1//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This program is a utility that works like binutils "objdump", that is, it
10// dumps out a plethora of information about an object file depending on the
11// flags.
12//
13// The flags and output of this program should be near identical to those of
14// binutils objdump.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm-objdump.h"
19#include "COFFDump.h"
20#include "ELFDump.h"
21#include "MachODump.h"
22#include "ObjdumpOptID.h"
23#include "OffloadDump.h"
24#include "SourcePrinter.h"
25#include "WasmDump.h"
26#include "XCOFFDump.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetOperations.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/StringSet.h"
31#include "llvm/ADT/Twine.h"
32#include "llvm/BinaryFormat/Wasm.h"
33#include "llvm/DebugInfo/BTF/BTFParser.h"
34#include "llvm/DebugInfo/DWARF/DWARFContext.h"
35#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36#include "llvm/DebugInfo/Symbolize/Symbolize.h"
37#include "llvm/Debuginfod/BuildIDFetcher.h"
38#include "llvm/Debuginfod/Debuginfod.h"
39#include "llvm/Debuginfod/HTTPClient.h"
40#include "llvm/Demangle/Demangle.h"
41#include "llvm/MC/MCAsmInfo.h"
42#include "llvm/MC/MCContext.h"
43#include "llvm/MC/MCDisassembler/MCDisassembler.h"
44#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45#include "llvm/MC/MCInst.h"
46#include "llvm/MC/MCInstPrinter.h"
47#include "llvm/MC/MCInstrAnalysis.h"
48#include "llvm/MC/MCInstrInfo.h"
49#include "llvm/MC/MCObjectFileInfo.h"
50#include "llvm/MC/MCRegisterInfo.h"
51#include "llvm/MC/MCTargetOptions.h"
52#include "llvm/MC/TargetRegistry.h"
53#include "llvm/Object/Archive.h"
54#include "llvm/Object/BuildID.h"
55#include "llvm/Object/COFF.h"
56#include "llvm/Object/COFFImportFile.h"
57#include "llvm/Object/ELFObjectFile.h"
58#include "llvm/Object/ELFTypes.h"
59#include "llvm/Object/FaultMapParser.h"
60#include "llvm/Object/MachO.h"
61#include "llvm/Object/MachOUniversal.h"
62#include "llvm/Object/ObjectFile.h"
63#include "llvm/Object/OffloadBinary.h"
64#include "llvm/Object/Wasm.h"
65#include "llvm/Option/Arg.h"
66#include "llvm/Option/ArgList.h"
67#include "llvm/Option/Option.h"
68#include "llvm/Support/Casting.h"
69#include "llvm/Support/Debug.h"
70#include "llvm/Support/Errc.h"
71#include "llvm/Support/FileSystem.h"
72#include "llvm/Support/Format.h"
73#include "llvm/Support/FormatVariadic.h"
74#include "llvm/Support/GraphWriter.h"
75#include "llvm/Support/LLVMDriver.h"
76#include "llvm/Support/MemoryBuffer.h"
77#include "llvm/Support/SourceMgr.h"
78#include "llvm/Support/StringSaver.h"
79#include "llvm/Support/TargetSelect.h"
80#include "llvm/Support/WithColor.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/TargetParser/Host.h"
83#include "llvm/TargetParser/Triple.h"
84#include <algorithm>
85#include <cctype>
86#include <cstring>
87#include <optional>
88#include <set>
89#include <system_error>
90#include <unordered_map>
91#include <utility>
92
93using namespace llvm;
94using namespace llvm::object;
95using namespace llvm::objdump;
96using namespace llvm::opt;
97
98namespace {
99
100class CommonOptTable : public opt::GenericOptTable {
101public:
102 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
103 const char *Description)
104 : opt::GenericOptTable(OptionInfos), Usage(Usage),
105 Description(Description) {
106 setGroupedShortOptions(true);
107 }
108
109 void printHelp(StringRef Argv0, bool ShowHidden = false) const {
110 Argv0 = sys::path::filename(path: Argv0);
111 opt::GenericOptTable::printHelp(OS&: outs(), Usage: (Argv0 + Usage).str().c_str(),
112 Title: Description, ShowHidden, ShowAllAliases: ShowHidden);
113 // TODO Replace this with OptTable API once it adds extrahelp support.
114 outs() << "\nPass @FILE as argument to read options from FILE.\n";
115 }
116
117private:
118 const char *Usage;
119 const char *Description;
120};
121
122// ObjdumpOptID is in ObjdumpOptID.h
123namespace objdump_opt {
124#define PREFIX(NAME, VALUE) \
125 static constexpr StringLiteral NAME##_init[] = VALUE; \
126 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
127 std::size(NAME##_init) - 1);
128#include "ObjdumpOpts.inc"
129#undef PREFIX
130
131static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
132#define OPTION(...) \
133 LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__),
134#include "ObjdumpOpts.inc"
135#undef OPTION
136};
137} // namespace objdump_opt
138
139class ObjdumpOptTable : public CommonOptTable {
140public:
141 ObjdumpOptTable()
142 : CommonOptTable(objdump_opt::ObjdumpInfoTable,
143 " [options] <input object files>",
144 "llvm object file dumper") {}
145};
146
147enum OtoolOptID {
148 OTOOL_INVALID = 0, // This is not an option ID.
149#define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
150#include "OtoolOpts.inc"
151#undef OPTION
152};
153
154namespace otool {
155#define PREFIX(NAME, VALUE) \
156 static constexpr StringLiteral NAME##_init[] = VALUE; \
157 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
158 std::size(NAME##_init) - 1);
159#include "OtoolOpts.inc"
160#undef PREFIX
161
162static constexpr opt::OptTable::Info OtoolInfoTable[] = {
163#define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
164#include "OtoolOpts.inc"
165#undef OPTION
166};
167} // namespace otool
168
169class OtoolOptTable : public CommonOptTable {
170public:
171 OtoolOptTable()
172 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
173 "Mach-O object file displaying tool") {}
174};
175
176struct BBAddrMapLabel {
177 std::string BlockLabel;
178 std::string PGOAnalysis;
179};
180
181// This class represents the BBAddrMap and PGOMap associated with a single
182// function.
183class BBAddrMapFunctionEntry {
184public:
185 BBAddrMapFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap)
186 : AddrMap(std::move(AddrMap)), PGOMap(std::move(PGOMap)) {}
187
188 const BBAddrMap &getAddrMap() const { return AddrMap; }
189
190 // Returns the PGO string associated with the entry of index `PGOBBEntryIndex`
191 // in `PGOMap`. If PrettyPGOAnalysis is true, prints BFI as relative frequency
192 // and BPI as percentage. Otherwise raw values are displayed.
193 std::string constructPGOLabelString(size_t PGOBBEntryIndex,
194 bool PrettyPGOAnalysis) const {
195 if (!PGOMap.FeatEnable.hasPGOAnalysis())
196 return "";
197 std::string PGOString;
198 raw_string_ostream PGOSS(PGOString);
199
200 PGOSS << " (";
201 if (PGOMap.FeatEnable.FuncEntryCount && PGOBBEntryIndex == 0) {
202 PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount);
203 if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) {
204 PGOSS << ", ";
205 }
206 }
207
208 if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) {
209
210 assert(PGOBBEntryIndex < PGOMap.BBEntries.size() &&
211 "Expected PGOAnalysisMap and BBAddrMap to have the same entries");
212 const PGOAnalysisMap::PGOBBEntry &PGOBBEntry =
213 PGOMap.BBEntries[PGOBBEntryIndex];
214
215 if (PGOMap.FeatEnable.BBFreq) {
216 PGOSS << "Frequency: ";
217 if (PrettyPGOAnalysis)
218 printRelativeBlockFreq(OS&: PGOSS, EntryFreq: PGOMap.BBEntries.front().BlockFreq,
219 Freq: PGOBBEntry.BlockFreq);
220 else
221 PGOSS << Twine(PGOBBEntry.BlockFreq.getFrequency());
222 if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
223 PGOSS << ", ";
224 }
225 }
226 if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
227 PGOSS << "Successors: ";
228 interleaveComma(
229 PGOBBEntry.Successors, PGOSS,
230 [&](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) {
231 PGOSS << "BB" << SE.ID << ":";
232 if (PrettyPGOAnalysis)
233 PGOSS << "[" << SE.Prob << "]";
234 else
235 PGOSS.write_hex(N: SE.Prob.getNumerator());
236 });
237 }
238 }
239 PGOSS << ")";
240
241 return PGOString;
242 }
243
244private:
245 const BBAddrMap AddrMap;
246 const PGOAnalysisMap PGOMap;
247};
248
249// This class represents the BBAddrMap and PGOMap of potentially multiple
250// functions in a section.
251class BBAddrMapInfo {
252public:
253 void clear() {
254 FunctionAddrToMap.clear();
255 RangeBaseAddrToFunctionAddr.clear();
256 }
257
258 bool empty() const { return FunctionAddrToMap.empty(); }
259
260 void AddFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap) {
261 uint64_t FunctionAddr = AddrMap.getFunctionAddress();
262 for (size_t I = 1; I < AddrMap.BBRanges.size(); ++I)
263 RangeBaseAddrToFunctionAddr.emplace(AddrMap.BBRanges[I].BaseAddress,
264 FunctionAddr);
265 [[maybe_unused]] auto R = FunctionAddrToMap.try_emplace(
266 FunctionAddr, std::move(AddrMap), std::move(PGOMap));
267 assert(R.second && "duplicate function address");
268 }
269
270 // Returns the BBAddrMap entry for the function associated with `BaseAddress`.
271 // `BaseAddress` could be the function address or the address of a range
272 // associated with that function. Returns `nullptr` if `BaseAddress` is not
273 // mapped to any entry.
274 const BBAddrMapFunctionEntry *getEntryForAddress(uint64_t BaseAddress) const {
275 uint64_t FunctionAddr = BaseAddress;
276 auto S = RangeBaseAddrToFunctionAddr.find(BaseAddress);
277 if (S != RangeBaseAddrToFunctionAddr.end())
278 FunctionAddr = S->second;
279 auto R = FunctionAddrToMap.find(FunctionAddr);
280 if (R == FunctionAddrToMap.end())
281 return nullptr;
282 return &R->second;
283 }
284
285private:
286 std::unordered_map<uint64_t, BBAddrMapFunctionEntry> FunctionAddrToMap;
287 std::unordered_map<uint64_t, uint64_t> RangeBaseAddrToFunctionAddr;
288};
289
290} // namespace
291
292#define DEBUG_TYPE "objdump"
293
294enum class ColorOutput {
295 Auto,
296 Enable,
297 Disable,
298 Invalid,
299};
300
301static uint64_t AdjustVMA;
302static bool AllHeaders;
303static std::string ArchName;
304bool objdump::ArchiveHeaders;
305bool objdump::Demangle;
306bool objdump::Disassemble;
307bool objdump::DisassembleAll;
308bool objdump::SymbolDescription;
309bool objdump::TracebackTable;
310static std::vector<std::string> DisassembleSymbols;
311static bool DisassembleZeroes;
312static std::vector<std::string> DisassemblerOptions;
313static ColorOutput DisassemblyColor;
314DIDumpType objdump::DwarfDumpType;
315static bool DynamicRelocations;
316static bool FaultMapSection;
317static bool FileHeaders;
318bool objdump::SectionContents;
319static std::vector<std::string> InputFilenames;
320bool objdump::PrintLines;
321static bool MachOOpt;
322std::string objdump::MCPU;
323std::vector<std::string> objdump::MAttrs;
324bool objdump::ShowRawInsn;
325bool objdump::LeadingAddr;
326static bool Offloading;
327static bool RawClangAST;
328bool objdump::Relocations;
329bool objdump::PrintImmHex;
330bool objdump::PrivateHeaders;
331std::vector<std::string> objdump::FilterSections;
332bool objdump::SectionHeaders;
333static bool ShowAllSymbols;
334static bool ShowLMA;
335bool objdump::PrintSource;
336
337static uint64_t StartAddress;
338static bool HasStartAddressFlag;
339static uint64_t StopAddress = UINT64_MAX;
340static bool HasStopAddressFlag;
341
342bool objdump::SymbolTable;
343static bool SymbolizeOperands;
344static bool PrettyPGOAnalysisMap;
345static bool DynamicSymbolTable;
346std::string objdump::TripleName;
347bool objdump::UnwindInfo;
348static bool Wide;
349std::string objdump::Prefix;
350uint32_t objdump::PrefixStrip;
351
352DebugVarsFormat objdump::DbgVariables = DVDisabled;
353
354int objdump::DbgIndent = 52;
355
356static StringSet<> DisasmSymbolSet;
357StringSet<> objdump::FoundSectionSet;
358static StringRef ToolName;
359
360std::unique_ptr<BuildIDFetcher> BIDFetcher;
361
362Dumper::Dumper(const object::ObjectFile &O) : O(O) {
363 WarningHandler = [this](const Twine &Msg) {
364 if (Warnings.insert(key: Msg.str()).second)
365 reportWarning(Message: Msg, File: this->O.getFileName());
366 return Error::success();
367 };
368}
369
370void Dumper::reportUniqueWarning(Error Err) {
371 reportUniqueWarning(Msg: toString(E: std::move(Err)));
372}
373
374void Dumper::reportUniqueWarning(const Twine &Msg) {
375 cantFail(Err: WarningHandler(Msg));
376}
377
378static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
379 if (const auto *O = dyn_cast<COFFObjectFile>(Val: &Obj))
380 return createCOFFDumper(Obj: *O);
381 if (const auto *O = dyn_cast<ELFObjectFileBase>(Val: &Obj))
382 return createELFDumper(Obj: *O);
383 if (const auto *O = dyn_cast<MachOObjectFile>(Val: &Obj))
384 return createMachODumper(Obj: *O);
385 if (const auto *O = dyn_cast<WasmObjectFile>(Val: &Obj))
386 return createWasmDumper(Obj: *O);
387 if (const auto *O = dyn_cast<XCOFFObjectFile>(Val: &Obj))
388 return createXCOFFDumper(Obj: *O);
389
390 return createStringError(EC: errc::invalid_argument,
391 Msg: "unsupported object file format");
392}
393
394namespace {
395struct FilterResult {
396 // True if the section should not be skipped.
397 bool Keep;
398
399 // True if the index counter should be incremented, even if the section should
400 // be skipped. For example, sections may be skipped if they are not included
401 // in the --section flag, but we still want those to count toward the section
402 // count.
403 bool IncrementIndex;
404};
405} // namespace
406
407static FilterResult checkSectionFilter(object::SectionRef S) {
408 if (FilterSections.empty())
409 return {/*Keep=*/true, /*IncrementIndex=*/true};
410
411 Expected<StringRef> SecNameOrErr = S.getName();
412 if (!SecNameOrErr) {
413 consumeError(Err: SecNameOrErr.takeError());
414 return {/*Keep=*/false, /*IncrementIndex=*/false};
415 }
416 StringRef SecName = *SecNameOrErr;
417
418 // StringSet does not allow empty key so avoid adding sections with
419 // no name (such as the section with index 0) here.
420 if (!SecName.empty())
421 FoundSectionSet.insert(key: SecName);
422
423 // Only show the section if it's in the FilterSections list, but always
424 // increment so the indexing is stable.
425 return {/*Keep=*/is_contained(Range&: FilterSections, Element: SecName),
426 /*IncrementIndex=*/true};
427}
428
429SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
430 uint64_t *Idx) {
431 // Start at UINT64_MAX so that the first index returned after an increment is
432 // zero (after the unsigned wrap).
433 if (Idx)
434 *Idx = UINT64_MAX;
435 return SectionFilter(
436 [Idx](object::SectionRef S) {
437 FilterResult Result = checkSectionFilter(S);
438 if (Idx != nullptr && Result.IncrementIndex)
439 *Idx += 1;
440 return Result.Keep;
441 },
442 O);
443}
444
445std::string objdump::getFileNameForError(const object::Archive::Child &C,
446 unsigned Index) {
447 Expected<StringRef> NameOrErr = C.getName();
448 if (NameOrErr)
449 return std::string(NameOrErr.get());
450 // If we have an error getting the name then we print the index of the archive
451 // member. Since we are already in an error state, we just ignore this error.
452 consumeError(Err: NameOrErr.takeError());
453 return "<file index: " + std::to_string(val: Index) + ">";
454}
455
456void objdump::reportWarning(const Twine &Message, StringRef File) {
457 // Output order between errs() and outs() matters especially for archive
458 // files where the output is per member object.
459 outs().flush();
460 WithColor::warning(OS&: errs(), Prefix: ToolName)
461 << "'" << File << "': " << Message << "\n";
462}
463
464[[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
465 outs().flush();
466 WithColor::error(OS&: errs(), Prefix: ToolName) << "'" << File << "': " << Message << "\n";
467 exit(status: 1);
468}
469
470[[noreturn]] void objdump::reportError(Error E, StringRef FileName,
471 StringRef ArchiveName,
472 StringRef ArchitectureName) {
473 assert(E);
474 outs().flush();
475 WithColor::error(OS&: errs(), Prefix: ToolName);
476 if (ArchiveName != "")
477 errs() << ArchiveName << "(" << FileName << ")";
478 else
479 errs() << "'" << FileName << "'";
480 if (!ArchitectureName.empty())
481 errs() << " (for architecture " << ArchitectureName << ")";
482 errs() << ": ";
483 logAllUnhandledErrors(E: std::move(E), OS&: errs());
484 exit(status: 1);
485}
486
487static void reportCmdLineWarning(const Twine &Message) {
488 WithColor::warning(OS&: errs(), Prefix: ToolName) << Message << "\n";
489}
490
491[[noreturn]] static void reportCmdLineError(const Twine &Message) {
492 WithColor::error(OS&: errs(), Prefix: ToolName) << Message << "\n";
493 exit(status: 1);
494}
495
496static void warnOnNoMatchForSections() {
497 SetVector<StringRef> MissingSections;
498 for (StringRef S : FilterSections) {
499 if (FoundSectionSet.count(Key: S))
500 return;
501 // User may specify a unnamed section. Don't warn for it.
502 if (!S.empty())
503 MissingSections.insert(X: S);
504 }
505
506 // Warn only if no section in FilterSections is matched.
507 for (StringRef S : MissingSections)
508 reportCmdLineWarning(Message: "section '" + S +
509 "' mentioned in a -j/--section option, but not "
510 "found in any input file");
511}
512
513static const Target *getTarget(const ObjectFile *Obj) {
514 // Figure out the target triple.
