1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73};
74
75const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80};
81EXPORT_SYMBOL_GPL(sata_port_ops);
82
83static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86static void ata_dev_xfermask(struct ata_device *dev);
87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89atomic_t ata_print_id = ATOMIC_INIT(0);
90
91#ifdef CONFIG_ATA_FORCE
92struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned int xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags_on;
100 u16 lflags_off;
101};
102
103struct ata_force_ent {
104 int port;
105 int device;
106 struct ata_force_param param;
107};
108
109static struct ata_force_ent *ata_force_tbl;
110static int ata_force_tbl_size;
111
112static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113/* param_buf is thrown away after initialization, disallow read */
114module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116#endif
117
118static int atapi_enabled = 1;
119module_param(atapi_enabled, int, 0444);
120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122static int atapi_dmadir = 0;
123module_param(atapi_dmadir, int, 0444);
124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126int atapi_passthru16 = 1;
127module_param(atapi_passthru16, int, 0444);
128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130int libata_fua = 0;
131module_param_named(fua, libata_fua, int, 0444);
132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134static int ata_ignore_hpa;
135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139module_param_named(dma, libata_dma_mask, int, 0444);
140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142static int ata_probe_timeout;
143module_param(ata_probe_timeout, int, 0444);
144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146int libata_noacpi = 0;
147module_param_named(noacpi, libata_noacpi, int, 0444);
148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150int libata_allow_tpm = 0;
151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154static int atapi_an;
155module_param(atapi_an, int, 0444);
156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158MODULE_AUTHOR("Jeff Garzik");
159MODULE_DESCRIPTION("Library module for ATA devices");
160MODULE_LICENSE("GPL");
161MODULE_VERSION(DRV_VERSION);
162
163static inline bool ata_dev_print_info(struct ata_device *dev)
164{
165 struct ata_eh_context *ehc = &dev->link->eh_context;
166
167 return ehc->i.flags & ATA_EHI_PRINTINFO;
168}
169
170static bool ata_sstatus_online(u32 sstatus)
171{
172 return (sstatus & 0xf) == 0x3;
173}
174
175/**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189{
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 fallthrough;
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 fallthrough;
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 fallthrough;
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232}
233EXPORT_SYMBOL_GPL(ata_link_next);
234
235/**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
247struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249{
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286}
287EXPORT_SYMBOL_GPL(ata_dev_next);
288
289/**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304{
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312}
313
314#ifdef CONFIG_ATA_FORCE
315/**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345}
346
347/**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
363static void ata_force_link_limits(struct ata_link *link)
364{
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags_on) {
391 link->flags |= fe->param.lflags_on;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags_on, link->flags);
395 }
396 if (fe->param.lflags_off) {
397 link->flags &= ~fe->param.lflags_off;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x cleared -> 0x%x\n",
400 fe->param.lflags_off, link->flags);
401 }
402 }
403}
404
405/**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
416static void ata_force_xfermask(struct ata_device *dev)
417{
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(link: dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned int pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(xfer_mask: fe->param.xfer_mask,
441 pio_mask: &pio_mask, mwdma_mask: &mwdma_mask, udma_mask: &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457}
458
459/**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
470static void ata_force_horkage(struct ata_device *dev)
471{
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(link: dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500}
501#else
502static inline void ata_force_link_limits(struct ata_link *link) { }
503static inline void ata_force_xfermask(struct ata_device *dev) { }
504static inline void ata_force_horkage(struct ata_device *dev) { }
505#endif
506
507/**
508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 * @opcode: SCSI opcode
510 *
511 * Determine ATAPI command type from @opcode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
519int atapi_cmd_type(u8 opcode)
520{
521 switch (opcode) {
522 case GPCMD_READ_10:
523 case GPCMD_READ_12:
524 return ATAPI_READ;
525
526 case GPCMD_WRITE_10:
527 case GPCMD_WRITE_12:
528 case GPCMD_WRITE_AND_VERIFY_10:
529 return ATAPI_WRITE;
530
531 case GPCMD_READ_CD:
532 case GPCMD_READ_CD_MSF:
533 return ATAPI_READ_CD;
534
535 case ATA_16:
536 case ATA_12:
537 if (atapi_passthru16)
538 return ATAPI_PASS_THRU;
539 fallthrough;
540 default:
541 return ATAPI_MISC;
542 }
543}
544EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546static const u8 ata_rw_cmds[] = {
547 /* pio multi */
548 ATA_CMD_READ_MULTI,
549 ATA_CMD_WRITE_MULTI,
550 ATA_CMD_READ_MULTI_EXT,
551 ATA_CMD_WRITE_MULTI_EXT,
552 0,
553 0,
554 0,
555 0,
556 /* pio */
557 ATA_CMD_PIO_READ,
558 ATA_CMD_PIO_WRITE,
559 ATA_CMD_PIO_READ_EXT,
560 ATA_CMD_PIO_WRITE_EXT,
561 0,
562 0,
563 0,
564 0,
565 /* dma */
566 ATA_CMD_READ,
567 ATA_CMD_WRITE,
568 ATA_CMD_READ_EXT,
569 ATA_CMD_WRITE_EXT,
570 0,
571 0,
572 0,
573 ATA_CMD_WRITE_FUA_EXT
574};
575
576/**
577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578 * @dev: target device for the taskfile
579 * @tf: taskfile to examine and configure
580 *
581 * Examine the device configuration and tf->flags to determine
582 * the proper read/write command and protocol to use for @tf.
583 *
584 * LOCKING:
585 * caller.
586 */
587static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 struct ata_taskfile *tf)
589{
590 u8 cmd;
591
592 int index, fua, lba48, write;
593
594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597
598 if (dev->flags & ATA_DFLAG_PIO) {
599 tf->protocol = ATA_PROT_PIO;
600 index = dev->multi_count ? 0 : 8;
601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 /* Unable to use DMA due to host limitation */
603 tf->protocol = ATA_PROT_PIO;
604 index = dev->multi_count ? 0 : 8;
605 } else {
606 tf->protocol = ATA_PROT_DMA;
607 index = 16;
608 }
609
610 cmd = ata_rw_cmds[index + fua + lba48 + write];
611 if (!cmd)
612 return false;
613
614 tf->command = cmd;
615
616 return true;
617}
618
619/**
620 * ata_tf_read_block - Read block address from ATA taskfile
621 * @tf: ATA taskfile of interest
622 * @dev: ATA device @tf belongs to
623 *
624 * LOCKING:
625 * None.
626 *
627 * Read block address from @tf. This function can handle all
628 * three address formats - LBA, LBA48 and CHS. tf->protocol and
629 * flags select the address format to use.
630 *
631 * RETURNS:
632 * Block address read from @tf.
633 */
634u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635{
636 u64 block = 0;
637
638 if (tf->flags & ATA_TFLAG_LBA) {
639 if (tf->flags & ATA_TFLAG_LBA48) {
640 block |= (u64)tf->hob_lbah << 40;
641 block |= (u64)tf->hob_lbam << 32;
642 block |= (u64)tf->hob_lbal << 24;
643 } else
644 block |= (tf->device & 0xf) << 24;
645
646 block |= tf->lbah << 16;
647 block |= tf->lbam << 8;
648 block |= tf->lbal;
649 } else {
650 u32 cyl, head, sect;
651
652 cyl = tf->lbam | (tf->lbah << 8);
653 head = tf->device & 0xf;
654 sect = tf->lbal;
655
656 if (!sect) {
657 ata_dev_warn(dev,
658 "device reported invalid CHS sector 0\n");
659 return U64_MAX;
660 }
661
662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 }
664
665 return block;
666}
667
668/*
669 * Set a taskfile command duration limit index.
670 */
671static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672{
673 struct ata_taskfile *tf = &qc->tf;
674
675 if (tf->protocol == ATA_PROT_NCQ)
676 tf->auxiliary |= cdl;
677 else
678 tf->feature |= cdl;
679
680 /*
681 * Mark this command as having a CDL and request the result
682 * task file so that we can inspect the sense data available
683 * bit on completion.
684 */
685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686}
687
688/**
689 * ata_build_rw_tf - Build ATA taskfile for given read/write request
690 * @qc: Metadata associated with the taskfile to build
691 * @block: Block address
692 * @n_block: Number of blocks
693 * @tf_flags: RW/FUA etc...
694 * @cdl: Command duration limit index
695 * @class: IO priority class
696 *
697 * LOCKING:
698 * None.
699 *
700 * Build ATA taskfile for the command @qc for read/write request described
701 * by @block, @n_block, @tf_flags and @class.
702 *
703 * RETURNS:
704 *
705 * 0 on success, -ERANGE if the request is too large for @dev,
706 * -EINVAL if the request is invalid.
707 */
708int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709 unsigned int tf_flags, int cdl, int class)
710{
711 struct ata_taskfile *tf = &qc->tf;
712 struct ata_device *dev = qc->dev;
713
714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715 tf->flags |= tf_flags;
716
717 if (ata_ncq_enabled(dev)) {
718 /* yay, NCQ */
719 if (!lba_48_ok(block, n_block))
720 return -ERANGE;
721
722 tf->protocol = ATA_PROT_NCQ;
723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724
725 if (tf->flags & ATA_TFLAG_WRITE)
726 tf->command = ATA_CMD_FPDMA_WRITE;
727 else
728 tf->command = ATA_CMD_FPDMA_READ;
729
730 tf->nsect = qc->hw_tag << 3;
731 tf->hob_feature = (n_block >> 8) & 0xff;
732 tf->feature = n_block & 0xff;
733
734 tf->hob_lbah = (block >> 40) & 0xff;
735 tf->hob_lbam = (block >> 32) & 0xff;
736 tf->hob_lbal = (block >> 24) & 0xff;
737 tf->lbah = (block >> 16) & 0xff;
738 tf->lbam = (block >> 8) & 0xff;
739 tf->lbal = block & 0xff;
740
741 tf->device = ATA_LBA;
742 if (tf->flags & ATA_TFLAG_FUA)
743 tf->device |= 1 << 7;
744
745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746 class == IOPRIO_CLASS_RT)
747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748
749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750 ata_set_tf_cdl(qc, cdl);
751
752 } else if (dev->flags & ATA_DFLAG_LBA) {
753 tf->flags |= ATA_TFLAG_LBA;
754
755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756 ata_set_tf_cdl(qc, cdl);
757
758 /* Both FUA writes and a CDL index require 48-bit commands */
759 if (!(tf->flags & ATA_TFLAG_FUA) &&
760 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761 lba_28_ok(block, n_block)) {
762 /* use LBA28 */
763 tf->device |= (block >> 24) & 0xf;
764 } else if (lba_48_ok(block, n_block)) {
765 if (!(dev->flags & ATA_DFLAG_LBA48))
766 return -ERANGE;
767
768 /* use LBA48 */
769 tf->flags |= ATA_TFLAG_LBA48;
770
771 tf->hob_nsect = (n_block >> 8) & 0xff;
772
773 tf->hob_lbah = (block >> 40) & 0xff;
774 tf->hob_lbam = (block >> 32) & 0xff;
775 tf->hob_lbal = (block >> 24) & 0xff;
776 } else {
777 /* request too large even for LBA48 */
778 return -ERANGE;
779 }
780
781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782 return -EINVAL;
783
784 tf->nsect = n_block & 0xff;
785
786 tf->lbah = (block >> 16) & 0xff;
787 tf->lbam = (block >> 8) & 0xff;
788 tf->lbal = block & 0xff;
789
790 tf->device |= ATA_LBA;
791 } else {
792 /* CHS */
793 u32 sect, head, cyl, track;
794
795 /* The request -may- be too large for CHS addressing. */
796 if (!lba_28_ok(block, n_block))
797 return -ERANGE;
798
799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 return -EINVAL;
801
802 /* Convert LBA to CHS */
803 track = (u32)block / dev->sectors;
804 cyl = track / dev->heads;
805 head = track % dev->heads;
806 sect = (u32)block % dev->sectors + 1;
807
808 /* Check whether the converted CHS can fit.
809 Cylinder: 0-65535
810 Head: 0-15
811 Sector: 1-255*/
812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813 return -ERANGE;
814
815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816 tf->lbal = sect;
817 tf->lbam = cyl;
818 tf->lbah = cyl >> 8;
819 tf->device |= head;
820 }
821
822 return 0;
823}
824
825/**
826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827 * @pio_mask: pio_mask
828 * @mwdma_mask: mwdma_mask
829 * @udma_mask: udma_mask
830 *
831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832 * unsigned int xfer_mask.
833 *
834 * LOCKING:
835 * None.
836 *
837 * RETURNS:
838 * Packed xfer_mask.
839 */
840unsigned int ata_pack_xfermask(unsigned int pio_mask,
841 unsigned int mwdma_mask,
842 unsigned int udma_mask)
843{
844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847}
848EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849
850/**
851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852 * @xfer_mask: xfer_mask to unpack
853 * @pio_mask: resulting pio_mask
854 * @mwdma_mask: resulting mwdma_mask
855 * @udma_mask: resulting udma_mask
856 *
857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858 * Any NULL destination masks will be ignored.
859 */
860void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861 unsigned int *mwdma_mask, unsigned int *udma_mask)
862{
863 if (pio_mask)
864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865 if (mwdma_mask)
866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867 if (udma_mask)
868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869}
870
871static const struct ata_xfer_ent {
872 int shift, bits;
873 u8 base;
874} ata_xfer_tbl[] = {
875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878 { -1, },
879};
880
881/**
882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883 * @xfer_mask: xfer_mask of interest
884 *
885 * Return matching XFER_* value for @xfer_mask. Only the highest
886 * bit of @xfer_mask is considered.
887 *
888 * LOCKING:
889 * None.
890 *
891 * RETURNS:
892 * Matching XFER_* value, 0xff if no match found.
893 */
894u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895{
896 int highbit = fls(x: xfer_mask) - 1;
897 const struct ata_xfer_ent *ent;
898
899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901 return ent->base + highbit - ent->shift;
902 return 0xff;
903}
904EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905
906/**
907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908 * @xfer_mode: XFER_* of interest
909 *
910 * Return matching xfer_mask for @xfer_mode.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching xfer_mask, 0 if no match found.
917 */
918unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919{
920 const struct ata_xfer_ent *ent;
921
922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925 & ~((1 << ent->shift) - 1);
926 return 0;
927}
928EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929
930/**
931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932 * @xfer_mode: XFER_* of interest
933 *
934 * Return matching xfer_shift for @xfer_mode.
935 *
936 * LOCKING:
937 * None.
938 *
939 * RETURNS:
940 * Matching xfer_shift, -1 if no match found.
941 */
942int ata_xfer_mode2shift(u8 xfer_mode)
943{
944 const struct ata_xfer_ent *ent;
945
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ent->shift;
949 return -1;
950}
951EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952
953/**
954 * ata_mode_string - convert xfer_mask to string
955 * @xfer_mask: mask of bits supported; only highest bit counts.
956 *
957 * Determine string which represents the highest speed
958 * (highest bit in @modemask).
959 *
960 * LOCKING:
961 * None.
962 *
963 * RETURNS:
964 * Constant C string representing highest speed listed in
965 * @mode_mask, or the constant C string "<n/a>".
966 */
967const char *ata_mode_string(unsigned int xfer_mask)
968{
969 static const char * const xfer_mode_str[] = {
970 "PIO0",
971 "PIO1",
972 "PIO2",
973 "PIO3",
974 "PIO4",
975 "PIO5",
976 "PIO6",
977 "MWDMA0",
978 "MWDMA1",
979 "MWDMA2",
980 "MWDMA3",
981 "MWDMA4",
982 "UDMA/16",
983 "UDMA/25",
984 "UDMA/33",
985 "UDMA/44",
986 "UDMA/66",
987 "UDMA/100",
988 "UDMA/133",
989 "UDMA7",
990 };
991 int highbit;
992
993 highbit = fls(x: xfer_mask) - 1;
994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995 return xfer_mode_str[highbit];
996 return "<n/a>";
997}
998EXPORT_SYMBOL_GPL(ata_mode_string);
999
1000const char *sata_spd_string(unsigned int spd)
1001{
1002 static const char * const spd_str[] = {
1003 "1.5 Gbps",
1004 "3.0 Gbps",
1005 "6.0 Gbps",
1006 };
1007
1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009 return "<unknown>";
1010 return spd_str[spd - 1];
1011}
1012
1013/**
1014 * ata_dev_classify - determine device type based on ATA-spec signature
1015 * @tf: ATA taskfile register set for device to be identified
1016 *
1017 * Determine from taskfile register contents whether a device is
1018 * ATA or ATAPI, as per "Signature and persistence" section
1019 * of ATA/PI spec (volume 1, sect 5.14).
1020 *
1021 * LOCKING:
1022 * None.
1023 *
1024 * RETURNS:
1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027 */
1028unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029{
1030 /* Apple's open source Darwin code hints that some devices only
1031 * put a proper signature into the LBA mid/high registers,
1032 * So, we only check those. It's sufficient for uniqueness.
1033 *
1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035 * signatures for ATA and ATAPI devices attached on SerialATA,
1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1037 * spec has never mentioned about using different signatures
1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1039 * Multiplier specification began to use 0x69/0x96 to identify
1040 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042 * 0x69/0x96 shortly and described them as reserved for
1043 * SerialATA.
1044 *
1045 * We follow the current spec and consider that 0x69/0x96
1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048 * SEMB signature. This is worked around in
1049 * ata_dev_read_id().
1050 */
1051 if (tf->lbam == 0 && tf->lbah == 0)
1052 return ATA_DEV_ATA;
1053
1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055 return ATA_DEV_ATAPI;
1056
1057 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058 return ATA_DEV_PMP;
1059
1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061 return ATA_DEV_SEMB;
1062
1063 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064 return ATA_DEV_ZAC;
1065
1066 return ATA_DEV_UNKNOWN;
1067}
1068EXPORT_SYMBOL_GPL(ata_dev_classify);
1069
1070/**
1071 * ata_id_string - Convert IDENTIFY DEVICE page into string
1072 * @id: IDENTIFY DEVICE results we will examine
1073 * @s: string into which data is output
1074 * @ofs: offset into identify device page
1075 * @len: length of string to return. must be an even number.
1076 *
1077 * The strings in the IDENTIFY DEVICE page are broken up into
1078 * 16-bit chunks. Run through the string, and output each
1079 * 8-bit chunk linearly, regardless of platform.
1080 *
1081 * LOCKING:
1082 * caller.
