1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for interfacing to Open Firmware.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 */
11
12#undef DEBUG_PROM
13
14/* we cannot use FORTIFY as it brings in new symbols */
15#define __NO_FORTIFY
16
17#include <linux/stdarg.h>
18#include <linux/kernel.h>
19#include <linux/string.h>
20#include <linux/init.h>
21#include <linux/threads.h>
22#include <linux/spinlock.h>
23#include <linux/types.h>
24#include <linux/pci.h>
25#include <linux/proc_fs.h>
26#include <linux/delay.h>
27#include <linux/initrd.h>
28#include <linux/bitops.h>
29#include <linux/pgtable.h>
30#include <linux/printk.h>
31#include <linux/of.h>
32#include <linux/of_fdt.h>
33#include <asm/prom.h>
34#include <asm/rtas.h>
35#include <asm/page.h>
36#include <asm/processor.h>
37#include <asm/interrupt.h>
38#include <asm/irq.h>
39#include <asm/io.h>
40#include <asm/smp.h>
41#include <asm/mmu.h>
42#include <asm/iommu.h>
43#include <asm/btext.h>
44#include <asm/sections.h>
45#include <asm/setup.h>
46#include <asm/asm-prototypes.h>
47#include <asm/ultravisor-api.h>
48
49#include <linux/linux_logo.h>
50
51/* All of prom_init bss lives here */
52#define __prombss __section(".bss.prominit")
53
54/*
55 * Eventually bump that one up
56 */
57#define DEVTREE_CHUNK_SIZE 0x100000
58
59/*
60 * This is the size of the local memory reserve map that gets copied
61 * into the boot params passed to the kernel. That size is totally
62 * flexible as the kernel just reads the list until it encounters an
63 * entry with size 0, so it can be changed without breaking binary
64 * compatibility
65 */
66#define MEM_RESERVE_MAP_SIZE 8
67
68/*
69 * prom_init() is called very early on, before the kernel text
70 * and data have been mapped to KERNELBASE. At this point the code
71 * is running at whatever address it has been loaded at.
72 * On ppc32 we compile with -mrelocatable, which means that references
73 * to extern and static variables get relocated automatically.
74 * ppc64 objects are always relocatable, we just need to relocate the
75 * TOC.
76 *
77 * Because OF may have mapped I/O devices into the area starting at
78 * KERNELBASE, particularly on CHRP machines, we can't safely call
79 * OF once the kernel has been mapped to KERNELBASE. Therefore all
80 * OF calls must be done within prom_init().
81 *
82 * ADDR is used in calls to call_prom. The 4th and following
83 * arguments to call_prom should be 32-bit values.
84 * On ppc64, 64 bit values are truncated to 32 bits (and
85 * fortunately don't get interpreted as two arguments).
86 */
87#define ADDR(x) (u32)(unsigned long)(x)
88
89#ifdef CONFIG_PPC64
90#define OF_WORKAROUNDS 0
91#else
92#define OF_WORKAROUNDS of_workarounds
93static int of_workarounds __prombss;
94#endif
95
96#define OF_WA_CLAIM 1 /* do phys/virt claim separately, then map */
97#define OF_WA_LONGTRAIL 2 /* work around longtrail bugs */
98
99#ifdef DEBUG_PROM
100#define prom_debug(x...) prom_printf(x)
101#else
102#define prom_debug(x...) do { } while (0)
103#endif
104
105
106typedef u32 prom_arg_t;
107
108struct prom_args {
109 __be32 service;
110 __be32 nargs;
111 __be32 nret;
112 __be32 args[10];
113};
114
115struct prom_t {
116 ihandle root;
117 phandle chosen;
118 int cpu;
119 ihandle stdout;
120 ihandle mmumap;
121 ihandle memory;
122};
123
124struct mem_map_entry {
125 __be64 base;
126 __be64 size;
127};
128
129typedef __be32 cell_t;
130
131extern void __start(unsigned long r3, unsigned long r4, unsigned long r5,
132 unsigned long r6, unsigned long r7, unsigned long r8,
133 unsigned long r9);
134
135#ifdef CONFIG_PPC64
136extern int enter_prom(struct prom_args *args, unsigned long entry);
137#else
138static inline int enter_prom(struct prom_args *args, unsigned long entry)
139{
140 return ((int (*)(struct prom_args *))entry)(args);
141}
142#endif
143
144extern void copy_and_flush(unsigned long dest, unsigned long src,
145 unsigned long size, unsigned long offset);
146
147/* prom structure */
148static struct prom_t __prombss prom;
149
150static unsigned long __prombss prom_entry;
151
152static char __prombss of_stdout_device[256];
153static char __prombss prom_scratch[256];
154
155static unsigned long __prombss dt_header_start;
156static unsigned long __prombss dt_struct_start, dt_struct_end;
157static unsigned long __prombss dt_string_start, dt_string_end;
158
159static unsigned long __prombss prom_initrd_start, prom_initrd_end;
160
161#ifdef CONFIG_PPC64
162static int __prombss prom_iommu_force_on;
163static int __prombss prom_iommu_off;
164static unsigned long __prombss prom_tce_alloc_start;
165static unsigned long __prombss prom_tce_alloc_end;
166#endif
167
168#ifdef CONFIG_PPC_PSERIES
169static bool __prombss prom_radix_disable;
170static bool __prombss prom_radix_gtse_disable;
171static bool __prombss prom_xive_disable;
172#endif
173
174#ifdef CONFIG_PPC_SVM
175static bool __prombss prom_svm_enable;
176#endif
177
178struct platform_support {
179 bool hash_mmu;
180 bool radix_mmu;
181 bool radix_gtse;
182 bool xive;
183};
184
185/* Platforms codes are now obsolete in the kernel. Now only used within this
186 * file and ultimately gone too. Feel free to change them if you need, they
187 * are not shared with anything outside of this file anymore
188 */
189#define PLATFORM_PSERIES 0x0100
190#define PLATFORM_PSERIES_LPAR 0x0101
191#define PLATFORM_LPAR 0x0001
192#define PLATFORM_POWERMAC 0x0400
193#define PLATFORM_GENERIC 0x0500
194
195static int __prombss of_platform;
196
197static char __prombss prom_cmd_line[COMMAND_LINE_SIZE];
198
199static unsigned long __prombss prom_memory_limit;
200
201static unsigned long __prombss alloc_top;
202static unsigned long __prombss alloc_top_high;
203static unsigned long __prombss alloc_bottom;
204static unsigned long __prombss rmo_top;
205static unsigned long __prombss ram_top;
206
207static struct mem_map_entry __prombss mem_reserve_map[MEM_RESERVE_MAP_SIZE];
208static int __prombss mem_reserve_cnt;
209
210static cell_t __prombss regbuf[1024];
211
212static bool __prombss rtas_has_query_cpu_stopped;
213
214
215/*
216 * Error results ... some OF calls will return "-1" on error, some
217 * will return 0, some will return either. To simplify, here are
218 * macros to use with any ihandle or phandle return value to check if
219 * it is valid
220 */
221
222#define PROM_ERROR (-1u)
223#define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR)
224#define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR)
225
226/* Copied from lib/string.c and lib/kstrtox.c */
227
228static int __init prom_strcmp(const char *cs, const char *ct)
229{
230 unsigned char c1, c2;
231
232 while (1) {
233 c1 = *cs++;
234 c2 = *ct++;
235 if (c1 != c2)
236 return c1 < c2 ? -1 : 1;
237 if (!c1)
238 break;
239 }
240 return 0;
241}
242
243static ssize_t __init prom_strscpy_pad(char *dest, const char *src, size_t n)
244{
245 ssize_t rc;
246 size_t i;
247
248 if (n == 0 || n > INT_MAX)
249 return -E2BIG;
250
251 // Copy up to n bytes
252 for (i = 0; i < n && src[i] != '\0'; i++)
253 dest[i] = src[i];
254
255 rc = i;
256
257 // If we copied all n then we have run out of space for the nul
258 if (rc == n) {
259 // Rewind by one character to ensure nul termination
260 i--;
261 rc = -E2BIG;
262 }
263
264 for (; i < n; i++)
265 dest[i] = '\0';
266
267 return rc;
268}
269
270static int __init prom_strncmp(const char *cs, const char *ct, size_t count)
271{
272 unsigned char c1, c2;
273
274 while (count) {
275 c1 = *cs++;
276 c2 = *ct++;
277 if (c1 != c2)
278 return c1 < c2 ? -1 : 1;
279 if (!c1)
280 break;
281 count--;
282 }
283 return 0;
284}
285
286static size_t __init prom_strlen(const char *s)
287{
288 const char *sc;
289
290 for (sc = s; *sc != '\0'; ++sc)
291 /* nothing */;
292 return sc - s;
293}
294
295static int __init prom_memcmp(const void *cs, const void *ct, size_t count)
296{
297 const unsigned char *su1, *su2;
298 int res = 0;
299
300 for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--)
301 if ((res = *su1 - *su2) != 0)
302 break;
303 return res;
304}
305
306static char __init *prom_strstr(const char *s1, const char *s2)
307{
308 size_t l1, l2;
309
310 l2 = prom_strlen(s: s2);
311 if (!l2)
312 return (char *)s1;
313 l1 = prom_strlen(s: s1);
314 while (l1 >= l2) {
315 l1--;
316 if (!prom_memcmp(cs: s1, ct: s2, count: l2))
317 return (char *)s1;
318 s1++;
319 }
320 return NULL;
321}
322
323static size_t __init prom_strlcat(char *dest, const char *src, size_t count)
324{
325 size_t dsize = prom_strlen(s: dest);
326 size_t len = prom_strlen(s: src);
327 size_t res = dsize + len;
328
329 /* This would be a bug */
330 if (dsize >= count)
331 return count;
332
333 dest += dsize;
334 count -= dsize;
335 if (len >= count)
336 len = count-1;
337 memcpy(dest, src, len);
338 dest[len] = 0;
339 return res;
340
341}
342
343#ifdef CONFIG_PPC_PSERIES
344static int __init prom_strtobool(const char *s, bool *res)
345{
346 if (!s)
347 return -EINVAL;
348
349 switch (s[0]) {
350 case 'y':
351 case 'Y':
352 case '1':
353 *res = true;
354 return 0;
355 case 'n':
356 case 'N':
357 case '0':
358 *res = false;
359 return 0;
360 case 'o':
361 case 'O':
362 switch (s[1]) {
363 case 'n':
364 case 'N':
365 *res = true;
366 return 0;
367 case 'f':
368 case 'F':
369 *res = false;
370 return 0;
371 default:
372 break;
373 }
374 break;
375 default:
376 break;
377 }
378
379 return -EINVAL;
380}
381#endif
382
383/* This is the one and *ONLY* place where we actually call open
384 * firmware.
385 */
386
387static int __init call_prom(const char *service, int nargs, int nret, ...)
388{
389 int i;
390 struct prom_args args;
391 va_list list;
392
393 args.service = cpu_to_be32(ADDR(service));
394 args.nargs = cpu_to_be32(nargs);
395 args.nret = cpu_to_be32(nret);
396
397 va_start(list, nret);
398 for (i = 0; i < nargs; i++)
399 args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t));
400 va_end(list);
401
402 for (i = 0; i < nret; i++)
403 args.args[nargs+i] = 0;
404
405 if (enter_prom(args: &args, entry: prom_entry) < 0)
406 return PROM_ERROR;
407
408 return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0;
409}
410
411static int __init call_prom_ret(const char *service, int nargs, int nret,
412 prom_arg_t *rets, ...)
413{
414 int i;
415 struct prom_args args;
416 va_list list;
417
418 args.service = cpu_to_be32(ADDR(service));
419 args.nargs = cpu_to_be32(nargs);
420 args.nret = cpu_to_be32(nret);
421
422 va_start(list, rets);
423 for (i = 0; i < nargs; i++)
424 args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t));
425 va_end(list);
426
427 for (i = 0; i < nret; i++)
428 args.args[nargs+i] = 0;
429
430 if (enter_prom(args: &args, entry: prom_entry) < 0)
431 return PROM_ERROR;
432
433 if (rets != NULL)
434 for (i = 1; i < nret; ++i)
435 rets[i-1] = be32_to_cpu(args.args[nargs+i]);
436
437 return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0;
438}
439
440
441static void __init prom_print(const char *msg)
442{
443 const char *p, *q;
444
445 if (prom.stdout == 0)
446 return;
447
448 for (p = msg; *p != 0; p = q) {
449 for (q = p; *q != 0 && *q != '\n'; ++q)
450 ;
451 if (q > p)
452 call_prom(service: "write", nargs: 3, nret: 1, prom.stdout, p, q - p);
453 if (*q == 0)
454 break;
455 ++q;
456 call_prom(service: "write", nargs: 3, nret: 1, prom.stdout, ADDR("\r\n"), 2);
457 }
458}
459
460
461/*
462 * Both prom_print_hex & prom_print_dec takes an unsigned long as input so that
463 * we do not need __udivdi3 or __umoddi3 on 32bits.
464 */
465static void __init prom_print_hex(unsigned long val)
466{
467 int i, nibbles = sizeof(val)*2;
468 char buf[sizeof(val)*2+1];
469
470 for (i = nibbles-1; i >= 0; i--) {
471 buf[i] = (val & 0xf) + '0';
472 if (buf[i] > '9')
473 buf[i] += ('a'-'0'-10);
474 val >>= 4;
475 }
476 buf[nibbles] = '\0';
477 call_prom(service: "write", nargs: 3, nret: 1, prom.stdout, buf, nibbles);
478}
479
480/* max number of decimal digits in an unsigned long */
481#define UL_DIGITS 21
482static void __init prom_print_dec(unsigned long val)
483{
484 int i, size;
485 char buf[UL_DIGITS+1];
486
487 for (i = UL_DIGITS-1; i >= 0; i--) {
488 buf[i] = (val % 10) + '0';
489 val = val/10;
490 if (val == 0)
491 break;
492 }
493 /* shift stuff down */
494 size = UL_DIGITS - i;
495 call_prom(service: "write", nargs: 3, nret: 1, prom.stdout, buf+i, size);
496}
497
498__printf(1, 2)
499static void __init prom_printf(const char *format, ...)