515 Triple TheTriple("unknown-unknown-unknown");
516 if (TripleName.empty()) {
517 TheTriple = Obj->makeTriple();
518 } else {
519 TheTriple.setTriple(Triple::normalize(Str: TripleName));
520 auto Arch = Obj->getArch();
521 if (Arch == Triple::arm || Arch == Triple::armeb)
522 Obj->setARMSubArch(TheTriple);
523 }
524
525 // Get the target specific parser.
526 std::string Error;
527 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
528 Error);
529 if (!TheTarget)
530 reportError(File: Obj->getFileName(), Message: "can't find target: " + Error);
531
532 // Update the triple name and return the found target.
533 TripleName = TheTriple.getTriple();
534 return TheTarget;
535}
536
537bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
538 return A.getOffset() < B.getOffset();
539}
540
541static Error getRelocationValueString(const RelocationRef &Rel,
542 bool SymbolDescription,
543 SmallVectorImpl<char> &Result) {
544 const ObjectFile *Obj = Rel.getObject();
545 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Val: Obj))
546 return getELFRelocationValueString(Obj: ELF, Rel, Result);
547 if (auto *COFF = dyn_cast<COFFObjectFile>(Val: Obj))
548 return getCOFFRelocationValueString(Obj: COFF, Rel, Result);
549 if (auto *Wasm = dyn_cast<WasmObjectFile>(Val: Obj))
550 return getWasmRelocationValueString(Obj: Wasm, RelRef: Rel, Result);
551 if (auto *MachO = dyn_cast<MachOObjectFile>(Val: Obj))
552 return getMachORelocationValueString(Obj: MachO, RelRef: Rel, Result);
553 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Val: Obj))
554 return getXCOFFRelocationValueString(Obj: *XCOFF, RelRef: Rel, SymbolDescription,
555 Result);
556 llvm_unreachable("unknown object file format");
557}
558
559/// Indicates whether this relocation should hidden when listing
560/// relocations, usually because it is the trailing part of a multipart
561/// relocation that will be printed as part of the leading relocation.
562static bool getHidden(RelocationRef RelRef) {
563 auto *MachO = dyn_cast<MachOObjectFile>(Val: RelRef.getObject());
564 if (!MachO)
565 return false;
566
567 unsigned Arch = MachO->getArch();
568 DataRefImpl Rel = RelRef.getRawDataRefImpl();
569 uint64_t Type = MachO->getRelocationType(Rel);
570
571 // On arches that use the generic relocations, GENERIC_RELOC_PAIR
572 // is always hidden.
573 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
574 return Type == MachO::GENERIC_RELOC_PAIR;
575
576 if (Arch == Triple::x86_64) {
577 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
578 // an X86_64_RELOC_SUBTRACTOR.
579 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
580 DataRefImpl RelPrev = Rel;
581 RelPrev.d.a--;
582 uint64_t PrevType = MachO->getRelocationType(Rel: RelPrev);
583 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
584 return true;
585 }
586 }
587
588 return false;
589}
590
591/// Get the column at which we want to start printing the instruction
592/// disassembly, taking into account anything which appears to the left of it.
593unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
594 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
595}
596
597static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
598 raw_ostream &OS) {
599 // The output of printInst starts with a tab. Print some spaces so that
600 // the tab has 1 column and advances to the target tab stop.
601 unsigned TabStop = getInstStartColumn(STI);
602 unsigned Column = OS.tell() - Start;
603 OS.indent(NumSpaces: Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
604}
605
606void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
607 formatted_raw_ostream &OS,
608 MCSubtargetInfo const &STI) {
609 size_t Start = OS.tell();
610 if (LeadingAddr)
611 OS << format(Fmt: "%8" PRIx64 ":", Vals: Address);
612 if (ShowRawInsn) {
613 OS << ' ';
614 dumpBytes(Bytes, OS);
615 }
616 AlignToInstStartColumn(Start, STI, OS);
617}
618
619namespace {
620
621static bool isAArch64Elf(const ObjectFile &Obj) {
622 const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: &Obj);
623 return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
624}
625
626static bool isArmElf(const ObjectFile &Obj) {
627 const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: &Obj);
628 return Elf && Elf->getEMachine() == ELF::EM_ARM;
629}
630
631static bool isCSKYElf(const ObjectFile &Obj) {
632 const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: &Obj);
633 return Elf && Elf->getEMachine() == ELF::EM_CSKY;
634}
635
636static bool hasMappingSymbols(const ObjectFile &Obj) {
637 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
638}
639
640static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
641 const RelocationRef &Rel, uint64_t Address,
642 bool Is64Bits) {
643 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": ";
644 SmallString<16> Name;
645 SmallString<32> Val;
646 Rel.getTypeName(Result&: Name);
647 if (Error E = getRelocationValueString(Rel, SymbolDescription, Result&: Val))
648 reportError(E: std::move(E), FileName);
649 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
650 if (LeadingAddr)
651 OS << format(Fmt: Fmt.data(), Vals: Address);
652 OS << Name << "\t" << Val;
653}
654
655static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF,
656 object::SectionedAddress Address,
657 LiveVariablePrinter &LVP) {
658 const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address);
659 if (!Reloc)
660 return;
661
662 SmallString<64> Val;
663 BTF.symbolize(Reloc, Result&: Val);
664 FOS << "\t\t";
665 if (LeadingAddr)
666 FOS << format(Fmt: "%016" PRIx64 ": ", Vals: Address.Address + AdjustVMA);
667 FOS << "CO-RE " << Val;
668 LVP.printAfterOtherLine(OS&: FOS, AfterInst: true);
669}
670
671class PrettyPrinter {
672public:
673 virtual ~PrettyPrinter() = default;
674 virtual void
675 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
676 object::SectionedAddress Address, formatted_raw_ostream &OS,
677 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
678 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
679 LiveVariablePrinter &LVP) {
680 if (SP && (PrintSource || PrintLines))
681 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
682 LVP.printBetweenInsts(OS, MustPrint: false);
683
684 printRawData(Bytes, Address: Address.Address, OS, STI);
685
686 if (MI) {
687 // See MCInstPrinter::printInst. On targets where a PC relative immediate
688 // is relative to the next instruction and the length of a MCInst is
689 // difficult to measure (x86), this is the address of the next
690 // instruction.
691 uint64_t Addr =
692 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
693 IP.printInst(MI, Address: Addr, Annot: "", STI, OS);
694 } else
695 OS << "\t<unknown>";
696 }
697};
698PrettyPrinter PrettyPrinterInst;
699
700class HexagonPrettyPrinter : public PrettyPrinter {
701public:
702 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
703 formatted_raw_ostream &OS) {
704 uint32_t opcode =
705 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
706 if (LeadingAddr)
707 OS << format(Fmt: "%8" PRIx64 ":", Vals: Address);
708 if (ShowRawInsn) {
709 OS << "\t";
710 dumpBytes(Bytes: Bytes.slice(N: 0, M: 4), OS);
711 OS << format(Fmt: "\t%08" PRIx32, Vals: opcode);
712 }
713 }
714 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
715 object::SectionedAddress Address, formatted_raw_ostream &OS,
716 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
717 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
718 LiveVariablePrinter &LVP) override {
719 if (SP && (PrintSource || PrintLines))
720 SP->printSourceLine(OS, Address, ObjectFilename, LVP, Delimiter: "");
721 if (!MI) {
722 printLead(Bytes, Address: Address.Address, OS);
723 OS << " <unknown>";
724 return;
725 }
726 std::string Buffer;
727 {
728 raw_string_ostream TempStream(Buffer);
729 IP.printInst(MI, Address: Address.Address, Annot: "", STI, OS&: TempStream);
730 }
731 StringRef Contents(Buffer);
732 // Split off bundle attributes
733 auto PacketBundle = Contents.rsplit(Separator: '\n');
734 // Split off first instruction from the rest
735 auto HeadTail = PacketBundle.first.split(Separator: '\n');
736 auto Preamble = " { ";
737 auto Separator = "";
738
739 // Hexagon's packets require relocations to be inline rather than
740 // clustered at the end of the packet.
741 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
742 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
743 auto PrintReloc = [&]() -> void {
744 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
745 if (RelCur->getOffset() == Address.Address) {
746 printRelocation(OS, FileName: ObjectFilename, Rel: *RelCur, Address: Address.Address, Is64Bits: false);
747 return;
748 }
749 ++RelCur;
750 }
751 };
752
753 while (!HeadTail.first.empty()) {
754 OS << Separator;
755 Separator = "\n";
756 if (SP && (PrintSource || PrintLines))
757 SP->printSourceLine(OS, Address, ObjectFilename, LVP, Delimiter: "");
758 printLead(Bytes, Address: Address.Address, OS);
759 OS << Preamble;
760 Preamble = " ";
761 StringRef Inst;
762 auto Duplex = HeadTail.first.split(Separator: '\v');
763 if (!Duplex.second.empty()) {
764 OS << Duplex.first;
765 OS << "; ";
766 Inst = Duplex.second;
767 }
768 else
769 Inst = HeadTail.first;
770 OS << Inst;
771 HeadTail = HeadTail.second.split(Separator: '\n');
772 if (HeadTail.first.empty())
773 OS << " } " << PacketBundle.second;
774 PrintReloc();
775 Bytes = Bytes.slice(N: 4);
776 Address.Address += 4;
777 }
778 }
779};
780HexagonPrettyPrinter HexagonPrettyPrinterInst;
781
782class AMDGCNPrettyPrinter : public PrettyPrinter {
783public:
784 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
785 object::SectionedAddress Address, formatted_raw_ostream &OS,
786 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
787 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
788 LiveVariablePrinter &LVP) override {
789 if (SP && (PrintSource || PrintLines))
790 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
791
792 if (MI) {
793 SmallString<40> InstStr;
794 raw_svector_ostream IS(InstStr);
795
796 IP.printInst(MI, Address: Address.Address, Annot: "", STI, OS&: IS);
797
798 OS << left_justify(Str: IS.str(), Width: 60);
799 } else {
800 // an unrecognized encoding - this is probably data so represent it
801 // using the .long directive, or .byte directive if fewer than 4 bytes
802 // remaining
803 if (Bytes.size() >= 4) {
804 OS << format(
805 Fmt: "\t.long 0x%08" PRIx32 " ",
806 Vals: support::endian::read32<llvm::endianness::little>(P: Bytes.data()));
807 OS.indent(NumSpaces: 42);
808 } else {
809 OS << format(Fmt: "\t.byte 0x%02" PRIx8, Vals: Bytes[0]);
810 for (unsigned int i = 1; i < Bytes.size(); i++)
811 OS << format(Fmt: ", 0x%02" PRIx8, Vals: Bytes[i]);
812 OS.indent(NumSpaces: 55 - (6 * Bytes.size()));
813 }
814 }
815
816 OS << format(Fmt: "// %012" PRIX64 ":", Vals: Address.Address);
817 if (Bytes.size() >= 4) {
818 // D should be casted to uint32_t here as it is passed by format to
819 // snprintf as vararg.
820 for (uint32_t D :
821 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
822 Bytes.size() / 4))
823 OS << format(Fmt: " %08" PRIX32, Vals: D);
824 } else {
825 for (unsigned char B : Bytes)
826 OS << format(Fmt: " %02" PRIX8, Vals: B);
827 }
828
829 if (!Annot.empty())
830 OS << " // " << Annot;
831 }
832};
833AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
834
835class BPFPrettyPrinter : public PrettyPrinter {
836public:
837 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
838 object::SectionedAddress Address, formatted_raw_ostream &OS,
839 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
840 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
841 LiveVariablePrinter &LVP) override {
842 if (SP && (PrintSource || PrintLines))
843 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
844 if (LeadingAddr)
845 OS << format(Fmt: "%8" PRId64 ":", Vals: Address.Address / 8);
846 if (ShowRawInsn) {
847 OS << "\t";
848 dumpBytes(Bytes, OS);
849 }
850 if (MI)
851 IP.printInst(MI, Address: Address.Address, Annot: "", STI, OS);
852 else
853 OS << "\t<unknown>";
854 }
855};
856BPFPrettyPrinter BPFPrettyPrinterInst;
857
858class ARMPrettyPrinter : public PrettyPrinter {
859public:
860 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
861 object::SectionedAddress Address, formatted_raw_ostream &OS,
862 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
863 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
864 LiveVariablePrinter &LVP) override {
865 if (SP && (PrintSource || PrintLines))
866 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
867 LVP.printBetweenInsts(OS, MustPrint: false);
868
869 size_t Start = OS.tell();
870 if (LeadingAddr)
871 OS << format(Fmt: "%8" PRIx64 ":", Vals: Address.Address);
872 if (ShowRawInsn) {
873 size_t Pos = 0, End = Bytes.size();
874 if (STI.checkFeatures(FS: "+thumb-mode")) {
875 for (; Pos + 2 <= End; Pos += 2)
876 OS << ' '
877 << format_hex_no_prefix(
878 N: llvm::support::endian::read<uint16_t>(
879 memory: Bytes.data() + Pos, endian: InstructionEndianness),
880 Width: 4);
881 } else {
882 for (; Pos + 4 <= End; Pos += 4)
883 OS << ' '
884 << format_hex_no_prefix(
885 N: llvm::support::endian::read<uint32_t>(
886 memory: Bytes.data() + Pos, endian: InstructionEndianness),
887 Width: 8);
888 }
889 if (Pos < End) {
890 OS << ' ';
891 dumpBytes(Bytes: Bytes.slice(N: Pos), OS);
892 }
893 }
894
895 AlignToInstStartColumn(Start, STI, OS);
896
897 if (MI) {
898 IP.printInst(MI, Address: Address.Address, Annot: "", STI, OS);
899 } else
900 OS << "\t<unknown>";
901 }
902
903 void setInstructionEndianness(llvm::endianness Endianness) {
904 InstructionEndianness = Endianness;
905 }
906
907private:
908 llvm::endianness InstructionEndianness = llvm::endianness::little;
909};
910ARMPrettyPrinter ARMPrettyPrinterInst;
911
912class AArch64PrettyPrinter : public PrettyPrinter {
913public:
914 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
915 object::SectionedAddress Address, formatted_raw_ostream &OS,
916 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
917 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
918 LiveVariablePrinter &LVP) override {
919 if (SP && (PrintSource || PrintLines))
920 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
921 LVP.printBetweenInsts(OS, MustPrint: false);
922
923 size_t Start = OS.tell();
924 if (LeadingAddr)
925 OS << format(Fmt: "%8" PRIx64 ":", Vals: Address.Address);
926 if (ShowRawInsn) {
927 size_t Pos = 0, End = Bytes.size();
928 for (; Pos + 4 <= End; Pos += 4)
929 OS << ' '
930 << format_hex_no_prefix(
931 N: llvm::support::endian::read<uint32_t>(
932 memory: Bytes.data() + Pos, endian: llvm::endianness::little),
933 Width: 8);
934 if (Pos < End) {
935 OS << ' ';
936 dumpBytes(Bytes: Bytes.slice(N: Pos), OS);
937 }
938 }
939
940 AlignToInstStartColumn(Start, STI, OS);
941
942 if (MI) {
943 IP.printInst(MI, Address: Address.Address, Annot: "", STI, OS);
944 } else
945 OS << "\t<unknown>";
946 }
947};
948AArch64PrettyPrinter AArch64PrettyPrinterInst;
949
950PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
951 switch(Triple.getArch()) {
952 default:
953 return PrettyPrinterInst;
954 case Triple::hexagon:
955 return HexagonPrettyPrinterInst;
956 case Triple::amdgcn:
957 return AMDGCNPrettyPrinterInst;
958 case Triple::bpfel:
959 case Triple::bpfeb:
960 return BPFPrettyPrinterInst;
961 case Triple::arm:
962 case Triple::armeb:
963 case Triple::thumb:
964 case Triple::thumbeb:
965 return ARMPrettyPrinterInst;
966 case Triple::aarch64:
967 case Triple::aarch64_be:
968 case Triple::aarch64_32:
969 return AArch64PrettyPrinterInst;
970 }
971}
972
973class DisassemblerTarget {
974public:
975 const Target *TheTarget;
976 std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
977 std::shared_ptr<MCContext> Context;
978 std::unique_ptr<MCDisassembler> DisAsm;
979 std::shared_ptr<MCInstrAnalysis> InstrAnalysis;
980 std::shared_ptr<MCInstPrinter> InstPrinter;
981 PrettyPrinter *Printer;
982
983 DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
984 StringRef TripleName, StringRef MCPU,
985 SubtargetFeatures &Features);
986 DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
987
988private:
989 MCTargetOptions Options;
990 std::shared_ptr<const MCRegisterInfo> RegisterInfo;
991 std::shared_ptr<const MCAsmInfo> AsmInfo;
992 std::shared_ptr<const MCInstrInfo> InstrInfo;
993 std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
994};
995
996DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
997 StringRef TripleName, StringRef MCPU,
998 SubtargetFeatures &Features)
999 : TheTarget(TheTarget),
1000 Printer(&selectPrettyPrinter(Triple: Triple(TripleName))),
1001 RegisterInfo(TheTarget->createMCRegInfo(TT: TripleName)) {
1002 if (!RegisterInfo)
1003 reportError(File: Obj.getFileName(), Message: "no register info for target " + TripleName);
1004
1005 // Set up disassembler.