1083 */
1084
1085void ata_id_string(const u16 *id, unsigned char *s,
1086 unsigned int ofs, unsigned int len)
1087{
1088 unsigned int c;
1089
1090 BUG_ON(len & 1);
1091
1092 while (len > 0) {
1093 c = id[ofs] >> 8;
1094 *s = c;
1095 s++;
1096
1097 c = id[ofs] & 0xff;
1098 *s = c;
1099 s++;
1100
1101 ofs++;
1102 len -= 2;
1103 }
1104}
1105EXPORT_SYMBOL_GPL(ata_id_string);
1106
1107/**
1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109 * @id: IDENTIFY DEVICE results we will examine
1110 * @s: string into which data is output
1111 * @ofs: offset into identify device page
1112 * @len: length of string to return. must be an odd number.
1113 *
1114 * This function is identical to ata_id_string except that it
1115 * trims trailing spaces and terminates the resulting string with
1116 * null. @len must be actual maximum length (even number) + 1.
1117 *
1118 * LOCKING:
1119 * caller.
1120 */
1121void ata_id_c_string(const u16 *id, unsigned char *s,
1122 unsigned int ofs, unsigned int len)
1123{
1124 unsigned char *p;
1125
1126 ata_id_string(id, s, ofs, len - 1);
1127
1128 p = s + strnlen(p: s, maxlen: len - 1);
1129 while (p > s && p[-1] == ' ')
1130 p--;
1131 *p = '\0';
1132}
1133EXPORT_SYMBOL_GPL(ata_id_c_string);
1134
1135static u64 ata_id_n_sectors(const u16 *id)
1136{
1137 if (ata_id_has_lba(id)) {
1138 if (ata_id_has_lba48(id))
1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140
1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142 }
1143
1144 if (ata_id_current_chs_valid(id))
1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146 (u32)id[ATA_ID_CUR_SECTORS];
1147
1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149 (u32)id[ATA_ID_SECTORS];
1150}
1151
1152u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153{
1154 u64 sectors = 0;
1155
1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159 sectors |= (tf->lbah & 0xff) << 16;
1160 sectors |= (tf->lbam & 0xff) << 8;
1161 sectors |= (tf->lbal & 0xff);
1162
1163 return sectors;
1164}
1165
1166u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167{
1168 u64 sectors = 0;
1169
1170 sectors |= (tf->device & 0x0f) << 24;
1171 sectors |= (tf->lbah & 0xff) << 16;
1172 sectors |= (tf->lbam & 0xff) << 8;
1173 sectors |= (tf->lbal & 0xff);
1174
1175 return sectors;
1176}
1177
1178/**
1179 * ata_read_native_max_address - Read native max address
1180 * @dev: target device
1181 * @max_sectors: out parameter for the result native max address
1182 *
1183 * Perform an LBA48 or LBA28 native size query upon the device in
1184 * question.
1185 *
1186 * RETURNS:
1187 * 0 on success, -EACCES if command is aborted by the drive.
1188 * -EIO on other errors.
1189 */
1190static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191{
1192 unsigned int err_mask;
1193 struct ata_taskfile tf;
1194 int lba48 = ata_id_has_lba48(id: dev->id);
1195
1196 ata_tf_init(dev, tf: &tf);
1197
1198 /* always clear all address registers */
1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200
1201 if (lba48) {
1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203 tf.flags |= ATA_TFLAG_LBA48;
1204 } else
1205 tf.command = ATA_CMD_READ_NATIVE_MAX;
1206
1207 tf.protocol = ATA_PROT_NODATA;
1208 tf.device |= ATA_LBA;
1209
1210 err_mask = ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_NONE, NULL, buflen: 0, timeout: 0);
1211 if (err_mask) {
1212 ata_dev_warn(dev,
1213 "failed to read native max address (err_mask=0x%x)\n",
1214 err_mask);
1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216 return -EACCES;
1217 return -EIO;
1218 }
1219
1220 if (lba48)
1221 *max_sectors = ata_tf_to_lba48(tf: &tf) + 1;
1222 else
1223 *max_sectors = ata_tf_to_lba(tf: &tf) + 1;
1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225 (*max_sectors)--;
1226 return 0;
1227}
1228
1229/**
1230 * ata_set_max_sectors - Set max sectors
1231 * @dev: target device
1232 * @new_sectors: new max sectors value to set for the device
1233 *
1234 * Set max sectors of @dev to @new_sectors.
1235 *
1236 * RETURNS:
1237 * 0 on success, -EACCES if command is aborted or denied (due to
1238 * previous non-volatile SET_MAX) by the drive. -EIO on other
1239 * errors.
1240 */
1241static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242{
1243 unsigned int err_mask;
1244 struct ata_taskfile tf;
1245 int lba48 = ata_id_has_lba48(id: dev->id);
1246
1247 new_sectors--;
1248
1249 ata_tf_init(dev, tf: &tf);
1250
1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252
1253 if (lba48) {
1254 tf.command = ATA_CMD_SET_MAX_EXT;
1255 tf.flags |= ATA_TFLAG_LBA48;
1256
1257 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260 } else {
1261 tf.command = ATA_CMD_SET_MAX;
1262
1263 tf.device |= (new_sectors >> 24) & 0xf;
1264 }
1265
1266 tf.protocol = ATA_PROT_NODATA;
1267 tf.device |= ATA_LBA;
1268
1269 tf.lbal = (new_sectors >> 0) & 0xff;
1270 tf.lbam = (new_sectors >> 8) & 0xff;
1271 tf.lbah = (new_sectors >> 16) & 0xff;
1272
1273 err_mask = ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_NONE, NULL, buflen: 0, timeout: 0);
1274 if (err_mask) {
1275 ata_dev_warn(dev,
1276 "failed to set max address (err_mask=0x%x)\n",
1277 err_mask);
1278 if (err_mask == AC_ERR_DEV &&
1279 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280 return -EACCES;
1281 return -EIO;
1282 }
1283
1284 return 0;
1285}
1286
1287/**
1288 * ata_hpa_resize - Resize a device with an HPA set
1289 * @dev: Device to resize
1290 *
1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292 * it if required to the full size of the media. The caller must check
1293 * the drive has the HPA feature set enabled.
1294 *
1295 * RETURNS:
1296 * 0 on success, -errno on failure.
1297 */
1298static int ata_hpa_resize(struct ata_device *dev)
1299{
1300 bool print_info = ata_dev_print_info(dev);
1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302 u64 sectors = ata_id_n_sectors(id: dev->id);
1303 u64 native_sectors;
1304 int rc;
1305
1306 /* do we need to do it? */
1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(id: dev->id) ||
1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310 return 0;
1311
1312 /* read native max address */
1313 rc = ata_read_native_max_address(dev, max_sectors: &native_sectors);
1314 if (rc) {
1315 /* If device aborted the command or HPA isn't going to
1316 * be unlocked, skip HPA resizing.
1317 */
1318 if (rc == -EACCES || !unlock_hpa) {
1319 ata_dev_warn(dev,
1320 "HPA support seems broken, skipping HPA handling\n");
1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322
1323 /* we can continue if device aborted the command */
1324 if (rc == -EACCES)
1325 rc = 0;
1326 }
1327
1328 return rc;
1329 }
1330 dev->n_native_sectors = native_sectors;
1331
1332 /* nothing to do? */
1333 if (native_sectors <= sectors || !unlock_hpa) {
1334 if (!print_info || native_sectors == sectors)
1335 return 0;
1336
1337 if (native_sectors > sectors)
1338 ata_dev_info(dev,
1339 "HPA detected: current %llu, native %llu\n",
1340 (unsigned long long)sectors,
1341 (unsigned long long)native_sectors);
1342 else if (native_sectors < sectors)
1343 ata_dev_warn(dev,
1344 "native sectors (%llu) is smaller than sectors (%llu)\n",
1345 (unsigned long long)native_sectors,
1346 (unsigned long long)sectors);
1347 return 0;
1348 }
1349
1350 /* let's unlock HPA */
1351 rc = ata_set_max_sectors(dev, new_sectors: native_sectors);
1352 if (rc == -EACCES) {
1353 /* if device aborted the command, skip HPA resizing */
1354 ata_dev_warn(dev,
1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356 (unsigned long long)sectors,
1357 (unsigned long long)native_sectors);
1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359 return 0;
1360 } else if (rc)
1361 return rc;
1362
1363 /* re-read IDENTIFY data */
1364 rc = ata_dev_reread_id(dev, readid_flags: 0);
1365 if (rc) {
1366 ata_dev_err(dev,
1367 "failed to re-read IDENTIFY data after HPA resizing\n");
1368 return rc;
1369 }
1370
1371 if (print_info) {
1372 u64 new_sectors = ata_id_n_sectors(id: dev->id);
1373 ata_dev_info(dev,
1374 "HPA unlocked: %llu -> %llu, native %llu\n",
1375 (unsigned long long)sectors,
1376 (unsigned long long)new_sectors,
1377 (unsigned long long)native_sectors);
1378 }
1379
1380 return 0;
1381}
1382
1383/**
1384 * ata_dump_id - IDENTIFY DEVICE info debugging output
1385 * @dev: device from which the information is fetched
1386 * @id: IDENTIFY DEVICE page to dump
1387 *
1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1389 * page.
1390 *
1391 * LOCKING:
1392 * caller.
1393 */
1394
1395static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396{
1397 ata_dev_dbg(dev,
1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1400 "88==0x%04x 93==0x%04x\n",
1401 id[49], id[53], id[63], id[64], id[75], id[80],
1402 id[81], id[82], id[83], id[84], id[88], id[93]);
1403}
1404
1405/**
1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407 * @id: IDENTIFY data to compute xfer mask from
1408 *
1409 * Compute the xfermask for this device. This is not as trivial
1410 * as it seems if we must consider early devices correctly.
1411 *
1412 * FIXME: pre IDE drive timing (do we care ?).
1413 *
1414 * LOCKING:
1415 * None.
1416 *
1417 * RETURNS:
1418 * Computed xfermask
1419 */
1420unsigned int ata_id_xfermask(const u16 *id)
1421{
1422 unsigned int pio_mask, mwdma_mask, udma_mask;
1423
1424 /* Usual case. Word 53 indicates word 64 is valid */
1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427 pio_mask <<= 3;
1428 pio_mask |= 0x7;
1429 } else {
1430 /* If word 64 isn't valid then Word 51 high byte holds
1431 * the PIO timing number for the maximum. Turn it into
1432 * a mask.
1433 */
1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435 if (mode < 5) /* Valid PIO range */
1436 pio_mask = (2 << mode) - 1;
1437 else
1438 pio_mask = 1;
1439
1440 /* But wait.. there's more. Design your standards by
1441 * committee and you too can get a free iordy field to
1442 * process. However it is the speeds not the modes that
1443 * are supported... Note drivers using the timing API
1444 * will get this right anyway
1445 */
1446 }
1447
1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449
1450 if (ata_id_is_cfa(id)) {
1451 /*
1452 * Process compact flash extended modes
1453 */
1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456
1457 if (pio)
1458 pio_mask |= (1 << 5);
1459 if (pio > 1)
1460 pio_mask |= (1 << 6);
1461 if (dma)
1462 mwdma_mask |= (1 << 3);
1463 if (dma > 1)
1464 mwdma_mask |= (1 << 4);
1465 }
1466
1467 udma_mask = 0;
1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470
1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472}
1473EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474
1475static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476{
1477 struct completion *waiting = qc->private_data;
1478
1479 complete(waiting);
1480}
1481
1482/**
1483 * ata_exec_internal_sg - execute libata internal command
1484 * @dev: Device to which the command is sent
1485 * @tf: Taskfile registers for the command and the result
1486 * @cdb: CDB for packet command
1487 * @dma_dir: Data transfer direction of the command
1488 * @sgl: sg list for the data buffer of the command
1489 * @n_elem: Number of sg entries
1490 * @timeout: Timeout in msecs (0 for default)
1491 *
1492 * Executes libata internal command with timeout. @tf contains
1493 * command on entry and result on return. Timeout and error
1494 * conditions are reported via return value. No recovery action
1495 * is taken after a command times out. It's caller's duty to
1496 * clean up after timeout.
1497 *
1498 * LOCKING:
1499 * None. Should be called with kernel context, might sleep.
1500 *
1501 * RETURNS:
1502 * Zero on success, AC_ERR_* mask on failure
1503 */
1504static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505 struct ata_taskfile *tf, const u8 *cdb,
1506 int dma_dir, struct scatterlist *sgl,
1507 unsigned int n_elem, unsigned int timeout)
1508{
1509 struct ata_link *link = dev->link;
1510 struct ata_port *ap = link->ap;
1511 u8 command = tf->command;
1512 int auto_timeout = 0;
1513 struct ata_queued_cmd *qc;
1514 unsigned int preempted_tag;
1515 u32 preempted_sactive;
1516 u64 preempted_qc_active;
1517 int preempted_nr_active_links;
1518 DECLARE_COMPLETION_ONSTACK(wait);
1519 unsigned long flags;
1520 unsigned int err_mask;
1521 int rc;
1522
1523 spin_lock_irqsave(ap->lock, flags);
1524
1525 /* no internal command while frozen */
1526 if (ata_port_is_frozen(ap)) {
1527 spin_unlock_irqrestore(lock: ap->lock, flags);
1528 return AC_ERR_SYSTEM;
1529 }
1530
1531 /* initialize internal qc */
1532 qc = __ata_qc_from_tag(ap, tag: ATA_TAG_INTERNAL);
1533
1534 qc->tag = ATA_TAG_INTERNAL;
1535 qc->hw_tag = 0;
1536 qc->scsicmd = NULL;
1537 qc->ap = ap;
1538 qc->dev = dev;
1539 ata_qc_reinit(qc);
1540
1541 preempted_tag = link->active_tag;
1542 preempted_sactive = link->sactive;
1543 preempted_qc_active = ap->qc_active;
1544 preempted_nr_active_links = ap->nr_active_links;
1545 link->active_tag = ATA_TAG_POISON;
1546 link->sactive = 0;
1547 ap->qc_active = 0;
1548 ap->nr_active_links = 0;
1549
1550 /* prepare & issue qc */
1551 qc->tf = *tf;
1552 if (cdb)
1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554
1555 /* some SATA bridges need us to indicate data xfer direction */
1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557 dma_dir == DMA_FROM_DEVICE)
1558 qc->tf.feature |= ATAPI_DMADIR;
1559
1560 qc->flags |= ATA_QCFLAG_RESULT_TF;
1561 qc->dma_dir = dma_dir;
1562 if (dma_dir != DMA_NONE) {
1563 unsigned int i, buflen = 0;
1564 struct scatterlist *sg;
1565
1566 for_each_sg(sgl, sg, n_elem, i)
1567 buflen += sg->length;
1568
1569 ata_sg_init(qc, sg: sgl, n_elem);
1570 qc->nbytes = buflen;
1571 }
1572
1573 qc->private_data = &wait;
1574 qc->complete_fn = ata_qc_complete_internal;
1575
1576 ata_qc_issue(qc);
1577
1578 spin_unlock_irqrestore(lock: ap->lock, flags);
1579
1580 if (!timeout) {
1581 if (ata_probe_timeout)
1582 timeout = ata_probe_timeout * 1000;
1583 else {
1584 timeout = ata_internal_cmd_timeout(dev, cmd: command);
1585 auto_timeout = 1;
1586 }
1587 }
1588
1589 ata_eh_release(ap);
1590
1591 rc = wait_for_completion_timeout(x: &wait, timeout: msecs_to_jiffies(m: timeout));
1592
1593 ata_eh_acquire(ap);
1594
1595 ata_sff_flush_pio_task(ap);
1596
1597 if (!rc) {
1598 spin_lock_irqsave(ap->lock, flags);
1599
1600 /* We're racing with irq here. If we lose, the
1601 * following test prevents us from completing the qc
1602 * twice. If we win, the port is frozen and will be
1603 * cleaned up by ->post_internal_cmd().
1604 */
1605 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1606 qc->err_mask |= AC_ERR_TIMEOUT;
1607
1608 ata_port_freeze(ap);
1609
1610 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1611 timeout, command);
1612 }
1613
1614 spin_unlock_irqrestore(lock: ap->lock, flags);
1615 }
1616
1617 /* do post_internal_cmd */
1618 if (ap->ops->post_internal_cmd)
1619 ap->ops->post_internal_cmd(qc);
1620
1621 /* perform minimal error analysis */
1622 if (qc->flags & ATA_QCFLAG_EH) {
1623 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1624 qc->err_mask |= AC_ERR_DEV;
1625
1626 if (!qc->err_mask)
1627 qc->err_mask |= AC_ERR_OTHER;
1628
1629 if (qc->err_mask & ~AC_ERR_OTHER)
1630 qc->err_mask &= ~AC_ERR_OTHER;
1631 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1632 qc->result_tf.status |= ATA_SENSE;
1633 }
1634
1635 /* finish up */
1636 spin_lock_irqsave(ap->lock, flags);
1637
1638 *tf = qc->result_tf;
1639 err_mask = qc->err_mask;
1640
1641 ata_qc_free(qc);
1642 link->active_tag = preempted_tag;
1643 link->sactive = preempted_sactive;
1644 ap->qc_active = preempted_qc_active;
1645 ap->nr_active_links = preempted_nr_active_links;
1646
1647 spin_unlock_irqrestore(lock: ap->lock, flags);
1648
1649 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1650 ata_internal_cmd_timed_out(dev, cmd: command);
1651
1652 return err_mask;
1653}
1654
1655/**
1656 * ata_exec_internal - execute libata internal command
1657 * @dev: Device to which the command is sent
1658 * @tf: Taskfile registers for the command and the result
1659 * @cdb: CDB for packet command
1660 * @dma_dir: Data transfer direction of the command
1661 * @buf: Data buffer of the command
1662 * @buflen: Length of data buffer
1663 * @timeout: Timeout in msecs (0 for default)
1664 *
1665 * Wrapper around ata_exec_internal_sg() which takes simple
1666 * buffer instead of sg list.
1667 *
1668 * LOCKING:
1669 * None. Should be called with kernel context, might sleep.
