *elt1, Tys *... elts) {
308 assert(elt1 && "Cannot create a struct type with no elements with this");
309 SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
310 setBody(StructFields);
311 }
312
313 /// Return true if the specified type is valid as a element type.
314 static bool isValidElementType(Type *ElemTy);
315
316 // Iterator access to the elements.
317 using element_iterator = Type::subtype_iterator;
318
319 element_iterator element_begin() const { return ContainedTys; }
320 element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
321 ArrayRef<Type *> elements() const {
322 return makeArrayRef(element_begin(), element_end());
323 }
324
325 /// Return true if this is layout identical to the specified struct.
326 bool isLayoutIdentical(StructType *Other) const;
327
328 /// Random access to the elements
329 unsigned getNumElements() const { return NumContainedTys; }
330 Type *getElementType(unsigned N) const {
331 assert(N < NumContainedTys && "Element number out of range!");
332 return ContainedTys[N];
333 }
334 /// Given an index value into the type, return the type of the element.
335 Type *getTypeAtIndex(const Value *V) const;
336 Type *getTypeAtIndex(unsigned N) const { return getElementType(N); }
337 bool indexValid(const Value *V) const;
338 bool indexValid(unsigned Idx) const { return Idx < getNumElements(); }
339
340 /// Methods for support type inquiry through isa, cast, and dyn_cast.
341 static bool classof(const Type *T) {
342 return T->getTypeID() == StructTyID;
343 }
344};
345
346StringRef Type::getStructName() const {
347 return cast<StructType>(this)->getName();
348}
349
350unsigned Type::getStructNumElements() const {
351 return cast<StructType>(this)->getNumElements();
352}
353
354Type *Type::getStructElementType(unsigned N) const {
355 return cast<StructType>(this)->getElementType(N);
356}
357
358/// Class to represent array types.
359class ArrayType : public Type {
360 /// The element type of the array.
361 Type *ContainedType;
362 /// Number of elements in the array.
363 uint64_t NumElements;
364
365 ArrayType(Type *ElType, uint64_t NumEl);
366
367public:
368 ArrayType(const ArrayType &) = delete;
369 ArrayType &operator=(const ArrayType &) = delete;
370
371 uint64_t getNumElements() const { return NumElements; }
372 Type *getElementType() const { return ContainedType; }
373
374 /// This static method is the primary way to construct an ArrayType
375 static ArrayType *get(Type *ElementType, uint64_t NumElements);
376
377 /// Return true if the specified type is valid as a element type.
378 static bool isValidElementType(Type *ElemTy);
379
380 /// Methods for support type inquiry through isa, cast, and dyn_cast.
381 static bool classof(const Type *T) {
382 return T->getTypeID() == ArrayTyID;
383 }
384};
385
386uint64_t Type::getArrayNumElements() const {
387 return cast<ArrayType>(this)->getNumElements();
388}
389
390/// Base class of all SIMD vector types
391class VectorType : public Type {
392 /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
393 /// minimum number of elements of type Ty contained within the vector, and
394 /// 'vscale x' indicates that the total element count is an integer multiple
395 /// of 'n', where the multiple is either guaranteed to be one, or is
396 /// statically unknown at compile time.
397 ///
398 /// If the multiple is known to be 1, then the extra term is discarded in
399 /// textual IR:
400 ///
401 /// <4 x i32> - a vector containing 4 i32s
402 /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
403 /// of 4 i32s
404
405 /// The element type of the vector.
406 Type *ContainedType;
407
408protected:
409 /// The element quantity of this vector. The meaning of this value depends
410 /// on the type of vector:
411 /// - For FixedVectorType = <ElementQuantity x ty>, there are
412 /// exactly ElementQuantity elements in this vector.
413 /// - For ScalableVectorType = <vscale x ElementQuantity x ty>,
414 /// there are vscale * ElementQuantity elements in this vector, where
415 /// vscale is a runtime-constant integer greater than 0.
416 const unsigned ElementQuantity;
417
418 VectorType(Type *ElType, unsigned EQ, Type::TypeID TID);
419
420public:
421 VectorType(const VectorType &) = delete;
422 VectorType &operator=(const VectorType &) = delete;
423
424 Type *getElementType() const { return ContainedType; }
425
426 /// This static method is the primary way to construct an VectorType.
427 static VectorType *get(Type *ElementType, ElementCount EC);
428
429 static VectorType *get(Type *ElementType, unsigned NumElements,
430 bool Scalable) {
431 return VectorType::get(ElementType,
432 ElementCount::get(NumElements, Scalable));
433 }
434
435 static VectorType *get(Type *ElementType, const VectorType *Other) {
436 return VectorType::get(ElementType, Other->getElementCount());
437 }
438
439 /// This static method gets a VectorType with the same number of elements as
440 /// the input type, and the element type is an integer type of the same width
441 /// as the input element type.
