1/* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30#include "config.h"
31#include "system.h"
32#include "coretypes.h"
33#include "backend.h"
34#include "rtl.h"
35#include "tree.h"
36#include "gimple.h"
37#include "cfghooks.h"
38#include "tree-pass.h"
39#include "ssa.h"
40#include "memmodel.h"
41#include "emit-rtl.h"
42#include "cgraph.h"
43#include "coverage.h"
44#include "diagnostic-core.h"
45#include "gimple-predict.h"
46#include "fold-const.h"
47#include "calls.h"
48#include "cfganal.h"
49#include "profile.h"
50#include "sreal.h"
51#include "cfgloop.h"
52#include "gimple-iterator.h"
53#include "tree-cfg.h"
54#include "tree-ssa-loop-niter.h"
55#include "tree-ssa-loop.h"
56#include "tree-scalar-evolution.h"
57#include "ipa-utils.h"
58#include "gimple-pretty-print.h"
59#include "selftest.h"
60#include "cfgrtl.h"
61#include "stringpool.h"
62#include "attribs.h"
63
64/* Enum with reasons why a predictor is ignored. */
65
66enum predictor_reason
67{
68 REASON_NONE,
69 REASON_IGNORED,
70 REASON_SINGLE_EDGE_DUPLICATE,
71 REASON_EDGE_PAIR_DUPLICATE
72};
73
74/* String messages for the aforementioned enum. */
75
76static const char *reason_messages[] = {"", " (ignored)",
77 " (single edge duplicate)", " (edge pair duplicate)"};
78
79
80static void combine_predictions_for_insn (rtx_insn *, basic_block);
81static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
82 enum predictor_reason, edge);
83static void predict_paths_leading_to (basic_block, enum br_predictor,
84 enum prediction,
85 class loop *in_loop = NULL);
86static void predict_paths_leading_to_edge (edge, enum br_predictor,
87 enum prediction,
88 class loop *in_loop = NULL);
89static bool can_predict_insn_p (const rtx_insn *);
90static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
91static void determine_unlikely_bbs ();
92static void estimate_bb_frequencies ();
93
94/* Information we hold about each branch predictor.
95 Filled using information from predict.def. */
96
97struct predictor_info
98{
99 const char *const name; /* Name used in the debugging dumps. */
100 const int hitrate; /* Expected hitrate used by
101 predict_insn_def call. */
102 const int flags;
103};
104
105/* Use given predictor without Dempster-Shaffer theory if it matches
106 using first_match heuristics. */
107#define PRED_FLAG_FIRST_MATCH 1
108
109/* Recompute hitrate in percent to our representation. */
110
111#define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
112
113#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
114static const struct predictor_info predictor_info[]= {
115#include "predict.def"
116
117 /* Upper bound on predictors. */
118 {NULL, .hitrate: 0, .flags: 0}
119};
120#undef DEF_PREDICTOR
121
122static gcov_type min_count = -1;
123
124/* Determine the threshold for hot BB counts. */
125
126gcov_type
127get_hot_bb_threshold ()
128{
129 if (min_count == -1)
130 {
131 const int hot_frac = param_hot_bb_count_fraction;
132 const gcov_type min_hot_count
133 = hot_frac
134 ? profile_info->sum_max / hot_frac
135 : (gcov_type)profile_count::max_count;
136 set_hot_bb_threshold (min_hot_count);
137 if (dump_file)
138 fprintf (stream: dump_file, format: "Setting hotness threshold to %" PRId64 ".\n",
139 min_hot_count);
140 }
141 return min_count;
142}
143
144/* Set the threshold for hot BB counts. */
145
146void
147set_hot_bb_threshold (gcov_type min)
148{
149 min_count = min;
150}
151
152/* Return TRUE if COUNT is considered to be hot in function FUN. */
153
154bool
155maybe_hot_count_p (struct function *fun, profile_count count)
156{
157 if (!count.initialized_p ())
158 return true;
159 if (count.ipa () == profile_count::zero ())
160 return false;
161 if (!count.ipa_p ())
162 {
163 struct cgraph_node *node = cgraph_node::get (decl: fun->decl);
164 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
165 {
166 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
167 return false;
168 if (node->frequency == NODE_FREQUENCY_HOT)
169 return true;
170 }
171 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
172 return true;
173 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
174 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (num: 2, den: 3)))
175 return false;
176 if (count * param_hot_bb_frequency_fraction
177 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
178 return false;
179 return true;
180 }
181 /* Code executed at most once is not hot. */
182 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
183 return false;
184 return (count >= get_hot_bb_threshold ());
185}
186
187/* Return true if basic block BB of function FUN can be CPU intensive
188 and should thus be optimized for maximum performance. */
189
190bool
191maybe_hot_bb_p (struct function *fun, const_basic_block bb)
192{
193 gcc_checking_assert (fun);
194 return maybe_hot_count_p (fun, count: bb->count);
195}
196
197/* Return true if edge E can be CPU intensive and should thus be optimized
198 for maximum performance. */
199
200bool
201maybe_hot_edge_p (edge e)
202{
203 return maybe_hot_count_p (cfun, count: e->count ());
204}
205
206/* Return true if COUNT is considered to be never executed in function FUN
207 or if function FUN is considered so in the static profile. */
208
209static bool
210probably_never_executed (struct function *fun, profile_count count)
211{
212 gcc_checking_assert (fun);
213 if (count.ipa () == profile_count::zero ())
214 return true;
215 /* Do not trust adjusted counts. This will make us to drop int cold section
216 code with low execution count as a result of inlining. These low counts
217 are not safe even with read profile and may lead us to dropping
218 code which actually gets executed into cold section of binary that is not
219 desirable. */
220 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
221 {
222 const int unlikely_frac = param_unlikely_bb_count_fraction;
223 if (count * unlikely_frac >= profile_info->runs)
224 return false;
225 return true;
226 }
227 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
228 && (cgraph_node::get (decl: fun->decl)->frequency
229 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
230 return true;
231 return false;
232}
233
234/* Return true if basic block BB of function FUN is probably never executed. */
235
236bool
237probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
238{
239 return probably_never_executed (fun, count: bb->count);
240}
241
242/* Return true if edge E is unlikely executed for obvious reasons. */
243
244static bool
245unlikely_executed_edge_p (edge e)
246{
247 return (e->src->count == profile_count::zero ()
248 || e->probability == profile_probability::never ())
249 || (e->flags & (EDGE_EH | EDGE_FAKE));
250}
251
252/* Return true if edge E of function FUN is probably never executed. */
253
254bool
255probably_never_executed_edge_p (struct function *fun, edge e)
256{
257 if (unlikely_executed_edge_p (e))
258 return true;
259 return probably_never_executed (fun, count: e->count ());
260}
261
262/* Return true if function FUN should always be optimized for size. */
263
264optimize_size_level
265optimize_function_for_size_p (struct function *fun)
266{
267 if (!fun || !fun->decl)
268 return optimize_size ? OPTIMIZE_SIZE_MAX : OPTIMIZE_SIZE_NO;
269 cgraph_node *n = cgraph_node::get (decl: fun->decl);
270 if (n)
271 return n->optimize_for_size_p ();
272 return OPTIMIZE_SIZE_NO;
273}
274
275/* Return true if function FUN should always be optimized for speed. */
276
277bool
278optimize_function_for_speed_p (struct function *fun)
279{
280 return !optimize_function_for_size_p (fun);
281}
282
283/* Return the optimization type that should be used for function FUN. */
284
285optimization_type
286function_optimization_type (struct function *fun)
287{
288 return (optimize_function_for_speed_p (fun)
289 ? OPTIMIZE_FOR_SPEED
290 : OPTIMIZE_FOR_SIZE);
291}
292
293/* Return TRUE if basic block BB should be optimized for size. */
294
295optimize_size_level
296optimize_bb_for_size_p (const_basic_block bb)
297{
298 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
299
300 if (bb && ret < OPTIMIZE_SIZE_MAX && bb->count == profile_count::zero ())
301 ret = OPTIMIZE_SIZE_MAX;
302 if (bb && ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_bb_p (cfun, bb))
303 ret = OPTIMIZE_SIZE_BALANCED;
304 return ret;
305}
306
307/* Return TRUE if basic block BB should be optimized for speed. */
308
309bool
310optimize_bb_for_speed_p (const_basic_block bb)
311{
312 return !optimize_bb_for_size_p (bb);
313}
314
315/* Return the optimization type that should be used for basic block BB. */
316
317optimization_type
318bb_optimization_type (const_basic_block bb)
319{
320 return (optimize_bb_for_speed_p (bb)
321 ? OPTIMIZE_FOR_SPEED
322 : OPTIMIZE_FOR_SIZE);
323}
324
325/* Return TRUE if edge E should be optimized for size. */
326
327optimize_size_level
328optimize_edge_for_size_p (edge e)
329{
330 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
331
332 if (ret < OPTIMIZE_SIZE_MAX && unlikely_executed_edge_p (e))
333 ret = OPTIMIZE_SIZE_MAX;
334 if (ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_edge_p (e))
335 ret = OPTIMIZE_SIZE_BALANCED;
336 return ret;
337}
338
339/* Return TRUE if edge E should be optimized for speed. */
340
341bool
342optimize_edge_for_speed_p (edge e)
343{
344 return !optimize_edge_for_size_p (e);
345}
346
347/* Return TRUE if the current function is optimized for size. */
348
349optimize_size_level
350optimize_insn_for_size_p (void)
351{
352 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
353 if (ret < OPTIMIZE_SIZE_BALANCED && !crtl->maybe_hot_insn_p)
354 ret = OPTIMIZE_SIZE_BALANCED;
355 return ret;
356}
357
358/* Return TRUE if the current function is optimized for speed. */
359
360bool
361optimize_insn_for_speed_p (void)
362{
363 return !optimize_insn_for_size_p ();
364}
365
366/* Return the optimization type that should be used for the current
367 instruction. */
368
369optimization_type
370insn_optimization_type ()
371{
372 return (optimize_insn_for_speed_p ()
373 ? OPTIMIZE_FOR_SPEED
374 : OPTIMIZE_FOR_SIZE);
375}
376
377/* Return TRUE if LOOP should be optimized for size. */
378
379optimize_size_level
380optimize_loop_for_size_p (class loop *loop)
381{
382 return optimize_bb_for_size_p (bb: loop->header);
383}
384
385/* Return TRUE if LOOP should be optimized for speed. */
386
387bool
388optimize_loop_for_speed_p (class loop *loop)
389{
390 return optimize_bb_for_speed_p (bb: loop->header);
391}
392
393/* Return TRUE if nest rooted at LOOP should be optimized for speed. */
394
395bool
396optimize_loop_nest_for_speed_p (class loop *loop)
397{
398 class loop *l = loop;
399 if (optimize_loop_for_speed_p (loop))
400 return true;
401 l = loop->inner;
402 while (l && l != loop)
403 {
404 if (optimize_loop_for_speed_p (loop: l))
405 return true;
406 if (l->inner)
407 l = l->inner;
408 else if (l->next)
409 l = l->next;
410 else
411 {
412 while (l != loop && !l->next)
413 l = loop_outer (loop: l);
414 if (l != loop)
415 l = l->next;
416 }
417 }
418 return false;
419}
420
421/* Return TRUE if nest rooted at LOOP should be optimized for size. */
422
423optimize_size_level
424optimize_loop_nest_for_size_p (class loop *loop)
425{
426 enum optimize_size_level ret = optimize_loop_for_size_p (loop);
427 class loop *l = loop;
428
429 l = loop->inner;
430 while (l && l != loop)
431 {
432 if (ret == OPTIMIZE_SIZE_NO)
433 break;
434 ret = MIN (optimize_loop_for_size_p (l), ret);
435 if (l->inner)
436 l = l->inner;
437 else if (l->next)
438 l = l->next;
439 else
440 {
441 while (l != loop && !l->next)
442 l = loop_outer (loop: l);
443 if (l != loop)
444 l = l->next;
445 }
446 }
447 return ret;
448}
449
450/* Return true if edge E is likely to be well predictable by branch
451 predictor. */
452
453bool
454predictable_edge_p (edge e)
455{
456 if (!e->probability.initialized_p ())
457 return false;
458 if ((e->probability.to_reg_br_prob_base ()
459 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100)
460 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
461 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100))
462 return true;
463 return false;
464}
465
466
467/* Set RTL expansion for BB profile. */
468
469void
470rtl_profile_for_bb (basic_block bb)
471{
472 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
473}
474
475/* Set RTL expansion for edge profile. */
476
477void
478rtl_profile_for_edge (edge e)
479{
480 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
481}
482
483/* Set RTL expansion to default mode (i.e. when profile info is not known). */
484void
485default_rtl_profile (void)
486{
487 crtl->maybe_hot_insn_p = true;
488}
489
490/* Return true if the one of outgoing edges is already predicted by
491 PREDICTOR. */
492
493bool
494rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
495{
496 rtx note;
497 if (!INSN_P (BB_END (bb)))
498 return false;
499 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
500 if (REG_NOTE_KIND (note) == REG_BR_PRED
501 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
502 return true;
503 return false;
504}
505
506/* Structure representing predictions in tree level. */
507
508struct edge_prediction {
509 struct edge_prediction *ep_next;
510 edge ep_edge;
511 enum br_predictor ep_predictor;
512 int ep_probability;
513};
514
515/* This map contains for a basic block the list of predictions for the
516 outgoing edges. */
517
518static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
519
520/* Return true if the one of outgoing edges is already predicted by
521 PREDICTOR. */
522
523bool
524gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
525{
526 struct edge_prediction *i;
527 edge_prediction **preds = bb_predictions->get (k: bb);
528
529 if (!preds)
530 return false;
531
532 for (i = *preds; i; i = i->ep_next)
533 if (i->ep_predictor == predictor)
534 return true;
535 return false;
536}
537
538/* Return true if the one of outgoing edges is already predicted by
539 PREDICTOR for edge E predicted as TAKEN. */
540
541bool
542edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
543{
544 struct edge_prediction *i;
545 basic_block bb = e->src;
546 edge_prediction **preds = bb_predictions->get (k: bb);
547 if (!preds)
548 return false;
549
550 int probability = predictor_info[(int) predictor].hitrate;
551
552 if (taken != TAKEN)
553 probability = REG_BR_PROB_BASE - probability;
554
555 for (i = *preds; i; i = i->ep_next)
556 if (i->ep_predictor == predictor
557 && i->ep_edge == e
558 && i->ep_probability == probability)
559 return true;
560 return false;
561}
562
563/* Same predicate as above, working on edges. */
564bool
565edge_probability_reliable_p (const_edge e)
566{
567 return e->probability.probably_reliable_p ();
568}
569
570/* Same predicate as edge_probability_reliable_p, working on notes. */
571bool
572br_prob_note_reliable_p (const_rtx note)
573{
574 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
575 return profile_probability::from_reg_br_prob_note
576 (XINT (note, 0)).probably_reliable_p ();
577}
578
579static void
580predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
581{
582 gcc_assert (any_condjump_p (insn));
583 if (!flag_guess_branch_prob)
584 return;
585
586 add_reg_note (insn, REG_BR_PRED,
587 gen_rtx_CONCAT (VOIDmode,
588 GEN_INT ((int) predictor),
589 GEN_INT ((int) probability)));
590}
591
592/* Predict insn by given predictor. */
593
594void
595predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
596 enum prediction taken)
597{
598 int probability = predictor_info[(int) predictor].hitrate;
599 gcc_assert (probability != PROB_UNINITIALIZED);
600
601 if (taken != TAKEN)
602 probability = REG_BR_PROB_BASE - probability;
603
604 predict_insn (insn, predictor, probability);
605}
606
607/* Predict edge E with given probability if possible. */
608
609void
610rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
611{
612 rtx_insn *last_insn;
613 last_insn = BB_END (e->src);
614
615 /* We can store the branch prediction information only about
616 conditional jumps. */
617 if (!any_condjump_p (last_insn))
618 return;
619
620 /* We always store probability of branching. */
621 if (e->flags & EDGE_FALLTHRU)
622 probability = REG_BR_PROB_BASE - probability;
623
624 predict_insn (insn: last_insn, predictor, probability);
625}
626
627/* Predict edge E with the given PROBABILITY. */
628void
629gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
630{
631 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
632 && EDGE_COUNT (e->src->succs) > 1
633 && flag_guess_branch_prob
634 && optimize)
635 {
636 struct edge_prediction *i = XNEW (struct edge_prediction);
637 edge_prediction *&preds = bb_predictions->get_or_insert (k: e->src);
638
639 i->ep_next = preds;
640 preds = i;
641 i->ep_probability = probability;
642 i->ep_predictor = predictor;
643 i->ep_edge = e;
644 }
645}
646
647/* Filter edge predictions PREDS by a function FILTER: if FILTER return false
648 the prediction is removed.
649 DATA are passed to the filter function. */
650
651static void
652filter_predictions (edge_prediction **preds,
653 bool (*filter) (edge_prediction *, void *), void *data)
654{
655 if (!bb_predictions)
656 return;
657
658 if (preds)
659 {
660 struct edge_prediction **prediction = preds;
661 struct edge_prediction *next;
662
663 while (*prediction)
664 {
665 if ((*filter) (*prediction, data))
666 prediction = &((*prediction)->ep_next);
667 else
668 {
669 next = (*prediction)->ep_next;
670 free (ptr: *prediction);
671 *prediction = next;
672 }
673 }
674 }
675}
676
677/* Filter function predicate that returns true for a edge predicate P
678 if its edge is equal to DATA. */
679
680static bool
681not_equal_edge_p (edge_prediction *p, void *data)
682{
683 return p->ep_edge != (edge)data;
684}
685
686/* Remove all predictions on given basic block that are attached
687 to edge E. */
688void
689remove_predictions_associated_with_edge (edge e)
690{
691 if (!bb_predictions)
692 return;
693
694 edge_prediction **preds = bb_predictions->get (k: e->src);
695 filter_predictions (preds, filter: not_equal_edge_p, data: e);
696}
697
698/* Clears the list of predictions stored for BB. */
699
700static void
701clear_bb_predictions (basic_block bb)
702{
703 edge_prediction **preds = bb_predictions->get (k: bb);
704 struct edge_prediction *pred, *next;
705
706 if (!preds)
707 return;
708
709 for (pred = *preds; pred; pred = next)
710 {
711 next = pred->ep_next;
712 free (ptr: pred);
713 }
714 *preds = NULL;
715}
716
717/* Return true when we can store prediction on insn INSN.
