1/* Loop distribution.
2 Copyright (C) 2006-2024 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it
9under the terms of the GNU General Public License as published by the
10Free Software Foundation; either version 3, or (at your option) any
11later version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT
14ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22/* This pass performs loop distribution: for example, the loop
23
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
28
29 is transformed to
30
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
34 |
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
38
39 Loop distribution is the dual of loop fusion. It separates statements
40 of a loop (or loop nest) into multiple loops (or loop nests) with the
41 same loop header. The major goal is to separate statements which may
42 be vectorized from those that can't. This pass implements distribution
43 in the following steps:
44
45 1) Seed partitions with specific type statements. For now we support
46 two types seed statements: statement defining variable used outside
47 of loop; statement storing to memory.
48 2) Build reduced dependence graph (RDG) for loop to be distributed.
49 The vertices (RDG:V) model all statements in the loop and the edges
50 (RDG:E) model flow and control dependencies between statements.
51 3) Apart from RDG, compute data dependencies between memory references.
52 4) Starting from seed statement, build up partition by adding depended
53 statements according to RDG's dependence information. Partition is
54 classified as parallel type if it can be executed paralleled; or as
55 sequential type if it can't. Parallel type partition is further
56 classified as different builtin kinds if it can be implemented as
57 builtin function calls.
58 5) Build partition dependence graph (PG) based on data dependencies.
59 The vertices (PG:V) model all partitions and the edges (PG:E) model
60 all data dependencies between every partitions pair. In general,
61 data dependence is either compilation time known or unknown. In C
62 family languages, there exists quite amount compilation time unknown
63 dependencies because of possible alias relation of data references.
64 We categorize PG's edge to two types: "true" edge that represents
65 compilation time known data dependencies; "alias" edge for all other
66 data dependencies.
67 6) Traverse subgraph of PG as if all "alias" edges don't exist. Merge
68 partitions in each strong connected component (SCC) correspondingly.
69 Build new PG for merged partitions.
70 7) Traverse PG again and this time with both "true" and "alias" edges
71 included. We try to break SCCs by removing some edges. Because
72 SCCs by "true" edges are all fused in step 6), we can break SCCs
73 by removing some "alias" edges. It's NP-hard to choose optimal
74 edge set, fortunately simple approximation is good enough for us
75 given the small problem scale.
76 8) Collect all data dependencies of the removed "alias" edges. Create
77 runtime alias checks for collected data dependencies.
78 9) Version loop under the condition of runtime alias checks. Given
79 loop distribution generally introduces additional overhead, it is
80 only useful if vectorization is achieved in distributed loop. We
81 version loop with internal function call IFN_LOOP_DIST_ALIAS. If
82 no distributed loop can be vectorized, we simply remove distributed
83 loops and recover to the original one.
84
85 TODO:
86 1) We only distribute innermost two-level loop nest now. We should
87 extend it for arbitrary loop nests in the future.
88 2) We only fuse partitions in SCC now. A better fusion algorithm is
89 desired to minimize loop overhead, maximize parallelism and maximize
90 data reuse. */
91
92#include "config.h"
93#include "system.h"
94#include "coretypes.h"
95#include "backend.h"
96#include "tree.h"
97#include "gimple.h"
98#include "cfghooks.h"
99#include "tree-pass.h"
100#include "ssa.h"
101#include "gimple-pretty-print.h"
102#include "fold-const.h"
103#include "cfganal.h"
104#include "gimple-iterator.h"
105#include "gimplify-me.h"
106#include "stor-layout.h"
107#include "tree-cfg.h"
108#include "tree-ssa-loop-manip.h"
109#include "tree-ssa-loop-ivopts.h"
110#include "tree-ssa-loop.h"
111#include "tree-into-ssa.h"
112#include "tree-ssa.h"
113#include "cfgloop.h"
114#include "tree-scalar-evolution.h"
115#include "tree-vectorizer.h"
116#include "tree-eh.h"
117#include "gimple-fold.h"
118#include "tree-affine.h"
119#include "intl.h"
120#include "rtl.h"
121#include "memmodel.h"
122#include "optabs.h"
123#include "tree-ssa-loop-niter.h"
124
125
126#define MAX_DATAREFS_NUM \
127 ((unsigned) param_loop_max_datarefs_for_datadeps)
128
129/* Threshold controlling number of distributed partitions. Given it may
130 be unnecessary if a memory stream cost model is invented in the future,
131 we define it as a temporary macro, rather than a parameter. */
132#define NUM_PARTITION_THRESHOLD (4)
133
134/* Hashtable helpers. */
135
136struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
137{
138 static inline hashval_t hash (const data_dependence_relation *);
139 static inline bool equal (const data_dependence_relation *,
140 const data_dependence_relation *);
141};
142
143/* Hash function for data dependence. */
144
145inline hashval_t
146ddr_hasher::hash (const data_dependence_relation *ddr)
147{
148 inchash::hash h;
149 h.add_ptr (DDR_A (ddr));
150 h.add_ptr (DDR_B (ddr));
151 return h.end ();
152}
153
154/* Hash table equality function for data dependence. */
155
156inline bool
157ddr_hasher::equal (const data_dependence_relation *ddr1,
158 const data_dependence_relation *ddr2)
159{
160 return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
161}
162
163
164
165#define DR_INDEX(dr) ((uintptr_t) (dr)->aux)
166
167/* A Reduced Dependence Graph (RDG) vertex representing a statement. */
168struct rdg_vertex
169{
170 /* The statement represented by this vertex. */
171 gimple *stmt;
172
173 /* Vector of data-references in this statement. */
174 vec<data_reference_p> datarefs;
175
176 /* True when the statement contains a write to memory. */
177 bool has_mem_write;
178
179 /* True when the statement contains a read from memory. */
180 bool has_mem_reads;
181};
182
183#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
184#define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
185#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
186#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
187#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
188#define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
189#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
190#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
191
192/* Data dependence type. */
193
194enum rdg_dep_type
195{
196 /* Read After Write (RAW). */
197 flow_dd = 'f',
198
199 /* Control dependence (execute conditional on). */
200 control_dd = 'c'
201};
202
203/* Dependence information attached to an edge of the RDG. */
204
205struct rdg_edge
206{
207 /* Type of the dependence. */
208 enum rdg_dep_type type;
209};
210
211#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
212
213/* Kind of distributed loop. */
214enum partition_kind {
215 PKIND_NORMAL,
216 /* Partial memset stands for a paritition can be distributed into a loop
217 of memset calls, rather than a single memset call. It's handled just
218 like a normal parition, i.e, distributed as separate loop, no memset
219 call is generated.
220
221 Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
222 loop nest as deep as possible. As a result, parloop achieves better
223 parallelization by parallelizing deeper loop nest. This hack should
224 be unnecessary and removed once distributed memset can be understood
225 and analyzed in data reference analysis. See PR82604 for more. */
226 PKIND_PARTIAL_MEMSET,
227 PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
228};
229
230/* Type of distributed loop. */
231enum partition_type {
232 /* The distributed loop can be executed parallelly. */
233 PTYPE_PARALLEL = 0,
234 /* The distributed loop has to be executed sequentially. */
235 PTYPE_SEQUENTIAL
236};
237
238/* Builtin info for loop distribution. */
239struct builtin_info
240{
241 /* data-references a kind != PKIND_NORMAL partition is about. */
242 data_reference_p dst_dr;
243 data_reference_p src_dr;
244 /* Base address and size of memory objects operated by the builtin. Note
245 both dest and source memory objects must have the same size. */
246 tree dst_base;
247 tree src_base;
248 tree size;
249 /* Base and offset part of dst_base after stripping constant offset. This
250 is only used in memset builtin distribution for now. */
251 tree dst_base_base;
252 unsigned HOST_WIDE_INT dst_base_offset;
253};
254
255/* Partition for loop distribution. */
256struct partition
257{
258 /* Statements of the partition. */
259 bitmap stmts;
260 /* True if the partition defines variable which is used outside of loop. */
261 bool reduction_p;
262 location_t loc;
263 enum partition_kind kind;
264 enum partition_type type;
265 /* Data references in the partition. */
266 bitmap datarefs;
267 /* Information of builtin parition. */
268 struct builtin_info *builtin;
269};
270
271/* Partitions are fused because of different reasons. */
272enum fuse_type
273{
274 FUSE_NON_BUILTIN = 0,
275 FUSE_REDUCTION = 1,
276 FUSE_SHARE_REF = 2,
277 FUSE_SAME_SCC = 3,
278 FUSE_FINALIZE = 4
279};
280
281/* Description on different fusing reason. */
282static const char *fuse_message[] = {
283 "they are non-builtins",
284 "they have reductions",
285 "they have shared memory refs",
286 "they are in the same dependence scc",
287 "there is no point to distribute loop"};
288
289
290/* Dump vertex I in RDG to FILE. */
291
292static void
293dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
294{
295 struct vertex *v = &(rdg->vertices[i]);
296 struct graph_edge *e;
297
298 fprintf (stream: file, format: "(vertex %d: (%s%s) (in:", i,
299 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
300 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
301
302 if (v->pred)
303 for (e = v->pred; e; e = e->pred_next)
304 fprintf (stream: file, format: " %d", e->src);
305
306 fprintf (stream: file, format: ") (out:");
307
308 if (v->succ)
309 for (e = v->succ; e; e = e->succ_next)
310 fprintf (stream: file, format: " %d", e->dest);
311
312 fprintf (stream: file, format: ")\n");
313 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
314 fprintf (stream: file, format: ")\n");
315}
316
317/* Call dump_rdg_vertex on stderr. */
318
319DEBUG_FUNCTION void
320debug_rdg_vertex (struct graph *rdg, int i)
321{
322 dump_rdg_vertex (stderr, rdg, i);
323}
324
325/* Dump the reduced dependence graph RDG to FILE. */
326
327static void
328dump_rdg (FILE *file, struct graph *rdg)
329{
330 fprintf (stream: file, format: "(rdg\n");
331 for (int i = 0; i < rdg->n_vertices; i++)
332 dump_rdg_vertex (file, rdg, i);
333 fprintf (stream: file, format: ")\n");
334}
335
336/* Call dump_rdg on stderr. */
337
338DEBUG_FUNCTION void
339debug_rdg (struct graph *rdg)
340{
341 dump_rdg (stderr, rdg);
342}
343
344static void
345dot_rdg_1 (FILE *file, struct graph *rdg)
346{
347 int i;
348 pretty_printer buffer;
349 pp_needs_newline (&buffer) = false;
350 buffer.buffer->stream = file;
351
352 fprintf (stream: file, format: "digraph RDG {\n");
353
354 for (i = 0; i < rdg->n_vertices; i++)
355 {
356 struct vertex *v = &(rdg->vertices[i]);
357 struct graph_edge *e;
358
359 fprintf (stream: file, format: "%d [label=\"[%d] ", i, i);
360 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
361 pp_flush (&buffer);
362 fprintf (stream: file, format: "\"]\n");
363
364 /* Highlight reads from memory. */
365 if (RDG_MEM_READS_STMT (rdg, i))
366 fprintf (stream: file, format: "%d [style=filled, fillcolor=green]\n", i);
367
368 /* Highlight stores to memory. */
369 if (RDG_MEM_WRITE_STMT (rdg, i))
370 fprintf (stream: file, format: "%d [style=filled, fillcolor=red]\n", i);
371
372 if (v->succ)
373 for (e = v->succ; e; e = e->succ_next)
374 switch (RDGE_TYPE (e))
375 {
376 case flow_dd:
377 /* These are the most common dependences: don't print these. */
378 fprintf (stream: file, format: "%d -> %d \n", i, e->dest);
379 break;
380
381 case control_dd:
382 fprintf (stream: file, format: "%d -> %d [label=control] \n", i, e->dest);
383 break;
384
385 default:
386 gcc_unreachable ();
387 }
388 }
389
390 fprintf (stream: file, format: "}\n\n");
391}
392
393/* Display the Reduced Dependence Graph using dotty. */
394
395DEBUG_FUNCTION void
396dot_rdg (struct graph *rdg)
397{
398 /* When debugging, you may want to enable the following code. */
399#ifdef HAVE_POPEN
400 FILE *file = popen (command: "dot -Tx11", modes: "w");
401 if (!file)
402 return;
403 dot_rdg_1 (file, rdg);
404 fflush (stream: file);
405 close (fileno (file));
406 pclose (stream: file);
407#else
408 dot_rdg_1 (stderr, rdg);
409#endif
410}
411
412/* Returns the index of STMT in RDG. */
413
414static int
415rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
416{
417 int index = gimple_uid (g: stmt);
418 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
419 return index;
420}
421
422/* Creates dependence edges in RDG for all the uses of DEF. IDEF is
423 the index of DEF in RDG. */
424
425static void
426create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
427{
428 use_operand_p imm_use_p;
429 imm_use_iterator iterator;
430
431 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
432 {
433 struct graph_edge *e;
434 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
435
436 if (use < 0)
437 continue;
438
439 e = add_edge (rdg, idef, use);
440 e->data = XNEW (struct rdg_edge);
441 RDGE_TYPE (e) = flow_dd;
442 }
443}
444
445/* Creates an edge for the control dependences of BB to the vertex V. */
446
447static void
448create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
449 int v, control_dependences *cd)
450{
451 bitmap_iterator bi;
452 unsigned edge_n;
453 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
454 0, edge_n, bi)
455 {
456 basic_block cond_bb = cd->get_edge_src (edge_n);
457 gimple *stmt = *gsi_last_bb (bb: cond_bb);
458 if (stmt && is_ctrl_stmt (stmt))
459 {
460 struct graph_edge *e;
461 int c = rdg_vertex_for_stmt (rdg, stmt);
462 if (c < 0)
463 continue;
464
465 e = add_edge (rdg, c, v);
466 e->data = XNEW (struct rdg_edge);
467 RDGE_TYPE (e) = control_dd;
468 }
469 }
470}
471
472/* Creates the edges of the reduced dependence graph RDG. */
473
474static void
475create_rdg_flow_edges (struct graph *rdg)
476{
477 int i;
478 def_operand_p def_p;
479 ssa_op_iter iter;
480
481 for (i = 0; i < rdg->n_vertices; i++)
482 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
483 iter, SSA_OP_DEF)
484 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), idef: i);
485}
486
487/* Creates the edges of the reduced dependence graph RDG. */
488
489static void
490create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
491{
492 int i;
493
494 for (i = 0; i < rdg->n_vertices; i++)
495 {
496 gimple *stmt = RDG_STMT (rdg, i);
497 if (gimple_code (g: stmt) == GIMPLE_PHI)
498 {
499 edge_iterator ei;
500 edge e;
501 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
502 if (flow_bb_inside_loop_p (loop, e->src))
503 create_edge_for_control_dependence (rdg, bb: e->src, v: i, cd);
504 }
505 else
506 create_edge_for_control_dependence (rdg, bb: gimple_bb (g: stmt), v: i, cd);
507 }
508}
509
510
511class loop_distribution
512{
513 private:
514 /* The loop (nest) to be distributed. */
515 vec<loop_p> loop_nest;
516
517 /* Vector of data references in the loop to be distributed. */
518 vec<data_reference_p> datarefs_vec;
519
520 /* If there is nonaddressable data reference in above vector. */
521 bool has_nonaddressable_dataref_p;
522
523 /* Store index of data reference in aux field. */
524
525 /* Hash table for data dependence relation in the loop to be distributed. */
526 hash_table<ddr_hasher> *ddrs_table;
527
528 /* Array mapping basic block's index to its topological order. */
529 int *bb_top_order_index;
530 /* And size of the array. */
531 int bb_top_order_index_size;
532
533 /* Build the vertices of the reduced dependence graph RDG. Return false
534 if that failed. */
535 bool create_rdg_vertices (struct graph *rdg, const vec<gimple *> &stmts,
536 loop_p loop);
537
538 /* Initialize STMTS with all the statements of LOOP. We use topological
539 order to discover all statements. The order is important because
540 generate_loops_for_partition is using the same traversal for identifying
541 statements in loop copies. */
542 void stmts_from_loop (class loop *loop, vec<gimple *> *stmts);
543
544
545 /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
546 LOOP, and one edge per flow dependence or control dependence from control
547 dependence CD. During visiting each statement, data references are also
548 collected and recorded in global data DATAREFS_VEC. */
549 struct graph * build_rdg (class loop *loop, control_dependences *cd);
550
551/* Merge PARTITION into the partition DEST. RDG is the reduced dependence
552 graph and we update type for result partition if it is non-NULL. */
553 void partition_merge_into (struct graph *rdg,
554 partition *dest, partition *partition,
555 enum fuse_type ft);
556
557
558 /* Return data dependence relation for data references A and B. The two
559 data references must be in lexicographic order wrto reduced dependence
560 graph RDG. We firstly try to find ddr from global ddr hash table. If
561 it doesn't exist, compute the ddr and cache it. */
562 data_dependence_relation * get_data_dependence (struct graph *rdg,
563 data_reference_p a,
564 data_reference_p b);
565
566
567 /* In reduced dependence graph RDG for loop distribution, return true if
568 dependence between references DR1 and DR2 leads to a dependence cycle
569 and such dependence cycle can't be resolved by runtime alias check. */
570 bool data_dep_in_cycle_p (struct graph *rdg, data_reference_p dr1,
571 data_reference_p dr2);
572
573
574 /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
575 PARTITION1's type after merging PARTITION2 into PARTITION1. */
576 void update_type_for_merge (struct graph *rdg,
577 partition *partition1, partition *partition2);
578
579
580 /* Returns a partition with all the statements needed for computing
581 the vertex V of the RDG, also including the loop exit conditions. */
582 partition *build_rdg_partition_for_vertex (struct graph *rdg, int v);
583
584 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
585 if it forms builtin memcpy or memmove call. */
586 void classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
587 data_reference_p dst_dr, data_reference_p src_dr);
588
589 /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
590 For the moment we detect memset, memcpy and memmove patterns. Bitmap
591 STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions.
592 Returns true if there is a reduction in all partitions and we
593 possibly did not mark PARTITION as having one for this reason. */
594
595 bool
596 classify_partition (loop_p loop,
597 struct graph *rdg, partition *partition,
598 bitmap stmt_in_all_partitions);
599
600
601 /* Returns true when PARTITION1 and PARTITION2 access the same memory
602 object in RDG. */
603 bool share_memory_accesses (struct graph *rdg,
604 partition *partition1, partition *partition2);
605
606 /* For each seed statement in STARTING_STMTS, this function builds
607 partition for it by adding depended statements according to RDG.
