1/* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45#include "config.h"
46#define INCLUDE_ALGORITHM /* reverse */
47#include "system.h"
48#include "coretypes.h"
49#include "backend.h"
50#include "target.h"
51#include "rtl.h"
52#include "tree.h"
53#include "cfghooks.h"
54#include "df.h"
55#include "memmodel.h"
56#include "tm_p.h"
57#include "insn-config.h"
58#include "regs.h"
59#include "emit-rtl.h"
60#include "recog.h"
61#include "cgraph.h"
62#include "tree-pretty-print.h" /* for dump_function_header */
63#include "varasm.h"
64#include "insn-attr.h"
65#include "conditions.h"
66#include "flags.h"
67#include "output.h"
68#include "except.h"
69#include "rtl-error.h"
70#include "toplev.h" /* exact_log2, floor_log2 */
71#include "reload.h"
72#include "intl.h"
73#include "cfgrtl.h"
74#include "debug.h"
75#include "tree-pass.h"
76#include "tree-ssa.h"
77#include "cfgloop.h"
78#include "stringpool.h"
79#include "attribs.h"
80#include "asan.h"
81#include "rtl-iter.h"
82#include "print-rtl.h"
83#include "function-abi.h"
84#include "common/common-target.h"
85#include "diagnostic.h"
86
87#include "dwarf2out.h"
88
89/* Most ports don't need to define CC_STATUS_INIT.
90 So define a null default for it to save conditionalization later. */
91#ifndef CC_STATUS_INIT
92#define CC_STATUS_INIT
93#endif
94
95/* Is the given character a logical line separator for the assembler? */
96#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
97#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
98#endif
99
100#ifndef JUMP_TABLES_IN_TEXT_SECTION
101#define JUMP_TABLES_IN_TEXT_SECTION 0
102#endif
103
104/* Bitflags used by final_scan_insn. */
105#define SEEN_NOTE 1
106#define SEEN_EMITTED 2
107#define SEEN_NEXT_VIEW 4
108
109/* Last insn processed by final_scan_insn. */
110static rtx_insn *debug_insn;
111rtx_insn *current_output_insn;
112
113/* Line number of last NOTE. */
114static int last_linenum;
115
116/* Column number of last NOTE. */
117static int last_columnnum;
118
119/* Discriminator written to assembly. */
120static int last_discriminator;
121
122/* Compute discriminator to be written to assembly for current instruction.
123 Note: actual usage depends on loc_discriminator_kind setting. */
124static inline int compute_discriminator (location_t loc);
125
126/* Highest line number in current block. */
127static int high_block_linenum;
128
129/* Likewise for function. */
130static int high_function_linenum;
131
132/* Filename of last NOTE. */
133static const char *last_filename;
134
135/* Override filename, line and column number. */
136static const char *override_filename;
137static int override_linenum;
138static int override_columnnum;
139static int override_discriminator;
140
141/* Whether to force emission of a line note before the next insn. */
142static bool force_source_line = false;
143
144extern const int length_unit_log; /* This is defined in insn-attrtab.cc. */
145
146/* Nonzero while outputting an `asm' with operands.
147 This means that inconsistencies are the user's fault, so don't die.
148 The precise value is the insn being output, to pass to error_for_asm. */
149const rtx_insn *this_is_asm_operands;
150
151/* Number of operands of this insn, for an `asm' with operands. */
152static unsigned int insn_noperands;
153
154/* Compare optimization flag. */
155
156static rtx last_ignored_compare = 0;
157
158/* Assign a unique number to each insn that is output.
159 This can be used to generate unique local labels. */
160
161static int insn_counter = 0;
162
163/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
164
165static int block_depth;
166
167/* True if have enabled APP processing of our assembler output. */
168
169static bool app_on;
170
171/* If we are outputting an insn sequence, this contains the sequence rtx.
172 Zero otherwise. */
173
174rtx_sequence *final_sequence;
175
176#ifdef ASSEMBLER_DIALECT
177
178/* Number of the assembler dialect to use, starting at 0. */
179static int dialect_number;
180#endif
181
182/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
183rtx current_insn_predicate;
184
185/* True if printing into -fdump-final-insns= dump. */
186bool final_insns_dump_p;
187
188/* True if profile_function should be called, but hasn't been called yet. */
189static bool need_profile_function;
190
191static int asm_insn_count (rtx);
192static void profile_function (FILE *);
193static void profile_after_prologue (FILE *);
194static bool notice_source_line (rtx_insn *, bool *);
195static rtx walk_alter_subreg (rtx *, bool *);
196static void output_asm_name (void);
197static void output_alternate_entry_point (FILE *, rtx_insn *);
198static tree get_mem_expr_from_op (rtx, int *);
199static void output_asm_operand_names (rtx *, int *, int);
200#ifdef LEAF_REGISTERS
201static void leaf_renumber_regs (rtx_insn *);
202#endif
203static int align_fuzz (rtx, rtx, int, unsigned);
204static void collect_fn_hard_reg_usage (void);
205
206/* Initialize data in final at the beginning of a compilation. */
207
208void
209init_final (const char *filename ATTRIBUTE_UNUSED)
210{
211 app_on = 0;
212 final_sequence = 0;
213
214#ifdef ASSEMBLER_DIALECT
215 dialect_number = ASSEMBLER_DIALECT;
216#endif
217}
218
219/* Default target function prologue and epilogue assembler output.
220
221 If not overridden for epilogue code, then the function body itself
222 contains return instructions wherever needed. */
223void
224default_function_pro_epilogue (FILE *)
225{
226}
227
228void
229default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
230 tree decl ATTRIBUTE_UNUSED,
231 bool new_is_cold ATTRIBUTE_UNUSED)
232{
233}
234
235/* Default target hook that outputs nothing to a stream. */
236void
237no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
238{
239}
240
241/* Enable APP processing of subsequent output.
242 Used before the output from an `asm' statement. */
243
244void
245app_enable (void)
246{
247 if (! app_on)
248 {
249 fputs (ASM_APP_ON, stream: asm_out_file);
250 app_on = 1;
251 }
252}
253
254/* Disable APP processing of subsequent output.
255 Called from varasm.cc before most kinds of output. */
256
257void
258app_disable (void)
259{
260 if (app_on)
261 {
262 fputs (ASM_APP_OFF, stream: asm_out_file);
263 app_on = 0;
264 }
265}
266
267/* Return the number of slots filled in the current
268 delayed branch sequence (we don't count the insn needing the
269 delay slot). Zero if not in a delayed branch sequence. */
270
271int
272dbr_sequence_length (void)
273{
274 if (final_sequence != 0)
275 return XVECLEN (final_sequence, 0) - 1;
276 else
277 return 0;
278}
279
280/* The next two pages contain routines used to compute the length of an insn
281 and to shorten branches. */
282
283/* Arrays for insn lengths, and addresses. The latter is referenced by
284 `insn_current_length'. */
285
286static int *insn_lengths;
287
288vec<int> insn_addresses_;
289
290/* Max uid for which the above arrays are valid. */
291static int insn_lengths_max_uid;
292
293/* Address of insn being processed. Used by `insn_current_length'. */
294int insn_current_address;
295
296/* Address of insn being processed in previous iteration. */
297int insn_last_address;
298
299/* known invariant alignment of insn being processed. */
300int insn_current_align;
301
302/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
303 gives the next following alignment insn that increases the known
304 alignment, or NULL_RTX if there is no such insn.
305 For any alignment obtained this way, we can again index uid_align with
306 its uid to obtain the next following align that in turn increases the
307 alignment, till we reach NULL_RTX; the sequence obtained this way
308 for each insn we'll call the alignment chain of this insn in the following
309 comments. */
310
311static rtx *uid_align;
312static int *uid_shuid;
313static vec<align_flags> label_align;
314
315/* Indicate that branch shortening hasn't yet been done. */
316
317void
318init_insn_lengths (void)
319{
320 if (uid_shuid)
321 {
322 free (ptr: uid_shuid);
323 uid_shuid = 0;
324 }
325 if (insn_lengths)
326 {
327 free (ptr: insn_lengths);
328 insn_lengths = 0;
329 insn_lengths_max_uid = 0;
330 }
331 if (HAVE_ATTR_length)
332 INSN_ADDRESSES_FREE ();
333 if (uid_align)
334 {
335 free (ptr: uid_align);
336 uid_align = 0;
337 }
338}
339
340/* Obtain the current length of an insn. If branch shortening has been done,
341 get its actual length. Otherwise, use FALLBACK_FN to calculate the
342 length. */
343static int
344get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
345{
346 rtx body;
347 int i;
348 int length = 0;
349
350 if (!HAVE_ATTR_length)
351 return 0;
352
353 if (insn_lengths_max_uid > INSN_UID (insn))
354 return insn_lengths[INSN_UID (insn)];
355 else
356 switch (GET_CODE (insn))
357 {
358 case NOTE:
359 case BARRIER:
360 case CODE_LABEL:
361 case DEBUG_INSN:
362 return 0;
363
364 case CALL_INSN:
365 case JUMP_INSN:
366 length = fallback_fn (insn);
367 break;
368
369 case INSN:
370 body = PATTERN (insn);
371 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
372 return 0;
373
374 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
375 length = asm_insn_count (body) * fallback_fn (insn);
376 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: body))
377 for (i = 0; i < seq->len (); i++)
378 length += get_attr_length_1 (insn: seq->insn (index: i), fallback_fn);
379 else
380 length = fallback_fn (insn);
381 break;
382
383 default:
384 break;
385 }
386
387#ifdef ADJUST_INSN_LENGTH
388 ADJUST_INSN_LENGTH (insn, length);
389#endif
390 return length;
391}
392
393/* Obtain the current length of an insn. If branch shortening has been done,
394 get its actual length. Otherwise, get its maximum length. */
395int
396get_attr_length (rtx_insn *insn)
397{
398 return get_attr_length_1 (insn, fallback_fn: insn_default_length);
399}
400
401/* Obtain the current length of an insn. If branch shortening has been done,
402 get its actual length. Otherwise, get its minimum length. */
403int
404get_attr_min_length (rtx_insn *insn)
405{
406 return get_attr_length_1 (insn, fallback_fn: insn_min_length);
407}
408
409/* Code to handle alignment inside shorten_branches. */
410
411/* Here is an explanation how the algorithm in align_fuzz can give
412 proper results:
413
414 Call a sequence of instructions beginning with alignment point X
415 and continuing until the next alignment point `block X'. When `X'
416 is used in an expression, it means the alignment value of the
417 alignment point.
418
419 Call the distance between the start of the first insn of block X, and
420 the end of the last insn of block X `IX', for the `inner size of X'.
421 This is clearly the sum of the instruction lengths.
422
423 Likewise with the next alignment-delimited block following X, which we
424 shall call block Y.
425
426 Call the distance between the start of the first insn of block X, and
427 the start of the first insn of block Y `OX', for the `outer size of X'.
428
429 The estimated padding is then OX - IX.
430
431 OX can be safely estimated as
432
433 if (X >= Y)
434 OX = round_up(IX, Y)
435 else
436 OX = round_up(IX, X) + Y - X
437
438 Clearly est(IX) >= real(IX), because that only depends on the
439 instruction lengths, and those being overestimated is a given.
440
441 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
442 we needn't worry about that when thinking about OX.
443
444 When X >= Y, the alignment provided by Y adds no uncertainty factor
445 for branch ranges starting before X, so we can just round what we have.
446 But when X < Y, we don't know anything about the, so to speak,
447 `middle bits', so we have to assume the worst when aligning up from an
448 address mod X to one mod Y, which is Y - X. */
449
450#ifndef LABEL_ALIGN
451#define LABEL_ALIGN(LABEL) align_labels
452#endif
453
454#ifndef LOOP_ALIGN
455#define LOOP_ALIGN(LABEL) align_loops
456#endif
457
458#ifndef LABEL_ALIGN_AFTER_BARRIER
459#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
460#endif
461
462#ifndef JUMP_ALIGN
463#define JUMP_ALIGN(LABEL) align_jumps
464#endif
465
466#ifndef ADDR_VEC_ALIGN
467static int
468final_addr_vec_align (rtx_jump_table_data *addr_vec)
469{
470 int align = GET_MODE_SIZE (mode: addr_vec->get_data_mode ());
471
472 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
473 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
474 return exact_log2 (x: align);
475
476}
477
478#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
479#endif
480
481#ifndef INSN_LENGTH_ALIGNMENT
482#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
483#endif
484
485#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
486
487static int min_labelno, max_labelno;
488
489#define LABEL_TO_ALIGNMENT(LABEL) \
490 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
491
492/* For the benefit of port specific code do this also as a function. */
493
494align_flags
495label_to_alignment (rtx label)
496{
497 if (CODE_LABEL_NUMBER (label) <= max_labelno)
498 return LABEL_TO_ALIGNMENT (label);
499 return align_flags ();
500}
501
502/* The differences in addresses
503 between a branch and its target might grow or shrink depending on
504 the alignment the start insn of the range (the branch for a forward
505 branch or the label for a backward branch) starts out on; if these
506 differences are used naively, they can even oscillate infinitely.
507 We therefore want to compute a 'worst case' address difference that
508 is independent of the alignment the start insn of the range end
509 up on, and that is at least as large as the actual difference.
510 The function align_fuzz calculates the amount we have to add to the
511 naively computed difference, by traversing the part of the alignment
512 chain of the start insn of the range that is in front of the end insn
513 of the range, and considering for each alignment the maximum amount
514 that it might contribute to a size increase.
515
516 For casesi tables, we also want to know worst case minimum amounts of
517 address difference, in case a machine description wants to introduce
518 some common offset that is added to all offsets in a table.
519 For this purpose, align_fuzz with a growth argument of 0 computes the
520 appropriate adjustment. */
521
522/* Compute the maximum delta by which the difference of the addresses of
523 START and END might grow / shrink due to a different address for start
524 which changes the size of alignment insns between START and END.
525 KNOWN_ALIGN_LOG is the alignment known for START.
526 GROWTH should be ~0 if the objective is to compute potential code size
527 increase, and 0 if the objective is to compute potential shrink.
528 The return value is undefined for any other value of GROWTH. */
529
530static int
531align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
532{
533 int uid = INSN_UID (insn: start);
534 rtx align_label;
535 int known_align = 1 << known_align_log;
536 int end_shuid = INSN_SHUID (end);
537 int fuzz = 0;
538
539 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
540 {
541 int align_addr, new_align;
542
543 uid = INSN_UID (insn: align_label);
544 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
545 if (uid_shuid[uid] > end_shuid)
546 break;
547 align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
548 new_align = 1 << alignment.levels[0].log;
549 if (new_align < known_align)
550 continue;
551 fuzz += (-align_addr ^ growth) & (new_align - known_align);
552 known_align = new_align;
553 }
554 return fuzz;
555}
556
557/* Compute a worst-case reference address of a branch so that it
558 can be safely used in the presence of aligned labels. Since the
559 size of the branch itself is unknown, the size of the branch is
560 not included in the range. I.e. for a forward branch, the reference
561 address is the end address of the branch as known from the previous
562 branch shortening pass, minus a value to account for possible size
563 increase due to alignment. For a backward branch, it is the start
564 address of the branch as known from the current pass, plus a value
565 to account for possible size increase due to alignment.
566 NB.: Therefore, the maximum offset allowed for backward branches needs
567 to exclude the branch size. */
568
569int
570insn_current_reference_address (rtx_insn *branch)
571{
572 rtx dest;
573 int seq_uid;
574
575 if (! INSN_ADDRESSES_SET_P ())
576 return 0;
577
578 rtx_insn *seq = NEXT_INSN (insn: PREV_INSN (insn: branch));
579 seq_uid = INSN_UID (insn: seq);
580 if (!jump_to_label_p (branch))
581 /* This can happen for example on the PA; the objective is to know the
582 offset to address something in front of the start of the function.
583 Thus, we can treat it like a backward branch.
584 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
585 any alignment we'd encounter, so we skip the call to align_fuzz. */
586 return insn_current_address;
587 dest = JUMP_LABEL (branch);
588
589 /* BRANCH has no proper alignment chain set, so use SEQ.