1670 *
1671 * RETURNS:
1672 * Zero on success, AC_ERR_* mask on failure
1673 */
1674unsigned ata_exec_internal(struct ata_device *dev,
1675 struct ata_taskfile *tf, const u8 *cdb,
1676 int dma_dir, void *buf, unsigned int buflen,
1677 unsigned int timeout)
1678{
1679 struct scatterlist *psg = NULL, sg;
1680 unsigned int n_elem = 0;
1681
1682 if (dma_dir != DMA_NONE) {
1683 WARN_ON(!buf);
1684 sg_init_one(&sg, buf, buflen);
1685 psg = &sg;
1686 n_elem++;
1687 }
1688
1689 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, sgl: psg, n_elem,
1690 timeout);
1691}
1692
1693/**
1694 * ata_pio_need_iordy - check if iordy needed
1695 * @adev: ATA device
1696 *
1697 * Check if the current speed of the device requires IORDY. Used
1698 * by various controllers for chip configuration.
1699 */
1700unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1701{
1702 /* Don't set IORDY if we're preparing for reset. IORDY may
1703 * lead to controller lock up on certain controllers if the
1704 * port is not occupied. See bko#11703 for details.
1705 */
1706 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1707 return 0;
1708 /* Controller doesn't support IORDY. Probably a pointless
1709 * check as the caller should know this.
1710 */
1711 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1712 return 0;
1713 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1714 if (ata_id_is_cfa(id: adev->id)
1715 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1716 return 0;
1717 /* PIO3 and higher it is mandatory */
1718 if (adev->pio_mode > XFER_PIO_2)
1719 return 1;
1720 /* We turn it on when possible */
1721 if (ata_id_has_iordy(adev->id))
1722 return 1;
1723 return 0;
1724}
1725EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1726
1727/**
1728 * ata_pio_mask_no_iordy - Return the non IORDY mask
1729 * @adev: ATA device
1730 *
1731 * Compute the highest mode possible if we are not using iordy. Return
1732 * -1 if no iordy mode is available.
1733 */
1734static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1735{
1736 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1738 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1739 /* Is the speed faster than the drive allows non IORDY ? */
1740 if (pio) {
1741 /* This is cycle times not frequency - watch the logic! */
1742 if (pio > 240) /* PIO2 is 240nS per cycle */
1743 return 3 << ATA_SHIFT_PIO;
1744 return 7 << ATA_SHIFT_PIO;
1745 }
1746 }
1747 return 3 << ATA_SHIFT_PIO;
1748}
1749
1750/**
1751 * ata_do_dev_read_id - default ID read method
1752 * @dev: device
1753 * @tf: proposed taskfile
1754 * @id: data buffer
1755 *
1756 * Issue the identify taskfile and hand back the buffer containing
1757 * identify data. For some RAID controllers and for pre ATA devices
1758 * this function is wrapped or replaced by the driver
1759 */
1760unsigned int ata_do_dev_read_id(struct ata_device *dev,
1761 struct ata_taskfile *tf, __le16 *id)
1762{
1763 return ata_exec_internal(dev, tf, NULL, dma_dir: DMA_FROM_DEVICE,
1764 buf: id, buflen: sizeof(id[0]) * ATA_ID_WORDS, timeout: 0);
1765}
1766EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1767
1768/**
1769 * ata_dev_read_id - Read ID data from the specified device
1770 * @dev: target device
1771 * @p_class: pointer to class of the target device (may be changed)
1772 * @flags: ATA_READID_* flags
1773 * @id: buffer to read IDENTIFY data into
1774 *
1775 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1776 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1777 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1778 * for pre-ATA4 drives.
1779 *
1780 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1781 * now we abort if we hit that case.
1782 *
1783 * LOCKING:
1784 * Kernel thread context (may sleep)
1785 *
1786 * RETURNS:
1787 * 0 on success, -errno otherwise.
1788 */
1789int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1790 unsigned int flags, u16 *id)
1791{
1792 struct ata_port *ap = dev->link->ap;
1793 unsigned int class = *p_class;
1794 struct ata_taskfile tf;
1795 unsigned int err_mask = 0;
1796 const char *reason;
1797 bool is_semb = class == ATA_DEV_SEMB;
1798 int may_fallback = 1, tried_spinup = 0;
1799 int rc;
1800
1801retry:
1802 ata_tf_init(dev, tf: &tf);
1803
1804 switch (class) {
1805 case ATA_DEV_SEMB:
1806 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1807 fallthrough;
1808 case ATA_DEV_ATA:
1809 case ATA_DEV_ZAC:
1810 tf.command = ATA_CMD_ID_ATA;
1811 break;
1812 case ATA_DEV_ATAPI:
1813 tf.command = ATA_CMD_ID_ATAPI;
1814 break;
1815 default:
1816 rc = -ENODEV;
1817 reason = "unsupported class";
1818 goto err_out;
1819 }
1820
1821 tf.protocol = ATA_PROT_PIO;
1822
1823 /* Some devices choke if TF registers contain garbage. Make
1824 * sure those are properly initialized.
1825 */
1826 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1827
1828 /* Device presence detection is unreliable on some
1829 * controllers. Always poll IDENTIFY if available.
1830 */
1831 tf.flags |= ATA_TFLAG_POLLING;
1832
1833 if (ap->ops->read_id)
1834 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1835 else
1836 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1837
1838 if (err_mask) {
1839 if (err_mask & AC_ERR_NODEV_HINT) {
1840 ata_dev_dbg(dev, "NODEV after polling detection\n");
1841 return -ENOENT;
1842 }
1843
1844 if (is_semb) {
1845 ata_dev_info(dev,
1846 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1847 /* SEMB is not supported yet */
1848 *p_class = ATA_DEV_SEMB_UNSUP;
1849 return 0;
1850 }
1851
1852 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1853 /* Device or controller might have reported
1854 * the wrong device class. Give a shot at the
1855 * other IDENTIFY if the current one is
1856 * aborted by the device.
1857 */
1858 if (may_fallback) {
1859 may_fallback = 0;
1860
1861 if (class == ATA_DEV_ATA)
1862 class = ATA_DEV_ATAPI;
1863 else
1864 class = ATA_DEV_ATA;
1865 goto retry;
1866 }
1867
1868 /* Control reaches here iff the device aborted
1869 * both flavors of IDENTIFYs which happens
1870 * sometimes with phantom devices.
1871 */
1872 ata_dev_dbg(dev,
1873 "both IDENTIFYs aborted, assuming NODEV\n");
1874 return -ENOENT;
1875 }
1876
1877 rc = -EIO;
1878 reason = "I/O error";
1879 goto err_out;
1880 }
1881
1882 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1883 ata_dev_info(dev, "dumping IDENTIFY data, "
1884 "class=%d may_fallback=%d tried_spinup=%d\n",
1885 class, may_fallback, tried_spinup);
1886 print_hex_dump(KERN_INFO, prefix_str: "", prefix_type: DUMP_PREFIX_OFFSET,
1887 rowsize: 16, groupsize: 2, buf: id, len: ATA_ID_WORDS * sizeof(*id), ascii: true);
1888 }
1889
1890 /* Falling back doesn't make sense if ID data was read
1891 * successfully at least once.
1892 */
1893 may_fallback = 0;
1894
1895 swap_buf_le16(buf: id, buf_words: ATA_ID_WORDS);
1896
1897 /* sanity check */
1898 rc = -EINVAL;
1899 reason = "device reports invalid type";
1900
1901 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1902 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1903 goto err_out;
1904 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1905 ata_id_is_ata(id)) {
1906 ata_dev_dbg(dev,
1907 "host indicates ignore ATA devices, ignored\n");
1908 return -ENOENT;
1909 }
1910 } else {
1911 if (ata_id_is_ata(id))
1912 goto err_out;
1913 }
1914
1915 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1916 tried_spinup = 1;
1917 /*
1918 * Drive powered-up in standby mode, and requires a specific
1919 * SET_FEATURES spin-up subcommand before it will accept
1920 * anything other than the original IDENTIFY command.
1921 */
1922 err_mask = ata_dev_set_feature(dev, subcmd: SETFEATURES_SPINUP, action: 0);
1923 if (err_mask && id[2] != 0x738c) {
1924 rc = -EIO;
1925 reason = "SPINUP failed";
1926 goto err_out;
1927 }
1928 /*
1929 * If the drive initially returned incomplete IDENTIFY info,
1930 * we now must reissue the IDENTIFY command.
1931 */
1932 if (id[2] == 0x37c8)
1933 goto retry;
1934 }
1935
1936 if ((flags & ATA_READID_POSTRESET) &&
1937 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1938 /*
1939 * The exact sequence expected by certain pre-ATA4 drives is:
1940 * SRST RESET
1941 * IDENTIFY (optional in early ATA)
1942 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1943 * anything else..
1944 * Some drives were very specific about that exact sequence.
1945 *
1946 * Note that ATA4 says lba is mandatory so the second check
1947 * should never trigger.
1948 */
1949 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1950 err_mask = ata_dev_init_params(dev, heads: id[3], sectors: id[6]);
1951 if (err_mask) {
1952 rc = -EIO;
1953 reason = "INIT_DEV_PARAMS failed";
1954 goto err_out;
1955 }
1956
1957 /* current CHS translation info (id[53-58]) might be
1958 * changed. reread the identify device info.
1959 */
1960 flags &= ~ATA_READID_POSTRESET;
1961 goto retry;
1962 }
1963 }
1964
1965 *p_class = class;
1966
1967 return 0;
1968
1969 err_out:
1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 reason, err_mask);
1972 return rc;
1973}
1974
1975bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1976 bool set_active)
1977{
1978 /* Only applies to ATA and ZAC devices */
1979 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1980 return false;
1981
1982 ata_tf_init(dev, tf);
1983 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1984 tf->protocol = ATA_PROT_NODATA;
1985
1986 if (set_active) {
1987 /* VERIFY for 1 sector at lba=0 */
1988 tf->command = ATA_CMD_VERIFY;
1989 tf->nsect = 1;
1990 if (dev->flags & ATA_DFLAG_LBA) {
1991 tf->flags |= ATA_TFLAG_LBA;
1992 tf->device |= ATA_LBA;
1993 } else {
1994 /* CHS */
1995 tf->lbal = 0x1; /* sect */
1996 }
1997 } else {
1998 tf->command = ATA_CMD_STANDBYNOW1;
1999 }
2000
2001 return true;
2002}
2003
2004/**
2005 * ata_dev_power_set_standby - Set a device power mode to standby
2006 * @dev: target device
2007 *
2008 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2009 * For an HDD device, this spins down the disks.
2010 *
2011 * LOCKING:
2012 * Kernel thread context (may sleep).
2013 */
2014void ata_dev_power_set_standby(struct ata_device *dev)
2015{
2016 unsigned long ap_flags = dev->link->ap->flags;
2017 struct ata_taskfile tf;
2018 unsigned int err_mask;
2019
2020 /*
2021 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2022 * causing some drives to spin up and down again. For these, do nothing
2023 * if we are being called on shutdown.
2024 */
2025 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2026 system_state == SYSTEM_POWER_OFF)
2027 return;
2028
2029 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2030 system_entering_hibernation())
2031 return;
2032
2033 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2034 if (!ata_dev_power_init_tf(dev, tf: &tf, set_active: false))
2035 return;
2036
2037 ata_dev_notice(dev, "Entering standby power mode\n");
2038
2039 err_mask = ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_NONE, NULL, buflen: 0, timeout: 0);
2040 if (err_mask)
2041 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2042 err_mask);
2043}
2044
2045static bool ata_dev_power_is_active(struct ata_device *dev)
2046{
2047 struct ata_taskfile tf;
2048 unsigned int err_mask;
2049
2050 ata_tf_init(dev, tf: &tf);
2051 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2052 tf.protocol = ATA_PROT_NODATA;
2053 tf.command = ATA_CMD_CHK_POWER;
2054
2055 err_mask = ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_NONE, NULL, buflen: 0, timeout: 0);
2056 if (err_mask) {
2057 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
2058 err_mask);
2059 /*
2060 * Assume we are in standby mode so that we always force a
2061 * spinup in ata_dev_power_set_active().
2062 */
2063 return false;
2064 }
2065
2066 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2067
2068 /* Active or idle */
2069 return tf.nsect == 0xff;
2070}
2071
2072/**
2073 * ata_dev_power_set_active - Set a device power mode to active
2074 * @dev: target device
2075 *
2076 * Issue a VERIFY command to enter to ensure that the device is in the
2077 * active power mode. For a spun-down HDD (standby or idle power mode),
2078 * the VERIFY command will complete after the disk spins up.
2079 *
2080 * LOCKING:
2081 * Kernel thread context (may sleep).
2082 */
2083void ata_dev_power_set_active(struct ata_device *dev)
2084{
2085 struct ata_taskfile tf;
2086 unsigned int err_mask;
2087
2088 /*
2089 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2090 * if supported by the device.
2091 */
2092 if (!ata_dev_power_init_tf(dev, tf: &tf, set_active: true))
2093 return;
2094
2095 /*
2096 * Check the device power state & condition and force a spinup with
2097 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2098 */
2099 if (ata_dev_power_is_active(dev))
2100 return;
2101
2102 ata_dev_notice(dev, "Entering active power mode\n");
2103
2104 err_mask = ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_NONE, NULL, buflen: 0, timeout: 0);
2105 if (err_mask)
2106 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2107 err_mask);
2108}
2109
2110/**
2111 * ata_read_log_page - read a specific log page
2112 * @dev: target device
2113 * @log: log to read
2114 * @page: page to read
2115 * @buf: buffer to store read page
2116 * @sectors: number of sectors to read
2117 *
2118 * Read log page using READ_LOG_EXT command.
2119 *
2120 * LOCKING:
2121 * Kernel thread context (may sleep).
2122 *
2123 * RETURNS:
2124 * 0 on success, AC_ERR_* mask otherwise.
2125 */
2126unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2127 u8 page, void *buf, unsigned int sectors)
2128{
2129 unsigned long ap_flags = dev->link->ap->flags;
2130 struct ata_taskfile tf;
2131 unsigned int err_mask;
2132 bool dma = false;
2133
2134 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2135
2136 /*
2137 * Return error without actually issuing the command on controllers
2138 * which e.g. lockup on a read log page.
2139 */
2140 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2141 return AC_ERR_DEV;
2142
2143retry:
2144 ata_tf_init(dev, tf: &tf);
2145 if (ata_dma_enabled(adev: dev) && ata_id_has_read_log_dma_ext(id: dev->id) &&
2146 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2147 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2148 tf.protocol = ATA_PROT_DMA;
2149 dma = true;
2150 } else {
2151 tf.command = ATA_CMD_READ_LOG_EXT;
2152 tf.protocol = ATA_PROT_PIO;
2153 dma = false;
2154 }
2155 tf.lbal = log;
2156 tf.lbam = page;
2157 tf.nsect = sectors;
2158 tf.hob_nsect = sectors >> 8;
2159 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2160
2161 err_mask = ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_FROM_DEVICE,
2162 buf, buflen: sectors * ATA_SECT_SIZE, timeout: 0);
2163
2164 if (err_mask) {
2165 if (dma) {
2166 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2167 if (!ata_port_is_frozen(ap: dev->link->ap))
2168 goto retry;
2169 }
2170 ata_dev_err(dev,
2171 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2172 (unsigned int)log, (unsigned int)page, err_mask);
2173 }
2174
2175 return err_mask;
2176}
2177
2178static int ata_log_supported(struct ata_device *dev, u8 log)
2179{
2180 struct ata_port *ap = dev->link->ap;
2181
2182 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2183 return 0;
2184
2185 if (ata_read_log_page(dev, log: ATA_LOG_DIRECTORY, page: 0, buf: ap->sector_buf, sectors: 1))
2186 return 0;
2187 return get_unaligned_le16(p: &ap->sector_buf[log * 2]);
2188}
2189
2190static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2191{
2192 struct ata_port *ap = dev->link->ap;
2193 unsigned int err, i;
2194
2195 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2196 return false;
2197
2198 if (!ata_log_supported(dev, log: ATA_LOG_IDENTIFY_DEVICE)) {
2199 /*
2200 * IDENTIFY DEVICE data log is defined as mandatory starting
2201 * with ACS-3 (ATA version 10). Warn about the missing log
2202 * for drives which implement this ATA level or above.
2203 */
2204 if (ata_id_major_version(id: dev->id) >= 10)
2205 ata_dev_warn(dev,
2206 "ATA Identify Device Log not supported\n");
2207 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2208 return false;
2209 }
2210
2211 /*
2212 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2213 * supported.
2214 */
2215 err = ata_read_log_page(dev, log: ATA_LOG_IDENTIFY_DEVICE, page: 0, buf: ap->sector_buf,
2216 sectors: 1);
2217 if (err)
2218 return false;
2219
2220 for (i = 0; i < ap->sector_buf[8]; i++) {
2221 if (ap->sector_buf[9 + i] == page)
2222 return true;
2223 }
2224
2225 return false;
2226}
2227
2228static int ata_do_link_spd_horkage(struct ata_device *dev)
2229{
2230 struct ata_link *plink = ata_dev_phys_link(dev);
2231 u32 target, target_limit;
2232
2233 if (!sata_scr_valid(link: plink))
2234 return 0;
2235
2236 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2237 target = 1;
2238 else
2239 return 0;
2240
2241 target_limit = (1 << target) - 1;
2242
2243 /* if already on stricter limit, no need to push further */
2244 if (plink->sata_spd_limit <= target_limit)
2245 return 0;
2246
2247 plink->sata_spd_limit = target_limit;
2248
2249 /* Request another EH round by returning -EAGAIN if link is
2250 * going faster than the target speed. Forward progress is
2251 * guaranteed by setting sata_spd_limit to target_limit above.