608 All partitions are recorded in PARTITIONS. */
609 void rdg_build_partitions (struct graph *rdg,
610 vec<gimple *> starting_stmts,
611 vec<partition *> *partitions);
612
613 /* Compute partition dependence created by the data references in DRS1
614 and DRS2, modify and return DIR according to that. IF ALIAS_DDR is
615 not NULL, we record dependence introduced by possible alias between
616 two data references in ALIAS_DDRS; otherwise, we simply ignore such
617 dependence as if it doesn't exist at all. */
618 int pg_add_dependence_edges (struct graph *rdg, int dir, bitmap drs1,
619 bitmap drs2, vec<ddr_p> *alias_ddrs);
620
621
622 /* Build and return partition dependence graph for PARTITIONS. RDG is
623 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
624 is true, data dependence caused by possible alias between references
625 is ignored, as if it doesn't exist at all; otherwise all depdendences
626 are considered. */
627 struct graph *build_partition_graph (struct graph *rdg,
628 vec<struct partition *> *partitions,
629 bool ignore_alias_p);
630
631 /* Given reduced dependence graph RDG merge strong connected components
632 of PARTITIONS. If IGNORE_ALIAS_P is true, data dependence caused by
633 possible alias between references is ignored, as if it doesn't exist
634 at all; otherwise all depdendences are considered. */
635 void merge_dep_scc_partitions (struct graph *rdg, vec<struct partition *>
636 *partitions, bool ignore_alias_p);
637
638/* This is the main function breaking strong conected components in
639 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
640 relations for runtime alias check in ALIAS_DDRS. */
641 void break_alias_scc_partitions (struct graph *rdg, vec<struct partition *>
642 *partitions, vec<ddr_p> *alias_ddrs);
643
644
645 /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
646 ALIAS_DDRS contains ddrs which need runtime alias check. */
647 void finalize_partitions (class loop *loop, vec<struct partition *>
648 *partitions, vec<ddr_p> *alias_ddrs);
649
650 /* Distributes the code from LOOP in such a way that producer statements
651 are placed before consumer statements. Tries to separate only the
652 statements from STMTS into separate loops. Returns the number of
653 distributed loops. Set NB_CALLS to number of generated builtin calls.
654 Set *DESTROY_P to whether LOOP needs to be destroyed. */
655 int distribute_loop (class loop *loop, const vec<gimple *> &stmts,
656 control_dependences *cd, int *nb_calls, bool *destroy_p,
657 bool only_patterns_p);
658
659 /* Transform loops which mimic the effects of builtins rawmemchr or strlen and
660 replace them accordingly. */
661 bool transform_reduction_loop (loop_p loop);
662
663 /* Compute topological order for basic blocks. Topological order is
664 needed because data dependence is computed for data references in
665 lexicographical order. */
666 void bb_top_order_init (void);
667
668 void bb_top_order_destroy (void);
669
670 public:
671
672 /* Getter for bb_top_order. */
673
674 inline int get_bb_top_order_index_size (void)
675 {
676 return bb_top_order_index_size;
677 }
678
679 inline int get_bb_top_order_index (int i)
680 {
681 return bb_top_order_index[i];
682 }
683
684 unsigned int execute (function *fun);
685};
686
687
688/* If X has a smaller topological sort number than Y, returns -1;
689 if greater, returns 1. */
690static int
691bb_top_order_cmp_r (const void *x, const void *y, void *loop)
692{
693 loop_distribution *_loop =
694 (loop_distribution *) loop;
695
696 basic_block bb1 = *(const basic_block *) x;
697 basic_block bb2 = *(const basic_block *) y;
698
699 int bb_top_order_index_size = _loop->get_bb_top_order_index_size ();
700
701 gcc_assert (bb1->index < bb_top_order_index_size
702 && bb2->index < bb_top_order_index_size);
703 gcc_assert (bb1 == bb2
704 || _loop->get_bb_top_order_index(bb1->index)
705 != _loop->get_bb_top_order_index(bb2->index));
706
707 return (_loop->get_bb_top_order_index(i: bb1->index) -
708 _loop->get_bb_top_order_index(i: bb2->index));
709}
710
711bool
712loop_distribution::create_rdg_vertices (struct graph *rdg,
713 const vec<gimple *> &stmts,
714 loop_p loop)
715{
716 int i;
717 gimple *stmt;
718
719 FOR_EACH_VEC_ELT (stmts, i, stmt)
720 {
721 struct vertex *v = &(rdg->vertices[i]);
722
723 /* Record statement to vertex mapping. */
724 gimple_set_uid (g: stmt, uid: i);
725
726 v->data = XNEW (struct rdg_vertex);
727 RDGV_STMT (v) = stmt;
728 RDGV_DATAREFS (v).create (nelems: 0);
729 RDGV_HAS_MEM_WRITE (v) = false;
730 RDGV_HAS_MEM_READS (v) = false;
731 if (gimple_code (g: stmt) == GIMPLE_PHI)
732 continue;
733
734 unsigned drp = datarefs_vec.length ();
735 if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
736 return false;
737 for (unsigned j = drp; j < datarefs_vec.length (); ++j)
738 {
739 data_reference_p dr = datarefs_vec[j];
740 if (DR_IS_READ (dr))
741 RDGV_HAS_MEM_READS (v) = true;
742 else
743 RDGV_HAS_MEM_WRITE (v) = true;
744 RDGV_DATAREFS (v).safe_push (obj: dr);
745 has_nonaddressable_dataref_p |= may_be_nonaddressable_p (expr: dr->ref);
746 }
747 }
748 return true;
749}
750
751void
752loop_distribution::stmts_from_loop (class loop *loop, vec<gimple *> *stmts)
753{
754 unsigned int i;
755 basic_block *bbs = get_loop_body_in_custom_order (loop, this, bb_top_order_cmp_r);
756
757 for (i = 0; i < loop->num_nodes; i++)
758 {
759 basic_block bb = bbs[i];
760
761 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (i: bsi);
762 gsi_next (i: &bsi))
763 if (!virtual_operand_p (op: gimple_phi_result (gs: bsi.phi ())))
764 stmts->safe_push (obj: bsi.phi ());
765
766 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi);
767 gsi_next (i: &bsi))
768 {
769 gimple *stmt = gsi_stmt (i: bsi);
770 if (gimple_code (g: stmt) != GIMPLE_LABEL && !is_gimple_debug (gs: stmt))
771 stmts->safe_push (obj: stmt);
772 }
773 }
774
775 free (ptr: bbs);
776}
777
778/* Free the reduced dependence graph RDG. */
779
780static void
781free_rdg (struct graph *rdg)
782{
783 int i;
784
785 for (i = 0; i < rdg->n_vertices; i++)
786 {
787 struct vertex *v = &(rdg->vertices[i]);
788 struct graph_edge *e;
789
790 for (e = v->succ; e; e = e->succ_next)
791 free (ptr: e->data);
792
793 if (v->data)
794 {
795 gimple_set_uid (RDGV_STMT (v), uid: -1);
796 (RDGV_DATAREFS (v)).release ();
797 free (ptr: v->data);
798 }
799 }
800
801 free_graph (g: rdg);
802}
803
804struct graph *
805loop_distribution::build_rdg (class loop *loop, control_dependences *cd)
806{
807 struct graph *rdg;
808
809 /* Create the RDG vertices from the stmts of the loop nest. */
810 auto_vec<gimple *, 10> stmts;
811 stmts_from_loop (loop, stmts: &stmts);
812 rdg = new_graph (stmts.length ());
813 if (!create_rdg_vertices (rdg, stmts, loop))
814 {
815 free_rdg (rdg);
816 return NULL;
817 }
818 stmts.release ();
819
820 create_rdg_flow_edges (rdg);
821 if (cd)
822 create_rdg_cd_edges (rdg, cd, loop);
823
824 return rdg;
825}
826
827
828/* Allocate and initialize a partition from BITMAP. */
829
830static partition *
831partition_alloc (void)
832{
833 partition *partition = XCNEW (struct partition);
834 partition->stmts = BITMAP_ALLOC (NULL);
835 partition->reduction_p = false;
836 partition->loc = UNKNOWN_LOCATION;
837 partition->kind = PKIND_NORMAL;
838 partition->type = PTYPE_PARALLEL;
839 partition->datarefs = BITMAP_ALLOC (NULL);
840 return partition;
841}
842
843/* Free PARTITION. */
844
845static void
846partition_free (partition *partition)
847{
848 BITMAP_FREE (partition->stmts);
849 BITMAP_FREE (partition->datarefs);
850 if (partition->builtin)
851 free (ptr: partition->builtin);
852
853 free (ptr: partition);
854}
855
856/* Returns true if the partition can be generated as a builtin. */
857
858static bool
859partition_builtin_p (partition *partition)
860{
861 return partition->kind > PKIND_PARTIAL_MEMSET;
862}
863
864/* Returns true if the partition contains a reduction. */
865
866static bool
867partition_reduction_p (partition *partition)
868{
869 return partition->reduction_p;
870}
871
872void
873loop_distribution::partition_merge_into (struct graph *rdg,
874 partition *dest, partition *partition, enum fuse_type ft)
875{
876 if (dump_file && (dump_flags & TDF_DETAILS))
877 {
878 fprintf (stream: dump_file, format: "Fuse partitions because %s:\n", fuse_message[ft]);
879 fprintf (stream: dump_file, format: " Part 1: ");
880 dump_bitmap (file: dump_file, map: dest->stmts);
881 fprintf (stream: dump_file, format: " Part 2: ");
882 dump_bitmap (file: dump_file, map: partition->stmts);
883 }
884
885 dest->kind = PKIND_NORMAL;
886 if (dest->type == PTYPE_PARALLEL)
887 dest->type = partition->type;
888
889 bitmap_ior_into (dest->stmts, partition->stmts);
890 if (partition_reduction_p (partition))
891 dest->reduction_p = true;
892
893 /* Further check if any data dependence prevents us from executing the
894 new partition parallelly. */
895 if (dest->type == PTYPE_PARALLEL && rdg != NULL)
896 update_type_for_merge (rdg, partition1: dest, partition2: partition);
897
898 bitmap_ior_into (dest->datarefs, partition->datarefs);
899}
900
901
902/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
903 the LOOP. */
904
905static bool
906ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
907{
908 imm_use_iterator imm_iter;
909 use_operand_p use_p;
910
911 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
912 {
913 if (is_gimple_debug (USE_STMT (use_p)))
914 continue;
915
916 basic_block use_bb = gimple_bb (USE_STMT (use_p));
917 if (!flow_bb_inside_loop_p (loop, use_bb))
918 return true;
919 }
920
921 return false;
922}
923
924/* Returns true when STMT defines a scalar variable used after the
925 loop LOOP. */
926
927static bool
928stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
929{
930 def_operand_p def_p;
931 ssa_op_iter op_iter;
932
933 if (gimple_code (g: stmt) == GIMPLE_PHI)
934 return ssa_name_has_uses_outside_loop_p (def: gimple_phi_result (gs: stmt), loop);
935
936 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
937 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
938 return true;
939
940 return false;
941}
942
943/* Return a copy of LOOP placed before LOOP. */
944
945static class loop *
946copy_loop_before (class loop *loop, bool redirect_lc_phi_defs)
947{
948 class loop *res;
949 edge preheader = loop_preheader_edge (loop);
950
951 initialize_original_copy_tables ();
952 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, single_exit (loop), NULL,
953 NULL, preheader, NULL, false);
954 gcc_assert (res != NULL);
955
956 /* When a not last partition is supposed to keep the LC PHIs computed
957 adjust their definitions. */
958 if (redirect_lc_phi_defs)
959 {
960 edge exit = single_exit (loop);
961 for (gphi_iterator si = gsi_start_phis (exit->dest); !gsi_end_p (i: si);
962 gsi_next (i: &si))
963 {
964 gphi *phi = si.phi ();
965 if (virtual_operand_p (op: gimple_phi_result (gs: phi)))
966 continue;
967 use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, exit);
968 tree new_def = get_current_def (USE_FROM_PTR (use_p));
969 SET_USE (use_p, new_def);
970 }
971 }
972
973 free_original_copy_tables ();
974 delete_update_ssa ();
975
976 return res;
977}
978
979/* Creates an empty basic block after LOOP. */
980
981static void
982create_bb_after_loop (class loop *loop)
983{
984 edge exit = single_exit (loop);
985
986 if (!exit)
987 return;
988
989 split_edge (exit);
990}
991
992/* Generate code for PARTITION from the code in LOOP. The loop is
993 copied when COPY_P is true. All the statements not flagged in the
994 PARTITION bitmap are removed from the loop or from its copy. The
995 statements are indexed in sequence inside a basic block, and the
996 basic blocks of a loop are taken in dom order. */
997
998static void
999generate_loops_for_partition (class loop *loop, partition *partition,
1000 bool copy_p, bool keep_lc_phis_p)
1001{
1002 unsigned i;
1003 basic_block *bbs;
1004
1005 if (copy_p)
1006 {
1007 int orig_loop_num = loop->orig_loop_num;
1008 loop = copy_loop_before (loop, redirect_lc_phi_defs: keep_lc_phis_p);
1009 gcc_assert (loop != NULL);
1010 loop->orig_loop_num = orig_loop_num;
1011 create_preheader (loop, CP_SIMPLE_PREHEADERS);
1012 create_bb_after_loop (loop);
1013 }
1014 else
1015 {
1016 /* Origin number is set to the new versioned loop's num. */
1017 gcc_assert (loop->orig_loop_num != loop->num);
1018 }
1019
1020 /* Remove stmts not in the PARTITION bitmap. */
1021 bbs = get_loop_body_in_dom_order (loop);
1022
1023 if (MAY_HAVE_DEBUG_BIND_STMTS)
1024 for (i = 0; i < loop->num_nodes; i++)
1025 {
1026 basic_block bb = bbs[i];
1027
1028 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (i: bsi);
1029 gsi_next (i: &bsi))
1030 {
1031 gphi *phi = bsi.phi ();
1032 if (!virtual_operand_p (op: gimple_phi_result (gs: phi))
1033 && !bitmap_bit_p (partition->stmts, gimple_uid (g: phi)))
1034 reset_debug_uses (phi);
1035 }
1036
1037 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi); gsi_next (i: &bsi))
1038 {
1039 gimple *stmt = gsi_stmt (i: bsi);
1040 if (gimple_code (g: stmt) != GIMPLE_LABEL
1041 && !is_gimple_debug (gs: stmt)
1042 && !bitmap_bit_p (partition->stmts, gimple_uid (g: stmt)))
1043 reset_debug_uses (stmt);
1044 }
1045 }
1046
1047 for (i = 0; i < loop->num_nodes; i++)
1048 {
1049 basic_block bb = bbs[i];
1050 edge inner_exit = NULL;
1051
1052 if (loop != bb->loop_father)
1053 inner_exit = single_exit (bb->loop_father);
1054
1055 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (i: bsi);)
1056 {
1057 gphi *phi = bsi.phi ();
1058 if (!virtual_operand_p (op: gimple_phi_result (gs: phi))
1059 && !bitmap_bit_p (partition->stmts, gimple_uid (g: phi)))
1060 remove_phi_node (&bsi, true);
1061 else
1062 gsi_next (i: &bsi);
1063 }
1064
1065 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi);)
1066 {
1067 gimple *stmt = gsi_stmt (i: bsi);
1068 if (gimple_code (g: stmt) != GIMPLE_LABEL
1069 && !is_gimple_debug (gs: stmt)
1070 && !bitmap_bit_p (partition->stmts, gimple_uid (g: stmt)))
1071 {
1072 /* In distribution of loop nest, if bb is inner loop's exit_bb,
1073 we choose its exit edge/path in order to avoid generating
1074 infinite loop. For all other cases, we choose an arbitrary
1075 path through the empty CFG part that this unnecessary
1076 control stmt controls. */
1077 if (gcond *cond_stmt = dyn_cast <gcond *> (p: stmt))
1078 {
1079 if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
1080 gimple_cond_make_true (gs: cond_stmt);
1081 else
1082 gimple_cond_make_false (gs: cond_stmt);
1083 update_stmt (s: stmt);
1084 }
1085 else if (gimple_code (g: stmt) == GIMPLE_SWITCH)
1086 {
1087 gswitch *switch_stmt = as_a <gswitch *> (p: stmt);
1088 gimple_switch_set_index
1089 (gs: switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
1090 update_stmt (s: stmt);
1091 }
1092 else
1093 {
1094 unlink_stmt_vdef (stmt);
1095 gsi_remove (&bsi, true);
1096 release_defs (stmt);
1097 continue;
1098 }
1099 }
1100 gsi_next (i: &bsi);
1101 }
1102 }
1103
1104 free (ptr: bbs);
1105}
1106
1107/* If VAL memory representation contains the same value in all bytes,
1108 return that value, otherwise return -1.
