1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Xen mmu operations
5 *
6 * This file contains the various mmu fetch and update operations.
7 * The most important job they must perform is the mapping between the
8 * domain's pfn and the overall machine mfns.
9 *
10 * Xen allows guests to directly update the pagetable, in a controlled
11 * fashion. In other words, the guest modifies the same pagetable
12 * that the CPU actually uses, which eliminates the overhead of having
13 * a separate shadow pagetable.
14 *
15 * In order to allow this, it falls on the guest domain to map its
16 * notion of a "physical" pfn - which is just a domain-local linear
17 * address - into a real "machine address" which the CPU's MMU can
18 * use.
19 *
20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21 * inserted directly into the pagetable. When creating a new
22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
24 * the mfn back into a pfn.
25 *
26 * The other constraint is that all pages which make up a pagetable
27 * must be mapped read-only in the guest. This prevents uncontrolled
28 * guest updates to the pagetable. Xen strictly enforces this, and
29 * will disallow any pagetable update which will end up mapping a
30 * pagetable page RW, and will disallow using any writable page as a
31 * pagetable.
32 *
33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
34 * would need to validate the whole pagetable before going on.
35 * Naturally, this is quite slow. The solution is to "pin" a
36 * pagetable, which enforces all the constraints on the pagetable even
37 * when it is not actively in use. This menas that Xen can be assured
38 * that it is still valid when you do load it into %cr3, and doesn't
39 * need to revalidate it.
40 *
41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
42 */
43#include <linux/sched/mm.h>
44#include <linux/debugfs.h>
45#include <linux/bug.h>
46#include <linux/vmalloc.h>
47#include <linux/export.h>
48#include <linux/init.h>
49#include <linux/gfp.h>
50#include <linux/memblock.h>
51#include <linux/seq_file.h>
52#include <linux/crash_dump.h>
53#include <linux/pgtable.h>
54#ifdef CONFIG_KEXEC_CORE
55#include <linux/kexec.h>
56#endif
57
58#include <trace/events/xen.h>
59
60#include <asm/tlbflush.h>
61#include <asm/fixmap.h>
62#include <asm/mmu_context.h>
63#include <asm/setup.h>
64#include <asm/paravirt.h>
65#include <asm/e820/api.h>
66#include <asm/linkage.h>
67#include <asm/page.h>
68#include <asm/init.h>
69#include <asm/memtype.h>
70#include <asm/smp.h>
71#include <asm/tlb.h>
72
73#include <asm/xen/hypercall.h>
74#include <asm/xen/hypervisor.h>
75
76#include <xen/xen.h>
77#include <xen/page.h>
78#include <xen/interface/xen.h>
79#include <xen/interface/hvm/hvm_op.h>
80#include <xen/interface/version.h>
81#include <xen/interface/memory.h>
82#include <xen/hvc-console.h>
83#include <xen/swiotlb-xen.h>
84
85#include "multicalls.h"
86#include "mmu.h"
87#include "debugfs.h"
88
89/*
90 * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order
91 * to avoid warnings with "-Wmissing-prototypes".
92 */
93pteval_t xen_pte_val(pte_t pte);
94pgdval_t xen_pgd_val(pgd_t pgd);
95pmdval_t xen_pmd_val(pmd_t pmd);
96pudval_t xen_pud_val(pud_t pud);
97p4dval_t xen_p4d_val(p4d_t p4d);
98pte_t xen_make_pte(pteval_t pte);
99pgd_t xen_make_pgd(pgdval_t pgd);
100pmd_t xen_make_pmd(pmdval_t pmd);
101pud_t xen_make_pud(pudval_t pud);
102p4d_t xen_make_p4d(p4dval_t p4d);
103pte_t xen_make_pte_init(pteval_t pte);
104
105#ifdef CONFIG_X86_VSYSCALL_EMULATION
106/* l3 pud for userspace vsyscall mapping */
107static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
108#endif
109
110/*
111 * Protects atomic reservation decrease/increase against concurrent increases.
112 * Also protects non-atomic updates of current_pages and balloon lists.
113 */
114static DEFINE_SPINLOCK(xen_reservation_lock);
115
116/*
117 * Note about cr3 (pagetable base) values:
118 *
119 * xen_cr3 contains the current logical cr3 value; it contains the
120 * last set cr3. This may not be the current effective cr3, because
121 * its update may be being lazily deferred. However, a vcpu looking
122 * at its own cr3 can use this value knowing that it everything will
123 * be self-consistent.
124 *
125 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
126 * hypercall to set the vcpu cr3 is complete (so it may be a little
127 * out of date, but it will never be set early). If one vcpu is
128 * looking at another vcpu's cr3 value, it should use this variable.
129 */
130DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
131DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
132
133static phys_addr_t xen_pt_base, xen_pt_size __initdata;
134
135static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
136
137/*
138 * Just beyond the highest usermode address. STACK_TOP_MAX has a
139 * redzone above it, so round it up to a PGD boundary.
140 */
141#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
142
143void make_lowmem_page_readonly(void *vaddr)
144{
145 pte_t *pte, ptev;
146 unsigned long address = (unsigned long)vaddr;
147 unsigned int level;
148
149 pte = lookup_address(address, level: &level);
150 if (pte == NULL)
151 return; /* vaddr missing */
152
153 ptev = pte_wrprotect(pte: *pte);
154
155 if (HYPERVISOR_update_va_mapping(va: address, new_val: ptev, flags: 0))
156 BUG();
157}
158
159void make_lowmem_page_readwrite(void *vaddr)
160{
161 pte_t *pte, ptev;
162 unsigned long address = (unsigned long)vaddr;
163 unsigned int level;
164
165 pte = lookup_address(address, level: &level);
166 if (pte == NULL)
167 return; /* vaddr missing */
168
169 ptev = pte_mkwrite_novma(pte: *pte);
170
171 if (HYPERVISOR_update_va_mapping(va: address, new_val: ptev, flags: 0))
172 BUG();
173}
174
175
176/*
177 * During early boot all page table pages are pinned, but we do not have struct
178 * pages, so return true until struct pages are ready.
179 */
180static bool xen_page_pinned(void *ptr)
181{
182 if (static_branch_likely(&xen_struct_pages_ready)) {
183 struct page *page = virt_to_page(ptr);
184
185 return PagePinned(page);
186 }
187 return true;
188}
189
190static void xen_extend_mmu_update(const struct mmu_update *update)
191{
192 struct multicall_space mcs;
193 struct mmu_update *u;
194
195 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, arg_size: sizeof(*u));
196
197 if (mcs.mc != NULL) {
198 mcs.mc->args[1]++;
199 } else {
200 mcs = __xen_mc_entry(args: sizeof(*u));
201 MULTI_mmu_update(mcl: mcs.mc, req: mcs.args, count: 1, NULL, DOMID_SELF);
202 }
203
204 u = mcs.args;
205 *u = *update;
206}
207
208static void xen_extend_mmuext_op(const struct mmuext_op *op)
209{
210 struct multicall_space mcs;
211 struct mmuext_op *u;
212
213 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, arg_size: sizeof(*u));
214
215 if (mcs.mc != NULL) {
216 mcs.mc->args[1]++;
217 } else {
218 mcs = __xen_mc_entry(args: sizeof(*u));
219 MULTI_mmuext_op(mcl: mcs.mc, op: mcs.args, count: 1, NULL, DOMID_SELF);
220 }
221
222 u = mcs.args;
223 *u = *op;
224}
225
226static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
227{
228 struct mmu_update u;
229
230 preempt_disable();
231
232 xen_mc_batch();
233
234 /* ptr may be ioremapped for 64-bit pagetable setup */
235 u.ptr = arbitrary_virt_to_machine(address: ptr).maddr;
236 u.val = pmd_val_ma(val);
237 xen_extend_mmu_update(update: &u);
238
239 xen_mc_issue(mode: XEN_LAZY_MMU);
240
241 preempt_enable();
242}
243
244static void xen_set_pmd(pmd_t *ptr, pmd_t val)
245{
246 trace_xen_mmu_set_pmd(pmdp: ptr, pmdval: val);
247
248 /* If page is not pinned, we can just update the entry
249 directly */
250 if (!xen_page_pinned(ptr)) {
251 *ptr = val;
252 return;
253 }
254
255 xen_set_pmd_hyper(ptr, val);
256}
257
258/*
259 * Associate a virtual page frame with a given physical page frame
260 * and protection flags for that frame.
261 */
262void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
263{
264 if (HYPERVISOR_update_va_mapping(va: vaddr, new_val: mfn_pte(page_nr: mfn, pgprot: flags),
265 UVMF_INVLPG))
266 BUG();
267}
268
269static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
270{
271 struct mmu_update u;
272
273 if (xen_get_lazy_mode() != XEN_LAZY_MMU)
274 return false;
275
276 xen_mc_batch();
277
278 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
279 u.val = pte_val_ma(pte: pteval);
280 xen_extend_mmu_update(update: &u);
281
282 xen_mc_issue(mode: XEN_LAZY_MMU);
283
284 return true;
285}
286
287static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
288{
289 if (!xen_batched_set_pte(ptep, pteval)) {
290 /*
291 * Could call native_set_pte() here and trap and
292 * emulate the PTE write, but a hypercall is much cheaper.
293 */
294 struct mmu_update u;
295
296 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
297 u.val = pte_val_ma(pte: pteval);
298 HYPERVISOR_mmu_update(req: &u, count: 1, NULL, DOMID_SELF);
299 }
300}
301
302static void xen_set_pte(pte_t *ptep, pte_t pteval)
303{
304 trace_xen_mmu_set_pte(ptep, pteval);
305 __xen_set_pte(ptep, pteval);
306}
307
308pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
309 unsigned long addr, pte_t *ptep)
310{
311 /* Just return the pte as-is. We preserve the bits on commit */
312 trace_xen_mmu_ptep_modify_prot_start(mm: vma->vm_mm, addr, ptep, pteval: *ptep);
313 return *ptep;
314}
315
316void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
317 pte_t *ptep, pte_t pte)
318{
319 struct mmu_update u;
320
321 trace_xen_mmu_ptep_modify_prot_commit(mm: vma->vm_mm, addr, ptep, pteval: pte);
322 xen_mc_batch();
323
324 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
325 u.val = pte_val_ma(pte);
326 xen_extend_mmu_update(update: &u);
327
328 xen_mc_issue(mode: XEN_LAZY_MMU);
329}
330
331/* Assume pteval_t is equivalent to all the other *val_t types. */
332static pteval_t pte_mfn_to_pfn(pteval_t val)
333{
334 if (val & _PAGE_PRESENT) {
335 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
336 unsigned long pfn = mfn_to_pfn(mfn);
337
338 pteval_t flags = val & PTE_FLAGS_MASK;
339 if (unlikely(pfn == ~0))
340 val = flags & ~_PAGE_PRESENT;
341 else
342 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
343 }
344
345 return val;
346}
347
348static pteval_t pte_pfn_to_mfn(pteval_t val)
349{
350 if (val & _PAGE_PRESENT) {
351 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
352 pteval_t flags = val & PTE_FLAGS_MASK;
353 unsigned long mfn;
354
355 mfn = __pfn_to_mfn(pfn);
356
357 /*
358 * If there's no mfn for the pfn, then just create an
359 * empty non-present pte. Unfortunately this loses
360 * information about the original pfn, so
361 * pte_mfn_to_pfn is asymmetric.