2252 */
2253 if (plink->sata_spd > target) {
2254 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2255 sata_spd_string(target));
2256 return -EAGAIN;
2257 }
2258 return 0;
2259}
2260
2261static inline u8 ata_dev_knobble(struct ata_device *dev)
2262{
2263 struct ata_port *ap = dev->link->ap;
2264
2265 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2266 return 0;
2267
2268 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(id: dev->id)));
2269}
2270
2271static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2272{
2273 struct ata_port *ap = dev->link->ap;
2274 unsigned int err_mask;
2275
2276 if (!ata_log_supported(dev, log: ATA_LOG_NCQ_SEND_RECV)) {
2277 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2278 return;
2279 }
2280 err_mask = ata_read_log_page(dev, log: ATA_LOG_NCQ_SEND_RECV,
2281 page: 0, buf: ap->sector_buf, sectors: 1);
2282 if (!err_mask) {
2283 u8 *cmds = dev->ncq_send_recv_cmds;
2284
2285 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2286 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2287
2288 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2289 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2290 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2291 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2292 }
2293 }
2294}
2295
2296static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2297{
2298 struct ata_port *ap = dev->link->ap;
2299 unsigned int err_mask;
2300
2301 if (!ata_log_supported(dev, log: ATA_LOG_NCQ_NON_DATA)) {
2302 ata_dev_warn(dev,
2303 "NCQ Send/Recv Log not supported\n");
2304 return;
2305 }
2306 err_mask = ata_read_log_page(dev, log: ATA_LOG_NCQ_NON_DATA,
2307 page: 0, buf: ap->sector_buf, sectors: 1);
2308 if (!err_mask) {
2309 u8 *cmds = dev->ncq_non_data_cmds;
2310
2311 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2312 }
2313}
2314
2315static void ata_dev_config_ncq_prio(struct ata_device *dev)
2316{
2317 struct ata_port *ap = dev->link->ap;
2318 unsigned int err_mask;
2319
2320 if (!ata_identify_page_supported(dev, page: ATA_LOG_SATA_SETTINGS))
2321 return;
2322
2323 err_mask = ata_read_log_page(dev,
2324 log: ATA_LOG_IDENTIFY_DEVICE,
2325 page: ATA_LOG_SATA_SETTINGS,
2326 buf: ap->sector_buf,
2327 sectors: 1);
2328 if (err_mask)
2329 goto not_supported;
2330
2331 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2332 goto not_supported;
2333
2334 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2335
2336 return;
2337
2338not_supported:
2339 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2340 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2341}
2342
2343static bool ata_dev_check_adapter(struct ata_device *dev,
2344 unsigned short vendor_id)
2345{
2346 struct pci_dev *pcidev = NULL;
2347 struct device *parent_dev = NULL;
2348
2349 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2350 parent_dev = parent_dev->parent) {
2351 if (dev_is_pci(parent_dev)) {
2352 pcidev = to_pci_dev(parent_dev);
2353 if (pcidev->vendor == vendor_id)
2354 return true;
2355 break;
2356 }
2357 }
2358
2359 return false;
2360}
2361
2362static int ata_dev_config_ncq(struct ata_device *dev,
2363 char *desc, size_t desc_sz)
2364{
2365 struct ata_port *ap = dev->link->ap;
2366 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2367 unsigned int err_mask;
2368 char *aa_desc = "";
2369
2370 if (!ata_id_has_ncq(dev->id)) {
2371 desc[0] = '\0';
2372 return 0;
2373 }
2374 if (!IS_ENABLED(CONFIG_SATA_HOST))
2375 return 0;
2376 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2377 snprintf(buf: desc, size: desc_sz, fmt: "NCQ (not used)");
2378 return 0;
2379 }
2380
2381 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2382 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2383 snprintf(buf: desc, size: desc_sz, fmt: "NCQ (not used)");
2384 return 0;
2385 }
2386
2387 if (ap->flags & ATA_FLAG_NCQ) {
2388 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2389 dev->flags |= ATA_DFLAG_NCQ;
2390 }
2391
2392 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2393 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2394 ata_id_has_fpdma_aa(dev->id)) {
2395 err_mask = ata_dev_set_feature(dev, subcmd: SETFEATURES_SATA_ENABLE,
2396 action: SATA_FPDMA_AA);
2397 if (err_mask) {
2398 ata_dev_err(dev,
2399 "failed to enable AA (error_mask=0x%x)\n",
2400 err_mask);
2401 if (err_mask != AC_ERR_DEV) {
2402 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2403 return -EIO;
2404 }
2405 } else
2406 aa_desc = ", AA";
2407 }
2408
2409 if (hdepth >= ddepth)
2410 snprintf(buf: desc, size: desc_sz, fmt: "NCQ (depth %d)%s", ddepth, aa_desc);
2411 else
2412 snprintf(buf: desc, size: desc_sz, fmt: "NCQ (depth %d/%d)%s", hdepth,
2413 ddepth, aa_desc);
2414
2415 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2416 if (ata_id_has_ncq_send_and_recv(id: dev->id))
2417 ata_dev_config_ncq_send_recv(dev);
2418 if (ata_id_has_ncq_non_data(id: dev->id))
2419 ata_dev_config_ncq_non_data(dev);
2420 if (ata_id_has_ncq_prio(id: dev->id))
2421 ata_dev_config_ncq_prio(dev);
2422 }
2423
2424 return 0;
2425}
2426
2427static void ata_dev_config_sense_reporting(struct ata_device *dev)
2428{
2429 unsigned int err_mask;
2430
2431 if (!ata_id_has_sense_reporting(id: dev->id))
2432 return;
2433
2434 if (ata_id_sense_reporting_enabled(id: dev->id))
2435 return;
2436
2437 err_mask = ata_dev_set_feature(dev, subcmd: SETFEATURE_SENSE_DATA, action: 0x1);
2438 if (err_mask) {
2439 ata_dev_dbg(dev,
2440 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2441 err_mask);
2442 }
2443}
2444
2445static void ata_dev_config_zac(struct ata_device *dev)
2446{
2447 struct ata_port *ap = dev->link->ap;
2448 unsigned int err_mask;
2449 u8 *identify_buf = ap->sector_buf;
2450
2451 dev->zac_zones_optimal_open = U32_MAX;
2452 dev->zac_zones_optimal_nonseq = U32_MAX;
2453 dev->zac_zones_max_open = U32_MAX;
2454
2455 /*
2456 * Always set the 'ZAC' flag for Host-managed devices.
2457 */
2458 if (dev->class == ATA_DEV_ZAC)
2459 dev->flags |= ATA_DFLAG_ZAC;
2460 else if (ata_id_zoned_cap(id: dev->id) == 0x01)
2461 /*
2462 * Check for host-aware devices.
2463 */
2464 dev->flags |= ATA_DFLAG_ZAC;
2465
2466 if (!(dev->flags & ATA_DFLAG_ZAC))
2467 return;
2468
2469 if (!ata_identify_page_supported(dev, page: ATA_LOG_ZONED_INFORMATION)) {
2470 ata_dev_warn(dev,
2471 "ATA Zoned Information Log not supported\n");
2472 return;
2473 }
2474
2475 /*
2476 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2477 */
2478 err_mask = ata_read_log_page(dev, log: ATA_LOG_IDENTIFY_DEVICE,
2479 page: ATA_LOG_ZONED_INFORMATION,
2480 buf: identify_buf, sectors: 1);
2481 if (!err_mask) {
2482 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2483
2484 zoned_cap = get_unaligned_le64(p: &identify_buf[8]);
2485 if ((zoned_cap >> 63))
2486 dev->zac_zoned_cap = (zoned_cap & 1);
2487 opt_open = get_unaligned_le64(p: &identify_buf[24]);
2488 if ((opt_open >> 63))
2489 dev->zac_zones_optimal_open = (u32)opt_open;
2490 opt_nonseq = get_unaligned_le64(p: &identify_buf[32]);
2491 if ((opt_nonseq >> 63))
2492 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2493 max_open = get_unaligned_le64(p: &identify_buf[40]);
2494 if ((max_open >> 63))
2495 dev->zac_zones_max_open = (u32)max_open;
2496 }
2497}
2498
2499static void ata_dev_config_trusted(struct ata_device *dev)
2500{
2501 struct ata_port *ap = dev->link->ap;
2502 u64 trusted_cap;
2503 unsigned int err;
2504
2505 if (!ata_id_has_trusted(id: dev->id))
2506 return;
2507
2508 if (!ata_identify_page_supported(dev, page: ATA_LOG_SECURITY)) {
2509 ata_dev_warn(dev,
2510 "Security Log not supported\n");
2511 return;
2512 }
2513
2514 err = ata_read_log_page(dev, log: ATA_LOG_IDENTIFY_DEVICE, page: ATA_LOG_SECURITY,
2515 buf: ap->sector_buf, sectors: 1);
2516 if (err)
2517 return;
2518
2519 trusted_cap = get_unaligned_le64(p: &ap->sector_buf[40]);
2520 if (!(trusted_cap & (1ULL << 63))) {
2521 ata_dev_dbg(dev,
2522 "Trusted Computing capability qword not valid!\n");
2523 return;
2524 }
2525
2526 if (trusted_cap & (1 << 0))
2527 dev->flags |= ATA_DFLAG_TRUSTED;
2528}
2529
2530static void ata_dev_config_cdl(struct ata_device *dev)
2531{
2532 struct ata_port *ap = dev->link->ap;
2533 unsigned int err_mask;
2534 bool cdl_enabled;
2535 u64 val;
2536
2537 if (ata_id_major_version(id: dev->id) < 12)
2538 goto not_supported;
2539
2540 if (!ata_log_supported(dev, log: ATA_LOG_IDENTIFY_DEVICE) ||
2541 !ata_identify_page_supported(dev, page: ATA_LOG_SUPPORTED_CAPABILITIES) ||
2542 !ata_identify_page_supported(dev, page: ATA_LOG_CURRENT_SETTINGS))
2543 goto not_supported;
2544
2545 err_mask = ata_read_log_page(dev, log: ATA_LOG_IDENTIFY_DEVICE,
2546 page: ATA_LOG_SUPPORTED_CAPABILITIES,
2547 buf: ap->sector_buf, sectors: 1);
2548 if (err_mask)
2549 goto not_supported;
2550
2551 /* Check Command Duration Limit Supported bits */
2552 val = get_unaligned_le64(p: &ap->sector_buf[168]);
2553 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2554 goto not_supported;
2555
2556 /* Warn the user if command duration guideline is not supported */
2557 if (!(val & BIT_ULL(1)))
2558 ata_dev_warn(dev,
2559 "Command duration guideline is not supported\n");
2560
2561 /*
2562 * We must have support for the sense data for successful NCQ commands
2563 * log indicated by the successful NCQ command sense data supported bit.
2564 */
2565 val = get_unaligned_le64(p: &ap->sector_buf[8]);
2566 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2567 ata_dev_warn(dev,
2568 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2569 goto not_supported;
2570 }
2571
2572 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2573 if (!ata_id_has_ncq_autosense(dev->id)) {
2574 ata_dev_warn(dev,
2575 "CDL supported but NCQ autosense is not supported\n");
2576 goto not_supported;
2577 }
2578
2579 /*
2580 * If CDL is marked as enabled, make sure the feature is enabled too.
2581 * Conversely, if CDL is disabled, make sure the feature is turned off.
2582 */
2583 err_mask = ata_read_log_page(dev, log: ATA_LOG_IDENTIFY_DEVICE,
2584 page: ATA_LOG_CURRENT_SETTINGS,
2585 buf: ap->sector_buf, sectors: 1);
2586 if (err_mask)
2587 goto not_supported;
2588
2589 val = get_unaligned_le64(p: &ap->sector_buf[8]);
2590 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2591 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2592 if (!cdl_enabled) {
2593 /* Enable CDL on the device */
2594 err_mask = ata_dev_set_feature(dev, subcmd: SETFEATURES_CDL, action: 1);
2595 if (err_mask) {
2596 ata_dev_err(dev,
2597 "Enable CDL feature failed\n");
2598 goto not_supported;
2599 }
2600 }
2601 } else {
2602 if (cdl_enabled) {
2603 /* Disable CDL on the device */
2604 err_mask = ata_dev_set_feature(dev, subcmd: SETFEATURES_CDL, action: 0);
2605 if (err_mask) {
2606 ata_dev_err(dev,
2607 "Disable CDL feature failed\n");
2608 goto not_supported;
2609 }
2610 }
2611 }
2612
2613 /*
2614 * While CDL itself has to be enabled using sysfs, CDL requires that
2615 * sense data for successful NCQ commands is enabled to work properly.
2616 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2617 * if supported.
2618 */
2619 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2620 err_mask = ata_dev_set_feature(dev,
2621 subcmd: SETFEATURE_SENSE_DATA_SUCC_NCQ, action: 0x1);
2622 if (err_mask) {
2623 ata_dev_warn(dev,
2624 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2625 err_mask);
2626 goto not_supported;
2627 }
2628 }
2629
2630 /*
2631 * Allocate a buffer to handle reading the sense data for successful
2632 * NCQ Commands log page for commands using a CDL with one of the limit
2633 * policy set to 0xD (successful completion with sense data available
2634 * bit set).
2635 */
2636 if (!ap->ncq_sense_buf) {
2637 ap->ncq_sense_buf = kmalloc(size: ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2638 if (!ap->ncq_sense_buf)
2639 goto not_supported;
2640 }
2641
2642 /*
2643 * Command duration limits is supported: cache the CDL log page 18h
2644 * (command duration descriptors).
2645 */
2646 err_mask = ata_read_log_page(dev, log: ATA_LOG_CDL, page: 0, buf: ap->sector_buf, sectors: 1);
2647 if (err_mask) {
2648 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2649 goto not_supported;
2650 }
2651
2652 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2653 dev->flags |= ATA_DFLAG_CDL;
2654
2655 return;
2656
2657not_supported:
2658 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2659 kfree(objp: ap->ncq_sense_buf);
2660 ap->ncq_sense_buf = NULL;
2661}
2662
2663static int ata_dev_config_lba(struct ata_device *dev)
2664{
2665 const u16 *id = dev->id;
2666 const char *lba_desc;
2667 char ncq_desc[32];
2668 int ret;
2669
2670 dev->flags |= ATA_DFLAG_LBA;
2671
2672 if (ata_id_has_lba48(id)) {
2673 lba_desc = "LBA48";
2674 dev->flags |= ATA_DFLAG_LBA48;
2675 if (dev->n_sectors >= (1UL << 28) &&
2676 ata_id_has_flush_ext(id))
2677 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2678 } else {
2679 lba_desc = "LBA";
2680 }
2681
2682 /* config NCQ */
2683 ret = ata_dev_config_ncq(dev, desc: ncq_desc, desc_sz: sizeof(ncq_desc));
2684
2685 /* print device info to dmesg */
2686 if (ata_dev_print_info(dev))
2687 ata_dev_info(dev,
2688 "%llu sectors, multi %u: %s %s\n",
2689 (unsigned long long)dev->n_sectors,
2690 dev->multi_count, lba_desc, ncq_desc);
2691
2692 return ret;
2693}
2694
2695static void ata_dev_config_chs(struct ata_device *dev)
2696{
2697 const u16 *id = dev->id;
2698
2699 if (ata_id_current_chs_valid(id)) {
2700 /* Current CHS translation is valid. */
2701 dev->cylinders = id[54];
2702 dev->heads = id[55];
2703 dev->sectors = id[56];
2704 } else {
2705 /* Default translation */
2706 dev->cylinders = id[1];
2707 dev->heads = id[3];
2708 dev->sectors = id[6];
2709 }
2710
2711 /* print device info to dmesg */
2712 if (ata_dev_print_info(dev))
2713 ata_dev_info(dev,
2714 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2715 (unsigned long long)dev->n_sectors,
2716 dev->multi_count, dev->cylinders,
2717 dev->heads, dev->sectors);
2718}
2719
2720static void ata_dev_config_fua(struct ata_device *dev)
2721{
2722 /* Ignore FUA support if its use is disabled globally */
2723 if (!libata_fua)
2724 goto nofua;
2725
2726 /* Ignore devices without support for WRITE DMA FUA EXT */
2727 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(id: dev->id))
2728 goto nofua;
2729
2730 /* Ignore known bad devices and devices that lack NCQ support */
2731 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2732 goto nofua;
2733
2734 dev->flags |= ATA_DFLAG_FUA;
2735
2736 return;
2737
2738nofua:
2739 dev->flags &= ~ATA_DFLAG_FUA;
2740}
2741
2742static void ata_dev_config_devslp(struct ata_device *dev)
2743{
2744 u8 *sata_setting = dev->link->ap->sector_buf;
2745 unsigned int err_mask;
2746 int i, j;
2747
2748 /*
2749 * Check device sleep capability. Get DevSlp timing variables
2750 * from SATA Settings page of Identify Device Data Log.
2751 */
2752 if (!ata_id_has_devslp(dev->id) ||
2753 !ata_identify_page_supported(dev, page: ATA_LOG_SATA_SETTINGS))
2754 return;
2755
2756 err_mask = ata_read_log_page(dev,
2757 log: ATA_LOG_IDENTIFY_DEVICE,
2758 page: ATA_LOG_SATA_SETTINGS,
2759 buf: sata_setting, sectors: 1);
2760 if (err_mask)
2761 return;
2762
2763 dev->flags |= ATA_DFLAG_DEVSLP;
2764 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2765 j = ATA_LOG_DEVSLP_OFFSET + i;
2766 dev->devslp_timing[i] = sata_setting[j];
2767 }
2768}
2769
2770static void ata_dev_config_cpr(struct ata_device *dev)
2771{
2772 unsigned int err_mask;
2773 size_t buf_len;
2774 int i, nr_cpr = 0;
2775 struct ata_cpr_log *cpr_log = NULL;
2776 u8 *desc, *buf = NULL;
2777
2778 if (ata_id_major_version(id: dev->id) < 11)
2779 goto out;
2780
2781 buf_len = ata_log_supported(dev, log: ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2782 if (buf_len == 0)
2783 goto out;
2784
2785 /*
2786 * Read the concurrent positioning ranges log (0x47). We can have at
2787 * most 255 32B range descriptors plus a 64B header. This log varies in
2788 * size, so use the size reported in the GPL directory. Reading beyond
2789 * the supported length will result in an error.
2790 */
2791 buf_len <<= 9;
2792 buf = kzalloc(size: buf_len, GFP_KERNEL);
2793 if (!buf)
2794 goto out;
2795
2796 err_mask = ata_read_log_page(dev, log: ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2797 page: 0, buf, sectors: buf_len >> 9);
2798 if (err_mask)
2799 goto out;
2800
2801 nr_cpr = buf[0];
2802 if (!nr_cpr)
2803 goto out;
2804
2805 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2806 if (!cpr_log)
2807 goto out;
2808
2809 cpr_log->nr_cpr = nr_cpr;
2810 desc = &buf[64];
2811 for (i = 0; i < nr_cpr; i++, desc += 32) {
2812 cpr_log->cpr[i].num = desc[0];
2813 cpr_log->cpr[i].num_storage_elements = desc[1];
2814 cpr_log->cpr[i].start_lba = get_unaligned_le64(p: &desc[8]);
2815 cpr_log->cpr[i].num_lbas = get_unaligned_le64(p: &desc[16]);
2816 }
2817
2818out:
2819 swap(dev->cpr_log, cpr_log);
2820 kfree(objp: cpr_log);
2821 kfree(objp: buf);
2822}
2823
2824static void ata_dev_print_features(struct ata_device *dev)
2825{
2826 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2827 return;
2828
2829 ata_dev_info(dev,
2830 "Features:%s%s%s%s%s%s%s%s\n",
2831 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2832 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2833 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2834 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2835 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2836 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2837 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2838 dev->cpr_log ? " CPR" : "");
2839}
2840
2841/**
2842 * ata_dev_configure - Configure the specified ATA/ATAPI device
2843 * @dev: Target device to configure
2844 *
2845 * Configure @dev according to @dev->id. Generic and low-level
2846 * driver specific fixups are also applied.
