1/*
2 * ACPI support for Intel Lynxpoint LPSS.
3 *
4 * Copyright (C) 2013, Intel Corporation
5 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
6 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/acpi.h>
14#include <linux/clkdev.h>
15#include <linux/clk-provider.h>
16#include <linux/err.h>
17#include <linux/io.h>
18#include <linux/mutex.h>
19#include <linux/pci.h>
20#include <linux/platform_device.h>
21#include <linux/platform_data/x86/clk-lpss.h>
22#include <linux/platform_data/x86/pmc_atom.h>
23#include <linux/pm_domain.h>
24#include <linux/pm_runtime.h>
25#include <linux/pwm.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28
29#include "internal.h"
30
31ACPI_MODULE_NAME("acpi_lpss");
32
33#ifdef CONFIG_X86_INTEL_LPSS
34
35#include <asm/cpu_device_id.h>
36#include <asm/intel-family.h>
37#include <asm/iosf_mbi.h>
38
39#define LPSS_ADDR(desc) ((unsigned long)&desc)
40
41#define LPSS_CLK_SIZE 0x04
42#define LPSS_LTR_SIZE 0x18
43
44/* Offsets relative to LPSS_PRIVATE_OFFSET */
45#define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
46#define LPSS_RESETS 0x04
47#define LPSS_RESETS_RESET_FUNC BIT(0)
48#define LPSS_RESETS_RESET_APB BIT(1)
49#define LPSS_GENERAL 0x08
50#define LPSS_GENERAL_LTR_MODE_SW BIT(2)
51#define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
52#define LPSS_SW_LTR 0x10
53#define LPSS_AUTO_LTR 0x14
54#define LPSS_LTR_SNOOP_REQ BIT(15)
55#define LPSS_LTR_SNOOP_MASK 0x0000FFFF
56#define LPSS_LTR_SNOOP_LAT_1US 0x800
57#define LPSS_LTR_SNOOP_LAT_32US 0xC00
58#define LPSS_LTR_SNOOP_LAT_SHIFT 5
59#define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
60#define LPSS_LTR_MAX_VAL 0x3FF
61#define LPSS_TX_INT 0x20
62#define LPSS_TX_INT_MASK BIT(1)
63
64#define LPSS_PRV_REG_COUNT 9
65
66/* LPSS Flags */
67#define LPSS_CLK BIT(0)
68#define LPSS_CLK_GATE BIT(1)
69#define LPSS_CLK_DIVIDER BIT(2)
70#define LPSS_LTR BIT(3)
71#define LPSS_SAVE_CTX BIT(4)
72#define LPSS_NO_D3_DELAY BIT(5)
73
74/* Crystal Cove PMIC shares same ACPI ID between different platforms */
75#define BYT_CRC_HRV 2
76#define CHT_CRC_HRV 3
77
78struct lpss_private_data;
79
80struct lpss_device_desc {
81 unsigned int flags;
82 const char *clk_con_id;
83 unsigned int prv_offset;
84 size_t prv_size_override;
85 struct property_entry *properties;
86 void (*setup)(struct lpss_private_data *pdata);
87 bool resume_from_noirq;
88};
89
90static const struct lpss_device_desc lpss_dma_desc = {
91 .flags = LPSS_CLK,
92};
93
94struct lpss_private_data {
95 struct acpi_device *adev;
96 void __iomem *mmio_base;
97 resource_size_t mmio_size;
98 unsigned int fixed_clk_rate;
99 struct clk *clk;
100 const struct lpss_device_desc *dev_desc;
101 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102};
103
104/* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107/* LPSS run time quirks */
108static unsigned int lpss_quirks;
109
110/*
111 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112 *
113 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114 * it can be powered off automatically whenever the last LPSS device goes down.
115 * In case of no power any access to the DMA controller will hang the system.
116 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117 * well as on ASuS T100TA transformer.
118 *
119 * This quirk overrides power state of entire LPSS island to keep DMA powered
120 * on whenever we have at least one other device in use.