362 */
363 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
364 mfn = 0;
365 flags = 0;
366 } else
367 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
368 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
369 }
370
371 return val;
372}
373
374__visible pteval_t xen_pte_val(pte_t pte)
375{
376 pteval_t pteval = pte.pte;
377
378 return pte_mfn_to_pfn(val: pteval);
379}
380PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
381
382__visible pgdval_t xen_pgd_val(pgd_t pgd)
383{
384 return pte_mfn_to_pfn(val: pgd.pgd);
385}
386PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
387
388__visible pte_t xen_make_pte(pteval_t pte)
389{
390 pte = pte_pfn_to_mfn(val: pte);
391
392 return native_make_pte(val: pte);
393}
394PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
395
396__visible pgd_t xen_make_pgd(pgdval_t pgd)
397{
398 pgd = pte_pfn_to_mfn(val: pgd);
399 return native_make_pgd(val: pgd);
400}
401PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
402
403__visible pmdval_t xen_pmd_val(pmd_t pmd)
404{
405 return pte_mfn_to_pfn(val: pmd.pmd);
406}
407PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
408
409static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
410{
411 struct mmu_update u;
412
413 preempt_disable();
414
415 xen_mc_batch();
416
417 /* ptr may be ioremapped for 64-bit pagetable setup */
418 u.ptr = arbitrary_virt_to_machine(address: ptr).maddr;
419 u.val = pud_val_ma(val);
420 xen_extend_mmu_update(update: &u);
421
422 xen_mc_issue(mode: XEN_LAZY_MMU);
423
424 preempt_enable();
425}
426
427static void xen_set_pud(pud_t *ptr, pud_t val)
428{
429 trace_xen_mmu_set_pud(pudp: ptr, pudval: val);
430
431 /* If page is not pinned, we can just update the entry
432 directly */
433 if (!xen_page_pinned(ptr)) {
434 *ptr = val;
435 return;
436 }
437
438 xen_set_pud_hyper(ptr, val);
439}
440
441__visible pmd_t xen_make_pmd(pmdval_t pmd)
442{
443 pmd = pte_pfn_to_mfn(val: pmd);
444 return native_make_pmd(val: pmd);
445}
446PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
447
448__visible pudval_t xen_pud_val(pud_t pud)
449{
450 return pte_mfn_to_pfn(val: pud.pud);
451}
452PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
453
454__visible pud_t xen_make_pud(pudval_t pud)
455{
456 pud = pte_pfn_to_mfn(val: pud);
457
458 return native_make_pud(val: pud);
459}
460PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
461
462static pgd_t *xen_get_user_pgd(pgd_t *pgd)
463{
464 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
465 unsigned offset = pgd - pgd_page;
466 pgd_t *user_ptr = NULL;
467
468 if (offset < pgd_index(USER_LIMIT)) {
469 struct page *page = virt_to_page(pgd_page);
470 user_ptr = (pgd_t *)page->private;
471 if (user_ptr)
472 user_ptr += offset;
473 }
474
475 return user_ptr;
476}
477
478static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
479{
480 struct mmu_update u;
481
482 u.ptr = virt_to_machine(ptr).maddr;
483 u.val = p4d_val_ma(val);
484 xen_extend_mmu_update(update: &u);
485}
486
487/*
488 * Raw hypercall-based set_p4d, intended for in early boot before
489 * there's a page structure. This implies:
490 * 1. The only existing pagetable is the kernel's
491 * 2. It is always pinned
492 * 3. It has no user pagetable attached to it
493 */
494static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
495{
496 preempt_disable();
497
498 xen_mc_batch();
499
500 __xen_set_p4d_hyper(ptr, val);
501
502 xen_mc_issue(mode: XEN_LAZY_MMU);
503
504 preempt_enable();
505}
506
507static void xen_set_p4d(p4d_t *ptr, p4d_t val)
508{
509 pgd_t *user_ptr = xen_get_user_pgd(pgd: (pgd_t *)ptr);
510 pgd_t pgd_val;
511
512 trace_xen_mmu_set_p4d(p4dp: ptr, user_p4dp: (p4d_t *)user_ptr, p4dval: val);
513
514 /* If page is not pinned, we can just update the entry
515 directly */
516 if (!xen_page_pinned(ptr)) {
517 *ptr = val;
518 if (user_ptr) {
519 WARN_ON(xen_page_pinned(user_ptr));
520 pgd_val.pgd = p4d_val_ma(val);
521 *user_ptr = pgd_val;
522 }
523 return;
524 }
525
526 /* If it's pinned, then we can at least batch the kernel and
527 user updates together. */
528 xen_mc_batch();
529
530 __xen_set_p4d_hyper(ptr, val);
531 if (user_ptr)
532 __xen_set_p4d_hyper(ptr: (p4d_t *)user_ptr, val);
533
534 xen_mc_issue(mode: XEN_LAZY_MMU);
535}
536
537#if CONFIG_PGTABLE_LEVELS >= 5
538__visible p4dval_t xen_p4d_val(p4d_t p4d)
539{
540 return pte_mfn_to_pfn(val: p4d.p4d);
541}
542PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
543
544__visible p4d_t xen_make_p4d(p4dval_t p4d)
545{
546 p4d = pte_pfn_to_mfn(val: p4d);
547
548 return native_make_p4d(val: p4d);
549}
550PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
551#endif /* CONFIG_PGTABLE_LEVELS >= 5 */
552
553static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
554 void (*func)(struct mm_struct *mm, struct page *,
555 enum pt_level),
556 bool last, unsigned long limit)
557{
558 int i, nr;
559
560 nr = last ? pmd_index(address: limit) + 1 : PTRS_PER_PMD;
561 for (i = 0; i < nr; i++) {
562 if (!pmd_none(pmd: pmd[i]))
563 (*func)(mm, pmd_page(pmd[i]), PT_PTE);
564 }
565}
566
567static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
568 void (*func)(struct mm_struct *mm, struct page *,
569 enum pt_level),
570 bool last, unsigned long limit)
571{
572 int i, nr;
573
574 nr = last ? pud_index(address: limit) + 1 : PTRS_PER_PUD;
575 for (i = 0; i < nr; i++) {
576 pmd_t *pmd;
577
578 if (pud_none(pud: pud[i]))
579 continue;
580
581 pmd = pmd_offset(pud: &pud[i], address: 0);
582 if (PTRS_PER_PMD > 1)
583 (*func)(mm, virt_to_page(pmd), PT_PMD);
584 xen_pmd_walk(mm, pmd, func, last: last && i == nr - 1, limit);
585 }
586}
587
588static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
589 void (*func)(struct mm_struct *mm, struct page *,
590 enum pt_level),
591 bool last, unsigned long limit)
592{
593 pud_t *pud;
594
595
596 if (p4d_none(p4d: *p4d))
597 return;
598
599 pud = pud_offset(p4d, address: 0);
600 if (PTRS_PER_PUD > 1)
601 (*func)(mm, virt_to_page(pud), PT_PUD);
602 xen_pud_walk(mm, pud, func, last, limit);
603}
604
605/*
606 * (Yet another) pagetable walker. This one is intended for pinning a
607 * pagetable. This means that it walks a pagetable and calls the
608 * callback function on each page it finds making up the page table,
609 * at every level. It walks the entire pagetable, but it only bothers
610 * pinning pte pages which are below limit. In the normal case this
611 * will be STACK_TOP_MAX, but at boot we need to pin up to
612 * FIXADDR_TOP.
613 *
614 * We must skip the Xen hole in the middle of the address space, just after
615 * the big x86-64 virtual hole.
616 */
617static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
618 void (*func)(struct mm_struct *mm, struct page *,
619 enum pt_level),
620 unsigned long limit)
621{
622 int i, nr;
623 unsigned hole_low = 0, hole_high = 0;
624
625 /* The limit is the last byte to be touched */
626 limit--;
627 BUG_ON(limit >= FIXADDR_TOP);
628
629 /*
630 * 64-bit has a great big hole in the middle of the address
631 * space, which contains the Xen mappings.
632 */
633 hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
634 hole_high = pgd_index(GUARD_HOLE_END_ADDR);
635
636 nr = pgd_index(limit) + 1;
637 for (i = 0; i < nr; i++) {
638 p4d_t *p4d;
639
640 if (i >= hole_low && i < hole_high)
641 continue;
642
643 if (pgd_none(pgd: pgd[i]))
644 continue;
645
646 p4d = p4d_offset(pgd: &pgd[i], address: 0);
647 xen_p4d_walk(mm, p4d, func, last: i == nr - 1, limit);
648 }
649
650 /* Do the top level last, so that the callbacks can use it as
651 a cue to do final things like tlb flushes. */
652 (*func)(mm, virt_to_page(pgd), PT_PGD);
653}
654
655static void xen_pgd_walk(struct mm_struct *mm,
656 void (*func)(struct mm_struct *mm, struct page *,
657 enum pt_level),
658 unsigned long limit)
659{
660 __xen_pgd_walk(mm, pgd: mm->pgd, func, limit);
661}
662
663/* If we're using split pte locks, then take the page's lock and
664 return a pointer to it. Otherwise return NULL. */
665static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
666{
667 spinlock_t *ptl = NULL;
668
669#if USE_SPLIT_PTE_PTLOCKS
670 ptl = ptlock_ptr(page_ptdesc(page));
671 spin_lock_nest_lock(ptl, &mm->page_table_lock);
672#endif
673
674 return ptl;
675}
676
677static void xen_pte_unlock(void *v)
678{
679 spinlock_t *ptl = v;
680 spin_unlock(lock: ptl);
681}
682
683static void xen_do_pin(unsigned level, unsigned long pfn)
684{
685 struct mmuext_op op;
686
687 op.cmd = level;
688 op.arg1.mfn = pfn_to_mfn(pfn);
689
690 xen_extend_mmuext_op(op: &op);
691}
692
693static void xen_pin_page(struct mm_struct *mm, struct page *page,
694 enum pt_level level)
695{
696 unsigned pgfl = TestSetPagePinned(page);
697
698 if (!pgfl) {
699 void *pt = lowmem_page_address(page);
700 unsigned long pfn = page_to_pfn(page);
701 struct multicall_space mcs = __xen_mc_entry(args: 0);
702 spinlock_t *ptl;
703
704 /*
705 * We need to hold the pagetable lock between the time
706 * we make the pagetable RO and when we actually pin
707 * it. If we don't, then other users may come in and
708 * attempt to update the pagetable by writing it,
709 * which will fail because the memory is RO but not
710 * pinned, so Xen won't do the trap'n'emulate.