2847 *
2848 * LOCKING:
2849 * Kernel thread context (may sleep)
2850 *
2851 * RETURNS:
2852 * 0 on success, -errno otherwise
2853 */
2854int ata_dev_configure(struct ata_device *dev)
2855{
2856 struct ata_port *ap = dev->link->ap;
2857 bool print_info = ata_dev_print_info(dev);
2858 const u16 *id = dev->id;
2859 unsigned int xfer_mask;
2860 unsigned int err_mask;
2861 char revbuf[7]; /* XYZ-99\0 */
2862 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2863 char modelbuf[ATA_ID_PROD_LEN+1];
2864 int rc;
2865
2866 if (!ata_dev_enabled(dev)) {
2867 ata_dev_dbg(dev, "no device\n");
2868 return 0;
2869 }
2870
2871 /* set horkage */
2872 dev->horkage |= ata_dev_blacklisted(dev);
2873 ata_force_horkage(dev);
2874
2875 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2876 ata_dev_info(dev, "unsupported device, disabling\n");
2877 ata_dev_disable(dev);
2878 return 0;
2879 }
2880
2881 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2882 dev->class == ATA_DEV_ATAPI) {
2883 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2884 atapi_enabled ? "not supported with this driver"
2885 : "disabled");
2886 ata_dev_disable(dev);
2887 return 0;
2888 }
2889
2890 rc = ata_do_link_spd_horkage(dev);
2891 if (rc)
2892 return rc;
2893
2894 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2895 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2896 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2897 dev->horkage |= ATA_HORKAGE_NOLPM;
2898
2899 if (ap->flags & ATA_FLAG_NO_LPM)
2900 dev->horkage |= ATA_HORKAGE_NOLPM;
2901
2902 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2903 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2904 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2905 }
2906
2907 /* let ACPI work its magic */
2908 rc = ata_acpi_on_devcfg(dev);
2909 if (rc)
2910 return rc;
2911
2912 /* massage HPA, do it early as it might change IDENTIFY data */
2913 rc = ata_hpa_resize(dev);
2914 if (rc)
2915 return rc;
2916
2917 /* print device capabilities */
2918 ata_dev_dbg(dev,
2919 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2920 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2921 __func__,
2922 id[49], id[82], id[83], id[84],
2923 id[85], id[86], id[87], id[88]);
2924
2925 /* initialize to-be-configured parameters */
2926 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2927 dev->max_sectors = 0;
2928 dev->cdb_len = 0;
2929 dev->n_sectors = 0;
2930 dev->cylinders = 0;
2931 dev->heads = 0;
2932 dev->sectors = 0;
2933 dev->multi_count = 0;
2934
2935 /*
2936 * common ATA, ATAPI feature tests
2937 */
2938
2939 /* find max transfer mode; for printk only */
2940 xfer_mask = ata_id_xfermask(id);
2941
2942 ata_dump_id(dev, id);
2943
2944 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2945 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2946 sizeof(fwrevbuf));
2947
2948 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2949 sizeof(modelbuf));
2950
2951 /* ATA-specific feature tests */
2952 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2953 if (ata_id_is_cfa(id)) {
2954 /* CPRM may make this media unusable */
2955 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2956 ata_dev_warn(dev,
2957 "supports DRM functions and may not be fully accessible\n");
2958 snprintf(buf: revbuf, size: 7, fmt: "CFA");
2959 } else {
2960 snprintf(buf: revbuf, size: 7, fmt: "ATA-%d", ata_id_major_version(id));
2961 /* Warn the user if the device has TPM extensions */
2962 if (ata_id_has_tpm(id))
2963 ata_dev_warn(dev,
2964 "supports DRM functions and may not be fully accessible\n");
2965 }
2966
2967 dev->n_sectors = ata_id_n_sectors(id);
2968
2969 /* get current R/W Multiple count setting */
2970 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2971 unsigned int max = dev->id[47] & 0xff;
2972 unsigned int cnt = dev->id[59] & 0xff;
2973 /* only recognize/allow powers of two here */
2974 if (is_power_of_2(n: max) && is_power_of_2(n: cnt))
2975 if (cnt <= max)
2976 dev->multi_count = cnt;
2977 }
2978
2979 /* print device info to dmesg */
2980 if (print_info)
2981 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2982 revbuf, modelbuf, fwrevbuf,
2983 ata_mode_string(xfer_mask));
2984
2985 if (ata_id_has_lba(id)) {
2986 rc = ata_dev_config_lba(dev);
2987 if (rc)
2988 return rc;
2989 } else {
2990 ata_dev_config_chs(dev);
2991 }
2992
2993 ata_dev_config_fua(dev);
2994 ata_dev_config_devslp(dev);
2995 ata_dev_config_sense_reporting(dev);
2996 ata_dev_config_zac(dev);
2997 ata_dev_config_trusted(dev);
2998 ata_dev_config_cpr(dev);
2999 ata_dev_config_cdl(dev);
3000 dev->cdb_len = 32;
3001
3002 if (print_info)
3003 ata_dev_print_features(dev);
3004 }
3005
3006 /* ATAPI-specific feature tests */
3007 else if (dev->class == ATA_DEV_ATAPI) {
3008 const char *cdb_intr_string = "";
3009 const char *atapi_an_string = "";
3010 const char *dma_dir_string = "";
3011 u32 sntf;
3012
3013 rc = atapi_cdb_len(dev_id: id);
3014 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3015 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3016 rc = -EINVAL;
3017 goto err_out_nosup;
3018 }
3019 dev->cdb_len = (unsigned int) rc;
3020
3021 /* Enable ATAPI AN if both the host and device have
3022 * the support. If PMP is attached, SNTF is required
3023 * to enable ATAPI AN to discern between PHY status
3024 * changed notifications and ATAPI ANs.
3025 */
3026 if (atapi_an &&
3027 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3028 (!sata_pmp_attached(ap) ||
3029 sata_scr_read(link: &ap->link, reg: SCR_NOTIFICATION, val: &sntf) == 0)) {
3030 /* issue SET feature command to turn this on */
3031 err_mask = ata_dev_set_feature(dev,
3032 subcmd: SETFEATURES_SATA_ENABLE, action: SATA_AN);
3033 if (err_mask)
3034 ata_dev_err(dev,
3035 "failed to enable ATAPI AN (err_mask=0x%x)\n",
3036 err_mask);
3037 else {
3038 dev->flags |= ATA_DFLAG_AN;
3039 atapi_an_string = ", ATAPI AN";
3040 }
3041 }
3042
3043 if (ata_id_cdb_intr(dev->id)) {
3044 dev->flags |= ATA_DFLAG_CDB_INTR;
3045 cdb_intr_string = ", CDB intr";
3046 }
3047
3048 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev_id: dev->id)) {
3049 dev->flags |= ATA_DFLAG_DMADIR;
3050 dma_dir_string = ", DMADIR";
3051 }
3052
3053 if (ata_id_has_da(dev->id)) {
3054 dev->flags |= ATA_DFLAG_DA;
3055 zpodd_init(dev);
3056 }
3057
3058 /* print device info to dmesg */
3059 if (print_info)
3060 ata_dev_info(dev,
3061 "ATAPI: %s, %s, max %s%s%s%s\n",
3062 modelbuf, fwrevbuf,
3063 ata_mode_string(xfer_mask),
3064 cdb_intr_string, atapi_an_string,
3065 dma_dir_string);
3066 }
3067
3068 /* determine max_sectors */
3069 dev->max_sectors = ATA_MAX_SECTORS;
3070 if (dev->flags & ATA_DFLAG_LBA48)
3071 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3072
3073 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3074 200 sectors */
3075 if (ata_dev_knobble(dev)) {
3076 if (print_info)
3077 ata_dev_info(dev, "applying bridge limits\n");
3078 dev->udma_mask &= ATA_UDMA5;
3079 dev->max_sectors = ATA_MAX_SECTORS;
3080 }
3081
3082 if ((dev->class == ATA_DEV_ATAPI) &&
3083 (atapi_command_packet_set(dev_id: id) == TYPE_TAPE)) {
3084 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3085 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3086 }
3087
3088 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3089 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3090 dev->max_sectors);
3091
3092 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3093 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3094 dev->max_sectors);
3095
3096 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3097 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3098
3099 if (ap->ops->dev_config)
3100 ap->ops->dev_config(dev);
3101
3102 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3103 /* Let the user know. We don't want to disallow opens for
3104 rescue purposes, or in case the vendor is just a blithering
3105 idiot. Do this after the dev_config call as some controllers
3106 with buggy firmware may want to avoid reporting false device
3107 bugs */
3108
3109 if (print_info) {
3110 ata_dev_warn(dev,
3111"Drive reports diagnostics failure. This may indicate a drive\n");
3112 ata_dev_warn(dev,
3113"fault or invalid emulation. Contact drive vendor for information.\n");
3114 }
3115 }
3116
3117 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3118 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3119 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3120 }
3121
3122 return 0;
3123
3124err_out_nosup:
3125 return rc;
3126}
3127
3128/**
3129 * ata_cable_40wire - return 40 wire cable type
3130 * @ap: port
3131 *
3132 * Helper method for drivers which want to hardwire 40 wire cable
3133 * detection.
3134 */
3135
3136int ata_cable_40wire(struct ata_port *ap)
3137{
3138 return ATA_CBL_PATA40;
3139}
3140EXPORT_SYMBOL_GPL(ata_cable_40wire);
3141
3142/**
3143 * ata_cable_80wire - return 80 wire cable type
3144 * @ap: port
3145 *
3146 * Helper method for drivers which want to hardwire 80 wire cable
3147 * detection.
3148 */
3149
3150int ata_cable_80wire(struct ata_port *ap)
3151{
3152 return ATA_CBL_PATA80;
3153}
3154EXPORT_SYMBOL_GPL(ata_cable_80wire);
3155
3156/**
3157 * ata_cable_unknown - return unknown PATA cable.
3158 * @ap: port
3159 *
3160 * Helper method for drivers which have no PATA cable detection.
3161 */
3162
3163int ata_cable_unknown(struct ata_port *ap)
3164{
3165 return ATA_CBL_PATA_UNK;
3166}
3167EXPORT_SYMBOL_GPL(ata_cable_unknown);
3168
3169/**
3170 * ata_cable_ignore - return ignored PATA cable.
3171 * @ap: port
3172 *
3173 * Helper method for drivers which don't use cable type to limit
3174 * transfer mode.
3175 */
3176int ata_cable_ignore(struct ata_port *ap)
3177{
3178 return ATA_CBL_PATA_IGN;
3179}
3180EXPORT_SYMBOL_GPL(ata_cable_ignore);
3181
3182/**
3183 * ata_cable_sata - return SATA cable type
3184 * @ap: port
3185 *
3186 * Helper method for drivers which have SATA cables
3187 */
3188
3189int ata_cable_sata(struct ata_port *ap)
3190{
3191 return ATA_CBL_SATA;
3192}
3193EXPORT_SYMBOL_GPL(ata_cable_sata);
3194
3195/**
3196 * sata_print_link_status - Print SATA link status
3197 * @link: SATA link to printk link status about
3198 *
3199 * This function prints link speed and status of a SATA link.
3200 *
3201 * LOCKING:
3202 * None.
3203 */
3204static void sata_print_link_status(struct ata_link *link)
3205{
3206 u32 sstatus, scontrol, tmp;
3207
3208 if (sata_scr_read(link, reg: SCR_STATUS, val: &sstatus))
3209 return;
3210 if (sata_scr_read(link, reg: SCR_CONTROL, val: &scontrol))
3211 return;
3212
3213 if (ata_phys_link_online(link)) {
3214 tmp = (sstatus >> 4) & 0xf;
3215 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3216 sata_spd_string(tmp), sstatus, scontrol);
3217 } else {
3218 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3219 sstatus, scontrol);
3220 }
3221}
3222
3223/**
3224 * ata_dev_pair - return other device on cable
3225 * @adev: device
3226 *
3227 * Obtain the other device on the same cable, or if none is
3228 * present NULL is returned
3229 */
3230
3231struct ata_device *ata_dev_pair(struct ata_device *adev)
3232{
3233 struct ata_link *link = adev->link;
3234 struct ata_device *pair = &link->device[1 - adev->devno];
3235 if (!ata_dev_enabled(dev: pair))
3236 return NULL;
3237 return pair;
3238}
3239EXPORT_SYMBOL_GPL(ata_dev_pair);
3240
3241/**
3242 * sata_down_spd_limit - adjust SATA spd limit downward
3243 * @link: Link to adjust SATA spd limit for
3244 * @spd_limit: Additional limit
3245 *
3246 * Adjust SATA spd limit of @link downward. Note that this
3247 * function only adjusts the limit. The change must be applied
3248 * using sata_set_spd().
3249 *
3250 * If @spd_limit is non-zero, the speed is limited to equal to or
3251 * lower than @spd_limit if such speed is supported. If
3252 * @spd_limit is slower than any supported speed, only the lowest
3253 * supported speed is allowed.
3254 *
3255 * LOCKING:
3256 * Inherited from caller.
3257 *
3258 * RETURNS:
3259 * 0 on success, negative errno on failure
3260 */
3261int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3262{
3263 u32 sstatus, spd, mask;
3264 int rc, bit;
3265
3266 if (!sata_scr_valid(link))
3267 return -EOPNOTSUPP;
3268
3269 /* If SCR can be read, use it to determine the current SPD.
3270 * If not, use cached value in link->sata_spd.
3271 */
3272 rc = sata_scr_read(link, reg: SCR_STATUS, val: &sstatus);
3273 if (rc == 0 && ata_sstatus_online(sstatus))
3274 spd = (sstatus >> 4) & 0xf;
3275 else
3276 spd = link->sata_spd;
3277
3278 mask = link->sata_spd_limit;
3279 if (mask <= 1)
3280 return -EINVAL;
3281
3282 /* unconditionally mask off the highest bit */
3283 bit = fls(x: mask) - 1;
3284 mask &= ~(1 << bit);
3285
3286 /*
3287 * Mask off all speeds higher than or equal to the current one. At
3288 * this point, if current SPD is not available and we previously
3289 * recorded the link speed from SStatus, the driver has already
3290 * masked off the highest bit so mask should already be 1 or 0.
3291 * Otherwise, we should not force 1.5Gbps on a link where we have
3292 * not previously recorded speed from SStatus. Just return in this
3293 * case.
3294 */
3295 if (spd > 1)
3296 mask &= (1 << (spd - 1)) - 1;
3297 else if (link->sata_spd)
3298 return -EINVAL;
3299
3300 /* were we already at the bottom? */
3301 if (!mask)
3302 return -EINVAL;
3303
3304 if (spd_limit) {
3305 if (mask & ((1 << spd_limit) - 1))
3306 mask &= (1 << spd_limit) - 1;
3307 else {
3308 bit = ffs(mask) - 1;
3309 mask = 1 << bit;
3310 }
3311 }
3312
3313 link->sata_spd_limit = mask;
3314
3315 ata_link_warn(link, "limiting SATA link speed to %s\n",
3316 sata_spd_string(fls(mask)));
3317
3318 return 0;
3319}
3320
3321#ifdef CONFIG_ATA_ACPI
3322/**
3323 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3324 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3325 * @cycle: cycle duration in ns
3326 *
3327 * Return matching xfer mode for @cycle. The returned mode is of
3328 * the transfer type specified by @xfer_shift. If @cycle is too
3329 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3330 * than the fastest known mode, the fasted mode is returned.
3331 *
3332 * LOCKING:
3333 * None.
3334 *
3335 * RETURNS:
3336 * Matching xfer_mode, 0xff if no match found.
3337 */
3338u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3339{
3340 u8 base_mode = 0xff, last_mode = 0xff;
3341 const struct ata_xfer_ent *ent;
3342 const struct ata_timing *t;
3343
3344 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3345 if (ent->shift == xfer_shift)
3346 base_mode = ent->base;
3347
3348 for (t = ata_timing_find_mode(xfer_mode: base_mode);
3349 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3350 unsigned short this_cycle;
3351
3352 switch (xfer_shift) {
3353 case ATA_SHIFT_PIO:
3354 case ATA_SHIFT_MWDMA:
3355 this_cycle = t->cycle;
3356 break;
3357 case ATA_SHIFT_UDMA:
3358 this_cycle = t->udma;
3359 break;
3360 default:
3361 return 0xff;
3362 }
3363
3364 if (cycle > this_cycle)
3365 break;
3366
3367 last_mode = t->mode;
3368 }
3369
3370 return last_mode;
3371}
3372#endif
3373
3374/**
3375 * ata_down_xfermask_limit - adjust dev xfer masks downward
3376 * @dev: Device to adjust xfer masks
3377 * @sel: ATA_DNXFER_* selector
3378 *
3379 * Adjust xfer masks of @dev downward. Note that this function
3380 * does not apply the change. Invoking ata_set_mode() afterwards
3381 * will apply the limit.
3382 *
3383 * LOCKING:
3384 * Inherited from caller.