718 At the moment we represent predictions only on conditional
719 jumps, not at computed jump or other complicated cases. */
720static bool
721can_predict_insn_p (const rtx_insn *insn)
722{
723 return (JUMP_P (insn)
724 && any_condjump_p (insn)
725 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
726}
727
728/* Predict edge E by given predictor if possible. */
729
730void
731predict_edge_def (edge e, enum br_predictor predictor,
732 enum prediction taken)
733{
734 int probability = predictor_info[(int) predictor].hitrate;
735
736 if (taken != TAKEN)
737 probability = REG_BR_PROB_BASE - probability;
738
739 predict_edge (e, predictor, probability);
740}
741
742/* Invert all branch predictions or probability notes in the INSN. This needs
743 to be done each time we invert the condition used by the jump. */
744
745void
746invert_br_probabilities (rtx insn)
747{
748 rtx note;
749
750 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
751 if (REG_NOTE_KIND (note) == REG_BR_PROB)
752 XINT (note, 0) = profile_probability::from_reg_br_prob_note
753 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
754 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
755 XEXP (XEXP (note, 0), 1)
756 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
757}
758
759/* Dump information about the branch prediction to the output file. */
760
761static void
762dump_prediction (FILE *file, enum br_predictor predictor, int probability,
763 basic_block bb, enum predictor_reason reason = REASON_NONE,
764 edge ep_edge = NULL)
765{
766 edge e = ep_edge;
767 edge_iterator ei;
768
769 if (!file)
770 return;
771
772 if (e == NULL)
773 FOR_EACH_EDGE (e, ei, bb->succs)
774 if (! (e->flags & EDGE_FALLTHRU))
775 break;
776
777 char edge_info_str[128];
778 if (ep_edge)
779 sprintf (s: edge_info_str, format: " of edge %d->%d", ep_edge->src->index,
780 ep_edge->dest->index);
781 else
782 edge_info_str[0] = '\0';
783
784 fprintf (stream: file, format: " %s heuristics%s%s: %.2f%%",
785 predictor_info[predictor].name,
786 edge_info_str, reason_messages[reason],
787 probability * 100.0 / REG_BR_PROB_BASE);
788
789 if (bb->count.initialized_p ())
790 {
791 fprintf (stream: file, format: " exec ");
792 bb->count.dump (f: file);
793 if (e && e->count ().initialized_p () && bb->count.to_gcov_type ())
794 {
795 fprintf (stream: file, format: " hit ");
796 e->count ().dump (f: file);
797 fprintf (stream: file, format: " (%.1f%%)", e->count ().to_gcov_type() * 100.0
798 / bb->count.to_gcov_type ());
799 }
800 }
801
802 fprintf (stream: file, format: "\n");
803
804 /* Print output that be easily read by analyze_brprob.py script. We are
805 interested only in counts that are read from GCDA files. */
806 if (dump_file && (dump_flags & TDF_DETAILS)
807 && bb->count.precise_p ()
808 && reason == REASON_NONE)
809 {
810 fprintf (stream: file, format: ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
811 predictor_info[predictor].name,
812 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
813 probability * 100.0 / REG_BR_PROB_BASE);
814 }
815}
816
817/* Return true if STMT is known to be unlikely executed. */
818
819static bool
820unlikely_executed_stmt_p (gimple *stmt)
821{
822 if (!is_gimple_call (gs: stmt))
823 return false;
824 /* NORETURN attribute alone is not strong enough: exit() may be quite
825 likely executed once during program run. */
826 if (gimple_call_fntype (gs: stmt)
827 && lookup_attribute (attr_name: "cold",
828 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
829 && !lookup_attribute (attr_name: "cold", DECL_ATTRIBUTES (current_function_decl)))
830 return true;
831 tree decl = gimple_call_fndecl (gs: stmt);
832 if (!decl)
833 return false;
834 if (lookup_attribute (attr_name: "cold", DECL_ATTRIBUTES (decl))
835 && !lookup_attribute (attr_name: "cold", DECL_ATTRIBUTES (current_function_decl)))
836 return true;
837
838 cgraph_node *n = cgraph_node::get (decl);
839 if (!n)
840 return false;
841
842 availability avail;
843 n = n->ultimate_alias_target (availability: &avail);
844 if (avail < AVAIL_AVAILABLE)
845 return false;
846 if (!n->analyzed
847 || n->decl == current_function_decl)
848 return false;
849 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
850}
851
852/* Return true if BB is unlikely executed. */
853
854static bool
855unlikely_executed_bb_p (basic_block bb)
856{
857 if (bb->count == profile_count::zero ())
858 return true;
859 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
860 return false;
861 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
862 !gsi_end_p (i: gsi); gsi_next (i: &gsi))
863 {
864 if (unlikely_executed_stmt_p (stmt: gsi_stmt (i: gsi)))
865 return true;
866 if (stmt_can_terminate_bb_p (gsi_stmt (i: gsi)))
867 return false;
868 }
869 return false;
870}
871
872/* We cannot predict the probabilities of outgoing edges of bb. Set them
873 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
874 even probability for all edges not mentioned in the set. These edges
875 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
876 if we have exactly one likely edge, make the other edges predicted
877 as not probable. */
878
879static void
880set_even_probabilities (basic_block bb,
881 hash_set<edge> *unlikely_edges = NULL,
882 hash_set<edge_prediction *> *likely_edges = NULL)
883{
884 unsigned nedges = 0, unlikely_count = 0;
885 edge e = NULL;
886 edge_iterator ei;
887 profile_probability all = profile_probability::always ();
888
889 FOR_EACH_EDGE (e, ei, bb->succs)
890 if (e->probability.initialized_p ())
891 all -= e->probability;
892 else if (!unlikely_executed_edge_p (e))
893 {
894 nedges++;
895 if (unlikely_edges != NULL && unlikely_edges->contains (k: e))
896 {
897 all -= profile_probability::very_unlikely ();
898 unlikely_count++;
899 }
900 }
901
902 /* Make the distribution even if all edges are unlikely. */
903 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
904 if (unlikely_count == nedges)
905 {
906 unlikely_edges = NULL;
907 unlikely_count = 0;
908 }
909
910 /* If we have one likely edge, then use its probability and distribute
911 remaining probabilities as even. */
912 if (likely_count == 1)
913 {
914 FOR_EACH_EDGE (e, ei, bb->succs)
915 if (e->probability.initialized_p ())
916 ;
917 else if (!unlikely_executed_edge_p (e))
918 {
919 edge_prediction *prediction = *likely_edges->begin ();
920 int p = prediction->ep_probability;
921 profile_probability prob
922 = profile_probability::from_reg_br_prob_base (v: p);
923
924 if (prediction->ep_edge == e)
925 e->probability = prob;
926 else if (unlikely_edges != NULL && unlikely_edges->contains (k: e))
927 e->probability = profile_probability::very_unlikely ();
928 else
929 {
930 profile_probability remainder = prob.invert ();
931 remainder -= (profile_probability::very_unlikely ()
932 * unlikely_count);
933 int count = nedges - unlikely_count - 1;
934 gcc_assert (count >= 0);
935
936 e->probability = remainder / count;
937 }
938 }
939 else
940 e->probability = profile_probability::never ();
941 }
942 else
943 {
944 /* Make all unlikely edges unlikely and the rest will have even
945 probability. */
946 unsigned scale = nedges - unlikely_count;
947 FOR_EACH_EDGE (e, ei, bb->succs)
948 if (e->probability.initialized_p ())
949 ;
950 else if (!unlikely_executed_edge_p (e))
951 {
952 if (unlikely_edges != NULL && unlikely_edges->contains (k: e))
953 e->probability = profile_probability::very_unlikely ();
954 else
955 e->probability = all / scale;
956 }
957 else
958 e->probability = profile_probability::never ();
959 }
960}
961
962/* Add REG_BR_PROB note to JUMP with PROB. */
963
964void
965add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
966{
967 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
968 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
969}
970
971/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
972 note if not already present. Remove now useless REG_BR_PRED notes. */
973
974static void
975combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
976{
977 rtx prob_note;
978 rtx *pnote;
979 rtx note;
980 int best_probability = PROB_EVEN;
981 enum br_predictor best_predictor = END_PREDICTORS;
982 int combined_probability = REG_BR_PROB_BASE / 2;
983 int d;
984 bool first_match = false;
985 bool found = false;
986
987 if (!can_predict_insn_p (insn))
988 {
989 set_even_probabilities (bb);
990 return;
991 }
992
993 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
994 pnote = &REG_NOTES (insn);
995 if (dump_file)
996 fprintf (stream: dump_file, format: "Predictions for insn %i bb %i\n", INSN_UID (insn),
997 bb->index);
998
999 /* We implement "first match" heuristics and use probability guessed
1000 by predictor with smallest index. */
1001 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1002 if (REG_NOTE_KIND (note) == REG_BR_PRED)
1003 {
1004 enum br_predictor predictor = ((enum br_predictor)
1005 INTVAL (XEXP (XEXP (note, 0), 0)));
1006 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
1007
1008 found = true;
1009 if (best_predictor > predictor
1010 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1011 best_probability = probability, best_predictor = predictor;
1012
1013 d = (combined_probability * probability
1014 + (REG_BR_PROB_BASE - combined_probability)
1015 * (REG_BR_PROB_BASE - probability));
1016
1017 /* Use FP math to avoid overflows of 32bit integers. */
1018 if (d == 0)
1019 /* If one probability is 0% and one 100%, avoid division by zero. */
1020 combined_probability = REG_BR_PROB_BASE / 2;
1021 else
1022 combined_probability = (((double) combined_probability) * probability
1023 * REG_BR_PROB_BASE / d + 0.5);
1024 }
1025
1026 /* Decide which heuristic to use. In case we didn't match anything,
1027 use no_prediction heuristic, in case we did match, use either
1028 first match or Dempster-Shaffer theory depending on the flags. */
1029
1030 if (best_predictor != END_PREDICTORS)
1031 first_match = true;
1032
1033 if (!found)
1034 dump_prediction (file: dump_file, predictor: PRED_NO_PREDICTION,
1035 probability: combined_probability, bb);
1036 else
1037 {
1038 if (!first_match)
1039 dump_prediction (file: dump_file, predictor: PRED_DS_THEORY, probability: combined_probability,
1040 bb, reason: !first_match ? REASON_NONE : REASON_IGNORED);
1041 else
1042 dump_prediction (file: dump_file, predictor: PRED_FIRST_MATCH, probability: best_probability,
1043 bb, reason: first_match ? REASON_NONE : REASON_IGNORED);
1044 }
1045
1046 if (first_match)
1047 combined_probability = best_probability;
1048 dump_prediction (file: dump_file, predictor: PRED_COMBINED, probability: combined_probability, bb);
1049
1050 while (*pnote)
1051 {
1052 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1053 {
1054 enum br_predictor predictor = ((enum br_predictor)
1055 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1056 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1057
1058 dump_prediction (file: dump_file, predictor, probability, bb,
1059 reason: (!first_match || best_predictor == predictor)
1060 ? REASON_NONE : REASON_IGNORED);
1061 *pnote = XEXP (*pnote, 1);
1062 }
1063 else
1064 pnote = &XEXP (*pnote, 1);
1065 }
1066
1067 if (!prob_note)
1068 {
1069 profile_probability p
1070 = profile_probability::from_reg_br_prob_base (v: combined_probability);
1071 add_reg_br_prob_note (jump: insn, prob: p);
1072
1073 /* Save the prediction into CFG in case we are seeing non-degenerated
1074 conditional jump. */
1075 if (!single_succ_p (bb))
1076 {
1077 BRANCH_EDGE (bb)->probability = p;
1078 FALLTHRU_EDGE (bb)->probability
1079 = BRANCH_EDGE (bb)->probability.invert ();
1080 }
1081 }
1082 else if (!single_succ_p (bb))
1083 {
1084 profile_probability prob = profile_probability::from_reg_br_prob_note
1085 (XINT (prob_note, 0));
1086
1087 BRANCH_EDGE (bb)->probability = prob;
1088 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1089 }
1090 else
1091 single_succ_edge (bb)->probability = profile_probability::always ();
1092}
1093
1094/* Edge prediction hash traits. */
1095
1096struct predictor_hash: pointer_hash <edge_prediction>
1097{
1098
1099 static inline hashval_t hash (const edge_prediction *);
1100 static inline bool equal (const edge_prediction *, const edge_prediction *);
1101};
1102
1103/* Calculate hash value of an edge prediction P based on predictor and
1104 normalized probability. */
1105
1106inline hashval_t
1107predictor_hash::hash (const edge_prediction *p)
1108{
1109 inchash::hash hstate;
1110 hstate.add_int (v: p->ep_predictor);
1111
1112 int prob = p->ep_probability;
1113 if (prob > REG_BR_PROB_BASE / 2)
1114 prob = REG_BR_PROB_BASE - prob;
1115
1116 hstate.add_int (v: prob);
1117
1118 return hstate.end ();
1119}
1120
1121/* Return true whether edge predictions P1 and P2 use the same predictor and
1122 have equal (or opposed probability). */
1123
1124inline bool
1125predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1126{
1127 return (p1->ep_predictor == p2->ep_predictor
1128 && (p1->ep_probability == p2->ep_probability
1129 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1130}
1131
1132struct predictor_hash_traits: predictor_hash,
1133 typed_noop_remove <edge_prediction *> {};
1134
1135/* Return true if edge prediction P is not in DATA hash set. */
1136
1137static bool
1138not_removed_prediction_p (edge_prediction *p, void *data)
1139{
1140 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1141 return !remove->contains (k: p);
1142}
1143
1144/* Prune predictions for a basic block BB. Currently we do following
1145 clean-up steps:
1146
1147 1) remove duplicate prediction that is guessed with the same probability
1148 (different than 1/2) to both edge
1149 2) remove duplicates for a prediction that belongs with the same probability
1150 to a single edge
1151
1152 */
1153
1154static void
1155prune_predictions_for_bb (basic_block bb)
1156{
1157 edge_prediction **preds = bb_predictions->get (k: bb);
1158
1159 if (preds)
1160 {
1161 hash_table <predictor_hash_traits> s (13);
1162 hash_set <edge_prediction *> remove;
1163
1164 /* Step 1: identify predictors that should be removed. */
1165 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1166 {
1167 edge_prediction *existing = s.find (value: pred);
1168 if (existing)
1169 {
1170 if (pred->ep_edge == existing->ep_edge
1171 && pred->ep_probability == existing->ep_probability)
1172 {
1173 /* Remove a duplicate predictor. */
1174 dump_prediction (file: dump_file, predictor: pred->ep_predictor,
1175 probability: pred->ep_probability, bb,
1176 reason: REASON_SINGLE_EDGE_DUPLICATE, ep_edge: pred->ep_edge);
1177
1178 remove.add (k: pred);
1179 }
1180 else if (pred->ep_edge != existing->ep_edge
1181 && pred->ep_probability == existing->ep_probability
1182 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1183 {
1184 /* Remove both predictors as they predict the same
1185 for both edges. */
1186 dump_prediction (file: dump_file, predictor: existing->ep_predictor,
1187 probability: pred->ep_probability, bb,
1188 reason: REASON_EDGE_PAIR_DUPLICATE,
1189 ep_edge: existing->ep_edge);
1190 dump_prediction (file: dump_file, predictor: pred->ep_predictor,
1191 probability: pred->ep_probability, bb,
1192 reason: REASON_EDGE_PAIR_DUPLICATE,
1193 ep_edge: pred->ep_edge);
1194
1195 remove.add (k: existing);
1196 remove.add (k: pred);
1197 }
1198 }
1199
1200 edge_prediction **slot2 = s.find_slot (value: pred, insert: INSERT);
1201 *slot2 = pred;
1202 }
1203
1204 /* Step 2: Remove predictors. */
1205 filter_predictions (preds, filter: not_removed_prediction_p, data: &remove);
1206 }
1207}
1208
1209/* Combine predictions into single probability and store them into CFG.
1210 Remove now useless prediction entries.
1211 If DRY_RUN is set, only produce dumps and do not modify profile. */
1212
1213static void
1214combine_predictions_for_bb (basic_block bb, bool dry_run)
1215{
1216 int best_probability = PROB_EVEN;
1217 enum br_predictor best_predictor = END_PREDICTORS;
1218 int combined_probability = REG_BR_PROB_BASE / 2;
1219 int d;
1220 bool first_match = false;
1221 bool found = false;
1222 struct edge_prediction *pred;
1223 int nedges = 0;
1224 edge e, first = NULL, second = NULL;
1225 edge_iterator ei;
1226 int nzero = 0;
1227 int nunknown = 0;
1228
1229 FOR_EACH_EDGE (e, ei, bb->succs)
1230 {
1231 if (!unlikely_executed_edge_p (e))
1232 {
1233 nedges ++;
1234 if (first && !second)
1235 second = e;
1236 if (!first)
1237 first = e;
1238 }
1239 else if (!e->probability.initialized_p ())
1240 e->probability = profile_probability::never ();
1241 if (!e->probability.initialized_p ())
1242 nunknown++;
1243 else if (e->probability == profile_probability::never ())
1244 nzero++;
1245 }
1246
1247 /* When there is no successor or only one choice, prediction is easy.
1248
1249 When we have a basic block with more than 2 successors, the situation
1250 is more complicated as DS theory cannot be used literally.
1251 More precisely, let's assume we predicted edge e1 with probability p1,
1252 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1253 need to find probability of e.g. m1({b2}), which we don't know.
1254 The only approximation is to equally distribute 1-p1 to all edges
1255 different from b1.
1256
1257 According to numbers we've got from SPEC2006 benchark, there's only
1258 one interesting reliable predictor (noreturn call), which can be
1259 handled with a bit easier approach. */
1260 if (nedges != 2)
1261 {
1262 hash_set<edge> unlikely_edges (4);
1263 hash_set<edge_prediction *> likely_edges (4);
1264
1265 /* Identify all edges that have a probability close to very unlikely.
1266 Doing the approach for very unlikely doesn't worth for doing as
1267 there's no such probability in SPEC2006 benchmark. */
1268 edge_prediction **preds = bb_predictions->get (k: bb);
1269 if (preds)
1270 for (pred = *preds; pred; pred = pred->ep_next)
1271 {
1272 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1273 || pred->ep_predictor == PRED_COLD_LABEL)
1274 unlikely_edges.add (k: pred->ep_edge);
1275 else if (pred->ep_probability >= PROB_VERY_LIKELY
1276 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1277 || pred->ep_predictor == PRED_HOT_LABEL)
1278 likely_edges.add (k: pred);
1279 }
1280
1281 /* It can happen that an edge is both in likely_edges and unlikely_edges.