1109 E.g. for 0x24242424 return 0x24, for IEEE double
1110 747708026454360457216.0 return 0x44, etc. */
1111
1112static int
1113const_with_all_bytes_same (tree val)
1114{
1115 unsigned char buf[64];
1116 int i, len;
1117
1118 if (integer_zerop (val)
1119 || (TREE_CODE (val) == CONSTRUCTOR
1120 && !TREE_CLOBBER_P (val)
1121 && CONSTRUCTOR_NELTS (val) == 0))
1122 return 0;
1123
1124 if (real_zerop (val))
1125 {
1126 /* Only return 0 for +0.0, not for -0.0, which doesn't have
1127 an all bytes same memory representation. Don't transform
1128 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
1129 switch (TREE_CODE (val))
1130 {
1131 case REAL_CST:
1132 if (!real_isneg (TREE_REAL_CST_PTR (val)))
1133 return 0;
1134 break;
1135 case COMPLEX_CST:
1136 if (!const_with_all_bytes_same (TREE_REALPART (val))
1137 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
1138 return 0;
1139 break;
1140 case VECTOR_CST:
1141 {
1142 unsigned int count = vector_cst_encoded_nelts (t: val);
1143 unsigned int j;
1144 for (j = 0; j < count; ++j)
1145 if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
1146 break;
1147 if (j == count)
1148 return 0;
1149 break;
1150 }
1151 default:
1152 break;
1153 }
1154 }
1155
1156 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
1157 return -1;
1158
1159 len = native_encode_expr (val, buf, sizeof (buf));
1160 if (len == 0)
1161 return -1;
1162 for (i = 1; i < len; i++)
1163 if (buf[i] != buf[0])
1164 return -1;
1165 return buf[0];
1166}
1167
1168/* Generate a call to memset for PARTITION in LOOP. */
1169
1170static void
1171generate_memset_builtin (class loop *loop, partition *partition)
1172{
1173 gimple_stmt_iterator gsi;
1174 tree mem, fn, nb_bytes;
1175 tree val;
1176 struct builtin_info *builtin = partition->builtin;
1177 gimple *fn_call;
1178
1179 /* The new statements will be placed before LOOP. */
1180 gsi = gsi_last_bb (bb: loop_preheader_edge (loop)->src);
1181
1182 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1183 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1184 false, GSI_CONTINUE_LINKING);
1185 mem = rewrite_to_non_trapping_overflow (builtin->dst_base);
1186 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1187 false, GSI_CONTINUE_LINKING);
1188
1189 /* This exactly matches the pattern recognition in classify_partition. */
1190 val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
1191 /* Handle constants like 0x15151515 and similarly
1192 floating point constants etc. where all bytes are the same. */
1193 int bytev = const_with_all_bytes_same (val);
1194 if (bytev != -1)
1195 val = build_int_cst (integer_type_node, bytev);
1196 else if (TREE_CODE (val) == INTEGER_CST)
1197 val = fold_convert (integer_type_node, val);
1198 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
1199 {
1200 tree tem = make_ssa_name (integer_type_node);
1201 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
1202 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1203 val = tem;
1204 }
1205
1206 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
1207 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
1208 gimple_set_location (g: fn_call, location: partition->loc);
1209 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1210 fold_stmt (&gsi);
1211
1212 if (dump_file && (dump_flags & TDF_DETAILS))
1213 {
1214 fprintf (stream: dump_file, format: "generated memset");
1215 if (bytev == 0)
1216 fprintf (stream: dump_file, format: " zero\n");
1217 else
1218 fprintf (stream: dump_file, format: "\n");
1219 }
1220}
1221
1222/* Generate a call to memcpy for PARTITION in LOOP. */
1223
1224static void
1225generate_memcpy_builtin (class loop *loop, partition *partition)
1226{
1227 gimple_stmt_iterator gsi;
1228 gimple *fn_call;
1229 tree dest, src, fn, nb_bytes;
1230 enum built_in_function kind;
1231 struct builtin_info *builtin = partition->builtin;
1232
1233 /* The new statements will be placed before LOOP. */
1234 gsi = gsi_last_bb (bb: loop_preheader_edge (loop)->src);
1235
1236 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1237 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1238 false, GSI_CONTINUE_LINKING);
1239 dest = rewrite_to_non_trapping_overflow (builtin->dst_base);
1240 src = rewrite_to_non_trapping_overflow (builtin->src_base);
1241 if (partition->kind == PKIND_MEMCPY
1242 || ! ptr_derefs_may_alias_p (dest, src))
1243 kind = BUILT_IN_MEMCPY;
1244 else
1245 kind = BUILT_IN_MEMMOVE;
1246 /* Try harder if we're copying a constant size. */
1247 if (kind == BUILT_IN_MEMMOVE && poly_int_tree_p (t: nb_bytes))
1248 {
1249 aff_tree asrc, adest;
1250 tree_to_aff_combination (src, ptr_type_node, &asrc);
1251 tree_to_aff_combination (dest, ptr_type_node, &adest);
1252 aff_combination_scale (&adest, -1);
1253 aff_combination_add (&asrc, &adest);
1254 if (aff_comb_cannot_overlap_p (&asrc, wi::to_poly_widest (t: nb_bytes),
1255 wi::to_poly_widest (t: nb_bytes)))
1256 kind = BUILT_IN_MEMCPY;
1257 }
1258
1259 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1260 false, GSI_CONTINUE_LINKING);
1261 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1262 false, GSI_CONTINUE_LINKING);
1263 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1264 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1265 gimple_set_location (g: fn_call, location: partition->loc);
1266 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1267 fold_stmt (&gsi);
1268
1269 if (dump_file && (dump_flags & TDF_DETAILS))
1270 {
1271 if (kind == BUILT_IN_MEMCPY)
1272 fprintf (stream: dump_file, format: "generated memcpy\n");
1273 else
1274 fprintf (stream: dump_file, format: "generated memmove\n");
1275 }
1276}
1277
1278/* Remove and destroy the loop LOOP. */
1279
1280static void
1281destroy_loop (class loop *loop)
1282{
1283 unsigned nbbs = loop->num_nodes;
1284 edge exit = single_exit (loop);
1285 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
1286 basic_block *bbs;
1287 unsigned i;
1288
1289 bbs = get_loop_body_in_dom_order (loop);
1290
1291 gimple_stmt_iterator dst_gsi = gsi_after_labels (bb: exit->dest);
1292 bool safe_p = single_pred_p (bb: exit->dest);
1293 for (unsigned i = 0; i < nbbs; ++i)
1294 {
1295 /* We have made sure to not leave any dangling uses of SSA
1296 names defined in the loop. With the exception of virtuals.
1297 Make sure we replace all uses of virtual defs that will remain
1298 outside of the loop with the bare symbol as delete_basic_block
1299 will release them. */
1300 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (i: gsi);
1301 gsi_next (i: &gsi))
1302 {
1303 gphi *phi = gsi.phi ();
1304 if (virtual_operand_p (op: gimple_phi_result (gs: phi)))
1305 mark_virtual_phi_result_for_renaming (phi);
1306 }
1307 for (gimple_stmt_iterator gsi = gsi_start_bb (bb: bbs[i]); !gsi_end_p (i: gsi);)
1308 {
1309 gimple *stmt = gsi_stmt (i: gsi);
1310 tree vdef = gimple_vdef (g: stmt);
1311 if (vdef && TREE_CODE (vdef) == SSA_NAME)
1312 mark_virtual_operand_for_renaming (vdef);
1313 /* Also move and eventually reset debug stmts. We can leave
1314 constant values in place in case the stmt dominates the exit.
1315 ??? Non-constant values from the last iteration can be
1316 replaced with final values if we can compute them. */
1317 if (gimple_debug_bind_p (s: stmt))
1318 {
1319 tree val = gimple_debug_bind_get_value (dbg: stmt);
1320 gsi_move_before (&gsi, &dst_gsi);
1321 if (val
1322 && (!safe_p
1323 || !is_gimple_min_invariant (val)
1324 || !dominated_by_p (CDI_DOMINATORS, exit->src, bbs[i])))
1325 {
1326 gimple_debug_bind_reset_value (dbg: stmt);
1327 update_stmt (s: stmt);
1328 }
1329 }
1330 else
1331 gsi_next (i: &gsi);
1332 }
1333 }
1334
1335 redirect_edge_pred (exit, src);
1336 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1337 exit->flags |= EDGE_FALLTHRU;
1338 cancel_loop_tree (loop);
1339 rescan_loop_exit (exit, false, true);
1340
1341 i = nbbs;
1342 do
1343 {
1344 --i;
1345 delete_basic_block (bbs[i]);
1346 }
1347 while (i != 0);
1348
1349 free (ptr: bbs);
1350
1351 set_immediate_dominator (CDI_DOMINATORS, dest,
1352 recompute_dominator (CDI_DOMINATORS, dest));
1353}
1354
1355/* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
1356
1357static bool
1358generate_code_for_partition (class loop *loop,
1359 partition *partition, bool copy_p,
1360 bool keep_lc_phis_p)
1361{
1362 switch (partition->kind)
1363 {
1364 case PKIND_NORMAL:
1365 case PKIND_PARTIAL_MEMSET:
1366 /* Reductions all have to be in the last partition. */
1367 gcc_assert (!partition_reduction_p (partition)
1368 || !copy_p);
1369 generate_loops_for_partition (loop, partition, copy_p,
1370 keep_lc_phis_p);
1371 return false;
1372
1373 case PKIND_MEMSET:
1374 generate_memset_builtin (loop, partition);
1375 break;
1376
1377 case PKIND_MEMCPY:
1378 case PKIND_MEMMOVE:
1379 generate_memcpy_builtin (loop, partition);
1380 break;
1381
1382 default:
1383 gcc_unreachable ();
1384 }
1385
1386 /* Common tail for partitions we turn into a call. If this was the last
1387 partition for which we generate code, we have to destroy the loop. */
1388 if (!copy_p)
1389 return true;
1390 return false;
1391}
1392
1393data_dependence_relation *
1394loop_distribution::get_data_dependence (struct graph *rdg, data_reference_p a,
1395 data_reference_p b)
1396{
1397 struct data_dependence_relation ent, **slot;
1398 struct data_dependence_relation *ddr;
1399
1400 gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1401 gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1402 <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1403 ent.a = a;
1404 ent.b = b;
1405 slot = ddrs_table->find_slot (value: &ent, insert: INSERT);
1406 if (*slot == NULL)
1407 {
1408 ddr = initialize_data_dependence_relation (a, b, loop_nest);
1409 compute_affine_dependence (ddr, loop_nest[0]);
1410 *slot = ddr;
1411 }
1412
1413 return *slot;
1414}
1415
1416bool
1417loop_distribution::data_dep_in_cycle_p (struct graph *rdg,
1418 data_reference_p dr1,
1419 data_reference_p dr2)
1420{
1421 struct data_dependence_relation *ddr;
1422
1423 /* Re-shuffle data-refs to be in topological order. */
1424 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1425 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1426 std::swap (a&: dr1, b&: dr2);
1427
1428 ddr = get_data_dependence (rdg, a: dr1, b: dr2);
1429
1430 /* In case of no data dependence. */
1431 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1432 return false;
1433 /* For unknown data dependence or known data dependence which can't be
1434 expressed in classic distance vector, we check if it can be resolved
1435 by runtime alias check. If yes, we still consider data dependence
1436 as won't introduce data dependence cycle. */
1437 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1438 || DDR_NUM_DIST_VECTS (ddr) == 0)
1439 return !runtime_alias_check_p (ddr, NULL, true);
1440 else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1441 return true;
1442 else if (DDR_REVERSED_P (ddr)
1443 || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr)))
1444 return false;
1445
1446 return true;
1447}
1448
1449void
1450loop_distribution::update_type_for_merge (struct graph *rdg,
1451 partition *partition1,
1452 partition *partition2)
1453{
1454 unsigned i, j;
1455 bitmap_iterator bi, bj;
1456 data_reference_p dr1, dr2;
1457
1458 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1459 {
1460 unsigned start = (partition1 == partition2) ? i + 1 : 0;
1461
1462 dr1 = datarefs_vec[i];
1463 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1464 {
1465 dr2 = datarefs_vec[j];
1466 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1467 continue;
1468
1469 /* Partition can only be executed sequentially if there is any
1470 data dependence cycle. */
1471 if (data_dep_in_cycle_p (rdg, dr1, dr2))
1472 {
1473 partition1->type = PTYPE_SEQUENTIAL;
1474 return;
1475 }
1476 }
1477 }
1478}
1479
1480partition *
1481loop_distribution::build_rdg_partition_for_vertex (struct graph *rdg, int v)
1482{
1483 partition *partition = partition_alloc ();
1484 auto_vec<int, 3> nodes;
1485 unsigned i, j;
1486 int x;
1487 data_reference_p dr;
1488
1489 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1490
1491 FOR_EACH_VEC_ELT (nodes, i, x)
1492 {
1493 bitmap_set_bit (partition->stmts, x);
1494
1495 for (j = 0; RDG_DATAREFS (rdg, x).iterate (ix: j, ptr: &dr); ++j)
1496 {
1497 unsigned idx = (unsigned) DR_INDEX (dr);
1498 gcc_assert (idx < datarefs_vec.length ());
1499
1500 /* Partition can only be executed sequentially if there is any
1501 unknown data reference. */
1502 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1503 || !DR_INIT (dr) || !DR_STEP (dr))
1504 partition->type = PTYPE_SEQUENTIAL;
1505
1506 bitmap_set_bit (partition->datarefs, idx);
1507 }
1508 }
1509
1510 if (partition->type == PTYPE_SEQUENTIAL)
1511 return partition;
1512
1513 /* Further check if any data dependence prevents us from executing the
1514 partition parallelly. */
1515 update_type_for_merge (rdg, partition1: partition, partition2: partition);
1516
1517 return partition;
1518}
1519
1520/* Given PARTITION of LOOP and RDG, record single load/store data references
1521 for builtin partition in SRC_DR/DST_DR, return false if there is no such
1522 data references. */
1523
1524static bool
1525find_single_drs (class loop *loop, struct graph *rdg, const bitmap &partition_stmts,
1526 data_reference_p *dst_dr, data_reference_p *src_dr)
1527{
1528 unsigned i;
1529 data_reference_p single_ld = NULL, single_st = NULL;
1530 bitmap_iterator bi;
1531
1532 EXECUTE_IF_SET_IN_BITMAP (partition_stmts, 0, i, bi)
1533 {
1534 gimple *stmt = RDG_STMT (rdg, i);
1535 data_reference_p dr;
1536
1537 if (gimple_code (g: stmt) == GIMPLE_PHI)
1538 continue;
1539
1540 /* Any scalar stmts are ok. */
1541 if (!gimple_vuse (g: stmt))
1542 continue;
1543
1544 /* Otherwise just regular loads/stores. */
1545 if (!gimple_assign_single_p (gs: stmt))
1546 return false;
1547
1548 /* But exactly one store and/or load. */
1549 for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (ix: j, ptr: &dr); ++j)
1550 {
1551 tree type = TREE_TYPE (DR_REF (dr));
1552
1553 /* The memset, memcpy and memmove library calls are only
1554 able to deal with generic address space. */
1555 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
1556 return false;
1557
1558 if (DR_IS_READ (dr))
1559 {
1560 if (single_ld != NULL)
1561 return false;
1562 single_ld = dr;
1563 }
1564 else
1565 {
1566 if (single_st != NULL)
1567 return false;
1568 single_st = dr;
1569 }
1570 }
1571 }
1572
1573 if (!single_ld && !single_st)
1574 return false;
1575
1576 basic_block bb_ld = NULL;
1577 basic_block bb_st = NULL;
1578 edge exit = single_exit (loop);
1579
1580 if (single_ld)
1581 {
1582 /* Bail out if this is a bitfield memory reference. */
1583 if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1584 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1585 return false;
1586
1587 /* Data reference must be executed exactly once per iteration of each
1588 loop in the loop nest. We only need to check dominance information
1589 against the outermost one in a perfect loop nest because a bb can't
1590 dominate outermost loop's latch without dominating inner loop's. */
1591 bb_ld = gimple_bb (DR_STMT (single_ld));
1592 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
1593 return false;
1594
1595 /* The data reference must also be executed before possibly exiting
1596 the loop as otherwise we'd for example unconditionally execute
1597 memset (ptr, 0, n) which even with n == 0 implies ptr is non-NULL. */
1598 if (bb_ld != loop->header
1599 && (!exit
1600 || !dominated_by_p (CDI_DOMINATORS, exit->src, bb_ld)))
1601 return false;
1602 }
1603
1604 if (single_st)
1605 {
1606 /* Bail out if this is a bitfield memory reference. */
1607 if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1608 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1609 return false;
1610
1611 /* Data reference must be executed exactly once per iteration.