711 *
712 * If we're using split pte locks, we can't hold the
713 * entire pagetable's worth of locks during the
714 * traverse, because we may wrap the preempt count (8
715 * bits). The solution is to mark RO and pin each PTE
716 * page while holding the lock. This means the number
717 * of locks we end up holding is never more than a
718 * batch size (~32 entries, at present).
719 *
720 * If we're not using split pte locks, we needn't pin
721 * the PTE pages independently, because we're
722 * protected by the overall pagetable lock.
723 */
724 ptl = NULL;
725 if (level == PT_PTE)
726 ptl = xen_pte_lock(page, mm);
727
728 MULTI_update_va_mapping(mcl: mcs.mc, va: (unsigned long)pt,
729 new_val: pfn_pte(page_nr: pfn, PAGE_KERNEL_RO),
730 flags: level == PT_PGD ? UVMF_TLB_FLUSH : 0);
731
732 if (ptl) {
733 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
734
735 /* Queue a deferred unlock for when this batch
736 is completed. */
737 xen_mc_callback(fn: xen_pte_unlock, data: ptl);
738 }
739 }
740}
741
742/* This is called just after a mm has been created, but it has not
743 been used yet. We need to make sure that its pagetable is all
744 read-only, and can be pinned. */
745static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
746{
747 pgd_t *user_pgd = xen_get_user_pgd(pgd);
748
749 trace_xen_mmu_pgd_pin(mm, pgd);
750
751 xen_mc_batch();
752
753 __xen_pgd_walk(mm, pgd, func: xen_pin_page, USER_LIMIT);
754
755 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
756
757 if (user_pgd) {
758 xen_pin_page(mm, virt_to_page(user_pgd), level: PT_PGD);
759 xen_do_pin(MMUEXT_PIN_L4_TABLE,
760 PFN_DOWN(__pa(user_pgd)));
761 }
762
763 xen_mc_issue(mode: 0);
764}
765
766static void xen_pgd_pin(struct mm_struct *mm)
767{
768 __xen_pgd_pin(mm, pgd: mm->pgd);
769}
770
771/*
772 * On save, we need to pin all pagetables to make sure they get their
773 * mfns turned into pfns. Search the list for any unpinned pgds and pin
774 * them (unpinned pgds are not currently in use, probably because the
775 * process is under construction or destruction).
776 *
777 * Expected to be called in stop_machine() ("equivalent to taking
778 * every spinlock in the system"), so the locking doesn't really
779 * matter all that much.
780 */
781void xen_mm_pin_all(void)
782{
783 struct page *page;
784
785 spin_lock(lock: &pgd_lock);
786
787 list_for_each_entry(page, &pgd_list, lru) {
788 if (!PagePinned(page)) {
789 __xen_pgd_pin(mm: &init_mm, pgd: (pgd_t *)page_address(page));
790 SetPageSavePinned(page);
791 }
792 }
793
794 spin_unlock(lock: &pgd_lock);
795}
796
797static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
798 enum pt_level level)
799{
800 SetPagePinned(page);
801}
802
803/*
804 * The init_mm pagetable is really pinned as soon as its created, but
805 * that's before we have page structures to store the bits. So do all
806 * the book-keeping now once struct pages for allocated pages are
807 * initialized. This happens only after memblock_free_all() is called.
808 */
809static void __init xen_after_bootmem(void)
810{
811 static_branch_enable(&xen_struct_pages_ready);
812#ifdef CONFIG_X86_VSYSCALL_EMULATION
813 SetPagePinned(virt_to_page(level3_user_vsyscall));
814#endif
815 xen_pgd_walk(mm: &init_mm, func: xen_mark_pinned, FIXADDR_TOP);
816}
817
818static void xen_unpin_page(struct mm_struct *mm, struct page *page,
819 enum pt_level level)
820{
821 unsigned pgfl = TestClearPagePinned(page);
822
823 if (pgfl) {
824 void *pt = lowmem_page_address(page);
825 unsigned long pfn = page_to_pfn(page);
826 spinlock_t *ptl = NULL;
827 struct multicall_space mcs;
828
829 /*
830 * Do the converse to pin_page. If we're using split
831 * pte locks, we must be holding the lock for while
832 * the pte page is unpinned but still RO to prevent
833 * concurrent updates from seeing it in this
834 * partially-pinned state.
835 */
836 if (level == PT_PTE) {
837 ptl = xen_pte_lock(page, mm);
838
839 if (ptl)
840 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
841 }
842
843 mcs = __xen_mc_entry(args: 0);
844
845 MULTI_update_va_mapping(mcl: mcs.mc, va: (unsigned long)pt,
846 new_val: pfn_pte(page_nr: pfn, PAGE_KERNEL),
847 flags: level == PT_PGD ? UVMF_TLB_FLUSH : 0);
848
849 if (ptl) {
850 /* unlock when batch completed */
851 xen_mc_callback(fn: xen_pte_unlock, data: ptl);
852 }
853 }
854}
855
856/* Release a pagetables pages back as normal RW */
857static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
858{
859 pgd_t *user_pgd = xen_get_user_pgd(pgd);
860
861 trace_xen_mmu_pgd_unpin(mm, pgd);
862
863 xen_mc_batch();
864
865 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
866
867 if (user_pgd) {
868 xen_do_pin(MMUEXT_UNPIN_TABLE,
869 PFN_DOWN(__pa(user_pgd)));
870 xen_unpin_page(mm, virt_to_page(user_pgd), level: PT_PGD);
871 }
872
873 __xen_pgd_walk(mm, pgd, func: xen_unpin_page, USER_LIMIT);
874
875 xen_mc_issue(mode: 0);
876}
877
878static void xen_pgd_unpin(struct mm_struct *mm)
879{
880 __xen_pgd_unpin(mm, pgd: mm->pgd);
881}
882
883/*
884 * On resume, undo any pinning done at save, so that the rest of the
885 * kernel doesn't see any unexpected pinned pagetables.
886 */
887void xen_mm_unpin_all(void)
888{
889 struct page *page;
890
891 spin_lock(lock: &pgd_lock);
892
893 list_for_each_entry(page, &pgd_list, lru) {
894 if (PageSavePinned(page)) {
895 BUG_ON(!PagePinned(page));
896 __xen_pgd_unpin(mm: &init_mm, pgd: (pgd_t *)page_address(page));
897 ClearPageSavePinned(page);
898 }
899 }
900
901 spin_unlock(lock: &pgd_lock);
902}
903
904static void xen_enter_mmap(struct mm_struct *mm)
905{
906 spin_lock(lock: &mm->page_table_lock);
907 xen_pgd_pin(mm);
908 spin_unlock(lock: &mm->page_table_lock);
909}
910
911static void drop_mm_ref_this_cpu(void *info)
912{
913 struct mm_struct *mm = info;
914
915 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
916 leave_mm(smp_processor_id());
917
918 /*
919 * If this cpu still has a stale cr3 reference, then make sure
920 * it has been flushed.
921 */
922 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
923 xen_mc_flush();
924}
925
926#ifdef CONFIG_SMP
927/*
928 * Another cpu may still have their %cr3 pointing at the pagetable, so
929 * we need to repoint it somewhere else before we can unpin it.
930 */
931static void xen_drop_mm_ref(struct mm_struct *mm)
932{
933 cpumask_var_t mask;
934 unsigned cpu;
935
936 drop_mm_ref_this_cpu(info: mm);
937
938 /* Get the "official" set of cpus referring to our pagetable. */
939 if (!alloc_cpumask_var(mask: &mask, GFP_ATOMIC)) {
940 for_each_online_cpu(cpu) {
941 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
942 continue;
943 smp_call_function_single(cpuid: cpu, func: drop_mm_ref_this_cpu, info: mm, wait: 1);
944 }
945 return;
946 }
947
948 /*
949 * It's possible that a vcpu may have a stale reference to our
950 * cr3, because its in lazy mode, and it hasn't yet flushed
951 * its set of pending hypercalls yet. In this case, we can
952 * look at its actual current cr3 value, and force it to flush
953 * if needed.
954 */
955 cpumask_clear(dstp: mask);
956 for_each_online_cpu(cpu) {
957 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
958 cpumask_set_cpu(cpu, dstp: mask);
959 }
960
961 smp_call_function_many(mask, func: drop_mm_ref_this_cpu, info: mm, wait: 1);
962 free_cpumask_var(mask);
963}
964#else
965static void xen_drop_mm_ref(struct mm_struct *mm)
966{
967 drop_mm_ref_this_cpu(mm);
968}
969#endif
970
971/*
972 * While a process runs, Xen pins its pagetables, which means that the
973 * hypervisor forces it to be read-only, and it controls all updates
974 * to it. This means that all pagetable updates have to go via the
975 * hypervisor, which is moderately expensive.
976 *
977 * Since we're pulling the pagetable down, we switch to use init_mm,
978 * unpin old process pagetable and mark it all read-write, which
979 * allows further operations on it to be simple memory accesses.
980 *
981 * The only subtle point is that another CPU may be still using the
982 * pagetable because of lazy tlb flushing. This means we need need to
983 * switch all CPUs off this pagetable before we can unpin it.