500{
501 const char *p, *q, *s;
502 va_list args;
503 unsigned long v;
504 long vs;
505 int n = 0;
506
507 va_start(args, format);
508 for (p = format; *p != 0; p = q) {
509 for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
510 ;
511 if (q > p)
512 call_prom(service: "write", nargs: 3, nret: 1, prom.stdout, p, q - p);
513 if (*q == 0)
514 break;
515 if (*q == '\n') {
516 ++q;
517 call_prom(service: "write", nargs: 3, nret: 1, prom.stdout,
518 ADDR("\r\n"), 2);
519 continue;
520 }
521 ++q;
522 if (*q == 0)
523 break;
524 while (*q == 'l') {
525 ++q;
526 ++n;
527 }
528 switch (*q) {
529 case 's':
530 ++q;
531 s = va_arg(args, const char *);
532 prom_print(msg: s);
533 break;
534 case 'x':
535 ++q;
536 switch (n) {
537 case 0:
538 v = va_arg(args, unsigned int);
539 break;
540 case 1:
541 v = va_arg(args, unsigned long);
542 break;
543 case 2:
544 default:
545 v = va_arg(args, unsigned long long);
546 break;
547 }
548 prom_print_hex(val: v);
549 break;
550 case 'u':
551 ++q;
552 switch (n) {
553 case 0:
554 v = va_arg(args, unsigned int);
555 break;
556 case 1:
557 v = va_arg(args, unsigned long);
558 break;
559 case 2:
560 default:
561 v = va_arg(args, unsigned long long);
562 break;
563 }
564 prom_print_dec(val: v);
565 break;
566 case 'd':
567 ++q;
568 switch (n) {
569 case 0:
570 vs = va_arg(args, int);
571 break;
572 case 1:
573 vs = va_arg(args, long);
574 break;
575 case 2:
576 default:
577 vs = va_arg(args, long long);
578 break;
579 }
580 if (vs < 0) {
581 prom_print(msg: "-");
582 vs = -vs;
583 }
584 prom_print_dec(val: vs);
585 break;
586 }
587 }
588 va_end(args);
589}
590
591
592static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
593 unsigned long align)
594{
595
596 if (align == 0 && (OF_WORKAROUNDS & OF_WA_CLAIM)) {
597 /*
598 * Old OF requires we claim physical and virtual separately
599 * and then map explicitly (assuming virtual mode)
600 */
601 int ret;
602 prom_arg_t result;
603
604 ret = call_prom_ret(service: "call-method", nargs: 5, nret: 2, rets: &result,
605 ADDR("claim"), prom.memory,
606 align, size, virt);
607 if (ret != 0 || result == -1)
608 return -1;
609 ret = call_prom_ret(service: "call-method", nargs: 5, nret: 2, rets: &result,
610 ADDR("claim"), prom.mmumap,
611 align, size, virt);
612 if (ret != 0) {
613 call_prom(service: "call-method", nargs: 4, nret: 1, ADDR("release"),
614 prom.memory, size, virt);
615 return -1;
616 }
617 /* the 0x12 is M (coherence) + PP == read/write */
618 call_prom(service: "call-method", nargs: 6, nret: 1,
619 ADDR("map"), prom.mmumap, 0x12, size, virt, virt);
620 return virt;
621 }
622 return call_prom(service: "claim", nargs: 3, nret: 1, (prom_arg_t)virt, (prom_arg_t)size,
623 (prom_arg_t)align);
624}
625
626static void __init __attribute__((noreturn)) prom_panic(const char *reason)
627{
628 prom_print(msg: reason);
629 /* Do not call exit because it clears the screen on pmac
630 * it also causes some sort of double-fault on early pmacs */
631 if (of_platform == PLATFORM_POWERMAC)
632 asm("trap\n");
633
634 /* ToDo: should put up an SRC here on pSeries */
635 call_prom(service: "exit", nargs: 0, nret: 0);
636
637 for (;;) /* should never get here */
638 ;
639}
640
641
642static int __init prom_next_node(phandle *nodep)
643{
644 phandle node;
645
646 if ((node = *nodep) != 0
647 && (*nodep = call_prom(service: "child", nargs: 1, nret: 1, node)) != 0)
648 return 1;
649 if ((*nodep = call_prom(service: "peer", nargs: 1, nret: 1, node)) != 0)
650 return 1;
651 for (;;) {
652 if ((node = call_prom(service: "parent", nargs: 1, nret: 1, node)) == 0)
653 return 0;
654 if ((*nodep = call_prom(service: "peer", nargs: 1, nret: 1, node)) != 0)
655 return 1;
656 }
657}
658
659static inline int __init prom_getprop(phandle node, const char *pname,
660 void *value, size_t valuelen)
661{
662 return call_prom(service: "getprop", nargs: 4, nret: 1, node, ADDR(pname),
663 (u32)(unsigned long) value, (u32) valuelen);
664}
665
666static inline int __init prom_getproplen(phandle node, const char *pname)
667{
668 return call_prom(service: "getproplen", nargs: 2, nret: 1, node, ADDR(pname));
669}
670
671static void __init add_string(char **str, const char *q)
672{
673 char *p = *str;
674
675 while (*q)
676 *p++ = *q++;
677 *p++ = ' ';
678 *str = p;
679}
680
681static char *__init tohex(unsigned int x)
682{
683 static const char digits[] __initconst = "0123456789abcdef";
684 static char result[9] __prombss;
685 int i;
686
687 result[8] = 0;
688 i = 8;
689 do {
690 --i;
691 result[i] = digits[x & 0xf];
692 x >>= 4;
693 } while (x != 0 && i > 0);
694 return &result[i];
695}
696
697static int __init prom_setprop(phandle node, const char *nodename,
698 const char *pname, void *value, size_t valuelen)
699{
700 char cmd[256], *p;
701
702 if (!(OF_WORKAROUNDS & OF_WA_LONGTRAIL))
703 return call_prom(service: "setprop", nargs: 4, nret: 1, node, ADDR(pname),
704 (u32)(unsigned long) value, (u32) valuelen);
705
706 /* gah... setprop doesn't work on longtrail, have to use interpret */
707 p = cmd;
708 add_string(str: &p, q: "dev");
709 add_string(str: &p, q: nodename);
710 add_string(str: &p, q: tohex(x: (u32)(unsigned long) value));
711 add_string(str: &p, q: tohex(x: valuelen));
712 add_string(str: &p, q: tohex(ADDR(pname)));
713 add_string(str: &p, q: tohex(x: prom_strlen(s: pname)));
714 add_string(str: &p, q: "property");
715 *p = 0;
716 return call_prom(service: "interpret", nargs: 1, nret: 1, (u32)(unsigned long) cmd);
717}
718
719/* We can't use the standard versions because of relocation headaches. */
720#define prom_isxdigit(c) \
721 (('0' <= (c) && (c) <= '9') || ('a' <= (c) && (c) <= 'f') || ('A' <= (c) && (c) <= 'F'))
722
723#define prom_isdigit(c) ('0' <= (c) && (c) <= '9')
724#define prom_islower(c) ('a' <= (c) && (c) <= 'z')
725#define prom_toupper(c) (prom_islower(c) ? ((c) - 'a' + 'A') : (c))
726
727static unsigned long __init prom_strtoul(const char *cp, const char **endp)
728{
729 unsigned long result = 0, base = 10, value;
730
731 if (*cp == '0') {
732 base = 8;
733 cp++;
734 if (prom_toupper(*cp) == 'X') {
735 cp++;
736 base = 16;
737 }
738 }
739
740 while (prom_isxdigit(*cp) &&
741 (value = prom_isdigit(*cp) ? *cp - '0' : prom_toupper(*cp) - 'A' + 10) < base) {
742 result = result * base + value;
743 cp++;
744 }
745
746 if (endp)
747 *endp = cp;
748
749 return result;
750}
751
752static unsigned long __init prom_memparse(const char *ptr, const char **retptr)
753{
754 unsigned long ret = prom_strtoul(cp: ptr, endp: retptr);
755 int shift = 0;
756
757 /*
758 * We can't use a switch here because GCC *may* generate a
759 * jump table which won't work, because we're not running at
760 * the address we're linked at.
761 */
762 if ('G' == **retptr || 'g' == **retptr)
763 shift = 30;
764
765 if ('M' == **retptr || 'm' == **retptr)
766 shift = 20;
767
768 if ('K' == **retptr || 'k' == **retptr)
769 shift = 10;
770
771 if (shift) {
772 ret <<= shift;
773 (*retptr)++;
774 }
775
776 return ret;
777}
778
779/*
780 * Early parsing of the command line passed to the kernel, used for
781 * "mem=x" and the options that affect the iommu
782 */
783static void __init early_cmdline_parse(void)
784{
785 const char *opt;
786
787 char *p;
788 int l = 0;
789
790 prom_cmd_line[0] = 0;
791 p = prom_cmd_line;
792
793 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && (long)prom.chosen > 0)
794 l = prom_getprop(node: prom.chosen, pname: "bootargs", value: p, COMMAND_LINE_SIZE-1);
795
796 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || l <= 0 || p[0] == '\0')
797 prom_strlcat(dest: prom_cmd_line, src: " " CONFIG_CMDLINE,
798 count: sizeof(prom_cmd_line));
799
800 prom_printf(format: "command line: %s\n", prom_cmd_line);
801
802#ifdef CONFIG_PPC64
803 opt = prom_strstr(prom_cmd_line, "iommu=");
804 if (opt) {
805 prom_printf("iommu opt is: %s\n", opt);
806 opt += 6;
807 while (*opt && *opt == ' ')
808 opt++;
809 if (!prom_strncmp(opt, "off", 3))
810 prom_iommu_off = 1;
811 else if (!prom_strncmp(opt, "force", 5))
812 prom_iommu_force_on = 1;
813 }
814#endif
815 opt = prom_strstr(s1: prom_cmd_line, s2: "mem=");
816 if (opt) {
817 opt += 4;
818 prom_memory_limit = prom_memparse(ptr: opt, retptr: (const char **)&opt);
819#ifdef CONFIG_PPC64
820 /* Align to 16 MB == size of ppc64 large page */
821 prom_memory_limit = ALIGN(prom_memory_limit, 0x1000000);
822#endif
823 }
824
825#ifdef CONFIG_PPC_PSERIES
826 prom_radix_disable = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
827 opt = prom_strstr(prom_cmd_line, "disable_radix");
828 if (opt) {
829 opt += 13;
830 if (*opt && *opt == '=') {
831 bool val;
832
833 if (prom_strtobool(++opt, &val))
834 prom_radix_disable = false;
835 else
836 prom_radix_disable = val;
837 } else
838 prom_radix_disable = true;
839 }
840 if (prom_radix_disable)
841 prom_debug("Radix disabled from cmdline\n");
842
843 opt = prom_strstr(prom_cmd_line, "radix_hcall_invalidate=on");
844 if (opt) {
845 prom_radix_gtse_disable = true;
846 prom_debug("Radix GTSE disabled from cmdline\n");
847 }
848
849 opt = prom_strstr(prom_cmd_line, "xive=off");
850 if (opt) {
851 prom_xive_disable = true;
852 prom_debug("XIVE disabled from cmdline\n");
853 }
854#endif /* CONFIG_PPC_PSERIES */
855
856#ifdef CONFIG_PPC_SVM
857 opt = prom_strstr(prom_cmd_line, "svm=");
858 if (opt) {
859 bool val;
860
861 opt += sizeof("svm=") - 1;
862 if (!prom_strtobool(opt, &val))
863 prom_svm_enable = val;
864 }
865#endif /* CONFIG_PPC_SVM */
866}
867
868#ifdef CONFIG_PPC_PSERIES
869/*
870 * The architecture vector has an array of PVR mask/value pairs,
871 * followed by # option vectors - 1, followed by the option vectors.
872 *
873 * See prom.h for the definition of the bits specified in the
874 * architecture vector.
875 */
876
877/* Firmware expects the value to be n - 1, where n is the # of vectors */
878#define NUM_VECTORS(n) ((n) - 1)
879
880/*
881 * Firmware expects 1 + n - 2, where n is the length of the option vector in
882 * bytes. The 1 accounts for the length byte itself, the - 2 .. ?
883 */
884#define VECTOR_LENGTH(n) (1 + (n) - 2)
885
886struct option_vector1 {
887 u8 byte1;
888 u8 arch_versions;
889 u8 arch_versions3;
890} __packed;
891
892struct option_vector2 {
893 u8 byte1;
894 __be16 reserved;
895 __be32 real_base;
896 __be32 real_size;
897 __be32 virt_base;
898 __be32 virt_size;
899 __be32 load_base;
900 __be32 min_rma;
901 __be32 min_load;
902 u8 min_rma_percent;
903 u8 max_pft_size;
904} __packed;
905
906struct option_vector3 {
907 u8 byte1;
908 u8 byte2;
909} __packed;
910
911struct option_vector4 {
912 u8 byte1;
913 u8 min_vp_cap;
914} __packed;
915
916struct option_vector5 {
917 u8 byte1;
918 u8 byte2;
919 u8 byte3;
920 u8 cmo;
921 u8 associativity;
922 u8 bin_opts;
923 u8 micro_checkpoint;
924 u8 reserved0;
925 __be32 max_cpus;
926 __be16 papr_level;
927 __be16 reserved1;
928 u8 platform_facilities;
929 u8 reserved2;
930 __be16 reserved3;
931 u8 subprocessors;
932 u8 byte22;
933 u8 intarch;
934 u8 mmu;
935 u8 hash_ext;
936 u8 radix_ext;
937} __packed;
938
939struct option_vector6 {
940 u8 reserved;
941 u8 secondary_pteg;
942 u8 os_name;
943} __packed;
944
945struct option_vector7 {
946 u8 os_id[256];
947} __packed;
948
949struct ibm_arch_vec {
950 struct { __be32 mask, val; } pvrs[16];
951
952 u8 num_vectors;
953
954 u8 vec1_len;
955 struct option_vector1 vec1;
956
957 u8 vec2_len;
958 struct option_vector2 vec2;
959
960 u8 vec3_len;
961 struct option_vector3 vec3;
962
963 u8 vec4_len;
964 struct option_vector4 vec4;
965
966 u8 vec5_len;
967 struct option_vector5 vec5;
968
969 u8 vec6_len;
970 struct option_vector6 vec6;
971
972 u8 vec7_len;
973 struct option_vector7 vec7;
974} __packed;
975
976static const struct ibm_arch_vec ibm_architecture_vec_template __initconst = {
977 .pvrs = {
978 {
979 .mask = cpu_to_be32(0xfffe0000), /* POWER5/POWER5+ */
980 .val = cpu_to_be32(0x003a0000),
981 },
982 {
983 .mask = cpu_to_be32(0xffff0000), /* POWER6 */
984 .val = cpu_to_be32(0x003e0000),
985 },
986 {
987 .mask = cpu_to_be32(0xffff0000), /* POWER7 */
988 .val = cpu_to_be32(0x003f0000),
989 },
990 {
991 .mask = cpu_to_be32(0xffff0000), /* POWER8E */
992 .val = cpu_to_be32(0x004b0000),
993 },
994 {
995 .mask = cpu_to_be32(0xffff0000), /* POWER8NVL */
996 .val = cpu_to_be32(0x004c0000),
997 },
998 {
999 .mask = cpu_to_be32(0xffff0000), /* POWER8 */
1000 .val = cpu_to_be32(0x004d0000),
1001 },
1002 {
1003 .mask = cpu_to_be32(0xffff0000), /* POWER9 */
1004 .val = cpu_to_be32(0x004e0000),
1005 },
1006 {
1007 .mask = cpu_to_be32(0xffff0000), /* POWER10 */
1008 .val = cpu_to_be32(0x00800000),
1009 },
1010 {
1011 .mask = cpu_to_be32(0xffff0000), /* POWER11 */
1012 .val = cpu_to_be32(0x00820000),
1013 },
1014 {
1015 .mask = cpu_to_be32(0xffffffff), /* P11 compliant */
1016 .val = cpu_to_be32(0x0f000007),
1017 },
1018 {
1019 .mask = cpu_to_be32(0xffffffff), /* all 3.1-compliant */
1020 .val = cpu_to_be32(0x0f000006),
1021 },
1022 {
1023 .mask = cpu_to_be32(0xffffffff), /* all 3.00-compliant */
1024 .val = cpu_to_be32(0x0f000005),
1025 },
1026 {
1027 .mask = cpu_to_be32(0xffffffff), /* all 2.07-compliant */
1028 .val = cpu_to_be32(0x0f000004),
1029 },
1030 {
1031 .mask = cpu_to_be32(0xffffffff), /* all 2.06-compliant */
1032 .val = cpu_to_be32(0x0f000003),
1033 },
1034 {
1035 .mask = cpu_to_be32(0xffffffff), /* all 2.05-compliant */