121 */
122#define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
123
124/* UART Component Parameter Register */
125#define LPSS_UART_CPR 0xF4
126#define LPSS_UART_CPR_AFCE BIT(4)
127
128static void lpss_uart_setup(struct lpss_private_data *pdata)
129{
130 unsigned int offset;
131 u32 val;
132
133 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 val = readl(pdata->mmio_base + offset);
135 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137 val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 if (!(val & LPSS_UART_CPR_AFCE)) {
139 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 val = readl(pdata->mmio_base + offset);
141 val |= LPSS_GENERAL_UART_RTS_OVRD;
142 writel(val, pdata->mmio_base + offset);
143 }
144}
145
146static void lpss_deassert_reset(struct lpss_private_data *pdata)
147{
148 unsigned int offset;
149 u32 val;
150
151 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 val = readl(pdata->mmio_base + offset);
153 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 writel(val, pdata->mmio_base + offset);
155}
156
157/*
158 * BYT PWM used for backlight control by the i915 driver on systems without
159 * the Crystal Cove PMIC.
160 */
161static struct pwm_lookup byt_pwm_lookup[] = {
162 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
164 "pwm-lpss-platform"),
165};
166
167static void byt_pwm_setup(struct lpss_private_data *pdata)
168{
169 struct acpi_device *adev = pdata->adev;
170
171 /* Only call pwm_add_table for the first PWM controller */
172 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173 return;
174
175 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
176 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177}
178
179#define LPSS_I2C_ENABLE 0x6c
180
181static void byt_i2c_setup(struct lpss_private_data *pdata)
182{
183 const char *uid_str = acpi_device_uid(pdata->adev);
184 acpi_handle handle = pdata->adev->handle;
185 unsigned long long shared_host = 0;
186 acpi_status status;
187 long uid = 0;
188
189 /* Expected to always be true, but better safe then sorry */
190 if (uid_str)
191 uid = simple_strtol(uid_str, NULL, 10);
192
193 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
194 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
195 if (ACPI_SUCCESS(status) && shared_host && uid)
196 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
197
198 lpss_deassert_reset(pdata);
199
200 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
201 pdata->fixed_clk_rate = 133000000;
202
203 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
204}
205
206/* BSW PWM used for backlight control by the i915 driver */
207static struct pwm_lookup bsw_pwm_lookup[] = {
208 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
209 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
210 "pwm-lpss-platform"),
211};
212
213static void bsw_pwm_setup(struct lpss_private_data *pdata)
214{
215 struct acpi_device *adev = pdata->adev;
216
217 /* Only call pwm_add_table for the first PWM controller */
218 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
219 return;
220
221 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
222}
223
224static const struct lpss_device_desc lpt_dev_desc = {
225 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
226 .prv_offset = 0x800,
227};
228
229static const struct lpss_device_desc lpt_i2c_dev_desc = {
230 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
231 .prv_offset = 0x800,
232};
233
234static struct property_entry uart_properties[] = {
235 PROPERTY_ENTRY_U32("reg-io-width", 4),
236 PROPERTY_ENTRY_U32("reg-shift", 2),
237 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238 { },
239};
240
241static const struct lpss_device_desc lpt_uart_dev_desc = {
242 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
243 .clk_con_id = "baudclk",
244 .prv_offset = 0x800,
245 .setup = lpss_uart_setup,
246 .properties = uart_properties,
247};
248
249static const struct lpss_device_desc lpt_sdio_dev_desc = {
250 .flags = LPSS_LTR,
251 .prv_offset = 0x1000,
252 .prv_size_override = 0x1018,
253};
254
255static const struct lpss_device_desc byt_pwm_dev_desc = {
256 .flags = LPSS_SAVE_CTX,
257 .prv_offset = 0x800,
258 .setup = byt_pwm_setup,
259};
260
261static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
263 .prv_offset = 0x800,
264 .setup = bsw_pwm_setup,
265};
266
267static const struct lpss_device_desc byt_uart_dev_desc = {
268 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
269 .clk_con_id = "baudclk",
270 .prv_offset = 0x800,
271 .setup = lpss_uart_setup,
272 .properties = uart_properties,
273};
274
275static const struct lpss_device_desc bsw_uart_dev_desc = {
276 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
277 | LPSS_NO_D3_DELAY,
278 .clk_con_id = "baudclk",
279 .prv_offset = 0x800,
280 .setup = lpss_uart_setup,
281 .properties = uart_properties,
282};
283