1006 AsmInfo.reset(p: TheTarget->createMCAsmInfo(MRI: *RegisterInfo, TheTriple: TripleName, Options));
1007 if (!AsmInfo)
1008 reportError(File: Obj.getFileName(), Message: "no assembly info for target " + TripleName);
1009
1010 SubtargetInfo.reset(
1011 p: TheTarget->createMCSubtargetInfo(TheTriple: TripleName, CPU: MCPU, Features: Features.getString()));
1012 if (!SubtargetInfo)
1013 reportError(File: Obj.getFileName(),
1014 Message: "no subtarget info for target " + TripleName);
1015 InstrInfo.reset(p: TheTarget->createMCInstrInfo());
1016 if (!InstrInfo)
1017 reportError(File: Obj.getFileName(),
1018 Message: "no instruction info for target " + TripleName);
1019 Context =
1020 std::make_shared<MCContext>(args: Triple(TripleName), args: AsmInfo.get(),
1021 args: RegisterInfo.get(), args: SubtargetInfo.get());
1022
1023 // FIXME: for now initialize MCObjectFileInfo with default values
1024 ObjectFileInfo.reset(
1025 p: TheTarget->createMCObjectFileInfo(Ctx&: *Context, /*PIC=*/false));
1026 Context->setObjectFileInfo(ObjectFileInfo.get());
1027
1028 DisAsm.reset(p: TheTarget->createMCDisassembler(STI: *SubtargetInfo, Ctx&: *Context));
1029 if (!DisAsm)
1030 reportError(File: Obj.getFileName(), Message: "no disassembler for target " + TripleName);
1031
1032 if (auto *ELFObj = dyn_cast<ELFObjectFileBase>(Val: &Obj))
1033 DisAsm->setABIVersion(ELFObj->getEIdentABIVersion());
1034
1035 InstrAnalysis.reset(p: TheTarget->createMCInstrAnalysis(Info: InstrInfo.get()));
1036
1037 int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1038 InstPrinter.reset(p: TheTarget->createMCInstPrinter(T: Triple(TripleName),
1039 SyntaxVariant: AsmPrinterVariant, MAI: *AsmInfo,
1040 MII: *InstrInfo, MRI: *RegisterInfo));
1041 if (!InstPrinter)
1042 reportError(File: Obj.getFileName(),
1043 Message: "no instruction printer for target " + TripleName);
1044 InstPrinter->setPrintImmHex(PrintImmHex);
1045 InstPrinter->setPrintBranchImmAsAddress(true);
1046 InstPrinter->setSymbolizeOperands(SymbolizeOperands);
1047 InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
1048
1049 switch (DisassemblyColor) {
1050 case ColorOutput::Enable:
1051 InstPrinter->setUseColor(true);
1052 break;
1053 case ColorOutput::Auto:
1054 InstPrinter->setUseColor(outs().has_colors());
1055 break;
1056 case ColorOutput::Disable:
1057 case ColorOutput::Invalid:
1058 InstPrinter->setUseColor(false);
1059 break;
1060 };
1061}
1062
1063DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
1064 SubtargetFeatures &Features)
1065 : TheTarget(Other.TheTarget),
1066 SubtargetInfo(TheTarget->createMCSubtargetInfo(TheTriple: TripleName, CPU: MCPU,
1067 Features: Features.getString())),
1068 Context(Other.Context),
1069 DisAsm(TheTarget->createMCDisassembler(STI: *SubtargetInfo, Ctx&: *Context)),
1070 InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
1071 Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
1072 AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
1073 ObjectFileInfo(Other.ObjectFileInfo) {}
1074} // namespace
1075
1076static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
1077 assert(Obj.isELF());
1078 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Val: &Obj))
1079 return unwrapOrError(EO: Elf32LEObj->getSymbol(Sym: Sym.getRawDataRefImpl()),
1080 Args: Obj.getFileName())
1081 ->getType();
1082 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Val: &Obj))
1083 return unwrapOrError(EO: Elf64LEObj->getSymbol(Sym: Sym.getRawDataRefImpl()),
1084 Args: Obj.getFileName())
1085 ->getType();
1086 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Val: &Obj))
1087 return unwrapOrError(EO: Elf32BEObj->getSymbol(Sym: Sym.getRawDataRefImpl()),
1088 Args: Obj.getFileName())
1089 ->getType();
1090 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Val: &Obj))
1091 return unwrapOrError(EO: Elf64BEObj->getSymbol(Sym: Sym.getRawDataRefImpl()),
1092 Args: Obj.getFileName())
1093 ->getType();
1094 llvm_unreachable("Unsupported binary format");
1095}
1096
1097template <class ELFT>
1098static void
1099addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
1100 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1101 for (auto Symbol : Obj.getDynamicSymbolIterators()) {
1102 uint8_t SymbolType = Symbol.getELFType();
1103 if (SymbolType == ELF::STT_SECTION)
1104 continue;
1105
1106 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
1107 // ELFSymbolRef::getAddress() returns size instead of value for common
1108 // symbols which is not desirable for disassembly output. Overriding.
1109 if (SymbolType == ELF::STT_COMMON)
1110 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
1111 Obj.getFileName())
1112 ->st_value;
1113
1114 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
1115 if (Name.empty())
1116 continue;
1117
1118 section_iterator SecI =
1119 unwrapOrError(Symbol.getSection(), Obj.getFileName());
1120 if (SecI == Obj.section_end())
1121 continue;
1122
1123 AllSymbols[*SecI].emplace_back(args&: Address, args&: Name, args&: SymbolType);
1124 }
1125}
1126
1127static void
1128addDynamicElfSymbols(const ELFObjectFileBase &Obj,
1129 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1130 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Val: &Obj))
1131 addDynamicElfSymbols(Obj: *Elf32LEObj, AllSymbols);
1132 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Val: &Obj))
1133 addDynamicElfSymbols(Obj: *Elf64LEObj, AllSymbols);
1134 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Val: &Obj))
1135 addDynamicElfSymbols(Obj: *Elf32BEObj, AllSymbols);
1136 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Val: &Obj))
1137 addDynamicElfSymbols(Obj: *Elf64BEObj, AllSymbols);
1138 else
1139 llvm_unreachable("Unsupported binary format");
1140}
1141
1142static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
1143 for (auto SecI : Obj.sections()) {
1144 const WasmSection &Section = Obj.getWasmSection(Section: SecI);
1145 if (Section.Type == wasm::WASM_SEC_CODE)
1146 return SecI;
1147 }
1148 return std::nullopt;
1149}
1150
1151static void
1152addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
1153 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1154 std::optional<SectionRef> Section = getWasmCodeSection(Obj);
1155 if (!Section)
1156 return;
1157 SectionSymbolsTy &Symbols = AllSymbols[*Section];
1158
1159 std::set<uint64_t> SymbolAddresses;
1160 for (const auto &Sym : Symbols)
1161 SymbolAddresses.insert(x: Sym.Addr);
1162
1163 for (const wasm::WasmFunction &Function : Obj.functions()) {
1164 // This adjustment mirrors the one in WasmObjectFile::getSymbolAddress.
1165 uint32_t Adjustment = Obj.isRelocatableObject() || Obj.isSharedObject()
1166 ? 0
1167 : Section->getAddress();
1168 uint64_t Address = Function.CodeSectionOffset + Adjustment;
1169 // Only add fallback symbols for functions not already present in the symbol
1170 // table.
1171 if (SymbolAddresses.count(x: Address))
1172 continue;
1173 // This function has no symbol, so it should have no SymbolName.
1174 assert(Function.SymbolName.empty());
1175 // We use DebugName for the name, though it may be empty if there is no
1176 // "name" custom section, or that section is missing a name for this
1177 // function.
1178 StringRef Name = Function.DebugName;
1179 Symbols.emplace_back(args&: Address, args&: Name, args: ELF::STT_NOTYPE);
1180 }
1181}
1182
1183static void addPltEntries(const ObjectFile &Obj,
1184 std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1185 StringSaver &Saver) {
1186 auto *ElfObj = dyn_cast<ELFObjectFileBase>(Val: &Obj);
1187 if (!ElfObj)
1188 return;
1189 DenseMap<StringRef, SectionRef> Sections;
1190 for (SectionRef Section : Obj.sections()) {
1191 Expected<StringRef> SecNameOrErr = Section.getName();
1192 if (!SecNameOrErr) {
1193 consumeError(Err: SecNameOrErr.takeError());
1194 continue;
1195 }
1196 Sections[*SecNameOrErr] = Section;
1197 }
1198 for (auto Plt : ElfObj->getPltEntries()) {
1199 if (Plt.Symbol) {
1200 SymbolRef Symbol(*Plt.Symbol, ElfObj);
1201 uint8_t SymbolType = getElfSymbolType(Obj, Sym: Symbol);
1202 if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1203 if (!NameOrErr->empty())
1204 AllSymbols[Sections[Plt.Section]].emplace_back(
1205 args&: Plt.Address, args: Saver.save(S: (*NameOrErr + "@plt").str()), args&: SymbolType);
1206 continue;
1207 } else {
1208 // The warning has been reported in disassembleObject().
1209 consumeError(Err: NameOrErr.takeError());
1210 }
1211 }
1212 reportWarning(Message: "PLT entry at 0x" + Twine::utohexstr(Val: Plt.Address) +
1213 " references an invalid symbol",
1214 File: Obj.getFileName());
1215 }
1216}
1217
1218// Normally the disassembly output will skip blocks of zeroes. This function
1219// returns the number of zero bytes that can be skipped when dumping the
1220// disassembly of the instructions in Buf.
1221static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1222 // Find the number of leading zeroes.
1223 size_t N = 0;
1224 while (N < Buf.size() && !Buf[N])
1225 ++N;
1226
1227 // We may want to skip blocks of zero bytes, but unless we see
1228 // at least 8 of them in a row.
1229 if (N < 8)
1230 return 0;
1231
1232 // We skip zeroes in multiples of 4 because do not want to truncate an
1233 // instruction if it starts with a zero byte.
1234 return N & ~0x3;
1235}
1236
1237// Returns a map from sections to their relocations.
1238static std::map<SectionRef, std::vector<RelocationRef>>
1239getRelocsMap(object::ObjectFile const &Obj) {
1240 std::map<SectionRef, std::vector<RelocationRef>> Ret;
1241 uint64_t I = (uint64_t)-1;
1242 for (SectionRef Sec : Obj.sections()) {
1243 ++I;
1244 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1245 if (!RelocatedOrErr)
1246 reportError(File: Obj.getFileName(),
1247 Message: "section (" + Twine(I) +
1248 "): failed to get a relocated section: " +
1249 toString(E: RelocatedOrErr.takeError()));
1250
1251 section_iterator Relocated = *RelocatedOrErr;
1252 if (Relocated == Obj.section_end() || !checkSectionFilter(S: *Relocated).Keep)
1253 continue;
1254 std::vector<RelocationRef> &V = Ret[*Relocated];
1255 append_range(C&: V, R: Sec.relocations());
1256 // Sort relocations by address.
1257 llvm::stable_sort(Range&: V, C: isRelocAddressLess);
1258 }
1259 return Ret;
1260}
1261
1262// Used for --adjust-vma to check if address should be adjusted by the
1263// specified value for a given section.
1264// For ELF we do not adjust non-allocatable sections like debug ones,
1265// because they are not loadable.
1266// TODO: implement for other file formats.
1267static bool shouldAdjustVA(const SectionRef &Section) {
1268 const ObjectFile *Obj = Section.getObject();
1269 if (Obj->isELF())
1270 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1271 return false;
1272}
1273
1274
1275typedef std::pair<uint64_t, char> MappingSymbolPair;
1276static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1277 uint64_t Address) {
1278 auto It =
1279 partition_point(Range&: MappingSymbols, P: [Address](const MappingSymbolPair &Val) {
1280 return Val.first <= Address;
1281 });
1282 // Return zero for any address before the first mapping symbol; this means
1283 // we should use the default disassembly mode, depending on the target.
1284 if (It == MappingSymbols.begin())
1285 return '\x00';
1286 return (It - 1)->second;
1287}
1288
1289static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1290 uint64_t End, const ObjectFile &Obj,
1291 ArrayRef<uint8_t> Bytes,
1292 ArrayRef<MappingSymbolPair> MappingSymbols,
1293 const MCSubtargetInfo &STI, raw_ostream &OS) {
1294 llvm::endianness Endian =
1295 Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big;
1296 size_t Start = OS.tell();
1297 OS << format(Fmt: "%8" PRIx64 ": ", Vals: SectionAddr + Index);
1298 if (Index + 4 <= End) {
1299 dumpBytes(Bytes: Bytes.slice(N: Index, M: 4), OS);
1300 AlignToInstStartColumn(Start, STI, OS);
1301 OS << "\t.word\t"
1302 << format_hex(N: support::endian::read32(P: Bytes.data() + Index, E: Endian),
1303 Width: 10);
1304 return 4;
1305 }
1306 if (Index + 2 <= End) {
1307 dumpBytes(Bytes: Bytes.slice(N: Index, M: 2), OS);
1308 AlignToInstStartColumn(Start, STI, OS);
1309 OS << "\t.short\t"
1310 << format_hex(N: support::endian::read16(P: Bytes.data() + Index, E: Endian), Width: 6);
1311 return 2;
1312 }
1313 dumpBytes(Bytes: Bytes.slice(N: Index, M: 1), OS);
1314 AlignToInstStartColumn(Start, STI, OS);
1315 OS << "\t.byte\t" << format_hex(N: Bytes[Index], Width: 4);
1316 return 1;
1317}
1318
1319static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1320 ArrayRef<uint8_t> Bytes) {
1321 // print out data up to 8 bytes at a time in hex and ascii
1322 uint8_t AsciiData[9] = {'\0'};
1323 uint8_t Byte;
1324 int NumBytes = 0;
1325
1326 for (; Index < End; ++Index) {
1327 if (NumBytes == 0)
1328 outs() << format(Fmt: "%8" PRIx64 ":", Vals: SectionAddr + Index);
1329 Byte = Bytes.slice(N: Index)[0];
1330 outs() << format(Fmt: " %02x", Vals: Byte);
1331 AsciiData[NumBytes] = isPrint(C: Byte) ? Byte : '.';
1332
1333 uint8_t IndentOffset = 0;
1334 NumBytes++;
1335 if (Index == End - 1 || NumBytes > 8) {
1336 // Indent the space for less than 8 bytes data.
1337 // 2 spaces for byte and one for space between bytes
1338 IndentOffset = 3 * (8 - NumBytes);
1339 for (int Excess = NumBytes; Excess < 8; Excess++)
1340 AsciiData[Excess] = '\0';
1341 NumBytes = 8;
1342 }
1343 if (NumBytes == 8) {
1344 AsciiData[8] = '\0';
1345 outs() << std::string(IndentOffset, ' ') << " ";
1346 outs() << reinterpret_cast<char *>(AsciiData);
1347 outs() << '\n';
1348 NumBytes = 0;
1349 }
1350 }
1351}
1352
1353SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1354 const SymbolRef &Symbol,
1355 bool IsMappingSymbol) {
1356 const StringRef FileName = Obj.getFileName();
1357 const uint64_t Addr = unwrapOrError(EO: Symbol.getAddress(), Args: FileName);
1358 const StringRef Name = unwrapOrError(EO: Symbol.getName(), Args: FileName);
1359
1360 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1361 const auto &XCOFFObj = cast<XCOFFObjectFile>(Val: Obj);
1362 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1363
1364 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymEntPtr: SymbolDRI.p);
1365 std::optional<XCOFF::StorageMappingClass> Smc =
1366 getXCOFFSymbolCsectSMC(Obj: XCOFFObj, Sym: Symbol);
1367 return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
1368 isLabel(Obj: XCOFFObj, Sym: Symbol));
1369 } else if (Obj.isXCOFF()) {
1370 const SymbolRef::Type SymType = unwrapOrError(EO: Symbol.getType(), Args: FileName);
1371 return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false,
1372 /*IsXCOFF=*/true);
1373 } else if (Obj.isWasm()) {
1374 uint8_t SymType =
1375 cast<WasmObjectFile>(Val: &Obj)->getWasmSymbol(Symbol).Info.Kind;
1376 return SymbolInfoTy(Addr, Name, SymType, false);
1377 } else {
1378 uint8_t Type =
1379 Obj.isELF() ? getElfSymbolType(Obj, Sym: Symbol) : (uint8_t)ELF::STT_NOTYPE;
1380 return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol);
1381 }
1382}
1383
1384static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1385 const uint64_t Addr, StringRef &Name,
1386 uint8_t Type) {
1387 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1388 return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
1389 if (Obj.isWasm())
1390 return SymbolInfoTy(Addr, Name, wasm::WASM_SYMBOL_TYPE_SECTION);
1391 return SymbolInfoTy(Addr, Name, Type);
1392}
1393
1394static void collectBBAddrMapLabels(
1395 const BBAddrMapInfo &FullAddrMap, uint64_t SectionAddr, uint64_t Start,
1396 uint64_t End,
1397 std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels) {
1398 if (FullAddrMap.empty())
1399 return;
1400 Labels.clear();
1401 uint64_t StartAddress = SectionAddr + Start;
1402 uint64_t EndAddress = SectionAddr + End;
1403 const BBAddrMapFunctionEntry *FunctionMap =
1404 FullAddrMap.getEntryForAddress(BaseAddress: StartAddress);
1405 if (!FunctionMap)
1406 return;
1407 std::optional<size_t> BBRangeIndex =
1408 FunctionMap->getAddrMap().getBBRangeIndexForBaseAddress(BaseAddress: StartAddress);
1409 if (!BBRangeIndex)
1410 return;
1411 size_t NumBBEntriesBeforeRange = 0;
1412 for (size_t I = 0; I < *BBRangeIndex; ++I)
1413 NumBBEntriesBeforeRange +=
1414 FunctionMap->getAddrMap().BBRanges[I].BBEntries.size();
1415 const auto &BBRange = FunctionMap->getAddrMap().BBRanges[*BBRangeIndex];
1416 for (size_t I = 0; I < BBRange.BBEntries.size(); ++I) {
1417 const BBAddrMap::BBEntry &BBEntry = BBRange.BBEntries[I];
1418 uint64_t BBAddress = BBEntry.Offset + BBRange.BaseAddress;
1419 if (BBAddress >= EndAddress)
1420 continue;
1421
1422 std::string LabelString = ("BB" + Twine(BBEntry.ID)).str();
1423 Labels[BBAddress].push_back(
1424 x: {.BlockLabel: LabelString, .PGOAnalysis: FunctionMap->constructPGOLabelString(
1425 PGOBBEntryIndex: NumBBEntriesBeforeRange + I, PrettyPGOAnalysis: PrettyPGOAnalysisMap)});
1426 }
1427}
1428
1429static void
1430collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA,
1431 MCDisassembler *DisAsm, MCInstPrinter *IP,
1432 const MCSubtargetInfo *STI, uint64_t SectionAddr,
1433 uint64_t Start, uint64_t End,
1434 std::unordered_map<uint64_t, std::string> &Labels) {
1435 // So far only supports PowerPC and X86.
1436 const bool isPPC = STI->getTargetTriple().isPPC();
1437 if (!isPPC && !STI->getTargetTriple().isX86())
1438 return;
1439
1440 if (MIA)
1441 MIA->resetState();
1442
1443 Labels.clear();
1444 unsigned LabelCount = 0;
1445 Start += SectionAddr;
1446 End += SectionAddr;
1447 const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF();
1448 for (uint64_t Index = Start; Index < End;) {
1449 // Disassemble a real instruction and record function-local branch labels.