1036 .val = cpu_to_be32(0x0f000002),
1037 },
1038 {
1039 .mask = cpu_to_be32(0xfffffffe), /* all 2.04-compliant and earlier */
1040 .val = cpu_to_be32(0x0f000001),
1041 },
1042 },
1043
1044 .num_vectors = NUM_VECTORS(6),
1045
1046 .vec1_len = VECTOR_LENGTH(sizeof(struct option_vector1)),
1047 .vec1 = {
1048 .byte1 = 0,
1049 .arch_versions = OV1_PPC_2_00 | OV1_PPC_2_01 | OV1_PPC_2_02 | OV1_PPC_2_03 |
1050 OV1_PPC_2_04 | OV1_PPC_2_05 | OV1_PPC_2_06 | OV1_PPC_2_07,
1051 .arch_versions3 = OV1_PPC_3_00 | OV1_PPC_3_1,
1052 },
1053
1054 .vec2_len = VECTOR_LENGTH(sizeof(struct option_vector2)),
1055 /* option vector 2: Open Firmware options supported */
1056 .vec2 = {
1057 .byte1 = OV2_REAL_MODE,
1058 .reserved = 0,
1059 .real_base = cpu_to_be32(0xffffffff),
1060 .real_size = cpu_to_be32(0xffffffff),
1061 .virt_base = cpu_to_be32(0xffffffff),
1062 .virt_size = cpu_to_be32(0xffffffff),
1063 .load_base = cpu_to_be32(0xffffffff),
1064 .min_rma = cpu_to_be32(512), /* 512MB min RMA */
1065 .min_load = cpu_to_be32(0xffffffff), /* full client load */
1066 .min_rma_percent = 0, /* min RMA percentage of total RAM */
1067 .max_pft_size = 48, /* max log_2(hash table size) */
1068 },
1069
1070 .vec3_len = VECTOR_LENGTH(sizeof(struct option_vector3)),
1071 /* option vector 3: processor options supported */
1072 .vec3 = {
1073 .byte1 = 0, /* don't ignore, don't halt */
1074 .byte2 = OV3_FP | OV3_VMX | OV3_DFP,
1075 },
1076
1077 .vec4_len = VECTOR_LENGTH(sizeof(struct option_vector4)),
1078 /* option vector 4: IBM PAPR implementation */
1079 .vec4 = {
1080 .byte1 = 0, /* don't halt */
1081 .min_vp_cap = OV4_MIN_ENT_CAP, /* minimum VP entitled capacity */
1082 },
1083
1084 .vec5_len = VECTOR_LENGTH(sizeof(struct option_vector5)),
1085 /* option vector 5: PAPR/OF options */
1086 .vec5 = {
1087 .byte1 = 0, /* don't ignore, don't halt */
1088 .byte2 = OV5_FEAT(OV5_LPAR) | OV5_FEAT(OV5_SPLPAR) | OV5_FEAT(OV5_LARGE_PAGES) |
1089 OV5_FEAT(OV5_DRCONF_MEMORY) | OV5_FEAT(OV5_DONATE_DEDICATE_CPU) |
1090#ifdef CONFIG_PCI_MSI
1091 /* PCIe/MSI support. Without MSI full PCIe is not supported */
1092 OV5_FEAT(OV5_MSI),
1093#else
1094 0,
1095#endif
1096 .byte3 = 0,
1097 .cmo =
1098#ifdef CONFIG_PPC_SMLPAR
1099 OV5_FEAT(OV5_CMO) | OV5_FEAT(OV5_XCMO),
1100#else
1101 0,
1102#endif
1103 .associativity = OV5_FEAT(OV5_FORM1_AFFINITY) | OV5_FEAT(OV5_PRRN) |
1104 OV5_FEAT(OV5_FORM2_AFFINITY),
1105 .bin_opts = OV5_FEAT(OV5_RESIZE_HPT) | OV5_FEAT(OV5_HP_EVT),
1106 .micro_checkpoint = 0,
1107 .reserved0 = 0,
1108 .max_cpus = cpu_to_be32(NR_CPUS), /* number of cores supported */
1109 .papr_level = 0,
1110 .reserved1 = 0,
1111 .platform_facilities = OV5_FEAT(OV5_PFO_HW_RNG) | OV5_FEAT(OV5_PFO_HW_ENCR) | OV5_FEAT(OV5_PFO_HW_842),
1112 .reserved2 = 0,
1113 .reserved3 = 0,
1114 .subprocessors = 1,
1115 .byte22 = OV5_FEAT(OV5_DRMEM_V2) | OV5_FEAT(OV5_DRC_INFO),
1116 .intarch = 0,
1117 .mmu = 0,
1118 .hash_ext = 0,
1119 .radix_ext = 0,
1120 },
1121
1122 /* option vector 6: IBM PAPR hints */
1123 .vec6_len = VECTOR_LENGTH(sizeof(struct option_vector6)),
1124 .vec6 = {
1125 .reserved = 0,
1126 .secondary_pteg = 0,
1127 .os_name = OV6_LINUX,
1128 },
1129
1130 /* option vector 7: OS Identification */
1131 .vec7_len = VECTOR_LENGTH(sizeof(struct option_vector7)),
1132};
1133
1134static struct ibm_arch_vec __prombss ibm_architecture_vec ____cacheline_aligned;
1135
1136/* Old method - ELF header with PT_NOTE sections only works on BE */
1137#ifdef __BIG_ENDIAN__
1138static const struct fake_elf {
1139 Elf32_Ehdr elfhdr;
1140 Elf32_Phdr phdr[2];
1141 struct chrpnote {
1142 u32 namesz;
1143 u32 descsz;
1144 u32 type;
1145 char name[8]; /* "PowerPC" */
1146 struct chrpdesc {
1147 u32 real_mode;
1148 u32 real_base;
1149 u32 real_size;
1150 u32 virt_base;
1151 u32 virt_size;
1152 u32 load_base;
1153 } chrpdesc;
1154 } chrpnote;
1155 struct rpanote {
1156 u32 namesz;
1157 u32 descsz;
1158 u32 type;
1159 char name[24]; /* "IBM,RPA-Client-Config" */
1160 struct rpadesc {
1161 u32 lpar_affinity;
1162 u32 min_rmo_size;
1163 u32 min_rmo_percent;
1164 u32 max_pft_size;
1165 u32 splpar;
1166 u32 min_load;
1167 u32 new_mem_def;
1168 u32 ignore_me;
1169 } rpadesc;
1170 } rpanote;
1171} fake_elf __initconst = {
1172 .elfhdr = {
1173 .e_ident = { 0x7f, 'E', 'L', 'F',
1174 ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
1175 .e_type = ET_EXEC, /* yeah right */
1176 .e_machine = EM_PPC,
1177 .e_version = EV_CURRENT,
1178 .e_phoff = offsetof(struct fake_elf, phdr),
1179 .e_phentsize = sizeof(Elf32_Phdr),
1180 .e_phnum = 2
1181 },
1182 .phdr = {
1183 [0] = {
1184 .p_type = PT_NOTE,
1185 .p_offset = offsetof(struct fake_elf, chrpnote),
1186 .p_filesz = sizeof(struct chrpnote)
1187 }, [1] = {
1188 .p_type = PT_NOTE,
1189 .p_offset = offsetof(struct fake_elf, rpanote),
1190 .p_filesz = sizeof(struct rpanote)
1191 }
1192 },
1193 .chrpnote = {
1194 .namesz = sizeof("PowerPC"),
1195 .descsz = sizeof(struct chrpdesc),
1196 .type = 0x1275,
1197 .name = "PowerPC",
1198 .chrpdesc = {
1199 .real_mode = ~0U, /* ~0 means "don't care" */
1200 .real_base = ~0U,
1201 .real_size = ~0U,
1202 .virt_base = ~0U,
1203 .virt_size = ~0U,
1204 .load_base = ~0U
1205 },
1206 },
1207 .rpanote = {
1208 .namesz = sizeof("IBM,RPA-Client-Config"),
1209 .descsz = sizeof(struct rpadesc),
1210 .type = 0x12759999,
1211 .name = "IBM,RPA-Client-Config",
1212 .rpadesc = {
1213 .lpar_affinity = 0,
1214 .min_rmo_size = 64, /* in megabytes */
1215 .min_rmo_percent = 0,
1216 .max_pft_size = 48, /* 2^48 bytes max PFT size */
1217 .splpar = 1,
1218 .min_load = ~0U,
1219 .new_mem_def = 0
1220 }
1221 }
1222};
1223#endif /* __BIG_ENDIAN__ */
1224
1225static int __init prom_count_smt_threads(void)
1226{
1227 phandle node;
1228 char type[64];
1229 unsigned int plen;
1230
1231 /* Pick up th first CPU node we can find */
1232 for (node = 0; prom_next_node(&node); ) {
1233 type[0] = 0;
1234 prom_getprop(node, "device_type", type, sizeof(type));
1235
1236 if (prom_strcmp(type, "cpu"))
1237 continue;
1238 /*
1239 * There is an entry for each smt thread, each entry being
1240 * 4 bytes long. All cpus should have the same number of
1241 * smt threads, so return after finding the first.
1242 */
1243 plen = prom_getproplen(node, "ibm,ppc-interrupt-server#s");
1244 if (plen == PROM_ERROR)
1245 break;
1246 plen >>= 2;
1247 prom_debug("Found %lu smt threads per core\n", (unsigned long)plen);
1248
1249 /* Sanity check */
1250 if (plen < 1 || plen > 64) {
1251 prom_printf("Threads per core %lu out of bounds, assuming 1\n",
1252 (unsigned long)plen);
1253 return 1;
1254 }
1255 return plen;
1256 }
1257 prom_debug("No threads found, assuming 1 per core\n");
1258
1259 return 1;
1260
1261}
1262
1263static void __init prom_parse_mmu_model(u8 val,
1264 struct platform_support *support)
1265{
1266 switch (val) {
1267 case OV5_FEAT(OV5_MMU_DYNAMIC):
1268 case OV5_FEAT(OV5_MMU_EITHER): /* Either Available */
1269 prom_debug("MMU - either supported\n");
1270 support->radix_mmu = !prom_radix_disable;
1271 support->hash_mmu = true;
1272 break;
1273 case OV5_FEAT(OV5_MMU_RADIX): /* Only Radix */
1274 prom_debug("MMU - radix only\n");
1275 if (prom_radix_disable) {
1276 /*
1277 * If we __have__ to do radix, we're better off ignoring
1278 * the command line rather than not booting.
1279 */
1280 prom_printf("WARNING: Ignoring cmdline option disable_radix\n");
1281 }
1282 support->radix_mmu = true;
1283 break;
1284 case OV5_FEAT(OV5_MMU_HASH):
1285 prom_debug("MMU - hash only\n");
1286 support->hash_mmu = true;
1287 break;
1288 default:
1289 prom_debug("Unknown mmu support option: 0x%x\n", val);
1290 break;
1291 }
1292}
1293
1294static void __init prom_parse_xive_model(u8 val,
1295 struct platform_support *support)
1296{
1297 switch (val) {
1298 case OV5_FEAT(OV5_XIVE_EITHER): /* Either Available */
1299 prom_debug("XIVE - either mode supported\n");
1300 support->xive = !prom_xive_disable;
1301 break;
1302 case OV5_FEAT(OV5_XIVE_EXPLOIT): /* Only Exploitation mode */
1303 prom_debug("XIVE - exploitation mode supported\n");
1304 if (prom_xive_disable) {
1305 /*
1306 * If we __have__ to do XIVE, we're better off ignoring
1307 * the command line rather than not booting.
1308 */
1309 prom_printf("WARNING: Ignoring cmdline option xive=off\n");
1310 }
1311 support->xive = true;
1312 break;
1313 case OV5_FEAT(OV5_XIVE_LEGACY): /* Only Legacy mode */
1314 prom_debug("XIVE - legacy mode supported\n");
1315 break;
1316 default:
1317 prom_debug("Unknown xive support option: 0x%x\n", val);
1318 break;
1319 }
1320}
1321
1322static void __init prom_parse_platform_support(u8 index, u8 val,
1323 struct platform_support *support)
1324{
1325 switch (index) {
1326 case OV5_INDX(OV5_MMU_SUPPORT): /* MMU Model */
1327 prom_parse_mmu_model(val & OV5_FEAT(OV5_MMU_SUPPORT), support);
1328 break;
1329 case OV5_INDX(OV5_RADIX_GTSE): /* Radix Extensions */
1330 if (val & OV5_FEAT(OV5_RADIX_GTSE))
1331 support->radix_gtse = !prom_radix_gtse_disable;
1332 break;
1333 case OV5_INDX(OV5_XIVE_SUPPORT): /* Interrupt mode */
1334 prom_parse_xive_model(val & OV5_FEAT(OV5_XIVE_SUPPORT),
1335 support);
1336 break;
1337 }
1338}
1339
1340static void __init prom_check_platform_support(void)
1341{
1342 struct platform_support supported = {
1343 .hash_mmu = false,
1344 .radix_mmu = false,
1345 .radix_gtse = false,
1346 .xive = false
1347 };
1348 int prop_len = prom_getproplen(prom.chosen,
1349 "ibm,arch-vec-5-platform-support");
1350
1351 /*
1352 * First copy the architecture vec template
1353 *
1354 * use memcpy() instead of *vec = *vec_template so that GCC replaces it
1355 * by __memcpy() when KASAN is active
1356 */
1357 memcpy(&ibm_architecture_vec, &ibm_architecture_vec_template,
1358 sizeof(ibm_architecture_vec));
1359
1360 prom_strscpy_pad(ibm_architecture_vec.vec7.os_id, linux_banner, 256);
1361
1362 if (prop_len > 1) {
1363 int i;
1364 u8 vec[8];
1365 prom_debug("Found ibm,arch-vec-5-platform-support, len: %d\n",
1366 prop_len);
1367 if (prop_len > sizeof(vec))
1368 prom_printf("WARNING: ibm,arch-vec-5-platform-support longer than expected (len: %d)\n",
1369 prop_len);
1370 prom_getprop(prom.chosen, "ibm,arch-vec-5-platform-support", &vec, sizeof(vec));
1371 for (i = 0; i < prop_len; i += 2) {
1372 prom_debug("%d: index = 0x%x val = 0x%x\n", i / 2, vec[i], vec[i + 1]);
1373 prom_parse_platform_support(vec[i], vec[i + 1], &supported);
1374 }
1375 }
1376
1377 if (supported.radix_mmu && IS_ENABLED(CONFIG_PPC_RADIX_MMU)) {
1378 /* Radix preferred - Check if GTSE is also supported */
1379 prom_debug("Asking for radix\n");
1380 ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_RADIX);
1381 if (supported.radix_gtse)
1382 ibm_architecture_vec.vec5.radix_ext =
1383 OV5_FEAT(OV5_RADIX_GTSE);
1384 else
1385 prom_debug("Radix GTSE isn't supported\n");
1386 } else if (supported.hash_mmu) {
1387 /* Default to hash mmu (if we can) */
1388 prom_debug("Asking for hash\n");
1389 ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_HASH);
1390 } else {
1391 /* We're probably on a legacy hypervisor */
1392 prom_debug("Assuming legacy hash support\n");
1393 }
1394
1395 if (supported.xive) {
1396 prom_debug("Asking for XIVE\n");
1397 ibm_architecture_vec.vec5.intarch = OV5_FEAT(OV5_XIVE_EXPLOIT);
1398 }
1399}
1400
1401static void __init prom_send_capabilities(void)
1402{
1403 ihandle root;
1404 prom_arg_t ret;
1405 u32 cores;
1406
1407 /* Check ibm,arch-vec-5-platform-support and fixup vec5 if required */
1408 prom_check_platform_support();
1409
1410 root = call_prom("open", 1, 1, ADDR("/"));
1411 if (root != 0) {
1412 /* We need to tell the FW about the number of cores we support.
1413 *
1414 * To do that, we count the number of threads on the first core
1415 * (we assume this is the same for all cores) and use it to
1416 * divide NR_CPUS.
1417 */
1418
1419 cores = DIV_ROUND_UP(NR_CPUS, prom_count_smt_threads());
1420 prom_printf("Max number of cores passed to firmware: %u (NR_CPUS = %d)\n",
1421 cores, NR_CPUS);
1422
1423 ibm_architecture_vec.vec5.max_cpus = cpu_to_be32(cores);
1424
1425 /* try calling the ibm,client-architecture-support method */
1426 prom_printf("Calling ibm,client-architecture-support...");
1427 if (call_prom_ret("call-method", 3, 2, &ret,
1428 ADDR("ibm,client-architecture-support"),
1429 root,
1430 ADDR(&ibm_architecture_vec)) == 0) {
1431 /* the call exists... */
1432 if (ret)
1433 prom_printf("\nWARNING: ibm,client-architecture"
1434 "-support call FAILED!\n");
1435 call_prom("close", 1, 0, root);
1436 prom_printf(" done\n");
1437 return;
1438 }
1439 call_prom("close", 1, 0, root);
1440 prom_printf(" not implemented\n");
1441 }
1442
1443#ifdef __BIG_ENDIAN__
1444 {
1445 ihandle elfloader;
1446
1447 /* no ibm,client-architecture-support call, try the old way */
1448 elfloader = call_prom("open", 1, 1,
1449 ADDR("/packages/elf-loader"));
1450 if (elfloader == 0) {
1451 prom_printf("couldn't open /packages/elf-loader\n");
1452 return;
1453 }
1454 call_prom("call-method", 3, 1, ADDR("process-elf-header"),
1455 elfloader, ADDR(&fake_elf));
1456 call_prom("close", 1, 0, elfloader);
1457 }
1458#endif /* __BIG_ENDIAN__ */
1459}
1460#endif /* CONFIG_PPC_PSERIES */
1461
1462/*
1463 * Memory allocation strategy... our layout is normally:
1464 *
1465 * at 14Mb or more we have vmlinux, then a gap and initrd. In some
1466 * rare cases, initrd might end up being before the kernel though.