284static const struct lpss_device_desc byt_spi_dev_desc = {
285 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
286 .prv_offset = 0x400,
287};
288
289static const struct lpss_device_desc byt_sdio_dev_desc = {
290 .flags = LPSS_CLK,
291};
292
293static const struct lpss_device_desc byt_i2c_dev_desc = {
294 .flags = LPSS_CLK | LPSS_SAVE_CTX,
295 .prv_offset = 0x800,
296 .setup = byt_i2c_setup,
297 .resume_from_noirq = true,
298};
299
300static const struct lpss_device_desc bsw_i2c_dev_desc = {
301 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
302 .prv_offset = 0x800,
303 .setup = byt_i2c_setup,
304 .resume_from_noirq = true,
305};
306
307static const struct lpss_device_desc bsw_spi_dev_desc = {
308 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
309 | LPSS_NO_D3_DELAY,
310 .prv_offset = 0x400,
311 .setup = lpss_deassert_reset,
312};
313
314#define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
315
316static const struct x86_cpu_id lpss_cpu_ids[] = {
317 ICPU(INTEL_FAM6_ATOM_SILVERMONT), /* Valleyview, Bay Trail */
318 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
319 {}
320};
321
322#else
323
324#define LPSS_ADDR(desc) (0UL)
325
326#endif /* CONFIG_X86_INTEL_LPSS */
327
328static const struct acpi_device_id acpi_lpss_device_ids[] = {
329 /* Generic LPSS devices */
330 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331
332 /* Lynxpoint LPSS devices */
333 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340 { "INT33C7", },
341
342 /* BayTrail LPSS devices */
343 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348 { "INT33B2", },
349 { "INT33FC", },
350
351 /* Braswell LPSS devices */
352 { "80862286", LPSS_ADDR(lpss_dma_desc) },
353 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358
359 /* Broadwell LPSS devices */
360 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367 { "INT3437", },
368
369 /* Wildcat Point LPSS devices */
370 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
371
372 { }
373};
374
375#ifdef CONFIG_X86_INTEL_LPSS
376
377static int is_memory(struct acpi_resource *res, void *not_used)
378{
379 struct resource r;
380 return !acpi_dev_resource_memory(res, &r);
381}
382
383/* LPSS main clock device. */
384static struct platform_device *lpss_clk_dev;
385
386static inline void lpt_register_clock_device(void)
387{
388 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
389}
390
391static int register_device_clock(struct acpi_device *adev,
392 struct lpss_private_data *pdata)
393{
394 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395 const char *devname = dev_name(&adev->dev);
396 struct clk *clk;
397 struct lpss_clk_data *clk_data;
398 const char *parent, *clk_name;
399 void __iomem *prv_base;
400
401 if (!lpss_clk_dev)
402 lpt_register_clock_device();
403
404 clk_data = platform_get_drvdata(lpss_clk_dev);
405 if (!clk_data)
406 return -ENODEV;
407 clk = clk_data->clk;
408
409 if (!pdata->mmio_base
410 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
411 return -ENODATA;
412
413 parent = clk_data->name;
414 prv_base = pdata->mmio_base + dev_desc->prv_offset;
415
416 if (pdata->fixed_clk_rate) {
417 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
418 pdata->fixed_clk_rate);
419 goto out;
420 }
421
422 if (dev_desc->flags & LPSS_CLK_GATE) {
423 clk = clk_register_gate(NULL, devname, parent, 0,
424 prv_base, 0, 0, NULL);
425 parent = devname;
426 }
427
428 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
429 /* Prevent division by zero */
430 if (!readl(prv_base))
431 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
432
433 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
434 if (!clk_name)
435 return -ENOMEM;
436 clk = clk_register_fractional_divider(NULL, clk_name, parent,
437 0, prv_base,
438 1, 15, 16, 15, 0, NULL);
439 parent = clk_name;
440
441 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
442 if (!clk_name) {
443 kfree(parent);
444 return -ENOMEM;
445 }
446 clk = clk_register_gate(NULL, clk_name, parent,
447 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
448 prv_base, 31, 0, NULL);
449 kfree(parent);
450 kfree(clk_name);
451 }
452out:
453 if (IS_ERR(clk))
454 return PTR_ERR(clk);
455
456 pdata->clk = clk;
457 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
458 return 0;
459}
460
461struct lpss_device_links {
462 const char *supplier_hid;
463 const char *supplier_uid;
464 const char *consumer_hid;
465 const char *consumer_uid;
466 u32 flags;
467};
468
469/*
470 * The _DEP method is used to identify dependencies but instead of creating
471 * device links for every handle in _DEP, only links in the following list are
472 * created. That is necessary because, in the general case, _DEP can refer to
473 * devices that might not have drivers, or that are on different buses, or where
474 * the supplier is not enumerated until after the consumer is probed.