590 BRANCH also has no INSN_SHUID. */
591 if (INSN_SHUID (seq) < INSN_SHUID (dest))
592 {
593 /* Forward branch. */
594 return (insn_last_address + insn_lengths[seq_uid]
595 - align_fuzz (start: seq, end: dest, known_align_log: length_unit_log, growth: ~0));
596 }
597 else
598 {
599 /* Backward branch. */
600 return (insn_current_address
601 + align_fuzz (start: dest, end: seq, known_align_log: length_unit_log, growth: ~0));
602 }
603}
604
605/* Compute branch alignments based on CFG profile. */
606
607void
608compute_alignments (void)
609{
610 basic_block bb;
611 align_flags max_alignment;
612
613 label_align.truncate (size: 0);
614
615 max_labelno = max_label_num ();
616 min_labelno = get_first_label_num ();
617 label_align.safe_grow_cleared (len: max_labelno - min_labelno + 1, exact: true);
618
619 /* If not optimizing or optimizing for size, don't assign any alignments. */
620 if (! optimize || optimize_function_for_size_p (cfun))
621 return;
622
623 if (dump_file)
624 {
625 dump_reg_info (dump_file);
626 dump_flow_info (dump_file, TDF_DETAILS);
627 flow_loops_dump (dump_file, NULL, 1);
628 }
629 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
630 profile_count count_threshold = cfun->cfg->count_max / param_align_threshold;
631
632 if (dump_file)
633 {
634 fprintf (stream: dump_file, format: "count_max: ");
635 cfun->cfg->count_max.dump (f: dump_file);
636 fprintf (stream: dump_file, format: "\n");
637 }
638 FOR_EACH_BB_FN (bb, cfun)
639 {
640 rtx_insn *label = BB_HEAD (bb);
641 bool has_fallthru = 0;
642 edge e;
643 edge_iterator ei;
644
645 if (!LABEL_P (label)
646 || optimize_bb_for_size_p (bb))
647 {
648 if (dump_file)
649 fprintf (stream: dump_file,
650 format: "BB %4i loop %2i loop_depth %2i skipped.\n",
651 bb->index,
652 bb->loop_father->num,
653 bb_loop_depth (bb));
654 continue;
655 }
656 max_alignment = LABEL_ALIGN (label);
657 profile_count fallthru_count = profile_count::zero ();
658 profile_count branch_count = profile_count::zero ();
659
660 FOR_EACH_EDGE (e, ei, bb->preds)
661 {
662 if (e->flags & EDGE_FALLTHRU)
663 has_fallthru = 1, fallthru_count += e->count ();
664 else
665 branch_count += e->count ();
666 }
667 if (dump_file)
668 {
669 fprintf (stream: dump_file, format: "BB %4i loop %2i loop_depth"
670 " %2i fall ",
671 bb->index, bb->loop_father->num,
672 bb_loop_depth (bb));
673 fallthru_count.dump (f: dump_file);
674 fprintf (stream: dump_file, format: " branch ");
675 branch_count.dump (f: dump_file);
676 if (!bb->loop_father->inner && bb->loop_father->num)
677 fprintf (stream: dump_file, format: " inner_loop");
678 if (bb->loop_father->header == bb)
679 fprintf (stream: dump_file, format: " loop_header");
680 fprintf (stream: dump_file, format: "\n");
681 }
682 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
683 continue;
684
685 /* There are two purposes to align block with no fallthru incoming edge:
686 1) to avoid fetch stalls when branch destination is near cache boundary
687 2) to improve cache efficiency in case the previous block is not executed
688 (so it does not need to be in the cache).
689
690 We to catch first case, we align frequently executed blocks.
691 To catch the second, we align blocks that are executed more frequently
692 than the predecessor and the predecessor is likely to not be executed
693 when function is called. */
694
695 if (!has_fallthru
696 && (branch_count > count_threshold
697 || (bb->count > bb->prev_bb->count * 10
698 && (bb->prev_bb->count
699 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->count / 2))))
700 {
701 align_flags alignment = JUMP_ALIGN (label);
702 if (dump_file)
703 fprintf (stream: dump_file, format: " jump alignment added.\n");
704 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
705 }
706 /* In case block is frequent and reached mostly by non-fallthru edge,
707 align it. It is most likely a first block of loop. */
708 if (has_fallthru
709 && !(single_succ_p (bb)
710 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
711 && optimize_bb_for_speed_p (bb)
712 && branch_count + fallthru_count > count_threshold
713 && (branch_count > fallthru_count * param_align_loop_iterations))
714 {
715 align_flags alignment = LOOP_ALIGN (label);
716 if (dump_file)
717 fprintf (stream: dump_file, format: " internal loop alignment added.\n");
718 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
719 }
720 LABEL_TO_ALIGNMENT (label) = max_alignment;
721 }
722
723 loop_optimizer_finalize ();
724 free_dominance_info (CDI_DOMINATORS);
725}
726
727/* Grow the LABEL_ALIGN array after new labels are created. */
728
729static void
730grow_label_align (void)
731{
732 int old = max_labelno;
733 int n_labels;
734 int n_old_labels;
735
736 max_labelno = max_label_num ();
737
738 n_labels = max_labelno - min_labelno + 1;
739 n_old_labels = old - min_labelno + 1;
740
741 label_align.safe_grow_cleared (len: n_labels, exact: true);
742
743 /* Range of labels grows monotonically in the function. Failing here
744 means that the initialization of array got lost. */
745 gcc_assert (n_old_labels <= n_labels);
746}
747
748/* Update the already computed alignment information. LABEL_PAIRS is a vector
749 made up of pairs of labels for which the alignment information of the first
750 element will be copied from that of the second element. */
751
752void
753update_alignments (vec<rtx> &label_pairs)
754{
755 unsigned int i = 0;
756 rtx iter, label = NULL_RTX;
757
758 if (max_labelno != max_label_num ())
759 grow_label_align ();
760
761 FOR_EACH_VEC_ELT (label_pairs, i, iter)
762 if (i & 1)
763 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
764 else
765 label = iter;
766}
767
768namespace {
769
770const pass_data pass_data_compute_alignments =
771{
772 .type: RTL_PASS, /* type */
773 .name: "alignments", /* name */
774 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
775 .tv_id: TV_NONE, /* tv_id */
776 .properties_required: 0, /* properties_required */
777 .properties_provided: 0, /* properties_provided */
778 .properties_destroyed: 0, /* properties_destroyed */
779 .todo_flags_start: 0, /* todo_flags_start */
780 .todo_flags_finish: 0, /* todo_flags_finish */
781};
782
783class pass_compute_alignments : public rtl_opt_pass
784{
785public:
786 pass_compute_alignments (gcc::context *ctxt)
787 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
788 {}
789
790 /* opt_pass methods: */
791 unsigned int execute (function *) final override
792 {
793 compute_alignments ();
794 return 0;
795 }
796
797}; // class pass_compute_alignments
798
799} // anon namespace
800
801rtl_opt_pass *
802make_pass_compute_alignments (gcc::context *ctxt)
803{
804 return new pass_compute_alignments (ctxt);
805}
806
807
808/* Make a pass over all insns and compute their actual lengths by shortening
809 any branches of variable length if possible. */
810
811/* shorten_branches might be called multiple times: for example, the SH
812 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
813 In order to do this, it needs proper length information, which it obtains
814 by calling shorten_branches. This cannot be collapsed with
815 shorten_branches itself into a single pass unless we also want to integrate
816 reorg.cc, since the branch splitting exposes new instructions with delay
817 slots. */
818
819void
820shorten_branches (rtx_insn *first)
821{
822 rtx_insn *insn;
823 int max_uid;
824 int i;
825 rtx_insn *seq;
826 bool something_changed = true;
827 char *varying_length;
828 rtx body;
829 int uid;
830 rtx align_tab[MAX_CODE_ALIGN + 1];
831
832 /* Compute maximum UID and allocate label_align / uid_shuid. */
833 max_uid = get_max_uid ();
834
835 /* Free uid_shuid before reallocating it. */
836 free (ptr: uid_shuid);
837
838 uid_shuid = XNEWVEC (int, max_uid);
839
840 if (max_labelno != max_label_num ())
841 grow_label_align ();
842
843 /* Initialize label_align and set up uid_shuid to be strictly
844 monotonically rising with insn order. */
845 /* We use alignment here to keep track of the maximum alignment we want to
846 impose on the next CODE_LABEL (or the current one if we are processing
847 the CODE_LABEL itself). */
848
849 align_flags max_alignment;
850
851 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
852 {
853 INSN_SHUID (insn) = i++;
854 if (INSN_P (insn))
855 continue;
856
857 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (p: insn))
858 {
859 /* Merge in alignments computed by compute_alignments. */
860 align_flags alignment = LABEL_TO_ALIGNMENT (label);
861 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
862
863 rtx_jump_table_data *table = jump_table_for_label (label);
864 if (!table)
865 {
866 align_flags alignment = LABEL_ALIGN (label);
867 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
868 }
869 /* ADDR_VECs only take room if read-only data goes into the text
870 section. */
871 if ((JUMP_TABLES_IN_TEXT_SECTION
872 || readonly_data_section == text_section)
873 && table)
874 {
875 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
876 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
877 }
878 LABEL_TO_ALIGNMENT (label) = max_alignment;
879 max_alignment = align_flags ();
880 }
881 else if (BARRIER_P (insn))
882 {
883 rtx_insn *label;
884
885 for (label = insn; label && ! INSN_P (label);
886 label = NEXT_INSN (insn: label))
887 if (LABEL_P (label))
888 {
889 align_flags alignment
890 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
891 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
892 break;
893 }
894 }
895 }
896 if (!HAVE_ATTR_length)
897 return;
898
899 /* Allocate the rest of the arrays. */
900 insn_lengths = XNEWVEC (int, max_uid);
901 insn_lengths_max_uid = max_uid;
902 /* Syntax errors can lead to labels being outside of the main insn stream.
903 Initialize insn_addresses, so that we get reproducible results. */
904 INSN_ADDRESSES_ALLOC (max_uid);
905
906 varying_length = XCNEWVEC (char, max_uid);
907
908 /* Initialize uid_align. We scan instructions
909 from end to start, and keep in align_tab[n] the last seen insn
910 that does an alignment of at least n+1, i.e. the successor
911 in the alignment chain for an insn that does / has a known
912 alignment of n. */
913 uid_align = XCNEWVEC (rtx, max_uid);
914
915 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
916 align_tab[i] = NULL_RTX;
917 seq = get_last_insn ();
918 for (; seq; seq = PREV_INSN (insn: seq))
919 {
920 int uid = INSN_UID (insn: seq);
921 int log;
922 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
923 uid_align[uid] = align_tab[0];
924 if (log)
925 {
926 /* Found an alignment label. */
927 gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
928 uid_align[uid] = align_tab[log];
929 for (i = log - 1; i >= 0; i--)
930 align_tab[i] = seq;
931 }
932 }
933
934 /* When optimizing, we start assuming minimum length, and keep increasing
935 lengths as we find the need for this, till nothing changes.
936 When not optimizing, we start assuming maximum lengths, and
937 do a single pass to update the lengths. */
938 bool increasing = optimize != 0;
939
940#ifdef CASE_VECTOR_SHORTEN_MODE
941 if (optimize)
942 {
943 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
944 label fields. */
945
946 int min_shuid = INSN_SHUID (get_insns ()) - 1;
947 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
948 int rel;
949
950 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
951 {
952 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
953 int len, i, min, max, insn_shuid;
954 int min_align;
955 addr_diff_vec_flags flags;
956
957 if (! JUMP_TABLE_DATA_P (insn)
958 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
959 continue;
960 pat = PATTERN (insn);
961 len = XVECLEN (pat, 1);
962 gcc_assert (len > 0);
963 min_align = MAX_CODE_ALIGN;
964 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
965 {
966 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
967 int shuid = INSN_SHUID (lab);
968 if (shuid < min)
969 {
970 min = shuid;
971 min_lab = lab;
972 }
973 if (shuid > max)
974 {
975 max = shuid;
976 max_lab = lab;
977 }
978
979 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
980 if (min_align > label_alignment)
981 min_align = label_alignment;
982 }
983 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
984 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
985 insn_shuid = INSN_SHUID (insn);
986 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
987 memset (&flags, 0, sizeof (flags));
988 flags.min_align = min_align;
989 flags.base_after_vec = rel > insn_shuid;
990 flags.min_after_vec = min > insn_shuid;
991 flags.max_after_vec = max > insn_shuid;
992 flags.min_after_base = min > rel;
993 flags.max_after_base = max > rel;
994 ADDR_DIFF_VEC_FLAGS (pat) = flags;
995
996 if (increasing)
997 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
998 }
999 }
1000#endif /* CASE_VECTOR_SHORTEN_MODE */
1001
1002 /* Compute initial lengths, addresses, and varying flags for each insn. */
1003 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1004
1005 for (insn_current_address = 0, insn = first;
1006 insn != 0;
1007 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1008 {
1009 uid = INSN_UID (insn);
1010
1011 insn_lengths[uid] = 0;
1012
1013 if (LABEL_P (insn))
1014 {
1015 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1016 if (log)
1017 {
1018 int align = 1 << log;
1019 int new_address = (insn_current_address + align - 1) & -align;
1020 insn_lengths[uid] = new_address - insn_current_address;
1021 }
1022 }
1023
1024 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1025
1026 if (NOTE_P (insn) || BARRIER_P (insn)
1027 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1028 continue;
1029 if (insn->deleted ())
1030 continue;
1031
1032 body = PATTERN (insn);
1033 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (p: insn))
1034 {
1035 /* This only takes room if read-only data goes into the text
1036 section. */
1037 if (JUMP_TABLES_IN_TEXT_SECTION
1038 || readonly_data_section == text_section)
1039 insn_lengths[uid] = (XVECLEN (body,
1040 GET_CODE (body) == ADDR_DIFF_VEC)
1041 * GET_MODE_SIZE (mode: table->get_data_mode ()));
1042 /* Alignment is handled by ADDR_VEC_ALIGN. */
1043 }
1044 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1045 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1046 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (p: body))
1047 {
1048 int i;
1049 int const_delay_slots;
1050 if (DELAY_SLOTS)
1051 const_delay_slots = const_num_delay_slots (body_seq->insn (index: 0));
1052 else
1053 const_delay_slots = 0;
1054
1055 int (*inner_length_fun) (rtx_insn *)
1056 = const_delay_slots ? length_fun : insn_default_length;
1057 /* Inside a delay slot sequence, we do not do any branch shortening
1058 if the shortening could change the number of delay slots
1059 of the branch. */
1060 for (i = 0; i < body_seq->len (); i++)
1061 {
1062 rtx_insn *inner_insn = body_seq->insn (index: i);
1063 int inner_uid = INSN_UID (insn: inner_insn);
1064 int inner_length;
1065
1066 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1067 || asm_noperands (PATTERN (insn: inner_insn)) >= 0)
1068 inner_length = (asm_insn_count (PATTERN (insn: inner_insn))
1069 * insn_default_length (inner_insn));
1070 else
1071 inner_length = inner_length_fun (inner_insn);
1072
1073 insn_lengths[inner_uid] = inner_length;
1074 if (const_delay_slots)
1075 {
1076 if ((varying_length[inner_uid]
1077 = insn_variable_length_p (inner_insn)) != 0)
1078 varying_length[uid] = 1;
1079 INSN_ADDRESSES (inner_uid) = (insn_current_address
1080 + insn_lengths[uid]);
1081 }
1082 else
1083 varying_length[inner_uid] = 0;
1084 insn_lengths[uid] += inner_length;
1085 }
1086 }
1087 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1088 {
1089 insn_lengths[uid] = length_fun (insn);
1090 varying_length[uid] = insn_variable_length_p (insn);
1091 }
1092
1093 /* If needed, do any adjustment. */
1094#ifdef ADJUST_INSN_LENGTH
1095 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1096 if (insn_lengths[uid] < 0)
1097 fatal_insn ("negative insn length", insn);
1098#endif
1099 }
1100
1101 /* Now loop over all the insns finding varying length insns. For each,
1102 get the current insn length. If it has changed, reflect the change.