1612 Same as single_ld, we only need to check against the outermost
1613 loop. */
1614 bb_st = gimple_bb (DR_STMT (single_st));
1615 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
1616 return false;
1617
1618 /* And before exiting the loop. */
1619 if (bb_st != loop->header
1620 && (!exit
1621 || !dominated_by_p (CDI_DOMINATORS, exit->src, bb_st)))
1622 return false;
1623 }
1624
1625 if (single_ld && single_st)
1626 {
1627 /* Load and store must be in the same loop nest. */
1628 if (bb_st->loop_father != bb_ld->loop_father)
1629 return false;
1630
1631 edge e = single_exit (bb_st->loop_father);
1632 bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1633 bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1634 if (dom_ld != dom_st)
1635 return false;
1636 }
1637
1638 *src_dr = single_ld;
1639 *dst_dr = single_st;
1640 return true;
1641}
1642
1643/* Given data reference DR in LOOP_NEST, this function checks the enclosing
1644 loops from inner to outer to see if loop's step equals to access size at
1645 each level of loop. Return 2 if we can prove this at all level loops;
1646 record access base and size in BASE and SIZE; save loop's step at each
1647 level of loop in STEPS if it is not null. For example:
1648
1649 int arr[100][100][100];
1650 for (i = 0; i < 100; i++) ;steps[2] = 40000
1651 for (j = 100; j > 0; j--) ;steps[1] = -400
1652 for (k = 0; k < 100; k++) ;steps[0] = 4
1653 arr[i][j - 1][k] = 0; ;base = &arr, size = 4000000
1654
1655 Return 1 if we can prove the equality at the innermost loop, but not all
1656 level loops. In this case, no information is recorded.
1657
1658 Return 0 if no equality can be proven at any level loops. */
1659
1660static int
1661compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1662 tree *size, vec<tree> *steps = NULL)
1663{
1664 location_t loc = gimple_location (DR_STMT (dr));
1665 basic_block bb = gimple_bb (DR_STMT (dr));
1666 class loop *loop = bb->loop_father;
1667 tree ref = DR_REF (dr);
1668 tree access_base = build_fold_addr_expr (ref);
1669 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1670 int res = 0;
1671
1672 do {
1673 tree scev_fn = analyze_scalar_evolution (loop, access_base);
1674 if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
1675 return res;
1676
1677 access_base = CHREC_LEFT (scev_fn);
1678 if (tree_contains_chrecs (access_base, NULL))
1679 return res;
1680
1681 tree scev_step = CHREC_RIGHT (scev_fn);
1682 /* Only support constant steps. */
1683 if (TREE_CODE (scev_step) != INTEGER_CST)
1684 return res;
1685
1686 enum ev_direction access_dir = scev_direction (scev_fn);
1687 if (access_dir == EV_DIR_UNKNOWN)
1688 return res;
1689
1690 if (steps != NULL)
1691 steps->safe_push (obj: scev_step);
1692
1693 scev_step = fold_convert_loc (loc, sizetype, scev_step);
1694 /* Compute absolute value of scev step. */
1695 if (access_dir == EV_DIR_DECREASES)
1696 scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1697
1698 /* At each level of loop, scev step must equal to access size. In other
1699 words, DR must access consecutive memory between loop iterations. */
1700 if (!operand_equal_p (scev_step, access_size, flags: 0))
1701 return res;
1702
1703 /* Access stride can be computed for data reference at least for the
1704 innermost loop. */
1705 res = 1;
1706
1707 /* Compute DR's execution times in loop. */
1708 tree niters = number_of_latch_executions (loop);
1709 niters = fold_convert_loc (loc, sizetype, niters);
1710 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1711 niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1712
1713 /* Compute DR's overall access size in loop. */
1714 access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1715 niters, scev_step);
1716 /* Adjust base address in case of negative step. */
1717 if (access_dir == EV_DIR_DECREASES)
1718 {
1719 tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1720 scev_step, access_size);
1721 access_base = fold_build_pointer_plus_loc (loc, ptr: access_base, off: adj);
1722 }
1723 } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1724
1725 *base = access_base;
1726 *size = access_size;
1727 /* Access stride can be computed for data reference at each level loop. */
1728 return 2;
1729}
1730
1731/* Allocate and return builtin struct. Record information like DST_DR,
1732 SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct. */
1733
1734static struct builtin_info *
1735alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1736 tree dst_base, tree src_base, tree size)
1737{
1738 struct builtin_info *builtin = XNEW (struct builtin_info);
1739 builtin->dst_dr = dst_dr;
1740 builtin->src_dr = src_dr;
1741 builtin->dst_base = dst_base;
1742 builtin->src_base = src_base;
1743 builtin->size = size;
1744 return builtin;
1745}
1746
1747/* Given data reference DR in loop nest LOOP, classify if it forms builtin
1748 memset call. */
1749
1750static void
1751classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1752{
1753 gimple *stmt = DR_STMT (dr);
1754 tree base, size, rhs = gimple_assign_rhs1 (gs: stmt);
1755
1756 if (const_with_all_bytes_same (val: rhs) == -1
1757 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1758 || (TYPE_MODE (TREE_TYPE (rhs))
1759 != TYPE_MODE (unsigned_char_type_node))))
1760 return;
1761
1762 if (TREE_CODE (rhs) == SSA_NAME
1763 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1764 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1765 return;
1766
1767 int res = compute_access_range (loop_nest: loop, dr, base: &base, size: &size);
1768 if (res == 0)
1769 return;
1770 if (res == 1)
1771 {
1772 partition->kind = PKIND_PARTIAL_MEMSET;
1773 return;
1774 }
1775
1776 tree base_offset;
1777 tree base_base;
1778 split_constant_offset (base, &base_base, &base_offset);
1779 if (!cst_and_fits_in_hwi (base_offset))
1780 return;
1781 unsigned HOST_WIDE_INT const_base_offset = int_cst_value (base_offset);
1782
1783 struct builtin_info *builtin;
1784 builtin = alloc_builtin (dst_dr: dr, NULL, dst_base: base, NULL_TREE, size);
1785 builtin->dst_base_base = base_base;
1786 builtin->dst_base_offset = const_base_offset;
1787 partition->builtin = builtin;
1788 partition->kind = PKIND_MEMSET;
1789}
1790
1791/* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1792 if it forms builtin memcpy or memmove call. */
1793
1794void
1795loop_distribution::classify_builtin_ldst (loop_p loop, struct graph *rdg,
1796 partition *partition,
1797 data_reference_p dst_dr,
1798 data_reference_p src_dr)
1799{
1800 tree base, size, src_base, src_size;
1801 auto_vec<tree> dst_steps, src_steps;
1802
1803 /* Compute access range of both load and store. */
1804 int res = compute_access_range (loop_nest: loop, dr: dst_dr, base: &base, size: &size, steps: &dst_steps);
1805 if (res != 2)
1806 return;
1807 res = compute_access_range (loop_nest: loop, dr: src_dr, base: &src_base, size: &src_size, steps: &src_steps);
1808 if (res != 2)
1809 return;
1810
1811 /* They must have the same access size. */
1812 if (!operand_equal_p (size, src_size, flags: 0))
1813 return;
1814
1815 /* They must have the same storage order. */
1816 if (reverse_storage_order_for_component_p (DR_REF (dst_dr))
1817 != reverse_storage_order_for_component_p (DR_REF (src_dr)))
1818 return;
1819
1820 /* Load and store in loop nest must access memory in the same way, i.e,
1821 their must have the same steps in each loop of the nest. */
1822 if (dst_steps.length () != src_steps.length ())
1823 return;
1824 for (unsigned i = 0; i < dst_steps.length (); ++i)
1825 if (!operand_equal_p (dst_steps[i], src_steps[i], flags: 0))
1826 return;
1827
1828 /* Now check that if there is a dependence. */
1829 ddr_p ddr = get_data_dependence (rdg, a: src_dr, b: dst_dr);
1830
1831 /* Classify as memmove if no dependence between load and store. */
1832 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1833 {
1834 partition->builtin = alloc_builtin (dst_dr, src_dr, dst_base: base, src_base, size);
1835 partition->kind = PKIND_MEMMOVE;
1836 return;
1837 }
1838
1839 /* Can't do memmove in case of unknown dependence or dependence without
1840 classical distance vector. */
1841 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1842 || DDR_NUM_DIST_VECTS (ddr) == 0)
1843 return;
1844
1845 unsigned i;
1846 lambda_vector dist_v;
1847 int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1848 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1849 {
1850 unsigned dep_lev = dependence_level (dist_vect: dist_v, length: num_lev);
1851 /* Can't do memmove if load depends on store. */
1852 if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
1853 return;
1854 }
1855
1856 partition->builtin = alloc_builtin (dst_dr, src_dr, dst_base: base, src_base, size);
1857 partition->kind = PKIND_MEMMOVE;
1858 return;
1859}
1860
1861bool
1862loop_distribution::classify_partition (loop_p loop,
1863 struct graph *rdg, partition *partition,
1864 bitmap stmt_in_all_partitions)
1865{
1866 bitmap_iterator bi;
1867 unsigned i;
1868 data_reference_p single_ld = NULL, single_st = NULL;
1869 bool volatiles_p = false, has_reduction = false;
1870
1871 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1872 {
1873 gimple *stmt = RDG_STMT (rdg, i);
1874
1875 if (gimple_has_volatile_ops (stmt))
1876 volatiles_p = true;
1877
1878 /* If the stmt is not included by all partitions and there is uses
1879 outside of the loop, then mark the partition as reduction. */
1880 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1881 {
1882 /* Due to limitation in the transform phase we have to fuse all
1883 reduction partitions. As a result, this could cancel valid
1884 loop distribution especially for loop that induction variable
1885 is used outside of loop. To workaround this issue, we skip
1886 marking partition as reudction if the reduction stmt belongs
1887 to all partitions. In such case, reduction will be computed
1888 correctly no matter how partitions are fused/distributed. */
1889 if (!bitmap_bit_p (stmt_in_all_partitions, i))
1890 partition->reduction_p = true;
1891 else
1892 has_reduction = true;
1893 }
1894 }
1895
1896 /* Simple workaround to prevent classifying the partition as builtin
1897 if it contains any use outside of loop. For the case where all
1898 partitions have the reduction this simple workaround is delayed
1899 to only affect the last partition. */
1900 if (partition->reduction_p)
1901 return has_reduction;
1902
1903 /* Perform general partition disqualification for builtins. */
1904 if (volatiles_p
1905 || !flag_tree_loop_distribute_patterns)
1906 return has_reduction;
1907
1908 /* Find single load/store data references for builtin partition. */
1909 if (!find_single_drs (loop, rdg, partition_stmts: partition->stmts, dst_dr: &single_st, src_dr: &single_ld)
1910 || !single_st)
1911 return has_reduction;
1912
1913 if (single_ld && single_st)
1914 {
1915 gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1916 /* Direct aggregate copy or via an SSA name temporary. */
1917 if (load != store
1918 && gimple_assign_lhs (gs: load) != gimple_assign_rhs1 (gs: store))
1919 return has_reduction;
1920 }
1921
1922 partition->loc = gimple_location (DR_STMT (single_st));
1923
1924 /* Classify the builtin kind. */
1925 if (single_ld == NULL)
1926 classify_builtin_st (loop, partition, dr: single_st);
1927 else
1928 classify_builtin_ldst (loop, rdg, partition, dst_dr: single_st, src_dr: single_ld);
1929 return has_reduction;
1930}
1931
1932bool
1933loop_distribution::share_memory_accesses (struct graph *rdg,
1934 partition *partition1, partition *partition2)
1935{
1936 unsigned i, j;
1937 bitmap_iterator bi, bj;
1938 data_reference_p dr1, dr2;
1939
1940 /* First check whether in the intersection of the two partitions are
1941 any loads or stores. Common loads are the situation that happens
1942 most often. */
1943 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1944 if (RDG_MEM_WRITE_STMT (rdg, i)
1945 || RDG_MEM_READS_STMT (rdg, i))
1946 return true;
1947
1948 /* Then check whether the two partitions access the same memory object. */
1949 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1950 {
1951 dr1 = datarefs_vec[i];
1952
1953 if (!DR_BASE_ADDRESS (dr1)
1954 || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1955 continue;
1956
1957 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1958 {
1959 dr2 = datarefs_vec[j];
1960
1961 if (!DR_BASE_ADDRESS (dr2)
1962 || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1963 continue;
1964
1965 if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), flags: 0)
1966 && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), flags: 0)
1967 && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), flags: 0)
1968 && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), flags: 0))
1969 return true;
1970 }
1971 }
1972
1973 return false;
1974}
1975
1976/* For each seed statement in STARTING_STMTS, this function builds
1977 partition for it by adding depended statements according to RDG.
1978 All partitions are recorded in PARTITIONS. */
1979
1980void
1981loop_distribution::rdg_build_partitions (struct graph *rdg,
1982 vec<gimple *> starting_stmts,
1983 vec<partition *> *partitions)
1984{
1985 auto_bitmap processed;
1986 int i;
1987 gimple *stmt;
1988
1989 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1990 {
1991 int v = rdg_vertex_for_stmt (rdg, stmt);
1992
1993 if (dump_file && (dump_flags & TDF_DETAILS))
1994 fprintf (stream: dump_file,
1995 format: "ldist asked to generate code for vertex %d\n", v);
1996
1997 /* If the vertex is already contained in another partition so
1998 is the partition rooted at it. */
1999 if (bitmap_bit_p (processed, v))
2000 continue;
2001
2002 partition *partition = build_rdg_partition_for_vertex (rdg, v);
2003 bitmap_ior_into (processed, partition->stmts);
2004
2005 if (dump_file && (dump_flags & TDF_DETAILS))
2006 {
2007 fprintf (stream: dump_file, format: "ldist creates useful %s partition:\n",
2008 partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
2009 bitmap_print (dump_file, partition->stmts, " ", "\n");
2010 }
2011
2012 partitions->safe_push (obj: partition);
2013 }
2014
2015 /* All vertices should have been assigned to at least one partition now,
2016 other than vertices belonging to dead code. */
2017}
2018
2019/* Dump to FILE the PARTITIONS. */
2020
2021static void
2022dump_rdg_partitions (FILE *file, const vec<partition *> &partitions)
2023{
2024 int i;
2025 partition *partition;
2026
2027 FOR_EACH_VEC_ELT (partitions, i, partition)
2028 debug_bitmap_file (file, partition->stmts);
2029}
2030
2031/* Debug PARTITIONS. */
2032extern void debug_rdg_partitions (const vec<partition *> &);
2033
2034DEBUG_FUNCTION void
2035debug_rdg_partitions (const vec<partition *> &partitions)
2036{
2037 dump_rdg_partitions (stderr, partitions);
2038}
2039
2040/* Returns the number of read and write operations in the RDG. */
2041
2042static int
2043number_of_rw_in_rdg (struct graph *rdg)
2044{
2045 int i, res = 0;
2046
2047 for (i = 0; i < rdg->n_vertices; i++)
2048 {
2049 if (RDG_MEM_WRITE_STMT (rdg, i))
2050 ++res;
2051
2052 if (RDG_MEM_READS_STMT (rdg, i))
2053 ++res;
2054 }
2055
2056 return res;
2057}
2058
2059/* Returns the number of read and write operations in a PARTITION of
2060 the RDG. */
2061
2062static int
2063number_of_rw_in_partition (struct graph *rdg, partition *partition)
2064{
2065 int res = 0;
2066 unsigned i;
2067 bitmap_iterator ii;
2068
2069 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
2070 {
2071 if (RDG_MEM_WRITE_STMT (rdg, i))
2072 ++res;
2073
2074 if (RDG_MEM_READS_STMT (rdg, i))
2075 ++res;
2076 }
2077
2078 return res;
2079}
2080
2081/* Returns true when one of the PARTITIONS contains all the read or
2082 write operations of RDG. */
2083
2084static bool
2085partition_contains_all_rw (struct graph *rdg,
2086 const vec<partition *> &partitions)
2087{
2088 int i;
2089 partition *partition;
2090 int nrw = number_of_rw_in_rdg (rdg);
2091
2092 FOR_EACH_VEC_ELT (partitions, i, partition)
2093 if (nrw == number_of_rw_in_partition (rdg, partition))
2094 return true;
2095
2096 return false;
2097}
2098
2099int
2100loop_distribution::pg_add_dependence_edges (struct graph *rdg, int dir,
2101 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
2102{
2103 unsigned i, j;
2104 bitmap_iterator bi, bj;
2105 data_reference_p dr1, dr2, saved_dr1;
2106
2107 /* dependence direction - 0 is no dependence, -1 is back,
2108 1 is forth, 2 is both (we can stop then, merging will occur). */
2109 EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
2110 {
2111 dr1 = datarefs_vec[i];
2112
2113 EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
2114 {
2115 int res, this_dir = 1;
2116 ddr_p ddr;
2117
2118 dr2 = datarefs_vec[j];
2119
2120 /* Skip all <read, read> data dependence. */
2121 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
2122 continue;
2123
2124 saved_dr1 = dr1;
2125 /* Re-shuffle data-refs to be in topological order. */
2126 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
2127 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
2128 {
2129 std::swap (a&: dr1, b&: dr2);
2130 this_dir = -this_dir;
2131 }
2132 ddr = get_data_dependence (rdg, a: dr1, b: dr2);
2133 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2134 {
2135 this_dir = 0;
2136 res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
2137 DR_BASE_ADDRESS (dr2));
2138 /* Be conservative. If data references are not well analyzed,
2139 or the two data references have the same base address and
2140 offset, add dependence and consider it alias to each other.