1467 * We assume this won't override the final kernel at 0, we have no
1468 * provision to handle that in this version, but it should hopefully
1469 * never happen.
1470 *
1471 * alloc_top is set to the top of RMO, eventually shrink down if the
1472 * TCEs overlap
1473 *
1474 * alloc_bottom is set to the top of kernel/initrd
1475 *
1476 * from there, allocations are done this way : rtas is allocated
1477 * topmost, and the device-tree is allocated from the bottom. We try
1478 * to grow the device-tree allocation as we progress. If we can't,
1479 * then we fail, we don't currently have a facility to restart
1480 * elsewhere, but that shouldn't be necessary.
1481 *
1482 * Note that calls to reserve_mem have to be done explicitly, memory
1483 * allocated with either alloc_up or alloc_down isn't automatically
1484 * reserved.
1485 */
1486
1487
1488/*
1489 * Allocates memory in the RMO upward from the kernel/initrd
1490 *
1491 * When align is 0, this is a special case, it means to allocate in place
1492 * at the current location of alloc_bottom or fail (that is basically
1493 * extending the previous allocation). Used for the device-tree flattening
1494 */
1495static unsigned long __init alloc_up(unsigned long size, unsigned long align)
1496{
1497 unsigned long base = alloc_bottom;
1498 unsigned long addr = 0;
1499
1500 if (align)
1501 base = ALIGN(base, align);
1502 prom_debug("%s(%lx, %lx)\n", __func__, size, align);
1503 if (ram_top == 0)
1504 prom_panic(reason: "alloc_up() called with mem not initialized\n");
1505
1506 if (align)
1507 base = ALIGN(alloc_bottom, align);
1508 else
1509 base = alloc_bottom;
1510
1511 for(; (base + size) <= alloc_top;
1512 base = ALIGN(base + 0x100000, align)) {
1513 prom_debug(" trying: 0x%lx\n\r", base);
1514 addr = (unsigned long)prom_claim(virt: base, size, align: 0);
1515 if (addr != PROM_ERROR && addr != 0)
1516 break;
1517 addr = 0;
1518 if (align == 0)
1519 break;
1520 }
1521 if (addr == 0)
1522 return 0;
1523 alloc_bottom = addr + size;
1524
1525 prom_debug(" -> %lx\n", addr);
1526 prom_debug(" alloc_bottom : %lx\n", alloc_bottom);
1527 prom_debug(" alloc_top : %lx\n", alloc_top);
1528 prom_debug(" alloc_top_hi : %lx\n", alloc_top_high);
1529 prom_debug(" rmo_top : %lx\n", rmo_top);
1530 prom_debug(" ram_top : %lx\n", ram_top);
1531
1532 return addr;
1533}
1534
1535/*
1536 * Allocates memory downward, either from top of RMO, or if highmem
1537 * is set, from the top of RAM. Note that this one doesn't handle
1538 * failures. It does claim memory if highmem is not set.
1539 */
1540static unsigned long __init alloc_down(unsigned long size, unsigned long align,
1541 int highmem)
1542{
1543 unsigned long base, addr = 0;
1544
1545 prom_debug("%s(%lx, %lx, %s)\n", __func__, size, align,
1546 highmem ? "(high)" : "(low)");
1547 if (ram_top == 0)
1548 prom_panic(reason: "alloc_down() called with mem not initialized\n");
1549
1550 if (highmem) {
1551 /* Carve out storage for the TCE table. */
1552 addr = ALIGN_DOWN(alloc_top_high - size, align);
1553 if (addr <= alloc_bottom)
1554 return 0;
1555 /* Will we bump into the RMO ? If yes, check out that we
1556 * didn't overlap existing allocations there, if we did,
1557 * we are dead, we must be the first in town !
1558 */
1559 if (addr < rmo_top) {
1560 /* Good, we are first */
1561 if (alloc_top == rmo_top)
1562 alloc_top = rmo_top = addr;
1563 else
1564 return 0;
1565 }
1566 alloc_top_high = addr;
1567 goto bail;
1568 }
1569
1570 base = ALIGN_DOWN(alloc_top - size, align);
1571 for (; base > alloc_bottom;
1572 base = ALIGN_DOWN(base - 0x100000, align)) {
1573 prom_debug(" trying: 0x%lx\n\r", base);
1574 addr = (unsigned long)prom_claim(virt: base, size, align: 0);
1575 if (addr != PROM_ERROR && addr != 0)
1576 break;
1577 addr = 0;
1578 }
1579 if (addr == 0)
1580 return 0;
1581 alloc_top = addr;
1582
1583 bail:
1584 prom_debug(" -> %lx\n", addr);
1585 prom_debug(" alloc_bottom : %lx\n", alloc_bottom);
1586 prom_debug(" alloc_top : %lx\n", alloc_top);
1587 prom_debug(" alloc_top_hi : %lx\n", alloc_top_high);
1588 prom_debug(" rmo_top : %lx\n", rmo_top);
1589 prom_debug(" ram_top : %lx\n", ram_top);
1590
1591 return addr;
1592}
1593
1594/*
1595 * Parse a "reg" cell
1596 */
1597static unsigned long __init prom_next_cell(int s, cell_t **cellp)
1598{
1599 cell_t *p = *cellp;
1600 unsigned long r = 0;
1601
1602 /* Ignore more than 2 cells */
1603 while (s > sizeof(unsigned long) / 4) {
1604 p++;
1605 s--;
1606 }
1607 r = be32_to_cpu(*p++);
1608#ifdef CONFIG_PPC64
1609 if (s > 1) {
1610 r <<= 32;
1611 r |= be32_to_cpu(*(p++));
1612 }
1613#endif
1614 *cellp = p;
1615 return r;
1616}
1617
1618/*
1619 * Very dumb function for adding to the memory reserve list, but
1620 * we don't need anything smarter at this point
1621 *
1622 * XXX Eventually check for collisions. They should NEVER happen.
1623 * If problems seem to show up, it would be a good start to track
1624 * them down.
1625 */
1626static void __init reserve_mem(u64 base, u64 size)
1627{
1628 u64 top = base + size;
1629 unsigned long cnt = mem_reserve_cnt;
1630
1631 if (size == 0)
1632 return;
1633
1634 /* We need to always keep one empty entry so that we
1635 * have our terminator with "size" set to 0 since we are
1636 * dumb and just copy this entire array to the boot params
1637 */
1638 base = ALIGN_DOWN(base, PAGE_SIZE);
1639 top = ALIGN(top, PAGE_SIZE);
1640 size = top - base;
1641
1642 if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
1643 prom_panic(reason: "Memory reserve map exhausted !\n");
1644 mem_reserve_map[cnt].base = cpu_to_be64(base);
1645 mem_reserve_map[cnt].size = cpu_to_be64(size);
1646 mem_reserve_cnt = cnt + 1;
1647}
1648
1649/*
1650 * Initialize memory allocation mechanism, parse "memory" nodes and
1651 * obtain that way the top of memory and RMO to setup out local allocator
1652 */
1653static void __init prom_init_mem(void)
1654{
1655 phandle node;
1656 char type[64];
1657 unsigned int plen;
1658 cell_t *p, *endp;
1659 __be32 val;
1660 u32 rac, rsc;
1661
1662 /*
1663 * We iterate the memory nodes to find
1664 * 1) top of RMO (first node)
1665 * 2) top of memory
1666 */
1667 val = cpu_to_be32(2);
1668 prom_getprop(node: prom.root, pname: "#address-cells", value: &val, valuelen: sizeof(val));
1669 rac = be32_to_cpu(val);
1670 val = cpu_to_be32(1);
1671 prom_getprop(node: prom.root, pname: "#size-cells", value: &val, valuelen: sizeof(rsc));
1672 rsc = be32_to_cpu(val);
1673 prom_debug("root_addr_cells: %x\n", rac);
1674 prom_debug("root_size_cells: %x\n", rsc);
1675
1676 prom_debug("scanning memory:\n");
1677
1678 for (node = 0; prom_next_node(nodep: &node); ) {
1679 type[0] = 0;
1680 prom_getprop(node, pname: "device_type", value: type, valuelen: sizeof(type));
1681
1682 if (type[0] == 0) {
1683 /*
1684 * CHRP Longtrail machines have no device_type
1685 * on the memory node, so check the name instead...
1686 */
1687 prom_getprop(node, pname: "name", value: type, valuelen: sizeof(type));
1688 }
1689 if (prom_strcmp(cs: type, ct: "memory"))
1690 continue;
1691
1692 plen = prom_getprop(node, pname: "reg", value: regbuf, valuelen: sizeof(regbuf));
1693 if (plen > sizeof(regbuf)) {
1694 prom_printf(format: "memory node too large for buffer !\n");
1695 plen = sizeof(regbuf);
1696 }
1697 p = regbuf;
1698 endp = p + (plen / sizeof(cell_t));
1699
1700#ifdef DEBUG_PROM
1701 memset(prom_scratch, 0, sizeof(prom_scratch));
1702 call_prom("package-to-path", 3, 1, node, prom_scratch,
1703 sizeof(prom_scratch) - 1);
1704 prom_debug(" node %s :\n", prom_scratch);
1705#endif /* DEBUG_PROM */
1706
1707 while ((endp - p) >= (rac + rsc)) {
1708 unsigned long base, size;
1709
1710 base = prom_next_cell(s: rac, cellp: &p);
1711 size = prom_next_cell(s: rsc, cellp: &p);
1712
1713 if (size == 0)
1714 continue;
1715 prom_debug(" %lx %lx\n", base, size);
1716 if (base == 0 && (of_platform & PLATFORM_LPAR))
1717 rmo_top = size;
1718 if ((base + size) > ram_top)
1719 ram_top = base + size;
1720 }
1721 }
1722
1723 alloc_bottom = PAGE_ALIGN((unsigned long)&_end + 0x4000);
1724
1725 /*
1726 * If prom_memory_limit is set we reduce the upper limits *except* for
1727 * alloc_top_high. This must be the real top of RAM so we can put
1728 * TCE's up there.
1729 */
1730
1731 alloc_top_high = ram_top;
1732
1733 if (prom_memory_limit) {
1734 if (prom_memory_limit <= alloc_bottom) {
1735 prom_printf(format: "Ignoring mem=%lx <= alloc_bottom.\n",
1736 prom_memory_limit);
1737 prom_memory_limit = 0;
1738 } else if (prom_memory_limit >= ram_top) {
1739 prom_printf(format: "Ignoring mem=%lx >= ram_top.\n",
1740 prom_memory_limit);
1741 prom_memory_limit = 0;
1742 } else {
1743 ram_top = prom_memory_limit;
1744 rmo_top = min(rmo_top, prom_memory_limit);
1745 }
1746 }
1747
1748 /*
1749 * Setup our top alloc point, that is top of RMO or top of
1750 * segment 0 when running non-LPAR.
1751 * Some RS64 machines have buggy firmware where claims up at
1752 * 1GB fail. Cap at 768MB as a workaround.
1753 * Since 768MB is plenty of room, and we need to cap to something
1754 * reasonable on 32-bit, cap at 768MB on all machines.
1755 */
1756 if (!rmo_top)
1757 rmo_top = ram_top;
1758 rmo_top = min(0x30000000ul, rmo_top);
1759 alloc_top = rmo_top;
1760 alloc_top_high = ram_top;
1761
1762 /*
1763 * Check if we have an initrd after the kernel but still inside
1764 * the RMO. If we do move our bottom point to after it.