442 static VectorType *getInteger(VectorType *VTy) {
443 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
444 assert(EltBits && "Element size must be of a non-zero size");
445 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
446 return VectorType::get(EltTy, VTy->getElementCount());
447 }
448
449 /// This static method is like getInteger except that the element types are
450 /// twice as wide as the elements in the input type.
451 static VectorType *getExtendedElementVectorType(VectorType *VTy) {
452 assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
453 auto *EltTy = cast<IntegerType>(VTy->getElementType());
454 return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
455 }
456
457 // This static method gets a VectorType with the same number of elements as
458 // the input type, and the element type is an integer or float type which
459 // is half as wide as the elements in the input type.
460 static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
461 Type *EltTy;
462 if (VTy->getElementType()->isFloatingPointTy()) {
463 switch(VTy->getElementType()->getTypeID()) {
464 case DoubleTyID:
465 EltTy = Type::getFloatTy(VTy->getContext());
466 break;
467 case FloatTyID:
468 EltTy = Type::getHalfTy(VTy->getContext());
469 break;
470 default:
471 llvm_unreachable("Cannot create narrower fp vector element type");
472 }
473 } else {
474 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
475 assert((EltBits & 1) == 0 &&
476 "Cannot truncate vector element with odd bit-width");
477 EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
478 }
479 return VectorType::get(EltTy, VTy->getElementCount());
480 }
481
482 // This static method returns a VectorType with a smaller number of elements
483 // of a larger type than the input element type. For example, a <16 x i8>
484 // subdivided twice would return <4 x i32>
485 static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
486 for (int i = 0; i < NumSubdivs; ++i) {
487 VTy = VectorType::getDoubleElementsVectorType(VTy);
488 VTy = VectorType::getTruncatedElementVectorType(VTy);
489 }
490 return VTy;
491 }
492
493 /// This static method returns a VectorType with half as many elements as the
494 /// input type and the same element type.
495 static VectorType *getHalfElementsVectorType(VectorType *VTy) {
496 auto EltCnt = VTy->getElementCount();
497 assert(EltCnt.isKnownEven() &&
498 "Cannot halve vector with odd number of elements.");
499 return VectorType::get(VTy->getElementType(),
500 EltCnt.divideCoefficientBy(2));
501 }
502
503 /// This static method returns a VectorType with twice as many elements as the
504 /// input type and the same element type.
505 static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
506 auto EltCnt = VTy->getElementCount();
507 assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX &&
508 "Too many elements in vector");
509 return VectorType::get(VTy->getElementType(), EltCnt * 2);
510 }
511
512 /// Return true if the specified type is valid as a element type.
513 static bool isValidElementType(Type *ElemTy);
514
515 /// Return an ElementCount instance to represent the (possibly scalable)
516 /// number of elements in the vector.
517 inline ElementCount getElementCount() const;
518
519 /// Methods for support type inquiry through isa, cast, and dyn_cast.
520 static bool classof(const Type *T) {
521 return T->getTypeID() == FixedVectorTyID ||
522 T->getTypeID() == ScalableVectorTyID;
523 }
524};
525
526/// Class to represent fixed width SIMD vectors
527class FixedVectorType : public VectorType {
528protected:
529 FixedVectorType(Type *ElTy, unsigned NumElts)
530 : VectorType(ElTy, NumElts, FixedVectorTyID) {}
531
532public:
533 static FixedVectorType *get(Type *ElementType, unsigned NumElts);
534
535 static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) {
536 return get(ElementType, FVTy->getNumElements());
537 }
538
539 static FixedVectorType *getInteger(FixedVectorType *VTy) {
540 return cast<FixedVectorType>(VectorType::getInteger(VTy));
541 }
542
543 static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) {
544 return cast<FixedVectorType>(VectorType::getExtendedElementVectorType(VTy));
545 }
546
547 static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) {
548 return cast<FixedVectorType>(
549 VectorType::getTruncatedElementVectorType(VTy));
550 }
551
552 static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy,
553 int NumSubdivs) {
554 return cast<FixedVectorType>(
555 VectorType::getSubdividedVectorType(VTy, NumSubdivs));
556 }
557
558 static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) {
559 return cast<FixedVectorType>(VectorType::getHalfElementsVectorType(VTy));