1282 Clear both sets in that situation. */
1283 for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
1284 it != likely_edges.end (); ++it)
1285 if (unlikely_edges.contains (k: (*it)->ep_edge))
1286 {
1287 likely_edges.empty ();
1288 unlikely_edges.empty ();
1289 break;
1290 }
1291
1292 if (!dry_run)
1293 set_even_probabilities (bb, unlikely_edges: &unlikely_edges, likely_edges: &likely_edges);
1294 clear_bb_predictions (bb);
1295 if (dump_file)
1296 {
1297 fprintf (stream: dump_file, format: "Predictions for bb %i\n", bb->index);
1298 if (unlikely_edges.is_empty ())
1299 fprintf (stream: dump_file,
1300 format: "%i edges in bb %i predicted to even probabilities\n",
1301 nedges, bb->index);
1302 else
1303 {
1304 fprintf (stream: dump_file,
1305 format: "%i edges in bb %i predicted with some unlikely edges\n",
1306 nedges, bb->index);
1307 FOR_EACH_EDGE (e, ei, bb->succs)
1308 if (!unlikely_executed_edge_p (e))
1309 dump_prediction (file: dump_file, predictor: PRED_COMBINED,
1310 probability: e->probability.to_reg_br_prob_base (), bb, reason: REASON_NONE, ep_edge: e);
1311 }
1312 }
1313 return;
1314 }
1315
1316 if (dump_file)
1317 fprintf (stream: dump_file, format: "Predictions for bb %i\n", bb->index);
1318
1319 prune_predictions_for_bb (bb);
1320
1321 edge_prediction **preds = bb_predictions->get (k: bb);
1322
1323 if (preds)
1324 {
1325 /* We implement "first match" heuristics and use probability guessed
1326 by predictor with smallest index. */
1327 for (pred = *preds; pred; pred = pred->ep_next)
1328 {
1329 enum br_predictor predictor = pred->ep_predictor;
1330 int probability = pred->ep_probability;
1331
1332 if (pred->ep_edge != first)
1333 probability = REG_BR_PROB_BASE - probability;
1334
1335 found = true;
1336 /* First match heuristics would be widly confused if we predicted
1337 both directions. */
1338 if (best_predictor > predictor
1339 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1340 {
1341 struct edge_prediction *pred2;
1342 int prob = probability;
1343
1344 for (pred2 = (struct edge_prediction *) *preds;
1345 pred2; pred2 = pred2->ep_next)
1346 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1347 {
1348 int probability2 = pred2->ep_probability;
1349
1350 if (pred2->ep_edge != first)
1351 probability2 = REG_BR_PROB_BASE - probability2;
1352
1353 if ((probability < REG_BR_PROB_BASE / 2) !=
1354 (probability2 < REG_BR_PROB_BASE / 2))
1355 break;
1356
1357 /* If the same predictor later gave better result, go for it! */
1358 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1359 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1360 prob = probability2;
1361 }
1362 if (!pred2)
1363 best_probability = prob, best_predictor = predictor;
1364 }
1365
1366 d = (combined_probability * probability
1367 + (REG_BR_PROB_BASE - combined_probability)
1368 * (REG_BR_PROB_BASE - probability));
1369
1370 /* Use FP math to avoid overflows of 32bit integers. */
1371 if (d == 0)
1372 /* If one probability is 0% and one 100%, avoid division by zero. */
1373 combined_probability = REG_BR_PROB_BASE / 2;
1374 else
1375 combined_probability = (((double) combined_probability)
1376 * probability
1377 * REG_BR_PROB_BASE / d + 0.5);
1378 }
1379 }
1380
1381 /* Decide which heuristic to use. In case we didn't match anything,
1382 use no_prediction heuristic, in case we did match, use either
1383 first match or Dempster-Shaffer theory depending on the flags. */
1384
1385 if (best_predictor != END_PREDICTORS)
1386 first_match = true;
1387
1388 if (!found)
1389 dump_prediction (file: dump_file, predictor: PRED_NO_PREDICTION, probability: combined_probability, bb);
1390 else
1391 {
1392 if (!first_match)
1393 dump_prediction (file: dump_file, predictor: PRED_DS_THEORY, probability: combined_probability, bb,
1394 reason: !first_match ? REASON_NONE : REASON_IGNORED);
1395 else
1396 dump_prediction (file: dump_file, predictor: PRED_FIRST_MATCH, probability: best_probability, bb,
1397 reason: first_match ? REASON_NONE : REASON_IGNORED);
1398 }
1399
1400 if (first_match)
1401 combined_probability = best_probability;
1402 dump_prediction (file: dump_file, predictor: PRED_COMBINED, probability: combined_probability, bb);
1403
1404 if (preds)
1405 {
1406 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1407 {
1408 enum br_predictor predictor = pred->ep_predictor;
1409 int probability = pred->ep_probability;
1410
1411 dump_prediction (file: dump_file, predictor, probability, bb,
1412 reason: (!first_match || best_predictor == predictor)
1413 ? REASON_NONE : REASON_IGNORED, ep_edge: pred->ep_edge);
1414 }
1415 }
1416 clear_bb_predictions (bb);
1417
1418
1419 /* If we have only one successor which is unknown, we can compute missing
1420 probability. */
1421 if (nunknown == 1)
1422 {
1423 profile_probability prob = profile_probability::always ();
1424 edge missing = NULL;
1425
1426 FOR_EACH_EDGE (e, ei, bb->succs)
1427 if (e->probability.initialized_p ())
1428 prob -= e->probability;
1429 else if (missing == NULL)
1430 missing = e;
1431 else
1432 gcc_unreachable ();
1433 missing->probability = prob;
1434 }
1435 /* If nothing is unknown, we have nothing to update. */
1436 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1437 ;
1438 else if (!dry_run)
1439 {
1440 first->probability
1441 = profile_probability::from_reg_br_prob_base (v: combined_probability);
1442 second->probability = first->probability.invert ();
1443 }
1444}
1445
1446/* Check if T1 and T2 satisfy the IV_COMPARE condition.
1447 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1448
1449 T1 and T2 should be one of the following cases:
1450 1. T1 is SSA_NAME, T2 is NULL
1451 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1452 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1453
1454static tree
1455strips_small_constant (tree t1, tree t2)
1456{
1457 tree ret = NULL;
1458 int value = 0;
1459
1460 if (!t1)
1461 return NULL;
1462 else if (TREE_CODE (t1) == SSA_NAME)
1463 ret = t1;
1464 else if (tree_fits_shwi_p (t1))
1465 value = tree_to_shwi (t1);
1466 else
1467 return NULL;
1468
1469 if (!t2)
1470 return ret;
1471 else if (tree_fits_shwi_p (t2))
1472 value = tree_to_shwi (t2);
1473 else if (TREE_CODE (t2) == SSA_NAME)
1474 {
1475 if (ret)
1476 return NULL;
1477 else
1478 ret = t2;
1479 }
1480
1481 if (value <= 4 && value >= -4)
1482 return ret;
1483 else
1484 return NULL;
1485}
1486
1487/* Return the SSA_NAME in T or T's operands.
1488 Return NULL if SSA_NAME cannot be found. */
1489
1490static tree
1491get_base_value (tree t)
1492{
1493 if (TREE_CODE (t) == SSA_NAME)
1494 return t;
1495
1496 if (!BINARY_CLASS_P (t))
1497 return NULL;
1498
1499 switch (TREE_OPERAND_LENGTH (t))
1500 {
1501 case 1:
1502 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1503 case 2:
1504 return strips_small_constant (TREE_OPERAND (t, 0),
1505 TREE_OPERAND (t, 1));
1506 default:
1507 return NULL;
1508 }
1509}
1510
1511/* Check the compare STMT in LOOP. If it compares an induction
1512 variable to a loop invariant, return true, and save
1513 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1514 Otherwise return false and set LOOP_INVAIANT to NULL. */
1515
1516static bool
1517is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
1518 tree *loop_invariant,
1519 enum tree_code *compare_code,
1520 tree *loop_step,
1521 tree *loop_iv_base)
1522{
1523 tree op0, op1, bound, base;
1524 affine_iv iv0, iv1;
1525 enum tree_code code;
1526 tree step;
1527
1528 code = gimple_cond_code (gs: stmt);
1529 *loop_invariant = NULL;
1530
1531 switch (code)
1532 {
1533 case GT_EXPR:
1534 case GE_EXPR:
1535 case NE_EXPR:
1536 case LT_EXPR:
1537 case LE_EXPR:
1538 case EQ_EXPR:
1539 break;
1540
1541 default:
1542 return false;
1543 }
1544
1545 op0 = gimple_cond_lhs (gs: stmt);
1546 op1 = gimple_cond_rhs (gs: stmt);
1547
1548 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1549 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1550 return false;
1551 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1552 return false;
1553 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1554 return false;
1555 if (TREE_CODE (iv0.step) != INTEGER_CST
1556 || TREE_CODE (iv1.step) != INTEGER_CST)
1557 return false;
1558 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1559 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1560 return false;
1561
1562 if (integer_zerop (iv0.step))
1563 {
1564 if (code != NE_EXPR && code != EQ_EXPR)
1565 code = invert_tree_comparison (code, false);
1566 bound = iv0.base;
1567 base = iv1.base;
1568 if (tree_fits_shwi_p (iv1.step))
1569 step = iv1.step;
1570 else
1571 return false;
1572 }
1573 else
1574 {
1575 bound = iv1.base;
1576 base = iv0.base;
1577 if (tree_fits_shwi_p (iv0.step))
1578 step = iv0.step;
1579 else
1580 return false;
1581 }
1582
1583 if (TREE_CODE (bound) != INTEGER_CST)
1584 bound = get_base_value (t: bound);
1585 if (!bound)
1586 return false;
1587 if (TREE_CODE (base) != INTEGER_CST)
1588 base = get_base_value (t: base);
1589 if (!base)
1590 return false;
1591
1592 *loop_invariant = bound;
1593 *compare_code = code;
1594 *loop_step = step;
1595 *loop_iv_base = base;
1596 return true;
1597}
1598
1599/* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1600
1601static bool
1602expr_coherent_p (tree t1, tree t2)
1603{
1604 gimple *stmt;
1605 tree ssa_name_1 = NULL;
1606 tree ssa_name_2 = NULL;
1607
1608 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1609 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1610
1611 if (t1 == t2)
1612 return true;
1613
1614 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1615 return true;
1616 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1617 return false;
1618
1619 /* Check to see if t1 is expressed/defined with t2. */
1620 stmt = SSA_NAME_DEF_STMT (t1);
1621 gcc_assert (stmt != NULL);
1622 if (is_gimple_assign (gs: stmt))
1623 {
1624 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1625 if (ssa_name_1 && ssa_name_1 == t2)
1626 return true;
1627 }
1628
1629 /* Check to see if t2 is expressed/defined with t1. */
1630 stmt = SSA_NAME_DEF_STMT (t2);
1631 gcc_assert (stmt != NULL);
1632 if (is_gimple_assign (gs: stmt))
1633 {
1634 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1635 if (ssa_name_2 && ssa_name_2 == t1)
1636 return true;
1637 }
1638
1639 /* Compare if t1 and t2's def_stmts are identical. */
1640 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1641 return true;
1642 else
1643 return false;
1644}
1645
1646/* Return true if E is predicted by one of loop heuristics. */
1647
1648static bool
1649predicted_by_loop_heuristics_p (basic_block bb)
1650{
1651 struct edge_prediction *i;
1652 edge_prediction **preds = bb_predictions->get (k: bb);
1653
1654 if (!preds)
1655 return false;
1656
1657 for (i = *preds; i; i = i->ep_next)
1658 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1659 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1660 || i->ep_predictor == PRED_LOOP_ITERATIONS
1661 || i->ep_predictor == PRED_LOOP_EXIT
1662 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1663 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1664 return true;
1665 return false;
1666}
1667
1668/* Predict branch probability of BB when BB contains a branch that compares
1669 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1670 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1671
1672 E.g.
1673 for (int i = 0; i < bound; i++) {
1674 if (i < bound - 2)
1675 computation_1();
1676 else
1677 computation_2();
1678 }
1679
1680 In this loop, we will predict the branch inside the loop to be taken. */
1681
1682static void
1683predict_iv_comparison (class loop *loop, basic_block bb,
1684 tree loop_bound_var,
1685 tree loop_iv_base_var,
1686 enum tree_code loop_bound_code,
1687 int loop_bound_step)
1688{
1689 tree compare_var, compare_base;
1690 enum tree_code compare_code;
1691 tree compare_step_var;
1692 edge then_edge;
1693 edge_iterator ei;
1694
1695 if (predicted_by_loop_heuristics_p (bb))
1696 return;
1697
1698 gcond *stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb));
1699 if (!stmt)
1700 return;
1701 if (!is_comparison_with_loop_invariant_p (stmt,
1702 loop, loop_invariant: &compare_var,
1703 compare_code: &compare_code,
1704 loop_step: &compare_step_var,
1705 loop_iv_base: &compare_base))
1706 return;
1707
1708 /* Find the taken edge. */
1709 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1710 if (then_edge->flags & EDGE_TRUE_VALUE)
1711 break;
1712
1713 /* When comparing an IV to a loop invariant, NE is more likely to be
1714 taken while EQ is more likely to be not-taken. */
1715 if (compare_code == NE_EXPR)
1716 {
1717 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: TAKEN);
1718 return;
1719 }
1720 else if (compare_code == EQ_EXPR)
1721 {
1722 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: NOT_TAKEN);
1723 return;
1724 }
1725
1726 if (!expr_coherent_p (t1: loop_iv_base_var, t2: compare_base))
1727 return;
1728
1729 /* If loop bound, base and compare bound are all constants, we can
1730 calculate the probability directly. */
1731 if (tree_fits_shwi_p (loop_bound_var)
1732 && tree_fits_shwi_p (compare_var)
1733 && tree_fits_shwi_p (compare_base))
1734 {
1735 int probability;
1736 wi::overflow_type overflow;
1737 bool overall_overflow = false;
1738 widest_int compare_count, tem;
1739
1740 /* (loop_bound - base) / compare_step */
1741 tem = wi::sub (x: wi::to_widest (t: loop_bound_var),
1742 y: wi::to_widest (t: compare_base), sgn: SIGNED, overflow: &overflow);
1743 overall_overflow |= overflow;
1744 widest_int loop_count = wi::div_trunc (x: tem,
1745 y: wi::to_widest (t: compare_step_var),
1746 sgn: SIGNED, overflow: &overflow);
1747 overall_overflow |= overflow;
1748
1749 if (!wi::neg_p (x: wi::to_widest (t: compare_step_var))
1750 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1751 {
1752 /* (loop_bound - compare_bound) / compare_step */
1753 tem = wi::sub (x: wi::to_widest (t: loop_bound_var),
1754 y: wi::to_widest (t: compare_var), sgn: SIGNED, overflow: &overflow);
1755 overall_overflow |= overflow;
1756 compare_count = wi::div_trunc (x: tem, y: wi::to_widest (t: compare_step_var),
1757 sgn: SIGNED, overflow: &overflow);
1758 overall_overflow |= overflow;
1759 }
1760 else
1761 {
1762 /* (compare_bound - base) / compare_step */
1763 tem = wi::sub (x: wi::to_widest (t: compare_var),
1764 y: wi::to_widest (t: compare_base), sgn: SIGNED, overflow: &overflow);
1765 overall_overflow |= overflow;
1766 compare_count = wi::div_trunc (x: tem, y: wi::to_widest (t: compare_step_var),
1767 sgn: SIGNED, overflow: &overflow);
1768 overall_overflow |= overflow;
1769 }
1770 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1771 ++compare_count;
1772 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1773 ++loop_count;
1774 if (wi::neg_p (x: compare_count))
1775 compare_count = 0;
1776 if (wi::neg_p (x: loop_count))
1777 loop_count = 0;
1778 if (loop_count == 0)
1779 probability = 0;
1780 else if (wi::cmps (x: compare_count, y: loop_count) == 1)
1781 probability = REG_BR_PROB_BASE;
1782 else
1783 {
1784 tem = compare_count * REG_BR_PROB_BASE;
1785 tem = wi::udiv_trunc (x: tem, y: loop_count);
1786 probability = tem.to_uhwi ();
1787 }
1788
1789 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1790 if (!overall_overflow)
1791 predict_edge (e: then_edge, predictor: PRED_LOOP_IV_COMPARE, probability);
1792
1793 return;
1794 }
1795
1796 if (expr_coherent_p (t1: loop_bound_var, t2: compare_var))
1797 {
1798 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1799 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1800 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: TAKEN);
1801 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1802 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1803 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: TAKEN);
1804 else if (loop_bound_code == NE_EXPR)
1805 {
1806 /* If the loop backedge condition is "(i != bound)", we do
1807 the comparison based on the step of IV:
1808 * step < 0 : backedge condition is like (i > bound)
1809 * step > 0 : backedge condition is like (i < bound) */
1810 gcc_assert (loop_bound_step != 0);
1811 if (loop_bound_step > 0
1812 && (compare_code == LT_EXPR
1813 || compare_code == LE_EXPR))
1814 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: TAKEN);
1815 else if (loop_bound_step < 0
1816 && (compare_code == GT_EXPR
1817 || compare_code == GE_EXPR))
1818 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: TAKEN);
1819 else
1820 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: NOT_TAKEN);
1821 }
1822 else
1823 /* The branch is predicted not-taken if loop_bound_code is
1824 opposite with compare_code. */
1825 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: NOT_TAKEN);
1826 }
1827 else if (expr_coherent_p (t1: loop_iv_base_var, t2: compare_var))
1828 {
1829 /* For cases like:
1830 for (i = s; i < h; i++)
1831 if (i > s + 2) ....
1832 The branch should be predicted taken. */
1833 if (loop_bound_step > 0
1834 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1835 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: TAKEN);
1836 else if (loop_bound_step < 0
1837 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1838 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: TAKEN);
1839 else
1840 predict_edge_def (e: then_edge, predictor: PRED_LOOP_IV_COMPARE_GUESS, taken: NOT_TAKEN);
1841 }
1842}
1843
1844/* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1845 exits are resulted from short-circuit conditions that will generate an
1846 if_tmp. E.g.:
1847
1848 if (foo() || global > 10)
1849 break;
1850
1851 This will be translated into:
1852
1853 BB3:
1854 loop header...
1855 BB4:
1856 if foo() goto BB6 else goto BB5
1857 BB5:
1858 if global > 10 goto BB6 else goto BB7
1859 BB6:
1860 goto BB7
1861 BB7:
1862 iftmp = (PHI 0(BB5), 1(BB6))
1863 if iftmp == 1 goto BB8 else goto BB3
1864 BB8:
1865 outside of the loop...