2141 In other words, the dependence cannot be resolved by
2142 runtime alias check. */
2143 if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
2144 || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
2145 || !DR_INIT (dr1) || !DR_INIT (dr2)
2146 || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
2147 || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
2148 || res == 0)
2149 this_dir = 2;
2150 /* Data dependence could be resolved by runtime alias check,
2151 record it in ALIAS_DDRS. */
2152 else if (alias_ddrs != NULL)
2153 alias_ddrs->safe_push (obj: ddr);
2154 /* Or simply ignore it. */
2155 }
2156 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
2157 {
2158 /* Known dependences can still be unordered througout the
2159 iteration space, see gcc.dg/tree-ssa/ldist-16.c and
2160 gcc.dg/tree-ssa/pr94969.c. */
2161 if (DDR_NUM_DIST_VECTS (ddr) != 1)
2162 this_dir = 2;
2163 /* If the overlap is exact preserve stmt order. */
2164 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
2165 DDR_NB_LOOPS (ddr)))
2166 ;
2167 /* Else as the distance vector is lexicographic positive swap
2168 the dependence direction. */
2169 else
2170 {
2171 if (DDR_REVERSED_P (ddr))
2172 this_dir = -this_dir;
2173 this_dir = -this_dir;
2174
2175 /* When then dependence distance of the innermost common
2176 loop of the DRs is zero we have a conflict. */
2177 auto l1 = gimple_bb (DR_STMT (dr1))->loop_father;
2178 auto l2 = gimple_bb (DR_STMT (dr2))->loop_father;
2179 int idx = index_in_loop_nest (var: find_common_loop (l1, l2)->num,
2180 DDR_LOOP_NEST (ddr));
2181 if (DDR_DIST_VECT (ddr, 0)[idx] == 0)
2182 this_dir = 2;
2183 }
2184 }
2185 else
2186 this_dir = 0;
2187 if (this_dir == 2)
2188 return 2;
2189 else if (dir == 0)
2190 dir = this_dir;
2191 else if (this_dir != 0 && dir != this_dir)
2192 return 2;
2193 /* Shuffle "back" dr1. */
2194 dr1 = saved_dr1;
2195 }
2196 }
2197 return dir;
2198}
2199
2200/* Compare postorder number of the partition graph vertices V1 and V2. */
2201
2202static int
2203pgcmp (const void *v1_, const void *v2_)
2204{
2205 const vertex *v1 = (const vertex *)v1_;
2206 const vertex *v2 = (const vertex *)v2_;
2207 return v2->post - v1->post;
2208}
2209
2210/* Data attached to vertices of partition dependence graph. */
2211struct pg_vdata
2212{
2213 /* ID of the corresponding partition. */
2214 int id;
2215 /* The partition. */
2216 struct partition *partition;
2217};
2218
2219/* Data attached to edges of partition dependence graph. */
2220struct pg_edata
2221{
2222 /* If the dependence edge can be resolved by runtime alias check,
2223 this vector contains data dependence relations for runtime alias
2224 check. On the other hand, if the dependence edge is introduced
2225 because of compilation time known data dependence, this vector
2226 contains nothing. */
2227 vec<ddr_p> alias_ddrs;
2228};
2229
2230/* Callback data for traversing edges in graph. */
2231struct pg_edge_callback_data
2232{
2233 /* Bitmap contains strong connected components should be merged. */
2234 bitmap sccs_to_merge;
2235 /* Array constains component information for all vertices. */
2236 int *vertices_component;
2237 /* Vector to record all data dependence relations which are needed
2238 to break strong connected components by runtime alias checks. */
2239 vec<ddr_p> *alias_ddrs;
2240};
2241
2242/* Initialize vertice's data for partition dependence graph PG with
2243 PARTITIONS. */
2244
2245static void
2246init_partition_graph_vertices (struct graph *pg,
2247 vec<struct partition *> *partitions)
2248{
2249 int i;
2250 partition *partition;
2251 struct pg_vdata *data;
2252
2253 for (i = 0; partitions->iterate (ix: i, ptr: &partition); ++i)
2254 {
2255 data = new pg_vdata;
2256 pg->vertices[i].data = data;
2257 data->id = i;
2258 data->partition = partition;
2259 }
2260}
2261
2262/* Add edge <I, J> to partition dependence graph PG. Attach vector of data
2263 dependence relations to the EDGE if DDRS isn't NULL. */
2264
2265static void
2266add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2267{
2268 struct graph_edge *e = add_edge (pg, i, j);
2269
2270 /* If the edge is attached with data dependence relations, it means this
2271 dependence edge can be resolved by runtime alias checks. */
2272 if (ddrs != NULL)
2273 {
2274 struct pg_edata *data = new pg_edata;
2275
2276 gcc_assert (ddrs->length () > 0);
2277 e->data = data;
2278 data->alias_ddrs = vNULL;
2279 data->alias_ddrs.safe_splice (src: *ddrs);
2280 }
2281}
2282
2283/* Callback function for graph travesal algorithm. It returns true
2284 if edge E should skipped when traversing the graph. */
2285
2286static bool
2287pg_skip_alias_edge (struct graph_edge *e)
2288{
2289 struct pg_edata *data = (struct pg_edata *)e->data;
2290 return (data != NULL && data->alias_ddrs.length () > 0);
2291}
2292
2293/* Callback function freeing data attached to edge E of graph. */
2294
2295static void
2296free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2297{
2298 if (e->data != NULL)
2299 {
2300 struct pg_edata *data = (struct pg_edata *)e->data;
2301 data->alias_ddrs.release ();
2302 delete data;
2303 }
2304}
2305
2306/* Free data attached to vertice of partition dependence graph PG. */
2307
2308static void
2309free_partition_graph_vdata (struct graph *pg)
2310{
2311 int i;
2312 struct pg_vdata *data;
2313
2314 for (i = 0; i < pg->n_vertices; ++i)
2315 {
2316 data = (struct pg_vdata *)pg->vertices[i].data;
2317 delete data;
2318 }
2319}
2320
2321/* Build and return partition dependence graph for PARTITIONS. RDG is
2322 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
2323 is true, data dependence caused by possible alias between references
2324 is ignored, as if it doesn't exist at all; otherwise all depdendences
2325 are considered. */
2326
2327struct graph *
2328loop_distribution::build_partition_graph (struct graph *rdg,
2329 vec<struct partition *> *partitions,
2330 bool ignore_alias_p)
2331{
2332 int i, j;
2333 struct partition *partition1, *partition2;
2334 graph *pg = new_graph (partitions->length ());
2335 auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2336
2337 alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2338
2339 init_partition_graph_vertices (pg, partitions);
2340
2341 for (i = 0; partitions->iterate (ix: i, ptr: &partition1); ++i)
2342 {
2343 for (j = i + 1; partitions->iterate (ix: j, ptr: &partition2); ++j)
2344 {
2345 /* dependence direction - 0 is no dependence, -1 is back,
2346 1 is forth, 2 is both (we can stop then, merging will occur). */
2347 int dir = 0;
2348
2349 /* If the first partition has reduction, add back edge; if the
2350 second partition has reduction, add forth edge. This makes
2351 sure that reduction partition will be sorted as the last one. */
2352 if (partition_reduction_p (partition: partition1))
2353 dir = -1;
2354 else if (partition_reduction_p (partition: partition2))
2355 dir = 1;
2356
2357 /* Cleanup the temporary vector. */
2358 alias_ddrs.truncate (size: 0);
2359
2360 dir = pg_add_dependence_edges (rdg, dir, drs1: partition1->datarefs,
2361 drs2: partition2->datarefs, alias_ddrs: alias_ddrs_p);
2362
2363 /* Add edge to partition graph if there exists dependence. There
2364 are two types of edges. One type edge is caused by compilation
2365 time known dependence, this type cannot be resolved by runtime
2366 alias check. The other type can be resolved by runtime alias
2367 check. */
2368 if (dir == 1 || dir == 2
2369 || alias_ddrs.length () > 0)
2370 {
2371 /* Attach data dependence relations to edge that can be resolved
2372 by runtime alias check. */
2373 bool alias_edge_p = (dir != 1 && dir != 2);
2374 add_partition_graph_edge (pg, i, j,
2375 ddrs: (alias_edge_p) ? &alias_ddrs : NULL);
2376 }
2377 if (dir == -1 || dir == 2
2378 || alias_ddrs.length () > 0)
2379 {
2380 /* Attach data dependence relations to edge that can be resolved
2381 by runtime alias check. */
2382 bool alias_edge_p = (dir != -1 && dir != 2);
2383 add_partition_graph_edge (pg, i: j, j: i,
2384 ddrs: (alias_edge_p) ? &alias_ddrs : NULL);
2385 }
2386 }
2387 }
2388 return pg;
2389}
2390
2391/* Sort partitions in PG in descending post order and store them in
2392 PARTITIONS. */
2393
2394static void
2395sort_partitions_by_post_order (struct graph *pg,
2396 vec<struct partition *> *partitions)
2397{
2398 int i;
2399 struct pg_vdata *data;
2400
2401 /* Now order the remaining nodes in descending postorder. */
2402 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2403 partitions->truncate (size: 0);
2404 for (i = 0; i < pg->n_vertices; ++i)
2405 {
2406 data = (struct pg_vdata *)pg->vertices[i].data;
2407 if (data->partition)
2408 partitions->safe_push (obj: data->partition);
2409 }
2410}
2411
2412void
2413loop_distribution::merge_dep_scc_partitions (struct graph *rdg,
2414 vec<struct partition *> *partitions,
2415 bool ignore_alias_p)
2416{
2417 struct partition *partition1, *partition2;
2418 struct pg_vdata *data;
2419 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
2420 int i, j, num_sccs = graphds_scc (pg, NULL);
2421
2422 /* Strong connected compoenent means dependence cycle, we cannot distribute
2423 them. So fuse them together. */
2424 if ((unsigned) num_sccs < partitions->length ())
2425 {
2426 for (i = 0; i < num_sccs; ++i)
2427 {
2428 for (j = 0; partitions->iterate (ix: j, ptr: &partition1); ++j)
2429 if (pg->vertices[j].component == i)
2430 break;
2431 for (j = j + 1; partitions->iterate (ix: j, ptr: &partition2); ++j)
2432 if (pg->vertices[j].component == i)
2433 {
2434 partition_merge_into (NULL, dest: partition1,
2435 partition: partition2, ft: FUSE_SAME_SCC);
2436 partition1->type = PTYPE_SEQUENTIAL;
2437 (*partitions)[j] = NULL;
2438 partition_free (partition: partition2);
2439 data = (struct pg_vdata *)pg->vertices[j].data;
2440 data->partition = NULL;
2441 }
2442 }
2443 }
2444
2445 sort_partitions_by_post_order (pg, partitions);
2446 gcc_assert (partitions->length () == (unsigned)num_sccs);
2447 free_partition_graph_vdata (pg);
2448 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2449 free_graph (g: pg);
2450}
2451
2452/* Callback function for traversing edge E in graph G. DATA is private
2453 callback data. */
2454
2455static void
2456pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2457{
2458 int i, j, component;
2459 struct pg_edge_callback_data *cbdata;
2460 struct pg_edata *edata = (struct pg_edata *) e->data;
2461
2462 /* If the edge doesn't have attached data dependence, it represents
2463 compilation time known dependences. This type dependence cannot
2464 be resolved by runtime alias check. */
2465 if (edata == NULL || edata->alias_ddrs.length () == 0)
2466 return;
2467
2468 cbdata = (struct pg_edge_callback_data *) data;
2469 i = e->src;
2470 j = e->dest;
2471 component = cbdata->vertices_component[i];
2472 /* Vertices are topologically sorted according to compilation time
2473 known dependences, so we can break strong connected components
2474 by removing edges of the opposite direction, i.e, edges pointing
2475 from vertice with smaller post number to vertice with bigger post
2476 number. */
2477 if (g->vertices[i].post < g->vertices[j].post
2478 /* We only need to remove edges connecting vertices in the same
2479 strong connected component to break it. */
2480 && component == cbdata->vertices_component[j]
2481 /* Check if we want to break the strong connected component or not. */
2482 && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2483 cbdata->alias_ddrs->safe_splice (src: edata->alias_ddrs);
2484}
2485
2486/* Callback function for traversing edge E. DATA is private
2487 callback data. */
2488
2489static void
2490pg_unmark_merged_alias_ddrs (struct graph *, struct graph_edge *e, void *data)
2491{
2492 int i, j, component;
2493 struct pg_edge_callback_data *cbdata;
2494 struct pg_edata *edata = (struct pg_edata *) e->data;
2495
2496 if (edata == NULL || edata->alias_ddrs.length () == 0)
2497 return;
2498
2499 cbdata = (struct pg_edge_callback_data *) data;
2500 i = e->src;
2501 j = e->dest;
2502 component = cbdata->vertices_component[i];
2503 /* Make sure to not skip vertices inside SCCs we are going to merge. */
2504 if (component == cbdata->vertices_component[j]
2505 && bitmap_bit_p (cbdata->sccs_to_merge, component))
2506 {
2507 edata->alias_ddrs.release ();
2508 delete edata;
2509 e->data = NULL;
2510 }
2511}
2512
2513/* This is the main function breaking strong conected components in
2514 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
2515 relations for runtime alias check in ALIAS_DDRS. */
2516void
2517loop_distribution::break_alias_scc_partitions (struct graph *rdg,
2518 vec<struct partition *> *partitions,
2519 vec<ddr_p> *alias_ddrs)
2520{
2521 int i, j, k, num_sccs, num_sccs_no_alias = 0;
2522 /* Build partition dependence graph. */
2523 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p: false);
2524
2525 alias_ddrs->truncate (size: 0);
2526 /* Find strong connected components in the graph, with all dependence edges
2527 considered. */
2528 num_sccs = graphds_scc (pg, NULL);
2529 /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2530 compilation time known dependences are merged before this function. */
2531 if ((unsigned) num_sccs < partitions->length ())
2532 {
2533 struct pg_edge_callback_data cbdata;
2534 auto_bitmap sccs_to_merge;
2535 auto_vec<enum partition_type> scc_types;
2536 struct partition *partition, *first;
2537
2538 /* If all partitions in a SCC have the same type, we can simply merge the
2539 SCC. This loop finds out such SCCS and record them in bitmap. */
2540 bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2541 for (i = 0; i < num_sccs; ++i)
2542 {
2543 for (j = 0; partitions->iterate (ix: j, ptr: &first); ++j)
2544 if (pg->vertices[j].component == i)
2545 break;
2546
2547 bool same_type = true, all_builtins = partition_builtin_p (partition: first);
2548 for (++j; partitions->iterate (ix: j, ptr: &partition); ++j)
2549 {
2550 if (pg->vertices[j].component != i)
2551 continue;
2552
2553 if (first->type != partition->type)
2554 {
2555 same_type = false;
2556 break;
2557 }
2558 all_builtins &= partition_builtin_p (partition);
2559 }
2560 /* Merge SCC if all partitions in SCC have the same type, though the
2561 result partition is sequential, because vectorizer can do better
2562 runtime alias check. One expecption is all partitions in SCC are
2563 builtins. */
2564 if (!same_type || all_builtins)
2565 bitmap_clear_bit (sccs_to_merge, i);
2566 }
2567
2568 /* Initialize callback data for traversing. */
2569 cbdata.sccs_to_merge = sccs_to_merge;
2570 cbdata.alias_ddrs = alias_ddrs;
2571 cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2572 /* Record the component information which will be corrupted by next
2573 graph scc finding call. */
2574 for (i = 0; i < pg->n_vertices; ++i)
2575 cbdata.vertices_component[i] = pg->vertices[i].component;
2576
2577 /* Collect data dependences for runtime alias checks to break SCCs. */
2578 if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2579 {
2580 /* For SCCs we want to merge clear all alias_ddrs for edges
2581 inside the component. */
2582 for_each_edge (pg, pg_unmark_merged_alias_ddrs, &cbdata);
2583
2584 /* Run SCC finding algorithm again, with alias dependence edges
2585 skipped. This is to topologically sort partitions according to
2586 compilation time known dependence. Note the topological order
2587 is stored in the form of pg's post order number. */
2588 num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2589 /* We cannot assert partitions->length () == num_sccs_no_alias
2590 since we are not ignoring alias edges in cycles we are
2591 going to merge. That's required to compute correct postorder. */
2592 /* With topological order, we can construct two subgraphs L and R.