1765 */
1766 if (prom_initrd_start &&
1767 prom_initrd_start < rmo_top &&
1768 prom_initrd_end > alloc_bottom)
1769 alloc_bottom = PAGE_ALIGN(prom_initrd_end);
1770
1771 prom_printf(format: "memory layout at init:\n");
1772 prom_printf(format: " memory_limit : %lx (16 MB aligned)\n",
1773 prom_memory_limit);
1774 prom_printf(format: " alloc_bottom : %lx\n", alloc_bottom);
1775 prom_printf(format: " alloc_top : %lx\n", alloc_top);
1776 prom_printf(format: " alloc_top_hi : %lx\n", alloc_top_high);
1777 prom_printf(format: " rmo_top : %lx\n", rmo_top);
1778 prom_printf(format: " ram_top : %lx\n", ram_top);
1779}
1780
1781static void __init prom_close_stdin(void)
1782{
1783 __be32 val;
1784 ihandle stdin;
1785
1786 if (prom_getprop(node: prom.chosen, pname: "stdin", value: &val, valuelen: sizeof(val)) > 0) {
1787 stdin = be32_to_cpu(val);
1788 call_prom(service: "close", nargs: 1, nret: 0, stdin);
1789 }
1790}
1791
1792#ifdef CONFIG_PPC_SVM
1793static int __init prom_rtas_hcall(uint64_t args)
1794{
1795 register uint64_t arg1 asm("r3") = H_RTAS;
1796 register uint64_t arg2 asm("r4") = args;
1797
1798 asm volatile("sc 1\n" : "=r" (arg1) :
1799 "r" (arg1),
1800 "r" (arg2) :);
1801 srr_regs_clobbered();
1802
1803 return arg1;
1804}
1805
1806static struct rtas_args __prombss os_term_args;
1807
1808static void __init prom_rtas_os_term(char *str)
1809{
1810 phandle rtas_node;
1811 __be32 val;
1812 u32 token;
1813
1814 prom_debug("%s: start...\n", __func__);
1815 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas"));
1816 prom_debug("rtas_node: %x\n", rtas_node);
1817 if (!PHANDLE_VALID(rtas_node))
1818 return;
1819
1820 val = 0;
1821 prom_getprop(rtas_node, "ibm,os-term", &val, sizeof(val));
1822 token = be32_to_cpu(val);
1823 prom_debug("ibm,os-term: %x\n", token);
1824 if (token == 0)
1825 prom_panic("Could not get token for ibm,os-term\n");
1826 os_term_args.token = cpu_to_be32(token);
1827 os_term_args.nargs = cpu_to_be32(1);
1828 os_term_args.nret = cpu_to_be32(1);
1829 os_term_args.args[0] = cpu_to_be32(__pa(str));
1830 prom_rtas_hcall((uint64_t)&os_term_args);
1831}
1832#endif /* CONFIG_PPC_SVM */
1833
1834/*
1835 * Allocate room for and instantiate RTAS
1836 */
1837static void __init prom_instantiate_rtas(void)
1838{
1839 phandle rtas_node;
1840 ihandle rtas_inst;
1841 u32 base, entry = 0;
1842 __be32 val;
1843 u32 size = 0;
1844
1845 prom_debug("prom_instantiate_rtas: start...\n");
1846
1847 rtas_node = call_prom(service: "finddevice", nargs: 1, nret: 1, ADDR("/rtas"));
1848 prom_debug("rtas_node: %x\n", rtas_node);
1849 if (!PHANDLE_VALID(rtas_node))
1850 return;
1851
1852 val = 0;
1853 prom_getprop(node: rtas_node, pname: "rtas-size", value: &val, valuelen: sizeof(size));
1854 size = be32_to_cpu(val);
1855 if (size == 0)
1856 return;
1857
1858 base = alloc_down(size, PAGE_SIZE, highmem: 0);
1859 if (base == 0)
1860 prom_panic(reason: "Could not allocate memory for RTAS\n");
1861
1862 rtas_inst = call_prom(service: "open", nargs: 1, nret: 1, ADDR("/rtas"));
1863 if (!IHANDLE_VALID(rtas_inst)) {
1864 prom_printf(format: "opening rtas package failed (%x)\n", rtas_inst);
1865 return;
1866 }
1867
1868 prom_printf(format: "instantiating rtas at 0x%x...", base);
1869
1870 if (call_prom_ret(service: "call-method", nargs: 3, nret: 2, rets: &entry,
1871 ADDR("instantiate-rtas"),
1872 rtas_inst, base) != 0
1873 || entry == 0) {
1874 prom_printf(format: " failed\n");
1875 return;
1876 }
1877 prom_printf(format: " done\n");
1878
1879 reserve_mem(base, size);
1880
1881 val = cpu_to_be32(base);
1882 prom_setprop(node: rtas_node, nodename: "/rtas", pname: "linux,rtas-base",
1883 value: &val, valuelen: sizeof(val));
1884 val = cpu_to_be32(entry);
1885 prom_setprop(node: rtas_node, nodename: "/rtas", pname: "linux,rtas-entry",
1886 value: &val, valuelen: sizeof(val));
1887
1888 /* Check if it supports "query-cpu-stopped-state" */
1889 if (prom_getprop(node: rtas_node, pname: "query-cpu-stopped-state",
1890 value: &val, valuelen: sizeof(val)) != PROM_ERROR)
1891 rtas_has_query_cpu_stopped = true;
1892
1893 prom_debug("rtas base = 0x%x\n", base);
1894 prom_debug("rtas entry = 0x%x\n", entry);
1895 prom_debug("rtas size = 0x%x\n", size);
1896
1897 prom_debug("prom_instantiate_rtas: end...\n");
1898}
1899
1900#ifdef CONFIG_PPC64
1901/*
1902 * Allocate room for and instantiate Stored Measurement Log (SML)
1903 */
1904static void __init prom_instantiate_sml(void)
1905{
1906 phandle ibmvtpm_node;
1907 ihandle ibmvtpm_inst;
1908 u32 entry = 0, size = 0, succ = 0;
1909 u64 base;
1910 __be32 val;
1911
1912 prom_debug("prom_instantiate_sml: start...\n");
1913
1914 ibmvtpm_node = call_prom("finddevice", 1, 1, ADDR("/vdevice/vtpm"));
1915 prom_debug("ibmvtpm_node: %x\n", ibmvtpm_node);
1916 if (!PHANDLE_VALID(ibmvtpm_node))
1917 return;
1918
1919 ibmvtpm_inst = call_prom("open", 1, 1, ADDR("/vdevice/vtpm"));
1920 if (!IHANDLE_VALID(ibmvtpm_inst)) {
1921 prom_printf("opening vtpm package failed (%x)\n", ibmvtpm_inst);
1922 return;
1923 }
1924
1925 if (prom_getprop(ibmvtpm_node, "ibm,sml-efi-reformat-supported",
1926 &val, sizeof(val)) != PROM_ERROR) {
1927 if (call_prom_ret("call-method", 2, 2, &succ,
1928 ADDR("reformat-sml-to-efi-alignment"),
1929 ibmvtpm_inst) != 0 || succ == 0) {
1930 prom_printf("Reformat SML to EFI alignment failed\n");
1931 return;
1932 }
1933
1934 if (call_prom_ret("call-method", 2, 2, &size,
1935 ADDR("sml-get-allocated-size"),
1936 ibmvtpm_inst) != 0 || size == 0) {
1937 prom_printf("SML get allocated size failed\n");
1938 return;
1939 }
1940 } else {
1941 if (call_prom_ret("call-method", 2, 2, &size,
1942 ADDR("sml-get-handover-size"),
1943 ibmvtpm_inst) != 0 || size == 0) {
1944 prom_printf("SML get handover size failed\n");
1945 return;
1946 }
1947 }
1948
1949 base = alloc_down(size, PAGE_SIZE, 0);
1950 if (base == 0)
1951 prom_panic("Could not allocate memory for sml\n");
1952
1953 prom_printf("instantiating sml at 0x%llx...", base);
1954
1955 memset((void *)base, 0, size);
1956
1957 if (call_prom_ret("call-method", 4, 2, &entry,
1958 ADDR("sml-handover"),
1959 ibmvtpm_inst, size, base) != 0 || entry == 0) {
1960 prom_printf("SML handover failed\n");
1961 return;
1962 }
1963 prom_printf(" done\n");
1964
1965 reserve_mem(base, size);
1966
1967 prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-base",
1968 &base, sizeof(base));
1969 prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-size",
1970 &size, sizeof(size));
1971
1972 prom_debug("sml base = 0x%llx\n", base);
1973 prom_debug("sml size = 0x%x\n", size);
1974
1975 prom_debug("prom_instantiate_sml: end...\n");
1976}
1977
1978/*
1979 * Allocate room for and initialize TCE tables
1980 */
1981#ifdef __BIG_ENDIAN__
1982static void __init prom_initialize_tce_table(void)
1983{
1984 phandle node;
1985 ihandle phb_node;
1986 char compatible[64], type[64], model[64];
1987 char *path = prom_scratch;
1988 u64 base, align;
1989 u32 minalign, minsize;
1990 u64 tce_entry, *tce_entryp;
1991 u64 local_alloc_top, local_alloc_bottom;
1992 u64 i;
1993
1994 if (prom_iommu_off)
1995 return;
1996
1997 prom_debug("starting prom_initialize_tce_table\n");
1998
1999 /* Cache current top of allocs so we reserve a single block */
2000 local_alloc_top = alloc_top_high;
2001 local_alloc_bottom = local_alloc_top;
2002
2003 /* Search all nodes looking for PHBs. */
2004 for (node = 0; prom_next_node(&node); ) {
2005 compatible[0] = 0;
2006 type[0] = 0;
2007 model[0] = 0;
2008 prom_getprop(node, "compatible",
2009 compatible, sizeof(compatible));
2010 prom_getprop(node, "device_type", type, sizeof(type));
2011 prom_getprop(node, "model", model, sizeof(model));
2012
2013 if ((type[0] == 0) || (prom_strstr(type, "pci") == NULL))
2014 continue;
2015
2016 /* Keep the old logic intact to avoid regression. */
2017 if (compatible[0] != 0) {
2018 if ((prom_strstr(compatible, "python") == NULL) &&
2019 (prom_strstr(compatible, "Speedwagon") == NULL) &&
2020 (prom_strstr(compatible, "Winnipeg") == NULL))
2021 continue;
2022 } else if (model[0] != 0) {
2023 if ((prom_strstr(model, "ython") == NULL) &&
2024 (prom_strstr(model, "peedwagon") == NULL) &&
2025 (prom_strstr(model, "innipeg") == NULL))
2026 continue;
2027 }
2028
2029 if (prom_getprop(node, "tce-table-minalign", &minalign,
2030 sizeof(minalign)) == PROM_ERROR)
2031 minalign = 0;
2032 if (prom_getprop(node, "tce-table-minsize", &minsize,
2033 sizeof(minsize)) == PROM_ERROR)
2034 minsize = 4UL << 20;
2035
2036 /*
2037 * Even though we read what OF wants, we just set the table
2038 * size to 4 MB. This is enough to map 2GB of PCI DMA space.
2039 * By doing this, we avoid the pitfalls of trying to DMA to
2040 * MMIO space and the DMA alias hole.
2041 */
2042 minsize = 4UL << 20;
2043
2044 /* Align to the greater of the align or size */
2045 align = max(minalign, minsize);
2046 base = alloc_down(minsize, align, 1);
2047 if (base == 0)
2048 prom_panic("ERROR, cannot find space for TCE table.\n");
2049 if (base < local_alloc_bottom)
2050 local_alloc_bottom = base;
2051
2052 /* It seems OF doesn't null-terminate the path :-( */
2053 memset(path, 0, sizeof(prom_scratch));
2054 /* Call OF to setup the TCE hardware */
2055 if (call_prom("package-to-path", 3, 1, node,
2056 path, sizeof(prom_scratch) - 1) == PROM_ERROR) {
2057 prom_printf("package-to-path failed\n");
2058 }
2059
2060 /* Save away the TCE table attributes for later use. */
2061 prom_setprop(node, path, "linux,tce-base", &base, sizeof(base));
2062 prom_setprop(node, path, "linux,tce-size", &minsize, sizeof(minsize));
2063
2064 prom_debug("TCE table: %s\n", path);
2065 prom_debug("\tnode = 0x%x\n", node);
2066 prom_debug("\tbase = 0x%llx\n", base);
2067 prom_debug("\tsize = 0x%x\n", minsize);
2068
2069 /* Initialize the table to have a one-to-one mapping
2070 * over the allocated size.
2071 */
2072 tce_entryp = (u64 *)base;
2073 for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
2074 tce_entry = (i << PAGE_SHIFT);
2075 tce_entry |= 0x3;
2076 *tce_entryp = tce_entry;
2077 }
2078
2079 prom_printf("opening PHB %s", path);
2080 phb_node = call_prom("open", 1, 1, path);
2081 if (phb_node == 0)
2082 prom_printf("... failed\n");
2083 else
2084 prom_printf("... done\n");
2085
2086 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
2087 phb_node, -1, minsize,
2088 (u32) base, (u32) (base >> 32));
2089 call_prom("close", 1, 0, phb_node);
2090 }
2091
2092 reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
2093
2094 /* These are only really needed if there is a memory limit in
2095 * effect, but we don't know so export them always. */
2096 prom_tce_alloc_start = local_alloc_bottom;
2097 prom_tce_alloc_end = local_alloc_top;
2098
2099 /* Flag the first invalid entry */
2100 prom_debug("ending prom_initialize_tce_table\n");
2101}
2102#endif /* __BIG_ENDIAN__ */
2103#endif /* CONFIG_PPC64 */
2104
2105/*
2106 * With CHRP SMP we need to use the OF to start the other processors.
2107 * We can't wait until smp_boot_cpus (the OF is trashed by then)
2108 * so we have to put the processors into a holding pattern controlled
2109 * by the kernel (not OF) before we destroy the OF.
2110 *
2111 * This uses a chunk of low memory, puts some holding pattern
2112 * code there and sends the other processors off to there until
2113 * smp_boot_cpus tells them to do something. The holding pattern
2114 * checks that address until its cpu # is there, when it is that
2115 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care
2116 * of setting those values.
2117 *
2118 * We also use physical address 0x4 here to tell when a cpu
2119 * is in its holding pattern code.
2120 *
2121 * -- Cort
2122 */
2123/*
2124 * We want to reference the copy of __secondary_hold_* in the
2125 * 0 - 0x100 address range
2126 */
2127#define LOW_ADDR(x) (((unsigned long) &(x)) & 0xff)
2128
2129static void __init prom_hold_cpus(void)
2130{
2131 unsigned long i;
2132 phandle node;
2133 char type[64];
2134 unsigned long *spinloop
2135 = (void *) LOW_ADDR(__secondary_hold_spinloop);
2136 unsigned long *acknowledge
2137 = (void *) LOW_ADDR(__secondary_hold_acknowledge);
2138 unsigned long secondary_hold = LOW_ADDR(__secondary_hold);
2139
2140 /*
2141 * On pseries, if RTAS supports "query-cpu-stopped-state",
2142 * we skip this stage, the CPUs will be started by the
2143 * kernel using RTAS.
2144 */
2145 if ((of_platform == PLATFORM_PSERIES ||
2146 of_platform == PLATFORM_PSERIES_LPAR) &&
2147 rtas_has_query_cpu_stopped) {
2148 prom_printf(format: "prom_hold_cpus: skipped\n");
2149 return;
2150 }
2151
2152 prom_debug("prom_hold_cpus: start...\n");
2153 prom_debug(" 1) spinloop = 0x%lx\n", (unsigned long)spinloop);
2154 prom_debug(" 1) *spinloop = 0x%lx\n", *spinloop);
2155 prom_debug(" 1) acknowledge = 0x%lx\n",
2156 (unsigned long)acknowledge);
2157 prom_debug(" 1) *acknowledge = 0x%lx\n", *acknowledge);
2158 prom_debug(" 1) secondary_hold = 0x%lx\n", secondary_hold);
2159
2160 /* Set the common spinloop variable, so all of the secondary cpus
2161 * will block when they are awakened from their OF spinloop.
2162 * This must occur for both SMP and non SMP kernels, since OF will
2163 * be trashed when we move the kernel.
2164 */
2165 *spinloop = 0;
2166
2167 /* look for cpus */
2168 for (node = 0; prom_next_node(nodep: &node); ) {
2169 unsigned int cpu_no;
2170 __be32 reg;
2171
2172 type[0] = 0;
2173 prom_getprop(node, pname: "device_type", value: type, valuelen: sizeof(type));
2174 if (prom_strcmp(cs: type, ct: "cpu") != 0)
2175 continue;
2176
2177 /* Skip non-configured cpus. */
2178 if (prom_getprop(node, pname: "status", value: type, valuelen: sizeof(type)) > 0)
2179 if (prom_strcmp(cs: type, ct: "okay") != 0)
2180 continue;
2181
2182 reg = cpu_to_be32(-1); /* make sparse happy */
2183 prom_getprop(node, pname: "reg", value: &reg, valuelen: sizeof(reg));
2184 cpu_no = be32_to_cpu(reg);
2185
2186 prom_debug("cpu hw idx = %u\n", cpu_no);
2187
2188 /* Init the acknowledge var which will be reset by
2189 * the secondary cpu when it awakens from its OF
2190 * spinloop.
2191 */
2192 *acknowledge = (unsigned long)-1;
2193
2194 if (cpu_no != prom.cpu) {
2195 /* Primary Thread of non-boot cpu or any thread */
2196 prom_printf(format: "starting cpu hw idx %u... ", cpu_no);
2197 call_prom(service: "start-cpu", nargs: 3, nret: 0, node,
2198 secondary_hold, cpu_no);
2199
2200 for (i = 0; (i < 100000000) &&
2201 (*acknowledge == ((unsigned long)-1)); i++ )
2202 mb();
2203
2204 if (*acknowledge == cpu_no)
2205 prom_printf(format: "done\n");
2206 else
2207 prom_printf(format: "failed: %lx\n", *acknowledge);
2208 }
2209#ifdef CONFIG_SMP
2210 else
2211 prom_printf(format: "boot cpu hw idx %u\n", cpu_no);
2212#endif /* CONFIG_SMP */
2213 }
2214
2215 prom_debug("prom_hold_cpus: end...\n");
2216}
2217
2218
2219static void __init prom_init_client_services(unsigned long pp)
2220{
2221 /* Get a handle to the prom entry point before anything else */
2222 prom_entry = pp;
2223
2224 /* get a handle for the stdout device */
2225 prom.chosen = call_prom(service: "finddevice", nargs: 1, nret: 1, ADDR("/chosen"));
2226 if (!PHANDLE_VALID(prom.chosen))
2227 prom_panic(reason: "cannot find chosen"); /* msg won't be printed :( */
2228
2229 /* get device tree root */
2230 prom.root = call_prom(service: "finddevice", nargs: 1, nret: 1, ADDR("/"));
2231 if (!PHANDLE_VALID(prom.root))
2232 prom_panic(reason: "cannot find device tree root"); /* msg won't be printed :( */
2233
2234 prom.mmumap = 0;
2235}
2236
2237#ifdef CONFIG_PPC32
2238/*
2239 * For really old powermacs, we need to map things we claim.
2240 * For that, we need the ihandle of the mmu.
2241 * Also, on the longtrail, we need to work around other bugs.