1103 When nothing changes for a full pass, we are done. */
1104
1105 while (something_changed)
1106 {
1107 something_changed = false;
1108 insn_current_align = MAX_CODE_ALIGN - 1;
1109 for (insn_current_address = 0, insn = first;
1110 insn != 0;
1111 insn = NEXT_INSN (insn))
1112 {
1113 int new_length;
1114#ifdef ADJUST_INSN_LENGTH
1115 int tmp_length;
1116#endif
1117 int length_align;
1118
1119 uid = INSN_UID (insn);
1120
1121 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (p: insn))
1122 {
1123 int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1124
1125#ifdef CASE_VECTOR_SHORTEN_MODE
1126 /* If the mode of a following jump table was changed, we
1127 may need to update the alignment of this label. */
1128
1129 if (JUMP_TABLES_IN_TEXT_SECTION
1130 || readonly_data_section == text_section)
1131 {
1132 rtx_jump_table_data *table = jump_table_for_label (label);
1133 if (table)
1134 {
1135 int newlog = ADDR_VEC_ALIGN (table);
1136 if (newlog != log)
1137 {
1138 log = newlog;
1139 LABEL_TO_ALIGNMENT (insn) = log;
1140 something_changed = true;
1141 }
1142 }
1143 }
1144#endif
1145
1146 if (log > insn_current_align)
1147 {
1148 int align = 1 << log;
1149 int new_address= (insn_current_address + align - 1) & -align;
1150 insn_lengths[uid] = new_address - insn_current_address;
1151 insn_current_align = log;
1152 insn_current_address = new_address;
1153 }
1154 else
1155 insn_lengths[uid] = 0;
1156 INSN_ADDRESSES (uid) = insn_current_address;
1157 continue;
1158 }
1159
1160 length_align = INSN_LENGTH_ALIGNMENT (insn);
1161 if (length_align < insn_current_align)
1162 insn_current_align = length_align;
1163
1164 insn_last_address = INSN_ADDRESSES (uid);
1165 INSN_ADDRESSES (uid) = insn_current_address;
1166
1167#ifdef CASE_VECTOR_SHORTEN_MODE
1168 if (optimize
1169 && JUMP_TABLE_DATA_P (insn)
1170 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1171 {
1172 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1173 rtx body = PATTERN (insn);
1174 int old_length = insn_lengths[uid];
1175 rtx_insn *rel_lab =
1176 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1177 rtx min_lab = XEXP (XEXP (body, 2), 0);
1178 rtx max_lab = XEXP (XEXP (body, 3), 0);
1179 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1180 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1181 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1182 rtx_insn *prev;
1183 int rel_align = 0;
1184 addr_diff_vec_flags flags;
1185 scalar_int_mode vec_mode;
1186
1187 /* Avoid automatic aggregate initialization. */
1188 flags = ADDR_DIFF_VEC_FLAGS (body);
1189
1190 /* Try to find a known alignment for rel_lab. */
1191 for (prev = rel_lab;
1192 prev
1193 && ! insn_lengths[INSN_UID (prev)]
1194 && ! (varying_length[INSN_UID (prev)] & 1);
1195 prev = PREV_INSN (prev))
1196 if (varying_length[INSN_UID (prev)] & 2)
1197 {
1198 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1199 break;
1200 }
1201
1202 /* See the comment on addr_diff_vec_flags in rtl.h for the
1203 meaning of the flags values. base: REL_LAB vec: INSN */
1204 /* Anything after INSN has still addresses from the last
1205 pass; adjust these so that they reflect our current
1206 estimate for this pass. */
1207 if (flags.base_after_vec)
1208 rel_addr += insn_current_address - insn_last_address;
1209 if (flags.min_after_vec)
1210 min_addr += insn_current_address - insn_last_address;
1211 if (flags.max_after_vec)
1212 max_addr += insn_current_address - insn_last_address;
1213 /* We want to know the worst case, i.e. lowest possible value
1214 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1215 its offset is positive, and we have to be wary of code shrink;
1216 otherwise, it is negative, and we have to be vary of code
1217 size increase. */
1218 if (flags.min_after_base)
1219 {
1220 /* If INSN is between REL_LAB and MIN_LAB, the size
1221 changes we are about to make can change the alignment
1222 within the observed offset, therefore we have to break
1223 it up into two parts that are independent. */
1224 if (! flags.base_after_vec && flags.min_after_vec)
1225 {
1226 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1227 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1228 }
1229 else
1230 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1231 }
1232 else
1233 {
1234 if (flags.base_after_vec && ! flags.min_after_vec)
1235 {
1236 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1237 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1238 }
1239 else
1240 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1241 }
1242 /* Likewise, determine the highest lowest possible value
1243 for the offset of MAX_LAB. */
1244 if (flags.max_after_base)
1245 {
1246 if (! flags.base_after_vec && flags.max_after_vec)
1247 {
1248 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1249 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1250 }
1251 else
1252 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1253 }
1254 else
1255 {
1256 if (flags.base_after_vec && ! flags.max_after_vec)
1257 {
1258 max_addr += align_fuzz (max_lab, insn, 0, 0);
1259 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1260 }
1261 else
1262 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1263 }
1264 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1265 max_addr - rel_addr, body);
1266 if (!increasing
1267 || (GET_MODE_SIZE (vec_mode)
1268 >= GET_MODE_SIZE (table->get_data_mode ())))
1269 PUT_MODE (body, vec_mode);
1270 if (JUMP_TABLES_IN_TEXT_SECTION
1271 || readonly_data_section == text_section)
1272 {
1273 insn_lengths[uid]
1274 = (XVECLEN (body, 1)
1275 * GET_MODE_SIZE (table->get_data_mode ()));
1276 insn_current_address += insn_lengths[uid];
1277 if (insn_lengths[uid] != old_length)
1278 something_changed = true;
1279 }
1280
1281 continue;
1282 }
1283#endif /* CASE_VECTOR_SHORTEN_MODE */
1284
1285 if (! (varying_length[uid]))
1286 {
1287 if (NONJUMP_INSN_P (insn)
1288 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1289 {
1290 int i;
1291
1292 body = PATTERN (insn);
1293 for (i = 0; i < XVECLEN (body, 0); i++)
1294 {
1295 rtx inner_insn = XVECEXP (body, 0, i);
1296 int inner_uid = INSN_UID (insn: inner_insn);
1297
1298 INSN_ADDRESSES (inner_uid) = insn_current_address;
1299
1300 insn_current_address += insn_lengths[inner_uid];
1301 }
1302 }
1303 else
1304 insn_current_address += insn_lengths[uid];
1305
1306 continue;
1307 }
1308
1309 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1310 {
1311 rtx_sequence *seqn = as_a <rtx_sequence *> (p: PATTERN (insn));
1312 int i;
1313
1314 body = PATTERN (insn);
1315 new_length = 0;
1316 for (i = 0; i < seqn->len (); i++)
1317 {
1318 rtx_insn *inner_insn = seqn->insn (index: i);
1319 int inner_uid = INSN_UID (insn: inner_insn);
1320 int inner_length;
1321
1322 INSN_ADDRESSES (inner_uid) = insn_current_address;
1323
1324 /* insn_current_length returns 0 for insns with a
1325 non-varying length. */
1326 if (! varying_length[inner_uid])
1327 inner_length = insn_lengths[inner_uid];
1328 else
1329 inner_length = insn_current_length (inner_insn);
1330
1331 if (inner_length != insn_lengths[inner_uid])
1332 {
1333 if (!increasing || inner_length > insn_lengths[inner_uid])
1334 {
1335 insn_lengths[inner_uid] = inner_length;
1336 something_changed = true;
1337 }
1338 else
1339 inner_length = insn_lengths[inner_uid];
1340 }
1341 insn_current_address += inner_length;
1342 new_length += inner_length;
1343 }
1344 }
1345 else
1346 {
1347 new_length = insn_current_length (insn);
1348 insn_current_address += new_length;
1349 }
1350
1351#ifdef ADJUST_INSN_LENGTH
1352 /* If needed, do any adjustment. */
1353 tmp_length = new_length;
1354 ADJUST_INSN_LENGTH (insn, new_length);
1355 insn_current_address += (new_length - tmp_length);
1356#endif
1357
1358 if (new_length != insn_lengths[uid]
1359 && (!increasing || new_length > insn_lengths[uid]))
1360 {
1361 insn_lengths[uid] = new_length;
1362 something_changed = true;
1363 }
1364 else
1365 insn_current_address += insn_lengths[uid] - new_length;
1366 }
1367 /* For a non-optimizing compile, do only a single pass. */
1368 if (!increasing)
1369 break;
1370 }
1371 crtl->max_insn_address = insn_current_address;
1372 free (ptr: varying_length);
1373}
1374
1375/* Given the body of an INSN known to be generated by an ASM statement, return
1376 the number of machine instructions likely to be generated for this insn.
1377 This is used to compute its length. */
1378
1379static int
1380asm_insn_count (rtx body)
1381{
1382 const char *templ;
1383
1384 if (GET_CODE (body) == ASM_INPUT)
1385 templ = XSTR (body, 0);
1386 else
1387 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1388
1389 return asm_str_count (templ);
1390}
1391
1392/* Return the number of machine instructions likely to be generated for the
1393 inline-asm template. */
1394int
1395asm_str_count (const char *templ)
1396{
1397 int count = 1;
1398
1399 if (!*templ)
1400 return 0;
1401
1402 for (; *templ; templ++)
1403 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1404 || *templ == '\n')
1405 count++;
1406
1407 return count;
1408}
1409
1410/* Return true if DWARF2 debug info can be emitted for DECL. */
1411
1412static bool
1413dwarf2_debug_info_emitted_p (tree decl)
1414{
1415 /* When DWARF2 debug info is not generated internally. */
1416 if (!dwarf_debuginfo_p () && !dwarf_based_debuginfo_p ())
1417 return false;
1418
1419 if (DECL_IGNORED_P (decl))
1420 return false;
1421
1422 return true;
1423}
1424
1425/* Return scope resulting from combination of S1 and S2. */
1426static tree
1427choose_inner_scope (tree s1, tree s2)
1428{
1429 if (!s1)
1430 return s2;
1431 if (!s2)
1432 return s1;
1433 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1434 return s1;
1435 return s2;
1436}
1437
1438/* Emit lexical block notes needed to change scope from S1 to S2. */
1439
1440static void
1441change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1442{
1443 rtx_insn *insn = orig_insn;
1444 tree com = NULL_TREE;
1445 tree ts1 = s1, ts2 = s2;
1446 tree s;
1447
1448 while (ts1 != ts2)
1449 {
1450 gcc_assert (ts1 && ts2);
1451 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1452 ts1 = BLOCK_SUPERCONTEXT (ts1);
1453 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1454 ts2 = BLOCK_SUPERCONTEXT (ts2);
1455 else
1456 {
1457 ts1 = BLOCK_SUPERCONTEXT (ts1);
1458 ts2 = BLOCK_SUPERCONTEXT (ts2);
1459 }
1460 }
1461 com = ts1;
1462
1463 /* Close scopes. */
1464 s = s1;
1465 while (s != com)
1466 {
1467 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1468 NOTE_BLOCK (note) = s;
1469 s = BLOCK_SUPERCONTEXT (s);
1470 }
1471
1472 /* Open scopes. */
1473 s = s2;
1474 while (s != com)
1475 {
1476 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1477 NOTE_BLOCK (insn) = s;
1478 s = BLOCK_SUPERCONTEXT (s);
1479 }
1480}
1481
1482/* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1483 on the scope tree and the newly reordered instructions. */
1484
1485static void
1486reemit_insn_block_notes (void)
1487{
1488 tree cur_block = DECL_INITIAL (cfun->decl);
1489 rtx_insn *insn;
1490
1491 insn = get_insns ();
1492 for (; insn; insn = NEXT_INSN (insn))
1493 {
1494 tree this_block;
1495
1496 /* Prevent lexical blocks from straddling section boundaries. */
1497 if (NOTE_P (insn))
1498 switch (NOTE_KIND (insn))
1499 {
1500 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1501 {
1502 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1503 s = BLOCK_SUPERCONTEXT (s))
1504 {
1505 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1506 NOTE_BLOCK (note) = s;
1507 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1508 NOTE_BLOCK (note) = s;
1509 }
1510 }
1511 break;
1512
1513 case NOTE_INSN_BEGIN_STMT:
1514 case NOTE_INSN_INLINE_ENTRY:
1515 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1516 goto set_cur_block_to_this_block;
1517
1518 default:
1519 continue;
1520 }
1521
1522 if (!active_insn_p (insn))
1523 continue;
1524
1525 /* Avoid putting scope notes between jump table and its label. */
1526 if (JUMP_TABLE_DATA_P (insn))
1527 continue;
1528
1529 this_block = insn_scope (insn);
1530 /* For sequences compute scope resulting from merging all scopes
1531 of instructions nested inside. */
1532 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (p: PATTERN (insn)))
1533 {
1534 int i;
1535
1536 this_block = NULL;
1537 for (i = 0; i < body->len (); i++)
1538 this_block = choose_inner_scope (s1: this_block,
1539 s2: insn_scope (body->insn (index: i)));
1540 }
1541 set_cur_block_to_this_block:
1542 if (! this_block)
1543 {
1544 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1545 continue;
1546 else
1547 this_block = DECL_INITIAL (cfun->decl);
1548 }
1549
1550 if (this_block != cur_block)
1551 {
1552 change_scope (orig_insn: insn, s1: cur_block, s2: this_block);
1553 cur_block = this_block;
1554 }
1555 }
1556
1557 /* change_scope emits before the insn, not after. */
1558 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1559 change_scope (orig_insn: note, s1: cur_block, DECL_INITIAL (cfun->decl));
1560 delete_insn (note);
1561
1562 reorder_blocks ();
1563}
1564
1565static const char *some_local_dynamic_name;
1566
1567/* Locate some local-dynamic symbol still in use by this function
1568 so that we can print its name in local-dynamic base patterns.
1569 Return null if there are no local-dynamic references. */
1570
1571const char *
1572get_some_local_dynamic_name ()
1573{
1574 subrtx_iterator::array_type array;
1575 rtx_insn *insn;
1576
1577 if (some_local_dynamic_name)
1578 return some_local_dynamic_name;
1579
1580 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1581 if (NONDEBUG_INSN_P (insn))
1582 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1583 {
1584 const_rtx x = *iter;
1585 if (GET_CODE (x) == SYMBOL_REF)
1586 {
1587 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1588 return some_local_dynamic_name = XSTR (x, 0);
1589 if (CONSTANT_POOL_ADDRESS_P (x))
1590 iter.substitute (x: get_pool_constant (x));
1591 }
1592 }
1593
1594 return 0;
1595}
1596
1597/* Arrange for us to emit a source location note before any further
1598 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1599 *SEEN, as long as we are keeping track of location views. The bit
1600 indicates we have referenced the next view at the current PC, so we
1601 have to emit it. This should be called next to the var_location
1602 debug hook. */
1603
1604static inline void
1605set_next_view_needed (int *seen)
1606{
1607 if (debug_variable_location_views)
1608 *seen |= SEEN_NEXT_VIEW;
1609}
1610
1611/* Clear the flag in *SEEN indicating we need to emit the next view.
1612 This should be called next to the source_line debug hook. */
1613
1614static inline void
1615clear_next_view_needed (int *seen)
1616{
1617 *seen &= ~SEEN_NEXT_VIEW;
1618}
1619
1620/* Test whether we have a pending request to emit the next view in
1621 *SEEN, and emit it if needed, clearing the request bit. */
1622
1623static inline void
1624maybe_output_next_view (int *seen)
1625{
1626 if ((*seen & SEEN_NEXT_VIEW) != 0)
1627 {
1628 clear_next_view_needed (seen);
1629 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1630 last_filename, last_discriminator,
1631 false);
1632 }
1633}
1634
1635/* We want to emit param bindings (before the first begin_stmt) in the
1636 initial view, if we are emitting views. To that end, we may
1637 consume initial notes in the function, processing them in
1638 final_start_function, before signaling the beginning of the
1639 prologue, rather than in final.
1640
1641 We don't test whether the DECLs are PARM_DECLs: the assumption is
1642 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1643 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1644 there, we'll just have more variable locations bound in the initial
1645 view, which is consistent with their being bound without any code
1646 that would give them a value. */
1647
1648static inline bool
1649in_initial_view_p (rtx_insn *insn)
1650{
1651 return (!DECL_IGNORED_P (current_function_decl)
1652 && debug_variable_location_views
1653 && insn && GET_CODE (insn) == NOTE
1654 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1655 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1656}
1657
1658/* Output assembler code for the start of a function,
1659 and initialize some of the variables in this file
1660 for the new function. The label for the function and associated
1661 assembler pseudo-ops have already been output in `assemble_start_function'.
1662
1663 FIRST is the first insn of the rtl for the function being compiled.
1664 FILE is the file to write assembler code to.
1665 SEEN should be initially set to zero, and it may be updated to
1666 indicate we have references to the next location view, that would
1667 require us to emit it at the current PC.
1668 OPTIMIZE_P is nonzero if we should eliminate redundant
1669 test and compare insns. */
1670
1671static void
1672final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1673 int optimize_p ATTRIBUTE_UNUSED)
1674{
1675 block_depth = 0;
1676
1677 this_is_asm_operands = 0;
1678
1679 need_profile_function = false;
1680
1681 last_filename = LOCATION_FILE (prologue_location);
1682 last_linenum = LOCATION_LINE (prologue_location);
1683 last_columnnum = LOCATION_COLUMN (prologue_location);
1684 last_discriminator = 0;
1685 force_source_line = false;
1686
1687 high_block_linenum = high_function_linenum = last_linenum;
1688
1689 rtx_insn *first = *firstp;
1690 if (in_initial_view_p (insn: first))
1691 {
1692 do
1693 {
1694 final_scan_insn (first, file, 0, 0, seen);
1695 first = NEXT_INSN (insn: first);
1696 }
1697 while (in_initial_view_p (insn: first));
1698 *firstp = first;
1699 }
1700
1701 if (!DECL_IGNORED_P (current_function_decl))
1702 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1703 last_filename);
1704
1705 if (!dwarf2_debug_info_emitted_p (decl: current_function_decl))
1706 dwarf2out_begin_prologue (0, 0, NULL);
1707
1708 if (DECL_IGNORED_P (current_function_decl) && last_linenum && last_filename)
1709 debug_hooks->set_ignored_loc (last_linenum, last_columnnum, last_filename);
1710
1711#ifdef LEAF_REG_REMAP
1712 if (crtl->uses_only_leaf_regs)
1713 leaf_renumber_regs (first);
1714#endif
1715
1716 /* The Sun386i and perhaps other machines don't work right
1717 if the profiling code comes after the prologue. */
1718 if (targetm.profile_before_prologue () && crtl->profile)
1719 {
1720 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1721 && targetm.have_prologue ())
1722 {
1723 rtx_insn *insn;
1724 for (insn = first; insn; insn = NEXT_INSN (insn))
1725 if (!NOTE_P (insn))
1726 {
1727 insn = NULL;
1728 break;
1729 }
1730 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1731 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1732 break;
1733 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1734 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1735 continue;
1736 else
1737 {
1738 insn = NULL;
1739 break;
1740 }
1741
1742 if (insn)
1743 need_profile_function = true;
1744 else
1745 profile_function (file);
1746 }
1747 else
1748 profile_function (file);
1749 }
1750
1751 /* If debugging, assign block numbers to all of the blocks in this
1752 function. */
1753 if (write_symbols)
1754 {
1755 reemit_insn_block_notes ();
1756 number_blocks (current_function_decl);
1757 /* We never actually put out begin/end notes for the top-level
1758 block in the function. But, conceptually, that block is
1759 always needed. */
1760 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1761 }
1762
1763 unsigned HOST_WIDE_INT min_frame_size
1764 = constant_lower_bound (a: get_frame_size ());
1765 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1766 {
1767 /* Issue a warning */
1768 warning (OPT_Wframe_larger_than_,
1769 "the frame size of %wu bytes is larger than %wu bytes",
1770 min_frame_size, warn_frame_larger_than_size);
1771 }
1772
1773 /* First output the function prologue: code to set up the stack frame. */
1774 targetm.asm_out.function_prologue (file);
1775
1776 /* If the machine represents the prologue as RTL, the profiling code must
1777 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1778 if (! targetm.have_prologue ())
1779 profile_after_prologue (file);
1780}
1781
1782/* This is an exported final_start_function_1, callable without SEEN. */
1783
1784void
1785final_start_function (rtx_insn *first, FILE *file,
1786 int optimize_p ATTRIBUTE_UNUSED)
1787{
1788 int seen = 0;
1789 final_start_function_1 (firstp: &first, file, seen: &seen, optimize_p);
1790 gcc_assert (seen == 0);
1791}
1792
1793static void
1794profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1795{
1796 if (!targetm.profile_before_prologue () && crtl->profile)
1797 profile_function (file);
1798}
1799
1800static void
1801profile_function (FILE *file ATTRIBUTE_UNUSED)
1802{
1803#ifndef NO_PROFILE_COUNTERS
1804# define NO_PROFILE_COUNTERS 0
1805#endif
1806#ifdef ASM_OUTPUT_REG_PUSH
1807 rtx sval = NULL, chain = NULL;
1808
1809 if (cfun->returns_struct)
1810 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1811 true);
1812 if (cfun->static_chain_decl)
1813 chain = targetm.calls.static_chain (current_function_decl, true);
1814#endif /* ASM_OUTPUT_REG_PUSH */
1815
1816 if (! NO_PROFILE_COUNTERS)
1817 {
1818 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1819 switch_to_section (data_section);
1820 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1821 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1822 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1823 }
1824
1825 switch_to_section (current_function_section ());
1826
1827#ifdef ASM_OUTPUT_REG_PUSH
1828 if (sval && REG_P (sval))
1829 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1830 if (chain && REG_P (chain))
1831 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1832#endif
1833
1834 FUNCTION_PROFILER (file, current_function_funcdef_no);
1835
1836#ifdef ASM_OUTPUT_REG_PUSH
1837 if (chain && REG_P (chain))
1838 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1839 if (sval && REG_P (sval))
1840 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1841#endif
1842}
1843
1844/* Output assembler code for the end of a function.