1450 MCInst Inst;
1451 uint64_t Size;
1452 ArrayRef<uint8_t> ThisBytes = Bytes.slice(N: Index - SectionAddr);
1453 bool Disassembled =
1454 DisAsm->getInstruction(Instr&: Inst, Size, Bytes: ThisBytes, Address: Index, CStream&: nulls());
1455 if (Size == 0)
1456 Size = std::min<uint64_t>(a: ThisBytes.size(),
1457 b: DisAsm->suggestBytesToSkip(Bytes: ThisBytes, Address: Index));
1458
1459 if (MIA) {
1460 if (Disassembled) {
1461 uint64_t Target;
1462 bool TargetKnown = MIA->evaluateBranch(Inst, Addr: Index, Size, Target);
1463 if (TargetKnown && (Target >= Start && Target < End) &&
1464 !Labels.count(x: Target)) {
1465 // On PowerPC and AIX, a function call is encoded as a branch to 0.
1466 // On other PowerPC platforms (ELF), a function call is encoded as
1467 // a branch to self. Do not add a label for these cases.
1468 if (!(isPPC &&
1469 ((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF))))
1470 Labels[Target] = ("L" + Twine(LabelCount++)).str();
1471 }
1472 MIA->updateState(Inst, Addr: Index);
1473 } else
1474 MIA->resetState();
1475 }
1476 Index += Size;
1477 }
1478}
1479
1480// Create an MCSymbolizer for the target and add it to the MCDisassembler.
1481// This is currently only used on AMDGPU, and assumes the format of the
1482// void * argument passed to AMDGPU's createMCSymbolizer.
1483static void addSymbolizer(
1484 MCContext &Ctx, const Target *Target, StringRef TripleName,
1485 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1486 SectionSymbolsTy &Symbols,
1487 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1488
1489 std::unique_ptr<MCRelocationInfo> RelInfo(
1490 Target->createMCRelocationInfo(TT: TripleName, Ctx));
1491 if (!RelInfo)
1492 return;
1493 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1494 TT: TripleName, GetOpInfo: nullptr, SymbolLookUp: nullptr, DisInfo: &Symbols, Ctx: &Ctx, RelInfo: std::move(RelInfo)));
1495 MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1496 DisAsm->setSymbolizer(std::move(Symbolizer));
1497
1498 if (!SymbolizeOperands)
1499 return;
1500
1501 // Synthesize labels referenced by branch instructions by
1502 // disassembling, discarding the output, and collecting the referenced
1503 // addresses from the symbolizer.
1504 for (size_t Index = 0; Index != Bytes.size();) {
1505 MCInst Inst;
1506 uint64_t Size;
1507 ArrayRef<uint8_t> ThisBytes = Bytes.slice(N: Index);
1508 const uint64_t ThisAddr = SectionAddr + Index;
1509 DisAsm->getInstruction(Instr&: Inst, Size, Bytes: ThisBytes, Address: ThisAddr, CStream&: nulls());
1510 if (Size == 0)
1511 Size = std::min<uint64_t>(a: ThisBytes.size(),
1512 b: DisAsm->suggestBytesToSkip(Bytes: ThisBytes, Address: Index));
1513 Index += Size;
1514 }
1515 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1516 // Copy and sort to remove duplicates.
1517 std::vector<uint64_t> LabelAddrs;
1518 LabelAddrs.insert(position: LabelAddrs.end(), first: LabelAddrsRef.begin(),
1519 last: LabelAddrsRef.end());
1520 llvm::sort(C&: LabelAddrs);
1521 LabelAddrs.resize(new_size: std::unique(first: LabelAddrs.begin(), last: LabelAddrs.end()) -
1522 LabelAddrs.begin());
1523 // Add the labels.
1524 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1525 auto Name = std::make_unique<std::string>();
1526 *Name = (Twine("L") + Twine(LabelNum)).str();
1527 SynthesizedLabelNames.push_back(x: std::move(Name));
1528 Symbols.push_back(x: SymbolInfoTy(
1529 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1530 }
1531 llvm::stable_sort(Range&: Symbols);
1532 // Recreate the symbolizer with the new symbols list.
1533 RelInfo.reset(p: Target->createMCRelocationInfo(TT: TripleName, Ctx));
1534 Symbolizer.reset(p: Target->createMCSymbolizer(
1535 TT: TripleName, GetOpInfo: nullptr, SymbolLookUp: nullptr, DisInfo: &Symbols, Ctx: &Ctx, RelInfo: std::move(RelInfo)));
1536 DisAsm->setSymbolizer(std::move(Symbolizer));
1537}
1538
1539static StringRef getSegmentName(const MachOObjectFile *MachO,
1540 const SectionRef &Section) {
1541 if (MachO) {
1542 DataRefImpl DR = Section.getRawDataRefImpl();
1543 StringRef SegmentName = MachO->getSectionFinalSegmentName(Sec: DR);
1544 return SegmentName;
1545 }
1546 return "";
1547}
1548
1549static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1550 const MCAsmInfo &MAI,
1551 const MCSubtargetInfo &STI,
1552 StringRef Comments,
1553 LiveVariablePrinter &LVP) {
1554 do {
1555 if (!Comments.empty()) {
1556 // Emit a line of comments.
1557 StringRef Comment;
1558 std::tie(args&: Comment, args&: Comments) = Comments.split(Separator: '\n');
1559 // MAI.getCommentColumn() assumes that instructions are printed at the
1560 // position of 8, while getInstStartColumn() returns the actual position.
1561 unsigned CommentColumn =
1562 MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1563 FOS.PadToColumn(NewCol: CommentColumn);
1564 FOS << MAI.getCommentString() << ' ' << Comment;
1565 }
1566 LVP.printAfterInst(OS&: FOS);
1567 FOS << '\n';
1568 } while (!Comments.empty());
1569 FOS.flush();
1570}
1571
1572static void createFakeELFSections(ObjectFile &Obj) {
1573 assert(Obj.isELF());
1574 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Val: &Obj))
1575 Elf32LEObj->createFakeSections();
1576 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Val: &Obj))
1577 Elf64LEObj->createFakeSections();
1578 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Val: &Obj))
1579 Elf32BEObj->createFakeSections();
1580 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Val: &Obj))
1581 Elf64BEObj->createFakeSections();
1582 else
1583 llvm_unreachable("Unsupported binary format");
1584}
1585
1586// Tries to fetch a more complete version of the given object file using its
1587// Build ID. Returns std::nullopt if nothing was found.
1588static std::optional<OwningBinary<Binary>>
1589fetchBinaryByBuildID(const ObjectFile &Obj) {
1590 object::BuildIDRef BuildID = getBuildID(Obj: &Obj);
1591 if (BuildID.empty())
1592 return std::nullopt;
1593 std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1594 if (!Path)
1595 return std::nullopt;
1596 Expected<OwningBinary<Binary>> DebugBinary = createBinary(Path: *Path);
1597 if (!DebugBinary) {
1598 reportWarning(Message: toString(E: DebugBinary.takeError()), File: *Path);
1599 return std::nullopt;
1600 }
1601 return std::move(*DebugBinary);
1602}
1603
1604static void
1605disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj,
1606 DisassemblerTarget &PrimaryTarget,
1607 std::optional<DisassemblerTarget> &SecondaryTarget,
1608 SourcePrinter &SP, bool InlineRelocs) {
1609 DisassemblerTarget *DT = &PrimaryTarget;
1610 bool PrimaryIsThumb = false;
1611 SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap;
1612
1613 if (SecondaryTarget) {
1614 if (isArmElf(Obj)) {
1615 PrimaryIsThumb =
1616 PrimaryTarget.SubtargetInfo->checkFeatures(FS: "+thumb-mode");
1617 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Val: &Obj)) {
1618 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
1619 if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
1620 uintptr_t CodeMapInt;
1621 cantFail(Err: COFFObj->getRvaPtr(Rva: CHPEMetadata->CodeMap, Res&: CodeMapInt));
1622 auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt);
1623
1624 for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) {
1625 if (CodeMap[i].getType() == chpe_range_type::Amd64 &&
1626 CodeMap[i].Length) {
1627 // Store x86_64 CHPE code ranges.
1628 uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase();
1629 CHPECodeMap.emplace_back(Args&: Start, Args: Start + CodeMap[i].Length);
1630 }
1631 }
1632 llvm::sort(C&: CHPECodeMap);
1633 }
1634 }
1635 }
1636
1637 std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1638 if (InlineRelocs || Obj.isXCOFF())
1639 RelocMap = getRelocsMap(Obj);
1640 bool Is64Bits = Obj.getBytesInAddress() > 4;
1641
1642 // Create a mapping from virtual address to symbol name. This is used to
1643 // pretty print the symbols while disassembling.
1644 std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1645 std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols;
1646 SectionSymbolsTy AbsoluteSymbols;
1647 const StringRef FileName = Obj.getFileName();
1648 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Val: &Obj);
1649 for (const SymbolRef &Symbol : Obj.symbols()) {
1650 Expected<StringRef> NameOrErr = Symbol.getName();
1651 if (!NameOrErr) {
1652 reportWarning(Message: toString(E: NameOrErr.takeError()), File: FileName);
1653 continue;
1654 }
1655 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1656 continue;
1657
1658 if (Obj.isELF() &&
1659 (cantFail(ValOrErr: Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) {
1660 // Symbol is intended not to be displayed by default (STT_FILE,
1661 // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
1662 // synthesize a section symbol if no symbol is defined at offset 0.
1663 //
1664 // For a mapping symbol, store it within both AllSymbols and
1665 // AllMappingSymbols. If --show-all-symbols is unspecified, its label will
1666 // not be printed in disassembly listing.
1667 if (getElfSymbolType(Obj, Sym: Symbol) != ELF::STT_SECTION &&
1668 hasMappingSymbols(Obj)) {
1669 section_iterator SecI = unwrapOrError(EO: Symbol.getSection(), Args: FileName);
1670 if (SecI != Obj.section_end()) {
1671 uint64_t SectionAddr = SecI->getAddress();
1672 uint64_t Address = cantFail(ValOrErr: Symbol.getAddress());
1673 StringRef Name = *NameOrErr;
1674 if (Name.consume_front(Prefix: "$") && Name.size() &&
1675 strchr(s: "adtx", c: Name[0])) {
1676 AllMappingSymbols[*SecI].emplace_back(Args: Address - SectionAddr,
1677 Args: Name[0]);
1678 AllSymbols[*SecI].push_back(
1679 x: createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/IsMappingSymbol: true));
1680 }
1681 }
1682 }
1683 continue;
1684 }
1685
1686 if (MachO) {
1687 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1688 // symbols that support MachO header introspection. They do not bind to
1689 // code locations and are irrelevant for disassembly.
1690 if (NameOrErr->starts_with(Prefix: "__mh_") && NameOrErr->ends_with(Suffix: "_header"))
1691 continue;
1692 // Don't ask a Mach-O STAB symbol for its section unless you know that
1693 // STAB symbol's section field refers to a valid section index. Otherwise
1694 // the symbol may error trying to load a section that does not exist.
1695 DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1696 uint8_t NType = (MachO->is64Bit() ?
1697 MachO->getSymbol64TableEntry(DRI: SymDRI).n_type:
1698 MachO->getSymbolTableEntry(DRI: SymDRI).n_type);
1699 if (NType & MachO::N_STAB)
1700 continue;
1701 }
1702
1703 section_iterator SecI = unwrapOrError(EO: Symbol.getSection(), Args: FileName);
1704 if (SecI != Obj.section_end())
1705 AllSymbols[*SecI].push_back(x: createSymbolInfo(Obj, Symbol));
1706 else
1707 AbsoluteSymbols.push_back(x: createSymbolInfo(Obj, Symbol));
1708 }
1709
1710 if (AllSymbols.empty() && Obj.isELF())
1711 addDynamicElfSymbols(Obj: cast<ELFObjectFileBase>(Val&: Obj), AllSymbols);
1712
1713 if (Obj.isWasm())
1714 addMissingWasmCodeSymbols(Obj: cast<WasmObjectFile>(Val&: Obj), AllSymbols);
1715
1716 if (Obj.isELF() && Obj.sections().empty())
1717 createFakeELFSections(Obj);
1718
1719 BumpPtrAllocator A;
1720 StringSaver Saver(A);
1721 addPltEntries(Obj, AllSymbols, Saver);
1722
1723 // Create a mapping from virtual address to section. An empty section can
1724 // cause more than one section at the same address. Sort such sections to be
1725 // before same-addressed non-empty sections so that symbol lookups prefer the
1726 // non-empty section.
1727 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1728 for (SectionRef Sec : Obj.sections())
1729 SectionAddresses.emplace_back(args: Sec.getAddress(), args&: Sec);
1730 llvm::stable_sort(Range&: SectionAddresses, C: [](const auto &LHS, const auto &RHS) {
1731 if (LHS.first != RHS.first)
1732 return LHS.first < RHS.first;
1733 return LHS.second.getSize() < RHS.second.getSize();
1734 });
1735
1736 // Linked executables (.exe and .dll files) typically don't include a real
1737 // symbol table but they might contain an export table.
1738 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Val: &Obj)) {
1739 for (const auto &ExportEntry : COFFObj->export_directories()) {
1740 StringRef Name;
1741 if (Error E = ExportEntry.getSymbolName(Result&: Name))
1742 reportError(E: std::move(E), FileName: Obj.getFileName());
1743 if (Name.empty())
1744 continue;
1745
1746 uint32_t RVA;
1747 if (Error E = ExportEntry.getExportRVA(Result&: RVA))
1748 reportError(E: std::move(E), FileName: Obj.getFileName());
1749
1750 uint64_t VA = COFFObj->getImageBase() + RVA;
1751 auto Sec = partition_point(
1752 Range&: SectionAddresses, P: [VA](const std::pair<uint64_t, SectionRef> &O) {
1753 return O.first <= VA;
1754 });
1755 if (Sec != SectionAddresses.begin()) {
1756 --Sec;
1757 AllSymbols[Sec->second].emplace_back(args&: VA, args&: Name, args: ELF::STT_NOTYPE);
1758 } else
1759 AbsoluteSymbols.emplace_back(args&: VA, args&: Name, args: ELF::STT_NOTYPE);
1760 }
1761 }
1762
1763 // Sort all the symbols, this allows us to use a simple binary search to find
1764 // Multiple symbols can have the same address. Use a stable sort to stabilize
1765 // the output.
1766 StringSet<> FoundDisasmSymbolSet;
1767 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1768 llvm::stable_sort(Range&: SecSyms.second);
1769 llvm::stable_sort(Range&: AbsoluteSymbols);
1770
1771 std::unique_ptr<DWARFContext> DICtx;
1772 LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo);
1773
1774 if (DbgVariables != DVDisabled) {
1775 DICtx = DWARFContext::create(Obj: DbgObj);
1776 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1777 LVP.addCompileUnit(D: CU->getUnitDIE(ExtractUnitDIEOnly: false));
1778 }
1779
1780 LLVM_DEBUG(LVP.dump());
1781
1782 BBAddrMapInfo FullAddrMap;
1783 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1784 std::nullopt) {
1785 FullAddrMap.clear();
1786 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: &Obj)) {
1787 std::vector<PGOAnalysisMap> PGOAnalyses;
1788 auto BBAddrMapsOrErr = Elf->readBBAddrMap(TextSectionIndex: SectionIndex, PGOAnalyses: &PGOAnalyses);
1789 if (!BBAddrMapsOrErr) {
1790 reportWarning(Message: toString(E: BBAddrMapsOrErr.takeError()), File: Obj.getFileName());
1791 return;
1792 }
1793 for (auto &&[FunctionBBAddrMap, FunctionPGOAnalysis] :
1794 zip_equal(t&: *std::move(BBAddrMapsOrErr), u: std::move(PGOAnalyses))) {
1795 FullAddrMap.AddFunctionEntry(AddrMap: std::move(FunctionBBAddrMap),
1796 PGOMap: std::move(FunctionPGOAnalysis));
1797 }
1798 }
1799 };
1800
1801 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1802 // single mapping, since they don't have any conflicts.
1803 if (SymbolizeOperands && !Obj.isRelocatableObject())
1804 ReadBBAddrMap();
1805
1806 std::optional<llvm::BTFParser> BTF;
1807 if (InlineRelocs && BTFParser::hasBTFSections(Obj)) {
1808 BTF.emplace();
1809 BTFParser::ParseOptions Opts = {};
1810 Opts.LoadTypes = true;
1811 Opts.LoadRelocs = true;
1812 if (Error E = BTF->parse(Obj, Opts))
1813 WithColor::defaultErrorHandler(Err: std::move(E));
1814 }
1815
1816 for (const SectionRef &Section : ToolSectionFilter(O: Obj)) {
1817 if (FilterSections.empty() && !DisassembleAll &&
1818 (!Section.isText() || Section.isVirtual()))
1819 continue;
1820
1821 uint64_t SectionAddr = Section.getAddress();
1822 uint64_t SectSize = Section.getSize();
1823 if (!SectSize)
1824 continue;
1825
1826 // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1827 // corresponding to this section, if present.
1828 if (SymbolizeOperands && Obj.isRelocatableObject())
1829 ReadBBAddrMap(Section.getIndex());
1830
1831 // Get the list of all the symbols in this section.
1832 SectionSymbolsTy &Symbols = AllSymbols[Section];
1833 auto &MappingSymbols = AllMappingSymbols[Section];
1834 llvm::sort(C&: MappingSymbols);
1835
1836 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1837 Input: unwrapOrError(EO: Section.getContents(), Args: Obj.getFileName()));
1838
1839 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1840 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1841 // AMDGPU disassembler uses symbolizer for printing labels
1842 addSymbolizer(Ctx&: *DT->Context, Target: DT->TheTarget, TripleName, DisAsm: DT->DisAsm.get(),
1843 SectionAddr, Bytes, Symbols, SynthesizedLabelNames);
1844 }
1845
1846 StringRef SegmentName = getSegmentName(MachO, Section);
1847 StringRef SectionName = unwrapOrError(EO: Section.getName(), Args: Obj.getFileName());
1848 // If the section has no symbol at the start, just insert a dummy one.
1849 // Without --show-all-symbols, also insert one if all symbols at the start
1850 // are mapping symbols.