560 }
561
562 static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) {
563 return cast<FixedVectorType>(VectorType::getDoubleElementsVectorType(VTy));
564 }
565
566 static bool classof(const Type *T) {
567 return T->getTypeID() == FixedVectorTyID;
568 }
569
570 unsigned getNumElements() const { return ElementQuantity; }
571};
572
573/// Class to represent scalable SIMD vectors
574class ScalableVectorType : public VectorType {
575protected:
576 ScalableVectorType(Type *ElTy, unsigned MinNumElts)
577 : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {}
578
579public:
580 static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts);
581
582 static ScalableVectorType *get(Type *ElementType,
583 const ScalableVectorType *SVTy) {
584 return get(ElementType, SVTy->getMinNumElements());
585 }
586
587 static ScalableVectorType *getInteger(ScalableVectorType *VTy) {
588 return cast<ScalableVectorType>(VectorType::getInteger(VTy));
589 }
590
591 static ScalableVectorType *
592 getExtendedElementVectorType(ScalableVectorType *VTy) {
593 return cast<ScalableVectorType>(
594 VectorType::getExtendedElementVectorType(VTy));
595 }
596
597 static ScalableVectorType *
598 getTruncatedElementVectorType(ScalableVectorType *VTy) {
599 return cast<ScalableVectorType>(
600 VectorType::getTruncatedElementVectorType(VTy));
601 }
602
603 static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy,
604 int NumSubdivs) {
605 return cast<ScalableVectorType>(
606 VectorType::getSubdividedVectorType(VTy, NumSubdivs));
607 }
608
609 static ScalableVectorType *
610 getHalfElementsVectorType(ScalableVectorType *VTy) {
611 return cast<ScalableVectorType>(VectorType::getHalfElementsVectorType(VTy));
612 }
613
614 static ScalableVectorType *
615 getDoubleElementsVectorType(ScalableVectorType *VTy) {
616 return cast<ScalableVectorType>(
617 VectorType::getDoubleElementsVectorType(VTy));
618 }
619
620 /// Get the minimum number of elements in this vector. The actual number of
621 /// elements in the vector is an integer multiple of this value.
622 uint64_t getMinNumElements() const { return ElementQuantity; }
623
624 static bool classof(const Type *T) {
625 return T->getTypeID() == ScalableVectorTyID;
626 }
627};
628
629inline ElementCount VectorType::getElementCount() const {
630 return ElementCount::get(ElementQuantity, isa<ScalableVectorType>(this));
631}
632
633/// Class to represent pointers.
634class PointerType : public Type {
635 explicit PointerType(Type *ElType, unsigned AddrSpace);
636
637 Type *PointeeTy;
638
639public:
640 PointerType(const PointerType &) = delete;
641 PointerType &operator=(const PointerType &) = delete;
642
643 /// This constructs a pointer to an object of the specified type in a numbered
644 /// address space.
645 static PointerType *get(Type *ElementType, unsigned AddressSpace);
646
647 /// This constructs a pointer to an object of the specified type in the
648 /// generic address space (address space zero).
649 static PointerType *getUnqual(Type *ElementType) {
650 return PointerType::get(ElementType, 0);
651 }
652
653 Type *getElementType() const { return PointeeTy; }
654
655 /// Return true if the specified type is valid as a element type.
656 static bool isValidElementType(Type *ElemTy);
657
658 /// Return true if we can load or store from a pointer to this type.
659 static bool isLoadableOrStorableType(Type *ElemTy);
660
661 /// Return the address space of the Pointer type.
662 inline unsigned getAddressSpace() const { return getSubclassData(); }
663
664 /// Implement support type inquiry through isa, cast, and dyn_cast.
665 static bool classof(const Type *T) {
666 return T->getTypeID() == PointerTyID;
667 }
668};
669
670Type *Type::getExtendedType() const {
671 assert(
672 isIntOrIntVectorTy() &&
673 "Original type expected to be a vector of integers or a scalar integer.");
674 if (auto *VTy = dyn_cast<VectorType>(this))
675 return VectorType::getExtendedElementVectorType(
676 const_cast<VectorType *>(VTy));
677 return cast<IntegerType>(this)->getExtendedType();
678}
679
680Type *Type::getWithNewType(Type *EltTy) const {
681 if (auto *VTy = dyn_cast<VectorType>(this))
682 return VectorType::get(EltTy, VTy->getElementCount());
683 return EltTy;
684}
685
686Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
687 assert(
688 isIntOrIntVectorTy() &&
689 "Original type expected to be a vector of integers or a scalar integer.");
690 return getWithNewType(getIntNTy(getContext(), NewBitWidth));
691}
692
693unsigned Type::getPointerAddressSpace() const {
694 return cast<PointerType>(getScalarType())->getAddressSpace();
695}
696
697} // end namespace llvm
698
699#endif // LLVM_IR_DERIVEDTYPES_H
700