2242 */
2243static void __init prom_find_mmu(void)
2244{
2245 phandle oprom;
2246 char version[64];
2247
2248 oprom = call_prom("finddevice", 1, 1, ADDR("/openprom"));
2249 if (!PHANDLE_VALID(oprom))
2250 return;
2251 if (prom_getprop(oprom, "model", version, sizeof(version)) <= 0)
2252 return;
2253 version[sizeof(version) - 1] = 0;
2254 /* XXX might need to add other versions here */
2255 if (prom_strcmp(version, "Open Firmware, 1.0.5") == 0)
2256 of_workarounds = OF_WA_CLAIM;
2257 else if (prom_strncmp(version, "FirmWorks,3.", 12) == 0) {
2258 of_workarounds = OF_WA_CLAIM | OF_WA_LONGTRAIL;
2259 call_prom("interpret", 1, 1, "dev /memory 0 to allow-reclaim");
2260 } else
2261 return;
2262 prom.memory = call_prom("open", 1, 1, ADDR("/memory"));
2263 prom_getprop(prom.chosen, "mmu", &prom.mmumap,
2264 sizeof(prom.mmumap));
2265 prom.mmumap = be32_to_cpu(prom.mmumap);
2266 if (!IHANDLE_VALID(prom.memory) || !IHANDLE_VALID(prom.mmumap))
2267 of_workarounds &= ~OF_WA_CLAIM; /* hmmm */
2268}
2269#else
2270#define prom_find_mmu()
2271#endif
2272
2273static void __init prom_init_stdout(void)
2274{
2275 char *path = of_stdout_device;
2276 char type[16];
2277 phandle stdout_node;
2278 __be32 val;
2279
2280 if (prom_getprop(node: prom.chosen, pname: "stdout", value: &val, valuelen: sizeof(val)) <= 0)
2281 prom_panic(reason: "cannot find stdout");
2282
2283 prom.stdout = be32_to_cpu(val);
2284
2285 /* Get the full OF pathname of the stdout device */
2286 memset(path, 0, 256);
2287 call_prom(service: "instance-to-path", nargs: 3, nret: 1, prom.stdout, path, 255);
2288 prom_printf(format: "OF stdout device is: %s\n", of_stdout_device);
2289 prom_setprop(node: prom.chosen, nodename: "/chosen", pname: "linux,stdout-path",
2290 value: path, valuelen: prom_strlen(s: path) + 1);
2291
2292 /* instance-to-package fails on PA-Semi */
2293 stdout_node = call_prom(service: "instance-to-package", nargs: 1, nret: 1, prom.stdout);
2294 if (stdout_node != PROM_ERROR) {
2295 val = cpu_to_be32(stdout_node);
2296
2297 /* If it's a display, note it */
2298 memset(type, 0, sizeof(type));
2299 prom_getprop(node: stdout_node, pname: "device_type", value: type, valuelen: sizeof(type));
2300 if (prom_strcmp(cs: type, ct: "display") == 0)
2301 prom_setprop(node: stdout_node, nodename: path, pname: "linux,boot-display", NULL, valuelen: 0);
2302 }
2303}
2304
2305static int __init prom_find_machine_type(void)
2306{
2307 static char compat[256] __prombss;
2308 int len, i = 0;
2309#ifdef CONFIG_PPC64
2310 phandle rtas;
2311 int x;
2312#endif
2313
2314 /* Look for a PowerMac or a Cell */
2315 len = prom_getprop(node: prom.root, pname: "compatible",
2316 value: compat, valuelen: sizeof(compat)-1);
2317 if (len > 0) {
2318 compat[len] = 0;
2319 while (i < len) {
2320 char *p = &compat[i];
2321 int sl = prom_strlen(s: p);
2322 if (sl == 0)
2323 break;
2324 if (prom_strstr(s1: p, s2: "Power Macintosh") ||
2325 prom_strstr(s1: p, s2: "MacRISC"))
2326 return PLATFORM_POWERMAC;
2327#ifdef CONFIG_PPC64
2328 /* We must make sure we don't detect the IBM Cell
2329 * blades as pSeries due to some firmware issues,
2330 * so we do it here.
2331 */
2332 if (prom_strstr(p, "IBM,CBEA") ||
2333 prom_strstr(p, "IBM,CPBW-1.0"))
2334 return PLATFORM_GENERIC;
2335#endif /* CONFIG_PPC64 */
2336 i += sl + 1;
2337 }
2338 }
2339#ifdef CONFIG_PPC64
2340 /* Try to figure out if it's an IBM pSeries or any other
2341 * PAPR compliant platform. We assume it is if :
2342 * - /device_type is "chrp" (please, do NOT use that for future
2343 * non-IBM designs !
2344 * - it has /rtas
2345 */
2346 len = prom_getprop(prom.root, "device_type",
2347 compat, sizeof(compat)-1);
2348 if (len <= 0)
2349 return PLATFORM_GENERIC;
2350 if (prom_strcmp(compat, "chrp"))
2351 return PLATFORM_GENERIC;
2352
2353 /* Default to pSeries. We need to know if we are running LPAR */
2354 rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
2355 if (!PHANDLE_VALID(rtas))
2356 return PLATFORM_GENERIC;
2357 x = prom_getproplen(rtas, "ibm,hypertas-functions");
2358 if (x != PROM_ERROR) {
2359 prom_debug("Hypertas detected, assuming LPAR !\n");
2360 return PLATFORM_PSERIES_LPAR;
2361 }
2362 return PLATFORM_PSERIES;
2363#else
2364 return PLATFORM_GENERIC;
2365#endif
2366}
2367
2368static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
2369{
2370 return call_prom(service: "call-method", nargs: 6, nret: 1, ADDR("color!"), ih, i, b, g, r);
2371}
2372
2373/*
2374 * If we have a display that we don't know how to drive,
2375 * we will want to try to execute OF's open method for it
2376 * later. However, OF will probably fall over if we do that
2377 * we've taken over the MMU.
2378 * So we check whether we will need to open the display,
2379 * and if so, open it now.
2380 */
2381static void __init prom_check_displays(void)
2382{
2383 char type[16], *path;
2384 phandle node;
2385 ihandle ih;
2386 int i;
2387
2388 static const unsigned char default_colors[] __initconst = {
2389 0x00, 0x00, 0x00,
2390 0x00, 0x00, 0xaa,
2391 0x00, 0xaa, 0x00,
2392 0x00, 0xaa, 0xaa,
2393 0xaa, 0x00, 0x00,
2394 0xaa, 0x00, 0xaa,
2395 0xaa, 0xaa, 0x00,
2396 0xaa, 0xaa, 0xaa,
2397 0x55, 0x55, 0x55,
2398 0x55, 0x55, 0xff,
2399 0x55, 0xff, 0x55,
2400 0x55, 0xff, 0xff,
2401 0xff, 0x55, 0x55,
2402 0xff, 0x55, 0xff,
2403 0xff, 0xff, 0x55,
2404 0xff, 0xff, 0xff
2405 };
2406 const unsigned char *clut;
2407
2408 prom_debug("Looking for displays\n");
2409 for (node = 0; prom_next_node(nodep: &node); ) {
2410 memset(type, 0, sizeof(type));
2411 prom_getprop(node, pname: "device_type", value: type, valuelen: sizeof(type));
2412 if (prom_strcmp(cs: type, ct: "display") != 0)
2413 continue;
2414
2415 /* It seems OF doesn't null-terminate the path :-( */
2416 path = prom_scratch;
2417 memset(path, 0, sizeof(prom_scratch));
2418
2419 /*
2420 * leave some room at the end of the path for appending extra
2421 * arguments
2422 */
2423 if (call_prom(service: "package-to-path", nargs: 3, nret: 1, node, path,
2424 sizeof(prom_scratch) - 10) == PROM_ERROR)
2425 continue;
2426 prom_printf(format: "found display : %s, opening... ", path);
2427
2428 ih = call_prom(service: "open", nargs: 1, nret: 1, path);
2429 if (ih == 0) {
2430 prom_printf(format: "failed\n");
2431 continue;
2432 }
2433
2434 /* Success */
2435 prom_printf(format: "done\n");
2436 prom_setprop(node, nodename: path, pname: "linux,opened", NULL, valuelen: 0);
2437
2438 /* Setup a usable color table when the appropriate
2439 * method is available. Should update this to set-colors */
2440 clut = default_colors;
2441 for (i = 0; i < 16; i++, clut += 3)
2442 if (prom_set_color(ih, i, r: clut[0], g: clut[1],
2443 b: clut[2]) != 0)
2444 break;
2445
2446#ifdef CONFIG_LOGO_LINUX_CLUT224
2447 clut = PTRRELOC(logo_linux_clut224.clut);
2448 for (i = 0; i < logo_linux_clut224.clutsize; i++, clut += 3)
2449 if (prom_set_color(ih, i: i + 32, r: clut[0], g: clut[1],
2450 b: clut[2]) != 0)
2451 break;
2452#endif /* CONFIG_LOGO_LINUX_CLUT224 */
2453
2454#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
2455 if (prom_getprop(node, "linux,boot-display", NULL, 0) !=
2456 PROM_ERROR) {
2457 u32 width, height, pitch, addr;
2458
2459 prom_printf("Setting btext !\n");
2460
2461 if (prom_getprop(node, "width", &width, 4) == PROM_ERROR)
2462 return;
2463
2464 if (prom_getprop(node, "height", &height, 4) == PROM_ERROR)
2465 return;
2466
2467 if (prom_getprop(node, "linebytes", &pitch, 4) == PROM_ERROR)
2468 return;
2469
2470 if (prom_getprop(node, "address", &addr, 4) == PROM_ERROR)
2471 return;
2472
2473 prom_printf("W=%d H=%d LB=%d addr=0x%x\n",
2474 width, height, pitch, addr);
2475 btext_setup_display(width, height, 8, pitch, addr);
2476 btext_prepare_BAT();
2477 }
2478#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
2479 }
2480}
2481
2482
2483/* Return (relocated) pointer to this much memory: moves initrd if reqd. */
2484static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
2485 unsigned long needed, unsigned long align)
2486{
2487 void *ret;
2488
2489 *mem_start = ALIGN(*mem_start, align);
2490 while ((*mem_start + needed) > *mem_end) {
2491 unsigned long room, chunk;
2492
2493 prom_debug("Chunk exhausted, claiming more at %lx...\n",
2494 alloc_bottom);
2495 room = alloc_top - alloc_bottom;
2496 if (room > DEVTREE_CHUNK_SIZE)
2497 room = DEVTREE_CHUNK_SIZE;
2498 if (room < PAGE_SIZE)
2499 prom_panic(reason: "No memory for flatten_device_tree "
2500 "(no room)\n");
2501 chunk = alloc_up(size: room, align: 0);
2502 if (chunk == 0)
2503 prom_panic(reason: "No memory for flatten_device_tree "
2504 "(claim failed)\n");
2505 *mem_end = chunk + room;
2506 }
2507
2508 ret = (void *)*mem_start;
2509 *mem_start += needed;
2510
2511 return ret;
2512}
2513
2514#define dt_push_token(token, mem_start, mem_end) do { \
2515 void *room = make_room(mem_start, mem_end, 4, 4); \
2516 *(__be32 *)room = cpu_to_be32(token); \
2517 } while(0)
2518
2519static unsigned long __init dt_find_string(char *str)
2520{
2521 char *s, *os;
2522
2523 s = os = (char *)dt_string_start;
2524 s += 4;
2525 while (s < (char *)dt_string_end) {
2526 if (prom_strcmp(cs: s, ct: str) == 0)
2527 return s - os;
2528 s += prom_strlen(s) + 1;
2529 }
2530 return 0;
2531}
2532
2533/*
2534 * The Open Firmware 1275 specification states properties must be 31 bytes or
2535 * less, however not all firmwares obey this. Make it 64 bytes to be safe.
2536 */
2537#define MAX_PROPERTY_NAME 64
2538
2539static void __init scan_dt_build_strings(phandle node,
2540 unsigned long *mem_start,
2541 unsigned long *mem_end)
2542{
2543 char *prev_name, *namep, *sstart;
2544 unsigned long soff;
2545 phandle child;
2546
2547 sstart = (char *)dt_string_start;
2548
2549 /* get and store all property names */
2550 prev_name = "";
2551 for (;;) {
2552 /* 64 is max len of name including nul. */
2553 namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, align: 1);
2554 if (call_prom(service: "nextprop", nargs: 3, nret: 1, node, prev_name, namep) != 1) {
2555 /* No more nodes: unwind alloc */
2556 *mem_start = (unsigned long)namep;
2557 break;
2558 }
2559
2560 /* skip "name" */
2561 if (prom_strcmp(cs: namep, ct: "name") == 0) {
2562 *mem_start = (unsigned long)namep;
2563 prev_name = "name";
2564 continue;
2565 }
2566 /* get/create string entry */
2567 soff = dt_find_string(str: namep);
2568 if (soff != 0) {
2569 *mem_start = (unsigned long)namep;
2570 namep = sstart + soff;
2571 } else {
2572 /* Trim off some if we can */
2573 *mem_start = (unsigned long)namep + prom_strlen(s: namep) + 1;
2574 dt_string_end = *mem_start;
2575 }
2576 prev_name = namep;
2577 }
2578
2579 /* do all our children */
2580 child = call_prom(service: "child", nargs: 1, nret: 1, node);
2581 while (child != 0) {
2582 scan_dt_build_strings(node: child, mem_start, mem_end);
2583 child = call_prom(service: "peer", nargs: 1, nret: 1, child);
2584 }
2585}
2586
2587static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
2588 unsigned long *mem_end)
2589{
2590 phandle child;
2591 char *namep, *prev_name, *sstart, *p, *ep, *lp, *path;
2592 unsigned long soff;
2593 unsigned char *valp;
2594 static char pname[MAX_PROPERTY_NAME] __prombss;
2595 int l, room, has_phandle = 0;
2596
2597 dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
2598
2599 /* get the node's full name */
2600 namep = (char *)*mem_start;
2601 room = *mem_end - *mem_start;
2602 if (room > 255)
2603 room = 255;
2604 l = call_prom(service: "package-to-path", nargs: 3, nret: 1, node, namep, room);
2605 if (l >= 0) {
2606 /* Didn't fit? Get more room. */
2607 if (l >= room) {
2608 if (l >= *mem_end - *mem_start)
2609 namep = make_room(mem_start, mem_end, needed: l+1, align: 1);
2610 call_prom(service: "package-to-path", nargs: 3, nret: 1, node, namep, l);
2611 }
2612 namep[l] = '\0';
2613
2614 /* Fixup an Apple bug where they have bogus \0 chars in the
2615 * middle of the path in some properties, and extract
2616 * the unit name (everything after the last '/').