1845 For clarity, args are same as those of `final_start_function'
1846 even though not all of them are needed. */
1847
1848void
1849final_end_function (void)
1850{
1851 app_disable ();
1852
1853 if (!DECL_IGNORED_P (current_function_decl))
1854 debug_hooks->end_function (high_function_linenum);
1855
1856 /* Finally, output the function epilogue:
1857 code to restore the stack frame and return to the caller. */
1858 targetm.asm_out.function_epilogue (asm_out_file);
1859
1860 /* And debug output. */
1861 if (!DECL_IGNORED_P (current_function_decl))
1862 debug_hooks->end_epilogue (last_linenum, last_filename);
1863
1864 if (!dwarf2_debug_info_emitted_p (decl: current_function_decl)
1865 && dwarf2out_do_frame ())
1866 dwarf2out_end_epilogue (last_linenum, last_filename);
1867
1868 some_local_dynamic_name = 0;
1869}
1870
1871
1872/* Dumper helper for basic block information. FILE is the assembly
1873 output file, and INSN is the instruction being emitted. */
1874
1875static void
1876dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1877 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1878{
1879 basic_block bb;
1880
1881 if (!flag_debug_asm)
1882 return;
1883
1884 if (INSN_UID (insn) < bb_map_size
1885 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1886 {
1887 edge e;
1888 edge_iterator ei;
1889
1890 fprintf (stream: file, format: "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1891 if (bb->count.initialized_p ())
1892 {
1893 fprintf (stream: file, format: ", count:");
1894 bb->count.dump (f: file);
1895 }
1896 fprintf (stream: file, format: " seq:%d", (*bb_seqn)++);
1897 fprintf (stream: file, format: "\n%s PRED:", ASM_COMMENT_START);
1898 FOR_EACH_EDGE (e, ei, bb->preds)
1899 {
1900 dump_edge_info (file, e, TDF_DETAILS, 0);
1901 }
1902 fprintf (stream: file, format: "\n");
1903 }
1904 if (INSN_UID (insn) < bb_map_size
1905 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1906 {
1907 edge e;
1908 edge_iterator ei;
1909
1910 fprintf (stream: asm_out_file, format: "%s SUCC:", ASM_COMMENT_START);
1911 FOR_EACH_EDGE (e, ei, bb->succs)
1912 {
1913 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1914 }
1915 fprintf (stream: file, format: "\n");
1916 }
1917}
1918
1919/* Output assembler code for some insns: all or part of a function.
1920 For description of args, see `final_start_function', above. */
1921
1922static void
1923final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1924{
1925 rtx_insn *insn, *next;
1926
1927 /* Used for -dA dump. */
1928 basic_block *start_to_bb = NULL;
1929 basic_block *end_to_bb = NULL;
1930 int bb_map_size = 0;
1931 int bb_seqn = 0;
1932
1933 last_ignored_compare = 0;
1934
1935 init_recog ();
1936
1937 CC_STATUS_INIT;
1938
1939 if (flag_debug_asm)
1940 {
1941 basic_block bb;
1942
1943 bb_map_size = get_max_uid () + 1;
1944 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1945 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1946
1947 /* There is no cfg for a thunk. */
1948 if (!cfun->is_thunk)
1949 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1950 {
1951 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1952 end_to_bb[INSN_UID (BB_END (bb))] = bb;
1953 }
1954 }
1955
1956 /* Output the insns. */
1957 for (insn = first; insn;)
1958 {
1959 if (HAVE_ATTR_length)
1960 {
1961 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1962 {
1963 /* This can be triggered by bugs elsewhere in the compiler if
1964 new insns are created after init_insn_lengths is called. */
1965 gcc_assert (NOTE_P (insn));
1966 insn_current_address = -1;
1967 }
1968 else
1969 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1970 /* final can be seen as an iteration of shorten_branches that
1971 does nothing (since a fixed point has already been reached). */
1972 insn_last_address = insn_current_address;
1973 }
1974
1975 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
1976 bb_map_size, bb_seqn: &bb_seqn);
1977 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
1978 }
1979
1980 maybe_output_next_view (seen: &seen);
1981
1982 if (flag_debug_asm)
1983 {
1984 free (ptr: start_to_bb);
1985 free (ptr: end_to_bb);
1986 }
1987
1988 /* Remove CFI notes, to avoid compare-debug failures. */
1989 for (insn = first; insn; insn = next)
1990 {
1991 next = NEXT_INSN (insn);
1992 if (NOTE_P (insn)
1993 && (NOTE_KIND (insn) == NOTE_INSN_CFI
1994 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
1995 delete_insn (insn);
1996 }
1997}
1998
1999/* This is an exported final_1, callable without SEEN. */
2000
2001void
2002final (rtx_insn *first, FILE *file, int optimize_p)
2003{
2004 /* Those that use the internal final_start_function_1/final_1 API
2005 skip initial debug bind notes in final_start_function_1, and pass
2006 the modified FIRST to final_1. But those that use the public
2007 final_start_function/final APIs, final_start_function can't move
2008 FIRST because it's not passed by reference, so if they were
2009 skipped there, skip them again here. */
2010 while (in_initial_view_p (insn: first))
2011 first = NEXT_INSN (insn: first);
2012
2013 final_1 (first, file, seen: 0, optimize_p);
2014}
2015
2016const char *
2017get_insn_template (int code, rtx_insn *insn)
2018{
2019 switch (insn_data[code].output_format)
2020 {
2021 case INSN_OUTPUT_FORMAT_SINGLE:
2022 return insn_data[code].output.single;
2023 case INSN_OUTPUT_FORMAT_MULTI:
2024 return insn_data[code].output.multi[which_alternative];
2025 case INSN_OUTPUT_FORMAT_FUNCTION:
2026 gcc_assert (insn);
2027 return (*insn_data[code].output.function) (recog_data.operand, insn);
2028
2029 default:
2030 gcc_unreachable ();
2031 }
2032}
2033
2034/* Emit the appropriate declaration for an alternate-entry-point
2035 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2036 LABEL_KIND != LABEL_NORMAL.
2037
2038 The case fall-through in this function is intentional. */
2039static void
2040output_alternate_entry_point (FILE *file, rtx_insn *insn)
2041{
2042 const char *name = LABEL_NAME (insn);
2043
2044 switch (LABEL_KIND (insn))
2045 {
2046 case LABEL_WEAK_ENTRY:
2047#ifdef ASM_WEAKEN_LABEL
2048 ASM_WEAKEN_LABEL (file, name);
2049 gcc_fallthrough ();
2050#endif
2051 case LABEL_GLOBAL_ENTRY:
2052 targetm.asm_out.globalize_label (file, name);
2053 gcc_fallthrough ();
2054 case LABEL_STATIC_ENTRY:
2055#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2056 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2057#endif
2058 ASM_OUTPUT_LABEL (file, name);
2059 break;
2060
2061 case LABEL_NORMAL:
2062 default:
2063 gcc_unreachable ();
2064 }
2065}
2066
2067/* Given a CALL_INSN, find and return the nested CALL. */
2068static rtx
2069call_from_call_insn (rtx_call_insn *insn)
2070{
2071 rtx x;
2072 gcc_assert (CALL_P (insn));
2073 x = PATTERN (insn);
2074
2075 while (GET_CODE (x) != CALL)
2076 {
2077 switch (GET_CODE (x))
2078 {
2079 default:
2080 gcc_unreachable ();
2081 case COND_EXEC:
2082 x = COND_EXEC_CODE (x);
2083 break;
2084 case PARALLEL:
2085 x = XVECEXP (x, 0, 0);
2086 break;
2087 case SET:
2088 x = XEXP (x, 1);
2089 break;
2090 }
2091 }
2092 return x;
2093}
2094
2095/* Print a comment into the asm showing FILENAME, LINENUM, and the
2096 corresponding source line, if available. */
2097
2098static void
2099asm_show_source (const char *filename, int linenum)
2100{
2101 if (!filename)
2102 return;
2103
2104 char_span line
2105 = global_dc->get_file_cache ().get_source_line (file_path: filename, line: linenum);
2106 if (!line)
2107 return;
2108
2109 fprintf (stream: asm_out_file, format: "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2110 /* "line" is not 0-terminated, so we must use its length. */
2111 fwrite (ptr: line.get_buffer (), size: 1, n: line.length (), s: asm_out_file);
2112 fputc (c: '\n', stream: asm_out_file);
2113}
2114
2115/* Judge if an absolute jump table is relocatable. */
2116
2117bool
2118jumptable_relocatable (void)
2119{
2120 bool relocatable = false;
2121
2122 if (!CASE_VECTOR_PC_RELATIVE
2123 && !targetm.asm_out.generate_pic_addr_diff_vec ()
2124 && targetm_common.have_named_sections)
2125 relocatable = targetm.asm_out.reloc_rw_mask ();
2126
2127 return relocatable;
2128}
2129
2130/* The final scan for one insn, INSN.
2131 Args are same as in `final', except that INSN
2132 is the insn being scanned.
2133 Value returned is the next insn to be scanned.
2134
2135 NOPEEPHOLES is the flag to disallow peephole processing (currently
2136 used for within delayed branch sequence output).
2137
2138 SEEN is used to track the end of the prologue, for emitting
2139 debug information. We force the emission of a line note after
2140 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2141
2142static rtx_insn *
2143final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2144 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2145{
2146 rtx_insn *next;
2147 rtx_jump_table_data *table;
2148
2149 insn_counter++;
2150
2151 /* Ignore deleted insns. These can occur when we split insns (due to a
2152 template of "#") while not optimizing. */
2153 if (insn->deleted ())
2154 return NEXT_INSN (insn);
2155
2156 switch (GET_CODE (insn))
2157 {
2158 case NOTE:
2159 switch (NOTE_KIND (insn))
2160 {
2161 case NOTE_INSN_DELETED:
2162 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2163 break;
2164
2165 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2166 maybe_output_next_view (seen);
2167
2168 output_function_exception_table (0);
2169
2170 if (targetm.asm_out.unwind_emit)
2171 targetm.asm_out.unwind_emit (asm_out_file, insn);
2172
2173 in_cold_section_p = !in_cold_section_p;
2174
2175 gcc_checking_assert (in_cold_section_p);
2176 if (in_cold_section_p)
2177 cold_function_name
2178 = clone_function_name (decl: current_function_decl, suffix: "cold");
2179
2180 if (dwarf2out_do_frame ())
2181 {
2182 dwarf2out_switch_text_section ();
2183 if (!dwarf2_debug_info_emitted_p (decl: current_function_decl)
2184 && !DECL_IGNORED_P (current_function_decl))
2185 debug_hooks->switch_text_section ();
2186 }
2187 else if (!DECL_IGNORED_P (current_function_decl))
2188 debug_hooks->switch_text_section ();
2189 if (DECL_IGNORED_P (current_function_decl) && last_linenum
2190 && last_filename)
2191 debug_hooks->set_ignored_loc (last_linenum, last_columnnum,
2192 last_filename);
2193
2194 switch_to_section (current_function_section ());
2195 targetm.asm_out.function_switched_text_sections (asm_out_file,
2196 current_function_decl,
2197 in_cold_section_p);
2198 /* Emit a label for the split cold section. Form label name by
2199 suffixing "cold" to the original function's name. */
2200 if (in_cold_section_p)
2201 {
2202#ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2203 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2204 IDENTIFIER_POINTER
2205 (cold_function_name),
2206 current_function_decl);
2207#else
2208 ASM_OUTPUT_LABEL (asm_out_file,
2209 IDENTIFIER_POINTER (cold_function_name));
2210#endif
2211 if (dwarf2out_do_frame ()
2212 && cfun->fde->dw_fde_second_begin != NULL)
2213 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2214 }
2215 break;
2216
2217 case NOTE_INSN_BASIC_BLOCK:
2218 if (need_profile_function)
2219 {
2220 profile_function (file: asm_out_file);
2221 need_profile_function = false;
2222 }
2223
2224 if (targetm.asm_out.unwind_emit)
2225 targetm.asm_out.unwind_emit (asm_out_file, insn);
2226
2227 break;
2228
2229 case NOTE_INSN_EH_REGION_BEG:
2230 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2231 NOTE_EH_HANDLER (insn));
2232 break;
2233
2234 case NOTE_INSN_EH_REGION_END:
2235 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2236 NOTE_EH_HANDLER (insn));
2237 break;
2238
2239 case NOTE_INSN_PROLOGUE_END:
2240 targetm.asm_out.function_end_prologue (file);
2241 profile_after_prologue (file);
2242
2243 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2244 {
2245 *seen |= SEEN_EMITTED;
2246 force_source_line = true;
2247 }
2248 else
2249 *seen |= SEEN_NOTE;
2250
2251 break;
2252
2253 case NOTE_INSN_EPILOGUE_BEG:
2254 if (!DECL_IGNORED_P (current_function_decl))
2255 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2256 targetm.asm_out.function_begin_epilogue (file);
2257 break;
2258
2259 case NOTE_INSN_CFI:
2260 dwarf2out_emit_cfi (NOTE_CFI (insn));
2261 break;
2262
2263 case NOTE_INSN_CFI_LABEL:
2264 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2265 NOTE_LABEL_NUMBER (insn));
2266 break;
2267
2268 case NOTE_INSN_FUNCTION_BEG:
2269 if (need_profile_function)
2270 {
2271 profile_function (file: asm_out_file);
2272 need_profile_function = false;
2273 }
2274
2275 app_disable ();
2276 if (!DECL_IGNORED_P (current_function_decl))
2277 debug_hooks->end_prologue (last_linenum, last_filename);
2278
2279 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2280 {
2281 *seen |= SEEN_EMITTED;
2282 force_source_line = true;
2283 }
2284 else
2285 *seen |= SEEN_NOTE;
2286
2287 break;
2288
2289 case NOTE_INSN_BLOCK_BEG:
2290 if (debug_info_level >= DINFO_LEVEL_NORMAL
2291 || dwarf_debuginfo_p ()
2292 || write_symbols == VMS_DEBUG)
2293 {
2294 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2295
2296 app_disable ();
2297 ++block_depth;
2298 high_block_linenum = last_linenum;
2299
2300 /* Output debugging info about the symbol-block beginning. */
2301 if (!DECL_IGNORED_P (current_function_decl))
2302 debug_hooks->begin_block (last_linenum, n);
2303
2304 /* Mark this block as output. */
2305 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2306 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2307 }
2308 break;
2309
2310 case NOTE_INSN_BLOCK_END:
2311 maybe_output_next_view (seen);
2312
2313 if (debug_info_level >= DINFO_LEVEL_NORMAL
2314 || dwarf_debuginfo_p ()
2315 || write_symbols == VMS_DEBUG)
2316 {
2317 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2318
2319 app_disable ();
2320
2321 /* End of a symbol-block. */
2322 --block_depth;
2323 gcc_assert (block_depth >= 0);
2324
2325 if (!DECL_IGNORED_P (current_function_decl))
2326 debug_hooks->end_block (high_block_linenum, n);
2327 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2328 == in_cold_section_p);
2329 }
2330 break;
2331
2332 case NOTE_INSN_DELETED_LABEL:
2333 /* Emit the label. We may have deleted the CODE_LABEL because
2334 the label could be proved to be unreachable, though still
2335 referenced (in the form of having its address taken. */
2336 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2337 break;
2338
2339 case NOTE_INSN_DELETED_DEBUG_LABEL:
2340 /* Similarly, but need to use different namespace for it. */
2341 if (CODE_LABEL_NUMBER (insn) != -1)
2342 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2343 break;
2344
2345 case NOTE_INSN_VAR_LOCATION:
2346 if (!DECL_IGNORED_P (current_function_decl))
2347 {
2348 debug_hooks->var_location (insn);
2349 set_next_view_needed (seen);
2350 }
2351 break;
2352
2353 case NOTE_INSN_BEGIN_STMT:
2354 gcc_checking_assert (cfun->debug_nonbind_markers);
2355 if (!DECL_IGNORED_P (current_function_decl)
2356 && notice_source_line (insn, NULL))
2357 {
2358 output_source_line:
2359 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2360 last_filename, last_discriminator,
2361 true);
2362 clear_next_view_needed (seen);
2363 }
2364 break;
2365
2366 case NOTE_INSN_INLINE_ENTRY:
2367 gcc_checking_assert (cfun->debug_nonbind_markers);
2368 if (!DECL_IGNORED_P (current_function_decl)
2369 && notice_source_line (insn, NULL))
2370 {
2371 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2372 (NOTE_MARKER_LOCATION (insn)));
2373 goto output_source_line;
2374 }
2375 break;
2376
2377 default:
2378 gcc_unreachable ();
2379 break;
2380 }
2381 break;
2382
2383 case BARRIER:
2384 break;
2385
2386 case CODE_LABEL:
2387 /* The target port might emit labels in the output function for
2388 some insn, e.g. sh.cc output_branchy_insn. */
2389 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2390 {
2391 align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2392 if (alignment.levels[0].log && NEXT_INSN (insn))
2393 {
2394#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2395 /* Output both primary and secondary alignment. */
2396 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2397 alignment.levels[0].maxskip);
2398 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2399 alignment.levels[1].maxskip);
2400#else
2401#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2402 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2403#else
2404 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2405#endif
2406#endif
2407 }
2408 }
2409 CC_STATUS_INIT;
2410
2411 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2412 debug_hooks->label (as_a <rtx_code_label *> (p: insn));
2413
2414 app_disable ();
2415
2416 /* If this label is followed by a jump-table, make sure we put
2417 the label in the read-only section. Also possibly write the
2418 label and jump table together. */
2419 table = jump_table_for_label (label: as_a <rtx_code_label *> (p: insn));
2420 if (table)
2421 {
2422#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2423 /* In this case, the case vector is being moved by the
2424 target, so don't output the label at all. Leave that
2425 to the back end macros. */
2426#else
2427 if (! JUMP_TABLES_IN_TEXT_SECTION)
2428 {
2429 int log_align;
2430
2431 switch_to_section (targetm.asm_out.function_rodata_section
2432 (current_function_decl,
2433 jumptable_relocatable ()));
2434
2435#ifdef ADDR_VEC_ALIGN
2436 log_align = ADDR_VEC_ALIGN (table);
2437#else
2438 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2439#endif
2440 ASM_OUTPUT_ALIGN (file, log_align);
2441 }
2442 else
2443 switch_to_section (current_function_section ());
2444
2445#ifdef ASM_OUTPUT_CASE_LABEL
2446 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2447#else
2448 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2449#endif
2450#endif
2451 break;
2452 }
2453 if (LABEL_ALT_ENTRY_P (insn))
2454 output_alternate_entry_point (file, insn);
2455 else
2456 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2457 break;
2458
2459 default:
2460 {
2461 rtx body = PATTERN (insn);
2462 int insn_code_number;
2463 const char *templ;
2464 bool is_stmt, *is_stmt_p;
2465
2466 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2467 {
2468 is_stmt = false;
2469 is_stmt_p = NULL;
2470 }
2471 else
2472 is_stmt_p = &is_stmt;
2473
2474 /* Reset this early so it is correct for ASM statements. */
2475 current_insn_predicate = NULL_RTX;
2476
2477 /* An INSN, JUMP_INSN or CALL_INSN.