984 */
985static void xen_exit_mmap(struct mm_struct *mm)
986{
987 get_cpu(); /* make sure we don't move around */
988 xen_drop_mm_ref(mm);
989 put_cpu();
990
991 spin_lock(lock: &mm->page_table_lock);
992
993 /* pgd may not be pinned in the error exit path of execve */
994 if (xen_page_pinned(ptr: mm->pgd))
995 xen_pgd_unpin(mm);
996
997 spin_unlock(lock: &mm->page_table_lock);
998}
999
1000static void xen_post_allocator_init(void);
1001
1002static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1003{
1004 struct mmuext_op op;
1005
1006 op.cmd = cmd;
1007 op.arg1.mfn = pfn_to_mfn(pfn);
1008 if (HYPERVISOR_mmuext_op(op: &op, count: 1, NULL, DOMID_SELF))
1009 BUG();
1010}
1011
1012static void __init xen_cleanhighmap(unsigned long vaddr,
1013 unsigned long vaddr_end)
1014{
1015 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1016 pmd_t *pmd = level2_kernel_pgt + pmd_index(address: vaddr);
1017
1018 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1019 * We include the PMD passed in on _both_ boundaries. */
1020 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1021 pmd++, vaddr += PMD_SIZE) {
1022 if (pmd_none(pmd: *pmd))
1023 continue;
1024 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1025 set_pmd(pmdp: pmd, pmd: __pmd(val: 0));
1026 }
1027 /* In case we did something silly, we should crash in this function
1028 * instead of somewhere later and be confusing. */
1029 xen_mc_flush();
1030}
1031
1032/*
1033 * Make a page range writeable and free it.
1034 */
1035static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1036{
1037 void *vaddr = __va(paddr);
1038 void *vaddr_end = vaddr + size;
1039
1040 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1041 make_lowmem_page_readwrite(vaddr);
1042
1043 memblock_phys_free(base: paddr, size);
1044}
1045
1046static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1047{
1048 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1049
1050 if (unpin)
1051 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1052 ClearPagePinned(virt_to_page(__va(pa)));
1053 xen_free_ro_pages(paddr: pa, PAGE_SIZE);
1054}
1055
1056static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1057{
1058 unsigned long pa;
1059 pte_t *pte_tbl;
1060 int i;
1061
1062 if (pmd_large(pte: *pmd)) {
1063 pa = pmd_val(pmd: *pmd) & PHYSICAL_PAGE_MASK;
1064 xen_free_ro_pages(paddr: pa, PMD_SIZE);
1065 return;
1066 }
1067
1068 pte_tbl = pte_offset_kernel(pmd, address: 0);
1069 for (i = 0; i < PTRS_PER_PTE; i++) {
1070 if (pte_none(pte: pte_tbl[i]))
1071 continue;
1072 pa = pte_pfn(pte: pte_tbl[i]) << PAGE_SHIFT;
1073 xen_free_ro_pages(paddr: pa, PAGE_SIZE);
1074 }
1075 set_pmd(pmdp: pmd, pmd: __pmd(val: 0));
1076 xen_cleanmfnmap_free_pgtbl(pgtbl: pte_tbl, unpin);
1077}
1078
1079static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1080{
1081 unsigned long pa;
1082 pmd_t *pmd_tbl;
1083 int i;
1084
1085 if (pud_large(pud: *pud)) {
1086 pa = pud_val(pud: *pud) & PHYSICAL_PAGE_MASK;
1087 xen_free_ro_pages(paddr: pa, PUD_SIZE);
1088 return;
1089 }
1090
1091 pmd_tbl = pmd_offset(pud, address: 0);
1092 for (i = 0; i < PTRS_PER_PMD; i++) {
1093 if (pmd_none(pmd: pmd_tbl[i]))
1094 continue;
1095 xen_cleanmfnmap_pmd(pmd: pmd_tbl + i, unpin);
1096 }
1097 set_pud(pudp: pud, pud: __pud(val: 0));
1098 xen_cleanmfnmap_free_pgtbl(pgtbl: pmd_tbl, unpin);
1099}
1100
1101static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1102{
1103 unsigned long pa;
1104 pud_t *pud_tbl;
1105 int i;
1106
1107 if (p4d_large(p4d: *p4d)) {
1108 pa = p4d_val(p4d: *p4d) & PHYSICAL_PAGE_MASK;
1109 xen_free_ro_pages(paddr: pa, P4D_SIZE);
1110 return;
1111 }
1112
1113 pud_tbl = pud_offset(p4d, address: 0);
1114 for (i = 0; i < PTRS_PER_PUD; i++) {
1115 if (pud_none(pud: pud_tbl[i]))
1116 continue;
1117 xen_cleanmfnmap_pud(pud: pud_tbl + i, unpin);
1118 }
1119 set_p4d(p4dp: p4d, p4d: __p4d(val: 0));
1120 xen_cleanmfnmap_free_pgtbl(pgtbl: pud_tbl, unpin);
1121}
1122
1123/*
1124 * Since it is well isolated we can (and since it is perhaps large we should)
1125 * also free the page tables mapping the initial P->M table.
1126 */
1127static void __init xen_cleanmfnmap(unsigned long vaddr)
1128{
1129 pgd_t *pgd;
1130 p4d_t *p4d;
1131 bool unpin;
1132
1133 unpin = (vaddr == 2 * PGDIR_SIZE);
1134 vaddr &= PMD_MASK;
1135 pgd = pgd_offset_k(vaddr);
1136 p4d = p4d_offset(pgd, address: 0);
1137 if (!p4d_none(p4d: *p4d))
1138 xen_cleanmfnmap_p4d(p4d, unpin);
1139}
1140
1141static void __init xen_pagetable_p2m_free(void)
1142{
1143 unsigned long size;
1144 unsigned long addr;
1145
1146 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1147
1148 /* No memory or already called. */
1149 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1150 return;
1151
1152 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1153 memset((void *)xen_start_info->mfn_list, 0xff, size);
1154
1155 addr = xen_start_info->mfn_list;
1156 /*
1157 * We could be in __ka space.
1158 * We roundup to the PMD, which means that if anybody at this stage is
1159 * using the __ka address of xen_start_info or
1160 * xen_start_info->shared_info they are in going to crash. Fortunately
1161 * we have already revectored in xen_setup_kernel_pagetable.
1162 */
1163 size = roundup(size, PMD_SIZE);
1164
1165 if (addr >= __START_KERNEL_map) {
1166 xen_cleanhighmap(vaddr: addr, vaddr_end: addr + size);
1167 size = PAGE_ALIGN(xen_start_info->nr_pages *
1168 sizeof(unsigned long));
1169 memblock_free(ptr: (void *)addr, size);
1170 } else {
1171 xen_cleanmfnmap(vaddr: addr);
1172 }
1173}
1174
1175static void __init xen_pagetable_cleanhighmap(void)
1176{
1177 unsigned long size;
1178 unsigned long addr;
1179
1180 /* At this stage, cleanup_highmap has already cleaned __ka space
1181 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1182 * the ramdisk). We continue on, erasing PMD entries that point to page
1183 * tables - do note that they are accessible at this stage via __va.
1184 * As Xen is aligning the memory end to a 4MB boundary, for good
1185 * measure we also round up to PMD_SIZE * 2 - which means that if
1186 * anybody is using __ka address to the initial boot-stack - and try
1187 * to use it - they are going to crash. The xen_start_info has been
1188 * taken care of already in xen_setup_kernel_pagetable. */
1189 addr = xen_start_info->pt_base;
1190 size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1191
1192 xen_cleanhighmap(vaddr: addr, roundup(addr + size, PMD_SIZE * 2));
1193 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1194}
1195
1196static void __init xen_pagetable_p2m_setup(void)
1197{
1198 xen_vmalloc_p2m_tree();
1199
1200 xen_pagetable_p2m_free();
1201
1202 xen_pagetable_cleanhighmap();
1203
1204 /* And revector! Bye bye old array */
1205 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1206}
1207
1208static void __init xen_pagetable_init(void)
1209{
1210 /*
1211 * The majority of further PTE writes is to pagetables already
1212 * announced as such to Xen. Hence it is more efficient to use
1213 * hypercalls for these updates.