1851 bool CreateDummy = Symbols.empty();
1852 if (!CreateDummy) {
1853 CreateDummy = true;
1854 for (auto &Sym : Symbols) {
1855 if (Sym.Addr != SectionAddr)
1856 break;
1857 if (!Sym.IsMappingSymbol || ShowAllSymbols)
1858 CreateDummy = false;
1859 }
1860 }
1861 if (CreateDummy) {
1862 SymbolInfoTy Sym = createDummySymbolInfo(
1863 Obj, Addr: SectionAddr, Name&: SectionName,
1864 Type: Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT);
1865 if (Obj.isXCOFF())
1866 Symbols.insert(position: Symbols.begin(), x: Sym);
1867 else
1868 Symbols.insert(position: llvm::lower_bound(Range&: Symbols, Value&: Sym), x: Sym);
1869 }
1870
1871 SmallString<40> Comments;
1872 raw_svector_ostream CommentStream(Comments);
1873
1874 uint64_t VMAAdjustment = 0;
1875 if (shouldAdjustVA(Section))
1876 VMAAdjustment = AdjustVMA;
1877
1878 // In executable and shared objects, r_offset holds a virtual address.
1879 // Subtract SectionAddr from the r_offset field of a relocation to get
1880 // the section offset.
1881 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1882 uint64_t Size;
1883 uint64_t Index;
1884 bool PrintedSection = false;
1885 std::vector<RelocationRef> Rels = RelocMap[Section];
1886 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1887 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1888
1889 // Loop over each chunk of code between two points where at least
1890 // one symbol is defined.
1891 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1892 // Advance SI past all the symbols starting at the same address,
1893 // and make an ArrayRef of them.
1894 unsigned FirstSI = SI;
1895 uint64_t Start = Symbols[SI].Addr;
1896 ArrayRef<SymbolInfoTy> SymbolsHere;
1897 while (SI != SE && Symbols[SI].Addr == Start)
1898 ++SI;
1899 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1900
1901 // Get the demangled names of all those symbols. We end up with a vector
1902 // of StringRef that holds the names we're going to use, and a vector of
1903 // std::string that stores the new strings returned by demangle(), if
1904 // any. If we don't call demangle() then that vector can stay empty.
1905 std::vector<StringRef> SymNamesHere;
1906 std::vector<std::string> DemangledSymNamesHere;
1907 if (Demangle) {
1908 // Fetch the demangled names and store them locally.
1909 for (const SymbolInfoTy &Symbol : SymbolsHere)
1910 DemangledSymNamesHere.push_back(x: demangle(MangledName: Symbol.Name));
1911 // Now we've finished modifying that vector, it's safe to make
1912 // a vector of StringRefs pointing into it.
1913 SymNamesHere.insert(position: SymNamesHere.begin(), first: DemangledSymNamesHere.begin(),
1914 last: DemangledSymNamesHere.end());
1915 } else {
1916 for (const SymbolInfoTy &Symbol : SymbolsHere)
1917 SymNamesHere.push_back(x: Symbol.Name);
1918 }
1919
1920 // Distinguish ELF data from code symbols, which will be used later on to
1921 // decide whether to 'disassemble' this chunk as a data declaration via
1922 // dumpELFData(), or whether to treat it as code.
1923 //
1924 // If data _and_ code symbols are defined at the same address, the code
1925 // takes priority, on the grounds that disassembling code is our main
1926 // purpose here, and it would be a worse failure to _not_ interpret
1927 // something that _was_ meaningful as code than vice versa.
1928 //
1929 // Any ELF symbol type that is not clearly data will be regarded as code.
1930 // In particular, one of the uses of STT_NOTYPE is for branch targets
1931 // inside functions, for which STT_FUNC would be inaccurate.
1932 //
1933 // So here, we spot whether there's any non-data symbol present at all,
1934 // and only set the DisassembleAsELFData flag if there isn't. Also, we use
1935 // this distinction to inform the decision of which symbol to print at
1936 // the head of the section, so that if we're printing code, we print a
1937 // code-related symbol name to go with it.
1938 bool DisassembleAsELFData = false;
1939 size_t DisplaySymIndex = SymbolsHere.size() - 1;
1940 if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1941 DisassembleAsELFData = true; // unless we find a code symbol below
1942
1943 for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1944 uint8_t SymTy = SymbolsHere[i].Type;
1945 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1946 DisassembleAsELFData = false;
1947 DisplaySymIndex = i;
1948 }
1949 }
1950 }
1951
1952 // Decide which symbol(s) from this collection we're going to print.
1953 std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1954 // If the user has given the --disassemble-symbols option, then we must
1955 // display every symbol in that set, and no others.
1956 if (!DisasmSymbolSet.empty()) {
1957 bool FoundAny = false;
1958 for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1959 if (DisasmSymbolSet.count(Key: SymNamesHere[i])) {
1960 SymsToPrint[i] = true;
1961 FoundAny = true;
1962 }
1963 }
1964
1965 // And if none of the symbols here is one that the user asked for, skip
1966 // disassembling this entire chunk of code.
1967 if (!FoundAny)
1968 continue;
1969 } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) {
1970 // Otherwise, print whichever symbol at this location is last in the
1971 // Symbols array, because that array is pre-sorted in a way intended to
1972 // correlate with priority of which symbol to display.
1973 SymsToPrint[DisplaySymIndex] = true;
1974 }
1975
1976 // Now that we know we're disassembling this section, override the choice
1977 // of which symbols to display by printing _all_ of them at this address
1978 // if the user asked for all symbols.
1979 //
1980 // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1981 // only the chunk of code headed by 'foo', but also show any other
1982 // symbols defined at that address, such as aliases for 'foo', or the ARM
1983 // mapping symbol preceding its code.
1984 if (ShowAllSymbols) {
1985 for (size_t i = 0; i < SymbolsHere.size(); ++i)
1986 SymsToPrint[i] = true;
1987 }
1988
1989 if (Start < SectionAddr || StopAddress <= Start)
1990 continue;
1991
1992 for (size_t i = 0; i < SymbolsHere.size(); ++i)
1993 FoundDisasmSymbolSet.insert(key: SymNamesHere[i]);
1994
1995 // The end is the section end, the beginning of the next symbol, or
1996 // --stop-address.
1997 uint64_t End = std::min<uint64_t>(a: SectionAddr + SectSize, b: StopAddress);
1998 if (SI < SE)
1999 End = std::min(a: End, b: Symbols[SI].Addr);
2000 if (Start >= End || End <= StartAddress)
2001 continue;
2002 Start -= SectionAddr;
2003 End -= SectionAddr;
2004
2005 if (!PrintedSection) {
2006 PrintedSection = true;
2007 outs() << "\nDisassembly of section ";
2008 if (!SegmentName.empty())
2009 outs() << SegmentName << ",";
2010 outs() << SectionName << ":\n";
2011 }
2012
2013 bool PrintedLabel = false;
2014 for (size_t i = 0; i < SymbolsHere.size(); ++i) {
2015 if (!SymsToPrint[i])
2016 continue;
2017
2018 const SymbolInfoTy &Symbol = SymbolsHere[i];
2019 const StringRef SymbolName = SymNamesHere[i];
2020
2021 if (!PrintedLabel) {
2022 outs() << '\n';
2023 PrintedLabel = true;
2024 }
2025 if (LeadingAddr)
2026 outs() << format(Fmt: Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
2027 Vals: SectionAddr + Start + VMAAdjustment);
2028 if (Obj.isXCOFF() && SymbolDescription) {
2029 outs() << getXCOFFSymbolDescription(SymbolInfo: Symbol, SymbolName) << ":\n";
2030 } else
2031 outs() << '<' << SymbolName << ">:\n";
2032 }
2033
2034 // Don't print raw contents of a virtual section. A virtual section
2035 // doesn't have any contents in the file.
2036 if (Section.isVirtual()) {
2037 outs() << "...\n";
2038 continue;
2039 }
2040
2041 // See if any of the symbols defined at this location triggers target-
2042 // specific disassembly behavior, e.g. of special descriptors or function
2043 // prelude information.
2044 //
2045 // We stop this loop at the first symbol that triggers some kind of
2046 // interesting behavior (if any), on the assumption that if two symbols
2047 // defined at the same address trigger two conflicting symbol handlers,
2048 // the object file is probably confused anyway, and it would make even
2049 // less sense to present the output of _both_ handlers, because that
2050 // would describe the same data twice.
2051 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
2052 SymbolInfoTy Symbol = SymbolsHere[SHI];
2053
2054 Expected<bool> RespondedOrErr = DT->DisAsm->onSymbolStart(
2055 Symbol, Size, Bytes: Bytes.slice(N: Start, M: End - Start), Address: SectionAddr + Start);
2056
2057 if (RespondedOrErr && !*RespondedOrErr) {
2058 // This symbol didn't trigger any interesting handling. Try the other
2059 // symbols defined at this address.
2060 continue;
2061 }
2062
2063 // If onSymbolStart returned an Error, that means it identified some
2064 // kind of special data at this address, but wasn't able to disassemble
2065 // it meaningfully. So we fall back to printing the error out and
2066 // disassembling the failed region as bytes, assuming that the target
2067 // detected the failure before printing anything.
2068 if (!RespondedOrErr) {
2069 std::string ErrMsgStr = toString(E: RespondedOrErr.takeError());
2070 StringRef ErrMsg = ErrMsgStr;
2071 do {
2072 StringRef Line;
2073 std::tie(args&: Line, args&: ErrMsg) = ErrMsg.split(Separator: '\n');
2074 outs() << DT->Context->getAsmInfo()->getCommentString()
2075 << " error decoding " << SymNamesHere[SHI] << ": " << Line
2076 << '\n';
2077 } while (!ErrMsg.empty());
2078
2079 if (Size) {
2080 outs() << DT->Context->getAsmInfo()->getCommentString()
2081 << " decoding failed region as bytes\n";
2082 for (uint64_t I = 0; I < Size; ++I)
2083 outs() << "\t.byte\t " << format_hex(N: Bytes[I], Width: 1, /*Upper=*/true)
2084 << '\n';
2085 }
2086 }
2087
2088 // Regardless of whether onSymbolStart returned an Error or true, 'Size'
2089 // will have been set to the amount of data covered by whatever prologue
2090 // the target identified. So we advance our own position to beyond that.
2091 // Sometimes that will be the entire distance to the next symbol, and
2092 // sometimes it will be just a prologue and we should start
2093 // disassembling instructions from where it left off.
2094 Start += Size;
2095 break;
2096 }
2097
2098 Index = Start;
2099 if (SectionAddr < StartAddress)
2100 Index = std::max<uint64_t>(a: Index, b: StartAddress - SectionAddr);
2101
2102 if (DisassembleAsELFData) {
2103 dumpELFData(SectionAddr, Index, End, Bytes);
2104 Index = End;
2105 continue;
2106 }
2107
2108 // Skip relocations from symbols that are not dumped.
2109 for (; RelCur != RelEnd; ++RelCur) {
2110 uint64_t Offset = RelCur->getOffset() - RelAdjustment;
2111 if (Index <= Offset)
2112 break;
2113 }
2114
2115 bool DumpARMELFData = false;
2116 bool DumpTracebackTableForXCOFFFunction =
2117 Obj.isXCOFF() && Section.isText() && TracebackTable &&
2118 Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
2119 (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
2120
2121 formatted_raw_ostream FOS(outs());
2122
2123 std::unordered_map<uint64_t, std::string> AllLabels;
2124 std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels;
2125 if (SymbolizeOperands) {
2126 collectLocalBranchTargets(Bytes, MIA: DT->InstrAnalysis.get(),
2127 DisAsm: DT->DisAsm.get(), IP: DT->InstPrinter.get(),
2128 STI: PrimaryTarget.SubtargetInfo.get(),
2129 SectionAddr, Start: Index, End, Labels&: AllLabels);
2130 collectBBAddrMapLabels(FullAddrMap, SectionAddr, Start: Index, End,
2131 Labels&: BBAddrMapLabels);
2132 }
2133
2134 if (DT->InstrAnalysis)
2135 DT->InstrAnalysis->resetState();
2136
2137 while (Index < End) {
2138 uint64_t RelOffset;
2139
2140 // ARM and AArch64 ELF binaries can interleave data and text in the
2141 // same section. We rely on the markers introduced to understand what
2142 // we need to dump. If the data marker is within a function, it is
2143 // denoted as a word/short etc.
2144 if (!MappingSymbols.empty()) {
2145 char Kind = getMappingSymbolKind(MappingSymbols, Address: Index);
2146 DumpARMELFData = Kind == 'd';
2147 if (SecondaryTarget) {
2148 if (Kind == 'a') {
2149 DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget;
2150 } else if (Kind == 't') {
2151 DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget;
2152 }
2153 }
2154 } else if (!CHPECodeMap.empty()) {
2155 uint64_t Address = SectionAddr + Index;
2156 auto It = partition_point(
2157 Range&: CHPECodeMap,
2158 P: [Address](const std::pair<uint64_t, uint64_t> &Entry) {
2159 return Entry.first <= Address;
2160 });
2161 if (It != CHPECodeMap.begin() && Address < (It - 1)->second) {
2162 DT = &*SecondaryTarget;
2163 } else {
2164 DT = &PrimaryTarget;
2165 // X64 disassembler range may have left Index unaligned, so
2166 // make sure that it's aligned when we switch back to ARM64
2167 // code.
2168 Index = llvm::alignTo(Value: Index, Align: 4);
2169 if (Index >= End)
2170 break;
2171 }
2172 }
2173
2174 auto findRel = [&]() {
2175 while (RelCur != RelEnd) {
2176 RelOffset = RelCur->getOffset() - RelAdjustment;
2177 // If this relocation is hidden, skip it.
2178 if (getHidden(RelRef: *RelCur) || SectionAddr + RelOffset < StartAddress) {
2179 ++RelCur;
2180 continue;
2181 }
2182
2183 // Stop when RelCur's offset is past the disassembled
2184 // instruction/data.
2185 if (RelOffset >= Index + Size)
2186 return false;
2187 if (RelOffset >= Index)
2188 return true;
2189 ++RelCur;
2190 }
2191 return false;
2192 };
2193
2194 if (DumpARMELFData) {
2195 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
2196 MappingSymbols, STI: *DT->SubtargetInfo, OS&: FOS);
2197 } else {
2198 // When -z or --disassemble-zeroes are given we always dissasemble
2199 // them. Otherwise we might want to skip zero bytes we see.
2200 if (!DisassembleZeroes) {
2201 uint64_t MaxOffset = End - Index;
2202 // For --reloc: print zero blocks patched by relocations, so that
2203 // relocations can be shown in the dump.
2204 if (InlineRelocs && RelCur != RelEnd)
2205 MaxOffset = std::min(a: RelCur->getOffset() - RelAdjustment - Index,
2206 b: MaxOffset);
2207
2208 if (size_t N =
2209 countSkippableZeroBytes(Buf: Bytes.slice(N: Index, M: MaxOffset))) {
2210 FOS << "\t\t..." << '\n';
2211 Index += N;
2212 continue;
2213 }
2214 }
2215
2216 if (DumpTracebackTableForXCOFFFunction &&
2217 doesXCOFFTracebackTableBegin(Bytes: Bytes.slice(N: Index, M: 4))) {
2218 dumpTracebackTable(Bytes: Bytes.slice(N: Index),
2219 Address: SectionAddr + Index + VMAAdjustment, OS&: FOS,
2220 End: SectionAddr + End + VMAAdjustment,
2221 STI: *DT->SubtargetInfo, Obj: cast<XCOFFObjectFile>(Val: &Obj));
2222 Index = End;
2223 continue;
2224 }
2225
2226 // Print local label if there's any.
2227 auto Iter1 = BBAddrMapLabels.find(x: SectionAddr + Index);
2228 if (Iter1 != BBAddrMapLabels.end()) {
2229 for (const auto &BBLabel : Iter1->second)
2230 FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis
2231 << ":\n";
2232 } else {
2233 auto Iter2 = AllLabels.find(x: SectionAddr + Index);
2234 if (Iter2 != AllLabels.end())
2235 FOS << "<" << Iter2->second << ">:\n";
2236 }
2237
2238 // Disassemble a real instruction or a data when disassemble all is
2239 // provided
2240 MCInst Inst;
2241 ArrayRef<uint8_t> ThisBytes = Bytes.slice(N: Index);
2242 uint64_t ThisAddr = SectionAddr + Index;
2243 bool Disassembled = DT->DisAsm->getInstruction(
2244 Instr&: Inst, Size, Bytes: ThisBytes, Address: ThisAddr, CStream&: CommentStream);
2245 if (Size == 0)
2246 Size = std::min<uint64_t>(
2247 a: ThisBytes.size(),
2248 b: DT->DisAsm->suggestBytesToSkip(Bytes: ThisBytes, Address: ThisAddr));
2249
2250 LVP.update(ThisAddr: {.Address: Index, .SectionIndex: Section.getIndex()},
2251 NextAddr: {.Address: Index + Size, .SectionIndex: Section.getIndex()}, IncludeDefinedVars: Index + Size != End);
2252
2253 DT->InstPrinter->setCommentStream(CommentStream);
2254
2255 DT->Printer->printInst(
2256 IP&: *DT->InstPrinter, MI: Disassembled ? &Inst : nullptr,
2257 Bytes: Bytes.slice(N: Index, M: Size),
2258 Address: {.Address: SectionAddr + Index + VMAAdjustment, .SectionIndex: Section.getIndex()}, OS&: FOS,
2259 Annot: "", STI: *DT->SubtargetInfo, SP: &SP, ObjectFilename: Obj.getFileName(), Rels: &Rels, LVP);
2260
2261 DT->InstPrinter->setCommentStream(llvm::nulls());
2262
2263 // If disassembly succeeds, we try to resolve the target address
2264 // (jump target or memory operand address) and print it to the
2265 // right of the instruction.
2266 //
2267 // Otherwise, we don't print anything else so that we avoid
2268 // analyzing invalid or incomplete instruction information.
2269 if (Disassembled && DT->InstrAnalysis) {
2270 llvm::raw_ostream *TargetOS = &FOS;
2271 uint64_t Target;
2272 bool PrintTarget = DT->InstrAnalysis->evaluateBranch(
2273 Inst, Addr: SectionAddr + Index, Size, Target);
2274
2275 if (!PrintTarget) {
2276 if (std::optional<uint64_t> MaybeTarget =
2277 DT->InstrAnalysis->evaluateMemoryOperandAddress(
2278 Inst, STI: DT->SubtargetInfo.get(), Addr: SectionAddr + Index,
2279 Size)) {
2280 Target = *MaybeTarget;
2281 PrintTarget = true;
2282 // Do not print real address when symbolizing.
2283 if (!SymbolizeOperands) {
2284 // Memory operand addresses are printed as comments.