2478 First check for special kinds that recog doesn't recognize. */
2479
2480 if (GET_CODE (body) == USE /* These are just declarations. */
2481 || GET_CODE (body) == CLOBBER)
2482 break;
2483
2484 /* Detect insns that are really jump-tables
2485 and output them as such. */
2486
2487 if (JUMP_TABLE_DATA_P (insn))
2488 {
2489#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2490 int vlen, idx;
2491#endif
2492
2493 if (! JUMP_TABLES_IN_TEXT_SECTION)
2494 switch_to_section (targetm.asm_out.function_rodata_section
2495 (current_function_decl,
2496 jumptable_relocatable ()));
2497 else
2498 switch_to_section (current_function_section ());
2499
2500 app_disable ();
2501
2502#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2503 if (GET_CODE (body) == ADDR_VEC)
2504 {
2505#ifdef ASM_OUTPUT_ADDR_VEC
2506 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2507#else
2508 gcc_unreachable ();
2509#endif
2510 }
2511 else
2512 {
2513#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2514 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2515#else
2516 gcc_unreachable ();
2517#endif
2518 }
2519#else
2520 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2521 for (idx = 0; idx < vlen; idx++)
2522 {
2523 if (GET_CODE (body) == ADDR_VEC)
2524 {
2525#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2526 ASM_OUTPUT_ADDR_VEC_ELT
2527 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2528#else
2529 gcc_unreachable ();
2530#endif
2531 }
2532 else
2533 {
2534#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2535 ASM_OUTPUT_ADDR_DIFF_ELT
2536 (file,
2537 body,
2538 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2539 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2540#else
2541 gcc_unreachable ();
2542#endif
2543 }
2544 }
2545#ifdef ASM_OUTPUT_CASE_END
2546 ASM_OUTPUT_CASE_END (file,
2547 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2548 insn);
2549#endif
2550#endif
2551
2552 switch_to_section (current_function_section ());
2553
2554 if (debug_variable_location_views
2555 && !DECL_IGNORED_P (current_function_decl))
2556 debug_hooks->var_location (insn);
2557
2558 break;
2559 }
2560 /* Output this line note if it is the first or the last line
2561 note in a row. */
2562 if (!DECL_IGNORED_P (current_function_decl)
2563 && notice_source_line (insn, is_stmt_p))
2564 {
2565 if (flag_verbose_asm)
2566 asm_show_source (filename: last_filename, linenum: last_linenum);
2567 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2568 last_filename, last_discriminator,
2569 is_stmt);
2570 clear_next_view_needed (seen);
2571 }
2572 else
2573 maybe_output_next_view (seen);
2574
2575 gcc_checking_assert (!DEBUG_INSN_P (insn));
2576
2577 if (GET_CODE (body) == PARALLEL
2578 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2579 body = XVECEXP (body, 0, 0);
2580
2581 if (GET_CODE (body) == ASM_INPUT)
2582 {
2583 const char *string = XSTR (body, 0);
2584
2585 /* There's no telling what that did to the condition codes. */
2586 CC_STATUS_INIT;
2587
2588 if (string[0])
2589 {
2590 expanded_location loc;
2591
2592 app_enable ();
2593 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2594 if (*loc.file && loc.line)
2595 fprintf (stream: asm_out_file, format: "%s %i \"%s\" 1\n",
2596 ASM_COMMENT_START, loc.line, loc.file);
2597 fprintf (stream: asm_out_file, format: "\t%s\n", string);
2598#if HAVE_AS_LINE_ZERO
2599 if (*loc.file && loc.line)
2600 fprintf (stream: asm_out_file, format: "%s 0 \"\" 2\n", ASM_COMMENT_START);
2601#endif
2602 }
2603 break;
2604 }
2605
2606 /* Detect `asm' construct with operands. */
2607 if (asm_noperands (body) >= 0)
2608 {
2609 unsigned int noperands = asm_noperands (body);
2610 rtx *ops = XALLOCAVEC (rtx, noperands);
2611 const char *string;
2612 location_t loc;
2613 expanded_location expanded;
2614
2615 /* There's no telling what that did to the condition codes. */
2616 CC_STATUS_INIT;
2617
2618 /* Get out the operand values. */
2619 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2620 /* Inhibit dying on what would otherwise be compiler bugs. */
2621 insn_noperands = noperands;
2622 this_is_asm_operands = insn;
2623 expanded = expand_location (loc);
2624
2625#ifdef FINAL_PRESCAN_INSN
2626 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2627#endif
2628
2629 /* Output the insn using them. */
2630 if (string[0])
2631 {
2632 app_enable ();
2633 if (expanded.file && expanded.line)
2634 fprintf (stream: asm_out_file, format: "%s %i \"%s\" 1\n",
2635 ASM_COMMENT_START, expanded.line, expanded.file);
2636 output_asm_insn (string, ops);
2637#if HAVE_AS_LINE_ZERO
2638 if (expanded.file && expanded.line)
2639 fprintf (stream: asm_out_file, format: "%s 0 \"\" 2\n", ASM_COMMENT_START);
2640#endif
2641 }
2642
2643 if (targetm.asm_out.final_postscan_insn)
2644 targetm.asm_out.final_postscan_insn (file, insn, ops,
2645 insn_noperands);
2646
2647 this_is_asm_operands = 0;
2648 break;
2649 }
2650
2651 app_disable ();
2652
2653 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: body))
2654 {
2655 /* A delayed-branch sequence */
2656 int i;
2657
2658 final_sequence = seq;
2659
2660 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2661 force the restoration of a comparison that was previously
2662 thought unnecessary. If that happens, cancel this sequence
2663 and cause that insn to be restored. */
2664
2665 next = final_scan_insn (seq->insn (index: 0), file, 0, 1, seen);
2666 if (next != seq->insn (index: 1))
2667 {
2668 final_sequence = 0;
2669 return next;
2670 }
2671
2672 for (i = 1; i < seq->len (); i++)
2673 {
2674 rtx_insn *insn = seq->insn (index: i);
2675 rtx_insn *next = NEXT_INSN (insn);
2676 /* We loop in case any instruction in a delay slot gets
2677 split. */
2678 do
2679 insn = final_scan_insn (insn, file, 0, 1, seen);
2680 while (insn != next);
2681 }
2682#ifdef DBR_OUTPUT_SEQEND
2683 DBR_OUTPUT_SEQEND (file);
2684#endif
2685 final_sequence = 0;
2686
2687 /* If the insn requiring the delay slot was a CALL_INSN, the
2688 insns in the delay slot are actually executed before the
2689 called function. Hence we don't preserve any CC-setting
2690 actions in these insns and the CC must be marked as being
2691 clobbered by the function. */
2692 if (CALL_P (seq->insn (0)))
2693 {
2694 CC_STATUS_INIT;
2695 }
2696 break;
2697 }
2698
2699 /* We have a real machine instruction as rtl. */
2700
2701 body = PATTERN (insn);
2702
2703 /* Do machine-specific peephole optimizations if desired. */
2704
2705 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2706 {
2707 rtx_insn *next = peephole (insn);
2708 /* When peepholing, if there were notes within the peephole,
2709 emit them before the peephole. */
2710 if (next != 0 && next != NEXT_INSN (insn))
2711 {
2712 rtx_insn *note, *prev = PREV_INSN (insn);
2713
2714 for (note = NEXT_INSN (insn); note != next;
2715 note = NEXT_INSN (insn: note))
2716 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2717
2718 /* Put the notes in the proper position for a later
2719 rescan. For example, the SH target can do this
2720 when generating a far jump in a delayed branch
2721 sequence. */
2722 note = NEXT_INSN (insn);
2723 SET_PREV_INSN (note) = prev;
2724 SET_NEXT_INSN (prev) = note;
2725 SET_NEXT_INSN (PREV_INSN (insn: next)) = insn;
2726 SET_PREV_INSN (insn) = PREV_INSN (insn: next);
2727 SET_NEXT_INSN (insn) = next;
2728 SET_PREV_INSN (next) = insn;
2729 }
2730
2731 /* PEEPHOLE might have changed this. */
2732 body = PATTERN (insn);
2733 }
2734
2735 /* Try to recognize the instruction.
2736 If successful, verify that the operands satisfy the
2737 constraints for the instruction. Crash if they don't,
2738 since `reload' should have changed them so that they do. */
2739
2740 insn_code_number = recog_memoized (insn);
2741 cleanup_subreg_operands (insn);
2742
2743 /* Dump the insn in the assembly for debugging (-dAP).
2744 If the final dump is requested as slim RTL, dump slim
2745 RTL to the assembly file also. */
2746 if (flag_dump_rtl_in_asm)
2747 {
2748 print_rtx_head = ASM_COMMENT_START;
2749 if (! (dump_flags & TDF_SLIM))
2750 print_rtl_single (asm_out_file, insn);
2751 else
2752 dump_insn_slim (asm_out_file, insn);
2753 print_rtx_head = "";
2754 }
2755
2756 if (! constrain_operands_cached (insn, 1))
2757 fatal_insn_not_found (insn);
2758
2759 /* Some target machines need to prescan each insn before
2760 it is output. */
2761
2762#ifdef FINAL_PRESCAN_INSN
2763 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2764#endif
2765
2766 if (targetm.have_conditional_execution ()
2767 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2768 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2769
2770 current_output_insn = debug_insn = insn;
2771
2772 /* Find the proper template for this insn. */
2773 templ = get_insn_template (code: insn_code_number, insn);
2774
2775 /* If the C code returns 0, it means that it is a jump insn
2776 which follows a deleted test insn, and that test insn
2777 needs to be reinserted. */
2778 if (templ == 0)
2779 {
2780 rtx_insn *prev;
2781
2782 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2783
2784 /* We have already processed the notes between the setter and
2785 the user. Make sure we don't process them again, this is
2786 particularly important if one of the notes is a block
2787 scope note or an EH note. */
2788 for (prev = insn;
2789 prev != last_ignored_compare;
2790 prev = PREV_INSN (insn: prev))
2791 {
2792 if (NOTE_P (prev))
2793 delete_insn (prev); /* Use delete_note. */
2794 }
2795
2796 return prev;
2797 }
2798
2799 /* If the template is the string "#", it means that this insn must
2800 be split. */
2801 if (templ[0] == '#' && templ[1] == '\0')
2802 {
2803 rtx_insn *new_rtx = try_split (body, insn, 0);
2804
2805 /* If we didn't split the insn, go away. */
2806 if (new_rtx == insn && PATTERN (insn: new_rtx) == body)
2807 fatal_insn ("could not split insn", insn);
2808
2809 /* If we have a length attribute, this instruction should have
2810 been split in shorten_branches, to ensure that we would have
2811 valid length info for the splitees. */
2812 gcc_assert (!HAVE_ATTR_length);
2813
2814 return new_rtx;
2815 }
2816
2817 /* ??? This will put the directives in the wrong place if
2818 get_insn_template outputs assembly directly. However calling it
2819 before get_insn_template breaks if the insns is split. */
2820 if (targetm.asm_out.unwind_emit_before_insn
2821 && targetm.asm_out.unwind_emit)
2822 targetm.asm_out.unwind_emit (asm_out_file, insn);
2823
2824 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (p: insn);
2825 if (call_insn != NULL)
2826 {
2827 rtx x = call_from_call_insn (insn: call_insn);
2828 x = XEXP (x, 0);
2829 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2830 {
2831 tree t;
2832 x = XEXP (x, 0);
2833 t = SYMBOL_REF_DECL (x);
2834 if (t)
2835 assemble_external (t);
2836 }
2837 }
2838
2839 /* Output assembler code from the template. */
2840 output_asm_insn (templ, recog_data.operand);
2841
2842 /* Some target machines need to postscan each insn after
2843 it is output. */
2844 if (targetm.asm_out.final_postscan_insn)
2845 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
2846 recog_data.n_operands);
2847
2848 if (!targetm.asm_out.unwind_emit_before_insn
2849 && targetm.asm_out.unwind_emit)
2850 targetm.asm_out.unwind_emit (asm_out_file, insn);
2851
2852 /* Let the debug info back-end know about this call. We do this only
2853 after the instruction has been emitted because labels that may be
2854 created to reference the call instruction must appear after it. */
2855 if ((debug_variable_location_views || call_insn != NULL)
2856 && !DECL_IGNORED_P (current_function_decl))
2857 debug_hooks->var_location (insn);
2858
2859 current_output_insn = debug_insn = 0;
2860 }
2861 }
2862 return NEXT_INSN (insn);
2863}
2864
2865/* This is a wrapper around final_scan_insn_1 that allows ports to
2866 call it recursively without a known value for SEEN. The value is
2867 saved at the outermost call, and recovered for recursive calls.
2868 Recursive calls MUST pass NULL, or the same pointer if they can
2869 otherwise get to it. */
2870
2871rtx_insn *
2872final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
2873 int nopeepholes, int *seen)
2874{
2875 static int *enclosing_seen;
2876 static int recursion_counter;
2877
2878 gcc_assert (seen || recursion_counter);
2879 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
2880
2881 if (!recursion_counter++)
2882 enclosing_seen = seen;
2883 else if (!seen)
2884 seen = enclosing_seen;
2885
2886 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
2887
2888 if (!--recursion_counter)
2889 enclosing_seen = NULL;
2890
2891 return ret;
2892}
2893
2894
2895
2896/* Map DECLs to instance discriminators. This is allocated and
2897 defined in ada/gcc-interfaces/trans.cc, when compiling with -gnateS.