1214 */
1215 pv_ops.mmu.set_pte = __xen_set_pte;
1216
1217 paging_init();
1218 xen_post_allocator_init();
1219
1220 xen_pagetable_p2m_setup();
1221
1222 /* Allocate and initialize top and mid mfn levels for p2m structure */
1223 xen_build_mfn_list_list();
1224
1225 /* Remap memory freed due to conflicts with E820 map */
1226 xen_remap_memory();
1227 xen_setup_mfn_list_list();
1228}
1229
1230static noinstr void xen_write_cr2(unsigned long cr2)
1231{
1232 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1233}
1234
1235static noinline void xen_flush_tlb(void)
1236{
1237 struct mmuext_op *op;
1238 struct multicall_space mcs;
1239
1240 preempt_disable();
1241
1242 mcs = xen_mc_entry(args: sizeof(*op));
1243
1244 op = mcs.args;
1245 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1246 MULTI_mmuext_op(mcl: mcs.mc, op, count: 1, NULL, DOMID_SELF);
1247
1248 xen_mc_issue(mode: XEN_LAZY_MMU);
1249
1250 preempt_enable();
1251}
1252
1253static void xen_flush_tlb_one_user(unsigned long addr)
1254{
1255 struct mmuext_op *op;
1256 struct multicall_space mcs;
1257
1258 trace_xen_mmu_flush_tlb_one_user(addr);
1259
1260 preempt_disable();
1261
1262 mcs = xen_mc_entry(args: sizeof(*op));
1263 op = mcs.args;
1264 op->cmd = MMUEXT_INVLPG_LOCAL;
1265 op->arg1.linear_addr = addr & PAGE_MASK;
1266 MULTI_mmuext_op(mcl: mcs.mc, op, count: 1, NULL, DOMID_SELF);
1267
1268 xen_mc_issue(mode: XEN_LAZY_MMU);
1269
1270 preempt_enable();
1271}
1272
1273static void xen_flush_tlb_multi(const struct cpumask *cpus,
1274 const struct flush_tlb_info *info)
1275{
1276 struct {
1277 struct mmuext_op op;
1278 DECLARE_BITMAP(mask, NR_CPUS);
1279 } *args;
1280 struct multicall_space mcs;
1281 const size_t mc_entry_size = sizeof(args->op) +
1282 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1283
1284 trace_xen_mmu_flush_tlb_multi(cpus, mm: info->mm, addr: info->start, end: info->end);
1285
1286 if (cpumask_empty(srcp: cpus))
1287 return; /* nothing to do */
1288
1289 mcs = xen_mc_entry(args: mc_entry_size);
1290 args = mcs.args;
1291 args->op.arg2.vcpumask = to_cpumask(args->mask);
1292
1293 /* Remove any offline CPUs */
1294 cpumask_and(to_cpumask(args->mask), src1p: cpus, cpu_online_mask);
1295
1296 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1297 if (info->end != TLB_FLUSH_ALL &&
1298 (info->end - info->start) <= PAGE_SIZE) {
1299 args->op.cmd = MMUEXT_INVLPG_MULTI;
1300 args->op.arg1.linear_addr = info->start;
1301 }
1302
1303 MULTI_mmuext_op(mcl: mcs.mc, op: &args->op, count: 1, NULL, DOMID_SELF);
1304
1305 xen_mc_issue(mode: XEN_LAZY_MMU);
1306}
1307
1308static unsigned long xen_read_cr3(void)
1309{
1310 return this_cpu_read(xen_cr3);
1311}
1312
1313static void set_current_cr3(void *v)
1314{
1315 this_cpu_write(xen_current_cr3, (unsigned long)v);
1316}
1317
1318static void __xen_write_cr3(bool kernel, unsigned long cr3)
1319{
1320 struct mmuext_op op;
1321 unsigned long mfn;
1322
1323 trace_xen_mmu_write_cr3(kernel, cr3);
1324
1325 if (cr3)
1326 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1327 else
1328 mfn = 0;
1329
1330 WARN_ON(mfn == 0 && kernel);
1331
1332 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1333 op.arg1.mfn = mfn;
1334
1335 xen_extend_mmuext_op(op: &op);
1336
1337 if (kernel) {
1338 this_cpu_write(xen_cr3, cr3);
1339
1340 /* Update xen_current_cr3 once the batch has actually
1341 been submitted. */
1342 xen_mc_callback(fn: set_current_cr3, data: (void *)cr3);
1343 }
1344}
1345static void xen_write_cr3(unsigned long cr3)
1346{
1347 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1348
1349 BUG_ON(preemptible());
1350
1351 xen_mc_batch(); /* disables interrupts */
1352
1353 /* Update while interrupts are disabled, so its atomic with
1354 respect to ipis */
1355 this_cpu_write(xen_cr3, cr3);
1356
1357 __xen_write_cr3(kernel: true, cr3);
1358
1359 if (user_pgd)
1360 __xen_write_cr3(kernel: false, __pa(user_pgd));
1361 else
1362 __xen_write_cr3(kernel: false, cr3: 0);
1363
1364 xen_mc_issue(mode: XEN_LAZY_CPU); /* interrupts restored */
1365}
1366
1367/*
1368 * At the start of the day - when Xen launches a guest, it has already
1369 * built pagetables for the guest. We diligently look over them
1370 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1371 * init_top_pgt and its friends. Then when we are happy we load
1372 * the new init_top_pgt - and continue on.
1373 *
1374 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1375 * up the rest of the pagetables. When it has completed it loads the cr3.
1376 * N.B. that baremetal would start at 'start_kernel' (and the early
1377 * #PF handler would create bootstrap pagetables) - so we are running
1378 * with the same assumptions as what to do when write_cr3 is executed
1379 * at this point.
1380 *
1381 * Since there are no user-page tables at all, we have two variants
1382 * of xen_write_cr3 - the early bootup (this one), and the late one
1383 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1384 * the Linux kernel and user-space are both in ring 3 while the
1385 * hypervisor is in ring 0.
1386 */
1387static void __init xen_write_cr3_init(unsigned long cr3)
1388{
1389 BUG_ON(preemptible());
1390
1391 xen_mc_batch(); /* disables interrupts */
1392
1393 /* Update while interrupts are disabled, so its atomic with
1394 respect to ipis */
1395 this_cpu_write(xen_cr3, cr3);
1396
1397 __xen_write_cr3(kernel: true, cr3);
1398
1399 xen_mc_issue(mode: XEN_LAZY_CPU); /* interrupts restored */
1400}
1401
1402static int xen_pgd_alloc(struct mm_struct *mm)
1403{
1404 pgd_t *pgd = mm->pgd;
1405 struct page *page = virt_to_page(pgd);
1406 pgd_t *user_pgd;
1407 int ret = -ENOMEM;
1408
1409 BUG_ON(PagePinned(virt_to_page(pgd)));
1410 BUG_ON(page->private != 0);
1411
1412 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1413 page->private = (unsigned long)user_pgd;
1414
1415 if (user_pgd != NULL) {
1416#ifdef CONFIG_X86_VSYSCALL_EMULATION
1417 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1418 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1419#endif
1420 ret = 0;
1421 }
1422
1423 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1424
1425 return ret;
1426}
1427
1428static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1429{
1430 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1431
1432 if (user_pgd)
1433 free_page((unsigned long)user_pgd);
1434}
1435
1436/*
1437 * Init-time set_pte while constructing initial pagetables, which
1438 * doesn't allow RO page table pages to be remapped RW.
1439 *
1440 * If there is no MFN for this PFN then this page is initially
1441 * ballooned out so clear the PTE (as in decrease_reservation() in
1442 * drivers/xen/balloon.c).
1443 *
1444 * Many of these PTE updates are done on unpinned and writable pages
1445 * and doing a hypercall for these is unnecessary and expensive. At
1446 * this point it is rarely possible to tell if a page is pinned, so
1447 * mostly write the PTE directly and rely on Xen trapping and
1448 * emulating any updates as necessary.
1449 */
1450static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1451{
1452 if (unlikely(is_early_ioremap_ptep(ptep)))
1453 __xen_set_pte(ptep, pteval: pte);
1454 else
1455 native_set_pte(ptep, pte);
1456}
1457
1458__visible pte_t xen_make_pte_init(pteval_t pte)
1459{
1460 unsigned long pfn;
1461
1462 /*
1463 * Pages belonging to the initial p2m list mapped outside the default
1464 * address range must be mapped read-only. This region contains the
1465 * page tables for mapping the p2m list, too, and page tables MUST be
1466 * mapped read-only.
1467 */
1468 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1469 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1470 pfn >= xen_start_info->first_p2m_pfn &&
1471 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1472 pte &= ~_PAGE_RW;
1473
1474 pte = pte_pfn_to_mfn(val: pte);
1475 return native_make_pte(val: pte);
1476}
1477PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1478
1479/* Early in boot, while setting up the initial pagetable, assume
1480 everything is pinned. */
1481static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1482{
1483#ifdef CONFIG_FLATMEM
1484 BUG_ON(mem_map); /* should only be used early */
1485#endif
1486 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1487 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1488}
1489
1490/* Used for pmd and pud */
1491static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1492{
1493#ifdef CONFIG_FLATMEM
1494 BUG_ON(mem_map); /* should only be used early */
1495#endif
1496 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1497}
1498
1499/* Early release_pte assumes that all pts are pinned, since there's
1500 only init_mm and anything attached to that is pinned. */
1501static void __init xen_release_pte_init(unsigned long pfn)
1502{
1503 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1504 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1505}
1506
1507static void __init xen_release_pmd_init(unsigned long pfn)
1508{
1509 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1510}
1511
1512static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1513{
1514 struct multicall_space mcs;
1515 struct mmuext_op *op;
1516
1517 mcs = __xen_mc_entry(args: sizeof(*op));
1518 op = mcs.args;
1519 op->cmd = cmd;
1520 op->arg1.mfn = pfn_to_mfn(pfn);
1521
1522 MULTI_mmuext_op(mcl: mcs.mc, op: mcs.args, count: 1, NULL, DOMID_SELF);
1523}
1524
1525static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1526{
1527 struct multicall_space mcs;
1528 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1529
1530 mcs = __xen_mc_entry(args: 0);
1531 MULTI_update_va_mapping(mcl: mcs.mc, va: (unsigned long)addr,
1532 new_val: pfn_pte(page_nr: pfn, pgprot: prot), flags: 0);
1533}
1534
1535/* This needs to make sure the new pte page is pinned iff its being
1536 attached to a pinned pagetable. */
1537static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1538 unsigned level)
1539{
1540 bool pinned = xen_page_pinned(ptr: mm->pgd);
1541
1542 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1543
1544 if (pinned) {
1545 struct page *page = pfn_to_page(pfn);
1546
1547 pinned = false;
1548 if (static_branch_likely(&xen_struct_pages_ready)) {
1549 pinned = PagePinned(page);
1550 SetPagePinned(page);
1551 }
1552
1553 xen_mc_batch();
1554
1555 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1556
1557 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned)
1558 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1559
1560 xen_mc_issue(mode: XEN_LAZY_MMU);
1561 }
1562}
1563
1564static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1565{
1566 xen_alloc_ptpage(mm, pfn, level: PT_PTE);
1567}
1568
1569static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1570{
1571 xen_alloc_ptpage(mm, pfn, level: PT_PMD);
1572}
1573
1574/* This should never happen until we're OK to use struct page */
1575static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1576{
1577 struct page *page = pfn_to_page(pfn);
1578 bool pinned = PagePinned(page);
1579
1580 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1581
1582 if (pinned) {
1583 xen_mc_batch();
1584
1585 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1586 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1587
1588 __set_pfn_prot(pfn, PAGE_KERNEL);
1589
1590 xen_mc_issue(mode: XEN_LAZY_MMU);
1591
1592 ClearPagePinned(page);
1593 }
1594}
1595
1596static void xen_release_pte(unsigned long pfn)
1597{
1598 xen_release_ptpage(pfn, level: PT_PTE);
1599}
1600
1601static void xen_release_pmd(unsigned long pfn)
1602{
1603 xen_release_ptpage(pfn, level: PT_PMD);
1604}
1605
1606static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1607{
1608 xen_alloc_ptpage(mm, pfn, level: PT_PUD);
1609}
1610
1611static void xen_release_pud(unsigned long pfn)
1612{
1613 xen_release_ptpage(pfn, level: PT_PUD);
1614}
1615
1616/*
1617 * Like __va(), but returns address in the kernel mapping (which is
1618 * all we have until the physical memory mapping has been set up.