1866
1867 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1868 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1869 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1870 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1871
1872static void
1873predict_extra_loop_exits (class loop *loop, edge exit_edge)
1874{
1875 unsigned i;
1876 bool check_value_one;
1877 gimple *lhs_def_stmt;
1878 gphi *phi_stmt;
1879 tree cmp_rhs, cmp_lhs;
1880
1881 gcond *cmp_stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit_edge->src));
1882 if (!cmp_stmt)
1883 return;
1884
1885 cmp_rhs = gimple_cond_rhs (gs: cmp_stmt);
1886 cmp_lhs = gimple_cond_lhs (gs: cmp_stmt);
1887 if (!TREE_CONSTANT (cmp_rhs)
1888 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1889 return;
1890 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1891 return;
1892
1893 /* If check_value_one is true, only the phi_args with value '1' will lead
1894 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1895 loop exit. */
1896 check_value_one = (((integer_onep (cmp_rhs))
1897 ^ (gimple_cond_code (gs: cmp_stmt) == EQ_EXPR))
1898 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1899
1900 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1901 if (!lhs_def_stmt)
1902 return;
1903
1904 phi_stmt = dyn_cast <gphi *> (p: lhs_def_stmt);
1905 if (!phi_stmt)
1906 return;
1907
1908 for (i = 0; i < gimple_phi_num_args (gs: phi_stmt); i++)
1909 {
1910 edge e1;
1911 edge_iterator ei;
1912 tree val = gimple_phi_arg_def (gs: phi_stmt, index: i);
1913 edge e = gimple_phi_arg_edge (phi: phi_stmt, i);
1914
1915 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1916 continue;
1917 if ((check_value_one ^ integer_onep (val)) == 1)
1918 continue;
1919 if (EDGE_COUNT (e->src->succs) != 1)
1920 {
1921 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1922 in_loop: loop);
1923 continue;
1924 }
1925
1926 FOR_EACH_EDGE (e1, ei, e->src->preds)
1927 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1928 in_loop: loop);
1929 }
1930}
1931
1932
1933/* Predict edge probabilities by exploiting loop structure. */
1934
1935static void
1936predict_loops (void)
1937{
1938 basic_block bb;
1939 hash_set <class loop *> with_recursion(10);
1940
1941 FOR_EACH_BB_FN (bb, cfun)
1942 {
1943 gimple_stmt_iterator gsi;
1944 tree decl;
1945
1946 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1947 if (is_gimple_call (gs: gsi_stmt (i: gsi))
1948 && (decl = gimple_call_fndecl (gs: gsi_stmt (i: gsi))) != NULL
1949 && recursive_call_p (current_function_decl, decl))
1950 {
1951 class loop *loop = bb->loop_father;
1952 while (loop && !with_recursion.add (k: loop))
1953 loop = loop_outer (loop);
1954 }
1955 }
1956
1957 /* Try to predict out blocks in a loop that are not part of a
1958 natural loop. */
1959 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1960 {
1961 basic_block bb, *bbs;
1962 unsigned j, n_exits = 0;
1963 class tree_niter_desc niter_desc;
1964 edge ex;
1965 class nb_iter_bound *nb_iter;
1966 enum tree_code loop_bound_code = ERROR_MARK;
1967 tree loop_bound_step = NULL;
1968 tree loop_bound_var = NULL;
1969 tree loop_iv_base = NULL;
1970 gcond *stmt = NULL;
1971 bool recursion = with_recursion.contains (k: loop);
1972
1973 auto_vec<edge> exits = get_loop_exit_edges (loop);
1974 FOR_EACH_VEC_ELT (exits, j, ex)
1975 if (!unlikely_executed_edge_p (e: ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1976 n_exits ++;
1977 if (!n_exits)
1978 continue;
1979
1980 if (dump_file && (dump_flags & TDF_DETAILS))
1981 fprintf (stream: dump_file, format: "Predicting loop %i%s with %i exits.\n",
1982 loop->num, recursion ? " (with recursion)":"", n_exits);
1983 if (dump_file && (dump_flags & TDF_DETAILS)
1984 && max_loop_iterations_int (loop) >= 0)
1985 {
1986 fprintf (stream: dump_file,
1987 format: "Loop %d iterates at most %i times.\n", loop->num,
1988 (int)max_loop_iterations_int (loop));
1989 }
1990 if (dump_file && (dump_flags & TDF_DETAILS)
1991 && likely_max_loop_iterations_int (loop) >= 0)
1992 {
1993 fprintf (stream: dump_file, format: "Loop %d likely iterates at most %i times.\n",
1994 loop->num, (int)likely_max_loop_iterations_int (loop));
1995 }
1996
1997 FOR_EACH_VEC_ELT (exits, j, ex)
1998 {
1999 tree niter = NULL;
2000 HOST_WIDE_INT nitercst;
2001 int max = param_max_predicted_iterations;
2002 int probability;
2003 enum br_predictor predictor;
2004 widest_int nit;
2005
2006 if (unlikely_executed_edge_p (e: ex)
2007 || (ex->flags & EDGE_ABNORMAL_CALL))
2008 continue;
2009 /* Loop heuristics do not expect exit conditional to be inside
2010 inner loop. We predict from innermost to outermost loop. */
2011 if (predicted_by_loop_heuristics_p (bb: ex->src))
2012 {
2013 if (dump_file && (dump_flags & TDF_DETAILS))
2014 fprintf (stream: dump_file, format: "Skipping exit %i->%i because "
2015 "it is already predicted.\n",
2016 ex->src->index, ex->dest->index);
2017 continue;
2018 }
2019 predict_extra_loop_exits (loop, exit_edge: ex);
2020
2021 if (number_of_iterations_exit (loop, ex, niter: &niter_desc, false, every_iteration: false))
2022 niter = niter_desc.niter;
2023 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
2024 niter = loop_niter_by_eval (loop, ex);
2025 if (dump_file && (dump_flags & TDF_DETAILS)
2026 && TREE_CODE (niter) == INTEGER_CST)
2027 {
2028 fprintf (stream: dump_file, format: "Exit %i->%i %d iterates ",
2029 ex->src->index, ex->dest->index,
2030 loop->num);
2031 print_generic_expr (dump_file, niter, TDF_SLIM);
2032 fprintf (stream: dump_file, format: " times.\n");
2033 }
2034
2035 if (TREE_CODE (niter) == INTEGER_CST)
2036 {
2037 if (tree_fits_uhwi_p (niter)
2038 && max
2039 && compare_tree_int (niter, max - 1) == -1)
2040 nitercst = tree_to_uhwi (niter) + 1;
2041 else
2042 nitercst = max;
2043 predictor = PRED_LOOP_ITERATIONS;
2044 }
2045 /* If we have just one exit and we can derive some information about
2046 the number of iterations of the loop from the statements inside
2047 the loop, use it to predict this exit. */
2048 else if (n_exits == 1
2049 && estimated_stmt_executions (loop, &nit))
2050 {
2051 if (wi::gtu_p (x: nit, y: max))
2052 nitercst = max;
2053 else
2054 nitercst = nit.to_shwi ();
2055 predictor = PRED_LOOP_ITERATIONS_GUESSED;
2056 }
2057 /* If we have likely upper bound, trust it for very small iteration
2058 counts. Such loops would otherwise get mispredicted by standard
2059 LOOP_EXIT heuristics. */
2060 else if (n_exits == 1
2061 && likely_max_stmt_executions (loop, &nit)
2062 && wi::ltu_p (x: nit,
2063 RDIV (REG_BR_PROB_BASE,
2064 REG_BR_PROB_BASE
2065 - predictor_info
2066 [recursion
2067 ? PRED_LOOP_EXIT_WITH_RECURSION
2068 : PRED_LOOP_EXIT].hitrate)))
2069 {
2070 nitercst = nit.to_shwi ();
2071 predictor = PRED_LOOP_ITERATIONS_MAX;
2072 }
2073 else
2074 {
2075 if (dump_file && (dump_flags & TDF_DETAILS))
2076 fprintf (stream: dump_file, format: "Nothing known about exit %i->%i.\n",
2077 ex->src->index, ex->dest->index);
2078 continue;
2079 }
2080
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 fprintf (stream: dump_file, format: "Recording prediction to %i iterations by %s.\n",
2083 (int)nitercst, predictor_info[predictor].name);
2084 /* If the prediction for number of iterations is zero, do not
2085 predict the exit edges. */
2086 if (nitercst == 0)
2087 continue;
2088
2089 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2090 predict_edge (e: ex, predictor, probability);
2091 }
2092
2093 /* Find information about loop bound variables. */
2094 for (nb_iter = loop->bounds; nb_iter;
2095 nb_iter = nb_iter->next)
2096 if (nb_iter->stmt
2097 && gimple_code (g: nb_iter->stmt) == GIMPLE_COND)
2098 {
2099 stmt = as_a <gcond *> (p: nb_iter->stmt);
2100 break;
2101 }
2102 if (!stmt)
2103 stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: loop->header));
2104 if (stmt)
2105 is_comparison_with_loop_invariant_p (stmt, loop,
2106 loop_invariant: &loop_bound_var,
2107 compare_code: &loop_bound_code,
2108 loop_step: &loop_bound_step,
2109 loop_iv_base: &loop_iv_base);
2110
2111 bbs = get_loop_body (loop);
2112
2113 for (j = 0; j < loop->num_nodes; j++)
2114 {
2115 edge e;
2116 edge_iterator ei;
2117
2118 bb = bbs[j];
2119
2120 /* Bypass loop heuristics on continue statement. These
2121 statements construct loops via "non-loop" constructs
2122 in the source language and are better to be handled
2123 separately. */
2124 if (predicted_by_p (bb, predictor: PRED_CONTINUE))
2125 {
2126 if (dump_file && (dump_flags & TDF_DETAILS))
2127 fprintf (stream: dump_file, format: "BB %i predicted by continue.\n",
2128 bb->index);
2129 continue;
2130 }
2131
2132 /* If we already used more reliable loop exit predictors, do not
2133 bother with PRED_LOOP_EXIT. */
2134 if (!predicted_by_loop_heuristics_p (bb))
2135 {
2136 /* For loop with many exits we don't want to predict all exits
2137 with the pretty large probability, because if all exits are
2138 considered in row, the loop would be predicted to iterate
2139 almost never. The code to divide probability by number of
2140 exits is very rough. It should compute the number of exits
2141 taken in each patch through function (not the overall number
2142 of exits that might be a lot higher for loops with wide switch
2143 statements in them) and compute n-th square root.
2144
2145 We limit the minimal probability by 2% to avoid
2146 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2147 as this was causing regression in perl benchmark containing such
2148 a wide loop. */
2149
2150 int probability = ((REG_BR_PROB_BASE
2151 - predictor_info
2152 [recursion
2153 ? PRED_LOOP_EXIT_WITH_RECURSION
2154 : PRED_LOOP_EXIT].hitrate)
2155 / n_exits);
2156 if (probability < HITRATE (2))
2157 probability = HITRATE (2);
2158 FOR_EACH_EDGE (e, ei, bb->succs)
2159 if (e->dest->index < NUM_FIXED_BLOCKS
2160 || !flow_bb_inside_loop_p (loop, e->dest))
2161 {
2162 if (dump_file && (dump_flags & TDF_DETAILS))
2163 fprintf (stream: dump_file,
2164 format: "Predicting exit %i->%i with prob %i.\n",
2165 e->src->index, e->dest->index, probability);
2166 predict_edge (e,
2167 predictor: recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2168 : PRED_LOOP_EXIT, probability);
2169 }
2170 }
2171 if (loop_bound_var)
2172 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base_var: loop_iv_base,
2173 loop_bound_code,
2174 loop_bound_step: tree_to_shwi (loop_bound_step));
2175 }
2176
2177 /* In the following code
2178 for (loop1)
2179 if (cond)
2180 for (loop2)
2181 body;
2182 guess that cond is unlikely. */
2183 if (loop_outer (loop)->num)
2184 {
2185 basic_block bb = NULL;
2186 edge preheader_edge = loop_preheader_edge (loop);
2187
2188 if (single_pred_p (bb: preheader_edge->src)
2189 && single_succ_p (bb: preheader_edge->src))
2190 preheader_edge = single_pred_edge (bb: preheader_edge->src);
2191
2192 /* Pattern match fortran loop preheader:
2193 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2194 _17 = (logical(kind=4)) _16;
2195 if (_17 != 0)
2196 goto <bb 11>;
2197 else
2198 goto <bb 13>;
2199
2200 Loop guard branch prediction says nothing about duplicated loop
2201 headers produced by fortran frontend and in this case we want
2202 to predict paths leading to this preheader. */
2203
2204 gcond *stmt
2205 = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: preheader_edge->src));
2206 if (stmt
2207 && gimple_cond_code (gs: stmt) == NE_EXPR
2208 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2209 && integer_zerop (gimple_cond_rhs (gs: stmt)))
2210 {
2211 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2212 if (gimple_code (g: call_stmt) == GIMPLE_ASSIGN
2213 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (call_stmt))
2214 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2215 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2216 if (gimple_call_internal_p (gs: call_stmt, fn: IFN_BUILTIN_EXPECT)
2217 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2218 && tree_fits_uhwi_p (gimple_call_arg (gs: call_stmt, index: 2))
2219 && tree_to_uhwi (gimple_call_arg (gs: call_stmt, index: 2))
2220 == PRED_FORTRAN_LOOP_PREHEADER)
2221 bb = preheader_edge->src;
2222 }
2223 if (!bb)
2224 {
2225 if (!dominated_by_p (CDI_DOMINATORS,
2226 loop_outer (loop)->latch, loop->header))
2227 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2228 recursion
2229 ? PRED_LOOP_GUARD_WITH_RECURSION
2230 : PRED_LOOP_GUARD,
2231 NOT_TAKEN,
2232 in_loop: loop_outer (loop));
2233 }
2234 else
2235 {
2236 if (!dominated_by_p (CDI_DOMINATORS,
2237 loop_outer (loop)->latch, bb))
2238 predict_paths_leading_to (bb,
2239 recursion
2240 ? PRED_LOOP_GUARD_WITH_RECURSION
2241 : PRED_LOOP_GUARD,
2242 NOT_TAKEN,
2243 in_loop: loop_outer (loop));
2244 }
2245 }
2246
2247 /* Free basic blocks from get_loop_body. */
2248 free (ptr: bbs);
2249 }
2250}
2251
2252/* Attempt to predict probabilities of BB outgoing edges using local
2253 properties. */
2254static void
2255bb_estimate_probability_locally (basic_block bb)
2256{
2257 rtx_insn *last_insn = BB_END (bb);
2258 rtx cond;
2259
2260 if (! can_predict_insn_p (insn: last_insn))
2261 return;
2262 cond = get_condition (last_insn, NULL, false, false);
2263 if (! cond)
2264 return;
2265
2266 /* Try "pointer heuristic."
2267 A comparison ptr == 0 is predicted as false.
2268 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2269 if (COMPARISON_P (cond)
2270 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2271 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2272 {
2273 if (GET_CODE (cond) == EQ)
2274 predict_insn_def (insn: last_insn, predictor: PRED_POINTER, taken: NOT_TAKEN);
2275 else if (GET_CODE (cond) == NE)
2276 predict_insn_def (insn: last_insn, predictor: PRED_POINTER, taken: TAKEN);
2277 }
2278 else
2279
2280 /* Try "opcode heuristic."
2281 EQ tests are usually false and NE tests are usually true. Also,
2282 most quantities are positive, so we can make the appropriate guesses
2283 about signed comparisons against zero. */
2284 switch (GET_CODE (cond))
2285 {
2286 case CONST_INT:
2287 /* Unconditional branch. */
2288 predict_insn_def (insn: last_insn, predictor: PRED_UNCONDITIONAL,
2289 taken: cond == const0_rtx ? NOT_TAKEN : TAKEN);
2290 break;
2291
2292 case EQ:
2293 case UNEQ:
2294 /* Floating point comparisons appears to behave in a very
2295 unpredictable way because of special role of = tests in
2296 FP code. */
2297 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2298 ;
2299 /* Comparisons with 0 are often used for booleans and there is
2300 nothing useful to predict about them. */
2301 else if (XEXP (cond, 1) == const0_rtx
2302 || XEXP (cond, 0) == const0_rtx)
2303 ;
2304 else
2305 predict_insn_def (insn: last_insn, predictor: PRED_OPCODE_NONEQUAL, taken: NOT_TAKEN);
2306 break;
2307
2308 case NE:
2309 case LTGT:
2310 /* Floating point comparisons appears to behave in a very
2311 unpredictable way because of special role of = tests in
2312 FP code. */
2313 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2314 ;
2315 /* Comparisons with 0 are often used for booleans and there is
2316 nothing useful to predict about them. */
2317 else if (XEXP (cond, 1) == const0_rtx
2318 || XEXP (cond, 0) == const0_rtx)
2319 ;
2320 else
2321 predict_insn_def (insn: last_insn, predictor: PRED_OPCODE_NONEQUAL, taken: TAKEN);
2322 break;
2323
2324 case ORDERED:
2325 predict_insn_def (insn: last_insn, predictor: PRED_FPOPCODE, taken: TAKEN);
2326 break;
2327
2328 case UNORDERED:
2329 predict_insn_def (insn: last_insn, predictor: PRED_FPOPCODE, taken: NOT_TAKEN);
2330 break;
2331
2332 case LE:
2333 case LT:
2334 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2335 || XEXP (cond, 1) == constm1_rtx)
2336 predict_insn_def (insn: last_insn, predictor: PRED_OPCODE_POSITIVE, taken: NOT_TAKEN);
2337 break;
2338
2339 case GE:
2340 case GT:
2341 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2342 || XEXP (cond, 1) == constm1_rtx)
2343 predict_insn_def (insn: last_insn, predictor: PRED_OPCODE_POSITIVE, taken: TAKEN);
2344 break;
2345
2346 default:
2347 break;
2348 }
2349}
2350
2351/* Set edge->probability for each successor edge of BB. */
2352void
2353guess_outgoing_edge_probabilities (basic_block bb)
2354{
2355 bb_estimate_probability_locally (bb);
2356 combine_predictions_for_insn (BB_END (bb), bb);
2357}
2358
2359static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2360 HOST_WIDE_INT *probability);
2361
2362/* Helper function for expr_expected_value. */
2363
2364static tree
2365expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2366 tree op1, bitmap visited, enum br_predictor *predictor,
2367 HOST_WIDE_INT *probability)
2368{
2369 gimple *def;
2370
2371 /* Reset returned probability value. */
2372 *probability = -1;
2373 *predictor = PRED_UNCONDITIONAL;
2374
2375 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2376 {
2377 if (TREE_CONSTANT (op0))
2378 return op0;
2379
2380 if (code == IMAGPART_EXPR)
2381 {
2382 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2383 {
2384 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2385 if (is_gimple_call (gs: def)
2386 && gimple_call_internal_p (gs: def)
2387 && (gimple_call_internal_fn (gs: def)
2388 == IFN_ATOMIC_COMPARE_EXCHANGE))
2389 {
2390 /* Assume that any given atomic operation has low contention,
2391 and thus the compare-and-swap operation succeeds. */
2392 *predictor = PRED_COMPARE_AND_SWAP;
2393 return build_one_cst (TREE_TYPE (op0));
2394 }
2395 }
2396 }
2397
2398 if (code != SSA_NAME)
2399 return NULL_TREE;
2400
2401 def = SSA_NAME_DEF_STMT (op0);
2402
2403 /* If we were already here, break the infinite cycle. */
2404 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2405 return NULL;
2406
2407 if (gphi *phi = dyn_cast <gphi *> (p: def))
2408 {
2409 /* All the arguments of the PHI node must have the same constant
2410 length. */
2411 int i, n = gimple_phi_num_args (gs: phi);
2412 tree val = NULL;
2413 bool has_nonzero_edge = false;
2414
2415 /* If we already proved that given edge is unlikely, we do not need
2416 to handle merging of the probabilities. */
2417 for (i = 0; i < n && !has_nonzero_edge; i++)
2418 {
2419 tree arg = PHI_ARG_DEF (phi, i);
2420 if (arg == PHI_RESULT (phi))
2421 continue;
2422 profile_count cnt = gimple_phi_arg_edge (phi, i)->count ();
2423 if (!cnt.initialized_p () || cnt.nonzero_p ())
2424 has_nonzero_edge = true;
2425 }
2426
2427 for (i = 0; i < n; i++)
2428 {
2429 tree arg = PHI_ARG_DEF (phi, i);
2430 enum br_predictor predictor2;
2431
2432 /* Skip self-referring parameters, since they does not change
2433 expected value. */
2434 if (arg == PHI_RESULT (phi))
2435 continue;
2436
2437 /* Skip edges which we already predicted as executing
2438 zero times. */
2439 if (has_nonzero_edge)
2440 {
2441 profile_count cnt = gimple_phi_arg_edge (phi, i)->count ();
2442 if (cnt.initialized_p () && !cnt.nonzero_p ())
2443 continue;
2444 }
2445 HOST_WIDE_INT probability2;
2446 tree new_val = expr_expected_value (arg, visited, predictor: &predictor2,
2447 probability: &probability2);
2448 /* If we know nothing about value, give up. */
2449 if (!new_val)
2450 return NULL;
2451
2452 /* If this is a first edge, trust its prediction. */
2453 if (!val)
2454 {
2455 val = new_val;
2456 *predictor = predictor2;
2457 *probability = probability2;
2458 continue;
2459 }
2460 /* If there are two different values, give up. */
2461 if (!operand_equal_p (val, new_val, flags: false))
2462 return NULL;
2463
2464 int p1 = get_predictor_value (*predictor, *probability);
2465 int p2 = get_predictor_value (predictor2, probability2);
2466 /* If both predictors agree, it does not matter from which
2467 edge we enter the basic block. */
2468 if (*predictor == predictor2 && p1 == p2)
2469 continue;
2470 /* The general case has no precise solution, since we do not
2471 know probabilities of incomming edges, yet.