2898 Mappings from this table are saved and restored for LTO, so
2899 link-time compilation will have this map set, at least in
2900 partitions containing at least one DECL with an associated instance
2901 discriminator. */
2902
2903decl_to_instance_map_t *decl_to_instance_map;
2904
2905/* Return the instance number assigned to DECL. */
2906
2907static inline int
2908map_decl_to_instance (const_tree decl)
2909{
2910 int *inst;
2911
2912 if (!decl_to_instance_map || !decl || !DECL_P (decl))
2913 return 0;
2914
2915 inst = decl_to_instance_map->get (k: decl);
2916
2917 if (!inst)
2918 return 0;
2919
2920 return *inst;
2921}
2922
2923/* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */
2924
2925static inline int
2926compute_discriminator (location_t loc)
2927{
2928 int discriminator;
2929
2930 if (!decl_to_instance_map)
2931 discriminator = get_discriminator_from_loc (loc);
2932 else
2933 {
2934 tree block = LOCATION_BLOCK (loc);
2935
2936 while (block && TREE_CODE (block) == BLOCK
2937 && !inlined_function_outer_scope_p (block))
2938 block = BLOCK_SUPERCONTEXT (block);
2939
2940 tree decl;
2941
2942 if (!block)
2943 decl = current_function_decl;
2944 else if (DECL_P (block))
2945 decl = block;
2946 else
2947 decl = block_ultimate_origin (block);
2948
2949 discriminator = map_decl_to_instance (decl);
2950 }
2951
2952 return discriminator;
2953}
2954
2955/* Return discriminator of the statement that produced this insn. */
2956int
2957insn_discriminator (const rtx_insn *insn)
2958{
2959 return compute_discriminator (loc: INSN_LOCATION (insn));
2960}
2961
2962/* Return whether a source line note needs to be emitted before INSN.
2963 Sets IS_STMT to TRUE if the line should be marked as a possible
2964 breakpoint location. */
2965
2966static bool
2967notice_source_line (rtx_insn *insn, bool *is_stmt)
2968{
2969 const char *filename;
2970 int linenum, columnnum;
2971 int discriminator;
2972
2973 if (NOTE_MARKER_P (insn))
2974 {
2975 location_t loc = NOTE_MARKER_LOCATION (insn);
2976 expanded_location xloc = expand_location (loc);
2977 if (xloc.line == 0
2978 && (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
2979 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION))
2980 return false;
2981
2982 filename = xloc.file;
2983 linenum = xloc.line;
2984 columnnum = xloc.column;
2985 discriminator = compute_discriminator (loc);
2986 force_source_line = true;
2987 }
2988 else if (override_filename)
2989 {
2990 filename = override_filename;
2991 linenum = override_linenum;
2992 columnnum = override_columnnum;
2993 discriminator = override_discriminator;
2994 }
2995 else if (INSN_HAS_LOCATION (insn))
2996 {
2997 expanded_location xloc = insn_location (insn);
2998 filename = xloc.file;
2999 linenum = xloc.line;
3000 columnnum = xloc.column;
3001 discriminator = insn_discriminator (insn);
3002 }
3003 else
3004 {
3005 filename = NULL;
3006 linenum = 0;
3007 columnnum = 0;
3008 discriminator = 0;
3009 }
3010
3011 if (filename == NULL)
3012 return false;
3013
3014 if (force_source_line
3015 || filename != last_filename
3016 || last_linenum != linenum
3017 || (debug_column_info && last_columnnum != columnnum))
3018 {
3019 force_source_line = false;
3020 last_filename = filename;
3021 last_linenum = linenum;
3022 last_columnnum = columnnum;
3023 last_discriminator = discriminator;
3024 if (is_stmt)
3025 *is_stmt = true;
3026 high_block_linenum = MAX (last_linenum, high_block_linenum);
3027 high_function_linenum = MAX (last_linenum, high_function_linenum);
3028 return true;
3029 }
3030
3031 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3032 {
3033 /* If the discriminator changed, but the line number did not,
3034 output the line table entry with is_stmt false so the
3035 debugger does not treat this as a breakpoint location. */
3036 last_discriminator = discriminator;
3037 if (is_stmt)
3038 *is_stmt = false;
3039 return true;
3040 }
3041
3042 return false;
3043}
3044
3045/* For each operand in INSN, simplify (subreg (reg)) so that it refers
3046 directly to the desired hard register. */
3047
3048void
3049cleanup_subreg_operands (rtx_insn *insn)
3050{
3051 int i;
3052 bool changed = false;
3053 extract_insn_cached (insn);
3054 for (i = 0; i < recog_data.n_operands; i++)
3055 {
3056 /* The following test cannot use recog_data.operand when testing
3057 for a SUBREG: the underlying object might have been changed
3058 already if we are inside a match_operator expression that
3059 matches the else clause. Instead we test the underlying
3060 expression directly. */
3061 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3062 {
3063 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3064 changed = true;
3065 }
3066 else if (GET_CODE (recog_data.operand[i]) == PLUS
3067 || GET_CODE (recog_data.operand[i]) == MULT
3068 || MEM_P (recog_data.operand[i]))
3069 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3070 }
3071
3072 for (i = 0; i < recog_data.n_dups; i++)
3073 {
3074 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3075 {
3076 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3077 changed = true;
3078 }
3079 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3080 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3081 || MEM_P (*recog_data.dup_loc[i]))
3082 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3083 }
3084 if (changed)
3085 df_insn_rescan (insn);
3086}
3087
3088/* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3089 the thing it is a subreg of. Do it anyway if FINAL_P. */
3090
3091rtx
3092alter_subreg (rtx *xp, bool final_p)
3093{
3094 rtx x = *xp;
3095 rtx y = SUBREG_REG (x);
3096
3097 /* simplify_subreg does not remove subreg from volatile references.
3098 We are required to. */
3099 if (MEM_P (y))
3100 {
3101 poly_int64 offset = SUBREG_BYTE (x);
3102
3103 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3104 contains 0 instead of the proper offset. See simplify_subreg. */
3105 if (paradoxical_subreg_p (x))
3106 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3107
3108 if (final_p)
3109 *xp = adjust_address (y, GET_MODE (x), offset);
3110 else
3111 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3112 }
3113 else if (REG_P (y) && HARD_REGISTER_P (y))
3114 {
3115 rtx new_rtx = simplify_subreg (GET_MODE (x), op: y, GET_MODE (y),
3116 SUBREG_BYTE (x));
3117
3118 if (new_rtx != 0)
3119 *xp = new_rtx;
3120 else if (final_p && REG_P (y))
3121 {
3122 /* Simplify_subreg can't handle some REG cases, but we have to. */
3123 unsigned int regno;
3124 poly_int64 offset;
3125
3126 regno = subreg_regno (x);
3127 if (subreg_lowpart_p (x))
3128 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3129 else
3130 offset = SUBREG_BYTE (x);
3131 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3132 }
3133 }
3134
3135 return *xp;
3136}
3137
3138/* Do alter_subreg on all the SUBREGs contained in X. */
3139
3140static rtx
3141walk_alter_subreg (rtx *xp, bool *changed)
3142{
3143 rtx x = *xp;
3144 switch (GET_CODE (x))
3145 {
3146 case PLUS:
3147 case MULT:
3148 case AND:
3149 XEXP (x, 0) = walk_alter_subreg (xp: &XEXP (x, 0), changed);
3150 XEXP (x, 1) = walk_alter_subreg (xp: &XEXP (x, 1), changed);
3151 break;
3152
3153 case MEM:
3154 case ZERO_EXTEND:
3155 XEXP (x, 0) = walk_alter_subreg (xp: &XEXP (x, 0), changed);
3156 break;
3157
3158 case SUBREG:
3159 *changed = true;
3160 return alter_subreg (xp, final_p: true);
3161
3162 default:
3163 break;
3164 }
3165
3166 return *xp;
3167}
3168
3169/* Report inconsistency between the assembler template and the operands.
3170 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3171
3172void
3173output_operand_lossage (const char *cmsgid, ...)
3174{
3175 char *fmt_string;
3176 char *new_message;
3177 const char *pfx_str;
3178 va_list ap;
3179
3180 va_start (ap, cmsgid);
3181
3182 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3183 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3184 new_message = xvasprintf (fmt_string, ap);
3185
3186 if (this_is_asm_operands)
3187 error_for_asm (this_is_asm_operands, "%s", new_message);
3188 else
3189 internal_error ("%s", new_message);
3190
3191 free (ptr: fmt_string);
3192 free (ptr: new_message);
3193 va_end (ap);
3194}
3195
3196/* Output of assembler code from a template, and its subroutines. */
3197
3198/* Annotate the assembly with a comment describing the pattern and
3199 alternative used. */
3200
3201static void
3202output_asm_name (void)
3203{
3204 if (debug_insn)
3205 {
3206 fprintf (stream: asm_out_file, format: "\t%s %d\t",
3207 ASM_COMMENT_START, INSN_UID (insn: debug_insn));
3208
3209 fprintf (stream: asm_out_file, format: "[c=%d",
3210 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3211 if (HAVE_ATTR_length)
3212 fprintf (stream: asm_out_file, format: " l=%d",
3213 get_attr_length (insn: debug_insn));
3214 fprintf (stream: asm_out_file, format: "] ");
3215
3216 int num = INSN_CODE (debug_insn);
3217 fprintf (stream: asm_out_file, format: "%s", insn_data[num].name);
3218 if (insn_data[num].n_alternatives > 1)
3219 fprintf (stream: asm_out_file, format: "/%d", which_alternative);
3220
3221 /* Clear this so only the first assembler insn
3222 of any rtl insn will get the special comment for -dp. */
3223 debug_insn = 0;
3224 }
3225}
3226
3227/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3228 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3229 corresponds to the address of the object and 0 if to the object. */
3230
3231static tree
3232get_mem_expr_from_op (rtx op, int *paddressp)
3233{
3234 tree expr;
3235 int inner_addressp;
3236
3237 *paddressp = 0;
3238
3239 if (REG_P (op))
3240 return REG_EXPR (op);
3241 else if (!MEM_P (op))
3242 return 0;
3243
3244 if (MEM_EXPR (op) != 0)
3245 return MEM_EXPR (op);
3246
3247 /* Otherwise we have an address, so indicate it and look at the address. */
3248 *paddressp = 1;
3249 op = XEXP (op, 0);
3250
3251 /* First check if we have a decl for the address, then look at the right side
3252 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3253 But don't allow the address to itself be indirect. */
3254 if ((expr = get_mem_expr_from_op (op, paddressp: &inner_addressp)) && ! inner_addressp)
3255 return expr;
3256 else if (GET_CODE (op) == PLUS
3257 && (expr = get_mem_expr_from_op (XEXP (op, 1), paddressp: &inner_addressp)))
3258 return expr;
3259
3260 while (UNARY_P (op)
3261 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3262 op = XEXP (op, 0);
3263
3264 expr = get_mem_expr_from_op (op, paddressp: &inner_addressp);
3265 return inner_addressp ? 0 : expr;
3266}
3267
3268/* Output operand names for assembler instructions. OPERANDS is the
3269 operand vector, OPORDER is the order to write the operands, and NOPS
3270 is the number of operands to write. */
3271
3272static void
3273output_asm_operand_names (rtx *operands, int *oporder, int nops)
3274{
3275 int wrote = 0;
3276 int i;
3277
3278 for (i = 0; i < nops; i++)
3279 {
3280 int addressp;
3281 rtx op = operands[oporder[i]];
3282 tree expr = get_mem_expr_from_op (op, paddressp: &addressp);
3283
3284 fprintf (stream: asm_out_file, format: "%c%s",
3285 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3286 wrote = 1;
3287 if (expr)
3288 {
3289 fprintf (stream: asm_out_file, format: "%s",
3290 addressp ? "*" : "");
3291 print_mem_expr (asm_out_file, expr);
3292 wrote = 1;
3293 }
3294 else if (REG_P (op) && ORIGINAL_REGNO (op)
3295 && ORIGINAL_REGNO (op) != REGNO (op))
3296 fprintf (stream: asm_out_file, format: " tmp%i", ORIGINAL_REGNO (op));
3297 }
3298}
3299
3300#ifdef ASSEMBLER_DIALECT
3301/* Helper function to parse assembler dialects in the asm string.
3302 This is called from output_asm_insn and asm_fprintf. */
3303static const char *
3304do_assembler_dialects (const char *p, int *dialect)
3305{
3306 char c = *(p - 1);
3307
3308 switch (c)
3309 {
3310 case '{':
3311 {
3312 int i;
3313
3314 if (*dialect)
3315 output_operand_lossage (cmsgid: "nested assembly dialect alternatives");
3316 else
3317 *dialect = 1;
3318
3319 /* If we want the first dialect, do nothing. Otherwise, skip
3320 DIALECT_NUMBER of strings ending with '|'. */
3321 for (i = 0; i < dialect_number; i++)
3322 {
3323 while (*p && *p != '}')
3324 {
3325 if (*p == '|')
3326 {
3327 p++;
3328 break;
3329 }
3330
3331 /* Skip over any character after a percent sign. */
3332 if (*p == '%')
3333 p++;
3334 if (*p)
3335 p++;
3336 }
3337
3338 if (*p == '}')
3339 break;
3340 }
3341
3342 if (*p == '\0')
3343 output_operand_lossage (cmsgid: "unterminated assembly dialect alternative");
3344 }
3345 break;
3346
3347 case '|':
3348 if (*dialect)
3349 {
3350 /* Skip to close brace. */
3351 do
3352 {
3353 if (*p == '\0')
3354 {
3355 output_operand_lossage (cmsgid: "unterminated assembly dialect alternative");
3356 break;
3357 }
3358
3359 /* Skip over any character after a percent sign. */
3360 if (*p == '%' && p[1])
3361 {
3362 p += 2;
3363 continue;
3364 }
3365
3366 if (*p++ == '}')
3367 break;
3368 }
3369 while (1);
3370
3371 *dialect = 0;
3372 }
3373 else
3374 putc (c: c, stream: asm_out_file);
3375 break;
3376
3377 case '}':
3378 if (! *dialect)
3379 putc (c: c, stream: asm_out_file);
3380 *dialect = 0;
3381 break;
3382 default:
3383 gcc_unreachable ();
3384 }
3385
3386 return p;
3387}
3388#endif
3389
3390/* Output text from TEMPLATE to the assembler output file,
3391 obeying %-directions to substitute operands taken from
3392 the vector OPERANDS.
3393
3394 %N (for N a digit) means print operand N in usual manner.
3395 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3396 and print the label name with no punctuation.
3397 %cN means require operand N to be a constant
3398 and print the constant expression with no punctuation.
3399 %aN means expect operand N to be a memory address
3400 (not a memory reference!) and print a reference
3401 to that address.
3402 %nN means expect operand N to be a constant
3403 and print a constant expression for minus the value
3404 of the operand, with no other punctuation. */
3405
3406void
3407output_asm_insn (const char *templ, rtx *operands)
3408{
3409 const char *p;
3410 int c;
3411#ifdef ASSEMBLER_DIALECT
3412 int dialect = 0;
3413#endif
3414 int oporder[MAX_RECOG_OPERANDS];
3415 char opoutput[MAX_RECOG_OPERANDS];
3416 int ops = 0;
3417
3418 /* An insn may return a null string template
3419 in a case where no assembler code is needed. */
3420 if (*templ == 0)
3421 return;
3422
3423 memset (s: opoutput, c: 0, n: sizeof opoutput);
3424 p = templ;
3425 putc (c: '\t', stream: asm_out_file);
3426
3427#ifdef ASM_OUTPUT_OPCODE
3428 ASM_OUTPUT_OPCODE (asm_out_file, p);
3429#endif
3430
3431 while ((c = *p++))
3432 switch (c)
3433 {
3434 case '\n':
3435 if (flag_verbose_asm)
3436 output_asm_operand_names (operands, oporder, nops: ops);
3437 if (flag_print_asm_name)
3438 output_asm_name ();
3439
3440 ops = 0;
3441 memset (s: opoutput, c: 0, n: sizeof opoutput);
3442
3443 putc (c: c, stream: asm_out_file);
3444#ifdef ASM_OUTPUT_OPCODE
3445 while ((c = *p) == '\t')
3446 {
3447 putc (c: c, stream: asm_out_file);
3448 p++;
3449 }
3450 ASM_OUTPUT_OPCODE (asm_out_file, p);
3451#endif
3452 break;
3453
3454#ifdef ASSEMBLER_DIALECT
3455 case '{':
3456 case '}':
3457 case '|':
3458 p = do_assembler_dialects (p, dialect: &dialect);
3459 break;
3460#endif
3461
3462 case '%':
3463 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3464 if ASSEMBLER_DIALECT defined and these characters have a special
3465 meaning as dialect delimiters.*/
3466 if (*p == '%'
3467#ifdef ASSEMBLER_DIALECT
3468 || *p == '{' || *p == '}' || *p == '|'
3469#endif
3470 )
3471 {
3472 putc (c: *p, stream: asm_out_file);
3473 p++;
3474 }
3475 /* %= outputs a number which is unique to each insn in the entire
3476 compilation. This is useful for making local labels that are
3477 referred to more than once in a given insn. */
3478 else if (*p == '=')
3479 {
3480 p++;
3481 fprintf (stream: asm_out_file, format: "%d", insn_counter);
3482 }
3483 /* % followed by a letter and some digits
3484 outputs an operand in a special way depending on the letter.