475 */
476static const struct lpss_device_links lpss_device_links[] = {
477 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
478 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
479 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
480};
481
482static bool hid_uid_match(struct acpi_device *adev,
483 const char *hid2, const char *uid2)
484{
485 const char *hid1 = acpi_device_hid(adev);
486 const char *uid1 = acpi_device_uid(adev);
487
488 if (strcmp(hid1, hid2))
489 return false;
490
491 if (!uid2)
492 return true;
493
494 return uid1 && !strcmp(uid1, uid2);
495}
496
497static bool acpi_lpss_is_supplier(struct acpi_device *adev,
498 const struct lpss_device_links *link)
499{
500 return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
501}
502
503static bool acpi_lpss_is_consumer(struct acpi_device *adev,
504 const struct lpss_device_links *link)
505{
506 return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
507}
508
509struct hid_uid {
510 const char *hid;
511 const char *uid;
512};
513
514static int match_hid_uid(struct device *dev, void *data)
515{
516 struct acpi_device *adev = ACPI_COMPANION(dev);
517 struct hid_uid *id = data;
518
519 if (!adev)
520 return 0;
521
522 return hid_uid_match(adev, id->hid, id->uid);
523}
524
525static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
526{
527 struct device *dev;
528
529 struct hid_uid data = {
530 .hid = hid,
531 .uid = uid,
532 };
533
534 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
535 if (dev)
536 return dev;
537
538 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
539}
540
541static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
542{
543 struct acpi_handle_list dep_devices;
544 acpi_status status;
545 int i;
546
547 if (!acpi_has_method(adev->handle, "_DEP"))
548 return false;
549
550 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
551 &dep_devices);
552 if (ACPI_FAILURE(status)) {
553 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
554 return false;
555 }
556
557 for (i = 0; i < dep_devices.count; i++) {
558 if (dep_devices.handles[i] == handle)
559 return true;
560 }
561
562 return false;
563}
564
565static void acpi_lpss_link_consumer(struct device *dev1,
566 const struct lpss_device_links *link)
567{
568 struct device *dev2;
569
570 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
571 if (!dev2)
572 return;
573
574 if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
575 device_link_add(dev2, dev1, link->flags);
576
577 put_device(dev2);
578}
579
580static void acpi_lpss_link_supplier(struct device *dev1,
581 const struct lpss_device_links *link)
582{
583 struct device *dev2;
584
585 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
586 if (!dev2)
587 return;
588
589 if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
590 device_link_add(dev1, dev2, link->flags);
591
592 put_device(dev2);
593}
594
595static void acpi_lpss_create_device_links(struct acpi_device *adev,
596 struct platform_device *pdev)
597{
598 int i;
599
600 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
601 const struct lpss_device_links *link = &lpss_device_links[i];
602
603 if (acpi_lpss_is_supplier(adev, link))
604 acpi_lpss_link_consumer(&pdev->dev, link);
605
606 if (acpi_lpss_is_consumer(adev, link))
607 acpi_lpss_link_supplier(&pdev->dev, link);
608 }
609}
610
611static int acpi_lpss_create_device(struct acpi_device *adev,
612 const struct acpi_device_id *id)
613{
614 const struct lpss_device_desc *dev_desc;
615 struct lpss_private_data *pdata;
616 struct resource_entry *rentry;
617 struct list_head resource_list;
618 struct platform_device *pdev;
619 int ret;
620
621 dev_desc = (const struct lpss_device_desc *)id->driver_data;
622 if (!dev_desc) {
623 pdev = acpi_create_platform_device(adev, NULL);
624 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
625 }
626 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
627 if (!pdata)
628 return -ENOMEM;
629
630 INIT_LIST_HEAD(&resource_list);
631 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
632 if (ret < 0)
633 goto err_out;
634
635 list_for_each_entry(rentry, &resource_list, node)
636 if (resource_type(rentry->res) == IORESOURCE_MEM) {
637 if (dev_desc->prv_size_override)
638 pdata->mmio_size = dev_desc->prv_size_override;
639 else
640 pdata->mmio_size = resource_size(rentry->res);
641 pdata->mmio_base = ioremap(rentry->res->start,
642 pdata->mmio_size);
643 break;
644 }
645
646 acpi_dev_free_resource_list(&resource_list);
647
648 if (!pdata->mmio_base) {
649 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
650 adev->pnp.type.platform_id = 0;