2472 Still if value is predicted over all incomming edges, we
2473 can hope it will be indeed the case. Conservatively
2474 downgrade prediction quality (so first match merging is not
2475 performed) and take least successful prediction. */
2476
2477 *predictor = PRED_COMBINED_VALUE_PREDICTIONS_PHI;
2478 *probability = MIN (p1, p2);
2479 }
2480 return val;
2481 }
2482 if (is_gimple_assign (gs: def))
2483 {
2484 if (gimple_assign_lhs (gs: def) != op0)
2485 return NULL;
2486
2487 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2488 op0: gimple_assign_rhs1 (gs: def),
2489 code: gimple_assign_rhs_code (gs: def),
2490 op1: gimple_assign_rhs2 (gs: def),
2491 visited, predictor, probability);
2492 }
2493
2494 if (is_gimple_call (gs: def))
2495 {
2496 tree decl = gimple_call_fndecl (gs: def);
2497 if (!decl)
2498 {
2499 if (gimple_call_internal_p (gs: def)
2500 && gimple_call_internal_fn (gs: def) == IFN_BUILTIN_EXPECT)
2501 {
2502 gcc_assert (gimple_call_num_args (def) == 3);
2503 tree val = gimple_call_arg (gs: def, index: 0);
2504 if (TREE_CONSTANT (val))
2505 return val;
2506 tree val2 = gimple_call_arg (gs: def, index: 2);
2507 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2508 && tree_fits_uhwi_p (val2)
2509 && tree_to_uhwi (val2) < END_PREDICTORS);
2510 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2511 if (*predictor == PRED_BUILTIN_EXPECT)
2512 *probability
2513 = HITRATE (param_builtin_expect_probability);
2514 return gimple_call_arg (gs: def, index: 1);
2515 }
2516 return NULL;
2517 }
2518
2519 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
2520 {
2521 if (predictor)
2522 *predictor = PRED_MALLOC_NONNULL;
2523 /* FIXME: This is wrong and we need to convert the logic
2524 to value ranges. This makes predictor to assume that
2525 malloc always returns (size_t)1 which is not the same
2526 as returning non-NULL. */
2527 return fold_convert (type, boolean_true_node);
2528 }
2529
2530 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2531 switch (DECL_FUNCTION_CODE (decl))
2532 {
2533 case BUILT_IN_EXPECT:
2534 {
2535 tree val;
2536 if (gimple_call_num_args (gs: def) != 2)
2537 return NULL;
2538 val = gimple_call_arg (gs: def, index: 0);
2539 if (TREE_CONSTANT (val))
2540 return val;
2541 *predictor = PRED_BUILTIN_EXPECT;
2542 *probability
2543 = HITRATE (param_builtin_expect_probability);
2544 return gimple_call_arg (gs: def, index: 1);
2545 }
2546 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2547 {
2548 tree val;
2549 if (gimple_call_num_args (gs: def) != 3)
2550 return NULL;
2551 val = gimple_call_arg (gs: def, index: 0);
2552 if (TREE_CONSTANT (val))
2553 return val;
2554 /* Compute final probability as:
2555 probability * REG_BR_PROB_BASE. */
2556 tree prob = gimple_call_arg (gs: def, index: 2);
2557 tree t = TREE_TYPE (prob);
2558 tree base = build_int_cst (integer_type_node,
2559 REG_BR_PROB_BASE);
2560 base = build_real_from_int_cst (t, base);
2561 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2562 MULT_EXPR, t, prob, base);
2563 if (TREE_CODE (r) != REAL_CST)
2564 {
2565 error_at (gimple_location (g: def),
2566 "probability %qE must be "
2567 "constant floating-point expression", prob);
2568 return NULL;
2569 }
2570 HOST_WIDE_INT probi
2571 = real_to_integer (TREE_REAL_CST_PTR (r));
2572 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2573 {
2574 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2575 *probability = probi;
2576 }
2577 else
2578 error_at (gimple_location (g: def),
2579 "probability %qE is outside "
2580 "the range [0.0, 1.0]", prob);
2581
2582 return gimple_call_arg (gs: def, index: 1);
2583 }
2584
2585 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2586 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2587 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2588 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2589 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2590 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2591 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2592 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2593 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2594 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2595 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2596 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2597 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2598 /* Assume that any given atomic operation has low contention,
2599 and thus the compare-and-swap operation succeeds. */
2600 *predictor = PRED_COMPARE_AND_SWAP;
2601 return boolean_true_node;
2602 case BUILT_IN_REALLOC:
2603 case BUILT_IN_GOMP_REALLOC:
2604 if (predictor)
2605 *predictor = PRED_MALLOC_NONNULL;
2606 /* FIXME: This is wrong and we need to convert the logic
2607 to value ranges. */
2608 return fold_convert (type, boolean_true_node);
2609 default:
2610 break;
2611 }
2612 }
2613
2614 return NULL;
2615 }
2616
2617 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2618 {
2619 tree res;
2620 tree nop0 = op0;
2621 tree nop1 = op1;
2622
2623 /* First handle situation where single op is enough to determine final
2624 value. In this case we can do better job by avoiding the prediction
2625 merging. */
2626 if (TREE_CODE (op0) != INTEGER_CST)
2627 {
2628 /* See if expected value of op0 is good enough to determine the result. */
2629 nop0 = expr_expected_value (op0, visited, predictor, probability);
2630 if (nop0
2631 && (res = fold_build2 (code, type, nop0, op1)) != NULL
2632 && TREE_CODE (res) == INTEGER_CST)
2633 /* We are now getting conservative probability. Consider for
2634 example:
2635 op0 * op1
2636 If op0 is 0 with probability p, then we will ignore the
2637 posibility that op0 != 0 and op1 == 0. It does not seem to be
2638 worthwhile to downgrade prediciton quality for this. */
2639 return res;
2640 if (!nop0)
2641 nop0 = op0;
2642 }
2643 enum br_predictor predictor2 = PRED_UNCONDITIONAL;
2644 HOST_WIDE_INT probability2 = -1;
2645 if (TREE_CODE (op1) != INTEGER_CST)
2646 {
2647 /* See if expected value of op1 is good enough to determine the result. */
2648 nop1 = expr_expected_value (op1, visited, predictor: &predictor2, probability: &probability2);
2649 if (nop1
2650 && (res = fold_build2 (code, type, op0, nop1)) != NULL
2651 && TREE_CODE (res) == INTEGER_CST)
2652 {
2653 /* Similarly as above we now get conservative probability. */
2654 *predictor = predictor2;
2655 *probability = probability2;
2656 return res;
2657 }
2658 if (!nop1)
2659 nop1 = op1;
2660 }
2661 /* We already checked if folding one of arguments to constant is good
2662 enough. Consequently failing to fold both means that we will not
2663 succeed determining the value. */
2664 if (nop0 == op0 || nop1 == op1)
2665 return NULL;
2666 /* Finally see if we have two known values. */
2667 res = fold_build2 (code, type, nop0, nop1);
2668 if (TREE_CODE (res) == INTEGER_CST)
2669 {
2670 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2671 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2672
2673 /* If one of predictions is sure, such as PRED_UNCONDITIONAL, we
2674 can ignore it. */
2675 if (p2 == PROB_ALWAYS)
2676 return res;
2677 if (p1 == PROB_ALWAYS)
2678 {
2679 *predictor = predictor2;
2680 *probability = probability2;
2681 return res;
2682 }
2683 /* Combine binary predictions.
2684 Since we do not know about independence of predictors, we
2685 can not determine value precisely. */
2686 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2687 /* If we no longer track useful information, give up. */
2688 if (!*probability)
2689 return NULL;
2690 /* Otherwise mark that prediction is a result of combining
2691 different heuristics, since we do not want it to participate
2692 in first match merging. It is no longer reliable since
2693 we do not know if the probabilities are indpenendet. */
2694 *predictor = PRED_COMBINED_VALUE_PREDICTIONS;
2695
2696 return res;
2697 }
2698 return NULL;
2699 }
2700 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2701 {
2702 tree res;
2703 op0 = expr_expected_value (op0, visited, predictor, probability);
2704 if (!op0)
2705 return NULL;
2706 res = fold_build1 (code, type, op0);
2707 if (TREE_CONSTANT (res))
2708 return res;
2709 return NULL;
2710 }
2711 return NULL;
2712}
2713
2714/* Return constant EXPR will likely have at execution time, NULL if unknown.
2715 The function is used by builtin_expect branch predictor so the evidence
2716 must come from this construct and additional possible constant folding.
2717
2718 We may want to implement more involved value guess (such as value range
2719 propagation based prediction), but such tricks shall go to new
2720 implementation. */
2721
2722static tree
2723expr_expected_value (tree expr, bitmap visited,
2724 enum br_predictor *predictor,
2725 HOST_WIDE_INT *probability)
2726{
2727 enum tree_code code;
2728 tree op0, op1;
2729
2730 if (TREE_CONSTANT (expr))
2731 {
2732 *predictor = PRED_UNCONDITIONAL;
2733 *probability = -1;
2734 return expr;
2735 }
2736
2737 extract_ops_from_tree (expr, code: &code, op0: &op0, op1: &op1);
2738 return expr_expected_value_1 (TREE_TYPE (expr),
2739 op0, code, op1, visited, predictor,
2740 probability);
2741}
2742
2743
2744/* Return probability of a PREDICTOR. If the predictor has variable
2745 probability return passed PROBABILITY. */
2746
2747static HOST_WIDE_INT
2748get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2749{
2750 switch (predictor)
2751 {
2752 case PRED_BUILTIN_EXPECT:
2753 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2754 case PRED_COMBINED_VALUE_PREDICTIONS_PHI:
2755 case PRED_COMBINED_VALUE_PREDICTIONS:
2756 gcc_assert (probability != -1);
2757 return probability;
2758 default:
2759 gcc_assert (probability == -1);
2760 return predictor_info[(int) predictor].hitrate;
2761 }
2762}
2763
2764/* Predict using opcode of the last statement in basic block. */
2765static void
2766tree_predict_by_opcode (basic_block bb)
2767{
2768 edge then_edge;
2769 tree op0, op1;
2770 tree type;
2771 tree val;
2772 enum tree_code cmp;
2773 edge_iterator ei;
2774 enum br_predictor predictor;
2775 HOST_WIDE_INT probability;
2776
2777 gimple *stmt = *gsi_last_bb (bb);
2778 if (!stmt)
2779 return;
2780
2781 if (gswitch *sw = dyn_cast <gswitch *> (p: stmt))
2782 {
2783 tree index = gimple_switch_index (gs: sw);
2784 tree val = expr_expected_value (expr: index, visited: auto_bitmap (),
2785 predictor: &predictor, probability: &probability);
2786 if (val && TREE_CODE (val) == INTEGER_CST)
2787 {
2788 edge e = find_taken_edge_switch_expr (switch_stmt: sw, val);
2789 if (predictor == PRED_BUILTIN_EXPECT)
2790 {
2791 int percent = param_builtin_expect_probability;
2792 gcc_assert (percent >= 0 && percent <= 100);
2793 predict_edge (e, predictor: PRED_BUILTIN_EXPECT,
2794 HITRATE (percent));
2795 }
2796 else
2797 predict_edge_def (e, predictor, taken: TAKEN);
2798 }
2799 }
2800
2801 if (gimple_code (g: stmt) != GIMPLE_COND)
2802 return;
2803 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2804 if (then_edge->flags & EDGE_TRUE_VALUE)
2805 break;
2806 op0 = gimple_cond_lhs (gs: stmt);
2807 op1 = gimple_cond_rhs (gs: stmt);
2808 cmp = gimple_cond_code (gs: stmt);
2809 type = TREE_TYPE (op0);
2810 val = expr_expected_value_1 (boolean_type_node, op0, code: cmp, op1, visited: auto_bitmap (),
2811 predictor: &predictor, probability: &probability);
2812 if (val && TREE_CODE (val) == INTEGER_CST)
2813 {
2814 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2815 if (integer_zerop (val))
2816 prob = REG_BR_PROB_BASE - prob;
2817 predict_edge (e: then_edge, predictor, probability: prob);
2818 }
2819 /* Try "pointer heuristic."
2820 A comparison ptr == 0 is predicted as false.
2821 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2822 if (POINTER_TYPE_P (type))
2823 {
2824 if (cmp == EQ_EXPR)
2825 predict_edge_def (e: then_edge, predictor: PRED_TREE_POINTER, taken: NOT_TAKEN);
2826 else if (cmp == NE_EXPR)
2827 predict_edge_def (e: then_edge, predictor: PRED_TREE_POINTER, taken: TAKEN);
2828 }
2829 else
2830
2831 /* Try "opcode heuristic."
2832 EQ tests are usually false and NE tests are usually true. Also,
2833 most quantities are positive, so we can make the appropriate guesses
2834 about signed comparisons against zero. */
2835 switch (cmp)
2836 {
2837 case EQ_EXPR:
2838 case UNEQ_EXPR:
2839 /* Floating point comparisons appears to behave in a very
2840 unpredictable way because of special role of = tests in
2841 FP code. */
2842 if (FLOAT_TYPE_P (type))
2843 ;
2844 /* Comparisons with 0 are often used for booleans and there is
2845 nothing useful to predict about them. */
2846 else if (integer_zerop (op0) || integer_zerop (op1))
2847 ;
2848 else
2849 predict_edge_def (e: then_edge, predictor: PRED_TREE_OPCODE_NONEQUAL, taken: NOT_TAKEN);
2850 break;
2851
2852 case NE_EXPR:
2853 case LTGT_EXPR:
2854 /* Floating point comparisons appears to behave in a very
2855 unpredictable way because of special role of = tests in
2856 FP code. */
2857 if (FLOAT_TYPE_P (type))
2858 ;
2859 /* Comparisons with 0 are often used for booleans and there is
2860 nothing useful to predict about them. */
2861 else if (integer_zerop (op0)
2862 || integer_zerop (op1))
2863 ;
2864 else
2865 predict_edge_def (e: then_edge, predictor: PRED_TREE_OPCODE_NONEQUAL, taken: TAKEN);
2866 break;
2867
2868 case ORDERED_EXPR:
2869 predict_edge_def (e: then_edge, predictor: PRED_TREE_FPOPCODE, taken: TAKEN);
2870 break;
2871
2872 case UNORDERED_EXPR:
2873 predict_edge_def (e: then_edge, predictor: PRED_TREE_FPOPCODE, taken: NOT_TAKEN);
2874 break;
2875
2876 case LE_EXPR:
2877 case LT_EXPR:
2878 if (integer_zerop (op1)
2879 || integer_onep (op1)
2880 || integer_all_onesp (op1)
2881 || real_zerop (op1)
2882 || real_onep (op1)
2883 || real_minus_onep (op1))
2884 predict_edge_def (e: then_edge, predictor: PRED_TREE_OPCODE_POSITIVE, taken: NOT_TAKEN);
2885 break;
2886
2887 case GE_EXPR:
2888 case GT_EXPR:
2889 if (integer_zerop (op1)
2890 || integer_onep (op1)
2891 || integer_all_onesp (op1)
2892 || real_zerop (op1)
2893 || real_onep (op1)
2894 || real_minus_onep (op1))
2895 predict_edge_def (e: then_edge, predictor: PRED_TREE_OPCODE_POSITIVE, taken: TAKEN);
2896 break;
2897
2898 default:
2899 break;
2900 }
2901}
2902
2903/* Returns TRUE if the STMT is exit(0) like statement. */
2904
2905static bool
2906is_exit_with_zero_arg (const gimple *stmt)
2907{
2908 /* This is not exit, _exit or _Exit. */
2909 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2910 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2911 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2912 return false;
2913
2914 /* Argument is an interger zero. */
2915 return integer_zerop (gimple_call_arg (gs: stmt, index: 0));
2916}
2917
2918/* Try to guess whether the value of return means error code. */
2919
2920static enum br_predictor
2921return_prediction (tree val, enum prediction *prediction)
2922{
2923 /* VOID. */
2924 if (!val)
2925 return PRED_NO_PREDICTION;
2926 /* Different heuristics for pointers and scalars. */
2927 if (POINTER_TYPE_P (TREE_TYPE (val)))
2928 {
2929 /* NULL is usually not returned. */
2930 if (integer_zerop (val))
2931 {
2932 *prediction = NOT_TAKEN;
2933 return PRED_NULL_RETURN;
2934 }
2935 }
2936 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2937 {
2938 /* Negative return values are often used to indicate
2939 errors. */
2940 if (TREE_CODE (val) == INTEGER_CST
2941 && tree_int_cst_sgn (val) < 0)
2942 {
2943 *prediction = NOT_TAKEN;
2944 return PRED_NEGATIVE_RETURN;
2945 }
2946 /* Constant return values seems to be commonly taken.
2947 Zero/one often represent booleans so exclude them from the
2948 heuristics. */
2949 if (TREE_CONSTANT (val)
2950 && (!integer_zerop (val) && !integer_onep (val)))
2951 {
2952 *prediction = NOT_TAKEN;
2953 return PRED_CONST_RETURN;
2954 }
2955 }
2956 return PRED_NO_PREDICTION;
2957}
2958
2959/* Return zero if phi result could have values other than -1, 0 or 1,
2960 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2961 values are used or likely. */
2962
2963static int
2964zero_one_minusone (gphi *phi, int limit)
2965{
2966 int phi_num_args = gimple_phi_num_args (gs: phi);
2967 int ret = 0;
2968 for (int i = 0; i < phi_num_args; i++)
2969 {
2970 tree t = PHI_ARG_DEF (phi, i);
2971 if (TREE_CODE (t) != INTEGER_CST)
2972 continue;
2973 wide_int w = wi::to_wide (t);
2974 if (w == -1)
2975 ret |= 1;
2976 else if (w == 0)
2977 ret |= 2;
2978 else if (w == 1)
2979 ret |= 4;
2980 else
2981 return 0;
2982 }
2983 for (int i = 0; i < phi_num_args; i++)
2984 {
2985 tree t = PHI_ARG_DEF (phi, i);
2986 if (TREE_CODE (t) == INTEGER_CST)
2987 continue;
2988 if (TREE_CODE (t) != SSA_NAME)
2989 return 0;
2990 gimple *g = SSA_NAME_DEF_STMT (t);
2991 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2992 if (int r = zero_one_minusone (phi: as_a <gphi *> (p: g), limit: limit - 1))
2993 {
2994 ret |= r;
2995 continue;
2996 }
2997 if (!is_gimple_assign (gs: g))
2998 return 0;
2999 if (gimple_assign_cast_p (s: g))
3000 {
3001 tree rhs1 = gimple_assign_rhs1 (gs: g);
3002 if (TREE_CODE (rhs1) != SSA_NAME
3003 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
3004 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
3005 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
3006 return 0;
3007 ret |= (2 | 4);
3008 continue;
3009 }
3010 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
3011 return 0;
3012 ret |= (2 | 4);
3013 }
3014 return ret;
3015}
3016
3017/* Find the basic block with return expression and look up for possible
3018 return value trying to apply RETURN_PREDICTION heuristics. */
3019static void
3020apply_return_prediction (void)
3021{
3022 greturn *return_stmt = NULL;
3023 tree return_val;
3024 edge e;
3025 gphi *phi;
3026 int phi_num_args, i;
3027 enum br_predictor pred;
3028 enum prediction direction;
3029 edge_iterator ei;
3030
3031 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
3032 {
3033 if (greturn *last = safe_dyn_cast <greturn *> (p: *gsi_last_bb (bb: e->src)))
3034 {
3035 return_stmt = last;
3036 break;
3037 }
3038 }
3039 if (!e)
3040 return;
3041 return_val = gimple_return_retval (gs: return_stmt);
3042 if (!return_val)
3043 return;
3044 if (TREE_CODE (return_val) != SSA_NAME
3045 || !SSA_NAME_DEF_STMT (return_val)
3046 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
3047 return;
3048 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
3049 phi_num_args = gimple_phi_num_args (gs: phi);
3050 pred = return_prediction (PHI_ARG_DEF (phi, 0), prediction: &direction);
3051
3052 /* Avoid the case where the function returns -1, 0 and 1 values and
3053 nothing else. Those could be qsort etc. comparison functions
3054 where the negative return isn't less probable than positive.