3385 *
3386 * RETURNS:
3387 * 0 on success, negative errno on failure
3388 */
3389int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3390{
3391 char buf[32];
3392 unsigned int orig_mask, xfer_mask;
3393 unsigned int pio_mask, mwdma_mask, udma_mask;
3394 int quiet, highbit;
3395
3396 quiet = !!(sel & ATA_DNXFER_QUIET);
3397 sel &= ~ATA_DNXFER_QUIET;
3398
3399 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3400 dev->mwdma_mask,
3401 dev->udma_mask);
3402 ata_unpack_xfermask(xfer_mask, pio_mask: &pio_mask, mwdma_mask: &mwdma_mask, udma_mask: &udma_mask);
3403
3404 switch (sel) {
3405 case ATA_DNXFER_PIO:
3406 highbit = fls(x: pio_mask) - 1;
3407 pio_mask &= ~(1 << highbit);
3408 break;
3409
3410 case ATA_DNXFER_DMA:
3411 if (udma_mask) {
3412 highbit = fls(x: udma_mask) - 1;
3413 udma_mask &= ~(1 << highbit);
3414 if (!udma_mask)
3415 return -ENOENT;
3416 } else if (mwdma_mask) {
3417 highbit = fls(x: mwdma_mask) - 1;
3418 mwdma_mask &= ~(1 << highbit);
3419 if (!mwdma_mask)
3420 return -ENOENT;
3421 }
3422 break;
3423
3424 case ATA_DNXFER_40C:
3425 udma_mask &= ATA_UDMA_MASK_40C;
3426 break;
3427
3428 case ATA_DNXFER_FORCE_PIO0:
3429 pio_mask &= 1;
3430 fallthrough;
3431 case ATA_DNXFER_FORCE_PIO:
3432 mwdma_mask = 0;
3433 udma_mask = 0;
3434 break;
3435
3436 default:
3437 BUG();
3438 }
3439
3440 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3441
3442 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3443 return -ENOENT;
3444
3445 if (!quiet) {
3446 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3447 snprintf(buf, size: sizeof(buf), fmt: "%s:%s",
3448 ata_mode_string(xfer_mask),
3449 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3450 else
3451 snprintf(buf, size: sizeof(buf), fmt: "%s",
3452 ata_mode_string(xfer_mask));
3453
3454 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3455 }
3456
3457 ata_unpack_xfermask(xfer_mask, pio_mask: &dev->pio_mask, mwdma_mask: &dev->mwdma_mask,
3458 udma_mask: &dev->udma_mask);
3459
3460 return 0;
3461}
3462
3463static int ata_dev_set_mode(struct ata_device *dev)
3464{
3465 struct ata_port *ap = dev->link->ap;
3466 struct ata_eh_context *ehc = &dev->link->eh_context;
3467 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3468 const char *dev_err_whine = "";
3469 int ign_dev_err = 0;
3470 unsigned int err_mask = 0;
3471 int rc;
3472
3473 dev->flags &= ~ATA_DFLAG_PIO;
3474 if (dev->xfer_shift == ATA_SHIFT_PIO)
3475 dev->flags |= ATA_DFLAG_PIO;
3476
3477 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(id: dev->id))
3478 dev_err_whine = " (SET_XFERMODE skipped)";
3479 else {
3480 if (nosetxfer)
3481 ata_dev_warn(dev,
3482 "NOSETXFER but PATA detected - can't "
3483 "skip SETXFER, might malfunction\n");
3484 err_mask = ata_dev_set_xfermode(dev);
3485 }
3486
3487 if (err_mask & ~AC_ERR_DEV)
3488 goto fail;
3489
3490 /* revalidate */
3491 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3492 rc = ata_dev_revalidate(dev, new_class: ATA_DEV_UNKNOWN, readid_flags: 0);
3493 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3494 if (rc)
3495 return rc;
3496
3497 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3498 /* Old CFA may refuse this command, which is just fine */
3499 if (ata_id_is_cfa(id: dev->id))
3500 ign_dev_err = 1;
3501 /* Catch several broken garbage emulations plus some pre
3502 ATA devices */
3503 if (ata_id_major_version(id: dev->id) == 0 &&
3504 dev->pio_mode <= XFER_PIO_2)
3505 ign_dev_err = 1;
3506 /* Some very old devices and some bad newer ones fail
3507 any kind of SET_XFERMODE request but support PIO0-2
3508 timings and no IORDY */
3509 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3510 ign_dev_err = 1;
3511 }
3512 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3513 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3514 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3515 dev->dma_mode == XFER_MW_DMA_0 &&
3516 (dev->id[63] >> 8) & 1)
3517 ign_dev_err = 1;
3518
3519 /* if the device is actually configured correctly, ignore dev err */
3520 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3521 ign_dev_err = 1;
3522
3523 if (err_mask & AC_ERR_DEV) {
3524 if (!ign_dev_err)
3525 goto fail;
3526 else
3527 dev_err_whine = " (device error ignored)";
3528 }
3529
3530 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3531 dev->xfer_shift, (int)dev->xfer_mode);
3532
3533 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3534 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3535 ata_dev_info(dev, "configured for %s%s\n",
3536 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3537 dev_err_whine);
3538
3539 return 0;
3540
3541 fail:
3542 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3543 return -EIO;
3544}
3545
3546/**
3547 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3548 * @link: link on which timings will be programmed
3549 * @r_failed_dev: out parameter for failed device
3550 *
3551 * Standard implementation of the function used to tune and set
3552 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3553 * ata_dev_set_mode() fails, pointer to the failing device is
3554 * returned in @r_failed_dev.
3555 *
3556 * LOCKING:
3557 * PCI/etc. bus probe sem.
3558 *
3559 * RETURNS:
3560 * 0 on success, negative errno otherwise
3561 */
3562
3563int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3564{
3565 struct ata_port *ap = link->ap;
3566 struct ata_device *dev;
3567 int rc = 0, used_dma = 0, found = 0;
3568
3569 /* step 1: calculate xfer_mask */
3570 ata_for_each_dev(dev, link, ENABLED) {
3571 unsigned int pio_mask, dma_mask;
3572 unsigned int mode_mask;
3573
3574 mode_mask = ATA_DMA_MASK_ATA;
3575 if (dev->class == ATA_DEV_ATAPI)
3576 mode_mask = ATA_DMA_MASK_ATAPI;
3577 else if (ata_id_is_cfa(id: dev->id))
3578 mode_mask = ATA_DMA_MASK_CFA;
3579
3580 ata_dev_xfermask(dev);
3581 ata_force_xfermask(dev);
3582
3583 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3584
3585 if (libata_dma_mask & mode_mask)
3586 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3587 dev->udma_mask);
3588 else
3589 dma_mask = 0;
3590
3591 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3592 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3593
3594 found = 1;
3595 if (ata_dma_enabled(adev: dev))
3596 used_dma = 1;
3597 }
3598 if (!found)
3599 goto out;
3600
3601 /* step 2: always set host PIO timings */
3602 ata_for_each_dev(dev, link, ENABLED) {
3603 if (dev->pio_mode == 0xff) {
3604 ata_dev_warn(dev, "no PIO support\n");
3605 rc = -EINVAL;
3606 goto out;
3607 }
3608
3609 dev->xfer_mode = dev->pio_mode;
3610 dev->xfer_shift = ATA_SHIFT_PIO;
3611 if (ap->ops->set_piomode)
3612 ap->ops->set_piomode(ap, dev);
3613 }
3614
3615 /* step 3: set host DMA timings */
3616 ata_for_each_dev(dev, link, ENABLED) {
3617 if (!ata_dma_enabled(adev: dev))
3618 continue;
3619
3620 dev->xfer_mode = dev->dma_mode;
3621 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3622 if (ap->ops->set_dmamode)
3623 ap->ops->set_dmamode(ap, dev);
3624 }
3625
3626 /* step 4: update devices' xfer mode */
3627 ata_for_each_dev(dev, link, ENABLED) {
3628 rc = ata_dev_set_mode(dev);
3629 if (rc)
3630 goto out;
3631 }
3632
3633 /* Record simplex status. If we selected DMA then the other
3634 * host channels are not permitted to do so.
3635 */
3636 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3637 ap->host->simplex_claimed = ap;
3638
3639 out:
3640 if (rc)
3641 *r_failed_dev = dev;
3642 return rc;
3643}
3644EXPORT_SYMBOL_GPL(ata_do_set_mode);
3645
3646/**
3647 * ata_wait_ready - wait for link to become ready
3648 * @link: link to be waited on
3649 * @deadline: deadline jiffies for the operation
3650 * @check_ready: callback to check link readiness
3651 *
3652 * Wait for @link to become ready. @check_ready should return
3653 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3654 * link doesn't seem to be occupied, other errno for other error
3655 * conditions.
3656 *
3657 * Transient -ENODEV conditions are allowed for
3658 * ATA_TMOUT_FF_WAIT.
3659 *
3660 * LOCKING:
3661 * EH context.
3662 *
3663 * RETURNS:
3664 * 0 if @link is ready before @deadline; otherwise, -errno.
3665 */
3666int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3667 int (*check_ready)(struct ata_link *link))
3668{
3669 unsigned long start = jiffies;
3670 unsigned long nodev_deadline;
3671 int warned = 0;
3672
3673 /* choose which 0xff timeout to use, read comment in libata.h */
3674 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3675 nodev_deadline = ata_deadline(from_jiffies: start, timeout_msecs: ATA_TMOUT_FF_WAIT_LONG);
3676 else
3677 nodev_deadline = ata_deadline(from_jiffies: start, timeout_msecs: ATA_TMOUT_FF_WAIT);
3678
3679 /* Slave readiness can't be tested separately from master. On
3680 * M/S emulation configuration, this function should be called
3681 * only on the master and it will handle both master and slave.
3682 */
3683 WARN_ON(link == link->ap->slave_link);
3684
3685 if (time_after(nodev_deadline, deadline))
3686 nodev_deadline = deadline;
3687
3688 while (1) {
3689 unsigned long now = jiffies;
3690 int ready, tmp;
3691
3692 ready = tmp = check_ready(link);
3693 if (ready > 0)
3694 return 0;
3695
3696 /*
3697 * -ENODEV could be transient. Ignore -ENODEV if link
3698 * is online. Also, some SATA devices take a long
3699 * time to clear 0xff after reset. Wait for
3700 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3701 * offline.
3702 *
3703 * Note that some PATA controllers (pata_ali) explode
3704 * if status register is read more than once when
3705 * there's no device attached.
3706 */
3707 if (ready == -ENODEV) {
3708 if (ata_link_online(link))
3709 ready = 0;
3710 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3711 !ata_link_offline(link) &&
3712 time_before(now, nodev_deadline))
3713 ready = 0;
3714 }
3715
3716 if (ready)
3717 return ready;
3718 if (time_after(now, deadline))
3719 return -EBUSY;
3720
3721 if (!warned && time_after(now, start + 5 * HZ) &&
3722 (deadline - now > 3 * HZ)) {
3723 ata_link_warn(link,
3724 "link is slow to respond, please be patient "
3725 "(ready=%d)\n", tmp);
3726 warned = 1;
3727 }
3728
3729 ata_msleep(ap: link->ap, msecs: 50);
3730 }
3731}
3732
3733/**
3734 * ata_wait_after_reset - wait for link to become ready after reset
3735 * @link: link to be waited on
3736 * @deadline: deadline jiffies for the operation
3737 * @check_ready: callback to check link readiness
3738 *
3739 * Wait for @link to become ready after reset.
3740 *
3741 * LOCKING:
3742 * EH context.
3743 *
3744 * RETURNS:
3745 * 0 if @link is ready before @deadline; otherwise, -errno.
3746 */
3747int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3748 int (*check_ready)(struct ata_link *link))
3749{
3750 ata_msleep(ap: link->ap, msecs: ATA_WAIT_AFTER_RESET);
3751
3752 return ata_wait_ready(link, deadline, check_ready);
3753}
3754EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3755
3756/**
3757 * ata_std_prereset - prepare for reset
3758 * @link: ATA link to be reset
3759 * @deadline: deadline jiffies for the operation
3760 *
3761 * @link is about to be reset. Initialize it. Failure from
3762 * prereset makes libata abort whole reset sequence and give up
3763 * that port, so prereset should be best-effort. It does its
3764 * best to prepare for reset sequence but if things go wrong, it
3765 * should just whine, not fail.
3766 *
3767 * LOCKING:
3768 * Kernel thread context (may sleep)
3769 *
3770 * RETURNS:
3771 * Always 0.
3772 */
3773int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3774{
3775 struct ata_port *ap = link->ap;
3776 struct ata_eh_context *ehc = &link->eh_context;
3777 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3778 int rc;
3779
3780 /* if we're about to do hardreset, nothing more to do */
3781 if (ehc->i.action & ATA_EH_HARDRESET)
3782 return 0;
3783
3784 /* if SATA, resume link */
3785 if (ap->flags & ATA_FLAG_SATA) {
3786 rc = sata_link_resume(link, params: timing, deadline);
3787 /* whine about phy resume failure but proceed */
3788 if (rc && rc != -EOPNOTSUPP)
3789 ata_link_warn(link,
3790 "failed to resume link for reset (errno=%d)\n",
3791 rc);
3792 }
3793
3794 /* no point in trying softreset on offline link */
3795 if (ata_phys_link_offline(link))
3796 ehc->i.action &= ~ATA_EH_SOFTRESET;
3797
3798 return 0;
3799}
3800EXPORT_SYMBOL_GPL(ata_std_prereset);
3801
3802/**
3803 * sata_std_hardreset - COMRESET w/o waiting or classification
3804 * @link: link to reset
3805 * @class: resulting class of attached device
3806 * @deadline: deadline jiffies for the operation
3807 *
3808 * Standard SATA COMRESET w/o waiting or classification.
3809 *
3810 * LOCKING:
3811 * Kernel thread context (may sleep)
3812 *
3813 * RETURNS:
3814 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3815 */
3816int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3817 unsigned long deadline)
3818{
3819 const unsigned int *timing = sata_ehc_deb_timing(ehc: &link->eh_context);
3820 bool online;
3821 int rc;
3822
3823 /* do hardreset */
3824 rc = sata_link_hardreset(link, timing, deadline, online: &online, NULL);
3825 return online ? -EAGAIN : rc;
3826}
3827EXPORT_SYMBOL_GPL(sata_std_hardreset);
3828
3829/**
3830 * ata_std_postreset - standard postreset callback
3831 * @link: the target ata_link
3832 * @classes: classes of attached devices
3833 *
3834 * This function is invoked after a successful reset. Note that
3835 * the device might have been reset more than once using
3836 * different reset methods before postreset is invoked.
3837 *
3838 * LOCKING:
3839 * Kernel thread context (may sleep)
3840 */
3841void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3842{
3843 u32 serror;
3844
3845 /* reset complete, clear SError */
3846 if (!sata_scr_read(link, reg: SCR_ERROR, val: &serror))
3847 sata_scr_write(link, reg: SCR_ERROR, val: serror);
3848
3849 /* print link status */
3850 sata_print_link_status(link);
3851}
3852EXPORT_SYMBOL_GPL(ata_std_postreset);
3853
3854/**
3855 * ata_dev_same_device - Determine whether new ID matches configured device
3856 * @dev: device to compare against
3857 * @new_class: class of the new device
3858 * @new_id: IDENTIFY page of the new device
3859 *
3860 * Compare @new_class and @new_id against @dev and determine
3861 * whether @dev is the device indicated by @new_class and
3862 * @new_id.
3863 *
3864 * LOCKING:
3865 * None.
3866 *
3867 * RETURNS:
3868 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3869 */
3870static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3871 const u16 *new_id)
3872{
3873 const u16 *old_id = dev->id;
3874 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3875 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3876
3877 if (dev->class != new_class) {
3878 ata_dev_info(dev, "class mismatch %d != %d\n",
3879 dev->class, new_class);
3880 return 0;
3881 }
3882
3883 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3884 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3885 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3886 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3887
3888 if (strcmp(model[0], model[1])) {
3889 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3890 model[0], model[1]);
3891 return 0;
3892 }
3893
3894 if (strcmp(serial[0], serial[1])) {
3895 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3896 serial[0], serial[1]);
3897 return 0;
3898 }
3899
3900 return 1;
3901}
3902
3903/**
3904 * ata_dev_reread_id - Re-read IDENTIFY data
3905 * @dev: target ATA device
3906 * @readid_flags: read ID flags
3907 *
3908 * Re-read IDENTIFY page and make sure @dev is still attached to
3909 * the port.
3910 *
3911 * LOCKING:
3912 * Kernel thread context (may sleep)
3913 *
3914 * RETURNS:
3915 * 0 on success, negative errno otherwise
3916 */
3917int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3918{
3919 unsigned int class = dev->class;
3920 u16 *id = (void *)dev->link->ap->sector_buf;
3921 int rc;
3922
3923 /* read ID data */
3924 rc = ata_dev_read_id(dev, p_class: &class, flags: readid_flags, id);
3925 if (rc)
3926 return rc;
3927
3928 /* is the device still there? */
3929 if (!ata_dev_same_device(dev, new_class: class, new_id: id))
3930 return -ENODEV;
3931
3932 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3933 return 0;
3934}
3935
3936/**
3937 * ata_dev_revalidate - Revalidate ATA device
3938 * @dev: device to revalidate
3939 * @new_class: new class code
3940 * @readid_flags: read ID flags
3941 *
3942 * Re-read IDENTIFY page, make sure @dev is still attached to the
3943 * port and reconfigure it according to the new IDENTIFY page.
3944 *
3945 * LOCKING:
3946 * Kernel thread context (may sleep)
3947 *
3948 * RETURNS:
3949 * 0 on success, negative errno otherwise
3950 */
3951int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3952 unsigned int readid_flags)
3953{
3954 u64 n_sectors = dev->n_sectors;
3955 u64 n_native_sectors = dev->n_native_sectors;
3956 int rc;
3957
3958 if (!ata_dev_enabled(dev))
3959 return -ENODEV;
3960
3961 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3962 if (ata_class_enabled(class: new_class) && new_class == ATA_DEV_PMP) {
3963 ata_dev_info(dev, "class mismatch %u != %u\n",
3964 dev->class, new_class);
3965 rc = -ENODEV;
3966 goto fail;
3967 }
3968
3969 /* re-read ID */
3970 rc = ata_dev_reread_id(dev, readid_flags);
3971 if (rc)
3972 goto fail;
3973
3974 /* configure device according to the new ID */
3975 rc = ata_dev_configure(dev);
3976 if (rc)
3977 goto fail;
3978
3979 /* verify n_sectors hasn't changed */
3980 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3981 dev->n_sectors == n_sectors)
3982 return 0;
3983
3984 /* n_sectors has changed */
3985 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3986 (unsigned long long)n_sectors,
3987 (unsigned long long)dev->n_sectors);
3988
3989 /*
3990 * Something could have caused HPA to be unlocked
3991 * involuntarily. If n_native_sectors hasn't changed and the
3992 * new size matches it, keep the device.