2593 L contains edge <x, y> where x < y in terms of post order, while
2594 R contains edge <x, y> where x > y. Edges for compilation time
2595 known dependence all fall in R, so we break SCCs by removing all
2596 (alias) edges of in subgraph L. */
2597 for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2598 }
2599
2600 /* For SCC that doesn't need to be broken, merge it. */
2601 for (i = 0; i < num_sccs; ++i)
2602 {
2603 if (!bitmap_bit_p (sccs_to_merge, i))
2604 continue;
2605
2606 for (j = 0; partitions->iterate (ix: j, ptr: &first); ++j)
2607 if (cbdata.vertices_component[j] == i)
2608 break;
2609 for (k = j + 1; partitions->iterate (ix: k, ptr: &partition); ++k)
2610 {
2611 struct pg_vdata *data;
2612
2613 if (cbdata.vertices_component[k] != i)
2614 continue;
2615
2616 partition_merge_into (NULL, dest: first, partition, ft: FUSE_SAME_SCC);
2617 (*partitions)[k] = NULL;
2618 partition_free (partition);
2619 data = (struct pg_vdata *)pg->vertices[k].data;
2620 gcc_assert (data->id == k);
2621 data->partition = NULL;
2622 /* The result partition of merged SCC must be sequential. */
2623 first->type = PTYPE_SEQUENTIAL;
2624 }
2625 }
2626 /* If reduction partition's SCC is broken by runtime alias checks,
2627 we force a negative post order to it making sure it will be scheduled
2628 in the last. */
2629 if (num_sccs_no_alias > 0)
2630 {
2631 j = -1;
2632 for (i = 0; i < pg->n_vertices; ++i)
2633 {
2634 struct pg_vdata *data = (struct pg_vdata *)pg->vertices[i].data;
2635 if (data->partition && partition_reduction_p (partition: data->partition))
2636 {
2637 gcc_assert (j == -1);
2638 j = i;
2639 }
2640 }
2641 if (j >= 0)
2642 pg->vertices[j].post = -1;
2643 }
2644
2645 free (ptr: cbdata.vertices_component);
2646 }
2647
2648 sort_partitions_by_post_order (pg, partitions);
2649 free_partition_graph_vdata (pg);
2650 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2651 free_graph (g: pg);
2652
2653 if (dump_file && (dump_flags & TDF_DETAILS))
2654 {
2655 fprintf (stream: dump_file, format: "Possible alias data dependence to break:\n");
2656 dump_data_dependence_relations (dump_file, *alias_ddrs);
2657 }
2658}
2659
2660/* Compute and return an expression whose value is the segment length which
2661 will be accessed by DR in NITERS iterations. */
2662
2663static tree
2664data_ref_segment_size (struct data_reference *dr, tree niters)
2665{
2666 niters = size_binop (MINUS_EXPR,
2667 fold_convert (sizetype, niters),
2668 size_one_node);
2669 return size_binop (MULT_EXPR,
2670 fold_convert (sizetype, DR_STEP (dr)),
2671 fold_convert (sizetype, niters));
2672}
2673
2674/* Return true if LOOP's latch is dominated by statement for data reference
2675 DR. */
2676
2677static inline bool
2678latch_dominated_by_data_ref (class loop *loop, data_reference *dr)
2679{
2680 return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2681 gimple_bb (DR_STMT (dr)));
2682}
2683
2684/* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2685 data dependence relations ALIAS_DDRS. */
2686
2687static void
2688compute_alias_check_pairs (class loop *loop, vec<ddr_p> *alias_ddrs,
2689 vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2690{
2691 unsigned int i;
2692 unsigned HOST_WIDE_INT factor = 1;
2693 tree niters_plus_one, niters = number_of_latch_executions (loop);
2694
2695 gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2696 niters = fold_convert (sizetype, niters);
2697 niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2698
2699 if (dump_file && (dump_flags & TDF_DETAILS))
2700 fprintf (stream: dump_file, format: "Creating alias check pairs:\n");
2701
2702 /* Iterate all data dependence relations and compute alias check pairs. */
2703 for (i = 0; i < alias_ddrs->length (); i++)
2704 {
2705 ddr_p ddr = (*alias_ddrs)[i];
2706 struct data_reference *dr_a = DDR_A (ddr);
2707 struct data_reference *dr_b = DDR_B (ddr);
2708 tree seg_length_a, seg_length_b;
2709
2710 if (latch_dominated_by_data_ref (loop, dr: dr_a))
2711 seg_length_a = data_ref_segment_size (dr: dr_a, niters: niters_plus_one);
2712 else
2713 seg_length_a = data_ref_segment_size (dr: dr_a, niters);
2714
2715 if (latch_dominated_by_data_ref (loop, dr: dr_b))
2716 seg_length_b = data_ref_segment_size (dr: dr_b, niters: niters_plus_one);
2717 else
2718 seg_length_b = data_ref_segment_size (dr: dr_b, niters);
2719
2720 unsigned HOST_WIDE_INT access_size_a
2721 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2722 unsigned HOST_WIDE_INT access_size_b
2723 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2724 unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2725 unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2726
2727 dr_with_seg_len_pair_t dr_with_seg_len_pair
2728 (dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2729 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b),
2730 /* ??? Would WELL_ORDERED be safe? */
2731 dr_with_seg_len_pair_t::REORDERED);
2732
2733 comp_alias_pairs->safe_push (obj: dr_with_seg_len_pair);
2734 }
2735
2736 if (tree_fits_uhwi_p (niters))
2737 factor = tree_to_uhwi (niters);
2738
2739 /* Prune alias check pairs. */
2740 prune_runtime_alias_test_list (comp_alias_pairs, factor);
2741 if (dump_file && (dump_flags & TDF_DETAILS))
2742 fprintf (stream: dump_file,
2743 format: "Improved number of alias checks from %d to %d\n",
2744 alias_ddrs->length (), comp_alias_pairs->length ());
2745}
2746
2747/* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2748 checks and version LOOP under condition of these runtime alias checks. */
2749
2750static void
2751version_loop_by_alias_check (vec<struct partition *> *partitions,
2752 class loop *loop, vec<ddr_p> *alias_ddrs)
2753{
2754 profile_probability prob;
2755 basic_block cond_bb;
2756 class loop *nloop;
2757 tree lhs, arg0, cond_expr = NULL_TREE;
2758 gimple_seq cond_stmts = NULL;
2759 gimple *call_stmt = NULL;
2760 auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2761
2762 /* Generate code for runtime alias checks if necessary. */
2763 gcc_assert (alias_ddrs->length () > 0);
2764
2765 if (dump_file && (dump_flags & TDF_DETAILS))
2766 fprintf (stream: dump_file,
2767 format: "Version loop <%d> with runtime alias check\n", loop->num);
2768
2769 compute_alias_check_pairs (loop, alias_ddrs, comp_alias_pairs: &comp_alias_pairs);
2770 create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2771 cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
2772 is_gimple_val, NULL_TREE);
2773
2774 /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS. */
2775 bool cancelable_p = flag_tree_loop_vectorize;
2776 if (cancelable_p)
2777 {
2778 unsigned i = 0;
2779 struct partition *partition;
2780 for (; partitions->iterate (ix: i, ptr: &partition); ++i)
2781 if (!partition_builtin_p (partition))
2782 break;
2783
2784 /* If all partitions are builtins, distributing it would be profitable and
2785 we don't want to cancel the runtime alias checks. */
2786 if (i == partitions->length ())
2787 cancelable_p = false;
2788 }
2789
2790 /* Generate internal function call for loop distribution alias check if the
2791 runtime alias check should be cancelable. */
2792 if (cancelable_p)
2793 {
2794 call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2795 2, NULL_TREE, cond_expr);
2796 lhs = make_ssa_name (boolean_type_node);
2797 gimple_call_set_lhs (gs: call_stmt, lhs);
2798 }
2799 else
2800 lhs = cond_expr;
2801
2802 prob = profile_probability::guessed_always ().apply_scale (num: 9, den: 10);
2803 initialize_original_copy_tables ();
2804 nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2805 prob, prob.invert (), true);
2806 free_original_copy_tables ();
2807 /* Record the original loop number in newly generated loops. In case of
2808 distribution, the original loop will be distributed and the new loop
2809 is kept. */
2810 loop->orig_loop_num = nloop->num;
2811 nloop->orig_loop_num = nloop->num;
2812 nloop->dont_vectorize = true;
2813 nloop->force_vectorize = false;
2814
2815 if (call_stmt)
2816 {
2817 /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2818 loop could be destroyed. */
2819 arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2820 gimple_call_set_arg (gs: call_stmt, index: 0, arg: arg0);
2821 gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2822 }
2823
2824 if (cond_stmts)
2825 {
2826 gimple_stmt_iterator cond_gsi = gsi_last_bb (bb: cond_bb);
2827 gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2828 }
2829 update_ssa (TODO_update_ssa_no_phi);
2830}
2831
2832/* Return true if loop versioning is needed to distrubute PARTITIONS.
2833 ALIAS_DDRS are data dependence relations for runtime alias check. */
2834
2835static inline bool
2836version_for_distribution_p (vec<struct partition *> *partitions,
2837 vec<ddr_p> *alias_ddrs)
2838{
2839 /* No need to version loop if we have only one partition. */
2840 if (partitions->length () == 1)
2841 return false;
2842
2843 /* Need to version loop if runtime alias check is necessary. */
2844 return (alias_ddrs->length () > 0);
2845}
2846
2847/* Compare base offset of builtin mem* partitions P1 and P2. */
2848
2849static int
2850offset_cmp (const void *vp1, const void *vp2)
2851{
2852 struct partition *p1 = *(struct partition *const *) vp1;
2853 struct partition *p2 = *(struct partition *const *) vp2;
2854 unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2855 unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2856 return (o2 < o1) - (o1 < o2);
2857}
2858
2859/* Fuse adjacent memset builtin PARTITIONS if possible. This is a special
2860 case optimization transforming below code:
2861
2862 __builtin_memset (&obj, 0, 100);
2863 _1 = &obj + 100;
2864 __builtin_memset (_1, 0, 200);
2865 _2 = &obj + 300;
2866 __builtin_memset (_2, 0, 100);
2867
2868 into:
2869
2870 __builtin_memset (&obj, 0, 400);
2871
2872 Note we don't have dependence information between different partitions
2873 at this point, as a result, we can't handle nonadjacent memset builtin
2874 partitions since dependence might be broken. */
2875
2876static void
2877fuse_memset_builtins (vec<struct partition *> *partitions)
2878{
2879 unsigned i, j;
2880 struct partition *part1, *part2;
2881 tree rhs1, rhs2;
2882
2883 for (i = 0; partitions->iterate (ix: i, ptr: &part1);)
2884 {
2885 if (part1->kind != PKIND_MEMSET)
2886 {
2887 i++;
2888 continue;
2889 }
2890
2891 /* Find sub-array of memset builtins of the same base. Index range
2892 of the sub-array is [i, j) with "j > i". */
2893 for (j = i + 1; partitions->iterate (ix: j, ptr: &part2); ++j)
2894 {
2895 if (part2->kind != PKIND_MEMSET
2896 || !operand_equal_p (part1->builtin->dst_base_base,
2897 part2->builtin->dst_base_base, flags: 0))
2898 break;
2899
2900 /* Memset calls setting different values can't be merged. */
2901 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2902 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2903 if (!operand_equal_p (rhs1, rhs2, flags: 0))
2904 break;
2905 }
2906
2907 /* Stable sort is required in order to avoid breaking dependence. */
2908 gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2909 offset_cmp);
2910 /* Continue with next partition. */
2911 i = j;
2912 }
2913
2914 /* Merge all consecutive memset builtin partitions. */
2915 for (i = 0; i < partitions->length () - 1;)
2916 {
2917 part1 = (*partitions)[i];
2918 if (part1->kind != PKIND_MEMSET)
2919 {
2920 i++;
2921 continue;
2922 }
2923
2924 part2 = (*partitions)[i + 1];
2925 /* Only merge memset partitions of the same base and with constant
2926 access sizes. */
2927 if (part2->kind != PKIND_MEMSET
2928 || TREE_CODE (part1->builtin->size) != INTEGER_CST
2929 || TREE_CODE (part2->builtin->size) != INTEGER_CST
2930 || !operand_equal_p (part1->builtin->dst_base_base,
2931 part2->builtin->dst_base_base, flags: 0))
2932 {
2933 i++;
2934 continue;
2935 }
2936 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2937 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2938 int bytev1 = const_with_all_bytes_same (val: rhs1);
2939 int bytev2 = const_with_all_bytes_same (val: rhs2);
2940 /* Only merge memset partitions of the same value. */
2941 if (bytev1 != bytev2 || bytev1 == -1)
2942 {
2943 i++;
2944 continue;
2945 }
2946 wide_int end1 = wi::add (x: part1->builtin->dst_base_offset,
2947 y: wi::to_wide (t: part1->builtin->size));
2948 /* Only merge adjacent memset partitions. */
2949 if (wi::ne_p (x: end1, y: part2->builtin->dst_base_offset))
2950 {
2951 i++;
2952 continue;
2953 }
2954 /* Merge partitions[i] and partitions[i+1]. */
2955 part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2956 part1->builtin->size,
2957 part2->builtin->size);
2958 partition_free (partition: part2);
2959 partitions->ordered_remove (ix: i + 1);
2960 }
2961}
2962
2963void
2964loop_distribution::finalize_partitions (class loop *loop,
2965 vec<struct partition *> *partitions,
2966 vec<ddr_p> *alias_ddrs)
2967{
2968 unsigned i;
2969 struct partition *partition, *a;
2970
2971 if (partitions->length () == 1
2972 || alias_ddrs->length () > 0)
2973 return;
2974
2975 unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
2976 bool same_type_p = true;
2977 enum partition_type type = ((*partitions)[0])->type;
2978 for (i = 0; partitions->iterate (ix: i, ptr: &partition); ++i)
2979 {
2980 same_type_p &= (type == partition->type);
2981 if (partition_builtin_p (partition))
2982 {
2983 num_builtin++;
2984 continue;
2985 }
2986 num_normal++;
2987 if (partition->kind == PKIND_PARTIAL_MEMSET)
2988 num_partial_memset++;
2989 }
2990
2991 /* Don't distribute current loop into too many loops given we don't have
2992 memory stream cost model. Be even more conservative in case of loop
2993 nest distribution. */
2994 if ((same_type_p && num_builtin == 0
2995 && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
2996 || (loop->inner != NULL
2997 && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2998 || (loop->inner == NULL
2999 && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
3000 {
3001 a = (*partitions)[0];
3002 for (i = 1; partitions->iterate (ix: i, ptr: &partition); ++i)
3003 {
3004 partition_merge_into (NULL, dest: a, partition, ft: FUSE_FINALIZE);
3005 partition_free (partition);
3006 }
3007 partitions->truncate (size: 1);
3008 }
3009
3010 /* Fuse memset builtins if possible. */
3011 if (partitions->length () > 1)
3012 fuse_memset_builtins (partitions);
3013}
3014
3015/* Distributes the code from LOOP in such a way that producer statements
3016 are placed before consumer statements. Tries to separate only the
3017 statements from STMTS into separate loops. Returns the number of
3018 distributed loops. Set NB_CALLS to number of generated builtin calls.
3019 Set *DESTROY_P to whether LOOP needs to be destroyed. */
3020
3021int
3022loop_distribution::distribute_loop (class loop *loop,
3023 const vec<gimple *> &stmts,
3024 control_dependences *cd, int *nb_calls, bool *destroy_p,
3025 bool only_patterns_p)
3026{
3027 ddrs_table = new hash_table<ddr_hasher> (389);
3028 struct graph *rdg;
3029 partition *partition;
3030 int i, nbp;
3031
3032 *destroy_p = false;
3033 *nb_calls = 0;
3034 loop_nest.create (nelems: 0);
3035 if (!find_loop_nest (loop, &loop_nest))
3036 {
3037 loop_nest.release ();
3038 delete ddrs_table;
3039 return 0;
3040 }
3041
3042 datarefs_vec.create (nelems: 20);
3043 has_nonaddressable_dataref_p = false;
3044 rdg = build_rdg (loop, cd);
3045 if (!rdg)
3046 {
3047 if (dump_file && (dump_flags & TDF_DETAILS))
3048 fprintf (stream: dump_file,
3049 format: "Loop %d not distributed: failed to build the RDG.\n",
3050 loop->num);
3051
3052 loop_nest.release ();
3053 free_data_refs (datarefs_vec);
3054 delete ddrs_table;
3055 return 0;
3056 }
3057
3058 if (datarefs_vec.length () > MAX_DATAREFS_NUM)
3059 {
3060 if (dump_file && (dump_flags & TDF_DETAILS))
3061 fprintf (stream: dump_file,
3062 format: "Loop %d not distributed: too many memory references.\n",
3063 loop->num);
3064
3065 free_rdg (rdg);
3066 loop_nest.release ();
3067 free_data_refs (datarefs_vec);
3068 delete ddrs_table;
3069 return 0;
3070 }
3071
3072 data_reference_p dref;
3073 for (i = 0; datarefs_vec.iterate (ix: i, ptr: &dref); ++i)
3074 dref->aux = (void *) (uintptr_t) i;
3075
3076 if (dump_file && (dump_flags & TDF_DETAILS))
3077 dump_rdg (file: dump_file, rdg);
3078
3079 auto_vec<struct partition *, 3> partitions;
3080 rdg_build_partitions (rdg, starting_stmts: stmts, partitions: &partitions);
3081
3082 auto_vec<ddr_p> alias_ddrs;
3083
3084 auto_bitmap stmt_in_all_partitions;
3085 bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
3086 for (i = 1; partitions.iterate (ix: i, ptr: &partition); ++i)
3087 bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
3088
3089 bool any_builtin = false;
3090 bool reduction_in_all = false;
3091 int reduction_partition_num = -1;
3092 FOR_EACH_VEC_ELT (partitions, i, partition)
3093 {
3094 reduction_in_all
3095 |= classify_partition (loop, rdg, partition, stmt_in_all_partitions);
3096 any_builtin |= partition_builtin_p (partition);
3097 }
3098
3099 /* If we are only distributing patterns but did not detect any,
3100 simply bail out. */
3101 if (only_patterns_p
3102 && !any_builtin)
3103 {
3104 nbp = 0;
3105 goto ldist_done;
3106 }
3107
3108 /* If we are only distributing patterns fuse all partitions that
3109 were not classified as builtins. This also avoids chopping
3110 a loop into pieces, separated by builtin calls. That is, we
3111 only want no or a single loop body remaining. */
3112 struct partition *into;
3113 if (only_patterns_p)
3114 {
3115 for (i = 0; partitions.iterate (ix: i, ptr: &into); ++i)
3116 if (!partition_builtin_p (partition: into))
3117 break;
3118 for (++i; partitions.iterate (ix: i, ptr: &partition); ++i)
3119 if (!partition_builtin_p (partition))
3120 {
3121 partition_merge_into (NULL, dest: into, partition, ft: FUSE_NON_BUILTIN);
3122 partitions.unordered_remove (ix: i);
3123 partition_free (partition);
3124 i--;
3125 }
3126 }
3127
3128 /* Due to limitations in the transform phase we have to fuse all
3129 reduction partitions into the last partition so the existing
3130 loop will contain all loop-closed PHI nodes. */
3131 for (i = 0; partitions.iterate (ix: i, ptr: &into); ++i)
3132 if (partition_reduction_p (partition: into))
3133 break;
3134 for (i = i + 1; partitions.iterate (ix: i, ptr: &partition); ++i)
3135 if (partition_reduction_p (partition))
3136 {
3137 partition_merge_into (rdg, dest: into, partition, ft: FUSE_REDUCTION);
3138 partitions.unordered_remove (ix: i);
3139 partition_free (partition);
3140 i--;
3141 }
3142
3143 /* Apply our simple cost model - fuse partitions with similar
3144 memory accesses. */
3145 for (i = 0; partitions.iterate (ix: i, ptr: &into); ++i)
3146 {
3147 bool changed = false;
3148 for (int j = i + 1; partitions.iterate (ix: j, ptr: &partition); ++j)
3149 {
3150 if (share_memory_accesses (rdg, partition1: into, partition2: partition))
3151 {
3152 partition_merge_into (rdg, dest: into, partition, ft: FUSE_SHARE_REF);
3153 partitions.unordered_remove (ix: j);
3154 partition_free (partition);
3155 j--;
3156 changed = true;
3157 }
3158 }
3159 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
3160 accesses when 1 and 2 have similar accesses but not 0 and 1
3161 then in the next iteration we will fail to consider merging
3162 1 into 0,2. So try again if we did any merging into 0. */
3163 if (changed)
3164 i--;
3165 }
3166
3167 /* Put a non-builtin partition last if we need to preserve a reduction.