2617 */
2618 for (lp = p = namep, ep = namep + l; p < ep; p++) {
2619 if (*p == '/')
2620 lp = namep;
2621 else if (*p != 0)
2622 *lp++ = *p;
2623 }
2624 *lp = 0;
2625 *mem_start = ALIGN((unsigned long)lp + 1, 4);
2626 }
2627
2628 /* get it again for debugging */
2629 path = prom_scratch;
2630 memset(path, 0, sizeof(prom_scratch));
2631 call_prom(service: "package-to-path", nargs: 3, nret: 1, node, path, sizeof(prom_scratch) - 1);
2632
2633 /* get and store all properties */
2634 prev_name = "";
2635 sstart = (char *)dt_string_start;
2636 for (;;) {
2637 if (call_prom(service: "nextprop", nargs: 3, nret: 1, node, prev_name,
2638 pname) != 1)
2639 break;
2640
2641 /* skip "name" */
2642 if (prom_strcmp(cs: pname, ct: "name") == 0) {
2643 prev_name = "name";
2644 continue;
2645 }
2646
2647 /* find string offset */
2648 soff = dt_find_string(str: pname);
2649 if (soff == 0) {
2650 prom_printf(format: "WARNING: Can't find string index for"
2651 " <%s>, node %s\n", pname, path);
2652 break;
2653 }
2654 prev_name = sstart + soff;
2655
2656 /* get length */
2657 l = call_prom(service: "getproplen", nargs: 2, nret: 1, node, pname);
2658
2659 /* sanity checks */
2660 if (l == PROM_ERROR)
2661 continue;
2662
2663 /* push property head */
2664 dt_push_token(OF_DT_PROP, mem_start, mem_end);
2665 dt_push_token(l, mem_start, mem_end);
2666 dt_push_token(soff, mem_start, mem_end);
2667
2668 /* push property content */
2669 valp = make_room(mem_start, mem_end, needed: l, align: 4);
2670 call_prom(service: "getprop", nargs: 4, nret: 1, node, pname, valp, l);
2671 *mem_start = ALIGN(*mem_start, 4);
2672
2673 if (!prom_strcmp(cs: pname, ct: "phandle"))
2674 has_phandle = 1;
2675 }
2676
2677 /* Add a "phandle" property if none already exist */
2678 if (!has_phandle) {
2679 soff = dt_find_string(str: "phandle");
2680 if (soff == 0)
2681 prom_printf(format: "WARNING: Can't find string index for <phandle> node %s\n", path);
2682 else {
2683 dt_push_token(OF_DT_PROP, mem_start, mem_end);
2684 dt_push_token(4, mem_start, mem_end);
2685 dt_push_token(soff, mem_start, mem_end);
2686 valp = make_room(mem_start, mem_end, needed: 4, align: 4);
2687 *(__be32 *)valp = cpu_to_be32(node);
2688 }
2689 }
2690
2691 /* do all our children */
2692 child = call_prom(service: "child", nargs: 1, nret: 1, node);
2693 while (child != 0) {
2694 scan_dt_build_struct(node: child, mem_start, mem_end);
2695 child = call_prom(service: "peer", nargs: 1, nret: 1, child);
2696 }
2697
2698 dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
2699}
2700
2701static void __init flatten_device_tree(void)
2702{
2703 phandle root;
2704 unsigned long mem_start, mem_end, room;
2705 struct boot_param_header *hdr;
2706 char *namep;
2707 u64 *rsvmap;
2708
2709 /*
2710 * Check how much room we have between alloc top & bottom (+/- a
2711 * few pages), crop to 1MB, as this is our "chunk" size
2712 */
2713 room = alloc_top - alloc_bottom - 0x4000;
2714 if (room > DEVTREE_CHUNK_SIZE)
2715 room = DEVTREE_CHUNK_SIZE;
2716 prom_debug("starting device tree allocs at %lx\n", alloc_bottom);
2717
2718 /* Now try to claim that */
2719 mem_start = (unsigned long)alloc_up(size: room, PAGE_SIZE);
2720 if (mem_start == 0)
2721 prom_panic(reason: "Can't allocate initial device-tree chunk\n");
2722 mem_end = mem_start + room;
2723
2724 /* Get root of tree */
2725 root = call_prom(service: "peer", nargs: 1, nret: 1, (phandle)0);
2726 if (root == (phandle)0)
2727 prom_panic (reason: "couldn't get device tree root\n");
2728
2729 /* Build header and make room for mem rsv map */
2730 mem_start = ALIGN(mem_start, 4);
2731 hdr = make_room(&mem_start, &mem_end,
2732 sizeof(struct boot_param_header), 4);
2733 dt_header_start = (unsigned long)hdr;
2734 rsvmap = make_room(mem_start: &mem_start, mem_end: &mem_end, needed: sizeof(mem_reserve_map), align: 8);
2735
2736 /* Start of strings */
2737 mem_start = PAGE_ALIGN(mem_start);
2738 dt_string_start = mem_start;
2739 mem_start += 4; /* hole */
2740
2741 /* Add "phandle" in there, we'll need it */
2742 namep = make_room(mem_start: &mem_start, mem_end: &mem_end, needed: 16, align: 1);
2743 prom_strscpy_pad(dest: namep, src: "phandle", n: sizeof("phandle"));
2744 mem_start = (unsigned long)namep + prom_strlen(s: namep) + 1;
2745
2746 /* Build string array */
2747 prom_printf(format: "Building dt strings...\n");
2748 scan_dt_build_strings(node: root, mem_start: &mem_start, mem_end: &mem_end);
2749 dt_string_end = mem_start;
2750
2751 /* Build structure */
2752 mem_start = PAGE_ALIGN(mem_start);
2753 dt_struct_start = mem_start;
2754 prom_printf(format: "Building dt structure...\n");
2755 scan_dt_build_struct(node: root, mem_start: &mem_start, mem_end: &mem_end);
2756 dt_push_token(OF_DT_END, &mem_start, &mem_end);
2757 dt_struct_end = PAGE_ALIGN(mem_start);
2758
2759 /* Finish header */
2760 hdr->boot_cpuid_phys = cpu_to_be32(prom.cpu);
2761 hdr->magic = cpu_to_be32(OF_DT_HEADER);
2762 hdr->totalsize = cpu_to_be32(dt_struct_end - dt_header_start);
2763 hdr->off_dt_struct = cpu_to_be32(dt_struct_start - dt_header_start);
2764 hdr->off_dt_strings = cpu_to_be32(dt_string_start - dt_header_start);
2765 hdr->dt_strings_size = cpu_to_be32(dt_string_end - dt_string_start);
2766 hdr->off_mem_rsvmap = cpu_to_be32(((unsigned long)rsvmap) - dt_header_start);
2767 hdr->version = cpu_to_be32(OF_DT_VERSION);
2768 /* Version 16 is not backward compatible */
2769 hdr->last_comp_version = cpu_to_be32(0x10);
2770
2771 /* Copy the reserve map in */
2772 memcpy(rsvmap, mem_reserve_map, sizeof(mem_reserve_map));
2773
2774#ifdef DEBUG_PROM
2775 {
2776 int i;
2777 prom_printf("reserved memory map:\n");
2778 for (i = 0; i < mem_reserve_cnt; i++)
2779 prom_printf(" %llx - %llx\n",
2780 be64_to_cpu(mem_reserve_map[i].base),
2781 be64_to_cpu(mem_reserve_map[i].size));
2782 }
2783#endif
2784 /* Bump mem_reserve_cnt to cause further reservations to fail
2785 * since it's too late.
2786 */
2787 mem_reserve_cnt = MEM_RESERVE_MAP_SIZE;
2788
2789 prom_printf(format: "Device tree strings 0x%lx -> 0x%lx\n",
2790 dt_string_start, dt_string_end);
2791 prom_printf(format: "Device tree struct 0x%lx -> 0x%lx\n",
2792 dt_struct_start, dt_struct_end);
2793}
2794
2795#ifdef CONFIG_PPC_MAPLE
2796/* PIBS Version 1.05.0000 04/26/2005 has an incorrect /ht/isa/ranges property.
2797 * The values are bad, and it doesn't even have the right number of cells. */
2798static void __init fixup_device_tree_maple(void)
2799{
2800 phandle isa;
2801 u32 rloc = 0x01002000; /* IO space; PCI device = 4 */
2802 u32 isa_ranges[6];
2803 char *name;
2804
2805 name = "/ht@0/isa@4";
2806 isa = call_prom("finddevice", 1, 1, ADDR(name));
2807 if (!PHANDLE_VALID(isa)) {
2808 name = "/ht@0/isa@6";
2809 isa = call_prom("finddevice", 1, 1, ADDR(name));
2810 rloc = 0x01003000; /* IO space; PCI device = 6 */
2811 }
2812 if (!PHANDLE_VALID(isa))
2813 return;
2814
2815 if (prom_getproplen(isa, "ranges") != 12)
2816 return;
2817 if (prom_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges))
2818 == PROM_ERROR)
2819 return;
2820
2821 if (isa_ranges[0] != 0x1 ||
2822 isa_ranges[1] != 0xf4000000 ||
2823 isa_ranges[2] != 0x00010000)
2824 return;
2825
2826 prom_printf("Fixing up bogus ISA range on Maple/Apache...\n");
2827
2828 isa_ranges[0] = 0x1;
2829 isa_ranges[1] = 0x0;
2830 isa_ranges[2] = rloc;
2831 isa_ranges[3] = 0x0;
2832 isa_ranges[4] = 0x0;
2833 isa_ranges[5] = 0x00010000;
2834 prom_setprop(isa, name, "ranges",
2835 isa_ranges, sizeof(isa_ranges));
2836}
2837
2838#define CPC925_MC_START 0xf8000000
2839#define CPC925_MC_LENGTH 0x1000000
2840/* The values for memory-controller don't have right number of cells */
2841static void __init fixup_device_tree_maple_memory_controller(void)
2842{
2843 phandle mc;
2844 u32 mc_reg[4];
2845 char *name = "/hostbridge@f8000000";
2846 u32 ac, sc;
2847
2848 mc = call_prom("finddevice", 1, 1, ADDR(name));
2849 if (!PHANDLE_VALID(mc))
2850 return;
2851
2852 if (prom_getproplen(mc, "reg") != 8)
2853 return;
2854
2855 prom_getprop(prom.root, "#address-cells", &ac, sizeof(ac));
2856 prom_getprop(prom.root, "#size-cells", &sc, sizeof(sc));
2857 if ((ac != 2) || (sc != 2))
2858 return;
2859
2860 if (prom_getprop(mc, "reg", mc_reg, sizeof(mc_reg)) == PROM_ERROR)
2861 return;
2862
2863 if (mc_reg[0] != CPC925_MC_START || mc_reg[1] != CPC925_MC_LENGTH)
2864 return;
2865
2866 prom_printf("Fixing up bogus hostbridge on Maple...\n");
2867
2868 mc_reg[0] = 0x0;
2869 mc_reg[1] = CPC925_MC_START;
2870 mc_reg[2] = 0x0;
2871 mc_reg[3] = CPC925_MC_LENGTH;
2872 prom_setprop(mc, name, "reg", mc_reg, sizeof(mc_reg));
2873}
2874#else
2875#define fixup_device_tree_maple()
2876#define fixup_device_tree_maple_memory_controller()
2877#endif
2878
2879#ifdef CONFIG_PPC_CHRP
2880/*
2881 * Pegasos and BriQ lacks the "ranges" property in the isa node
2882 * Pegasos needs decimal IRQ 14/15, not hexadecimal
2883 * Pegasos has the IDE configured in legacy mode, but advertised as native
2884 */
2885static void __init fixup_device_tree_chrp(void)
2886{
2887 phandle ph;
2888 u32 prop[6];
2889 u32 rloc = 0x01006000; /* IO space; PCI device = 12 */
2890 char *name;
2891 int rc;
2892
2893 name = "/pci@80000000/isa@c";
2894 ph = call_prom("finddevice", 1, 1, ADDR(name));
2895 if (!PHANDLE_VALID(ph)) {
2896 name = "/pci@ff500000/isa@6";
2897 ph = call_prom("finddevice", 1, 1, ADDR(name));
2898 rloc = 0x01003000; /* IO space; PCI device = 6 */
2899 }
2900 if (PHANDLE_VALID(ph)) {
2901 rc = prom_getproplen(ph, "ranges");
2902 if (rc == 0 || rc == PROM_ERROR) {
2903 prom_printf("Fixing up missing ISA range on Pegasos...\n");
2904
2905 prop[0] = 0x1;
2906 prop[1] = 0x0;
2907 prop[2] = rloc;
2908 prop[3] = 0x0;
2909 prop[4] = 0x0;
2910 prop[5] = 0x00010000;
2911 prom_setprop(ph, name, "ranges", prop, sizeof(prop));
2912 }
2913 }
2914
2915 name = "/pci@80000000/ide@C,1";
2916 ph = call_prom("finddevice", 1, 1, ADDR(name));
2917 if (PHANDLE_VALID(ph)) {
2918 prom_printf("Fixing up IDE interrupt on Pegasos...\n");
2919 prop[0] = 14;
2920 prop[1] = 0x0;
2921 prom_setprop(ph, name, "interrupts", prop, 2*sizeof(u32));
2922 prom_printf("Fixing up IDE class-code on Pegasos...\n");
2923 rc = prom_getprop(ph, "class-code", prop, sizeof(u32));
2924 if (rc == sizeof(u32)) {
2925 prop[0] &= ~0x5;
2926 prom_setprop(ph, name, "class-code", prop, sizeof(u32));
2927 }
2928 }
2929}
2930#else
2931#define fixup_device_tree_chrp()
2932#endif
2933
2934#if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC)
2935static void __init fixup_device_tree_pmac(void)
2936{
2937 phandle u3, i2c, mpic;
2938 u32 u3_rev;
2939 u32 interrupts[2];
2940 u32 parent;
2941
2942 /* Some G5s have a missing interrupt definition, fix it up here */
2943 u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000"));
2944 if (!PHANDLE_VALID(u3))
2945 return;
2946 i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000"));
2947 if (!PHANDLE_VALID(i2c))
2948 return;
2949 mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000"));
2950 if (!PHANDLE_VALID(mpic))
2951 return;
2952
2953 /* check if proper rev of u3 */
2954 if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev))
2955 == PROM_ERROR)
2956 return;
2957 if (u3_rev < 0x35 || u3_rev > 0x39)
2958 return;
2959 /* does it need fixup ? */
2960 if (prom_getproplen(i2c, "interrupts") > 0)
2961 return;
2962
2963 prom_printf("fixing up bogus interrupts for u3 i2c...\n");
2964
2965 /* interrupt on this revision of u3 is number 0 and level */
2966 interrupts[0] = 0;
2967 interrupts[1] = 1;
2968 prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupts",
2969 &interrupts, sizeof(interrupts));
2970 parent = (u32)mpic;
2971 prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupt-parent",
2972 &parent, sizeof(parent));
2973}
2974#else
2975#define fixup_device_tree_pmac()
2976#endif
2977
2978#ifdef CONFIG_PPC_EFIKA
2979/*
2980 * The MPC5200 FEC driver requires an phy-handle property to tell it how
2981 * to talk to the phy. If the phy-handle property is missing, then this
2982 * function is called to add the appropriate nodes and link it to the
2983 * ethernet node.
2984 */
2985static void __init fixup_device_tree_efika_add_phy(void)
2986{
2987 u32 node;
2988 char prop[64];
2989 int rv;
2990
2991 /* Check if /builtin/ethernet exists - bail if it doesn't */
2992 node = call_prom("finddevice", 1, 1, ADDR("/builtin/ethernet"));
2993 if (!PHANDLE_VALID(node))
2994 return;
2995
2996 /* Check if the phy-handle property exists - bail if it does */
2997 rv = prom_getprop(node, "phy-handle", prop, sizeof(prop));
2998 if (rv <= 0)
2999 return;
3000
3001 /*
3002 * At this point the ethernet device doesn't have a phy described.
3003 * Now we need to add the missing phy node and linkage
3004 */
3005
3006 /* Check for an MDIO bus node - if missing then create one */
3007 node = call_prom("finddevice", 1, 1, ADDR("/builtin/mdio"));
3008 if (!PHANDLE_VALID(node)) {
3009 prom_printf("Adding Ethernet MDIO node\n");
3010 call_prom("interpret", 1, 1,
3011 " s\" /builtin\" find-device"
3012 " new-device"
3013 " 1 encode-int s\" #address-cells\" property"
3014 " 0 encode-int s\" #size-cells\" property"
3015 " s\" mdio\" device-name"
3016 " s\" fsl,mpc5200b-mdio\" encode-string"
3017 " s\" compatible\" property"
3018 " 0xf0003000 0x400 reg"
3019 " 0x2 encode-int"
3020 " 0x5 encode-int encode+"
3021 " 0x3 encode-int encode+"
3022 " s\" interrupts\" property"
3023 " finish-device");
3024 }
3025
3026 /* Check for a PHY device node - if missing then create one and
3027 * give it's phandle to the ethernet node */
3028 node = call_prom("finddevice", 1, 1,
3029 ADDR("/builtin/mdio/ethernet-phy"));
3030 if (!PHANDLE_VALID(node)) {
3031 prom_printf("Adding Ethernet PHY node\n");
3032 call_prom("interpret", 1, 1,
3033 " s\" /builtin/mdio\" find-device"
3034 " new-device"
3035 " s\" ethernet-phy\" device-name"
3036 " 0x10 encode-int s\" reg\" property"
3037 " my-self"
3038 " ihandle>phandle"
3039 " finish-device"
3040 " s\" /builtin/ethernet\" find-device"
3041 " encode-int"
3042 " s\" phy-handle\" property"
3043 " device-end");
3044 }
3045}
3046
3047static void __init fixup_device_tree_efika(void)
3048{
3049 int sound_irq[3] = { 2, 2, 0 };
3050 int bcomm_irq[3*16] = { 3,0,0, 3,1,0, 3,2,0, 3,3,0,
3051 3,4,0, 3,5,0, 3,6,0, 3,7,0,
3052 3,8,0, 3,9,0, 3,10,0, 3,11,0,
3053 3,12,0, 3,13,0, 3,14,0, 3,15,0 };
3054 u32 node;
3055 char prop[64];
3056 int rv, len;
3057
3058 /* Check if we're really running on a EFIKA */
3059 node = call_prom("finddevice", 1, 1, ADDR("/"));
3060 if (!PHANDLE_VALID(node))
3061 return;
3062
3063 rv = prom_getprop(node, "model", prop, sizeof(prop));
3064 if (rv == PROM_ERROR)
3065 return;
3066 if (prom_strcmp(prop, "EFIKA5K2"))
3067 return;
3068
3069 prom_printf("Applying EFIKA device tree fixups\n");
3070
3071 /* Claiming to be 'chrp' is death */
3072 node = call_prom("finddevice", 1, 1, ADDR("/"));
3073 rv = prom_getprop(node, "device_type", prop, sizeof(prop));
3074 if (rv != PROM_ERROR && (prom_strcmp(prop, "chrp") == 0))
3075 prom_setprop(node, "/", "device_type", "efika", sizeof("efika"));
3076
3077 /* CODEGEN,description is exposed in /proc/cpuinfo so
3078 fix that too */
3079 rv = prom_getprop(node, "CODEGEN,description", prop, sizeof(prop));
3080 if (rv != PROM_ERROR && (prom_strstr(prop, "CHRP")))
3081 prom_setprop(node, "/", "CODEGEN,description",
3082 "Efika 5200B PowerPC System",
3083 sizeof("Efika 5200B PowerPC System"));
3084
3085 /* Fixup bestcomm interrupts property */
3086 node = call_prom("finddevice", 1, 1, ADDR("/builtin/bestcomm"));
3087 if (PHANDLE_VALID(node)) {
3088 len = prom_getproplen(node, "interrupts");
3089 if (len == 12) {
3090 prom_printf("Fixing bestcomm interrupts property\n");
3091 prom_setprop(node, "/builtin/bestcom", "interrupts",
3092 bcomm_irq, sizeof(bcomm_irq));
3093 }
3094 }
3095
3096 /* Fixup sound interrupts property */
3097 node = call_prom("finddevice", 1, 1, ADDR("/builtin/sound"));
3098 if (PHANDLE_VALID(node)) {
3099 rv = prom_getprop(node, "interrupts", prop, sizeof(prop));
3100 if (rv == PROM_ERROR) {
3101 prom_printf("Adding sound interrupts property\n");
3102 prom_setprop(node, "/builtin/sound", "interrupts",
3103 sound_irq, sizeof(sound_irq));
3104 }
3105 }
3106
3107 /* Make sure ethernet phy-handle property exists */
3108 fixup_device_tree_efika_add_phy();
3109}
3110#else
3111#define fixup_device_tree_efika()
3112#endif
3113
3114#ifdef CONFIG_PPC_PASEMI_NEMO
3115/*
3116 * CFE supplied on Nemo is broken in several ways, biggest
3117 * problem is that it reassigns ISA interrupts to unused mpic ints.