3993 */
3994 if (dev->n_native_sectors == n_native_sectors &&
3995 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3996 ata_dev_warn(dev,
3997 "new n_sectors matches native, probably "
3998 "late HPA unlock, n_sectors updated\n");
3999 /* use the larger n_sectors */
4000 return 0;
4001 }
4002
4003 /*
4004 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4005 * unlocking HPA in those cases.
4006 *
4007 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4008 */
4009 if (dev->n_native_sectors == n_native_sectors &&
4010 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4011 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4012 ata_dev_warn(dev,
4013 "old n_sectors matches native, probably "
4014 "late HPA lock, will try to unlock HPA\n");
4015 /* try unlocking HPA */
4016 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4017 rc = -EIO;
4018 } else
4019 rc = -ENODEV;
4020
4021 /* restore original n_[native_]sectors and fail */
4022 dev->n_native_sectors = n_native_sectors;
4023 dev->n_sectors = n_sectors;
4024 fail:
4025 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4026 return rc;
4027}
4028
4029struct ata_blacklist_entry {
4030 const char *model_num;
4031 const char *model_rev;
4032 unsigned long horkage;
4033};
4034
4035static const struct ata_blacklist_entry ata_device_blacklist [] = {
4036 /* Devices with DMA related problems under Linux */
4037 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4038 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4039 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4040 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4041 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4042 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4043 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4044 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4045 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4046 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4047 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4048 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4049 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4050 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4051 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4052 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4053 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4054 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4055 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4056 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4057 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4058 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4059 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4060 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4061 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4062 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4063 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4064 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4065 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4066 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4067 /* Odd clown on sil3726/4726 PMPs */
4068 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4069 /* Similar story with ASMedia 1092 */
4070 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
4071
4072 /* Weird ATAPI devices */
4073 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4074 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4075 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4076 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4077
4078 /*
4079 * Causes silent data corruption with higher max sects.
4080 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4081 */
4082 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4083
4084 /*
4085 * These devices time out with higher max sects.
4086 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4087 */
4088 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4089 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4090
4091 /* Devices we expect to fail diagnostics */
4092
4093 /* Devices where NCQ should be avoided */
4094 /* NCQ is slow */
4095 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4096 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ },
4097 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4098 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4099 /* NCQ is broken */
4100 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4101 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4102 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4103 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4104 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4105
4106 /* Seagate NCQ + FLUSH CACHE firmware bug */
4107 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4108 ATA_HORKAGE_FIRMWARE_WARN },
4109
4110 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4111 ATA_HORKAGE_FIRMWARE_WARN },
4112
4113 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4114 ATA_HORKAGE_FIRMWARE_WARN },
4115
4116 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4117 ATA_HORKAGE_FIRMWARE_WARN },
4118
4119 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4120 the ST disks also have LPM issues */
4121 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
4122 ATA_HORKAGE_NOLPM },
4123 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4124
4125 /* Blacklist entries taken from Silicon Image 3124/3132
4126 Windows driver .inf file - also several Linux problem reports */
4127 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ },
4128 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ },
4129 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ },
4130
4131 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4132 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ },
4133
4134 /* Sandisk SD7/8/9s lock up hard on large trims */
4135 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M },
4136
4137 /* devices which puke on READ_NATIVE_MAX */
4138 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA },
4139 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4140 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4141 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4142
4143 /* this one allows HPA unlocking but fails IOs on the area */
4144 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4145
4146 /* Devices which report 1 sector over size HPA */
4147 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE },
4148 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE },
4149 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE },
4150
4151 /* Devices which get the IVB wrong */
4152 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4153 /* Maybe we should just blacklist TSSTcorp... */
4154 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB },
4155
4156 /* Devices that do not need bridging limits applied */
4157 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK },
4158 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK },
4159
4160 /* Devices which aren't very happy with higher link speeds */
4161 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS },
4162 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS },
4163
4164 /*
4165 * Devices which choke on SETXFER. Applies only if both the
4166 * device and controller are SATA.
4167 */
4168 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4169 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4170 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4171 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4172 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4173
4174 /* These specific Pioneer models have LPM issues */
4175 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
4176 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
4177
4178 /* Crucial BX100 SSD 500GB has broken LPM support */
4179 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4180
4181 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4182 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4183 ATA_HORKAGE_ZERO_AFTER_TRIM |
4184 ATA_HORKAGE_NOLPM },
4185 /* 512GB MX100 with newer firmware has only LPM issues */
4186 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4187 ATA_HORKAGE_NOLPM },
4188
4189 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4190 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4191 ATA_HORKAGE_ZERO_AFTER_TRIM |
4192 ATA_HORKAGE_NOLPM },
4193 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4194 ATA_HORKAGE_ZERO_AFTER_TRIM |
4195 ATA_HORKAGE_NOLPM },
4196
4197 /* These specific Samsung models/firmware-revs do not handle LPM well */
4198 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4199 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM },
4200 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM },
4201 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4202
4203 /* devices that don't properly handle queued TRIM commands */
4204 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4205 ATA_HORKAGE_ZERO_AFTER_TRIM },
4206 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4207 ATA_HORKAGE_ZERO_AFTER_TRIM },
4208 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4209 ATA_HORKAGE_ZERO_AFTER_TRIM },
4210 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4211 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4212 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4213 ATA_HORKAGE_ZERO_AFTER_TRIM },
4214 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4215 ATA_HORKAGE_ZERO_AFTER_TRIM },
4216 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4217 ATA_HORKAGE_ZERO_AFTER_TRIM },
4218 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4219 ATA_HORKAGE_NO_DMA_LOG |
4220 ATA_HORKAGE_ZERO_AFTER_TRIM },
4221 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4222 ATA_HORKAGE_ZERO_AFTER_TRIM },
4223 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4224 ATA_HORKAGE_ZERO_AFTER_TRIM },
4225 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4226 ATA_HORKAGE_ZERO_AFTER_TRIM |
4227 ATA_HORKAGE_NO_NCQ_ON_ATI },
4228 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4229 ATA_HORKAGE_ZERO_AFTER_TRIM |
4230 ATA_HORKAGE_NO_NCQ_ON_ATI },
4231 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4232 ATA_HORKAGE_ZERO_AFTER_TRIM |
4233 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4234 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4235 ATA_HORKAGE_ZERO_AFTER_TRIM },
4236
4237 /* devices that don't properly handle TRIM commands */
4238 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM },
4239 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM },
4240
4241 /*
4242 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4243 * (Return Zero After Trim) flags in the ATA Command Set are
4244 * unreliable in the sense that they only define what happens if
4245 * the device successfully executed the DSM TRIM command. TRIM
4246 * is only advisory, however, and the device is free to silently
4247 * ignore all or parts of the request.
4248 *
4249 * Whitelist drives that are known to reliably return zeroes
4250 * after TRIM.
4251 */
4252
4253 /*
4254 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4255 * that model before whitelisting all other intel SSDs.
4256 */
4257 { "INTEL*SSDSC2MH*", NULL, 0 },
4258
4259 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4260 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4261 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4262 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4263 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4264 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4265 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4266 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4267
4268 /*
4269 * Some WD SATA-I drives spin up and down erratically when the link
4270 * is put into the slumber mode. We don't have full list of the
4271 * affected devices. Disable LPM if the device matches one of the
4272 * known prefixes and is SATA-1. As a side effect LPM partial is
4273 * lost too.
4274 *
4275 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4276 */
4277 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4278 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4279 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4280 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4281 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4282 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4283 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4284
4285 /*
4286 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4287 * log page is accessed. Ensure we never ask for this log page with
4288 * these devices.
4289 */
4290 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR },
4291
4292 /* Buggy FUA */
4293 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA },
4294 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA },
4295 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA },
4296 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA },
4297
4298 /* End Marker */
4299 { }
4300};
4301
4302static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4303{
4304 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4305 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4306 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4307
4308 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4309 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4310
4311 while (ad->model_num) {
4312 if (glob_match(pat: ad->model_num, str: model_num)) {
4313 if (ad->model_rev == NULL)
4314 return ad->horkage;
4315 if (glob_match(pat: ad->model_rev, str: model_rev))
4316 return ad->horkage;
4317 }
4318 ad++;
4319 }
4320 return 0;
4321}
4322
4323static int ata_dma_blacklisted(const struct ata_device *dev)
4324{
4325 /* We don't support polling DMA.
4326 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4327 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4328 */
4329 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4330 (dev->flags & ATA_DFLAG_CDB_INTR))
4331 return 1;
4332 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4333}
4334
4335/**
4336 * ata_is_40wire - check drive side detection
4337 * @dev: device
4338 *
4339 * Perform drive side detection decoding, allowing for device vendors
4340 * who can't follow the documentation.
4341 */
4342
4343static int ata_is_40wire(struct ata_device *dev)
4344{
4345 if (dev->horkage & ATA_HORKAGE_IVB)
4346 return ata_drive_40wire_relaxed(dev_id: dev->id);
4347 return ata_drive_40wire(dev_id: dev->id);
4348}
4349
4350/**
4351 * cable_is_40wire - 40/80/SATA decider
4352 * @ap: port to consider
4353 *
4354 * This function encapsulates the policy for speed management
4355 * in one place. At the moment we don't cache the result but
4356 * there is a good case for setting ap->cbl to the result when
4357 * we are called with unknown cables (and figuring out if it
4358 * impacts hotplug at all).
4359 *
4360 * Return 1 if the cable appears to be 40 wire.
4361 */
4362
4363static int cable_is_40wire(struct ata_port *ap)
4364{
4365 struct ata_link *link;
4366 struct ata_device *dev;
4367
4368 /* If the controller thinks we are 40 wire, we are. */
4369 if (ap->cbl == ATA_CBL_PATA40)
4370 return 1;
4371
4372 /* If the controller thinks we are 80 wire, we are. */
4373 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4374 return 0;
4375
4376 /* If the system is known to be 40 wire short cable (eg
4377 * laptop), then we allow 80 wire modes even if the drive
4378 * isn't sure.
4379 */
4380 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4381 return 0;
4382
4383 /* If the controller doesn't know, we scan.
4384 *
4385 * Note: We look for all 40 wire detects at this point. Any
4386 * 80 wire detect is taken to be 80 wire cable because
4387 * - in many setups only the one drive (slave if present) will
4388 * give a valid detect
4389 * - if you have a non detect capable drive you don't want it
4390 * to colour the choice
4391 */
4392 ata_for_each_link(link, ap, EDGE) {
4393 ata_for_each_dev(dev, link, ENABLED) {
4394 if (!ata_is_40wire(dev))
4395 return 0;
4396 }
4397 }
4398 return 1;
4399}
4400
4401/**
4402 * ata_dev_xfermask - Compute supported xfermask of the given device
4403 * @dev: Device to compute xfermask for
4404 *
4405 * Compute supported xfermask of @dev and store it in
4406 * dev->*_mask. This function is responsible for applying all
4407 * known limits including host controller limits, device
4408 * blacklist, etc...
4409 *
4410 * LOCKING:
4411 * None.
4412 */
4413static void ata_dev_xfermask(struct ata_device *dev)
4414{
4415 struct ata_link *link = dev->link;
4416 struct ata_port *ap = link->ap;
4417 struct ata_host *host = ap->host;
4418 unsigned int xfer_mask;
4419
4420 /* controller modes available */
4421 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4422 ap->mwdma_mask, ap->udma_mask);
4423
4424 /* drive modes available */
4425 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4426 dev->mwdma_mask, dev->udma_mask);
4427 xfer_mask &= ata_id_xfermask(dev->id);
4428
4429 /*
4430 * CFA Advanced TrueIDE timings are not allowed on a shared
4431 * cable
4432 */
4433 if (ata_dev_pair(dev)) {
4434 /* No PIO5 or PIO6 */
4435 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4436 /* No MWDMA3 or MWDMA 4 */
4437 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4438 }
4439
4440 if (ata_dma_blacklisted(dev)) {
4441 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4442 ata_dev_warn(dev,
4443 "device is on DMA blacklist, disabling DMA\n");
4444 }
4445
4446 if ((host->flags & ATA_HOST_SIMPLEX) &&
4447 host->simplex_claimed && host->simplex_claimed != ap) {
4448 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4449 ata_dev_warn(dev,
4450 "simplex DMA is claimed by other device, disabling DMA\n");
4451 }
4452
4453 if (ap->flags & ATA_FLAG_NO_IORDY)
4454 xfer_mask &= ata_pio_mask_no_iordy(adev: dev);
4455
4456 if (ap->ops->mode_filter)
4457 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4458
4459 /* Apply cable rule here. Don't apply it early because when
4460 * we handle hot plug the cable type can itself change.
4461 * Check this last so that we know if the transfer rate was
4462 * solely limited by the cable.
4463 * Unknown or 80 wire cables reported host side are checked
4464 * drive side as well. Cases where we know a 40wire cable
4465 * is used safely for 80 are not checked here.
4466 */
4467 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4468 /* UDMA/44 or higher would be available */
4469 if (cable_is_40wire(ap)) {
4470 ata_dev_warn(dev,
4471 "limited to UDMA/33 due to 40-wire cable\n");
4472 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4473 }
4474
4475 ata_unpack_xfermask(xfer_mask, pio_mask: &dev->pio_mask,
4476 mwdma_mask: &dev->mwdma_mask, udma_mask: &dev->udma_mask);
4477}
4478
4479/**
4480 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4481 * @dev: Device to which command will be sent
4482 *
4483 * Issue SET FEATURES - XFER MODE command to device @dev
4484 * on port @ap.
4485 *
4486 * LOCKING:
4487 * PCI/etc. bus probe sem.
4488 *
4489 * RETURNS:
4490 * 0 on success, AC_ERR_* mask otherwise.
4491 */
4492
4493static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4494{
4495 struct ata_taskfile tf;
4496
4497 /* set up set-features taskfile */
4498 ata_dev_dbg(dev, "set features - xfer mode\n");
4499
4500 /* Some controllers and ATAPI devices show flaky interrupt
4501 * behavior after setting xfer mode. Use polling instead.
4502 */
4503 ata_tf_init(dev, tf: &tf);
4504 tf.command = ATA_CMD_SET_FEATURES;
4505 tf.feature = SETFEATURES_XFER;
4506 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4507 tf.protocol = ATA_PROT_NODATA;
4508 /* If we are using IORDY we must send the mode setting command */
4509 if (ata_pio_need_iordy(dev))
4510 tf.nsect = dev->xfer_mode;
4511 /* If the device has IORDY and the controller does not - turn it off */
4512 else if (ata_id_has_iordy(dev->id))
4513 tf.nsect = 0x01;
4514 else /* In the ancient relic department - skip all of this */
4515 return 0;
4516
4517 /*
4518 * On some disks, this command causes spin-up, so we need longer
4519 * timeout.
4520 */
4521 return ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_NONE, NULL, buflen: 0, timeout: 15000);
4522}
4523
4524/**
4525 * ata_dev_set_feature - Issue SET FEATURES
4526 * @dev: Device to which command will be sent
4527 * @subcmd: The SET FEATURES subcommand to be sent
4528 * @action: The sector count represents a subcommand specific action
4529 *
4530 * Issue SET FEATURES command to device @dev on port @ap with sector count
4531 *
4532 * LOCKING:
4533 * PCI/etc. bus probe sem.
4534 *
4535 * RETURNS:
4536 * 0 on success, AC_ERR_* mask otherwise.
4537 */
4538unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4539{
4540 struct ata_taskfile tf;
4541 unsigned int timeout = 0;
4542
4543 /* set up set-features taskfile */
4544 ata_dev_dbg(dev, "set features\n");
4545
4546 ata_tf_init(dev, tf: &tf);
4547 tf.command = ATA_CMD_SET_FEATURES;
4548 tf.feature = subcmd;
4549 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4550 tf.protocol = ATA_PROT_NODATA;
4551 tf.nsect = action;
4552
4553 if (subcmd == SETFEATURES_SPINUP)
4554 timeout = ata_probe_timeout ?
4555 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4556
4557 return ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_NONE, NULL, buflen: 0, timeout);
4558}
4559EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4560
4561/**
4562 * ata_dev_init_params - Issue INIT DEV PARAMS command
4563 * @dev: Device to which command will be sent
4564 * @heads: Number of heads (taskfile parameter)
4565 * @sectors: Number of sectors (taskfile parameter)
4566 *
4567 * LOCKING:
4568 * Kernel thread context (may sleep)
4569 *
4570 * RETURNS:
4571 * 0 on success, AC_ERR_* mask otherwise.
4572 */
4573static unsigned int ata_dev_init_params(struct ata_device *dev,
4574 u16 heads, u16 sectors)
4575{
4576 struct ata_taskfile tf;
4577 unsigned int err_mask;
4578
4579 /* Number of sectors per track 1-255. Number of heads 1-16 */
4580 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4581 return AC_ERR_INVALID;
4582
4583 /* set up init dev params taskfile */
4584 ata_dev_dbg(dev, "init dev params \n");
4585
4586 ata_tf_init(dev, tf: &tf);
4587 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4588 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4589 tf.protocol = ATA_PROT_NODATA;
4590 tf.nsect = sectors;
4591 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4592
4593 err_mask = ata_exec_internal(dev, tf: &tf, NULL, dma_dir: DMA_NONE, NULL, buflen: 0, timeout: 0);
4594 /* A clean abort indicates an original or just out of spec drive
4595 and we should continue as we issue the setup based on the
4596 drive reported working geometry */
4597 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4598 err_mask = 0;
4599
4600 return err_mask;
4601}
4602
4603/**
4604 * atapi_check_dma - Check whether ATAPI DMA can be supported
4605 * @qc: Metadata associated with taskfile to check
4606 *
4607 * Allow low-level driver to filter ATA PACKET commands, returning
4608 * a status indicating whether or not it is OK to use DMA for the
4609 * supplied PACKET command.
4610 *
4611 * LOCKING:
4612 * spin_lock_irqsave(host lock)
4613 *
4614 * RETURNS: 0 when ATAPI DMA can be used
4615 * nonzero otherwise
4616 */
4617int atapi_check_dma(struct ata_queued_cmd *qc)
4618{
4619 struct ata_port *ap = qc->ap;
4620
4621 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4622 * few ATAPI devices choke on such DMA requests.
4623 */
4624 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4625 unlikely(qc->nbytes & 15))
4626 return 1;
4627
4628 if (ap->ops->check_atapi_dma)
4629 return ap->ops->check_atapi_dma(qc);
4630
4631 return 0;
4632}
4633
4634/**
4635 * ata_std_qc_defer - Check whether a qc needs to be deferred
4636 * @qc: ATA command in question
4637 *
4638 * Non-NCQ commands cannot run with any other command, NCQ or
4639 * not. As upper layer only knows the queue depth, we are
4640 * responsible for maintaining exclusion. This function checks
4641 * whether a new command @qc can be issued.