3485 Letters `acln' are implemented directly.
3486 Other letters are passed to `output_operand' so that
3487 the TARGET_PRINT_OPERAND hook can define them. */
3488 else if (ISALPHA (*p))
3489 {
3490 int letter = *p++;
3491 unsigned long opnum;
3492 char *endptr;
3493
3494 opnum = strtoul (nptr: p, endptr: &endptr, base: 10);
3495
3496 if (endptr == p)
3497 output_operand_lossage (cmsgid: "operand number missing "
3498 "after %%-letter");
3499 else if (this_is_asm_operands && opnum >= insn_noperands)
3500 output_operand_lossage (cmsgid: "operand number out of range");
3501 else if (letter == 'l')
3502 output_asm_label (operands[opnum]);
3503 else if (letter == 'a')
3504 output_address (VOIDmode, operands[opnum]);
3505 else if (letter == 'c')
3506 {
3507 if (CONSTANT_ADDRESS_P (operands[opnum]))
3508 output_addr_const (asm_out_file, operands[opnum]);
3509 else
3510 output_operand (operands[opnum], 'c');
3511 }
3512 else if (letter == 'n')
3513 {
3514 if (CONST_INT_P (operands[opnum]))
3515 fprintf (stream: asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3516 - INTVAL (operands[opnum]));
3517 else
3518 {
3519 putc (c: '-', stream: asm_out_file);
3520 output_addr_const (asm_out_file, operands[opnum]);
3521 }
3522 }
3523 else
3524 output_operand (operands[opnum], letter);
3525
3526 if (!opoutput[opnum])
3527 oporder[ops++] = opnum;
3528 opoutput[opnum] = 1;
3529
3530 p = endptr;
3531 c = *p;
3532 }
3533 /* % followed by a digit outputs an operand the default way. */
3534 else if (ISDIGIT (*p))
3535 {
3536 unsigned long opnum;
3537 char *endptr;
3538
3539 opnum = strtoul (nptr: p, endptr: &endptr, base: 10);
3540 if (this_is_asm_operands && opnum >= insn_noperands)
3541 output_operand_lossage (cmsgid: "operand number out of range");
3542 else
3543 output_operand (operands[opnum], 0);
3544
3545 if (!opoutput[opnum])
3546 oporder[ops++] = opnum;
3547 opoutput[opnum] = 1;
3548
3549 p = endptr;
3550 c = *p;
3551 }
3552 /* % followed by punctuation: output something for that
3553 punctuation character alone, with no operand. The
3554 TARGET_PRINT_OPERAND hook decides what is actually done. */
3555 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3556 output_operand (NULL_RTX, *p++);
3557 else
3558 output_operand_lossage (cmsgid: "invalid %%-code");
3559 break;
3560
3561 default:
3562 putc (c: c, stream: asm_out_file);
3563 }
3564
3565 /* Try to keep the asm a bit more readable. */
3566 if ((flag_verbose_asm || flag_print_asm_name) && strlen (s: templ) < 9)
3567 putc (c: '\t', stream: asm_out_file);
3568
3569 /* Write out the variable names for operands, if we know them. */
3570 if (flag_verbose_asm)
3571 output_asm_operand_names (operands, oporder, nops: ops);
3572 if (flag_print_asm_name)
3573 output_asm_name ();
3574
3575 putc (c: '\n', stream: asm_out_file);
3576}
3577
3578/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3579
3580void
3581output_asm_label (rtx x)
3582{
3583 char buf[256];
3584
3585 if (GET_CODE (x) == LABEL_REF)
3586 x = label_ref_label (ref: x);
3587 if (LABEL_P (x)
3588 || (NOTE_P (x)
3589 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3590 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3591 else
3592 output_operand_lossage (cmsgid: "'%%l' operand isn't a label");
3593
3594 assemble_name (asm_out_file, buf);
3595}
3596
3597/* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3598
3599void
3600mark_symbol_refs_as_used (rtx x)
3601{
3602 subrtx_iterator::array_type array;
3603 FOR_EACH_SUBRTX (iter, array, x, ALL)
3604 {
3605 const_rtx x = *iter;
3606 if (GET_CODE (x) == SYMBOL_REF)
3607 if (tree t = SYMBOL_REF_DECL (x))
3608 assemble_external (t);
3609 }
3610}
3611
3612/* Print operand X using machine-dependent assembler syntax.
3613 CODE is a non-digit that preceded the operand-number in the % spec,
3614 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3615 between the % and the digits.
3616 When CODE is a non-letter, X is 0.
3617
3618 The meanings of the letters are machine-dependent and controlled
3619 by TARGET_PRINT_OPERAND. */
3620
3621void
3622output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3623{
3624 if (x && GET_CODE (x) == SUBREG)
3625 x = alter_subreg (xp: &x, final_p: true);
3626
3627 /* X must not be a pseudo reg. */
3628 if (!targetm.no_register_allocation)
3629 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3630
3631 targetm.asm_out.print_operand (asm_out_file, x, code);
3632
3633 if (x == NULL_RTX)
3634 return;
3635
3636 mark_symbol_refs_as_used (x);
3637}
3638
3639/* Print a memory reference operand for address X using
3640 machine-dependent assembler syntax. */
3641
3642void
3643output_address (machine_mode mode, rtx x)
3644{
3645 bool changed = false;
3646 walk_alter_subreg (xp: &x, changed: &changed);
3647 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
3648}
3649
3650/* Print an integer constant expression in assembler syntax.
3651 Addition and subtraction are the only arithmetic
3652 that may appear in these expressions. */
3653
3654void
3655output_addr_const (FILE *file, rtx x)
3656{
3657 char buf[256];
3658
3659 restart:
3660 switch (GET_CODE (x))
3661 {
3662 case PC:
3663 putc (c: '.', stream: file);
3664 break;
3665
3666 case SYMBOL_REF:
3667 if (SYMBOL_REF_DECL (x))
3668 assemble_external (SYMBOL_REF_DECL (x));
3669#ifdef ASM_OUTPUT_SYMBOL_REF
3670 ASM_OUTPUT_SYMBOL_REF (file, x);
3671#else
3672 assemble_name (file, XSTR (x, 0));
3673#endif
3674 break;
3675
3676 case LABEL_REF:
3677 x = label_ref_label (ref: x);
3678 /* Fall through. */
3679 case CODE_LABEL:
3680 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3681#ifdef ASM_OUTPUT_LABEL_REF
3682 ASM_OUTPUT_LABEL_REF (file, buf);
3683#else
3684 assemble_name (file, buf);
3685#endif
3686 break;
3687
3688 case CONST_INT:
3689 fprintf (stream: file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3690 break;
3691
3692 case CONST:
3693 /* This used to output parentheses around the expression,
3694 but that does not work on the 386 (either ATT or BSD assembler). */
3695 output_addr_const (file, XEXP (x, 0));
3696 break;
3697
3698 case CONST_WIDE_INT:
3699 /* We do not know the mode here so we have to use a round about
3700 way to build a wide-int to get it printed properly. */
3701 {
3702 wide_int w = wide_int::from_array (val: &CONST_WIDE_INT_ELT (x, 0),
3703 CONST_WIDE_INT_NUNITS (x),
3704 CONST_WIDE_INT_NUNITS (x)
3705 * HOST_BITS_PER_WIDE_INT,
3706 need_canon_p: false);
3707 print_decs (wi: w, file);
3708 }
3709 break;
3710
3711 case CONST_DOUBLE:
3712 if (CONST_DOUBLE_AS_INT_P (x))
3713 {
3714 /* We can use %d if the number is one word and positive. */
3715 if (CONST_DOUBLE_HIGH (x))
3716 fprintf (stream: file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3717 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3718 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3719 else if (CONST_DOUBLE_LOW (x) < 0)
3720 fprintf (stream: file, HOST_WIDE_INT_PRINT_HEX,
3721 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3722 else
3723 fprintf (stream: file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3724 }
3725 else
3726 /* We can't handle floating point constants;
3727 PRINT_OPERAND must handle them. */
3728 output_operand_lossage (cmsgid: "floating constant misused");
3729 break;
3730
3731 case CONST_FIXED:
3732 fprintf (stream: file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3733 break;
3734
3735 case PLUS:
3736 /* Some assemblers need integer constants to appear last (eg masm). */
3737 if (CONST_INT_P (XEXP (x, 0)))
3738 {
3739 output_addr_const (file, XEXP (x, 1));
3740 if (INTVAL (XEXP (x, 0)) >= 0)
3741 fprintf (stream: file, format: "+");
3742 output_addr_const (file, XEXP (x, 0));
3743 }
3744 else
3745 {
3746 output_addr_const (file, XEXP (x, 0));
3747 if (!CONST_INT_P (XEXP (x, 1))
3748 || INTVAL (XEXP (x, 1)) >= 0)
3749 fprintf (stream: file, format: "+");
3750 output_addr_const (file, XEXP (x, 1));
3751 }
3752 break;
3753
3754 case MINUS:
3755 /* Avoid outputting things like x-x or x+5-x,
3756 since some assemblers can't handle that. */
3757 x = simplify_subtraction (x);
3758 if (GET_CODE (x) != MINUS)
3759 goto restart;
3760
3761 output_addr_const (file, XEXP (x, 0));
3762 fprintf (stream: file, format: "-");
3763 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3764 || GET_CODE (XEXP (x, 1)) == PC
3765 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3766 output_addr_const (file, XEXP (x, 1));
3767 else
3768 {
3769 fputs (s: targetm.asm_out.open_paren, stream: file);
3770 output_addr_const (file, XEXP (x, 1));
3771 fputs (s: targetm.asm_out.close_paren, stream: file);
3772 }
3773 break;
3774
3775 case ZERO_EXTEND:
3776 case SIGN_EXTEND:
3777 case SUBREG:
3778 case TRUNCATE:
3779 output_addr_const (file, XEXP (x, 0));
3780 break;
3781
3782 default:
3783 if (targetm.asm_out.output_addr_const_extra (file, x))
3784 break;
3785
3786 output_operand_lossage (cmsgid: "invalid expression as operand");
3787 }
3788}
3789
3790/* Output a quoted string. */
3791
3792void
3793output_quoted_string (FILE *asm_file, const char *string)
3794{
3795#ifdef OUTPUT_QUOTED_STRING
3796 OUTPUT_QUOTED_STRING (asm_file, string);
3797#else
3798 char c;
3799
3800 putc (c: '\"', stream: asm_file);
3801 while ((c = *string++) != 0)
3802 {
3803 if (ISPRINT (c))
3804 {
3805 if (c == '\"' || c == '\\')
3806 putc (c: '\\', stream: asm_file);
3807 putc (c: c, stream: asm_file);
3808 }
3809 else
3810 fprintf (stream: asm_file, format: "\\%03o", (unsigned char) c);
3811 }
3812 putc (c: '\"', stream: asm_file);
3813#endif
3814}
3815
3816/* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3817
3818void
3819fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
3820{
3821 char buf[2 + CHAR_BIT * sizeof (value) / 4];
3822 if (value == 0)
3823 putc (c: '0', stream: f);
3824 else
3825 {
3826 char *p = buf + sizeof (buf);
3827 do
3828 *--p = "0123456789abcdef"[value % 16];
3829 while ((value /= 16) != 0);
3830 *--p = 'x';
3831 *--p = '0';
3832 fwrite (ptr: p, size: 1, n: buf + sizeof (buf) - p, s: f);
3833 }
3834}
3835
3836/* Internal function that prints an unsigned long in decimal in reverse.
3837 The output string IS NOT null-terminated. */
3838
3839static int
3840sprint_ul_rev (char *s, unsigned long value)
3841{
3842 int i = 0;
3843 do
3844 {
3845 s[i] = "0123456789"[value % 10];
3846 value /= 10;
3847 i++;
3848 /* alternate version, without modulo */
3849 /* oldval = value; */
3850 /* value /= 10; */
3851 /* s[i] = "0123456789" [oldval - 10*value]; */
3852 /* i++ */
3853 }
3854 while (value != 0);
3855 return i;
3856}
3857
3858/* Write an unsigned long as decimal to a file, fast. */
3859
3860void
3861fprint_ul (FILE *f, unsigned long value)
3862{
3863 /* python says: len(str(2**64)) == 20 */
3864 char s[20];
3865 int i;
3866
3867 i = sprint_ul_rev (s, value);
3868
3869 /* It's probably too small to bother with string reversal and fputs. */
3870 do
3871 {
3872 i--;
3873 putc (c: s[i], stream: f);
3874 }
3875 while (i != 0);
3876}
3877
3878/* Write an unsigned long as decimal to a string, fast.
3879 s must be wide enough to not overflow, at least 21 chars.
3880 Returns the length of the string (without terminating '\0'). */
3881
3882int
3883sprint_ul (char *s, unsigned long value)
3884{
3885 int len = sprint_ul_rev (s, value);
3886 s[len] = '\0';
3887
3888 std::reverse (first: s, last: s + len);
3889 return len;
3890}
3891
3892/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3893 %R prints the value of REGISTER_PREFIX.
3894 %L prints the value of LOCAL_LABEL_PREFIX.
3895 %U prints the value of USER_LABEL_PREFIX.
3896 %I prints the value of IMMEDIATE_PREFIX.
3897 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3898 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3899
3900 We handle alternate assembler dialects here, just like output_asm_insn. */
3901
3902void
3903asm_fprintf (FILE *file, const char *p, ...)
3904{
3905 char buf[10];
3906 char *q, c;
3907#ifdef ASSEMBLER_DIALECT
3908 int dialect = 0;
3909#endif
3910 va_list argptr;
3911
3912 va_start (argptr, p);
3913
3914 buf[0] = '%';
3915
3916 while ((c = *p++))
3917 switch (c)
3918 {
3919#ifdef ASSEMBLER_DIALECT
3920 case '{':
3921 case '}':
3922 case '|':
3923 p = do_assembler_dialects (p, dialect: &dialect);
3924 break;
3925#endif
3926
3927 case '%':
3928 c = *p++;
3929 q = &buf[1];
3930 while (strchr (s: "-+ #0", c: c))
3931 {
3932 *q++ = c;
3933 c = *p++;
3934 }
3935 while (ISDIGIT (c) || c == '.')
3936 {
3937 *q++ = c;
3938 c = *p++;
3939 }
3940 switch (c)
3941 {
3942 case '%':
3943 putc (c: '%', stream: file);
3944 break;
3945
3946 case 'd': case 'i': case 'u':
3947 case 'x': case 'X': case 'o':
3948 case 'c':
3949 *q++ = c;
3950 *q = 0;
3951 fprintf (stream: file, format: buf, va_arg (argptr, int));
3952 break;
3953
3954 case 'w':
3955 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3956 'o' cases, but we do not check for those cases. It
3957 means that the value is a HOST_WIDE_INT, which may be
3958 either `long' or `long long'. */
3959 memcpy (dest: q, HOST_WIDE_INT_PRINT, n: strlen (HOST_WIDE_INT_PRINT));
3960 q += strlen (HOST_WIDE_INT_PRINT);
3961 *q++ = *p++;
3962 *q = 0;
3963 fprintf (stream: file, format: buf, va_arg (argptr, HOST_WIDE_INT));
3964 break;
3965
3966 case 'l':
3967 *q++ = c;
3968#ifdef HAVE_LONG_LONG
3969 if (*p == 'l')
3970 {
3971 *q++ = *p++;
3972 *q++ = *p++;
3973 *q = 0;
3974 fprintf (stream: file, format: buf, va_arg (argptr, long long));
3975 }
3976 else
3977#endif
3978 {
3979 *q++ = *p++;
3980 *q = 0;
3981 fprintf (stream: file, format: buf, va_arg (argptr, long));
3982 }
3983
3984 break;
3985
3986 case 's':
3987 *q++ = c;
3988 *q = 0;
3989 fprintf (stream: file, format: buf, va_arg (argptr, char *));
3990 break;
3991
3992 case 'O':
3993#ifdef ASM_OUTPUT_OPCODE
3994 ASM_OUTPUT_OPCODE (asm_out_file, p);
3995#endif
3996 break;
3997
3998 case 'R':
3999#ifdef REGISTER_PREFIX
4000 fprintf (file, "%s", REGISTER_PREFIX);
4001#endif
4002 break;
4003
4004 case 'I':
4005#ifdef IMMEDIATE_PREFIX
4006 fprintf (file, "%s", IMMEDIATE_PREFIX);
4007#endif
4008 break;
4009
4010 case 'L':
4011#ifdef LOCAL_LABEL_PREFIX
4012 fprintf (stream: file, format: "%s", LOCAL_LABEL_PREFIX);
4013#endif
4014 break;
4015
4016 case 'U':
4017 fputs (s: user_label_prefix, stream: file);
4018 break;
4019
4020#ifdef ASM_FPRINTF_EXTENSIONS
4021 /* Uppercase letters are reserved for general use by asm_fprintf
4022 and so are not available to target specific code. In order to
4023 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4024 they are defined here. As they get turned into real extensions
4025 to asm_fprintf they should be removed from this list. */
4026 case 'A': case 'B': case 'C': case 'D': case 'E':
4027 case 'F': case 'G': case 'H': case 'J': case 'K':
4028 case 'M': case 'N': case 'P': case 'Q': case 'S':
4029 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4030 break;
4031
4032 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4033#endif
4034 default:
4035 gcc_unreachable ();
4036 }
4037 break;
4038
4039 default:
4040 putc (c: c, stream: file);
4041 }
4042 va_end (argptr);
4043}
4044
4045/* Return true if this function has no function calls. */
4046
4047bool
4048leaf_function_p (void)
4049{
4050 rtx_insn *insn;
4051
4052 /* Ensure we walk the entire function body. */
4053 gcc_assert (!in_sequence_p ());
4054
4055 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4056 functions even if they call mcount. */
4057 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4058 return false;
4059
4060 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4061 {
4062 if (CALL_P (insn)
4063 && ! SIBLING_CALL_P (insn)
4064 && ! FAKE_CALL_P (insn))
4065 return false;
4066 if (NONJUMP_INSN_P (insn)
4067 && GET_CODE (PATTERN (insn)) == SEQUENCE
4068 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4069 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4070 return false;
4071 }
4072
4073 return true;
4074}
4075
4076/* Return true if branch is a forward branch.