3118 * Add an interrupt-controller property for the io-bridge to use
3119 * and correct the ints so we can attach them to an irq_domain
3120 */
3121static void __init fixup_device_tree_pasemi(void)
3122{
3123 u32 interrupts[2], parent, rval, val = 0;
3124 char *name, *pci_name;
3125 phandle iob, node;
3126
3127 /* Find the root pci node */
3128 name = "/pxp@0,e0000000";
3129 iob = call_prom("finddevice", 1, 1, ADDR(name));
3130 if (!PHANDLE_VALID(iob))
3131 return;
3132
3133 /* check if interrupt-controller node set yet */
3134 if (prom_getproplen(iob, "interrupt-controller") !=PROM_ERROR)
3135 return;
3136
3137 prom_printf("adding interrupt-controller property for SB600...\n");
3138
3139 prom_setprop(iob, name, "interrupt-controller", &val, 0);
3140
3141 pci_name = "/pxp@0,e0000000/pci@11";
3142 node = call_prom("finddevice", 1, 1, ADDR(pci_name));
3143 parent = ADDR(iob);
3144
3145 for( ; prom_next_node(&node); ) {
3146 /* scan each node for one with an interrupt */
3147 if (!PHANDLE_VALID(node))
3148 continue;
3149
3150 rval = prom_getproplen(node, "interrupts");
3151 if (rval == 0 || rval == PROM_ERROR)
3152 continue;
3153
3154 prom_getprop(node, "interrupts", &interrupts, sizeof(interrupts));
3155 if ((interrupts[0] < 212) || (interrupts[0] > 222))
3156 continue;
3157
3158 /* found a node, update both interrupts and interrupt-parent */
3159 if ((interrupts[0] >= 212) && (interrupts[0] <= 215))
3160 interrupts[0] -= 203;
3161 if ((interrupts[0] >= 216) && (interrupts[0] <= 220))
3162 interrupts[0] -= 213;
3163 if (interrupts[0] == 221)
3164 interrupts[0] = 14;
3165 if (interrupts[0] == 222)
3166 interrupts[0] = 8;
3167
3168 prom_setprop(node, pci_name, "interrupts", interrupts,
3169 sizeof(interrupts));
3170 prom_setprop(node, pci_name, "interrupt-parent", &parent,
3171 sizeof(parent));
3172 }
3173
3174 /*
3175 * The io-bridge has device_type set to 'io-bridge' change it to 'isa'
3176 * so that generic isa-bridge code can add the SB600 and its on-board
3177 * peripherals.
3178 */
3179 name = "/pxp@0,e0000000/io-bridge@0";
3180 iob = call_prom("finddevice", 1, 1, ADDR(name));
3181 if (!PHANDLE_VALID(iob))
3182 return;
3183
3184 /* device_type is already set, just change it. */
3185
3186 prom_printf("Changing device_type of SB600 node...\n");
3187
3188 prom_setprop(iob, name, "device_type", "isa", sizeof("isa"));
3189}
3190#else /* !CONFIG_PPC_PASEMI_NEMO */
3191static inline void fixup_device_tree_pasemi(void) { }
3192#endif
3193
3194static void __init fixup_device_tree(void)
3195{
3196 fixup_device_tree_maple();
3197 fixup_device_tree_maple_memory_controller();
3198 fixup_device_tree_chrp();
3199 fixup_device_tree_pmac();
3200 fixup_device_tree_efika();
3201 fixup_device_tree_pasemi();
3202}
3203
3204static void __init prom_find_boot_cpu(void)
3205{
3206 __be32 rval;
3207 ihandle prom_cpu;
3208 phandle cpu_pkg;
3209
3210 rval = 0;
3211 if (prom_getprop(node: prom.chosen, pname: "cpu", value: &rval, valuelen: sizeof(rval)) <= 0)
3212 return;
3213 prom_cpu = be32_to_cpu(rval);
3214
3215 cpu_pkg = call_prom(service: "instance-to-package", nargs: 1, nret: 1, prom_cpu);
3216
3217 if (!PHANDLE_VALID(cpu_pkg))
3218 return;
3219
3220 prom_getprop(node: cpu_pkg, pname: "reg", value: &rval, valuelen: sizeof(rval));
3221 prom.cpu = be32_to_cpu(rval);
3222
3223 prom_debug("Booting CPU hw index = %d\n", prom.cpu);
3224}
3225
3226static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
3227{
3228#ifdef CONFIG_BLK_DEV_INITRD
3229 if (r3 && r4 && r4 != 0xdeadbeef) {
3230 __be64 val;
3231
3232 prom_initrd_start = is_kernel_addr(r3) ? __pa(r3) : r3;
3233 prom_initrd_end = prom_initrd_start + r4;
3234
3235 val = cpu_to_be64(prom_initrd_start);
3236 prom_setprop(node: prom.chosen, nodename: "/chosen", pname: "linux,initrd-start",
3237 value: &val, valuelen: sizeof(val));
3238 val = cpu_to_be64(prom_initrd_end);
3239 prom_setprop(node: prom.chosen, nodename: "/chosen", pname: "linux,initrd-end",
3240 value: &val, valuelen: sizeof(val));
3241
3242 reserve_mem(base: prom_initrd_start,
3243 size: prom_initrd_end - prom_initrd_start);
3244
3245 prom_debug("initrd_start=0x%lx\n", prom_initrd_start);
3246 prom_debug("initrd_end=0x%lx\n", prom_initrd_end);
3247 }
3248#endif /* CONFIG_BLK_DEV_INITRD */
3249}
3250
3251#ifdef CONFIG_PPC_SVM
3252/*
3253 * Perform the Enter Secure Mode ultracall.
3254 */
3255static int __init enter_secure_mode(unsigned long kbase, unsigned long fdt)
3256{
3257 register unsigned long r3 asm("r3") = UV_ESM;
3258 register unsigned long r4 asm("r4") = kbase;
3259 register unsigned long r5 asm("r5") = fdt;
3260
3261 asm volatile("sc 2" : "+r"(r3) : "r"(r4), "r"(r5));
3262
3263 return r3;
3264}
3265
3266/*
3267 * Call the Ultravisor to transfer us to secure memory if we have an ESM blob.
3268 */
3269static void __init setup_secure_guest(unsigned long kbase, unsigned long fdt)
3270{
3271 int ret;
3272
3273 if (!prom_svm_enable)
3274 return;
3275
3276 /* Switch to secure mode. */
3277 prom_printf("Switching to secure mode.\n");
3278
3279 /*
3280 * The ultravisor will do an integrity check of the kernel image but we
3281 * relocated it so the check will fail. Restore the original image by
3282 * relocating it back to the kernel virtual base address.
3283 */
3284 relocate(KERNELBASE);
3285
3286 ret = enter_secure_mode(kbase, fdt);
3287
3288 /* Relocate the kernel again. */
3289 relocate(kbase);
3290
3291 if (ret != U_SUCCESS) {
3292 prom_printf("Returned %d from switching to secure mode.\n", ret);
3293 prom_rtas_os_term("Switch to secure mode failed.\n");
3294 }
3295}
3296#else
3297static void __init setup_secure_guest(unsigned long kbase, unsigned long fdt)
3298{
3299}
3300#endif /* CONFIG_PPC_SVM */
3301
3302/*
3303 * We enter here early on, when the Open Firmware prom is still
3304 * handling exceptions and the MMU hash table for us.
3305 */
3306
3307unsigned long __init prom_init(unsigned long r3, unsigned long r4,
3308 unsigned long pp,
3309 unsigned long r6, unsigned long r7,
3310 unsigned long kbase)
3311{
3312 unsigned long hdr;
3313
3314#ifdef CONFIG_PPC32
3315 unsigned long offset = reloc_offset();
3316 reloc_got2(offset);
3317#endif
3318
3319 /*
3320 * First zero the BSS
3321 */
3322 memset(&__bss_start, 0, __bss_stop - __bss_start);
3323
3324 /*
3325 * Init interface to Open Firmware, get some node references,
3326 * like /chosen
3327 */
3328 prom_init_client_services(pp);
3329
3330 /*
3331 * See if this OF is old enough that we need to do explicit maps
3332 * and other workarounds
3333 */
3334 prom_find_mmu();
3335
3336 /*
3337 * Init prom stdout device
3338 */
3339 prom_init_stdout();
3340
3341 prom_printf(format: "Preparing to boot %s", linux_banner);
3342
3343 /*
3344 * Get default machine type. At this point, we do not differentiate
3345 * between pSeries SMP and pSeries LPAR
3346 */
3347 of_platform = prom_find_machine_type();
3348 prom_printf(format: "Detected machine type: %x\n", of_platform);
3349
3350#ifndef CONFIG_NONSTATIC_KERNEL
3351 /* Bail if this is a kdump kernel. */
3352 if (PHYSICAL_START > 0)
3353 prom_panic(reason: "Error: You can't boot a kdump kernel from OF!\n");
3354#endif
3355
3356 /*
3357 * Check for an initrd
3358 */
3359 prom_check_initrd(r3, r4);
3360
3361 /*
3362 * Do early parsing of command line
3363 */
3364 early_cmdline_parse();
3365
3366#ifdef CONFIG_PPC_PSERIES
3367 /*
3368 * On pSeries, inform the firmware about our capabilities
3369 */
3370 if (of_platform == PLATFORM_PSERIES ||
3371 of_platform == PLATFORM_PSERIES_LPAR)
3372 prom_send_capabilities();
3373#endif
3374
3375 /*
3376 * Copy the CPU hold code
3377 */
3378 if (of_platform != PLATFORM_POWERMAC)
3379 copy_and_flush(dest: 0, src: kbase, size: 0x100, offset: 0);
3380
3381 /*
3382 * Initialize memory management within prom_init
3383 */
3384 prom_init_mem();
3385
3386 /*
3387 * Determine which cpu is actually running right _now_
3388 */
3389 prom_find_boot_cpu();
3390
3391 /*
3392 * Initialize display devices
3393 */
3394 prom_check_displays();
3395
3396#if defined(CONFIG_PPC64) && defined(__BIG_ENDIAN__)
3397 /*
3398 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
3399 * that uses the allocator, we need to make sure we get the top of memory
3400 * available for us here...
3401 */
3402 if (of_platform == PLATFORM_PSERIES)
3403 prom_initialize_tce_table();
3404#endif
3405
3406 /*
3407 * On non-powermacs, try to instantiate RTAS. PowerMacs don't
3408 * have a usable RTAS implementation.
3409 */
3410 if (of_platform != PLATFORM_POWERMAC)
3411 prom_instantiate_rtas();
3412
3413#ifdef CONFIG_PPC64
3414 /* instantiate sml */
3415 prom_instantiate_sml();
3416#endif
3417
3418 /*
3419 * On non-powermacs, put all CPUs in spin-loops.
3420 *
3421 * PowerMacs use a different mechanism to spin CPUs
3422 *
3423 * (This must be done after instantiating RTAS)
3424 */
3425 if (of_platform != PLATFORM_POWERMAC)
3426 prom_hold_cpus();
3427
3428 /*
3429 * Fill in some infos for use by the kernel later on
3430 */
3431 if (prom_memory_limit) {
3432 __be64 val = cpu_to_be64(prom_memory_limit);
3433 prom_setprop(node: prom.chosen, nodename: "/chosen", pname: "linux,memory-limit",
3434 value: &val, valuelen: sizeof(val));
3435 }
3436#ifdef CONFIG_PPC64
3437 if (prom_iommu_off)
3438 prom_setprop(prom.chosen, "/chosen", "linux,iommu-off",
3439 NULL, 0);
3440
3441 if (prom_iommu_force_on)
3442 prom_setprop(prom.chosen, "/chosen", "linux,iommu-force-on",
3443 NULL, 0);
3444
3445 if (prom_tce_alloc_start) {
3446 prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-start",
3447 &prom_tce_alloc_start,
3448 sizeof(prom_tce_alloc_start));
3449 prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-end",
3450 &prom_tce_alloc_end,
3451 sizeof(prom_tce_alloc_end));
3452 }
3453#endif
3454
3455 /*
3456 * Fixup any known bugs in the device-tree
3457 */
3458 fixup_device_tree();
3459
3460 /*
3461 * Now finally create the flattened device-tree
3462 */
3463 prom_printf(format: "copying OF device tree...\n");
3464 flatten_device_tree();
3465
3466 /*
3467 * in case stdin is USB and still active on IBM machines...
3468 * Unfortunately quiesce crashes on some powermacs if we have
3469 * closed stdin already (in particular the powerbook 101).
3470 */
3471 if (of_platform != PLATFORM_POWERMAC)
3472 prom_close_stdin();
3473
3474 /*
3475 * Call OF "quiesce" method to shut down pending DMA's from
3476 * devices etc...
3477 */
3478 prom_printf(format: "Quiescing Open Firmware ...\n");
3479 call_prom(service: "quiesce", nargs: 0, nret: 0);
3480
3481 /*
3482 * And finally, call the kernel passing it the flattened device
3483 * tree and NULL as r5, thus triggering the new entry point which
3484 * is common to us and kexec
3485 */
3486 hdr = dt_header_start;
3487
3488 prom_printf(format: "Booting Linux via __start() @ 0x%lx ...\n", kbase);
3489 prom_debug("->dt_header_start=0x%lx\n", hdr);
3490
3491#ifdef CONFIG_PPC32
3492 reloc_got2(-offset);
3493#endif
3494
3495 /* Move to secure memory if we're supposed to be secure guests. */
3496 setup_secure_guest(kbase, fdt: hdr);
3497
3498 __start(r3: hdr, r4: kbase, r5: 0, r6: 0, r7: 0, r8: 0, r9: 0);
3499
3500 return 0;
3501}
3502

source code of linux/arch/powerpc/kernel/prom_init.c