651 /* Skip the device, but continue the namespace scan. */
652 ret = 0;
653 goto err_out;
654 }
655
656 pdata->adev = adev;
657 pdata->dev_desc = dev_desc;
658
659 if (dev_desc->setup)
660 dev_desc->setup(pdata);
661
662 if (dev_desc->flags & LPSS_CLK) {
663 ret = register_device_clock(adev, pdata);
664 if (ret) {
665 /* Skip the device, but continue the namespace scan. */
666 ret = 0;
667 goto err_out;
668 }
669 }
670
671 /*
672 * This works around a known issue in ACPI tables where LPSS devices
673 * have _PS0 and _PS3 without _PSC (and no power resources), so
674 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
675 */
676 acpi_device_fix_up_power(adev);
677
678 adev->driver_data = pdata;
679 pdev = acpi_create_platform_device(adev, dev_desc->properties);
680 if (!IS_ERR_OR_NULL(pdev)) {
681 acpi_lpss_create_device_links(adev, pdev);
682 return 1;
683 }
684
685 ret = PTR_ERR(pdev);
686 adev->driver_data = NULL;
687
688 err_out:
689 kfree(pdata);
690 return ret;
691}
692
693static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
694{
695 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
696}
697
698static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
699 unsigned int reg)
700{
701 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
702}
703
704static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
705{
706 struct acpi_device *adev;
707 struct lpss_private_data *pdata;
708 unsigned long flags;
709 int ret;
710
711 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
712 if (WARN_ON(ret))
713 return ret;
714
715 spin_lock_irqsave(&dev->power.lock, flags);
716 if (pm_runtime_suspended(dev)) {
717 ret = -EAGAIN;
718 goto out;
719 }
720 pdata = acpi_driver_data(adev);
721 if (WARN_ON(!pdata || !pdata->mmio_base)) {
722 ret = -ENODEV;
723 goto out;
724 }
725 *val = __lpss_reg_read(pdata, reg);
726
727 out:
728 spin_unlock_irqrestore(&dev->power.lock, flags);
729 return ret;
730}
731
732static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
733 char *buf)
734{
735 u32 ltr_value = 0;
736 unsigned int reg;
737 int ret;
738
739 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
740 ret = lpss_reg_read(dev, reg, &ltr_value);
741 if (ret)
742 return ret;
743
744 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
745}
746
747static ssize_t lpss_ltr_mode_show(struct device *dev,
748 struct device_attribute *attr, char *buf)
749{
750 u32 ltr_mode = 0;
751 char *outstr;
752 int ret;
753
754 ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
755 if (ret)
756 return ret;
757
758 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
759 return sprintf(buf, "%s\n", outstr);
760}
761
762static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
763static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
764static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
765
766static struct attribute *lpss_attrs[] = {
767 &dev_attr_auto_ltr.attr,
768 &dev_attr_sw_ltr.attr,
769 &dev_attr_ltr_mode.attr,
770 NULL,
771};
772
773static const struct attribute_group lpss_attr_group = {
774 .attrs = lpss_attrs,
775 .name = "lpss_ltr",
776};
777
778static void acpi_lpss_set_ltr(struct device *dev, s32 val)
779{
780 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
781 u32 ltr_mode, ltr_val;
782
783 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
784 if (val < 0) {
785 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
786 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
787 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
788 }
789 return;
790 }
791 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
792 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
793 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
794 val = LPSS_LTR_MAX_VAL;
795 } else if (val > LPSS_LTR_MAX_VAL) {
796 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
797 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
798 } else {
799 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
800 }
801 ltr_val |= val;
802 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
803 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
804 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
805 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
806 }
807}
808
809#ifdef CONFIG_PM
810/**
811 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
812 * @dev: LPSS device
813 * @pdata: pointer to the private data of the LPSS device
814 *
815 * Most LPSS devices have private registers which may loose their context when
816 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
817 * prv_reg_ctx array.