3055 For this require that the function returns at least -1 or 1
3056 or -1 and a boolean value or comparison result, so that functions
3057 returning just -1 and 0 are treated as if -1 represents error value. */
3058 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
3059 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
3060 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
3061 if (int r = zero_one_minusone (phi, limit: 3))
3062 if ((r & (1 | 4)) == (1 | 4))
3063 return;
3064
3065 /* Avoid the degenerate case where all return values form the function
3066 belongs to same category (ie they are all positive constants)
3067 so we can hardly say something about them. */
3068 for (i = 1; i < phi_num_args; i++)
3069 if (pred != return_prediction (PHI_ARG_DEF (phi, i), prediction: &direction))
3070 break;
3071 if (i != phi_num_args)
3072 for (i = 0; i < phi_num_args; i++)
3073 {
3074 pred = return_prediction (PHI_ARG_DEF (phi, i), prediction: &direction);
3075 if (pred != PRED_NO_PREDICTION)
3076 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
3077 direction);
3078 }
3079}
3080
3081/* Look for basic block that contains unlikely to happen events
3082 (such as noreturn calls) and mark all paths leading to execution
3083 of this basic blocks as unlikely. */
3084
3085static void
3086tree_bb_level_predictions (void)
3087{
3088 basic_block bb;
3089 bool has_return_edges = false;
3090 edge e;
3091 edge_iterator ei;
3092
3093 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
3094 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
3095 {
3096 has_return_edges = true;
3097 break;
3098 }
3099
3100 apply_return_prediction ();
3101
3102 FOR_EACH_BB_FN (bb, cfun)
3103 {
3104 gimple_stmt_iterator gsi;
3105
3106 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
3107 {
3108 gimple *stmt = gsi_stmt (i: gsi);
3109 tree decl;
3110
3111 if (is_gimple_call (gs: stmt))
3112 {
3113 if (gimple_call_noreturn_p (s: stmt)
3114 && has_return_edges
3115 && !is_exit_with_zero_arg (stmt))
3116 predict_paths_leading_to (bb, PRED_NORETURN,
3117 NOT_TAKEN);
3118 decl = gimple_call_fndecl (gs: stmt);
3119 if (decl
3120 && lookup_attribute (attr_name: "cold",
3121 DECL_ATTRIBUTES (decl)))
3122 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
3123 NOT_TAKEN);
3124 if (decl && recursive_call_p (current_function_decl, decl))
3125 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
3126 NOT_TAKEN);
3127 }
3128 else if (gimple_code (g: stmt) == GIMPLE_PREDICT)
3129 {
3130 predict_paths_leading_to (bb, gimple_predict_predictor (gs: stmt),
3131 gimple_predict_outcome (gs: stmt));
3132 /* Keep GIMPLE_PREDICT around so early inlining will propagate
3133 hints to callers. */
3134 }
3135 }
3136 }
3137}
3138
3139/* Callback for hash_map::traverse, asserts that the pointer map is
3140 empty. */
3141
3142bool
3143assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3144 void *)
3145{
3146 gcc_assert (!value);
3147 return true;
3148}
3149
3150/* Predict branch probabilities and estimate profile for basic block BB.
3151 When LOCAL_ONLY is set do not use any global properties of CFG. */
3152
3153static void
3154tree_estimate_probability_bb (basic_block bb, bool local_only)
3155{
3156 edge e;
3157 edge_iterator ei;
3158
3159 FOR_EACH_EDGE (e, ei, bb->succs)
3160 {
3161 /* Look for block we are guarding (ie we dominate it,
3162 but it doesn't postdominate us). */
3163 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3164 && !local_only
3165 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3166 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3167 {
3168 gimple_stmt_iterator bi;
3169
3170 /* The call heuristic claims that a guarded function call
3171 is improbable. This is because such calls are often used
3172 to signal exceptional situations such as printing error
3173 messages. */
3174 for (bi = gsi_start_bb (bb: e->dest); !gsi_end_p (i: bi);
3175 gsi_next (i: &bi))
3176 {
3177 gimple *stmt = gsi_stmt (i: bi);
3178 if (is_gimple_call (gs: stmt)
3179 && !gimple_inexpensive_call_p (as_a <gcall *> (p: stmt))
3180 /* Constant and pure calls are hardly used to signalize
3181 something exceptional. */
3182 && gimple_has_side_effects (stmt))
3183 {
3184 if (gimple_call_fndecl (gs: stmt))
3185 predict_edge_def (e, predictor: PRED_CALL, taken: NOT_TAKEN);
3186 else if (virtual_method_call_p (gimple_call_fn (gs: stmt)))
3187 predict_edge_def (e, predictor: PRED_POLYMORPHIC_CALL, taken: NOT_TAKEN);
3188 else
3189 predict_edge_def (e, predictor: PRED_INDIR_CALL, taken: TAKEN);
3190 break;
3191 }
3192 }
3193 }
3194 }
3195 tree_predict_by_opcode (bb);
3196}
3197
3198/* Predict branch probabilities and estimate profile of the tree CFG.
3199 This function can be called from the loop optimizers to recompute
3200 the profile information.
3201 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3202
3203void
3204tree_estimate_probability (bool dry_run)
3205{
3206 basic_block bb;
3207
3208 connect_infinite_loops_to_exit ();
3209 /* We use loop_niter_by_eval, which requires that the loops have
3210 preheaders. */
3211 create_preheaders (CP_SIMPLE_PREHEADERS);
3212 calculate_dominance_info (CDI_POST_DOMINATORS);
3213 /* Decide which edges are known to be unlikely. This improves later
3214 branch prediction. */
3215 determine_unlikely_bbs ();
3216
3217 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3218 tree_bb_level_predictions ();
3219 record_loop_exits ();
3220
3221 if (number_of_loops (cfun) > 1)
3222 predict_loops ();
3223
3224 FOR_EACH_BB_FN (bb, cfun)
3225 tree_estimate_probability_bb (bb, local_only: false);
3226
3227 FOR_EACH_BB_FN (bb, cfun)
3228 combine_predictions_for_bb (bb, dry_run);
3229
3230 if (flag_checking)
3231 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3232
3233 delete bb_predictions;
3234 bb_predictions = NULL;
3235
3236 if (!dry_run
3237 && profile_status_for_fn (cfun) != PROFILE_READ)
3238 estimate_bb_frequencies ();
3239 free_dominance_info (CDI_POST_DOMINATORS);
3240 remove_fake_exit_edges ();
3241}
3242
3243/* Set edge->probability for each successor edge of BB. */
3244void
3245tree_guess_outgoing_edge_probabilities (basic_block bb)
3246{
3247 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3248 tree_estimate_probability_bb (bb, local_only: true);
3249 combine_predictions_for_bb (bb, dry_run: false);
3250 if (flag_checking)
3251 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3252 delete bb_predictions;
3253 bb_predictions = NULL;
3254}
3255
3256/* Filter function predicate that returns true for a edge predicate P
3257 if its edge is equal to DATA. */
3258
3259static bool
3260not_loop_guard_equal_edge_p (edge_prediction *p, void *data)
3261{
3262 return p->ep_edge != (edge)data || p->ep_predictor != PRED_LOOP_GUARD;
3263}
3264
3265/* Predict edge E with PRED unless it is already predicted by some predictor
3266 considered equivalent. */
3267
3268static void
3269maybe_predict_edge (edge e, enum br_predictor pred, enum prediction taken)
3270{
3271 if (edge_predicted_by_p (e, predictor: pred, taken))
3272 return;
3273 if (pred == PRED_LOOP_GUARD
3274 && edge_predicted_by_p (e, predictor: PRED_LOOP_GUARD_WITH_RECURSION, taken))
3275 return;
3276 /* Consider PRED_LOOP_GUARD_WITH_RECURSION superrior to LOOP_GUARD. */
3277 if (pred == PRED_LOOP_GUARD_WITH_RECURSION)
3278 {
3279 edge_prediction **preds = bb_predictions->get (k: e->src);
3280 if (preds)
3281 filter_predictions (preds, filter: not_loop_guard_equal_edge_p, data: e);
3282 }
3283 predict_edge_def (e, predictor: pred, taken);
3284}
3285/* Predict edges to successors of CUR whose sources are not postdominated by
3286 BB by PRED and recurse to all postdominators. */
3287
3288static void
3289predict_paths_for_bb (basic_block cur, basic_block bb,
3290 enum br_predictor pred,
3291 enum prediction taken,
3292 bitmap visited, class loop *in_loop = NULL)
3293{
3294 edge e;
3295 edge_iterator ei;
3296 basic_block son;
3297
3298 /* If we exited the loop or CUR is unconditional in the loop, there is
3299 nothing to do. */
3300 if (in_loop
3301 && (!flow_bb_inside_loop_p (in_loop, cur)
3302 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3303 return;
3304
3305 /* We are looking for all edges forming edge cut induced by
3306 set of all blocks postdominated by BB. */
3307 FOR_EACH_EDGE (e, ei, cur->preds)
3308 if (e->src->index >= NUM_FIXED_BLOCKS
3309 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3310 {
3311 edge e2;
3312 edge_iterator ei2;
3313 bool found = false;
3314
3315 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3316 if (unlikely_executed_edge_p (e))
3317 continue;
3318 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3319
3320 /* See if there is an edge from e->src that is not abnormal
3321 and does not lead to BB and does not exit the loop. */
3322 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3323 if (e2 != e
3324 && !unlikely_executed_edge_p (e: e2)
3325 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3326 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3327 {
3328 found = true;
3329 break;
3330 }
3331
3332 /* If there is non-abnormal path leaving e->src, predict edge
3333 using predictor. Otherwise we need to look for paths
3334 leading to e->src.
3335
3336 The second may lead to infinite loop in the case we are predicitng
3337 regions that are only reachable by abnormal edges. We simply
3338 prevent visiting given BB twice. */
3339 if (found)
3340 maybe_predict_edge (e, pred, taken);
3341 else if (bitmap_set_bit (visited, e->src->index))
3342 predict_paths_for_bb (cur: e->src, bb: e->src, pred, taken, visited, in_loop);
3343 }
3344 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3345 son;
3346 son = next_dom_son (CDI_POST_DOMINATORS, son))
3347 predict_paths_for_bb (cur: son, bb, pred, taken, visited, in_loop);
3348}
3349
3350/* Sets branch probabilities according to PREDiction and
3351 FLAGS. */
3352
3353static void
3354predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3355 enum prediction taken, class loop *in_loop)
3356{
3357 predict_paths_for_bb (cur: bb, bb, pred, taken, visited: auto_bitmap (), in_loop);
3358}
3359
3360/* Like predict_paths_leading_to but take edge instead of basic block. */
3361
3362static void
3363predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3364 enum prediction taken, class loop *in_loop)
3365{
3366 bool has_nonloop_edge = false;
3367 edge_iterator ei;
3368 edge e2;
3369
3370 basic_block bb = e->src;
3371 FOR_EACH_EDGE (e2, ei, bb->succs)
3372 if (e2->dest != e->src && e2->dest != e->dest
3373 && !unlikely_executed_edge_p (e: e2)
3374 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3375 {
3376 has_nonloop_edge = true;
3377 break;
3378 }
3379
3380 if (!has_nonloop_edge)
3381 predict_paths_for_bb (cur: bb, bb, pred, taken, visited: auto_bitmap (), in_loop);
3382 else
3383 maybe_predict_edge (e, pred, taken);
3384}
3385
3386/* This is used to carry information about basic blocks. It is
3387 attached to the AUX field of the standard CFG block. */
3388
3389class block_info
3390{
3391public:
3392 /* Estimated frequency of execution of basic_block. */
3393 sreal frequency;
3394
3395 /* To keep queue of basic blocks to process. */
3396 basic_block next;
3397
3398 /* Number of predecessors we need to visit first. */
3399 int npredecessors;
3400};
3401
3402/* Similar information for edges. */
3403class edge_prob_info
3404{
3405public:
3406 /* In case edge is a loopback edge, the probability edge will be reached
3407 in case header is. Estimated number of iterations of the loop can be
3408 then computed as 1 / (1 - back_edge_prob). */
3409 sreal back_edge_prob;
3410 /* True if the edge is a loopback edge in the natural loop. */
3411 unsigned int back_edge:1;
3412};
3413
3414#define BLOCK_INFO(B) ((block_info *) (B)->aux)
3415#undef EDGE_INFO
3416#define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3417
3418/* Helper function for estimate_bb_frequencies.
3419 Propagate the frequencies in blocks marked in
3420 TOVISIT, starting in HEAD. */
3421
3422static void
3423propagate_freq (basic_block head, bitmap tovisit,
3424 sreal max_cyclic_prob)
3425{
3426 basic_block bb;
3427 basic_block last;
3428 unsigned i;
3429 edge e;
3430 basic_block nextbb;
3431 bitmap_iterator bi;
3432
3433 /* For each basic block we need to visit count number of his predecessors
3434 we need to visit first. */
3435 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3436 {
3437 edge_iterator ei;
3438 int count = 0;
3439
3440 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3441
3442 FOR_EACH_EDGE (e, ei, bb->preds)
3443 {
3444 bool visit = bitmap_bit_p (tovisit, e->src->index);
3445
3446 if (visit && !(e->flags & EDGE_DFS_BACK))
3447 count++;
3448 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3449 fprintf (stream: dump_file,
3450 format: "Irreducible region hit, ignoring edge to %i->%i\n",
3451 e->src->index, bb->index);
3452 }
3453 BLOCK_INFO (bb)->npredecessors = count;
3454 /* When function never returns, we will never process exit block. */
3455 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3456 bb->count = profile_count::zero ();
3457 }
3458
3459 BLOCK_INFO (head)->frequency = 1;
3460 last = head;
3461 for (bb = head; bb; bb = nextbb)
3462 {
3463 edge_iterator ei;
3464 sreal cyclic_probability = 0;
3465 sreal frequency = 0;
3466
3467 nextbb = BLOCK_INFO (bb)->next;
3468 BLOCK_INFO (bb)->next = NULL;
3469
3470 /* Compute frequency of basic block. */
3471 if (bb != head)
3472 {
3473 if (flag_checking)
3474 FOR_EACH_EDGE (e, ei, bb->preds)
3475 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3476 || (e->flags & EDGE_DFS_BACK));
3477
3478 FOR_EACH_EDGE (e, ei, bb->preds)
3479 if (EDGE_INFO (e)->back_edge)
3480 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3481 else if (!(e->flags & EDGE_DFS_BACK))
3482 {
3483 /* FIXME: Graphite is producing edges with no profile. Once
3484 this is fixed, drop this. */
3485 sreal tmp = e->probability.initialized_p () ?
3486 e->probability.to_sreal () : 0;
3487 frequency += tmp * BLOCK_INFO (e->src)->frequency;
3488 }
3489
3490 if (cyclic_probability == 0)
3491 {
3492 BLOCK_INFO (bb)->frequency = frequency;
3493 }
3494 else
3495 {
3496 if (cyclic_probability > max_cyclic_prob)
3497 {
3498 if (dump_file)
3499 fprintf (stream: dump_file,
3500 format: "cyclic probability of bb %i is %f (capped to %f)"
3501 "; turning freq %f",
3502 bb->index, cyclic_probability.to_double (),
3503 max_cyclic_prob.to_double (),
3504 frequency.to_double ());
3505
3506 cyclic_probability = max_cyclic_prob;
3507 }
3508 else if (dump_file)
3509 fprintf (stream: dump_file,
3510 format: "cyclic probability of bb %i is %f; turning freq %f",
3511 bb->index, cyclic_probability.to_double (),
3512 frequency.to_double ());
3513
3514 BLOCK_INFO (bb)->frequency = frequency
3515 / (sreal (1) - cyclic_probability);
3516 if (dump_file)
3517 fprintf (stream: dump_file, format: " to %f\n",
3518 BLOCK_INFO (bb)->frequency.to_double ());
3519 }
3520 }
3521
3522 bitmap_clear_bit (tovisit, bb->index);
3523
3524 e = find_edge (bb, head);
3525 if (e)
3526 {
3527 /* FIXME: Graphite is producing edges with no profile. Once
3528 this is fixed, drop this. */
3529 sreal tmp = e->probability.initialized_p () ?
3530 e->probability.to_sreal () : 0;
3531 EDGE_INFO (e)->back_edge_prob = tmp * BLOCK_INFO (bb)->frequency;
3532 }
3533
3534 /* Propagate to successor blocks. */
3535 FOR_EACH_EDGE (e, ei, bb->succs)
3536 if (!(e->flags & EDGE_DFS_BACK)
3537 && BLOCK_INFO (e->dest)->npredecessors)
3538 {
3539 BLOCK_INFO (e->dest)->npredecessors--;
3540 if (!BLOCK_INFO (e->dest)->npredecessors)
3541 {
3542 if (!nextbb)
3543 nextbb = e->dest;
3544 else
3545 BLOCK_INFO (last)->next = e->dest;
3546
3547 last = e->dest;
3548 }
3549 }
3550 }
3551}
3552
3553/* Estimate frequencies in loops at same nest level. */
3554
3555static void
3556estimate_loops_at_level (class loop *first_loop, sreal max_cyclic_prob)
3557{
3558 class loop *loop;
3559
3560 for (loop = first_loop; loop; loop = loop->next)
3561 {
3562 edge e;
3563 basic_block *bbs;
3564 unsigned i;
3565 auto_bitmap tovisit;
3566
3567 estimate_loops_at_level (first_loop: loop->inner, max_cyclic_prob);
3568
3569 /* Find current loop back edge and mark it. */
3570 e = loop_latch_edge (loop);
3571 EDGE_INFO (e)->back_edge = 1;
3572
3573 bbs = get_loop_body (loop);
3574 for (i = 0; i < loop->num_nodes; i++)
3575 bitmap_set_bit (tovisit, bbs[i]->index);
3576 free (ptr: bbs);
3577 propagate_freq (head: loop->header, tovisit, max_cyclic_prob);
3578 }
3579}
3580
3581/* Propagates frequencies through structure of loops. */
3582
3583static void
3584estimate_loops (void)
3585{
3586 auto_bitmap tovisit;
3587 basic_block bb;
3588 sreal max_cyclic_prob = (sreal)1
3589 - (sreal)1 / (param_max_predicted_iterations + 1);
3590
3591 /* Start by estimating the frequencies in the loops. */
3592 if (number_of_loops (cfun) > 1)
3593 estimate_loops_at_level (current_loops->tree_root->inner, max_cyclic_prob);
3594
3595 /* Now propagate the frequencies through all the blocks. */
3596 FOR_ALL_BB_FN (bb, cfun)
3597 {
3598 bitmap_set_bit (tovisit, bb->index);
3599 }
3600 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit, max_cyclic_prob);
3601}
3602
3603/* Drop the profile for NODE to guessed, and update its frequency based on
3604 whether it is expected to be hot given the CALL_COUNT. */
3605
3606static void
3607drop_profile (struct cgraph_node *node, profile_count call_count)
3608{
3609 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3610 /* In the case where this was called by another function with a
3611 dropped profile, call_count will be 0. Since there are no
3612 non-zero call counts to this function, we don't know for sure
3613 whether it is hot, and therefore it will be marked normal below. */
3614 bool hot = maybe_hot_count_p (NULL, count: call_count);
3615
3616 if (dump_file)
3617 fprintf (stream: dump_file,
3618 format: "Dropping 0 profile for %s. %s based on calls.\n",
3619 node->dump_name (),
3620 hot ? "Function is hot" : "Function is normal");
3621 /* We only expect to miss profiles for functions that are reached
3622 via non-zero call edges in cases where the function may have
3623 been linked from another module or library (COMDATs and extern
3624 templates). See the comments below for handle_missing_profiles.