2285 TargetOS = &CommentStream;
2286 *TargetOS << "0x" << Twine::utohexstr(Val: Target);
2287 }
2288 }
2289 }
2290
2291 if (PrintTarget) {
2292 // In a relocatable object, the target's section must reside in
2293 // the same section as the call instruction or it is accessed
2294 // through a relocation.
2295 //
2296 // In a non-relocatable object, the target may be in any section.
2297 // In that case, locate the section(s) containing the target
2298 // address and find the symbol in one of those, if possible.
2299 //
2300 // N.B. Except for XCOFF, we don't walk the relocations in the
2301 // relocatable case yet.
2302 std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2303 if (!Obj.isRelocatableObject()) {
2304 auto It = llvm::partition_point(
2305 Range&: SectionAddresses,
2306 P: [=](const std::pair<uint64_t, SectionRef> &O) {
2307 return O.first <= Target;
2308 });
2309 uint64_t TargetSecAddr = 0;
2310 while (It != SectionAddresses.begin()) {
2311 --It;
2312 if (TargetSecAddr == 0)
2313 TargetSecAddr = It->first;
2314 if (It->first != TargetSecAddr)
2315 break;
2316 TargetSectionSymbols.push_back(x: &AllSymbols[It->second]);
2317 }
2318 } else {
2319 TargetSectionSymbols.push_back(x: &Symbols);
2320 }
2321 TargetSectionSymbols.push_back(x: &AbsoluteSymbols);
2322
2323 // Find the last symbol in the first candidate section whose
2324 // offset is less than or equal to the target. If there are no
2325 // such symbols, try in the next section and so on, before finally
2326 // using the nearest preceding absolute symbol (if any), if there
2327 // are no other valid symbols.
2328 const SymbolInfoTy *TargetSym = nullptr;
2329 for (const SectionSymbolsTy *TargetSymbols :
2330 TargetSectionSymbols) {
2331 auto It = llvm::partition_point(
2332 Range: *TargetSymbols,
2333 P: [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2334 while (It != TargetSymbols->begin()) {
2335 --It;
2336 // Skip mapping symbols to avoid possible ambiguity as they
2337 // do not allow uniquely identifying the target address.
2338 if (!It->IsMappingSymbol) {
2339 TargetSym = &*It;
2340 break;
2341 }
2342 }
2343 if (TargetSym)
2344 break;
2345 }
2346
2347 // Branch targets are printed just after the instructions.
2348 // Print the labels corresponding to the target if there's any.
2349 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(x: Target);
2350 bool LabelAvailable = AllLabels.count(x: Target);
2351
2352 if (TargetSym != nullptr) {
2353 uint64_t TargetAddress = TargetSym->Addr;
2354 uint64_t Disp = Target - TargetAddress;
2355 std::string TargetName = Demangle ? demangle(MangledName: TargetSym->Name)
2356 : TargetSym->Name.str();
2357 bool RelFixedUp = false;
2358 SmallString<32> Val;
2359
2360 *TargetOS << " <";
2361 // On XCOFF, we use relocations, even without -r, so we
2362 // can print the correct name for an extern function call.
2363 if (Obj.isXCOFF() && findRel()) {
2364 // Check for possible branch relocations and
2365 // branches to fixup code.
2366 bool BranchRelocationType = true;
2367 XCOFF::RelocationType RelocType;
2368 if (Obj.is64Bit()) {
2369 const XCOFFRelocation64 *Reloc =
2370 reinterpret_cast<XCOFFRelocation64 *>(
2371 RelCur->getRawDataRefImpl().p);
2372 RelFixedUp = Reloc->isFixupIndicated();
2373 RelocType = Reloc->Type;
2374 } else {
2375 const XCOFFRelocation32 *Reloc =
2376 reinterpret_cast<XCOFFRelocation32 *>(
2377 RelCur->getRawDataRefImpl().p);
2378 RelFixedUp = Reloc->isFixupIndicated();
2379 RelocType = Reloc->Type;
2380 }
2381 BranchRelocationType =
2382 RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR ||
2383 RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR;
2384
2385 // If we have a valid relocation, try to print its
2386 // corresponding symbol name. Multiple relocations on the
2387 // same instruction are not handled.
2388 // Branches to fixup code will have the RelFixedUp flag set in
2389 // the RLD. For these instructions, we print the correct
2390 // branch target, but print the referenced symbol as a
2391 // comment.
2392 if (Error E = getRelocationValueString(Rel: *RelCur, SymbolDescription: false, Result&: Val)) {
2393 // If -r was used, this error will be printed later.
2394 // Otherwise, we ignore the error and print what
2395 // would have been printed without using relocations.
2396 consumeError(Err: std::move(E));
2397 *TargetOS << TargetName;
2398 RelFixedUp = false; // Suppress comment for RLD sym name
2399 } else if (BranchRelocationType && !RelFixedUp)
2400 *TargetOS << Val;
2401 else
2402 *TargetOS << TargetName;
2403 if (Disp)
2404 *TargetOS << "+0x" << Twine::utohexstr(Val: Disp);
2405 } else if (!Disp) {
2406 *TargetOS << TargetName;
2407 } else if (BBAddrMapLabelAvailable) {
2408 *TargetOS << BBAddrMapLabels[Target].front().BlockLabel;
2409 } else if (LabelAvailable) {
2410 *TargetOS << AllLabels[Target];
2411 } else {
2412 // Always Print the binary symbol plus an offset if there's no
2413 // local label corresponding to the target address.
2414 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Val: Disp);
2415 }
2416 *TargetOS << ">";
2417 if (RelFixedUp && !InlineRelocs) {
2418 // We have fixup code for a relocation. We print the
2419 // referenced symbol as a comment.
2420 *TargetOS << "\t# " << Val;
2421 }
2422
2423 } else if (BBAddrMapLabelAvailable) {
2424 *TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel
2425 << ">";
2426 } else if (LabelAvailable) {
2427 *TargetOS << " <" << AllLabels[Target] << ">";
2428 }
2429 // By convention, each record in the comment stream should be
2430 // terminated.
2431 if (TargetOS == &CommentStream)
2432 *TargetOS << "\n";
2433 }
2434
2435 DT->InstrAnalysis->updateState(Inst, Addr: SectionAddr + Index);
2436 } else if (!Disassembled && DT->InstrAnalysis) {
2437 DT->InstrAnalysis->resetState();
2438 }
2439 }
2440
2441 assert(DT->Context->getAsmInfo());
2442 emitPostInstructionInfo(FOS, MAI: *DT->Context->getAsmInfo(),
2443 STI: *DT->SubtargetInfo, Comments: CommentStream.str(), LVP);
2444 Comments.clear();
2445
2446 if (BTF)
2447 printBTFRelocation(FOS, BTF&: *BTF, Address: {.Address: Index, .SectionIndex: Section.getIndex()}, LVP);
2448
2449 // Hexagon handles relocs in pretty printer
2450 if (InlineRelocs && Obj.getArch() != Triple::hexagon) {
2451 while (findRel()) {
2452 // When --adjust-vma is used, update the address printed.
2453 if (RelCur->getSymbol() != Obj.symbol_end()) {
2454 Expected<section_iterator> SymSI =
2455 RelCur->getSymbol()->getSection();
2456 if (SymSI && *SymSI != Obj.section_end() &&
2457 shouldAdjustVA(Section: **SymSI))
2458 RelOffset += AdjustVMA;
2459 }
2460
2461 printRelocation(OS&: FOS, FileName: Obj.getFileName(), Rel: *RelCur,
2462 Address: SectionAddr + RelOffset, Is64Bits);
2463 LVP.printAfterOtherLine(OS&: FOS, AfterInst: true);
2464 ++RelCur;
2465 }
2466 }
2467
2468 Index += Size;
2469 }
2470 }
2471 }
2472 StringSet<> MissingDisasmSymbolSet =
2473 set_difference(S1: DisasmSymbolSet, S2: FoundDisasmSymbolSet);
2474 for (StringRef Sym : MissingDisasmSymbolSet.keys())
2475 reportWarning(Message: "failed to disassemble missing symbol " + Sym, File: FileName);
2476}
2477
2478static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2479 // If information useful for showing the disassembly is missing, try to find a
2480 // more complete binary and disassemble that instead.
2481 OwningBinary<Binary> FetchedBinary;
2482 if (Obj->symbols().empty()) {
2483 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2484 fetchBinaryByBuildID(Obj: *Obj)) {
2485 if (auto *O = dyn_cast<ObjectFile>(Val: FetchedBinaryOpt->getBinary())) {
2486 if (!O->symbols().empty() ||
2487 (!O->sections().empty() && Obj->sections().empty())) {
2488 FetchedBinary = std::move(*FetchedBinaryOpt);
2489 Obj = O;
2490 }
2491 }
2492 }
2493 }
2494
2495 const Target *TheTarget = getTarget(Obj);
2496
2497 // Package up features to be passed to target/subtarget
2498 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2499 if (!FeaturesValue)
2500 reportError(E: FeaturesValue.takeError(), FileName: Obj->getFileName());
2501 SubtargetFeatures Features = *FeaturesValue;
2502 if (!MAttrs.empty()) {
2503 for (unsigned I = 0; I != MAttrs.size(); ++I)
2504 Features.AddFeature(String: MAttrs[I]);
2505 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2506 Features.AddFeature(String: "+all");
2507 }
2508
2509 if (MCPU.empty())
2510 MCPU = Obj->tryGetCPUName().value_or(u: "").str();
2511
2512 if (isArmElf(Obj: *Obj)) {
2513 // When disassembling big-endian Arm ELF, the instruction endianness is
2514 // determined in a complex way. In relocatable objects, AAELF32 mandates
2515 // that instruction endianness matches the ELF file endianness; in
2516 // executable images, that's true unless the file header has the EF_ARM_BE8
2517 // flag, in which case instructions are little-endian regardless of data
2518 // endianness.
2519 //
2520 // We must set the big-endian-instructions SubtargetFeature to make the
2521 // disassembler read the instructions the right way round, and also tell
2522 // our own prettyprinter to retrieve the encodings the same way to print in
2523 // hex.
2524 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Val: Obj);
2525
2526 if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2527 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2528 Features.AddFeature(String: "+big-endian-instructions");
2529 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big);
2530 } else {
2531 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little);
2532 }
2533 }
2534
2535 DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
2536
2537 // If we have an ARM object file, we need a second disassembler, because
2538 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2539 // We use mapping symbols to switch between the two assemblers, where
2540 // appropriate.
2541 std::optional<DisassemblerTarget> SecondaryTarget;
2542
2543 if (isArmElf(Obj: *Obj)) {
2544 if (!PrimaryTarget.SubtargetInfo->checkFeatures(FS: "+mclass")) {
2545 if (PrimaryTarget.SubtargetInfo->checkFeatures(FS: "+thumb-mode"))
2546 Features.AddFeature(String: "-thumb-mode");
2547 else
2548 Features.AddFeature(String: "+thumb-mode");
2549 SecondaryTarget.emplace(args&: PrimaryTarget, args&: Features);
2550 }
2551 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Val: Obj)) {
2552 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
2553 if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
2554 // Set up x86_64 disassembler for ARM64EC binaries.
2555 Triple X64Triple(TripleName);
2556 X64Triple.setArch(Kind: Triple::ArchType::x86_64);
2557
2558 std::string Error;
2559 const Target *X64Target =
2560 TargetRegistry::lookupTarget(ArchName: "", TheTriple&: X64Triple, Error);
2561 if (X64Target) {
2562 SubtargetFeatures X64Features;
2563 SecondaryTarget.emplace(args&: X64Target, args&: *Obj, args: X64Triple.getTriple(), args: "",
2564 args&: X64Features);
2565 } else {
2566 reportWarning(Message: Error, File: Obj->getFileName());
2567 }
2568 }
2569 }
2570
2571 const ObjectFile *DbgObj = Obj;
2572 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2573 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2574 fetchBinaryByBuildID(Obj: *Obj)) {
2575 if (auto *FetchedObj =
2576 dyn_cast<const ObjectFile>(Val: DebugBinaryOpt->getBinary())) {
2577 if (FetchedObj->hasDebugInfo()) {
2578 FetchedBinary = std::move(*DebugBinaryOpt);
2579 DbgObj = FetchedObj;
2580 }
2581 }
2582 }
2583 }
2584
2585 std::unique_ptr<object::Binary> DSYMBinary;
2586 std::unique_ptr<MemoryBuffer> DSYMBuf;
2587 if (!DbgObj->hasDebugInfo()) {
2588 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(Val: &*Obj)) {
2589 DbgObj = objdump::getMachODSymObject(O: MachOOF, Filename: Obj->getFileName(),
2590 DSYMBinary, DSYMBuf);
2591 if (!DbgObj)
2592 return;
2593 }
2594 }
2595
2596 SourcePrinter SP(DbgObj, TheTarget->getName());
2597
2598 for (StringRef Opt : DisassemblerOptions)
2599 if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
2600 reportError(File: Obj->getFileName(),
2601 Message: "Unrecognized disassembler option: " + Opt);
2602
2603 disassembleObject(Obj&: *Obj, DbgObj: *DbgObj, PrimaryTarget, SecondaryTarget, SP,
2604 InlineRelocs);
2605}
2606
2607void Dumper::printRelocations() {
2608 StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2609
2610 // Build a mapping from relocation target to a vector of relocation
2611 // sections. Usually, there is an only one relocation section for
2612 // each relocated section.
2613 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2614 uint64_t Ndx;
2615 for (const SectionRef &Section : ToolSectionFilter(O, Idx: &Ndx)) {
2616 if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2617 continue;
2618 if (Section.relocation_begin() == Section.relocation_end())
2619 continue;
2620 Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2621 if (!SecOrErr)
2622 reportError(File: O.getFileName(),
2623 Message: "section (" + Twine(Ndx) +
2624 "): unable to get a relocation target: " +
2625 toString(E: SecOrErr.takeError()));
2626 SecToRelSec[**SecOrErr].push_back(x: Section);
2627 }
2628
2629 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2630 StringRef SecName = unwrapOrError(EO: P.first.getName(), Args: O.getFileName());
2631 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2632 uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2633 uint32_t TypePadding = 24;
2634 outs() << left_justify(Str: "OFFSET", Width: OffsetPadding) << " "
2635 << left_justify(Str: "TYPE", Width: TypePadding) << " "
2636 << "VALUE\n";
2637
2638 for (SectionRef Section : P.second) {
2639 for (const RelocationRef &Reloc : Section.relocations()) {
2640 uint64_t Address = Reloc.getOffset();
2641 SmallString<32> RelocName;
2642 SmallString<32> ValueStr;
2643 if (Address < StartAddress || Address > StopAddress || getHidden(RelRef: Reloc))
2644 continue;
2645 Reloc.getTypeName(Result&: RelocName);
2646 if (Error E =
2647 getRelocationValueString(Rel: Reloc, SymbolDescription, Result&: ValueStr))
2648 reportUniqueWarning(Err: std::move(E));
2649
2650 outs() << format(Fmt: Fmt.data(), Vals: Address) << " "
2651 << left_justify(Str: RelocName, Width: TypePadding) << " " << ValueStr
2652 << "\n";
2653 }
2654 }
2655 }
2656}
2657
2658// Returns true if we need to show LMA column when dumping section headers. We
2659// show it only when the platform is ELF and either we have at least one section
2660// whose VMA and LMA are different and/or when --show-lma flag is used.
2661static bool shouldDisplayLMA(const ObjectFile &Obj) {
2662 if (!Obj.isELF())
2663 return false;
2664 for (const SectionRef &S : ToolSectionFilter(O: Obj))
2665 if (S.getAddress() != getELFSectionLMA(Sec: S))
2666 return true;
2667 return ShowLMA;
2668}
2669
2670static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2671 // Default column width for names is 13 even if no names are that long.
2672 size_t MaxWidth = 13;
2673 for (const SectionRef &Section : ToolSectionFilter(O: Obj)) {
2674 StringRef Name = unwrapOrError(EO: Section.getName(), Args: Obj.getFileName());
2675 MaxWidth = std::max(a: MaxWidth, b: Name.size());
2676 }
2677 return MaxWidth;
2678}
2679
2680void objdump::printSectionHeaders(ObjectFile &Obj) {
2681 if (Obj.isELF() && Obj.sections().empty())
2682 createFakeELFSections(Obj);
2683
2684 size_t NameWidth = getMaxSectionNameWidth(Obj);
2685 size_t AddressWidth = 2 * Obj.getBytesInAddress();
2686 bool HasLMAColumn = shouldDisplayLMA(Obj);
2687 outs() << "\nSections:\n";
2688 if (HasLMAColumn)
2689 outs() << "Idx " << left_justify(Str: "Name", Width: NameWidth) << " Size "
2690 << left_justify(Str: "VMA", Width: AddressWidth) << " "
2691 << left_justify(Str: "LMA", Width: AddressWidth) << " Type\n";
2692 else
2693 outs() << "Idx " << left_justify(Str: "Name", Width: NameWidth) << " Size "
2694 << left_justify(Str: "VMA", Width: AddressWidth) << " Type\n";
2695
2696 uint64_t Idx;
2697 for (const SectionRef &Section : ToolSectionFilter(O: Obj, Idx: &Idx)) {
2698 StringRef Name = unwrapOrError(EO: Section.getName(), Args: Obj.getFileName());
2699 uint64_t VMA = Section.getAddress();
2700 if (shouldAdjustVA(Section))
2701 VMA += AdjustVMA;
2702
2703 uint64_t Size = Section.getSize();
2704
2705 std::string Type = Section.isText() ? "TEXT" : "";
2706 if (Section.isData())
2707 Type += Type.empty() ? "DATA" : ", DATA";
2708 if (Section.isBSS())
2709 Type += Type.empty() ? "BSS" : ", BSS";
2710 if (Section.isDebugSection())
2711 Type += Type.empty() ? "DEBUG" : ", DEBUG";
2712
2713 if (HasLMAColumn)
2714 outs() << format(Fmt: "%3" PRIu64 " %-*s %08" PRIx64 " ", Vals: Idx, Vals: NameWidth,
2715 Vals: Name.str().c_str(), Vals: Size)
2716 << format_hex_no_prefix(N: VMA, Width: AddressWidth) << " "
2717 << format_hex_no_prefix(N: getELFSectionLMA(Sec: Section), Width: AddressWidth)
2718 << " " << Type << "\n";
2719 else
2720 outs() << format(Fmt: "%3" PRIu64 " %-*s %08" PRIx64 " ", Vals: Idx, Vals: NameWidth,
2721 Vals: Name.str().c_str(), Vals: Size)
2722 << format_hex_no_prefix(N: VMA, Width: AddressWidth) << " " << Type << "\n";
2723 }
2724}
2725
2726void objdump::printSectionContents(const ObjectFile *Obj) {
2727 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Val: Obj);
2728
2729 for (const SectionRef &Section : ToolSectionFilter(O: *Obj)) {
2730 StringRef Name = unwrapOrError(EO: Section.getName(), Args: Obj->getFileName());
2731 uint64_t BaseAddr = Section.getAddress();
2732 uint64_t Size = Section.getSize();
2733 if (!Size)
2734 continue;
2735
2736 outs() << "Contents of section ";
2737 StringRef SegmentName = getSegmentName(MachO, Section);
2738 if (!SegmentName.empty())
2739 outs() << SegmentName << ",";
2740 outs() << Name << ":\n";
2741 if (Section.isBSS()) {
2742 outs() << format(Fmt: "<skipping contents of bss section at [%04" PRIx64
2743 ", %04" PRIx64 ")>\n",
2744 Vals: BaseAddr, Vals: BaseAddr + Size);
2745 continue;
2746 }
2747
2748 StringRef Contents = unwrapOrError(EO: Section.getContents(), Args: Obj->getFileName());
2749
2750 // Dump out the content as hex and printable ascii characters.