818 */
819static void acpi_lpss_save_ctx(struct device *dev,
820 struct lpss_private_data *pdata)
821{
822 unsigned int i;
823
824 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
825 unsigned long offset = i * sizeof(u32);
826
827 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
828 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
829 pdata->prv_reg_ctx[i], offset);
830 }
831}
832
833/**
834 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
835 * @dev: LPSS device
836 * @pdata: pointer to the private data of the LPSS device
837 *
838 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
839 */
840static void acpi_lpss_restore_ctx(struct device *dev,
841 struct lpss_private_data *pdata)
842{
843 unsigned int i;
844
845 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
846 unsigned long offset = i * sizeof(u32);
847
848 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
849 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
850 pdata->prv_reg_ctx[i], offset);
851 }
852}
853
854static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
855{
856 /*
857 * The following delay is needed or the subsequent write operations may
858 * fail. The LPSS devices are actually PCI devices and the PCI spec
859 * expects 10ms delay before the device can be accessed after D3 to D0
860 * transition. However some platforms like BSW does not need this delay.
861 */
862 unsigned int delay = 10; /* default 10ms delay */
863
864 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
865 delay = 0;
866
867 msleep(delay);
868}
869
870static int acpi_lpss_activate(struct device *dev)
871{
872 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
873 int ret;
874
875 ret = acpi_dev_resume(dev);
876 if (ret)
877 return ret;
878
879 acpi_lpss_d3_to_d0_delay(pdata);
880
881 /*
882 * This is called only on ->probe() stage where a device is either in
883 * known state defined by BIOS or most likely powered off. Due to this
884 * we have to deassert reset line to be sure that ->probe() will
885 * recognize the device.
886 */
887 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
888 lpss_deassert_reset(pdata);
889
890 return 0;
891}
892
893static void acpi_lpss_dismiss(struct device *dev)
894{
895 acpi_dev_suspend(dev, false);
896}
897
898/* IOSF SB for LPSS island */
899#define LPSS_IOSF_UNIT_LPIOEP 0xA0
900#define LPSS_IOSF_UNIT_LPIO1 0xAB
901#define LPSS_IOSF_UNIT_LPIO2 0xAC
902
903#define LPSS_IOSF_PMCSR 0x84
904#define LPSS_PMCSR_D0 0
905#define LPSS_PMCSR_D3hot 3
906#define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
907
908#define LPSS_IOSF_GPIODEF0 0x154
909#define LPSS_GPIODEF0_DMA1_D3 BIT(2)
910#define LPSS_GPIODEF0_DMA2_D3 BIT(3)
911#define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
912#define LPSS_GPIODEF0_DMA_LLP BIT(13)
913
914static DEFINE_MUTEX(lpss_iosf_mutex);
915static bool lpss_iosf_d3_entered = true;
916
917static void lpss_iosf_enter_d3_state(void)
918{
919 u32 value1 = 0;
920 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
921 u32 value2 = LPSS_PMCSR_D3hot;
922 u32 mask2 = LPSS_PMCSR_Dx_MASK;
923 /*
924 * PMC provides an information about actual status of the LPSS devices.
925 * Here we read the values related to LPSS power island, i.e. LPSS
926 * devices, excluding both LPSS DMA controllers, along with SCC domain.
927 */
928 u32 func_dis, d3_sts_0, pmc_status;
929 int ret;
930
931 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
932 if (ret)
933 return;
934
935 mutex_lock(&lpss_iosf_mutex);
936
937 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
938 if (ret)
939 goto exit;
940
941 /*
942 * Get the status of entire LPSS power island per device basis.
943 * Shutdown both LPSS DMA controllers if and only if all other devices
944 * are already in D3hot.
945 */
946 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
947 if (pmc_status)
948 goto exit;
949
950 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
951 LPSS_IOSF_PMCSR, value2, mask2);
952
953 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
954 LPSS_IOSF_PMCSR, value2, mask2);
955
956 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
957 LPSS_IOSF_GPIODEF0, value1, mask1);
958
959 lpss_iosf_d3_entered = true;
960
961exit:
962 mutex_unlock(&lpss_iosf_mutex);
963}
964
965static void lpss_iosf_exit_d3_state(void)
966{
967 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
968 LPSS_GPIODEF0_DMA_LLP;
969 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
970 u32 value2 = LPSS_PMCSR_D0;
971 u32 mask2 = LPSS_PMCSR_Dx_MASK;
972
973 mutex_lock(&lpss_iosf_mutex);
974
975 if (!lpss_iosf_d3_entered)
976 goto exit;
977
978 lpss_iosf_d3_entered = false;
979
980 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
981 LPSS_IOSF_GPIODEF0, value1, mask1);
982
983 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
984 LPSS_IOSF_PMCSR, value2, mask2);
985
986 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
987 LPSS_IOSF_PMCSR, value2, mask2);
988
989exit:
990 mutex_unlock(&lpss_iosf_mutex);
991}
992
993static int acpi_lpss_suspend(struct device *dev, bool wakeup)
994{
995 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
996 int ret;
997
998 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
999 acpi_lpss_save_ctx(dev, pdata);
1000
1001 ret = acpi_dev_suspend(dev, wakeup);
1002
1003 /*
1004 * This call must be last in the sequence, otherwise PMC will return
1005 * wrong status for devices being about to be powered off. See
1006 * lpss_iosf_enter_d3_state() for further information.