1619 */
1620static void * __init __ka(phys_addr_t paddr)
1621{
1622 return (void *)(paddr + __START_KERNEL_map);
1623}
1624
1625/* Convert a machine address to physical address */
1626static unsigned long __init m2p(phys_addr_t maddr)
1627{
1628 phys_addr_t paddr;
1629
1630 maddr &= XEN_PTE_MFN_MASK;
1631 paddr = mfn_to_pfn(mfn: maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1632
1633 return paddr;
1634}
1635
1636/* Convert a machine address to kernel virtual */
1637static void * __init m2v(phys_addr_t maddr)
1638{
1639 return __ka(paddr: m2p(maddr));
1640}
1641
1642/* Set the page permissions on an identity-mapped pages */
1643static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1644 unsigned long flags)
1645{
1646 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1647 pte_t pte = pfn_pte(page_nr: pfn, pgprot: prot);
1648
1649 if (HYPERVISOR_update_va_mapping(va: (unsigned long)addr, new_val: pte, flags))
1650 BUG();
1651}
1652static void __init set_page_prot(void *addr, pgprot_t prot)
1653{
1654 return set_page_prot_flags(addr, prot, UVMF_NONE);
1655}
1656
1657void __init xen_setup_machphys_mapping(void)
1658{
1659 struct xen_machphys_mapping mapping;
1660
1661 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, arg: &mapping) == 0) {
1662 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1663 machine_to_phys_nr = mapping.max_mfn + 1;
1664 } else {
1665 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1666 }
1667}
1668
1669static void __init convert_pfn_mfn(void *v)
1670{
1671 pte_t *pte = v;
1672 int i;
1673
1674 /* All levels are converted the same way, so just treat them
1675 as ptes. */
1676 for (i = 0; i < PTRS_PER_PTE; i++)
1677 pte[i] = xen_make_pte(pte: pte[i].pte);
1678}
1679static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1680 unsigned long addr)
1681{
1682 if (*pt_base == PFN_DOWN(__pa(addr))) {
1683 set_page_prot_flags(addr: (void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1684 clear_page(page: (void *)addr);
1685 (*pt_base)++;
1686 }
1687 if (*pt_end == PFN_DOWN(__pa(addr))) {
1688 set_page_prot_flags(addr: (void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1689 clear_page(page: (void *)addr);
1690 (*pt_end)--;
1691 }
1692}
1693/*
1694 * Set up the initial kernel pagetable.
1695 *
1696 * We can construct this by grafting the Xen provided pagetable into
1697 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1698 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1699 * kernel has a physical mapping to start with - but that's enough to
1700 * get __va working. We need to fill in the rest of the physical
1701 * mapping once some sort of allocator has been set up.
1702 */
1703void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1704{
1705 pud_t *l3;
1706 pmd_t *l2;
1707 unsigned long addr[3];
1708 unsigned long pt_base, pt_end;
1709 unsigned i;
1710
1711 /* max_pfn_mapped is the last pfn mapped in the initial memory
1712 * mappings. Considering that on Xen after the kernel mappings we
1713 * have the mappings of some pages that don't exist in pfn space, we
1714 * set max_pfn_mapped to the last real pfn mapped. */
1715 if (xen_start_info->mfn_list < __START_KERNEL_map)
1716 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1717 else
1718 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1719
1720 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1721 pt_end = pt_base + xen_start_info->nr_pt_frames;
1722
1723 /* Zap identity mapping */
1724 init_top_pgt[0] = __pgd(val: 0);
1725
1726 /* Pre-constructed entries are in pfn, so convert to mfn */
1727 /* L4[273] -> level3_ident_pgt */
1728 /* L4[511] -> level3_kernel_pgt */
1729 convert_pfn_mfn(v: init_top_pgt);
1730
1731 /* L3_i[0] -> level2_ident_pgt */
1732 convert_pfn_mfn(v: level3_ident_pgt);
1733 /* L3_k[510] -> level2_kernel_pgt */
1734 /* L3_k[511] -> level2_fixmap_pgt */
1735 convert_pfn_mfn(v: level3_kernel_pgt);
1736
1737 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1738 convert_pfn_mfn(v: level2_fixmap_pgt);
1739
1740 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1741 l3 = m2v(maddr: pgd[pgd_index(__START_KERNEL_map)].pgd);
1742 l2 = m2v(maddr: l3[pud_index(__START_KERNEL_map)].pud);
1743
1744 addr[0] = (unsigned long)pgd;
1745 addr[1] = (unsigned long)l3;
1746 addr[2] = (unsigned long)l2;
1747 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1748 * Both L4[273][0] and L4[511][510] have entries that point to the same
1749 * L2 (PMD) tables. Meaning that if you modify it in __va space
1750 * it will be also modified in the __ka space! (But if you just
1751 * modify the PMD table to point to other PTE's or none, then you
1752 * are OK - which is what cleanup_highmap does) */
1753 copy_page(to: level2_ident_pgt, from: l2);
1754 /* Graft it onto L4[511][510] */
1755 copy_page(to: level2_kernel_pgt, from: l2);
1756
1757 /*
1758 * Zap execute permission from the ident map. Due to the sharing of
1759 * L1 entries we need to do this in the L2.
1760 */
1761 if (__supported_pte_mask & _PAGE_NX) {
1762 for (i = 0; i < PTRS_PER_PMD; ++i) {
1763 if (pmd_none(pmd: level2_ident_pgt[i]))
1764 continue;
1765 level2_ident_pgt[i] = pmd_set_flags(pmd: level2_ident_pgt[i], _PAGE_NX);
1766 }
1767 }
1768
1769 /* Copy the initial P->M table mappings if necessary. */
1770 i = pgd_index(xen_start_info->mfn_list);
1771 if (i && i < pgd_index(__START_KERNEL_map))
1772 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1773
1774 /* Make pagetable pieces RO */
1775 set_page_prot(addr: init_top_pgt, PAGE_KERNEL_RO);
1776 set_page_prot(addr: level3_ident_pgt, PAGE_KERNEL_RO);
1777 set_page_prot(addr: level3_kernel_pgt, PAGE_KERNEL_RO);
1778 set_page_prot(addr: level2_ident_pgt, PAGE_KERNEL_RO);
1779 set_page_prot(addr: level2_kernel_pgt, PAGE_KERNEL_RO);
1780 set_page_prot(addr: level2_fixmap_pgt, PAGE_KERNEL_RO);
1781
1782 for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1783 set_page_prot(addr: level1_fixmap_pgt + i * PTRS_PER_PTE,
1784 PAGE_KERNEL_RO);
1785 }
1786
1787 /* Pin down new L4 */
1788 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1789 PFN_DOWN(__pa_symbol(init_top_pgt)));
1790
1791 /* Unpin Xen-provided one */
1792 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1793
1794#ifdef CONFIG_X86_VSYSCALL_EMULATION
1795 /* Pin user vsyscall L3 */
1796 set_page_prot(addr: level3_user_vsyscall, PAGE_KERNEL_RO);
1797 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1798 PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1799#endif
1800
1801 /*
1802 * At this stage there can be no user pgd, and no page structure to
1803 * attach it to, so make sure we just set kernel pgd.
1804 */
1805 xen_mc_batch();
1806 __xen_write_cr3(kernel: true, __pa(init_top_pgt));
1807 xen_mc_issue(mode: XEN_LAZY_CPU);
1808
1809 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1810 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1811 * the initial domain. For guests using the toolstack, they are in:
1812 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1813 * rip out the [L4] (pgd), but for guests we shave off three pages.
1814 */
1815 for (i = 0; i < ARRAY_SIZE(addr); i++)
1816 check_pt_base(pt_base: &pt_base, pt_end: &pt_end, addr: addr[i]);
1817
1818 /* Our (by three pages) smaller Xen pagetable that we are using */
1819 xen_pt_base = PFN_PHYS(pt_base);
1820 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1821 memblock_reserve(base: xen_pt_base, size: xen_pt_size);
1822
1823 /* Revector the xen_start_info */
1824 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1825}
1826
1827/*
1828 * Read a value from a physical address.
1829 */
1830static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1831{
1832 unsigned long *vaddr;
1833 unsigned long val;
1834
1835 vaddr = early_memremap_ro(phys_addr: addr, size: sizeof(val));
1836 val = *vaddr;
1837 early_memunmap(addr: vaddr, size: sizeof(val));
1838 return val;
1839}
1840
1841/*
1842 * Translate a virtual address to a physical one without relying on mapped
1843 * page tables. Don't rely on big pages being aligned in (guest) physical
1844 * space!
1845 */
1846static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1847{
1848 phys_addr_t pa;
1849 pgd_t pgd;
1850 pud_t pud;
1851 pmd_t pmd;
1852 pte_t pte;
1853
1854 pa = read_cr3_pa();
1855 pgd = native_make_pgd(val: xen_read_phys_ulong(addr: pa + pgd_index(vaddr) *
1856 sizeof(pgd)));
1857 if (!pgd_present(pgd))
1858 return 0;
1859
1860 pa = pgd_val(pgd) & PTE_PFN_MASK;
1861 pud = native_make_pud(val: xen_read_phys_ulong(addr: pa + pud_index(address: vaddr) *
1862 sizeof(pud)));
1863 if (!pud_present(pud))
1864 return 0;
1865 pa = pud_val(pud) & PTE_PFN_MASK;
1866 if (pud_large(pud))
1867 return pa + (vaddr & ~PUD_MASK);
1868
1869 pmd = native_make_pmd(val: xen_read_phys_ulong(addr: pa + pmd_index(address: vaddr) *
1870 sizeof(pmd)));
1871 if (!pmd_present(pmd))
1872 return 0;
1873 pa = pmd_val(pmd) & PTE_PFN_MASK;
1874 if (pmd_large(pte: pmd))
1875 return pa + (vaddr & ~PMD_MASK);
1876
1877 pte = native_make_pte(val: xen_read_phys_ulong(addr: pa + pte_index(address: vaddr) *
1878 sizeof(pte)));
1879 if (!pte_present(a: pte))
1880 return 0;
1881 pa = pte_pfn(pte) << PAGE_SHIFT;
1882
1883 return pa | (vaddr & ~PAGE_MASK);
1884}
1885
1886/*
1887 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1888 * this area.
1889 */
1890void __init xen_relocate_p2m(void)
1891{
1892 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1893 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1894 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1895 pte_t *pt;
1896 pmd_t *pmd;
1897 pud_t *pud;
1898 pgd_t *pgd;
1899 unsigned long *new_p2m;
1900
1901 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1902 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1903 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1904 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1905 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1906 n_frames = n_pte + n_pt + n_pmd + n_pud;
1907
1908 new_area = xen_find_free_area(PFN_PHYS(n_frames));
1909 if (!new_area) {
1910 xen_raw_console_write(str: "Can't find new memory area for p2m needed due to E820 map conflict\n");
1911 BUG();
1912 }
1913
1914 /*
1915 * Setup the page tables for addressing the new p2m list.