2751 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2752 outs() << format(Fmt: " %04" PRIx64 " ", Vals: BaseAddr + Addr);
2753 // Dump line of hex.
2754 for (std::size_t I = 0; I < 16; ++I) {
2755 if (I != 0 && I % 4 == 0)
2756 outs() << ' ';
2757 if (Addr + I < End)
2758 outs() << hexdigit(X: (Contents[Addr + I] >> 4) & 0xF, LowerCase: true)
2759 << hexdigit(X: Contents[Addr + I] & 0xF, LowerCase: true);
2760 else
2761 outs() << " ";
2762 }
2763 // Print ascii.
2764 outs() << " ";
2765 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2766 if (isPrint(C: static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2767 outs() << Contents[Addr + I];
2768 else
2769 outs() << ".";
2770 }
2771 outs() << "\n";
2772 }
2773 }
2774}
2775
2776void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2777 bool DumpDynamic) {
2778 if (O.isCOFF() && !DumpDynamic) {
2779 outs() << "\nSYMBOL TABLE:\n";
2780 printCOFFSymbolTable(O: cast<const COFFObjectFile>(Val: O));
2781 return;
2782 }
2783
2784 const StringRef FileName = O.getFileName();
2785
2786 if (!DumpDynamic) {
2787 outs() << "\nSYMBOL TABLE:\n";
2788 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2789 printSymbol(Symbol: *I, SymbolVersions: {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2790 return;
2791 }
2792
2793 outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2794 if (!O.isELF()) {
2795 reportWarning(
2796 Message: "this operation is not currently supported for this file format",
2797 File: FileName);
2798 return;
2799 }
2800
2801 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(Val: &O);
2802 auto Symbols = ELF->getDynamicSymbolIterators();
2803 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2804 ELF->readDynsymVersions();
2805 if (!SymbolVersionsOrErr) {
2806 reportWarning(Message: toString(E: SymbolVersionsOrErr.takeError()), File: FileName);
2807 SymbolVersionsOrErr = std::vector<VersionEntry>();
2808 (void)!SymbolVersionsOrErr;
2809 }
2810 for (auto &Sym : Symbols)
2811 printSymbol(Symbol: Sym, SymbolVersions: *SymbolVersionsOrErr, FileName, ArchiveName,
2812 ArchitectureName, DumpDynamic);
2813}
2814
2815void Dumper::printSymbol(const SymbolRef &Symbol,
2816 ArrayRef<VersionEntry> SymbolVersions,
2817 StringRef FileName, StringRef ArchiveName,
2818 StringRef ArchitectureName, bool DumpDynamic) {
2819 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Val: &O);
2820 Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2821 if (!AddrOrErr) {
2822 reportUniqueWarning(Err: AddrOrErr.takeError());
2823 return;
2824 }
2825 uint64_t Address = *AddrOrErr;
2826 section_iterator SecI = unwrapOrError(EO: Symbol.getSection(), Args&: FileName);
2827 if (SecI != O.section_end() && shouldAdjustVA(Section: *SecI))
2828 Address += AdjustVMA;
2829 if ((Address < StartAddress) || (Address > StopAddress))
2830 return;
2831 SymbolRef::Type Type =
2832 unwrapOrError(EO: Symbol.getType(), Args&: FileName, Args&: ArchiveName, Args&: ArchitectureName);
2833 uint32_t Flags =
2834 unwrapOrError(EO: Symbol.getFlags(), Args&: FileName, Args&: ArchiveName, Args&: ArchitectureName);
2835
2836 // Don't ask a Mach-O STAB symbol for its section unless you know that
2837 // STAB symbol's section field refers to a valid section index. Otherwise
2838 // the symbol may error trying to load a section that does not exist.
2839 bool IsSTAB = false;
2840 if (MachO) {
2841 DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2842 uint8_t NType =
2843 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(DRI: SymDRI).n_type
2844 : MachO->getSymbolTableEntry(DRI: SymDRI).n_type);
2845 if (NType & MachO::N_STAB)
2846 IsSTAB = true;
2847 }
2848 section_iterator Section = IsSTAB
2849 ? O.section_end()
2850 : unwrapOrError(EO: Symbol.getSection(), Args&: FileName,
2851 Args&: ArchiveName, Args&: ArchitectureName);
2852
2853 StringRef Name;
2854 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2855 if (Expected<StringRef> NameOrErr = Section->getName())
2856 Name = *NameOrErr;
2857 else
2858 consumeError(Err: NameOrErr.takeError());
2859
2860 } else {
2861 Name = unwrapOrError(EO: Symbol.getName(), Args&: FileName, Args&: ArchiveName,
2862 Args&: ArchitectureName);
2863 }
2864
2865 bool Global = Flags & SymbolRef::SF_Global;
2866 bool Weak = Flags & SymbolRef::SF_Weak;
2867 bool Absolute = Flags & SymbolRef::SF_Absolute;
2868 bool Common = Flags & SymbolRef::SF_Common;
2869 bool Hidden = Flags & SymbolRef::SF_Hidden;
2870
2871 char GlobLoc = ' ';
2872 if ((Section != O.section_end() || Absolute) && !Weak)
2873 GlobLoc = Global ? 'g' : 'l';
2874 char IFunc = ' ';
2875 if (O.isELF()) {
2876 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2877 IFunc = 'i';
2878 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2879 GlobLoc = 'u';
2880 }
2881
2882 char Debug = ' ';
2883 if (DumpDynamic)
2884 Debug = 'D';
2885 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2886 Debug = 'd';
2887
2888 char FileFunc = ' ';
2889 if (Type == SymbolRef::ST_File)
2890 FileFunc = 'f';
2891 else if (Type == SymbolRef::ST_Function)
2892 FileFunc = 'F';
2893 else if (Type == SymbolRef::ST_Data)
2894 FileFunc = 'O';
2895
2896 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2897
2898 outs() << format(Fmt, Vals: Address) << " "
2899 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2900 << (Weak ? 'w' : ' ') // Weak?
2901 << ' ' // Constructor. Not supported yet.
2902 << ' ' // Warning. Not supported yet.
2903 << IFunc // Indirect reference to another symbol.
2904 << Debug // Debugging (d) or dynamic (D) symbol.
2905 << FileFunc // Name of function (F), file (f) or object (O).
2906 << ' ';
2907 if (Absolute) {
2908 outs() << "*ABS*";
2909 } else if (Common) {
2910 outs() << "*COM*";
2911 } else if (Section == O.section_end()) {
2912 if (O.isXCOFF()) {
2913 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(Val: O).toSymbolRef(
2914 Ref: Symbol.getRawDataRefImpl());
2915 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2916 outs() << "*DEBUG*";
2917 else
2918 outs() << "*UND*";
2919 } else
2920 outs() << "*UND*";
2921 } else {
2922 StringRef SegmentName = getSegmentName(MachO, Section: *Section);
2923 if (!SegmentName.empty())
2924 outs() << SegmentName << ",";
2925 StringRef SectionName = unwrapOrError(EO: Section->getName(), Args&: FileName);
2926 outs() << SectionName;
2927 if (O.isXCOFF()) {
2928 std::optional<SymbolRef> SymRef =
2929 getXCOFFSymbolContainingSymbolRef(Obj: cast<XCOFFObjectFile>(Val: O), Sym: Symbol);
2930 if (SymRef) {
2931
2932 Expected<StringRef> NameOrErr = SymRef->getName();
2933
2934 if (NameOrErr) {
2935 outs() << " (csect:";
2936 std::string SymName =
2937 Demangle ? demangle(MangledName: *NameOrErr) : NameOrErr->str();
2938
2939 if (SymbolDescription)
2940 SymName = getXCOFFSymbolDescription(SymbolInfo: createSymbolInfo(Obj: O, Symbol: *SymRef),
2941 SymbolName: SymName);
2942
2943 outs() << ' ' << SymName;
2944 outs() << ") ";
2945 } else
2946 reportWarning(Message: toString(E: NameOrErr.takeError()), File: FileName);
2947 }
2948 }
2949 }
2950
2951 if (Common)
2952 outs() << '\t' << format(Fmt, Vals: static_cast<uint64_t>(Symbol.getAlignment()));
2953 else if (O.isXCOFF())
2954 outs() << '\t'
2955 << format(Fmt, Vals: cast<XCOFFObjectFile>(Val: O).getSymbolSize(
2956 Symb: Symbol.getRawDataRefImpl()));
2957 else if (O.isELF())
2958 outs() << '\t' << format(Fmt, Vals: ELFSymbolRef(Symbol).getSize());
2959 else if (O.isWasm())
2960 outs() << '\t'
2961 << format(Fmt, Vals: static_cast<uint64_t>(
2962 cast<WasmObjectFile>(Val: O).getSymbolSize(Sym: Symbol)));
2963
2964 if (O.isELF()) {
2965 if (!SymbolVersions.empty()) {
2966 const VersionEntry &Ver =
2967 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2968 std::string Str;
2969 if (!Ver.Name.empty())
2970 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2971 outs() << ' ' << left_justify(Str, Width: 12);
2972 }
2973
2974 uint8_t Other = ELFSymbolRef(Symbol).getOther();
2975 switch (Other) {
2976 case ELF::STV_DEFAULT:
2977 break;
2978 case ELF::STV_INTERNAL:
2979 outs() << " .internal";
2980 break;
2981 case ELF::STV_HIDDEN:
2982 outs() << " .hidden";
2983 break;
2984 case ELF::STV_PROTECTED:
2985 outs() << " .protected";
2986 break;
2987 default:
2988 outs() << format(Fmt: " 0x%02x", Vals: Other);
2989 break;
2990 }
2991 } else if (Hidden) {
2992 outs() << " .hidden";
2993 }
2994
2995 std::string SymName = Demangle ? demangle(MangledName: Name) : Name.str();
2996 if (O.isXCOFF() && SymbolDescription)
2997 SymName = getXCOFFSymbolDescription(SymbolInfo: createSymbolInfo(Obj: O, Symbol), SymbolName: SymName);
2998
2999 outs() << ' ' << SymName << '\n';
3000}
3001
3002static void printUnwindInfo(const ObjectFile *O) {
3003 outs() << "Unwind info:\n\n";
3004
3005 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(Val: O))
3006 printCOFFUnwindInfo(O: Coff);
3007 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(Val: O))
3008 printMachOUnwindInfo(O: MachO);
3009 else
3010 // TODO: Extract DWARF dump tool to objdump.
3011 WithColor::error(OS&: errs(), Prefix: ToolName)
3012 << "This operation is only currently supported "
3013 "for COFF and MachO object files.\n";
3014}
3015
3016/// Dump the raw contents of the __clangast section so the output can be piped
3017/// into llvm-bcanalyzer.
3018static void printRawClangAST(const ObjectFile *Obj) {
3019 if (outs().is_displayed()) {
3020 WithColor::error(OS&: errs(), Prefix: ToolName)
3021 << "The -raw-clang-ast option will dump the raw binary contents of "
3022 "the clang ast section.\n"
3023 "Please redirect the output to a file or another program such as "
3024 "llvm-bcanalyzer.\n";
3025 return;
3026 }
3027
3028 StringRef ClangASTSectionName("__clangast");
3029 if (Obj->isCOFF()) {
3030 ClangASTSectionName = "clangast";
3031 }
3032
3033 std::optional<object::SectionRef> ClangASTSection;
3034 for (auto Sec : ToolSectionFilter(O: *Obj)) {
3035 StringRef Name;
3036 if (Expected<StringRef> NameOrErr = Sec.getName())
3037 Name = *NameOrErr;
3038 else
3039 consumeError(Err: NameOrErr.takeError());
3040
3041 if (Name == ClangASTSectionName) {
3042 ClangASTSection = Sec;
3043 break;
3044 }
3045 }
3046 if (!ClangASTSection)
3047 return;
3048
3049 StringRef ClangASTContents =
3050 unwrapOrError(EO: ClangASTSection->getContents(), Args: Obj->getFileName());
3051 outs().write(Ptr: ClangASTContents.data(), Size: ClangASTContents.size());
3052}
3053
3054static void printFaultMaps(const ObjectFile *Obj) {
3055 StringRef FaultMapSectionName;
3056
3057 if (Obj->isELF()) {
3058 FaultMapSectionName = ".llvm_faultmaps";
3059 } else if (Obj->isMachO()) {
3060 FaultMapSectionName = "__llvm_faultmaps";
3061 } else {
3062 WithColor::error(OS&: errs(), Prefix: ToolName)
3063 << "This operation is only currently supported "
3064 "for ELF and Mach-O executable files.\n";
3065 return;
3066 }
3067
3068 std::optional<object::SectionRef> FaultMapSection;
3069
3070 for (auto Sec : ToolSectionFilter(O: *Obj)) {
3071 StringRef Name;
3072 if (Expected<StringRef> NameOrErr = Sec.getName())
3073 Name = *NameOrErr;
3074 else
3075 consumeError(Err: NameOrErr.takeError());
3076
3077 if (Name == FaultMapSectionName) {
3078 FaultMapSection = Sec;
3079 break;
3080 }
3081 }
3082
3083 outs() << "FaultMap table:\n";
3084
3085 if (!FaultMapSection) {
3086 outs() << "<not found>\n";
3087 return;
3088 }
3089
3090 StringRef FaultMapContents =
3091 unwrapOrError(EO: FaultMapSection->getContents(), Args: Obj->getFileName());
3092 FaultMapParser FMP(FaultMapContents.bytes_begin(),
3093 FaultMapContents.bytes_end());
3094
3095 outs() << FMP;
3096}
3097
3098void Dumper::printPrivateHeaders() {
3099 reportError(File: O.getFileName(), Message: "Invalid/Unsupported object file format");
3100}
3101
3102static void printFileHeaders(const ObjectFile *O) {
3103 if (!O->isELF() && !O->isCOFF())
3104 reportError(File: O->getFileName(), Message: "Invalid/Unsupported object file format");
3105
3106 Triple::ArchType AT = O->getArch();
3107 outs() << "architecture: " << Triple::getArchTypeName(Kind: AT) << "\n";
3108 uint64_t Address = unwrapOrError(EO: O->getStartAddress(), Args: O->getFileName());
3109
3110 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
3111 outs() << "start address: "
3112 << "0x" << format(Fmt: Fmt.data(), Vals: Address) << "\n";
3113}
3114
3115static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
3116 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
3117 if (!ModeOrErr) {
3118 WithColor::error(OS&: errs(), Prefix: ToolName) << "ill-formed archive entry.\n";
3119 consumeError(Err: ModeOrErr.takeError());
3120 return;
3121 }
3122 sys::fs::perms Mode = ModeOrErr.get();
3123 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
3124 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
3125 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
3126 outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
3127 outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
3128 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
3129 outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
3130 outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
3131 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
3132
3133 outs() << " ";
3134
3135 outs() << format(Fmt: "%d/%d %6" PRId64 " ", Vals: unwrapOrError(EO: C.getUID(), Args&: Filename),
3136 Vals: unwrapOrError(EO: C.getGID(), Args&: Filename),
3137 Vals: unwrapOrError(EO: C.getRawSize(), Args&: Filename));
3138
3139 StringRef RawLastModified = C.getRawLastModified();
3140 unsigned Seconds;
3141 if (RawLastModified.getAsInteger(Radix: 10, Result&: Seconds))
3142 outs() << "(date: \"" << RawLastModified
3143 << "\" contains non-decimal chars) ";
3144 else {
3145 // Since ctime(3) returns a 26 character string of the form:
3146 // "Sun Sep 16 01:03:52 1973\n\0"
3147 // just print 24 characters.
3148 time_t t = Seconds;
3149 outs() << format(Fmt: "%.24s ", Vals: ctime(timer: &t));
3150 }
3151
3152 StringRef Name = "";
3153 Expected<StringRef> NameOrErr = C.getName();
3154 if (!NameOrErr) {
3155 consumeError(Err: NameOrErr.takeError());
3156 Name = unwrapOrError(EO: C.getRawName(), Args&: Filename);
3157 } else {
3158 Name = NameOrErr.get();
3159 }
3160 outs() << Name << "\n";
3161}
3162
3163// For ELF only now.
3164static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
3165 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Val: Obj)) {
3166 if (Elf->getEType() != ELF::ET_REL)
3167 return true;
3168 }
3169 return false;
3170}
3171
3172static void checkForInvalidStartStopAddress(ObjectFile *Obj,
3173 uint64_t Start, uint64_t Stop) {
3174 if (!shouldWarnForInvalidStartStopAddress(Obj))
3175 return;
3176
3177 for (const SectionRef &Section : Obj->sections())
3178 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
3179 uint64_t BaseAddr = Section.getAddress();
3180 uint64_t Size = Section.getSize();
3181 if ((Start < BaseAddr + Size) && Stop > BaseAddr)
3182 return;
3183 }
3184
3185 if (!HasStartAddressFlag)
3186 reportWarning(Message: "no section has address less than 0x" +
3187 Twine::utohexstr(Val: Stop) + " specified by --stop-address",
3188 File: Obj->getFileName());
3189 else if (!HasStopAddressFlag)
3190 reportWarning(Message: "no section has address greater than or equal to 0x" +
3191 Twine::utohexstr(Val: Start) + " specified by --start-address",
3192 File: Obj->getFileName());
3193 else
3194 reportWarning(Message: "no section overlaps the range [0x" +
3195 Twine::utohexstr(Val: Start) + ",0x" + Twine::utohexstr(Val: Stop) +
3196 ") specified by --start-address/--stop-address",
3197 File: Obj->getFileName());
3198}
3199
3200static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
3201 const Archive::Child *C = nullptr) {
3202 Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(Obj: *O);
3203 if (!DumperOrErr) {
3204 reportError(E: DumperOrErr.takeError(), FileName: O->getFileName(),
3205 ArchiveName: A ? A->getFileName() : "");
3206 return;
3207 }
3208 Dumper &D = **DumperOrErr;
3209
3210 // Avoid other output when using a raw option.