4077 Uses insn_shuid array, so it works only in the final pass. May be used by
4078 output templates to customary add branch prediction hints.
4079 */
4080bool
4081final_forward_branch_p (rtx_insn *insn)
4082{
4083 int insn_id, label_id;
4084
4085 gcc_assert (uid_shuid);
4086 insn_id = INSN_SHUID (insn);
4087 label_id = INSN_SHUID (JUMP_LABEL (insn));
4088 /* We've hit some insns that does not have id information available. */
4089 gcc_assert (insn_id && label_id);
4090 return insn_id < label_id;
4091}
4092
4093/* On some machines, a function with no call insns
4094 can run faster if it doesn't create its own register window.
4095 When output, the leaf function should use only the "output"
4096 registers. Ordinarily, the function would be compiled to use
4097 the "input" registers to find its arguments; it is a candidate
4098 for leaf treatment if it uses only the "input" registers.
4099 Leaf function treatment means renumbering so the function
4100 uses the "output" registers instead. */
4101
4102#ifdef LEAF_REGISTERS
4103
4104/* Return bool if this function uses only the registers that can be
4105 safely renumbered. */
4106
4107bool
4108only_leaf_regs_used (void)
4109{
4110 int i;
4111 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4112
4113 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4114 if ((df_regs_ever_live_p (i) || global_regs[i])
4115 && ! permitted_reg_in_leaf_functions[i])
4116 return false;
4117
4118 if (crtl->uses_pic_offset_table
4119 && pic_offset_table_rtx != 0
4120 && REG_P (pic_offset_table_rtx)
4121 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4122 return false;
4123
4124 return true;
4125}
4126
4127/* Scan all instructions and renumber all registers into those
4128 available in leaf functions. */
4129
4130static void
4131leaf_renumber_regs (rtx_insn *first)
4132{
4133 rtx_insn *insn;
4134
4135 /* Renumber only the actual patterns.
4136 The reg-notes can contain frame pointer refs,
4137 and renumbering them could crash, and should not be needed. */
4138 for (insn = first; insn; insn = NEXT_INSN (insn))
4139 if (INSN_P (insn))
4140 leaf_renumber_regs_insn (PATTERN (insn));
4141}
4142
4143/* Scan IN_RTX and its subexpressions, and renumber all regs into those
4144 available in leaf functions. */
4145
4146void
4147leaf_renumber_regs_insn (rtx in_rtx)
4148{
4149 int i, j;
4150 const char *format_ptr;
4151
4152 if (in_rtx == 0)
4153 return;
4154
4155 /* Renumber all input-registers into output-registers.
4156 renumbered_regs would be 1 for an output-register;
4157 they */
4158
4159 if (REG_P (in_rtx))
4160 {
4161 int newreg;
4162
4163 /* Don't renumber the same reg twice. */
4164 if (in_rtx->used)
4165 return;
4166
4167 newreg = REGNO (in_rtx);
4168 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4169 to reach here as part of a REG_NOTE. */
4170 if (newreg >= FIRST_PSEUDO_REGISTER)
4171 {
4172 in_rtx->used = 1;
4173 return;
4174 }
4175 newreg = LEAF_REG_REMAP (newreg);
4176 gcc_assert (newreg >= 0);
4177 df_set_regs_ever_live (REGNO (in_rtx), false);
4178 df_set_regs_ever_live (newreg, true);
4179 SET_REGNO (in_rtx, newreg);
4180 in_rtx->used = 1;
4181 return;
4182 }
4183
4184 if (INSN_P (in_rtx))
4185 {
4186 /* Inside a SEQUENCE, we find insns.
4187 Renumber just the patterns of these insns,
4188 just as we do for the top-level insns. */
4189 leaf_renumber_regs_insn (PATTERN (in_rtx));
4190 return;
4191 }
4192
4193 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4194
4195 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4196 switch (*format_ptr++)
4197 {
4198 case 'e':
4199 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4200 break;
4201
4202 case 'E':
4203 if (XVEC (in_rtx, i) != NULL)
4204 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4205 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4206 break;
4207
4208 case 'S':
4209 case 's':
4210 case '0':
4211 case 'i':
4212 case 'w':
4213 case 'p':
4214 case 'n':
4215 case 'u':
4216 break;
4217
4218 default:
4219 gcc_unreachable ();
4220 }
4221}
4222#endif
4223
4224/* Turn the RTL into assembly. */
4225static unsigned int
4226rest_of_handle_final (void)
4227{
4228 const char *fnname = get_fnname_from_decl (current_function_decl);
4229
4230 /* Turn debug markers into notes if the var-tracking pass has not
4231 been invoked. */
4232 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4233 delete_vta_debug_insns (false);
4234
4235 assemble_start_function (current_function_decl, fnname);
4236 rtx_insn *first = get_insns ();
4237 int seen = 0;
4238 final_start_function_1 (firstp: &first, file: asm_out_file, seen: &seen, optimize);
4239 final_1 (first, file: asm_out_file, seen, optimize);
4240 if (flag_ipa_ra
4241 && !lookup_attribute (attr_name: "noipa", DECL_ATTRIBUTES (current_function_decl))
4242 /* Functions with naked attributes are supported only with basic asm
4243 statements in the body, thus for supported use cases the information
4244 on clobbered registers is not available. */
4245 && !lookup_attribute (attr_name: "naked", DECL_ATTRIBUTES (current_function_decl)))
4246 collect_fn_hard_reg_usage ();
4247 final_end_function ();
4248
4249 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4250 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4251 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4252 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4253
4254 assemble_end_function (current_function_decl, fnname);
4255
4256 /* Free up reg info memory. */
4257 free_reg_info ();
4258
4259 if (! quiet_flag)
4260 fflush (stream: asm_out_file);
4261
4262 /* Note that for those inline functions where we don't initially
4263 know for certain that we will be generating an out-of-line copy,
4264 the first invocation of this routine (rest_of_compilation) will
4265 skip over this code by doing a `goto exit_rest_of_compilation;'.
4266 Later on, wrapup_global_declarations will (indirectly) call
4267 rest_of_compilation again for those inline functions that need
4268 to have out-of-line copies generated. During that call, we
4269 *will* be routed past here. */
4270
4271 timevar_push (tv: TV_SYMOUT);
4272 if (!DECL_IGNORED_P (current_function_decl))
4273 debug_hooks->function_decl (current_function_decl);
4274 timevar_pop (tv: TV_SYMOUT);
4275
4276 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4277 DECL_INITIAL (current_function_decl) = error_mark_node;
4278
4279 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4280 && targetm.have_ctors_dtors)
4281 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4282 decl_init_priority_lookup
4283 (current_function_decl));
4284 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4285 && targetm.have_ctors_dtors)
4286 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4287 decl_fini_priority_lookup
4288 (current_function_decl));
4289 return 0;
4290}
4291
4292namespace {
4293
4294const pass_data pass_data_final =
4295{
4296 .type: RTL_PASS, /* type */
4297 .name: "final", /* name */
4298 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4299 .tv_id: TV_FINAL, /* tv_id */
4300 .properties_required: 0, /* properties_required */
4301 .properties_provided: 0, /* properties_provided */
4302 .properties_destroyed: 0, /* properties_destroyed */
4303 .todo_flags_start: 0, /* todo_flags_start */
4304 .todo_flags_finish: 0, /* todo_flags_finish */
4305};
4306
4307class pass_final : public rtl_opt_pass
4308{
4309public:
4310 pass_final (gcc::context *ctxt)
4311 : rtl_opt_pass (pass_data_final, ctxt)
4312 {}
4313
4314 /* opt_pass methods: */
4315 unsigned int execute (function *) final override
4316 {
4317 return rest_of_handle_final ();
4318 }
4319
4320}; // class pass_final
4321
4322} // anon namespace
4323
4324rtl_opt_pass *
4325make_pass_final (gcc::context *ctxt)
4326{
4327 return new pass_final (ctxt);
4328}
4329
4330
4331static unsigned int
4332rest_of_handle_shorten_branches (void)
4333{
4334 /* Shorten branches. */
4335 shorten_branches (first: get_insns ());
4336 return 0;
4337}
4338
4339namespace {
4340
4341const pass_data pass_data_shorten_branches =
4342{
4343 .type: RTL_PASS, /* type */
4344 .name: "shorten", /* name */
4345 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4346 .tv_id: TV_SHORTEN_BRANCH, /* tv_id */
4347 .properties_required: 0, /* properties_required */
4348 .properties_provided: 0, /* properties_provided */
4349 .properties_destroyed: 0, /* properties_destroyed */
4350 .todo_flags_start: 0, /* todo_flags_start */
4351 .todo_flags_finish: 0, /* todo_flags_finish */
4352};
4353
4354class pass_shorten_branches : public rtl_opt_pass
4355{
4356public:
4357 pass_shorten_branches (gcc::context *ctxt)
4358 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4359 {}
4360
4361 /* opt_pass methods: */
4362 unsigned int execute (function *) final override
4363 {
4364 return rest_of_handle_shorten_branches ();
4365 }
4366
4367}; // class pass_shorten_branches
4368
4369} // anon namespace
4370
4371rtl_opt_pass *
4372make_pass_shorten_branches (gcc::context *ctxt)
4373{
4374 return new pass_shorten_branches (ctxt);
4375}
4376
4377
4378static unsigned int
4379rest_of_clean_state (void)
4380{
4381 rtx_insn *insn, *next;
4382 FILE *final_output = NULL;
4383 int save_unnumbered = flag_dump_unnumbered;
4384 int save_noaddr = flag_dump_noaddr;
4385
4386 if (flag_dump_final_insns)
4387 {
4388 final_output = fopen (flag_dump_final_insns, modes: "a");
4389 if (!final_output)
4390 {
4391 error ("could not open final insn dump file %qs: %m",
4392 flag_dump_final_insns);
4393 flag_dump_final_insns = NULL;
4394 }
4395 else
4396 {
4397 flag_dump_noaddr = flag_dump_unnumbered = 1;
4398 if (flag_compare_debug_opt || flag_compare_debug)
4399 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4400 dump_function_header (final_output, current_function_decl,
4401 dump_flags);
4402 final_insns_dump_p = true;
4403
4404 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4405 if (LABEL_P (insn))
4406 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4407 else
4408 {
4409 if (NOTE_P (insn))
4410 set_block_for_insn (insn, NULL);
4411 INSN_UID (insn) = 0;
4412 }
4413 }
4414 }
4415
4416 /* It is very important to decompose the RTL instruction chain here:
4417 debug information keeps pointing into CODE_LABEL insns inside the function
4418 body. If these remain pointing to the other insns, we end up preserving
4419 whole RTL chain and attached detailed debug info in memory. */
4420 for (insn = get_insns (); insn; insn = next)
4421 {
4422 next = NEXT_INSN (insn);
4423 SET_NEXT_INSN (insn) = NULL;
4424 SET_PREV_INSN (insn) = NULL;
4425
4426 rtx_insn *call_insn = insn;
4427 if (NONJUMP_INSN_P (call_insn)
4428 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4429 {
4430 rtx_sequence *seq = as_a <rtx_sequence *> (p: PATTERN (insn: call_insn));
4431 call_insn = seq->insn (index: 0);
4432 }
4433 if (CALL_P (call_insn))
4434 {
4435 rtx note
4436 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4437 if (note)
4438 remove_note (call_insn, note);
4439 }
4440
4441 if (final_output
4442 && (!NOTE_P (insn)
4443 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4444 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4445 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4446 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4447 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4448 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4449 print_rtl_single (final_output, insn);
4450 }
4451
4452 if (final_output)
4453 {
4454 flag_dump_noaddr = save_noaddr;
4455 flag_dump_unnumbered = save_unnumbered;
4456 final_insns_dump_p = false;
4457
4458 if (fclose (stream: final_output))
4459 {
4460 error ("could not close final insn dump file %qs: %m",
4461 flag_dump_final_insns);
4462 flag_dump_final_insns = NULL;
4463 }
4464 }
4465
4466 flag_rerun_cse_after_global_opts = 0;
4467 reload_completed = 0;
4468 epilogue_completed = 0;
4469#ifdef STACK_REGS
4470 regstack_completed = 0;
4471#endif
4472
4473 /* Clear out the insn_length contents now that they are no
4474 longer valid. */
4475 init_insn_lengths ();
4476
4477 /* Show no temporary slots allocated. */
4478 init_temp_slots ();
4479
4480 free_bb_for_insn ();
4481
4482 if (cfun->gimple_df)
4483 delete_tree_ssa (cfun);
4484
4485 /* We can reduce stack alignment on call site only when we are sure that
4486 the function body just produced will be actually used in the final
4487 executable. */
4488 if (flag_ipa_stack_alignment
4489 && decl_binds_to_current_def_p (current_function_decl))
4490 {
4491 unsigned int pref = crtl->preferred_stack_boundary;
4492 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4493 pref = crtl->stack_alignment_needed;
4494 cgraph_node::rtl_info (current_function_decl)
4495 ->preferred_incoming_stack_boundary = pref;
4496 }
4497
4498 /* Make sure volatile mem refs aren't considered valid operands for
4499 arithmetic insns. We must call this here if this is a nested inline
4500 function, since the above code leaves us in the init_recog state,
4501 and the function context push/pop code does not save/restore volatile_ok.
4502
4503 ??? Maybe it isn't necessary for expand_start_function to call this
4504 anymore if we do it here? */
4505
4506 init_recog_no_volatile ();
4507
4508 /* We're done with this function. Free up memory if we can. */
4509 free_after_parsing (cfun);
4510 free_after_compilation (cfun);
4511 return 0;
4512}
4513
4514namespace {
4515
4516const pass_data pass_data_clean_state =
4517{
4518 .type: RTL_PASS, /* type */
4519 .name: "*clean_state", /* name */
4520 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4521 .tv_id: TV_FINAL, /* tv_id */
4522 .properties_required: 0, /* properties_required */
4523 .properties_provided: 0, /* properties_provided */
4524 PROP_rtl, /* properties_destroyed */
4525 .todo_flags_start: 0, /* todo_flags_start */
4526 .todo_flags_finish: 0, /* todo_flags_finish */
4527};
4528
4529class pass_clean_state : public rtl_opt_pass
4530{
4531public:
4532 pass_clean_state (gcc::context *ctxt)
4533 : rtl_opt_pass (pass_data_clean_state, ctxt)
4534 {}
4535
4536 /* opt_pass methods: */
4537 unsigned int execute (function *) final override
4538 {
4539 return rest_of_clean_state ();
4540 }
4541
4542}; // class pass_clean_state
4543
4544} // anon namespace
4545
4546rtl_opt_pass *
4547make_pass_clean_state (gcc::context *ctxt)
4548{
4549 return new pass_clean_state (ctxt);
4550}
4551
4552/* Return true if INSN is a call to the current function. */
4553
4554static bool
4555self_recursive_call_p (rtx_insn *insn)
4556{
4557 tree fndecl = get_call_fndecl (insn);
4558 return (fndecl == current_function_decl
4559 && decl_binds_to_current_def_p (fndecl));
4560}
4561
4562/* Collect hard register usage for the current function. */
4563
4564static void
4565collect_fn_hard_reg_usage (void)
4566{
4567 rtx_insn *insn;
4568#ifdef STACK_REGS
4569 int i;
4570#endif
4571 struct cgraph_rtl_info *node;
4572 HARD_REG_SET function_used_regs;
4573
4574 /* ??? To be removed when all the ports have been fixed. */
4575 if (!targetm.call_fusage_contains_non_callee_clobbers)
4576 return;
4577
4578 /* Be conservative - mark fixed and global registers as used. */
4579 function_used_regs = fixed_reg_set;
4580
4581#ifdef STACK_REGS
4582 /* Handle STACK_REGS conservatively, since the df-framework does not
4583 provide accurate information for them. */
4584
4585 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4586 SET_HARD_REG_BIT (set&: function_used_regs, bit: i);
4587#endif
4588
4589 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4590 {
4591 HARD_REG_SET insn_used_regs;
4592
4593 if (!NONDEBUG_INSN_P (insn))
4594 continue;
4595
4596 if (CALL_P (insn)
4597 && !self_recursive_call_p (insn))
4598 function_used_regs
4599 |= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
4600
4601 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4602 function_used_regs |= insn_used_regs;
4603
4604 if (hard_reg_set_subset_p (crtl->abi->full_and_partial_reg_clobbers (),
4605 y: function_used_regs))
4606 return;
4607 }
4608
4609 /* Mask out fully-saved registers, so that they don't affect equality
4610 comparisons between function_abis. */
4611 function_used_regs &= crtl->abi->full_and_partial_reg_clobbers ();
4612
4613 node = cgraph_node::rtl_info (current_function_decl);
4614 gcc_assert (node != NULL);
4615
4616 node->function_used_regs = function_used_regs;
4617}
4618

source code of gcc/final.cc