3168 In most cases this helps to keep a normal partition last avoiding to
3169 spill a reduction result across builtin calls.
3170 ??? The proper way would be to use dependences to see whether we
3171 can move builtin partitions earlier during merge_dep_scc_partitions
3172 and its sort_partitions_by_post_order. Especially when the
3173 dependence graph is composed of multiple independent subgraphs the
3174 heuristic does not work reliably. */
3175 if (reduction_in_all
3176 && partition_builtin_p (partition: partitions.last()))
3177 FOR_EACH_VEC_ELT (partitions, i, partition)
3178 if (!partition_builtin_p (partition))
3179 {
3180 partitions.unordered_remove (ix: i);
3181 partitions.quick_push (obj: partition);
3182 break;
3183 }
3184
3185 /* Build the partition dependency graph and fuse partitions in strong
3186 connected component. */
3187 if (partitions.length () > 1)
3188 {
3189 /* Don't support loop nest distribution under runtime alias check
3190 since it's not likely to enable many vectorization opportunities.
3191 Also if loop has any data reference which may be not addressable
3192 since alias check needs to take, compare address of the object. */
3193 if (loop->inner || has_nonaddressable_dataref_p)
3194 merge_dep_scc_partitions (rdg, partitions: &partitions, ignore_alias_p: false);
3195 else
3196 {
3197 merge_dep_scc_partitions (rdg, partitions: &partitions, ignore_alias_p: true);
3198 if (partitions.length () > 1)
3199 break_alias_scc_partitions (rdg, partitions: &partitions, alias_ddrs: &alias_ddrs);
3200 }
3201 }
3202
3203 finalize_partitions (loop, partitions: &partitions, alias_ddrs: &alias_ddrs);
3204
3205 /* If there is a reduction in all partitions make sure the last
3206 non-builtin partition provides the LC PHI defs. */
3207 if (reduction_in_all)
3208 {
3209 FOR_EACH_VEC_ELT (partitions, i, partition)
3210 if (!partition_builtin_p (partition))
3211 reduction_partition_num = i;
3212 if (reduction_partition_num == -1)
3213 {
3214 /* If all partitions are builtin, force the last one to
3215 be code generated as normal partition. */
3216 partition = partitions.last ();
3217 partition->kind = PKIND_NORMAL;
3218 }
3219 }
3220
3221 nbp = partitions.length ();
3222 if (nbp == 0
3223 || (nbp == 1 && !partition_builtin_p (partition: partitions[0]))
3224 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
3225 {
3226 nbp = 0;
3227 goto ldist_done;
3228 }
3229
3230 if (version_for_distribution_p (partitions: &partitions, alias_ddrs: &alias_ddrs))
3231 version_loop_by_alias_check (partitions: &partitions, loop, alias_ddrs: &alias_ddrs);
3232
3233 if (dump_file && (dump_flags & TDF_DETAILS))
3234 {
3235 fprintf (stream: dump_file,
3236 format: "distribute loop <%d> into partitions:\n", loop->num);
3237 dump_rdg_partitions (file: dump_file, partitions);
3238 }
3239
3240 FOR_EACH_VEC_ELT (partitions, i, partition)
3241 {
3242 if (partition_builtin_p (partition))
3243 (*nb_calls)++;
3244 *destroy_p |= generate_code_for_partition (loop, partition, copy_p: i < nbp - 1,
3245 keep_lc_phis_p: i == reduction_partition_num);
3246 }
3247
3248 ldist_done:
3249 loop_nest.release ();
3250 free_data_refs (datarefs_vec);
3251 for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
3252 iter != ddrs_table->end (); ++iter)
3253 {
3254 free_dependence_relation (*iter);
3255 *iter = NULL;
3256 }
3257 delete ddrs_table;
3258
3259 FOR_EACH_VEC_ELT (partitions, i, partition)
3260 partition_free (partition);
3261
3262 free_rdg (rdg);
3263 return nbp - *nb_calls;
3264}
3265
3266
3267void loop_distribution::bb_top_order_init (void)
3268{
3269 int rpo_num;
3270 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
3271 edge entry = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3272 bitmap exit_bbs = BITMAP_ALLOC (NULL);
3273
3274 bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3275 bb_top_order_index_size = last_basic_block_for_fn (cfun);
3276
3277 entry->flags &= ~EDGE_DFS_BACK;
3278 bitmap_set_bit (exit_bbs, EXIT_BLOCK);
3279 rpo_num = rev_post_order_and_mark_dfs_back_seme (cfun, entry, exit_bbs, true,
3280 rpo, NULL);
3281 BITMAP_FREE (exit_bbs);
3282
3283 for (int i = 0; i < rpo_num; i++)
3284 bb_top_order_index[rpo[i]] = i;
3285
3286 free (ptr: rpo);
3287}
3288
3289void loop_distribution::bb_top_order_destroy ()
3290{
3291 free (ptr: bb_top_order_index);
3292 bb_top_order_index = NULL;
3293 bb_top_order_index_size = 0;
3294}
3295
3296
3297/* Given LOOP, this function records seed statements for distribution in
3298 WORK_LIST. Return false if there is nothing for distribution. */
3299
3300static bool
3301find_seed_stmts_for_distribution (class loop *loop, vec<gimple *> *work_list)
3302{
3303 basic_block *bbs = get_loop_body_in_dom_order (loop);
3304
3305 /* Initialize the worklist with stmts we seed the partitions with. */
3306 for (unsigned i = 0; i < loop->num_nodes; ++i)
3307 {
3308 /* In irreducible sub-regions we don't know how to redirect
3309 conditions, so fail. See PR100492. */
3310 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
3311 {
3312 if (dump_file && (dump_flags & TDF_DETAILS))
3313 fprintf (stream: dump_file, format: "loop %d contains an irreducible region.\n",
3314 loop->num);
3315 work_list->truncate (size: 0);
3316 break;
3317 }
3318 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
3319 !gsi_end_p (i: gsi); gsi_next (i: &gsi))
3320 {
3321 gphi *phi = gsi.phi ();
3322 if (virtual_operand_p (op: gimple_phi_result (gs: phi)))
3323 continue;
3324 /* Distribute stmts which have defs that are used outside of
3325 the loop. */
3326 if (!stmt_has_scalar_dependences_outside_loop (loop, stmt: phi))
3327 continue;
3328 work_list->safe_push (obj: phi);
3329 }
3330 for (gimple_stmt_iterator gsi = gsi_start_bb (bb: bbs[i]);
3331 !gsi_end_p (i: gsi); gsi_next (i: &gsi))
3332 {
3333 gimple *stmt = gsi_stmt (i: gsi);
3334
3335 /* Ignore clobbers, they do not have true side effects. */
3336 if (gimple_clobber_p (s: stmt))
3337 continue;
3338
3339 /* If there is a stmt with side-effects bail out - we
3340 cannot and should not distribute this loop. */
3341 if (gimple_has_side_effects (stmt))
3342 {
3343 free (ptr: bbs);
3344 return false;
3345 }
3346
3347 /* Distribute stmts which have defs that are used outside of
3348 the loop. */
3349 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3350 ;
3351 /* Otherwise only distribute stores for now. */
3352 else if (!gimple_vdef (g: stmt))
3353 continue;
3354
3355 work_list->safe_push (obj: stmt);
3356 }
3357 }
3358 bool res = work_list->length () > 0;
3359 if (res && !can_copy_bbs_p (bbs, loop->num_nodes))
3360 {
3361 if (dump_file && (dump_flags & TDF_DETAILS))
3362 fprintf (stream: dump_file, format: "cannot copy loop %d.\n", loop->num);
3363 res = false;
3364 }
3365 free (ptr: bbs);
3366 return res;
3367}
3368
3369/* A helper function for generate_{rawmemchr,strlen}_builtin functions in order
3370 to place new statements SEQ before LOOP and replace the old reduction
3371 variable with the new one. */
3372
3373static void
3374generate_reduction_builtin_1 (loop_p loop, gimple_seq &seq,
3375 tree reduction_var_old, tree reduction_var_new,
3376 const char *info, machine_mode load_mode)
3377{
3378 gcc_assert (flag_tree_loop_distribute_patterns);
3379
3380 /* Place new statements before LOOP. */
3381 gimple_stmt_iterator gsi = gsi_last_bb (bb: loop_preheader_edge (loop)->src);
3382 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3383
3384 /* Replace old reduction variable with new one. */
3385 imm_use_iterator iter;
3386 gimple *stmt;
3387 use_operand_p use_p;
3388 FOR_EACH_IMM_USE_STMT (stmt, iter, reduction_var_old)
3389 {
3390 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3391 SET_USE (use_p, reduction_var_new);
3392
3393 update_stmt (s: stmt);
3394 }
3395
3396 if (dump_file && (dump_flags & TDF_DETAILS))
3397 fprintf (stream: dump_file, format: info, GET_MODE_NAME (load_mode));
3398}
3399
3400/* Generate a call to rawmemchr and place it before LOOP. REDUCTION_VAR is
3401 replaced with a fresh SSA name representing the result of the call. */
3402
3403static void
3404generate_rawmemchr_builtin (loop_p loop, tree reduction_var,
3405 data_reference_p store_dr, tree base, tree pattern,
3406 location_t loc)
3407{
3408 gimple_seq seq = NULL;
3409
3410 tree mem = force_gimple_operand (base, &seq, true, NULL_TREE);
3411 gimple *fn_call = gimple_build_call_internal (IFN_RAWMEMCHR, 2, mem, pattern);
3412 tree reduction_var_new = copy_ssa_name (var: reduction_var);
3413 gimple_call_set_lhs (gs: fn_call, lhs: reduction_var_new);
3414 gimple_set_location (g: fn_call, location: loc);
3415 gimple_seq_add_stmt (&seq, fn_call);
3416
3417 if (store_dr)
3418 {
3419 gassign *g = gimple_build_assign (DR_REF (store_dr), reduction_var_new);
3420 gimple_seq_add_stmt (&seq, g);
3421 }
3422
3423 generate_reduction_builtin_1 (loop, seq, reduction_var_old: reduction_var, reduction_var_new,
3424 info: "generated rawmemchr%s\n",
3425 TYPE_MODE (TREE_TYPE (TREE_TYPE (base))));
3426}
3427
3428/* Helper function for generate_strlen_builtin(,_using_rawmemchr) */
3429
3430static void
3431generate_strlen_builtin_1 (loop_p loop, gimple_seq &seq,
3432 tree reduction_var_old, tree reduction_var_new,
3433 machine_mode mode, tree start_len)
3434{
3435 /* REDUCTION_VAR_NEW has either size type or ptrdiff type and must be
3436 converted if types of old and new reduction variable are not compatible. */
3437 reduction_var_new = gimple_convert (seq: &seq, TREE_TYPE (reduction_var_old),
3438 op: reduction_var_new);
3439
3440 /* Loops of the form `for (i=42; s[i]; ++i);` have an additional start
3441 length. */
3442 if (!integer_zerop (start_len))
3443 {
3444 tree lhs = make_ssa_name (TREE_TYPE (reduction_var_new));
3445 gimple *g = gimple_build_assign (lhs, PLUS_EXPR, reduction_var_new,
3446 start_len);
3447 gimple_seq_add_stmt (&seq, g);
3448 reduction_var_new = lhs;
3449 }
3450
3451 generate_reduction_builtin_1 (loop, seq, reduction_var_old, reduction_var_new,
3452 info: "generated strlen%s\n", load_mode: mode);
3453}
3454
3455/* Generate a call to strlen and place it before LOOP. REDUCTION_VAR is
3456 replaced with a fresh SSA name representing the result of the call. */
3457
3458static void
3459generate_strlen_builtin (loop_p loop, tree reduction_var, tree base,
3460 tree start_len, location_t loc)
3461{
3462 gimple_seq seq = NULL;
3463
3464 tree reduction_var_new = make_ssa_name (size_type_node);
3465
3466 tree mem = force_gimple_operand (base, &seq, true, NULL_TREE);
3467 tree fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_STRLEN));
3468 gimple *fn_call = gimple_build_call (fn, 1, mem);
3469 gimple_call_set_lhs (gs: fn_call, lhs: reduction_var_new);
3470 gimple_set_location (g: fn_call, location: loc);
3471 gimple_seq_add_stmt (&seq, fn_call);
3472
3473 generate_strlen_builtin_1 (loop, seq, reduction_var_old: reduction_var, reduction_var_new,
3474 QImode, start_len);
3475}
3476
3477/* Generate code in order to mimic the behaviour of strlen but this time over
3478 an array of elements with mode different than QI. REDUCTION_VAR is replaced
3479 with a fresh SSA name representing the result, i.e., the length. */
3480
3481static void
3482generate_strlen_builtin_using_rawmemchr (loop_p loop, tree reduction_var,
3483 tree base, tree load_type,
3484 tree start_len, location_t loc)
3485{
3486 gimple_seq seq = NULL;
3487
3488 tree start = force_gimple_operand (base, &seq, true, NULL_TREE);
3489 tree zero = build_zero_cst (load_type);
3490 gimple *fn_call = gimple_build_call_internal (IFN_RAWMEMCHR, 2, start, zero);
3491 tree end = make_ssa_name (TREE_TYPE (base));
3492 gimple_call_set_lhs (gs: fn_call, lhs: end);
3493 gimple_set_location (g: fn_call, location: loc);
3494 gimple_seq_add_stmt (&seq, fn_call);
3495
3496 /* Determine the number of elements between START and END by
3497 evaluating (END - START) / sizeof (*START). */
3498 tree diff = make_ssa_name (ptrdiff_type_node);
3499 gimple *diff_stmt = gimple_build_assign (diff, POINTER_DIFF_EXPR, end, start);
3500 gimple_seq_add_stmt (&seq, diff_stmt);
3501 /* Let SIZE be the size of each character. */
3502 tree size = gimple_convert (seq: &seq, ptrdiff_type_node,
3503 TYPE_SIZE_UNIT (load_type));
3504 tree count = make_ssa_name (ptrdiff_type_node);
3505 gimple *count_stmt = gimple_build_assign (count, TRUNC_DIV_EXPR, diff, size);
3506 gimple_seq_add_stmt (&seq, count_stmt);
3507
3508 generate_strlen_builtin_1 (loop, seq, reduction_var_old: reduction_var, reduction_var_new: count,
3509 TYPE_MODE (load_type),
3510 start_len);
3511}
3512
3513/* Return true if we can count at least as many characters by taking pointer
3514 difference as we can count via reduction_var without an overflow. Thus
3515 compute 2^n < (2^(m-1) / s) where n = TYPE_PRECISION (reduction_var_type),
3516 m = TYPE_PRECISION (ptrdiff_type_node), and s = size of each character. */
3517static bool
3518reduction_var_overflows_first (tree reduction_var_type, tree load_type)
3519{
3520 widest_int n2 = wi::lshift (x: 1, TYPE_PRECISION (reduction_var_type));;
3521 widest_int m2 = wi::lshift (x: 1, TYPE_PRECISION (ptrdiff_type_node) - 1);
3522 widest_int s = wi::to_widest (TYPE_SIZE_UNIT (load_type));
3523 return wi::ltu_p (x: n2, y: wi::udiv_trunc (x: m2, y: s));
3524}
3525
3526static gimple *
3527determine_reduction_stmt_1 (const loop_p loop, const basic_block *bbs)
3528{
3529 gimple *reduction_stmt = NULL;
3530
3531 for (unsigned i = 0, ninsns = 0; i < loop->num_nodes; ++i)
3532 {
3533 basic_block bb = bbs[i];
3534
3535 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (i: bsi);
3536 gsi_next_nondebug (i: &bsi))
3537 {
3538 gphi *phi = bsi.phi ();
3539 if (virtual_operand_p (op: gimple_phi_result (gs: phi)))
3540 continue;
3541 if (stmt_has_scalar_dependences_outside_loop (loop, stmt: phi))
3542 {
3543 if (reduction_stmt)
3544 return NULL;
3545 reduction_stmt = phi;
3546 }
3547 }
3548
3549 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi);
3550 gsi_next_nondebug (i: &bsi), ++ninsns)
3551 {
3552 /* Bail out early for loops which are unlikely to match. */
3553 if (ninsns > 16)
3554 return NULL;
3555 gimple *stmt = gsi_stmt (i: bsi);
3556 if (gimple_clobber_p (s: stmt))
3557 continue;
3558 if (gimple_code (g: stmt) == GIMPLE_LABEL)
3559 continue;
3560 if (gimple_has_volatile_ops (stmt))
3561 return NULL;
3562 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3563 {
3564 if (reduction_stmt)
3565 return NULL;
3566 reduction_stmt = stmt;
3567 }
3568 }
3569 }
3570
3571 return reduction_stmt;
3572}
3573
3574/* If LOOP has a single non-volatile reduction statement, then return a pointer
3575 to it. Otherwise return NULL. */
3576static gimple *
3577determine_reduction_stmt (const loop_p loop)
3578{
3579 basic_block *bbs = get_loop_body (loop);
3580 gimple *reduction_stmt = determine_reduction_stmt_1 (loop, bbs);
3581 XDELETEVEC (bbs);
3582 return reduction_stmt;
3583}
3584
3585/* Transform loops which mimic the effects of builtins rawmemchr or strlen and
3586 replace them accordingly. For example, a loop of the form
3587
3588 for (; *p != 42; ++p);
3589
3590 is replaced by
3591
3592 p = rawmemchr<MODE> (p, 42);
3593
3594 under the assumption that rawmemchr is available for a particular MODE.