1007 */
1008 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1009 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1010 lpss_iosf_enter_d3_state();
1011
1012 return ret;
1013}
1014
1015static int acpi_lpss_resume(struct device *dev)
1016{
1017 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1018 int ret;
1019
1020 /*
1021 * This call is kept first to be in symmetry with
1022 * acpi_lpss_runtime_suspend() one.
1023 */
1024 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1025 lpss_iosf_exit_d3_state();
1026
1027 ret = acpi_dev_resume(dev);
1028 if (ret)
1029 return ret;
1030
1031 acpi_lpss_d3_to_d0_delay(pdata);
1032
1033 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1034 acpi_lpss_restore_ctx(dev, pdata);
1035
1036 return 0;
1037}
1038
1039#ifdef CONFIG_PM_SLEEP
1040static int acpi_lpss_do_suspend_late(struct device *dev)
1041{
1042 int ret;
1043
1044 if (dev_pm_smart_suspend_and_suspended(dev))
1045 return 0;
1046
1047 ret = pm_generic_suspend_late(dev);
1048 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1049}
1050
1051static int acpi_lpss_suspend_late(struct device *dev)
1052{
1053 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1054
1055 if (pdata->dev_desc->resume_from_noirq)
1056 return 0;
1057
1058 return acpi_lpss_do_suspend_late(dev);
1059}
1060
1061static int acpi_lpss_suspend_noirq(struct device *dev)
1062{
1063 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1064 int ret;
1065
1066 if (pdata->dev_desc->resume_from_noirq) {
1067 ret = acpi_lpss_do_suspend_late(dev);
1068 if (ret)
1069 return ret;
1070 }
1071
1072 return acpi_subsys_suspend_noirq(dev);
1073}
1074
1075static int acpi_lpss_do_resume_early(struct device *dev)
1076{
1077 int ret = acpi_lpss_resume(dev);
1078
1079 return ret ? ret : pm_generic_resume_early(dev);
1080}
1081
1082static int acpi_lpss_resume_early(struct device *dev)
1083{
1084 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1085
1086 if (pdata->dev_desc->resume_from_noirq)
1087 return 0;
1088
1089 return acpi_lpss_do_resume_early(dev);
1090}
1091
1092static int acpi_lpss_resume_noirq(struct device *dev)
1093{
1094 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1095 int ret;
1096
1097 ret = acpi_subsys_resume_noirq(dev);
1098 if (ret)
1099 return ret;
1100
1101 if (!dev_pm_may_skip_resume(dev) && pdata->dev_desc->resume_from_noirq)
1102 ret = acpi_lpss_do_resume_early(dev);
1103
1104 return ret;
1105}
1106
1107#endif /* CONFIG_PM_SLEEP */
1108
1109static int acpi_lpss_runtime_suspend(struct device *dev)
1110{
1111 int ret = pm_generic_runtime_suspend(dev);
1112
1113 return ret ? ret : acpi_lpss_suspend(dev, true);
1114}
1115
1116static int acpi_lpss_runtime_resume(struct device *dev)
1117{
1118 int ret = acpi_lpss_resume(dev);
1119
1120 return ret ? ret : pm_generic_runtime_resume(dev);
1121}
1122#endif /* CONFIG_PM */
1123
1124static struct dev_pm_domain acpi_lpss_pm_domain = {
1125#ifdef CONFIG_PM
1126 .activate = acpi_lpss_activate,
1127 .dismiss = acpi_lpss_dismiss,
1128#endif
1129 .ops = {
1130#ifdef CONFIG_PM
1131#ifdef CONFIG_PM_SLEEP
1132 .prepare = acpi_subsys_prepare,
1133 .complete = acpi_subsys_complete,
1134 .suspend = acpi_subsys_suspend,
1135 .suspend_late = acpi_lpss_suspend_late,
1136 .suspend_noirq = acpi_lpss_suspend_noirq,
1137 .resume_noirq = acpi_lpss_resume_noirq,
1138 .resume_early = acpi_lpss_resume_early,
1139 .freeze = acpi_subsys_freeze,