3211 if (!RawClangAST) {
3212 outs() << '\n';
3213 if (A)
3214 outs() << A->getFileName() << "(" << O->getFileName() << ")";
3215 else
3216 outs() << O->getFileName();
3217 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
3218 }
3219
3220 if (HasStartAddressFlag || HasStopAddressFlag)
3221 checkForInvalidStartStopAddress(Obj: O, Start: StartAddress, Stop: StopAddress);
3222
3223 // TODO: Change print* free functions to Dumper member functions to utilitize
3224 // stateful functions like reportUniqueWarning.
3225
3226 // Note: the order here matches GNU objdump for compatability.
3227 StringRef ArchiveName = A ? A->getFileName() : "";
3228 if (ArchiveHeaders && !MachOOpt && C)
3229 printArchiveChild(Filename: ArchiveName, C: *C);
3230 if (FileHeaders)
3231 printFileHeaders(O);
3232 if (PrivateHeaders || FirstPrivateHeader)
3233 D.printPrivateHeaders();
3234 if (SectionHeaders)
3235 printSectionHeaders(Obj&: *O);
3236 if (SymbolTable)
3237 D.printSymbolTable(ArchiveName);
3238 if (DynamicSymbolTable)
3239 D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
3240 /*DumpDynamic=*/true);
3241 if (DwarfDumpType != DIDT_Null) {
3242 std::unique_ptr<DIContext> DICtx = DWARFContext::create(Obj: *O);
3243 // Dump the complete DWARF structure.
3244 DIDumpOptions DumpOpts;
3245 DumpOpts.DumpType = DwarfDumpType;
3246 DICtx->dump(OS&: outs(), DumpOpts);
3247 }
3248 if (Relocations && !Disassemble)
3249 D.printRelocations();
3250 if (DynamicRelocations)
3251 D.printDynamicRelocations();
3252 if (SectionContents)
3253 printSectionContents(Obj: O);
3254 if (Disassemble)
3255 disassembleObject(Obj: O, InlineRelocs: Relocations);
3256 if (UnwindInfo)
3257 printUnwindInfo(O);
3258
3259 // Mach-O specific options:
3260 if (ExportsTrie)
3261 printExportsTrie(O);
3262 if (Rebase)
3263 printRebaseTable(O);
3264 if (Bind)
3265 printBindTable(O);
3266 if (LazyBind)
3267 printLazyBindTable(O);
3268 if (WeakBind)
3269 printWeakBindTable(O);
3270
3271 // Other special sections:
3272 if (RawClangAST)
3273 printRawClangAST(Obj: O);
3274 if (FaultMapSection)
3275 printFaultMaps(Obj: O);
3276 if (Offloading)
3277 dumpOffloadBinary(O: *O);
3278}
3279
3280static void dumpObject(const COFFImportFile *I, const Archive *A,
3281 const Archive::Child *C = nullptr) {
3282 StringRef ArchiveName = A ? A->getFileName() : "";
3283
3284 // Avoid other output when using a raw option.
3285 if (!RawClangAST)
3286 outs() << '\n'
3287 << ArchiveName << "(" << I->getFileName() << ")"
3288 << ":\tfile format COFF-import-file"
3289 << "\n\n";
3290
3291 if (ArchiveHeaders && !MachOOpt && C)
3292 printArchiveChild(Filename: ArchiveName, C: *C);
3293 if (SymbolTable)
3294 printCOFFSymbolTable(I: *I);
3295}
3296
3297/// Dump each object file in \a a;
3298static void dumpArchive(const Archive *A) {
3299 Error Err = Error::success();
3300 unsigned I = -1;
3301 for (auto &C : A->children(Err)) {
3302 ++I;
3303 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
3304 if (!ChildOrErr) {
3305 if (auto E = isNotObjectErrorInvalidFileType(Err: ChildOrErr.takeError()))
3306 reportError(E: std::move(E), FileName: getFileNameForError(C, Index: I), ArchiveName: A->getFileName());
3307 continue;
3308 }
3309 if (ObjectFile *O = dyn_cast<ObjectFile>(Val: &*ChildOrErr.get()))
3310 dumpObject(O, A, C: &C);
3311 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(Val: &*ChildOrErr.get()))
3312 dumpObject(I, A, C: &C);
3313 else
3314 reportError(E: errorCodeToError(EC: object_error::invalid_file_type),
3315 FileName: A->getFileName());
3316 }
3317 if (Err)
3318 reportError(E: std::move(Err), FileName: A->getFileName());
3319}
3320
3321/// Open file and figure out how to dump it.
3322static void dumpInput(StringRef file) {
3323 // If we are using the Mach-O specific object file parser, then let it parse
3324 // the file and process the command line options. So the -arch flags can
3325 // be used to select specific slices, etc.
3326 if (MachOOpt) {
3327 parseInputMachO(Filename: file);
3328 return;
3329 }
3330
3331 // Attempt to open the binary.
3332 OwningBinary<Binary> OBinary = unwrapOrError(EO: createBinary(Path: file), Args&: file);
3333 Binary &Binary = *OBinary.getBinary();
3334
3335 if (Archive *A = dyn_cast<Archive>(Val: &Binary))
3336 dumpArchive(A);
3337 else if (ObjectFile *O = dyn_cast<ObjectFile>(Val: &Binary))
3338 dumpObject(O);
3339 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(Val: &Binary))
3340 parseInputMachO(UB);
3341 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(Val: &Binary))
3342 dumpOffloadSections(OB: *OB);
3343 else
3344 reportError(E: errorCodeToError(EC: object_error::invalid_file_type), FileName: file);
3345}
3346
3347template <typename T>
3348static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
3349 T &Value) {
3350 if (const opt::Arg *A = InputArgs.getLastArg(Ids: ID)) {
3351 StringRef V(A->getValue());
3352 if (!llvm::to_integer(V, Value, 0)) {
3353 reportCmdLineError(Message: A->getSpelling() +
3354 ": expected a non-negative integer, but got '" + V +
3355 "'");
3356 }
3357 }
3358}
3359
3360static object::BuildID parseBuildIDArg(const opt::Arg *A) {
3361 StringRef V(A->getValue());
3362 object::BuildID BID = parseBuildID(Str: V);
3363 if (BID.empty())
3364 reportCmdLineError(Message: A->getSpelling() + ": expected a build ID, but got '" +
3365 V + "'");
3366 return BID;
3367}
3368
3369void objdump::invalidArgValue(const opt::Arg *A) {
3370 reportCmdLineError(Message: "'" + StringRef(A->getValue()) +
3371 "' is not a valid value for '" + A->getSpelling() + "'");
3372}
3373
3374static std::vector<std::string>
3375commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
3376 std::vector<std::string> Values;
3377 for (StringRef Value : InputArgs.getAllArgValues(Id: ID)) {
3378 llvm::SmallVector<StringRef, 2> SplitValues;
3379 llvm::SplitString(Source: Value, OutFragments&: SplitValues, Delimiters: ",");
3380 for (StringRef SplitValue : SplitValues)
3381 Values.push_back(x: SplitValue.str());
3382 }
3383 return Values;
3384}
3385
3386static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
3387 MachOOpt = true;
3388 FullLeadingAddr = true;
3389 PrintImmHex = true;
3390
3391 ArchName = InputArgs.getLastArgValue(Id: OTOOL_arch).str();
3392 LinkOptHints = InputArgs.hasArg(OTOOL_C);
3393 if (InputArgs.hasArg(OTOOL_d))
3394 FilterSections.push_back(x: "__DATA,__data");
3395 DylibId = InputArgs.hasArg(OTOOL_D);
3396 UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3397 DataInCode = InputArgs.hasArg(OTOOL_G);
3398 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3399 IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3400 ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3401 PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3402 DylibsUsed = InputArgs.hasArg(OTOOL_L);
3403 MCPU = InputArgs.getLastArgValue(Id: OTOOL_mcpu_EQ).str();
3404 ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3405 DisSymName = InputArgs.getLastArgValue(Id: OTOOL_p).str();
3406 InfoPlist = InputArgs.hasArg(OTOOL_P);
3407 Relocations = InputArgs.hasArg(OTOOL_r);
3408 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3409 auto Filter = (A->getValue(N: 0) + StringRef(",") + A->getValue(N: 1)).str();
3410 FilterSections.push_back(Filter);
3411 }
3412 if (InputArgs.hasArg(OTOOL_t))
3413 FilterSections.push_back(x: "__TEXT,__text");
3414 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3415 InputArgs.hasArg(OTOOL_o);
3416 SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3417 if (InputArgs.hasArg(OTOOL_x))
3418 FilterSections.push_back(x: ",__text");
3419 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3420
3421 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3422 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3423
3424 InputFilenames = InputArgs.getAllArgValues(Id: OTOOL_INPUT);
3425 if (InputFilenames.empty())
3426 reportCmdLineError(Message: "no input file");
3427
3428 for (const Arg *A : InputArgs) {
3429 const Option &O = A->getOption();
3430 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3431 reportCmdLineWarning(Message: O.getPrefixedName() +
3432 " is obsolete and not implemented");
3433 }
3434 }
3435}
3436
3437static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3438 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3439 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3440 ArchName = InputArgs.getLastArgValue(Id: OBJDUMP_arch_name_EQ).str();
3441 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3442 Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3443 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3444 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3445 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3446 TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3447 DisassembleSymbols =
3448 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3449 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3450 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3451 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3452 .Case(S: "frames", Value: DIDT_DebugFrame)
3453 .Default(Value: DIDT_Null);
3454 if (DwarfDumpType == DIDT_Null)
3455 invalidArgValue(A);
3456 }
3457 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3458 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3459 Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3460 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3461 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3462 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3463 InputFilenames = InputArgs.getAllArgValues(Id: OBJDUMP_INPUT);
3464 MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3465 MCPU = InputArgs.getLastArgValue(Id: OBJDUMP_mcpu_EQ).str();
3466 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3467 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3468 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3469 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3470 Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3471 PrintImmHex =
3472 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3473 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3474 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3475 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3476 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3477 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3478 PrintSource = InputArgs.hasArg(OBJDUMP_source);
3479 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3480 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3481 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3482 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3483 SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3484 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3485 PrettyPGOAnalysisMap = InputArgs.hasArg(OBJDUMP_pretty_pgo_analysis_map);
3486 if (PrettyPGOAnalysisMap && !SymbolizeOperands)
3487 reportCmdLineWarning(Message: "--symbolize-operands must be enabled for "
3488 "--pretty-pgo-analysis-map to have an effect");
3489 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3490 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3491 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3492 Wide = InputArgs.hasArg(OBJDUMP_wide);
3493 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3494 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3495 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3496 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3497 .Case(S: "ascii", Value: DVASCII)
3498 .Case(S: "unicode", Value: DVUnicode)
3499 .Default(Value: DVInvalid);
3500 if (DbgVariables == DVInvalid)
3501 invalidArgValue(A);
3502 }
3503 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) {
3504 DisassemblyColor = StringSwitch<ColorOutput>(A->getValue())
3505 .Case(S: "on", Value: ColorOutput::Enable)
3506 .Case(S: "off", Value: ColorOutput::Disable)
3507 .Case(S: "terminal", Value: ColorOutput::Auto)
3508 .Default(Value: ColorOutput::Invalid);
3509 if (DisassemblyColor == ColorOutput::Invalid)
3510 invalidArgValue(A);
3511 }
3512
3513 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3514
3515 parseMachOOptions(InputArgs);
3516
3517 // Parse -M (--disassembler-options) and deprecated
3518 // --x86-asm-syntax={att,intel}.
3519 //
3520 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3521 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3522 // called too late. For now we have to use the internal cl::opt option.
3523 const char *AsmSyntax = nullptr;
3524 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3525 OBJDUMP_x86_asm_syntax_att,
3526 OBJDUMP_x86_asm_syntax_intel)) {
3527 switch (A->getOption().getID()) {
3528 case OBJDUMP_x86_asm_syntax_att:
3529 AsmSyntax = "--x86-asm-syntax=att";
3530 continue;
3531 case OBJDUMP_x86_asm_syntax_intel:
3532 AsmSyntax = "--x86-asm-syntax=intel";
3533 continue;
3534 }
3535
3536 SmallVector<StringRef, 2> Values;
3537 llvm::SplitString(A->getValue(), Values, ",");
3538 for (StringRef V : Values) {
3539 if (V == "att")
3540 AsmSyntax = "--x86-asm-syntax=att";
3541 else if (V == "intel")
3542 AsmSyntax = "--x86-asm-syntax=intel";
3543 else
3544 DisassemblerOptions.push_back(V.str());
3545 }
3546 }
3547 SmallVector<const char *> Args = {"llvm-objdump"};
3548 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm))
3549 Args.push_back(A->getValue());
3550 if (AsmSyntax)
3551 Args.push_back(Elt: AsmSyntax);
3552 if (Args.size() > 1)
3553 llvm::cl::ParseCommandLineOptions(argc: Args.size(), argv: Args.data());
3554
3555 // Look up any provided build IDs, then append them to the input filenames.
3556 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3557 object::BuildID BuildID = parseBuildIDArg(A);
3558 std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3559 if (!Path) {
3560 reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3561 A->getValue() + "'");
3562 }
3563 InputFilenames.push_back(std::move(*Path));
3564 }
3565
3566 // objdump defaults to a.out if no filenames specified.
3567 if (InputFilenames.empty())
3568 InputFilenames.push_back(x: "a.out");
3569}
3570
3571int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) {
3572 using namespace llvm;
3573
3574 ToolName = argv[0];
3575 std::unique_ptr<CommonOptTable> T;
3576 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3577
3578 StringRef Stem = sys::path::stem(path: ToolName);
3579 auto Is = [=](StringRef Tool) {
3580 // We need to recognize the following filenames:
3581 //
3582 // llvm-objdump -> objdump
3583 // llvm-otool-10.exe -> otool
3584 // powerpc64-unknown-freebsd13-objdump -> objdump
3585 auto I = Stem.rfind_insensitive(Str: Tool);
3586 return I != StringRef::npos &&
3587 (I + Tool.size() == Stem.size() || !isAlnum(C: Stem[I + Tool.size()]));
3588 };
3589 if (Is("otool")) {
3590 T = std::make_unique<OtoolOptTable>();
3591 Unknown = OTOOL_UNKNOWN;
3592 HelpFlag = OTOOL_help;
3593 HelpHiddenFlag = OTOOL_help_hidden;
3594 VersionFlag = OTOOL_version;
3595 } else {
3596 T = std::make_unique<ObjdumpOptTable>();
3597 Unknown = OBJDUMP_UNKNOWN;
3598 HelpFlag = OBJDUMP_help;
3599 HelpHiddenFlag = OBJDUMP_help_hidden;
3600 VersionFlag = OBJDUMP_version;
3601 }
3602
3603 BumpPtrAllocator A;
3604 StringSaver Saver(A);
3605 opt::InputArgList InputArgs =
3606 T->parseArgs(Argc: argc, Argv: argv, Unknown, Saver,
3607 ErrorFn: [&](StringRef Msg) { reportCmdLineError(Message: Msg); });
3608
3609 if (InputArgs.size() == 0 || InputArgs.hasArg(Ids: HelpFlag)) {
3610 T->printHelp(Argv0: ToolName);
3611 return 0;
3612 }
3613 if (InputArgs.hasArg(Ids: HelpHiddenFlag)) {
3614 T->printHelp(Argv0: ToolName, /*ShowHidden=*/true);
3615 return 0;
3616 }
3617
3618 // Initialize targets and assembly printers/parsers.
3619 InitializeAllTargetInfos();
3620 InitializeAllTargetMCs();
3621 InitializeAllDisassemblers();
3622
3623 if (InputArgs.hasArg(Ids: VersionFlag)) {
3624 cl::PrintVersionMessage();
3625 if (!Is("otool")) {
3626 outs() << '\n';
3627 TargetRegistry::printRegisteredTargetsForVersion(OS&: outs());
3628 }
3629 return 0;
3630 }
3631
3632 // Initialize debuginfod.
3633 const bool ShouldUseDebuginfodByDefault =
3634 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3635 std::vector<std::string> DebugFileDirectories =
3636 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3637 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3638 ShouldUseDebuginfodByDefault)) {
3639 HTTPClient::initialize();
3640 BIDFetcher =
3641 std::make_unique<DebuginfodFetcher>(args: std::move(DebugFileDirectories));
3642 } else {
3643 BIDFetcher =
3644 std::make_unique<BuildIDFetcher>(args: std::move(DebugFileDirectories));
3645 }
3646
3647 if (Is("otool"))
3648 parseOtoolOptions(InputArgs);
3649 else
3650 parseObjdumpOptions(InputArgs);
3651
3652 if (StartAddress >= StopAddress)
3653 reportCmdLineError(Message: "start address should be less than stop address");
3654
3655 // Removes trailing separators from prefix.
3656 while (!Prefix.empty() && sys::path::is_separator(value: Prefix.back()))
3657 Prefix.pop_back();
3658
3659 if (AllHeaders)
3660 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3661 SectionHeaders = SymbolTable = true;
3662
3663 if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3664 !DisassembleSymbols.empty())
3665 Disassemble = true;
3666
3667 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3668 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3669 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3670 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3671 !(MachOOpt &&
3672 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3673 DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3674 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3675 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3676 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3677 T->printHelp(Argv0: ToolName);
3678 return 2;
3679 }
3680
3681 DisasmSymbolSet.insert(begin: DisassembleSymbols.begin(), end: DisassembleSymbols.end());
3682
3683 llvm::for_each(Range&: InputFilenames, F: dumpInput);
3684
3685 warnOnNoMatchForSections();
3686
3687 return EXIT_SUCCESS;
3688}
3689

source code of llvm/tools/llvm-objdump/llvm-objdump.cpp