1916 * We have asked the hypervisor to map the p2m list at the user address
1917 * PUD_SIZE. It may have done so, or it may have used a kernel space
1918 * address depending on the Xen version.
1919 * To avoid any possible virtual address collision, just use
1920 * 2 * PUD_SIZE for the new area.
1921 */
1922 pud_phys = new_area;
1923 pmd_phys = pud_phys + PFN_PHYS(n_pud);
1924 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1925 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1926
1927 pgd = __va(read_cr3_pa());
1928 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1929 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1930 pud = early_memremap(phys_addr: pud_phys, PAGE_SIZE);
1931 clear_page(page: pud);
1932 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1933 idx_pmd++) {
1934 pmd = early_memremap(phys_addr: pmd_phys, PAGE_SIZE);
1935 clear_page(page: pmd);
1936 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1937 idx_pt++) {
1938 pt = early_memremap(phys_addr: pt_phys, PAGE_SIZE);
1939 clear_page(page: pt);
1940 for (idx_pte = 0;
1941 idx_pte < min(n_pte, PTRS_PER_PTE);
1942 idx_pte++) {
1943 pt[idx_pte] = pfn_pte(page_nr: p2m_pfn,
1944 PAGE_KERNEL);
1945 p2m_pfn++;
1946 }
1947 n_pte -= PTRS_PER_PTE;
1948 early_memunmap(addr: pt, PAGE_SIZE);
1949 make_lowmem_page_readonly(__va(pt_phys));
1950 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1951 PFN_DOWN(pt_phys));
1952 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1953 pt_phys += PAGE_SIZE;
1954 }
1955 n_pt -= PTRS_PER_PMD;
1956 early_memunmap(addr: pmd, PAGE_SIZE);
1957 make_lowmem_page_readonly(__va(pmd_phys));
1958 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1959 PFN_DOWN(pmd_phys));
1960 pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1961 pmd_phys += PAGE_SIZE;
1962 }
1963 n_pmd -= PTRS_PER_PUD;
1964 early_memunmap(addr: pud, PAGE_SIZE);
1965 make_lowmem_page_readonly(__va(pud_phys));
1966 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1967 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1968 pud_phys += PAGE_SIZE;
1969 }
1970
1971 /* Now copy the old p2m info to the new area. */
1972 memcpy(new_p2m, xen_p2m_addr, size);
1973 xen_p2m_addr = new_p2m;
1974
1975 /* Release the old p2m list and set new list info. */
1976 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1977 BUG_ON(!p2m_pfn);
1978 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1979
1980 if (xen_start_info->mfn_list < __START_KERNEL_map) {
1981 pfn = xen_start_info->first_p2m_pfn;
1982 pfn_end = xen_start_info->first_p2m_pfn +
1983 xen_start_info->nr_p2m_frames;
1984 set_pgd(pgd + 1, __pgd(0));
1985 } else {
1986 pfn = p2m_pfn;
1987 pfn_end = p2m_pfn_end;
1988 }
1989
1990 memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1991 while (pfn < pfn_end) {
1992 if (pfn == p2m_pfn) {
1993 pfn = p2m_pfn_end;
1994 continue;
1995 }
1996 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1997 pfn++;
1998 }
1999
2000 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2001 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2002 xen_start_info->nr_p2m_frames = n_frames;
2003}
2004
2005void __init xen_reserve_special_pages(void)
2006{
2007 phys_addr_t paddr;
2008
2009 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2010 if (xen_start_info->store_mfn) {
2011 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2012 memblock_reserve(base: paddr, PAGE_SIZE);
2013 }
2014 if (!xen_initial_domain()) {
2015 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2016 memblock_reserve(base: paddr, PAGE_SIZE);
2017 }
2018}
2019
2020void __init xen_pt_check_e820(void)
2021{
2022 if (xen_is_e820_reserved(start: xen_pt_base, size: xen_pt_size)) {
2023 xen_raw_console_write(str: "Xen hypervisor allocated page table memory conflicts with E820 map\n");
2024 BUG();
2025 }
2026}
2027
2028static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2029
2030static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2031{
2032 pte_t pte;
2033 unsigned long vaddr;
2034
2035 phys >>= PAGE_SHIFT;
2036
2037 switch (idx) {
2038 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2039#ifdef CONFIG_X86_VSYSCALL_EMULATION
2040 case VSYSCALL_PAGE:
2041#endif
2042 /* All local page mappings */
2043 pte = pfn_pte(page_nr: phys, pgprot: prot);
2044 break;
2045
2046#ifdef CONFIG_X86_LOCAL_APIC
2047 case FIX_APIC_BASE: /* maps dummy local APIC */
2048 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2049 break;
2050#endif
2051
2052#ifdef CONFIG_X86_IO_APIC
2053 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2054 /*
2055 * We just don't map the IO APIC - all access is via
2056 * hypercalls. Keep the address in the pte for reference.
2057 */
2058 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2059 break;
2060#endif
2061
2062 case FIX_PARAVIRT_BOOTMAP:
2063 /* This is an MFN, but it isn't an IO mapping from the
2064 IO domain */
2065 pte = mfn_pte(page_nr: phys, pgprot: prot);
2066 break;
2067
2068 default:
2069 /* By default, set_fixmap is used for hardware mappings */
2070 pte = mfn_pte(page_nr: phys, pgprot: prot);
2071 break;
2072 }
2073
2074 vaddr = __fix_to_virt(idx);
2075 if (HYPERVISOR_update_va_mapping(va: vaddr, new_val: pte, UVMF_INVLPG))
2076 BUG();
2077
2078#ifdef CONFIG_X86_VSYSCALL_EMULATION
2079 /* Replicate changes to map the vsyscall page into the user
2080 pagetable vsyscall mapping. */
2081 if (idx == VSYSCALL_PAGE)
2082 set_pte_vaddr_pud(pud_page: level3_user_vsyscall, vaddr, new_pte: pte);
2083#endif
2084}
2085
2086static void xen_enter_lazy_mmu(void)
2087{
2088 enter_lazy(mode: XEN_LAZY_MMU);
2089}
2090
2091static void xen_flush_lazy_mmu(void)
2092{
2093 preempt_disable();
2094
2095 if (xen_get_lazy_mode() == XEN_LAZY_MMU) {
2096 arch_leave_lazy_mmu_mode();
2097 arch_enter_lazy_mmu_mode();
2098 }
2099
2100 preempt_enable();
2101}
2102
2103static void __init xen_post_allocator_init(void)
2104{
2105 pv_ops.mmu.set_pte = xen_set_pte;
2106 pv_ops.mmu.set_pmd = xen_set_pmd;
2107 pv_ops.mmu.set_pud = xen_set_pud;
2108 pv_ops.mmu.set_p4d = xen_set_p4d;
2109
2110 /* This will work as long as patching hasn't happened yet
2111 (which it hasn't) */
2112 pv_ops.mmu.alloc_pte = xen_alloc_pte;
2113 pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2114 pv_ops.mmu.release_pte = xen_release_pte;
2115 pv_ops.mmu.release_pmd = xen_release_pmd;
2116 pv_ops.mmu.alloc_pud = xen_alloc_pud;
2117 pv_ops.mmu.release_pud = xen_release_pud;
2118 pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2119
2120 pv_ops.mmu.write_cr3 = &xen_write_cr3;
2121}
2122
2123static void xen_leave_lazy_mmu(void)
2124{
2125 preempt_disable();
2126 xen_mc_flush();
2127 leave_lazy(mode: XEN_LAZY_MMU);
2128 preempt_enable();
2129}
2130
2131static const typeof(pv_ops) xen_mmu_ops __initconst = {
2132 .mmu = {
2133 .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2134 .write_cr2 = xen_write_cr2,
2135
2136 .read_cr3 = xen_read_cr3,
2137 .write_cr3 = xen_write_cr3_init,
2138
2139 .flush_tlb_user = xen_flush_tlb,
2140 .flush_tlb_kernel = xen_flush_tlb,
2141 .flush_tlb_one_user = xen_flush_tlb_one_user,
2142 .flush_tlb_multi = xen_flush_tlb_multi,
2143 .tlb_remove_table = tlb_remove_table,
2144
2145 .pgd_alloc = xen_pgd_alloc,
2146 .pgd_free = xen_pgd_free,
2147
2148 .alloc_pte = xen_alloc_pte_init,
2149 .release_pte = xen_release_pte_init,
2150 .alloc_pmd = xen_alloc_pmd_init,
2151 .release_pmd = xen_release_pmd_init,
2152
2153 .set_pte = xen_set_pte_init,
2154 .set_pmd = xen_set_pmd_hyper,
2155
2156 .ptep_modify_prot_start = xen_ptep_modify_prot_start,
2157 .ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2158
2159 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2160 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2161
2162 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2163 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2164
2165 .set_pud = xen_set_pud_hyper,
2166
2167 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2168 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2169
2170 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2171 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2172 .set_p4d = xen_set_p4d_hyper,
2173
2174 .alloc_pud = xen_alloc_pmd_init,
2175 .release_pud = xen_release_pmd_init,
2176
2177#if CONFIG_PGTABLE_LEVELS >= 5
2178 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2179 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2180#endif
2181
2182 .enter_mmap = xen_enter_mmap,
2183 .exit_mmap = xen_exit_mmap,
2184
2185 .lazy_mode = {
2186 .enter = xen_enter_lazy_mmu,
2187 .leave = xen_leave_lazy_mmu,
2188 .flush = xen_flush_lazy_mmu,
2189 },
2190
2191 .set_fixmap = xen_set_fixmap,
2192 },
2193};
2194
2195void __init xen_init_mmu_ops(void)
2196{
2197 x86_init.paging.pagetable_init = xen_pagetable_init;
2198 x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2199
2200 pv_ops.mmu = xen_mmu_ops.mmu;
2201
2202 memset(dummy_mapping, 0xff, PAGE_SIZE);
2203}
2204
2205/* Protected by xen_reservation_lock. */
2206#define MAX_CONTIG_ORDER 9 /* 2MB */
2207static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2208
2209#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2210static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2211 unsigned long *in_frames,
2212 unsigned long *out_frames)
2213{
2214 int i;
2215 struct multicall_space mcs;
2216
2217 xen_mc_batch();
2218 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2219 mcs = __xen_mc_entry(args: 0);
2220
2221 if (in_frames)
2222 in_frames[i] = virt_to_mfn((void *)vaddr);
2223
2224 MULTI_update_va_mapping(mcl: mcs.mc, va: vaddr, VOID_PTE, flags: 0);
2225 __set_phys_to_machine(pfn: virt_to_pfn(v: (void *)vaddr), INVALID_P2M_ENTRY);
2226
2227 if (out_frames)
2228 out_frames[i] = virt_to_pfn(v: (void *)vaddr);
2229 }
2230 xen_mc_issue(mode: 0);
2231}
2232
2233/*
2234 * Update the pfn-to-mfn mappings for a virtual address range, either to
2235 * point to an array of mfns, or contiguously from a single starting
2236 * mfn.