3595 Another example is
3596
3597 int i;
3598 for (i = 42; s[i]; ++i);
3599
3600 which is replaced by
3601
3602 i = (int)strlen (&s[42]) + 42;
3603
3604 for some character array S. In case array S is not of type character array
3605 we end up with
3606
3607 i = (int)(rawmemchr<MODE> (&s[42], 0) - &s[42]) + 42;
3608
3609 assuming that rawmemchr is available for a particular MODE. */
3610
3611bool
3612loop_distribution::transform_reduction_loop (loop_p loop)
3613{
3614 gimple *reduction_stmt;
3615 data_reference_p load_dr = NULL, store_dr = NULL;
3616
3617 edge e = single_exit (loop);
3618 gcond *cond = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: e->src));
3619 if (!cond)
3620 return false;
3621 /* Ensure loop condition is an (in)equality test and loop is exited either if
3622 the inequality test fails or the equality test succeeds. */
3623 if (!(e->flags & EDGE_FALSE_VALUE && gimple_cond_code (gs: cond) == NE_EXPR)
3624 && !(e->flags & EDGE_TRUE_VALUE && gimple_cond_code (gs: cond) == EQ_EXPR))
3625 return false;
3626 /* A limitation of the current implementation is that we only support
3627 constant patterns in (in)equality tests. */
3628 tree pattern = gimple_cond_rhs (gs: cond);
3629 if (TREE_CODE (pattern) != INTEGER_CST)
3630 return false;
3631
3632 reduction_stmt = determine_reduction_stmt (loop);
3633
3634 /* A limitation of the current implementation is that we require a reduction
3635 statement. Therefore, loops without a reduction statement as in the
3636 following are not recognized:
3637 int *p;
3638 void foo (void) { for (; *p; ++p); } */
3639 if (reduction_stmt == NULL)
3640 return false;
3641
3642 /* Reduction variables are guaranteed to be SSA names. */
3643 tree reduction_var;
3644 switch (gimple_code (g: reduction_stmt))
3645 {
3646 case GIMPLE_ASSIGN:
3647 case GIMPLE_PHI:
3648 reduction_var = gimple_get_lhs (reduction_stmt);
3649 break;
3650 default:
3651 /* Bail out e.g. for GIMPLE_CALL. */
3652 return false;
3653 }
3654
3655 struct graph *rdg = build_rdg (loop, NULL);
3656 if (rdg == NULL)
3657 {
3658 if (dump_file && (dump_flags & TDF_DETAILS))
3659 fprintf (stream: dump_file,
3660 format: "Loop %d not transformed: failed to build the RDG.\n",
3661 loop->num);
3662
3663 return false;
3664 }
3665 auto_bitmap partition_stmts;
3666 bitmap_set_range (partition_stmts, 0, rdg->n_vertices);
3667 find_single_drs (loop, rdg, partition_stmts, dst_dr: &store_dr, src_dr: &load_dr);
3668 free_rdg (rdg);
3669
3670 /* Bail out if there is no single load. */
3671 if (load_dr == NULL)
3672 return false;
3673
3674 /* Reaching this point we have a loop with a single reduction variable,
3675 a single load, and an optional single store. */
3676
3677 tree load_ref = DR_REF (load_dr);
3678 tree load_type = TREE_TYPE (load_ref);
3679 tree load_access_base = build_fold_addr_expr (load_ref);
3680 tree load_access_size = TYPE_SIZE_UNIT (load_type);
3681 affine_iv load_iv, reduction_iv;
3682
3683 if (!INTEGRAL_TYPE_P (load_type)
3684 || !type_has_mode_precision_p (t: load_type))
3685 return false;
3686
3687 /* We already ensured that the loop condition tests for (in)equality where the
3688 rhs is a constant pattern. Now ensure that the lhs is the result of the
3689 load. */
3690 if (gimple_cond_lhs (gs: cond) != gimple_assign_lhs (DR_STMT (load_dr)))
3691 return false;
3692
3693 /* Bail out if no affine induction variable with constant step can be
3694 determined. */
3695 if (!simple_iv (loop, loop, load_access_base, &load_iv, false))
3696 return false;
3697
3698 /* Bail out if memory accesses are not consecutive or not growing. */
3699 if (!operand_equal_p (load_iv.step, load_access_size, flags: 0))
3700 return false;
3701
3702 if (!simple_iv (loop, loop, reduction_var, &reduction_iv, false))
3703 return false;
3704
3705 /* Handle rawmemchr like loops. */
3706 if (operand_equal_p (load_iv.base, reduction_iv.base)
3707 && operand_equal_p (load_iv.step, reduction_iv.step))
3708 {
3709 if (store_dr)
3710 {
3711 /* Ensure that we store to X and load from X+I where I>0. */
3712 if (TREE_CODE (load_iv.base) != POINTER_PLUS_EXPR
3713 || !integer_onep (TREE_OPERAND (load_iv.base, 1)))
3714 return false;
3715 tree ptr_base = TREE_OPERAND (load_iv.base, 0);
3716 if (TREE_CODE (ptr_base) != SSA_NAME)
3717 return false;
3718 gimple *def = SSA_NAME_DEF_STMT (ptr_base);
3719 if (!gimple_assign_single_p (gs: def)
3720 || gimple_assign_rhs1 (gs: def) != DR_REF (store_dr))
3721 return false;
3722 /* Ensure that the reduction value is stored. */
3723 if (gimple_assign_rhs1 (DR_STMT (store_dr)) != reduction_var)
3724 return false;
3725 }
3726 /* Bail out if target does not provide rawmemchr for a certain mode. */
3727 machine_mode mode = TYPE_MODE (load_type);
3728 if (direct_optab_handler (op: rawmemchr_optab, mode) == CODE_FOR_nothing)
3729 return false;
3730 location_t loc = gimple_location (DR_STMT (load_dr));
3731 generate_rawmemchr_builtin (loop, reduction_var, store_dr, base: load_iv.base,
3732 pattern, loc);
3733 return true;
3734 }
3735
3736 /* Handle strlen like loops. */
3737 if (store_dr == NULL
3738 && integer_zerop (pattern)
3739 && INTEGRAL_TYPE_P (TREE_TYPE (reduction_var))
3740 && TREE_CODE (reduction_iv.base) == INTEGER_CST
3741 && TREE_CODE (reduction_iv.step) == INTEGER_CST
3742 && integer_onep (reduction_iv.step))
3743 {
3744 location_t loc = gimple_location (DR_STMT (load_dr));
3745 tree reduction_var_type = TREE_TYPE (reduction_var);
3746 /* While determining the length of a string an overflow might occur.
3747 If an overflow only occurs in the loop implementation and not in the
3748 strlen implementation, then either the overflow is undefined or the
3749 truncated result of strlen equals the one of the loop. Otherwise if
3750 an overflow may also occur in the strlen implementation, then
3751 replacing a loop by a call to strlen is sound whenever we ensure that
3752 if an overflow occurs in the strlen implementation, then also an
3753 overflow occurs in the loop implementation which is undefined. It
3754 seems reasonable to relax this and assume that the strlen
3755 implementation cannot overflow in case sizetype is big enough in the
3756 sense that an overflow can only happen for string objects which are
3757 bigger than half of the address space; at least for 32-bit targets and
3758 up.
3759
3760 For strlen which makes use of rawmemchr the maximal length of a string
3761 which can be determined without an overflow is PTRDIFF_MAX / S where
3762 each character has size S. Since an overflow for ptrdiff type is
3763 undefined we have to make sure that if an overflow occurs, then an
3764 overflow occurs in the loop implementation, too, and this is
3765 undefined, too. Similar as before we relax this and assume that no
3766 string object is larger than half of the address space; at least for
3767 32-bit targets and up. */
3768 if (TYPE_MODE (load_type) == TYPE_MODE (char_type_node)
3769 && TYPE_PRECISION (load_type) == TYPE_PRECISION (char_type_node)
3770 && ((TYPE_PRECISION (sizetype) >= TYPE_PRECISION (ptr_type_node) - 1
3771 && TYPE_PRECISION (ptr_type_node) >= 32)
3772 || (TYPE_OVERFLOW_UNDEFINED (reduction_var_type)
3773 && TYPE_PRECISION (reduction_var_type) <= TYPE_PRECISION (sizetype)))
3774 && builtin_decl_implicit (fncode: BUILT_IN_STRLEN))
3775 generate_strlen_builtin (loop, reduction_var, base: load_iv.base,
3776 start_len: reduction_iv.base, loc);
3777 else if (direct_optab_handler (op: rawmemchr_optab, TYPE_MODE (load_type))
3778 != CODE_FOR_nothing
3779 && ((TYPE_PRECISION (ptrdiff_type_node) == TYPE_PRECISION (ptr_type_node)
3780 && TYPE_PRECISION (ptrdiff_type_node) >= 32)
3781 || (TYPE_OVERFLOW_UNDEFINED (reduction_var_type)
3782 && reduction_var_overflows_first (reduction_var_type, load_type))))
3783 generate_strlen_builtin_using_rawmemchr (loop, reduction_var,
3784 base: load_iv.base,
3785 load_type,
3786 start_len: reduction_iv.base, loc);
3787 else
3788 return false;
3789 return true;
3790 }
3791
3792 return false;
3793}
3794
3795/* Given innermost LOOP, return the outermost enclosing loop that forms a
3796 perfect loop nest. */
3797
3798static class loop *
3799prepare_perfect_loop_nest (class loop *loop)
3800{
3801 class loop *outer = loop_outer (loop);
3802 tree niters = number_of_latch_executions (loop);
3803
3804 /* TODO: We only support the innermost 3-level loop nest distribution
3805 because of compilation time issue for now. This should be relaxed
3806 in the future. Note we only allow 3-level loop nest distribution
3807 when parallelizing loops. */
3808 while ((loop->inner == NULL
3809 || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
3810 && loop_outer (loop: outer)
3811 && outer->inner == loop && loop->next == NULL
3812 && single_exit (outer)
3813 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3814 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3815 && niters != chrec_dont_know)
3816 {
3817 loop = outer;
3818 outer = loop_outer (loop);
3819 }
3820
3821 return loop;
3822}
3823
3824
3825unsigned int
3826loop_distribution::execute (function *fun)
3827{
3828 bool changed = false;
3829 basic_block bb;
3830 control_dependences *cd = NULL;
3831 auto_vec<loop_p> loops_to_be_destroyed;
3832
3833 if (number_of_loops (fn: fun) <= 1)
3834 return 0;
3835
3836 bb_top_order_init ();
3837
3838 FOR_ALL_BB_FN (bb, fun)
3839 {
3840 gimple_stmt_iterator gsi;
3841 for (gsi = gsi_start_phis (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
3842 gimple_set_uid (g: gsi_stmt (i: gsi), uid: -1);
3843 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
3844 gimple_set_uid (g: gsi_stmt (i: gsi), uid: -1);
3845 }
3846
3847 /* We can at the moment only distribute non-nested loops, thus restrict
3848 walking to innermost loops. */
3849 for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST))
3850 {
3851 /* Don't distribute multiple exit edges loop, or cold loop when
3852 not doing pattern detection. */
3853 if (!single_exit (loop)
3854 || (!flag_tree_loop_distribute_patterns
3855 && !optimize_loop_for_speed_p (loop)))
3856 continue;
3857
3858 /* If niters is unknown don't distribute loop but rather try to transform
3859 it to a call to a builtin. */
3860 tree niters = number_of_latch_executions (loop);
3861 if (niters == NULL_TREE || niters == chrec_dont_know)
3862 {
3863 datarefs_vec.create (nelems: 20);
3864 if (flag_tree_loop_distribute_patterns
3865 && transform_reduction_loop (loop))
3866 {
3867 changed = true;
3868 loops_to_be_destroyed.safe_push (obj: loop);
3869 if (dump_enabled_p ())
3870 {
3871 dump_user_location_t loc = find_loop_location (loop);
3872 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3873 loc, "Loop %d transformed into a builtin.\n",
3874 loop->num);
3875 }
3876 }
3877 free_data_refs (datarefs_vec);
3878 continue;
3879 }
3880
3881 /* Get the perfect loop nest for distribution. */
3882 loop = prepare_perfect_loop_nest (loop);
3883 for (; loop; loop = loop->inner)
3884 {
3885 auto_vec<gimple *> work_list;
3886 if (!find_seed_stmts_for_distribution (loop, work_list: &work_list))
3887 continue;
3888
3889 const char *str = loop->inner ? " nest" : "";
3890 dump_user_location_t loc = find_loop_location (loop);
3891 if (!cd)
3892 {
3893 calculate_dominance_info (CDI_DOMINATORS);
3894 calculate_dominance_info (CDI_POST_DOMINATORS);
3895 cd = new control_dependences ();
3896 free_dominance_info (CDI_POST_DOMINATORS);
3897 }
3898
3899 bool destroy_p;
3900 int nb_generated_loops, nb_generated_calls;
3901 bool only_patterns = !optimize_loop_for_speed_p (loop)
3902 || !flag_tree_loop_distribution;
3903 /* do not try to distribute loops that are not expected to iterate. */
3904 if (!only_patterns)
3905 {
3906 HOST_WIDE_INT iterations = estimated_loop_iterations_int (loop);
3907 if (iterations < 0)
3908 iterations = likely_max_loop_iterations_int (loop);
3909 if (!iterations)
3910 only_patterns = true;
3911 }
3912 nb_generated_loops
3913 = distribute_loop (loop, stmts: work_list, cd, nb_calls: &nb_generated_calls,
3914 destroy_p: &destroy_p, only_patterns_p: only_patterns);
3915 if (destroy_p)
3916 loops_to_be_destroyed.safe_push (obj: loop);
3917
3918 if (nb_generated_loops + nb_generated_calls > 0)
3919 {
3920 changed = true;
3921 if (dump_enabled_p ())
3922 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3923 loc, "Loop%s %d distributed: split to %d loops "
3924 "and %d library calls.\n", str, loop->num,
3925 nb_generated_loops, nb_generated_calls);
3926
3927 break;
3928 }
3929
3930 if (dump_file && (dump_flags & TDF_DETAILS))
3931 fprintf (stream: dump_file, format: "Loop%s %d not distributed.\n", str, loop->num);
3932 }
3933 }
3934
3935 if (cd)
3936 delete cd;
3937
3938 if (bb_top_order_index != NULL)
3939 bb_top_order_destroy ();
3940
3941 if (changed)
3942 {
3943 /* Destroy loop bodies that could not be reused. Do this late as we
3944 otherwise can end up refering to stale data in control dependences. */
3945 unsigned i;
3946 class loop *loop;
3947 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3948 destroy_loop (loop);
3949
3950 /* Cached scalar evolutions now may refer to wrong or non-existing
3951 loops. */
3952 scev_reset ();
3953 mark_virtual_operands_for_renaming (fun);
3954 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3955 }
3956
3957 checking_verify_loop_structure ();
3958
3959 return changed ? TODO_cleanup_cfg : 0;
3960}
3961
3962
3963/* Distribute all loops in the current function. */
3964
3965namespace {
3966
3967const pass_data pass_data_loop_distribution =
3968{
3969 .type: GIMPLE_PASS, /* type */
3970 .name: "ldist", /* name */
3971 .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */
3972 .tv_id: TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
3973 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
3974 .properties_provided: 0, /* properties_provided */
3975 .properties_destroyed: 0, /* properties_destroyed */
3976 .todo_flags_start: 0, /* todo_flags_start */
3977 .todo_flags_finish: 0, /* todo_flags_finish */
3978};
3979
3980class pass_loop_distribution : public gimple_opt_pass
3981{
3982public:
3983 pass_loop_distribution (gcc::context *ctxt)
3984 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
3985 {}
3986
3987 /* opt_pass methods: */
3988 bool gate (function *) final override
3989 {
3990 return flag_tree_loop_distribution
3991 || flag_tree_loop_distribute_patterns;
3992 }
3993
3994 unsigned int execute (function *) final override;
3995
3996}; // class pass_loop_distribution
3997
3998unsigned int
3999pass_loop_distribution::execute (function *fun)
4000{
4001 return loop_distribution ().execute (fun);
4002}
4003
4004} // anon namespace
4005
4006gimple_opt_pass *
4007make_pass_loop_distribution (gcc::context *ctxt)
4008{
4009 return new pass_loop_distribution (ctxt);
4010}
4011

source code of gcc/tree-loop-distribution.cc