3625 Also, only warn in cases where the missing counts exceed the
3626 number of training runs. In certain cases with an execv followed
3627 by a no-return call the profile for the no-return call is not
3628 dumped and there can be a mismatch. */
3629 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3630 && call_count > profile_info->runs)
3631 {
3632 if (flag_profile_correction)
3633 {
3634 if (dump_file)
3635 fprintf (stream: dump_file,
3636 format: "Missing counts for called function %s\n",
3637 node->dump_name ());
3638 }
3639 else
3640 warning (0, "Missing counts for called function %s",
3641 node->dump_name ());
3642 }
3643
3644 basic_block bb;
3645 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3646 {
3647 bool clear_zeros
3648 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3649 FOR_ALL_BB_FN (bb, fn)
3650 if (clear_zeros || !(bb->count == profile_count::zero ()))
3651 bb->count = bb->count.guessed_local ();
3652 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3653 }
3654 else
3655 {
3656 FOR_ALL_BB_FN (bb, fn)
3657 bb->count = profile_count::uninitialized ();
3658 fn->cfg->count_max = profile_count::uninitialized ();
3659 }
3660
3661 struct cgraph_edge *e;
3662 for (e = node->callees; e; e = e->next_callee)
3663 e->count = gimple_bb (g: e->call_stmt)->count;
3664 for (e = node->indirect_calls; e; e = e->next_callee)
3665 e->count = gimple_bb (g: e->call_stmt)->count;
3666 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3667
3668 profile_status_for_fn (fn)
3669 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3670 node->frequency
3671 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3672}
3673
3674/* In the case of COMDAT routines, multiple object files will contain the same
3675 function and the linker will select one for the binary. In that case
3676 all the other copies from the profile instrument binary will be missing
3677 profile counts. Look for cases where this happened, due to non-zero
3678 call counts going to 0-count functions, and drop the profile to guessed
3679 so that we can use the estimated probabilities and avoid optimizing only
3680 for size.
3681
3682 The other case where the profile may be missing is when the routine
3683 is not going to be emitted to the object file, e.g. for "extern template"
3684 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3685 all other cases of non-zero calls to 0-count functions. */
3686
3687void
3688handle_missing_profiles (void)
3689{
3690 const int unlikely_frac = param_unlikely_bb_count_fraction;
3691 struct cgraph_node *node;
3692 auto_vec<struct cgraph_node *, 64> worklist;
3693
3694 /* See if 0 count function has non-0 count callers. In this case we
3695 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3696 FOR_EACH_DEFINED_FUNCTION (node)
3697 {
3698 struct cgraph_edge *e;
3699 profile_count call_count = profile_count::zero ();
3700 gcov_type max_tp_first_run = 0;
3701 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3702
3703 if (node->count.ipa ().nonzero_p ())
3704 continue;
3705 for (e = node->callers; e; e = e->next_caller)
3706 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3707 {
3708 call_count = call_count + e->count.ipa ();
3709
3710 if (e->caller->tp_first_run > max_tp_first_run)
3711 max_tp_first_run = e->caller->tp_first_run;
3712 }
3713
3714 /* If time profile is missing, let assign the maximum that comes from
3715 caller functions. */
3716 if (!node->tp_first_run && max_tp_first_run)
3717 node->tp_first_run = max_tp_first_run + 1;
3718
3719 if (call_count > 0
3720 && fn && fn->cfg
3721 && call_count * unlikely_frac >= profile_info->runs)
3722 {
3723 drop_profile (node, call_count);
3724 worklist.safe_push (obj: node);
3725 }
3726 }
3727
3728 /* Propagate the profile dropping to other 0-count COMDATs that are
3729 potentially called by COMDATs we already dropped the profile on. */
3730 while (worklist.length () > 0)
3731 {
3732 struct cgraph_edge *e;
3733
3734 node = worklist.pop ();
3735 for (e = node->callees; e; e = e->next_caller)
3736 {
3737 struct cgraph_node *callee = e->callee;
3738 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3739
3740 if (!(e->count.ipa () == profile_count::zero ())
3741 && callee->count.ipa ().nonzero_p ())
3742 continue;
3743 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3744 && fn && fn->cfg
3745 && profile_status_for_fn (fn) == PROFILE_READ)
3746 {
3747 drop_profile (node, call_count: profile_count::zero ());
3748 worklist.safe_push (obj: callee);
3749 }
3750 }
3751 }
3752}
3753
3754/* Convert counts measured by profile driven feedback to frequencies.
3755 Return nonzero iff there was any nonzero execution count. */
3756
3757bool
3758update_max_bb_count (void)
3759{
3760 profile_count true_count_max = profile_count::uninitialized ();
3761 basic_block bb;
3762
3763 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3764 true_count_max = true_count_max.max (other: bb->count);
3765
3766 cfun->cfg->count_max = true_count_max;
3767
3768 return true_count_max.ipa ().nonzero_p ();
3769}
3770
3771/* Return true if function is likely to be expensive, so there is no point to
3772 optimize performance of prologue, epilogue or do inlining at the expense
3773 of code size growth. THRESHOLD is the limit of number of instructions
3774 function can execute at average to be still considered not expensive. */
3775
3776bool
3777expensive_function_p (int threshold)
3778{
3779 basic_block bb;
3780
3781 /* If profile was scaled in a way entry block has count 0, then the function
3782 is deifnitly taking a lot of time. */
3783 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3784 return true;
3785
3786 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count * threshold;
3787 profile_count sum = profile_count::zero ();
3788 FOR_EACH_BB_FN (bb, cfun)
3789 {
3790 rtx_insn *insn;
3791
3792 if (!bb->count.initialized_p ())
3793 {
3794 if (dump_file)
3795 fprintf (stream: dump_file, format: "Function is considered expensive because"
3796 " count of bb %i is not initialized\n", bb->index);
3797 return true;
3798 }
3799
3800 FOR_BB_INSNS (bb, insn)
3801 if (active_insn_p (insn))
3802 {
3803 sum += bb->count;
3804 if (sum > limit)
3805 return true;
3806 }
3807 }
3808
3809 return false;
3810}
3811
3812/* All basic blocks that are reachable only from unlikely basic blocks are
3813 unlikely. */
3814
3815void
3816propagate_unlikely_bbs_forward (void)
3817{
3818 auto_vec<basic_block, 64> worklist;
3819 basic_block bb;
3820 edge_iterator ei;
3821 edge e;
3822
3823 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3824 {
3825 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3826 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3827
3828 while (worklist.length () > 0)
3829 {
3830 bb = worklist.pop ();
3831 FOR_EACH_EDGE (e, ei, bb->succs)
3832 if (!(e->count () == profile_count::zero ())
3833 && !(e->dest->count == profile_count::zero ())
3834 && !e->dest->aux)
3835 {
3836 e->dest->aux = (void *)(size_t) 1;
3837 worklist.safe_push (obj: e->dest);
3838 }
3839 }
3840 }
3841
3842 FOR_ALL_BB_FN (bb, cfun)
3843 {
3844 if (!bb->aux)
3845 {
3846 if (!(bb->count == profile_count::zero ())
3847 && (dump_file && (dump_flags & TDF_DETAILS)))
3848 fprintf (stream: dump_file,
3849 format: "Basic block %i is marked unlikely by forward prop\n",
3850 bb->index);
3851 bb->count = profile_count::zero ();
3852 }
3853 else
3854 bb->aux = NULL;
3855 }
3856}
3857
3858/* Determine basic blocks/edges that are known to be unlikely executed and set
3859 their counters to zero.
3860 This is done with first identifying obviously unlikely BBs/edges and then
3861 propagating in both directions. */
3862
3863static void
3864determine_unlikely_bbs ()
3865{
3866 basic_block bb;
3867 auto_vec<basic_block, 64> worklist;
3868 edge_iterator ei;
3869 edge e;
3870
3871 FOR_EACH_BB_FN (bb, cfun)
3872 {
3873 if (!(bb->count == profile_count::zero ())
3874 && unlikely_executed_bb_p (bb))
3875 {
3876 if (dump_file && (dump_flags & TDF_DETAILS))
3877 fprintf (stream: dump_file, format: "Basic block %i is locally unlikely\n",
3878 bb->index);
3879 bb->count = profile_count::zero ();
3880 }
3881
3882 FOR_EACH_EDGE (e, ei, bb->succs)
3883 if (!(e->probability == profile_probability::never ())
3884 && unlikely_executed_edge_p (e))
3885 {
3886 if (dump_file && (dump_flags & TDF_DETAILS))
3887 fprintf (stream: dump_file, format: "Edge %i->%i is locally unlikely\n",
3888 bb->index, e->dest->index);
3889 e->probability = profile_probability::never ();
3890 }
3891
3892 gcc_checking_assert (!bb->aux);
3893 }
3894 propagate_unlikely_bbs_forward ();
3895
3896 auto_vec<int, 64> nsuccs;
3897 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun), exact: true);
3898 FOR_ALL_BB_FN (bb, cfun)
3899 if (!(bb->count == profile_count::zero ())
3900 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3901 {
3902 nsuccs[bb->index] = 0;
3903 FOR_EACH_EDGE (e, ei, bb->succs)
3904 if (!(e->probability == profile_probability::never ())
3905 && !(e->dest->count == profile_count::zero ()))
3906 nsuccs[bb->index]++;
3907 if (!nsuccs[bb->index])
3908 worklist.safe_push (obj: bb);
3909 }
3910 while (worklist.length () > 0)
3911 {
3912 bb = worklist.pop ();
3913 if (bb->count == profile_count::zero ())
3914 continue;
3915 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3916 {
3917 bool found = false;
3918 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3919 !gsi_end_p (i: gsi); gsi_next (i: &gsi))
3920 if (stmt_can_terminate_bb_p (gsi_stmt (i: gsi))
3921 /* stmt_can_terminate_bb_p special cases noreturns because it
3922 assumes that fake edges are created. We want to know that
3923 noreturn alone does not imply BB to be unlikely. */
3924 || (is_gimple_call (gs: gsi_stmt (i: gsi))
3925 && (gimple_call_flags (gsi_stmt (i: gsi)) & ECF_NORETURN)))
3926 {
3927 found = true;
3928 break;
3929 }
3930 if (found)
3931 continue;
3932 }
3933 if (dump_file && (dump_flags & TDF_DETAILS))
3934 fprintf (stream: dump_file,
3935 format: "Basic block %i is marked unlikely by backward prop\n",
3936 bb->index);
3937 bb->count = profile_count::zero ();
3938 FOR_EACH_EDGE (e, ei, bb->preds)
3939 if (!(e->probability == profile_probability::never ()))
3940 {
3941 if (!(e->src->count == profile_count::zero ()))
3942 {
3943 gcc_checking_assert (nsuccs[e->src->index] > 0);
3944 nsuccs[e->src->index]--;
3945 if (!nsuccs[e->src->index])
3946 worklist.safe_push (obj: e->src);
3947 }
3948 }
3949 }
3950 /* Finally all edges from non-0 regions to 0 are unlikely. */
3951 FOR_ALL_BB_FN (bb, cfun)
3952 {
3953 if (!(bb->count == profile_count::zero ()))
3954 FOR_EACH_EDGE (e, ei, bb->succs)
3955 if (!(e->probability == profile_probability::never ())
3956 && e->dest->count == profile_count::zero ())
3957 {
3958 if (dump_file && (dump_flags & TDF_DETAILS))
3959 fprintf (stream: dump_file, format: "Edge %i->%i is unlikely because "
3960 "it enters unlikely block\n",
3961 bb->index, e->dest->index);
3962 e->probability = profile_probability::never ();
3963 }
3964
3965 edge other = NULL;
3966
3967 FOR_EACH_EDGE (e, ei, bb->succs)
3968 if (e->probability == profile_probability::never ())
3969 ;
3970 else if (other)
3971 {
3972 other = NULL;
3973 break;
3974 }
3975 else
3976 other = e;
3977 if (other
3978 && !(other->probability == profile_probability::always ()))
3979 {
3980 if (dump_file && (dump_flags & TDF_DETAILS))
3981 fprintf (stream: dump_file, format: "Edge %i->%i is locally likely\n",
3982 bb->index, other->dest->index);
3983 other->probability = profile_probability::always ();
3984 }
3985 }
3986 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3987 cgraph_node::get (decl: current_function_decl)->count = profile_count::zero ();
3988}
3989
3990/* Estimate and propagate basic block frequencies using the given branch
3991 probabilities. */
3992
3993static void
3994estimate_bb_frequencies ()
3995{
3996 basic_block bb;
3997 sreal freq_max;
3998
3999 determine_unlikely_bbs ();
4000
4001 mark_dfs_back_edges ();
4002
4003 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
4004 profile_probability::always ();
4005
4006 /* Set up block info for each basic block. */
4007 alloc_aux_for_blocks (sizeof (block_info));
4008 alloc_aux_for_edges (sizeof (edge_prob_info));
4009 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4010 {
4011 edge e;
4012 edge_iterator ei;
4013
4014 FOR_EACH_EDGE (e, ei, bb->succs)
4015 {
4016 /* FIXME: Graphite is producing edges with no profile. Once
4017 this is fixed, drop this. */
4018 if (e->probability.initialized_p ())
4019 EDGE_INFO (e)->back_edge_prob
4020 = e->probability.to_sreal ();
4021 else
4022 /* back_edge_prob = 0.5 */
4023 EDGE_INFO (e)->back_edge_prob = sreal (1, -1);
4024 }
4025 }
4026
4027 /* First compute frequencies locally for each loop from innermost
4028 to outermost to examine frequencies for back edges. */
4029 estimate_loops ();
4030
4031 freq_max = 0;
4032 FOR_EACH_BB_FN (bb, cfun)
4033 if (freq_max < BLOCK_INFO (bb)->frequency)
4034 freq_max = BLOCK_INFO (bb)->frequency;
4035
4036 /* Scaling frequencies up to maximal profile count may result in
4037 frequent overflows especially when inlining loops.