2237 */
2238static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2239 unsigned long *mfns,
2240 unsigned long first_mfn)
2241{
2242 unsigned i, limit;
2243 unsigned long mfn;
2244
2245 xen_mc_batch();
2246
2247 limit = 1u << order;
2248 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2249 struct multicall_space mcs;
2250 unsigned flags;
2251
2252 mcs = __xen_mc_entry(args: 0);
2253 if (mfns)
2254 mfn = mfns[i];
2255 else
2256 mfn = first_mfn + i;
2257
2258 if (i < (limit - 1))
2259 flags = 0;
2260 else {
2261 if (order == 0)
2262 flags = UVMF_INVLPG | UVMF_ALL;
2263 else
2264 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2265 }
2266
2267 MULTI_update_va_mapping(mcl: mcs.mc, va: vaddr,
2268 new_val: mfn_pte(page_nr: mfn, PAGE_KERNEL), flags);
2269
2270 set_phys_to_machine(pfn: virt_to_pfn(v: (void *)vaddr), mfn);
2271 }
2272
2273 xen_mc_issue(mode: 0);
2274}
2275
2276/*
2277 * Perform the hypercall to exchange a region of our pfns to point to
2278 * memory with the required contiguous alignment. Takes the pfns as
2279 * input, and populates mfns as output.
2280 *
2281 * Returns a success code indicating whether the hypervisor was able to
2282 * satisfy the request or not.
2283 */
2284static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2285 unsigned long *pfns_in,
2286 unsigned long extents_out,
2287 unsigned int order_out,
2288 unsigned long *mfns_out,
2289 unsigned int address_bits)
2290{
2291 long rc;
2292 int success;
2293
2294 struct xen_memory_exchange exchange = {
2295 .in = {
2296 .nr_extents = extents_in,
2297 .extent_order = order_in,
2298 .extent_start = pfns_in,
2299 .domid = DOMID_SELF
2300 },
2301 .out = {
2302 .nr_extents = extents_out,
2303 .extent_order = order_out,
2304 .extent_start = mfns_out,
2305 .address_bits = address_bits,
2306 .domid = DOMID_SELF
2307 }
2308 };
2309
2310 BUG_ON(extents_in << order_in != extents_out << order_out);
2311
2312 rc = HYPERVISOR_memory_op(XENMEM_exchange, arg: &exchange);
2313 success = (exchange.nr_exchanged == extents_in);
2314
2315 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2316 BUG_ON(success && (rc != 0));
2317
2318 return success;
2319}
2320
2321int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2322 unsigned int address_bits,
2323 dma_addr_t *dma_handle)
2324{
2325 unsigned long *in_frames = discontig_frames, out_frame;
2326 unsigned long flags;
2327 int success;
2328 unsigned long vstart = (unsigned long)phys_to_virt(address: pstart);
2329
2330 if (unlikely(order > MAX_CONTIG_ORDER))
2331 return -ENOMEM;
2332
2333 memset((void *) vstart, 0, PAGE_SIZE << order);
2334
2335 spin_lock_irqsave(&xen_reservation_lock, flags);
2336
2337 /* 1. Zap current PTEs, remembering MFNs. */
2338 xen_zap_pfn_range(vaddr: vstart, order, in_frames, NULL);
2339
2340 /* 2. Get a new contiguous memory extent. */
2341 out_frame = virt_to_pfn(v: (void *)vstart);
2342 success = xen_exchange_memory(extents_in: 1UL << order, order_in: 0, pfns_in: in_frames,
2343 extents_out: 1, order_out: order, mfns_out: &out_frame,
2344 address_bits);
2345
2346 /* 3. Map the new extent in place of old pages. */
2347 if (success)
2348 xen_remap_exchanged_ptes(vaddr: vstart, order, NULL, first_mfn: out_frame);
2349 else
2350 xen_remap_exchanged_ptes(vaddr: vstart, order, mfns: in_frames, first_mfn: 0);
2351
2352 spin_unlock_irqrestore(lock: &xen_reservation_lock, flags);
2353
2354 *dma_handle = virt_to_machine(vstart).maddr;
2355 return success ? 0 : -ENOMEM;
2356}
2357
2358void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2359{
2360 unsigned long *out_frames = discontig_frames, in_frame;
2361 unsigned long flags;
2362 int success;
2363 unsigned long vstart;
2364
2365 if (unlikely(order > MAX_CONTIG_ORDER))
2366 return;
2367
2368 vstart = (unsigned long)phys_to_virt(address: pstart);
2369 memset((void *) vstart, 0, PAGE_SIZE << order);
2370
2371 spin_lock_irqsave(&xen_reservation_lock, flags);
2372
2373 /* 1. Find start MFN of contiguous extent. */
2374 in_frame = virt_to_mfn((void *)vstart);
2375
2376 /* 2. Zap current PTEs. */
2377 xen_zap_pfn_range(vaddr: vstart, order, NULL, out_frames);
2378
2379 /* 3. Do the exchange for non-contiguous MFNs. */
2380 success = xen_exchange_memory(extents_in: 1, order_in: order, pfns_in: &in_frame, extents_out: 1UL << order,
2381 order_out: 0, mfns_out: out_frames, address_bits: 0);
2382
2383 /* 4. Map new pages in place of old pages. */
2384 if (success)
2385 xen_remap_exchanged_ptes(vaddr: vstart, order, mfns: out_frames, first_mfn: 0);
2386 else
2387 xen_remap_exchanged_ptes(vaddr: vstart, order, NULL, first_mfn: in_frame);
2388
2389 spin_unlock_irqrestore(lock: &xen_reservation_lock, flags);
2390}
2391
2392static noinline void xen_flush_tlb_all(void)
2393{
2394 struct mmuext_op *op;
2395 struct multicall_space mcs;
2396
2397 preempt_disable();
2398
2399 mcs = xen_mc_entry(args: sizeof(*op));
2400
2401 op = mcs.args;
2402 op->cmd = MMUEXT_TLB_FLUSH_ALL;
2403 MULTI_mmuext_op(mcl: mcs.mc, op, count: 1, NULL, DOMID_SELF);
2404
2405 xen_mc_issue(mode: XEN_LAZY_MMU);
2406
2407 preempt_enable();
2408}
2409
2410#define REMAP_BATCH_SIZE 16
2411
2412struct remap_data {
2413 xen_pfn_t *pfn;
2414 bool contiguous;
2415 bool no_translate;
2416 pgprot_t prot;
2417 struct mmu_update *mmu_update;
2418};
2419
2420static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2421{
2422 struct remap_data *rmd = data;
2423 pte_t pte = pte_mkspecial(pte: mfn_pte(page_nr: *rmd->pfn, pgprot: rmd->prot));
2424
2425 /*
2426 * If we have a contiguous range, just update the pfn itself,
2427 * else update pointer to be "next pfn".
2428 */
2429 if (rmd->contiguous)
2430 (*rmd->pfn)++;
2431 else
2432 rmd->pfn++;
2433
2434 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2435 rmd->mmu_update->ptr |= rmd->no_translate ?
2436 MMU_PT_UPDATE_NO_TRANSLATE :
2437 MMU_NORMAL_PT_UPDATE;
2438 rmd->mmu_update->val = pte_val_ma(pte);
2439 rmd->mmu_update++;
2440
2441 return 0;
2442}
2443
2444int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2445 xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2446 unsigned int domid, bool no_translate)
2447{
2448 int err = 0;
2449 struct remap_data rmd;
2450 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2451 unsigned long range;
2452 int mapped = 0;
2453
2454 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2455
2456 rmd.pfn = pfn;
2457 rmd.prot = prot;
2458 /*
2459 * We use the err_ptr to indicate if there we are doing a contiguous
2460 * mapping or a discontiguous mapping.
2461 */
2462 rmd.contiguous = !err_ptr;
2463 rmd.no_translate = no_translate;
2464
2465 while (nr) {
2466 int index = 0;
2467 int done = 0;
2468 int batch = min(REMAP_BATCH_SIZE, nr);
2469 int batch_left = batch;
2470
2471 range = (unsigned long)batch << PAGE_SHIFT;
2472
2473 rmd.mmu_update = mmu_update;
2474 err = apply_to_page_range(mm: vma->vm_mm, address: addr, size: range,
2475 fn: remap_area_pfn_pte_fn, data: &rmd);
2476 if (err)
2477 goto out;
2478
2479 /*
2480 * We record the error for each page that gives an error, but
2481 * continue mapping until the whole set is done
2482 */
2483 do {
2484 int i;
2485
2486 err = HYPERVISOR_mmu_update(req: &mmu_update[index],
2487 count: batch_left, success_count: &done, domid);
2488
2489 /*
2490 * @err_ptr may be the same buffer as @gfn, so
2491 * only clear it after each chunk of @gfn is
2492 * used.
2493 */
2494 if (err_ptr) {
2495 for (i = index; i < index + done; i++)
2496 err_ptr[i] = 0;
2497 }
2498 if (err < 0) {
2499 if (!err_ptr)
2500 goto out;
2501 err_ptr[i] = err;
2502 done++; /* Skip failed frame. */
2503 } else
2504 mapped += done;
2505 batch_left -= done;
2506 index += done;
2507 } while (batch_left);
2508
2509 nr -= batch;
2510 addr += range;
2511 if (err_ptr)
2512 err_ptr += batch;
2513 cond_resched();
2514 }
2515out:
2516
2517 xen_flush_tlb_all();
2518
2519 return err < 0 ? err : mapped;
2520}
2521EXPORT_SYMBOL_GPL(xen_remap_pfn);
2522
2523#ifdef CONFIG_KEXEC_CORE
2524phys_addr_t paddr_vmcoreinfo_note(void)
2525{
2526 if (xen_pv_domain())
2527 return virt_to_machine(vmcoreinfo_note).maddr;
2528 else
2529 return __pa(vmcoreinfo_note);
2530}
2531#endif /* CONFIG_KEXEC_CORE */
2532

source code of linux/arch/x86/xen/mmu_pv.c