1140 .freeze_late = acpi_subsys_freeze_late,
1141 .freeze_noirq = acpi_subsys_freeze_noirq,
1142 .thaw_noirq = acpi_subsys_thaw_noirq,
1143 .poweroff = acpi_subsys_suspend,
1144 .poweroff_late = acpi_lpss_suspend_late,
1145 .poweroff_noirq = acpi_subsys_suspend_noirq,
1146 .restore_noirq = acpi_subsys_resume_noirq,
1147 .restore_early = acpi_lpss_resume_early,
1148#endif
1149 .runtime_suspend = acpi_lpss_runtime_suspend,
1150 .runtime_resume = acpi_lpss_runtime_resume,
1151#endif
1152 },
1153};
1154
1155static int acpi_lpss_platform_notify(struct notifier_block *nb,
1156 unsigned long action, void *data)
1157{
1158 struct platform_device *pdev = to_platform_device(data);
1159 struct lpss_private_data *pdata;
1160 struct acpi_device *adev;
1161 const struct acpi_device_id *id;
1162
1163 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1164 if (!id || !id->driver_data)
1165 return 0;
1166
1167 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1168 return 0;
1169
1170 pdata = acpi_driver_data(adev);
1171 if (!pdata)
1172 return 0;
1173
1174 if (pdata->mmio_base &&
1175 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1176 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1177 return 0;
1178 }
1179
1180 switch (action) {
1181 case BUS_NOTIFY_BIND_DRIVER:
1182 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1183 break;
1184 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1185 case BUS_NOTIFY_UNBOUND_DRIVER:
1186 dev_pm_domain_set(&pdev->dev, NULL);
1187 break;
1188 case BUS_NOTIFY_ADD_DEVICE:
1189 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1190 if (pdata->dev_desc->flags & LPSS_LTR)
1191 return sysfs_create_group(&pdev->dev.kobj,
1192 &lpss_attr_group);
1193 break;
1194 case BUS_NOTIFY_DEL_DEVICE:
1195 if (pdata->dev_desc->flags & LPSS_LTR)
1196 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1197 dev_pm_domain_set(&pdev->dev, NULL);
1198 break;
1199 default:
1200 break;
1201 }
1202
1203 return 0;
1204}
1205
1206static struct notifier_block acpi_lpss_nb = {
1207 .notifier_call = acpi_lpss_platform_notify,
1208};
1209
1210static void acpi_lpss_bind(struct device *dev)
1211{
1212 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1213
1214 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1215 return;
1216
1217 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1218 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1219 else
1220 dev_err(dev, "MMIO size insufficient to access LTR\n");
1221}
1222
1223static void acpi_lpss_unbind(struct device *dev)
1224{
1225 dev->power.set_latency_tolerance = NULL;
1226}
1227
1228static struct acpi_scan_handler lpss_handler = {
1229 .ids = acpi_lpss_device_ids,
1230 .attach = acpi_lpss_create_device,
1231 .bind = acpi_lpss_bind,
1232 .unbind = acpi_lpss_unbind,
1233};
1234
1235void __init acpi_lpss_init(void)
1236{
1237 const struct x86_cpu_id *id;
1238 int ret;
1239
1240 ret = lpt_clk_init();
1241 if (ret)
1242 return;
1243
1244 id = x86_match_cpu(lpss_cpu_ids);
1245 if (id)
1246 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1247
1248 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1249 acpi_scan_add_handler(&lpss_handler);
1250}
1251
1252#else
1253
1254static struct acpi_scan_handler lpss_handler = {
1255 .ids = acpi_lpss_device_ids,
1256};
1257
1258void __init acpi_lpss_init(void)
1259{
1260 acpi_scan_add_handler(&lpss_handler);
1261}
1262
1263#endif /* CONFIG_X86_INTEL_LPSS */
1264