4038 Small scaling results in unnecesary precision loss. Stay in
4039 the half of the (exponential) range. */
4040 freq_max = (sreal (1) << (profile_count::n_bits / 2)) / freq_max;
4041 if (freq_max < 16)
4042 freq_max = 16;
4043 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
4044 cfun->cfg->count_max = profile_count::uninitialized ();
4045 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4046 {
4047 sreal tmp = BLOCK_INFO (bb)->frequency;
4048 if (tmp >= 1)
4049 {
4050 gimple_stmt_iterator gsi;
4051 tree decl;
4052
4053 /* Self recursive calls can not have frequency greater than 1
4054 or program will never terminate. This will result in an
4055 inconsistent bb profile but it is better than greatly confusing
4056 IPA cost metrics. */
4057 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
4058 if (is_gimple_call (gs: gsi_stmt (i: gsi))
4059 && (decl = gimple_call_fndecl (gs: gsi_stmt (i: gsi))) != NULL
4060 && recursive_call_p (current_function_decl, decl))
4061 {
4062 if (dump_file)
4063 fprintf (stream: dump_file, format: "Dropping frequency of recursive call"
4064 " in bb %i from %f\n", bb->index,
4065 tmp.to_double ());
4066 tmp = (sreal)9 / (sreal)10;
4067 break;
4068 }
4069 }
4070 tmp = tmp * freq_max;
4071 profile_count count = profile_count::from_gcov_type (v: tmp.to_nearest_int ());
4072
4073 /* If we have profile feedback in which this function was never
4074 executed, then preserve this info. */
4075 if (!(bb->count == profile_count::zero ()))
4076 bb->count = count.guessed_local ().combine_with_ipa_count (ipa: ipa_count);
4077 cfun->cfg->count_max = cfun->cfg->count_max.max (other: bb->count);
4078 }
4079
4080 free_aux_for_blocks ();
4081 free_aux_for_edges ();
4082 compute_function_frequency ();
4083}
4084
4085/* Decide whether function is hot, cold or unlikely executed. */
4086void
4087compute_function_frequency (void)
4088{
4089 basic_block bb;
4090 struct cgraph_node *node = cgraph_node::get (decl: current_function_decl);
4091
4092 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4093 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
4094 node->only_called_at_startup = true;
4095 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
4096 node->only_called_at_exit = true;
4097
4098 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ())
4099 {
4100 int flags = flags_from_decl_or_type (current_function_decl);
4101 if (lookup_attribute (attr_name: "cold", DECL_ATTRIBUTES (current_function_decl))
4102 != NULL)
4103 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4104 else if (lookup_attribute (attr_name: "hot", DECL_ATTRIBUTES (current_function_decl))
4105 != NULL)
4106 node->frequency = NODE_FREQUENCY_HOT;
4107 else if (flags & ECF_NORETURN)
4108 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4109 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
4110 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4111 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4112 || DECL_STATIC_DESTRUCTOR (current_function_decl))
4113 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4114 return;
4115 }
4116
4117 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4118 if (lookup_attribute (attr_name: "cold", DECL_ATTRIBUTES (current_function_decl))
4119 == NULL)
4120 warn_function_cold (current_function_decl);
4121 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
4122 return;
4123 FOR_EACH_BB_FN (bb, cfun)
4124 {
4125 if (maybe_hot_bb_p (cfun, bb))
4126 {
4127 node->frequency = NODE_FREQUENCY_HOT;
4128 return;
4129 }
4130 if (!probably_never_executed_bb_p (cfun, bb))
4131 node->frequency = NODE_FREQUENCY_NORMAL;
4132 }
4133}
4134
4135/* Build PREDICT_EXPR. */
4136tree
4137build_predict_expr (enum br_predictor predictor, enum prediction taken)
4138{
4139 tree t = build1 (PREDICT_EXPR, void_type_node,
4140 build_int_cst (integer_type_node, predictor));
4141 SET_PREDICT_EXPR_OUTCOME (t, taken);
4142 return t;
4143}
4144
4145const char *
4146predictor_name (enum br_predictor predictor)
4147{
4148 return predictor_info[predictor].name;
4149}
4150
4151/* Predict branch probabilities and estimate profile of the tree CFG. */
4152
4153namespace {
4154
4155const pass_data pass_data_profile =
4156{
4157 .type: GIMPLE_PASS, /* type */
4158 .name: "profile_estimate", /* name */
4159 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4160 .tv_id: TV_BRANCH_PROB, /* tv_id */
4161 PROP_cfg, /* properties_required */
4162 .properties_provided: 0, /* properties_provided */
4163 .properties_destroyed: 0, /* properties_destroyed */
4164 .todo_flags_start: 0, /* todo_flags_start */
4165 .todo_flags_finish: 0, /* todo_flags_finish */
4166};
4167
4168class pass_profile : public gimple_opt_pass
4169{
4170public:
4171 pass_profile (gcc::context *ctxt)
4172 : gimple_opt_pass (pass_data_profile, ctxt)
4173 {}
4174
4175 /* opt_pass methods: */
4176 bool gate (function *) final override { return flag_guess_branch_prob; }
4177 unsigned int execute (function *) final override;
4178
4179}; // class pass_profile
4180
4181unsigned int
4182pass_profile::execute (function *fun)
4183{
4184 unsigned nb_loops;
4185
4186 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4187 return 0;
4188
4189 loop_optimizer_init (LOOPS_NORMAL);
4190 if (dump_file && (dump_flags & TDF_DETAILS))
4191 flow_loops_dump (dump_file, NULL, 0);
4192
4193 nb_loops = number_of_loops (fn: fun);
4194 if (nb_loops > 1)
4195 scev_initialize ();
4196
4197 tree_estimate_probability (dry_run: false);
4198 cfun->cfg->full_profile = true;
4199
4200 if (nb_loops > 1)
4201 scev_finalize ();
4202
4203 loop_optimizer_finalize ();
4204 if (dump_file && (dump_flags & TDF_DETAILS))
4205 gimple_dump_cfg (dump_file, dump_flags);
4206 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4207 profile_status_for_fn (fun) = PROFILE_GUESSED;
4208 if (dump_file && (dump_flags & TDF_DETAILS))
4209 {
4210 sreal iterations;
4211 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
4212 if (expected_loop_iterations_by_profile (loop, ret: &iterations))
4213 fprintf (stream: dump_file, format: "Loop got predicted %d to iterate %f times.\n",
4214 loop->num, iterations.to_double ());
4215 }
4216 return 0;
4217}
4218
4219} // anon namespace
4220
4221gimple_opt_pass *
4222make_pass_profile (gcc::context *ctxt)
4223{
4224 return new pass_profile (ctxt);
4225}
4226
4227/* Return true when PRED predictor should be removed after early
4228 tree passes. Most of the predictors are beneficial to survive
4229 as early inlining can also distribute then into caller's bodies. */
4230
4231static bool
4232strip_predictor_early (enum br_predictor pred)
4233{
4234 switch (pred)
4235 {
4236 case PRED_TREE_EARLY_RETURN:
4237 return true;
4238 default:
4239 return false;
4240 }
4241}
4242
4243/* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4244 we no longer need. EARLY is set to true when called from early
4245 optimizations. */
4246
4247unsigned int
4248strip_predict_hints (function *fun, bool early)
4249{
4250 basic_block bb;
4251 gimple *ass_stmt;
4252 tree var;
4253 bool changed = false;
4254
4255 FOR_EACH_BB_FN (bb, fun)
4256 {
4257 gimple_stmt_iterator bi;
4258 for (bi = gsi_start_bb (bb); !gsi_end_p (i: bi);)
4259 {
4260 gimple *stmt = gsi_stmt (i: bi);
4261
4262 if (gimple_code (g: stmt) == GIMPLE_PREDICT)
4263 {
4264 if (!early
4265 || strip_predictor_early (pred: gimple_predict_predictor (gs: stmt)))
4266 {
4267 gsi_remove (&bi, true);
4268 changed = true;
4269 continue;
4270 }
4271 }
4272 else if (is_gimple_call (gs: stmt))
4273 {
4274 tree fndecl = gimple_call_fndecl (gs: stmt);
4275
4276 if (!early
4277 && ((fndecl != NULL_TREE
4278 && fndecl_built_in_p (node: fndecl, name1: BUILT_IN_EXPECT)
4279 && gimple_call_num_args (gs: stmt) == 2)
4280 || (fndecl != NULL_TREE
4281 && fndecl_built_in_p (node: fndecl,
4282 name1: BUILT_IN_EXPECT_WITH_PROBABILITY)
4283 && gimple_call_num_args (gs: stmt) == 3)
4284 || (gimple_call_internal_p (gs: stmt)
4285 && gimple_call_internal_fn (gs: stmt) == IFN_BUILTIN_EXPECT)))
4286 {
4287 var = gimple_call_lhs (gs: stmt);
4288 changed = true;
4289 if (var)
4290 {
4291 ass_stmt
4292 = gimple_build_assign (var, gimple_call_arg (gs: stmt, index: 0));
4293 gsi_replace (&bi, ass_stmt, true);
4294 }
4295 else
4296 {
4297 gsi_remove (&bi, true);
4298 continue;
4299 }
4300 }
4301 }
4302 gsi_next (i: &bi);
4303 }
4304 }
4305 return changed ? TODO_cleanup_cfg : 0;
4306}
4307
4308namespace {
4309
4310const pass_data pass_data_strip_predict_hints =
4311{
4312 .type: GIMPLE_PASS, /* type */
4313 .name: "*strip_predict_hints", /* name */
4314 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4315 .tv_id: TV_BRANCH_PROB, /* tv_id */
4316 PROP_cfg, /* properties_required */
4317 .properties_provided: 0, /* properties_provided */
4318 .properties_destroyed: 0, /* properties_destroyed */
4319 .todo_flags_start: 0, /* todo_flags_start */
4320 .todo_flags_finish: 0, /* todo_flags_finish */
4321};
4322
4323class pass_strip_predict_hints : public gimple_opt_pass
4324{
4325public:
4326 pass_strip_predict_hints (gcc::context *ctxt)
4327 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4328 {}
4329
4330 /* opt_pass methods: */
4331 opt_pass * clone () final override
4332 {
4333 return new pass_strip_predict_hints (m_ctxt);
4334 }
4335 void set_pass_param (unsigned int n, bool param) final override
4336 {
4337 gcc_assert (n == 0);
4338 early_p = param;
4339 }
4340
4341 unsigned int execute (function *) final override;
4342
4343private:
4344 bool early_p;
4345
4346}; // class pass_strip_predict_hints
4347
4348unsigned int
4349pass_strip_predict_hints::execute (function *fun)
4350{
4351 return strip_predict_hints (fun, early: early_p);
4352}
4353
4354} // anon namespace
4355
4356gimple_opt_pass *
4357make_pass_strip_predict_hints (gcc::context *ctxt)
4358{
4359 return new pass_strip_predict_hints (ctxt);
4360}
4361
4362/* Rebuild function frequencies. Passes are in general expected to
4363 maintain profile by hand, however in some cases this is not possible:
4364 for example when inlining several functions with loops freuqencies might run
4365 out of scale and thus needs to be recomputed. */
4366
4367void
4368rebuild_frequencies (void)
4369{
4370 /* If we have no profile, do nothing. Note that after inlining
4371 profile_status_for_fn may not represent the actual presence/absence of
4372 profile. */
4373 if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4374 && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.initialized_p ())
4375 return;
4376
4377
4378 /* See if everything is OK and update count_max. */
4379 basic_block bb;
4380 bool inconsistency_found = false;
4381 bool uninitialized_probablity_found = false;
4382 bool uninitialized_count_found = false;
4383
4384 cfun->cfg->count_max = profile_count::uninitialized ();
4385 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4386 {
4387 cfun->cfg->count_max = cfun->cfg->count_max.max (other: bb->count);
4388 /* Uninitialized count may be result of inlining or an omision in an
4389 optimization pass. */
4390 if (!bb->count.initialized_p ())
4391 {
4392 uninitialized_count_found = true;
4393 if (dump_file)
4394 fprintf (stream: dump_file, format: "BB %i has uninitialized count\n",
4395 bb->index);
4396 }
4397 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4398 && (!uninitialized_probablity_found || !inconsistency_found))
4399 {
4400 profile_count sum = profile_count::zero ();
4401 edge e;
4402 edge_iterator ei;
4403
4404 FOR_EACH_EDGE (e, ei, bb->preds)
4405 {
4406 sum += e->count ();
4407 /* Uninitialized probability may be result of inlining or an
4408 omision in an optimization pass. */
4409 if (!e->probability.initialized_p ())
4410 {
4411 if (dump_file)
4412 fprintf (stream: dump_file,
4413 format: "Edge %i->%i has uninitialized probability\n",
4414 e->src->index, e->dest->index);
4415 }
4416 }
4417 if (sum.differs_from_p (other: bb->count))
4418 {
4419 if (dump_file)
4420 fprintf (stream: dump_file,
4421 format: "BB %i has invalid sum of incomming counts\n",
4422 bb->index);
4423 inconsistency_found = true;
4424 }
4425 }
4426 }
4427
4428 /* If everything is OK, do not re-propagate frequencies. */
4429 if (!inconsistency_found
4430 && (!uninitialized_count_found || uninitialized_probablity_found)
4431 && !cfun->cfg->count_max.very_large_p ())
4432 {
4433 if (dump_file)
4434 fprintf (stream: dump_file, format: "Profile is consistent\n");
4435 return;
4436 }
4437 /* Do not re-propagate if we have profile feedback. Even if the profile is
4438 inconsistent from previous transofrmations, it is probably more realistic
4439 for hot part of the program than result of repropagating.
4440
4441 Consider example where we previously has
4442
4443 if (test)
4444 then [large probability for true]
4445
4446 and we later proved that test is always 0. In this case, if profile was
4447 read correctly, we must have duplicated the conditional (for example by
4448 inlining) in to a context where test is false. From profile feedback
4449 we know that most executions if the conditionals were true, so the
4450 important copy is not the one we look on.
4451
4452 Propagating from probabilities would make profile look consistent, but
4453 because probablities after code duplication may not be representative
4454 for a given run, we would only propagate the error further. */
4455 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().nonzero_p ()
4456 && !uninitialized_count_found)
4457 {
4458 if (dump_file)
4459 fprintf (stream: dump_file,
4460 format: "Profile is inconsistent but read from profile feedback;"
4461 " not rebuilding\n");
4462 return;
4463 }
4464
4465 loop_optimizer_init (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
4466 connect_infinite_loops_to_exit ();
4467 estimate_bb_frequencies ();
4468 remove_fake_exit_edges ();
4469 loop_optimizer_finalize ();
4470 if (dump_file)
4471 fprintf (stream: dump_file, format: "Rebuilt basic block counts\n");
4472
4473 return;
4474}
4475
4476namespace {
4477
4478const pass_data pass_data_rebuild_frequencies =
4479{
4480 .type: GIMPLE_PASS, /* type */
4481 .name: "rebuild_frequencies", /* name */
4482 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4483 .tv_id: TV_REBUILD_FREQUENCIES, /* tv_id */
4484 PROP_cfg, /* properties_required */
4485 .properties_provided: 0, /* properties_provided */
4486 .properties_destroyed: 0, /* properties_destroyed */
4487 .todo_flags_start: 0, /* todo_flags_start */
4488 .todo_flags_finish: 0, /* todo_flags_finish */
4489};
4490
4491class pass_rebuild_frequencies : public gimple_opt_pass
4492{
4493public:
4494 pass_rebuild_frequencies (gcc::context *ctxt)
4495 : gimple_opt_pass (pass_data_rebuild_frequencies, ctxt)
4496 {}
4497
4498 /* opt_pass methods: */
4499 opt_pass * clone () final override
4500 {
4501 return new pass_rebuild_frequencies (m_ctxt);
4502 }
4503 void set_pass_param (unsigned int n, bool param) final override
4504 {
4505 gcc_assert (n == 0);
4506 early_p = param;
4507 }
4508
4509 unsigned int execute (function *) final override
4510 {
4511 rebuild_frequencies ();
4512 return 0;
4513 }
4514
4515private:
4516 bool early_p;
4517
4518}; // class pass_rebuild_frequencies
4519
4520} // anon namespace
4521
4522gimple_opt_pass *
4523make_pass_rebuild_frequencies (gcc::context *ctxt)
4524{
4525 return new pass_rebuild_frequencies (ctxt);
4526}
4527
4528/* Perform a dry run of the branch prediction pass and report comparsion of
4529 the predicted and real profile into the dump file. */
4530
4531void
4532report_predictor_hitrates (void)
4533{
4534 unsigned nb_loops;
4535
4536 loop_optimizer_init (LOOPS_NORMAL);
4537 if (dump_file && (dump_flags & TDF_DETAILS))
4538 flow_loops_dump (dump_file, NULL, 0);
4539
4540 nb_loops = number_of_loops (cfun);
4541 if (nb_loops > 1)
4542 scev_initialize ();
4543
4544 tree_estimate_probability (dry_run: true);
4545
4546 if (nb_loops > 1)
4547 scev_finalize ();
4548
4549 loop_optimizer_finalize ();
4550}
4551
4552/* Force edge E to be cold.
4553 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4554 keep low probability to represent possible error in a guess. This is used
4555 i.e. in case we predict loop to likely iterate given number of times but
4556 we are not 100% sure.
4557
4558 This function locally updates profile without attempt to keep global
4559 consistency which cannot be reached in full generality without full profile
4560 rebuild from probabilities alone. Doing so is not necessarily a good idea
4561 because frequencies and counts may be more realistic then probabilities.
4562
4563 In some cases (such as for elimination of early exits during full loop
4564 unrolling) the caller can ensure that profile will get consistent
4565 afterwards. */
4566
4567void
4568force_edge_cold (edge e, bool impossible)
4569{
4570 profile_count count_sum = profile_count::zero ();
4571 profile_probability prob_sum = profile_probability::never ();
4572 edge_iterator ei;
4573 edge e2;
4574 bool uninitialized_exit = false;
4575
4576 /* When branch probability guesses are not known, then do nothing. */
4577 if (!impossible && !e->count ().initialized_p ())
4578 return;
4579
4580 profile_probability goal = (impossible ? profile_probability::never ()
4581 : profile_probability::very_unlikely ());
4582
4583 /* If edge is already improbably or cold, just return. */
4584 if (e->probability <= goal
4585 && (!impossible || e->count () == profile_count::zero ()))
4586 return;
4587 FOR_EACH_EDGE (e2, ei, e->src->succs)
4588 if (e2 != e)
4589 {
4590 if (e->flags & EDGE_FAKE)
4591 continue;
4592 if (e2->count ().initialized_p ())
4593 count_sum += e2->count ();
4594 if (e2->probability.initialized_p ())
4595 prob_sum += e2->probability;
4596 else
4597 uninitialized_exit = true;
4598 }
4599
4600 /* If we are not guessing profiles but have some other edges out,
4601 just assume the control flow goes elsewhere. */
4602 if (uninitialized_exit)
4603 e->probability = goal;
4604 /* If there are other edges out of e->src, redistribute probabilitity
4605 there. */
4606 else if (prob_sum > profile_probability::never ())
4607 {
4608 if (dump_file && (dump_flags & TDF_DETAILS))
4609 {
4610 fprintf (stream: dump_file, format: "Making edge %i->%i %s by redistributing "
4611 "probability to other edges. Original probability: ",
4612 e->src->index, e->dest->index,
4613 impossible ? "impossible" : "cold");
4614 e->probability.dump (f: dump_file);
4615 fprintf (stream: dump_file, format: "\n");
4616 }
4617 set_edge_probability_and_rescale_others (e, goal);
4618 if (current_ir_type () != IR_GIMPLE
4619 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4620 update_br_prob_note (e->src);
4621 }
4622 /* If all edges out of e->src are unlikely, the basic block itself
4623 is unlikely. */
4624 else
4625 {
4626 if (prob_sum == profile_probability::never ())
4627 e->probability = profile_probability::always ();
4628 else
4629 {
4630 if (impossible)
4631 e->probability = profile_probability::never ();
4632 /* If BB has some edges out that are not impossible, we cannot
4633 assume that BB itself is. */
4634 impossible = false;
4635 }
4636 if (current_ir_type () != IR_GIMPLE
4637 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4638 update_br_prob_note (e->src);
4639 if (e->src->count == profile_count::zero ())
4640 return;
4641 if (count_sum == profile_count::zero () && impossible)
4642 {
4643 bool found = false;
4644 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4645 ;
4646 else if (current_ir_type () == IR_GIMPLE)
4647 for (gimple_stmt_iterator gsi = gsi_start_bb (bb: e->src);
4648 !gsi_end_p (i: gsi); gsi_next (i: &gsi))
4649 {
4650 if (stmt_can_terminate_bb_p (gsi_stmt (i: gsi)))
4651 {
4652 found = true;
4653 break;
4654 }
4655 }
4656 /* FIXME: Implement RTL path. */
4657 else
4658 found = true;
4659 if (!found)
4660 {
4661 if (dump_file && (dump_flags & TDF_DETAILS))
4662 fprintf (stream: dump_file,
4663 format: "Making bb %i impossible and dropping count to 0.\n",
4664 e->src->index);
4665 e->src->count = profile_count::zero ();
4666 FOR_EACH_EDGE (e2, ei, e->src->preds)
4667 force_edge_cold (e: e2, impossible);
4668 return;
4669 }
4670 }
4671
4672 /* If we did not adjusting, the source basic block has no likely edeges
4673 leaving other direction. In that case force that bb cold, too.
4674 This in general is difficult task to do, but handle special case when
4675 BB has only one predecestor. This is common case when we are updating
4676 after loop transforms. */
4677 if (!(prob_sum > profile_probability::never ())
4678 && count_sum == profile_count::zero ()
4679 && single_pred_p (bb: e->src) && e->src->count.to_frequency (cfun)
4680 > (impossible ? 0 : 1))
4681 {
4682 int old_frequency = e->src->count.to_frequency (cfun);
4683 if (dump_file && (dump_flags & TDF_DETAILS))
4684 fprintf (stream: dump_file, format: "Making bb %i %s.\n", e->src->index,
4685 impossible ? "impossible" : "cold");
4686 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4687 impossible ? 0 : 1);
4688 if (impossible)
4689 e->src->count = profile_count::zero ();
4690 else
4691 e->src->count = e->count ().apply_scale (num: new_frequency,
4692 den: old_frequency);
4693 force_edge_cold (e: single_pred_edge (bb: e->src), impossible);
4694 }
4695 else if (dump_file && (dump_flags & TDF_DETAILS)
4696 && maybe_hot_bb_p (cfun, bb: e->src))
4697 fprintf (stream: dump_file, format: "Giving up on making bb %i %s.\n", e->src->index,
4698 impossible ? "impossible" : "cold");
4699 }
4700}
4701
4702#if CHECKING_P
4703
4704namespace selftest {
4705
4706/* Test that value range of predictor values defined in predict.def is
4707 within range (50, 100]. */
4708
4709struct branch_predictor
4710{
4711 const char *name;
4712 int probability;
4713};
4714
4715#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4716
4717static void
4718test_prediction_value_range ()
4719{
4720 branch_predictor predictors[] = {
4721#include "predict.def"
4722 { NULL, PROB_UNINITIALIZED }
4723 };
4724
4725 for (unsigned i = 0; predictors[i].name != NULL; i++)
4726 {
4727 if (predictors[i].probability == PROB_UNINITIALIZED)
4728 continue;
4729
4730 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4731 ASSERT_TRUE (p >= 50 && p <= 100);
4732 }
4733}
4734
4735#undef DEF_PREDICTOR
4736
4737/* Run all of the selfests within this file. */
4738
4739void
4740predict_cc_tests ()
4741{
4742 test_prediction_value_range ();
4743}
4744
4745} // namespace selftest
4746#endif /* CHECKING_P. */
4747

source code of gcc/predict.cc