4642 *
4643 * LOCKING:
4644 * spin_lock_irqsave(host lock)
4645 *
4646 * RETURNS:
4647 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4648 */
4649int ata_std_qc_defer(struct ata_queued_cmd *qc)
4650{
4651 struct ata_link *link = qc->dev->link;
4652
4653 if (ata_is_ncq(prot: qc->tf.protocol)) {
4654 if (!ata_tag_valid(tag: link->active_tag))
4655 return 0;
4656 } else {
4657 if (!ata_tag_valid(tag: link->active_tag) && !link->sactive)
4658 return 0;
4659 }
4660
4661 return ATA_DEFER_LINK;
4662}
4663EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4664
4665enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4666{
4667 return AC_ERR_OK;
4668}
4669EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4670
4671/**
4672 * ata_sg_init - Associate command with scatter-gather table.
4673 * @qc: Command to be associated
4674 * @sg: Scatter-gather table.
4675 * @n_elem: Number of elements in s/g table.
4676 *
4677 * Initialize the data-related elements of queued_cmd @qc
4678 * to point to a scatter-gather table @sg, containing @n_elem
4679 * elements.
4680 *
4681 * LOCKING:
4682 * spin_lock_irqsave(host lock)
4683 */
4684void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4685 unsigned int n_elem)
4686{
4687 qc->sg = sg;
4688 qc->n_elem = n_elem;
4689 qc->cursg = qc->sg;
4690}
4691
4692#ifdef CONFIG_HAS_DMA
4693
4694/**
4695 * ata_sg_clean - Unmap DMA memory associated with command
4696 * @qc: Command containing DMA memory to be released
4697 *
4698 * Unmap all mapped DMA memory associated with this command.
4699 *
4700 * LOCKING:
4701 * spin_lock_irqsave(host lock)
4702 */
4703static void ata_sg_clean(struct ata_queued_cmd *qc)
4704{
4705 struct ata_port *ap = qc->ap;
4706 struct scatterlist *sg = qc->sg;
4707 int dir = qc->dma_dir;
4708
4709 WARN_ON_ONCE(sg == NULL);
4710
4711 if (qc->n_elem)
4712 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4713
4714 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4715 qc->sg = NULL;
4716}
4717
4718/**
4719 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4720 * @qc: Command with scatter-gather table to be mapped.
4721 *
4722 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4723 *
4724 * LOCKING:
4725 * spin_lock_irqsave(host lock)
4726 *
4727 * RETURNS:
4728 * Zero on success, negative on error.
4729 *
4730 */
4731static int ata_sg_setup(struct ata_queued_cmd *qc)
4732{
4733 struct ata_port *ap = qc->ap;
4734 unsigned int n_elem;
4735
4736 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4737 if (n_elem < 1)
4738 return -1;
4739
4740 qc->orig_n_elem = qc->n_elem;
4741 qc->n_elem = n_elem;
4742 qc->flags |= ATA_QCFLAG_DMAMAP;
4743
4744 return 0;
4745}
4746
4747#else /* !CONFIG_HAS_DMA */
4748
4749static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4750static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4751
4752#endif /* !CONFIG_HAS_DMA */
4753
4754/**
4755 * swap_buf_le16 - swap halves of 16-bit words in place
4756 * @buf: Buffer to swap
4757 * @buf_words: Number of 16-bit words in buffer.
4758 *
4759 * Swap halves of 16-bit words if needed to convert from
4760 * little-endian byte order to native cpu byte order, or
4761 * vice-versa.
4762 *
4763 * LOCKING:
4764 * Inherited from caller.
4765 */
4766void swap_buf_le16(u16 *buf, unsigned int buf_words)
4767{
4768#ifdef __BIG_ENDIAN
4769 unsigned int i;
4770
4771 for (i = 0; i < buf_words; i++)
4772 buf[i] = le16_to_cpu(buf[i]);
4773#endif /* __BIG_ENDIAN */
4774}
4775
4776/**
4777 * ata_qc_free - free unused ata_queued_cmd
4778 * @qc: Command to complete
4779 *
4780 * Designed to free unused ata_queued_cmd object
4781 * in case something prevents using it.
4782 *
4783 * LOCKING:
4784 * spin_lock_irqsave(host lock)
4785 */
4786void ata_qc_free(struct ata_queued_cmd *qc)
4787{
4788 qc->flags = 0;
4789 if (ata_tag_valid(tag: qc->tag))
4790 qc->tag = ATA_TAG_POISON;
4791}
4792
4793void __ata_qc_complete(struct ata_queued_cmd *qc)
4794{
4795 struct ata_port *ap;
4796 struct ata_link *link;
4797
4798 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4799 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4800 ap = qc->ap;
4801 link = qc->dev->link;
4802
4803 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4804 ata_sg_clean(qc);
4805
4806 /* command should be marked inactive atomically with qc completion */
4807 if (ata_is_ncq(prot: qc->tf.protocol)) {
4808 link->sactive &= ~(1 << qc->hw_tag);
4809 if (!link->sactive)
4810 ap->nr_active_links--;
4811 } else {
4812 link->active_tag = ATA_TAG_POISON;
4813 ap->nr_active_links--;
4814 }
4815
4816 /* clear exclusive status */
4817 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4818 ap->excl_link == link))
4819 ap->excl_link = NULL;
4820
4821 /* atapi: mark qc as inactive to prevent the interrupt handler
4822 * from completing the command twice later, before the error handler
4823 * is called. (when rc != 0 and atapi request sense is needed)
4824 */
4825 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4826 ap->qc_active &= ~(1ULL << qc->tag);
4827
4828 /* call completion callback */
4829 qc->complete_fn(qc);
4830}
4831
4832static void fill_result_tf(struct ata_queued_cmd *qc)
4833{
4834 struct ata_port *ap = qc->ap;
4835
4836 qc->result_tf.flags = qc->tf.flags;
4837 ap->ops->qc_fill_rtf(qc);
4838}
4839
4840static void ata_verify_xfer(struct ata_queued_cmd *qc)
4841{
4842 struct ata_device *dev = qc->dev;
4843
4844 if (!ata_is_data(prot: qc->tf.protocol))
4845 return;
4846
4847 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(prot: qc->tf.protocol))
4848 return;
4849
4850 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4851}
4852
4853/**
4854 * ata_qc_complete - Complete an active ATA command
4855 * @qc: Command to complete
4856 *
4857 * Indicate to the mid and upper layers that an ATA command has
4858 * completed, with either an ok or not-ok status.
4859 *
4860 * Refrain from calling this function multiple times when
4861 * successfully completing multiple NCQ commands.
4862 * ata_qc_complete_multiple() should be used instead, which will
4863 * properly update IRQ expect state.
4864 *
4865 * LOCKING:
4866 * spin_lock_irqsave(host lock)
4867 */
4868void ata_qc_complete(struct ata_queued_cmd *qc)
4869{
4870 struct ata_port *ap = qc->ap;
4871 struct ata_device *dev = qc->dev;
4872 struct ata_eh_info *ehi = &dev->link->eh_info;
4873
4874 /* Trigger the LED (if available) */
4875 ledtrig_disk_activity(write: !!(qc->tf.flags & ATA_TFLAG_WRITE));
4876
4877 /*
4878 * In order to synchronize EH with the regular execution path, a qc that
4879 * is owned by EH is marked with ATA_QCFLAG_EH.
4880 *
4881 * The normal execution path is responsible for not accessing a qc owned
4882 * by EH. libata core enforces the rule by returning NULL from
4883 * ata_qc_from_tag() for qcs owned by EH.
4884 */
4885 if (unlikely(qc->err_mask))
4886 qc->flags |= ATA_QCFLAG_EH;
4887
4888 /*
4889 * Finish internal commands without any further processing and always
4890 * with the result TF filled.
4891 */
4892 if (unlikely(ata_tag_internal(qc->tag))) {
4893 fill_result_tf(qc);
4894 trace_ata_qc_complete_internal(qc);
4895 __ata_qc_complete(qc);
4896 return;
4897 }
4898
4899 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4900 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4901 fill_result_tf(qc);
4902 trace_ata_qc_complete_failed(qc);
4903 ata_qc_schedule_eh(qc);
4904 return;
4905 }
4906
4907 WARN_ON_ONCE(ata_port_is_frozen(ap));
4908
4909 /* read result TF if requested */
4910 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4911 fill_result_tf(qc);
4912
4913 trace_ata_qc_complete_done(qc);
4914
4915 /*
4916 * For CDL commands that completed without an error, check if we have
4917 * sense data (ATA_SENSE is set). If we do, then the command may have
4918 * been aborted by the device due to a limit timeout using the policy
4919 * 0xD. For these commands, invoke EH to get the command sense data.
4920 */
4921 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4922 qc->result_tf.status & ATA_SENSE) {
4923 /*
4924 * Tell SCSI EH to not overwrite scmd->result even if this
4925 * command is finished with result SAM_STAT_GOOD.
4926 */
4927 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4928 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4929 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4930
4931 /*
4932 * set pending so that ata_qc_schedule_eh() does not trigger
4933 * fast drain, and freeze the port.
4934 */
4935 ap->pflags |= ATA_PFLAG_EH_PENDING;
4936 ata_qc_schedule_eh(qc);
4937 return;
4938 }
4939
4940 /* Some commands need post-processing after successful completion. */
4941 switch (qc->tf.command) {
4942 case ATA_CMD_SET_FEATURES:
4943 if (qc->tf.feature != SETFEATURES_WC_ON &&
4944 qc->tf.feature != SETFEATURES_WC_OFF &&
4945 qc->tf.feature != SETFEATURES_RA_ON &&
4946 qc->tf.feature != SETFEATURES_RA_OFF)
4947 break;
4948 fallthrough;
4949 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4950 case ATA_CMD_SET_MULTI: /* multi_count changed */
4951 /* revalidate device */
4952 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4953 ata_port_schedule_eh(ap);
4954 break;
4955
4956 case ATA_CMD_SLEEP:
4957 dev->flags |= ATA_DFLAG_SLEEPING;
4958 break;
4959 }
4960
4961 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4962 ata_verify_xfer(qc);
4963
4964 __ata_qc_complete(qc);
4965}
4966EXPORT_SYMBOL_GPL(ata_qc_complete);
4967
4968/**
4969 * ata_qc_get_active - get bitmask of active qcs
4970 * @ap: port in question
4971 *
4972 * LOCKING:
4973 * spin_lock_irqsave(host lock)
4974 *
4975 * RETURNS:
4976 * Bitmask of active qcs
4977 */
4978u64 ata_qc_get_active(struct ata_port *ap)
4979{
4980 u64 qc_active = ap->qc_active;
4981
4982 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4983 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4984 qc_active |= (1 << 0);
4985 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4986 }
4987
4988 return qc_active;
4989}
4990EXPORT_SYMBOL_GPL(ata_qc_get_active);
4991
4992/**
4993 * ata_qc_issue - issue taskfile to device
4994 * @qc: command to issue to device
4995 *
4996 * Prepare an ATA command to submission to device.
4997 * This includes mapping the data into a DMA-able
4998 * area, filling in the S/G table, and finally
4999 * writing the taskfile to hardware, starting the command.
5000 *
5001 * LOCKING:
5002 * spin_lock_irqsave(host lock)
5003 */
5004void ata_qc_issue(struct ata_queued_cmd *qc)
5005{
5006 struct ata_port *ap = qc->ap;
5007 struct ata_link *link = qc->dev->link;
5008 u8 prot = qc->tf.protocol;
5009
5010 /* Make sure only one non-NCQ command is outstanding. */
5011 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5012
5013 if (ata_is_ncq(prot)) {
5014 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5015
5016 if (!link->sactive)
5017 ap->nr_active_links++;
5018 link->sactive |= 1 << qc->hw_tag;
5019 } else {
5020 WARN_ON_ONCE(link->sactive);
5021
5022 ap->nr_active_links++;
5023 link->active_tag = qc->tag;
5024 }
5025
5026 qc->flags |= ATA_QCFLAG_ACTIVE;
5027 ap->qc_active |= 1ULL << qc->tag;
5028
5029 /*
5030 * We guarantee to LLDs that they will have at least one
5031 * non-zero sg if the command is a data command.
5032 */
5033 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5034 goto sys_err;
5035
5036 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5037 (ap->flags & ATA_FLAG_PIO_DMA)))
5038 if (ata_sg_setup(qc))
5039 goto sys_err;
5040
5041 /* if device is sleeping, schedule reset and abort the link */
5042 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5043 link->eh_info.action |= ATA_EH_RESET;
5044 ata_ehi_push_desc(ehi: &link->eh_info, fmt: "waking up from sleep");
5045 ata_link_abort(link);
5046 return;
5047 }
5048
5049 trace_ata_qc_prep(qc);
5050 qc->err_mask |= ap->ops->qc_prep(qc);
5051 if (unlikely(qc->err_mask))
5052 goto err;
5053 trace_ata_qc_issue(qc);
5054 qc->err_mask |= ap->ops->qc_issue(qc);
5055 if (unlikely(qc->err_mask))
5056 goto err;
5057 return;
5058
5059sys_err:
5060 qc->err_mask |= AC_ERR_SYSTEM;
5061err:
5062 ata_qc_complete(qc);
5063}
5064
5065/**
5066 * ata_phys_link_online - test whether the given link is online
5067 * @link: ATA link to test
5068 *
5069 * Test whether @link is online. Note that this function returns
5070 * 0 if online status of @link cannot be obtained, so
5071 * ata_link_online(link) != !ata_link_offline(link).
5072 *
5073 * LOCKING:
5074 * None.
5075 *
5076 * RETURNS:
5077 * True if the port online status is available and online.
5078 */
5079bool ata_phys_link_online(struct ata_link *link)
5080{
5081 u32 sstatus;
5082
5083 if (sata_scr_read(link, reg: SCR_STATUS, val: &sstatus) == 0 &&
5084 ata_sstatus_online(sstatus))
5085 return true;
5086 return false;
5087}
5088
5089/**
5090 * ata_phys_link_offline - test whether the given link is offline
5091 * @link: ATA link to test
5092 *
5093 * Test whether @link is offline. Note that this function
5094 * returns 0 if offline status of @link cannot be obtained, so
5095 * ata_link_online(link) != !ata_link_offline(link).
5096 *
5097 * LOCKING:
5098 * None.
5099 *
5100 * RETURNS:
5101 * True if the port offline status is available and offline.
5102 */
5103bool ata_phys_link_offline(struct ata_link *link)
5104{
5105 u32 sstatus;
5106
5107 if (sata_scr_read(link, reg: SCR_STATUS, val: &sstatus) == 0 &&
5108 !ata_sstatus_online(sstatus))
5109 return true;
5110 return false;
5111}
5112
5113/**
5114 * ata_link_online - test whether the given link is online
5115 * @link: ATA link to test
5116 *
5117 * Test whether @link is online. This is identical to
5118 * ata_phys_link_online() when there's no slave link. When
5119 * there's a slave link, this function should only be called on
5120 * the master link and will return true if any of M/S links is
5121 * online.
5122 *
5123 * LOCKING:
5124 * None.
5125 *
5126 * RETURNS:
5127 * True if the port online status is available and online.
5128 */
5129bool ata_link_online(struct ata_link *link)
5130{
5131 struct ata_link *slave = link->ap->slave_link;
5132
5133 WARN_ON(link == slave); /* shouldn't be called on slave link */
5134
5135 return ata_phys_link_online(link) ||
5136 (slave && ata_phys_link_online(link: slave));
5137}
5138EXPORT_SYMBOL_GPL(ata_link_online);
5139
5140/**
5141 * ata_link_offline - test whether the given link is offline
5142 * @link: ATA link to test
5143 *
5144 * Test whether @link is offline. This is identical to
5145 * ata_phys_link_offline() when there's no slave link. When
5146 * there's a slave link, this function should only be called on
5147 * the master link and will return true if both M/S links are
5148 * offline.
5149 *
5150 * LOCKING:
5151 * None.
5152 *
5153 * RETURNS:
5154 * True if the port offline status is available and offline.
5155 */
5156bool ata_link_offline(struct ata_link *link)
5157{
5158 struct ata_link *slave = link->ap->slave_link;
5159
5160 WARN_ON(link == slave); /* shouldn't be called on slave link */
5161
5162 return ata_phys_link_offline(link) &&
5163 (!slave || ata_phys_link_offline(link: slave));
5164}
5165EXPORT_SYMBOL_GPL(ata_link_offline);
5166
5167#ifdef CONFIG_PM
5168static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5169 unsigned int action, unsigned int ehi_flags,
5170 bool async)
5171{
5172 struct ata_link *link;
5173 unsigned long flags;
5174
5175 spin_lock_irqsave(ap->lock, flags);
5176
5177 /*
5178 * A previous PM operation might still be in progress. Wait for
5179 * ATA_PFLAG_PM_PENDING to clear.
5180 */
5181 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5182 spin_unlock_irqrestore(lock: ap->lock, flags);
5183 ata_port_wait_eh(ap);
5184 spin_lock_irqsave(ap->lock, flags);
5185 }
5186
5187 /* Request PM operation to EH */
5188 ap->pm_mesg = mesg;
5189 ap->pflags |= ATA_PFLAG_PM_PENDING;
5190 ata_for_each_link(link, ap, HOST_FIRST) {
5191 link->eh_info.action |= action;
5192 link->eh_info.flags |= ehi_flags;
5193 }
5194
5195 ata_port_schedule_eh(ap);
5196
5197 spin_unlock_irqrestore(lock: ap->lock, flags);
5198
5199 if (!async)
5200 ata_port_wait_eh(ap);
5201}
5202
5203static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5204 bool async)
5205{
5206 /*
5207 * We are about to suspend the port, so we do not care about
5208 * scsi_rescan_device() calls scheduled by previous resume operations.
5209 * The next resume will schedule the rescan again. So cancel any rescan
5210 * that is not done yet.
5211 */
5212 cancel_delayed_work_sync(dwork: &ap->scsi_rescan_task);
5213
5214 /*
5215 * On some hardware, device fails to respond after spun down for
5216 * suspend. As the device will not be used until being resumed, we
5217 * do not need to touch the device. Ask EH to skip the usual stuff
5218 * and proceed directly to suspend.
5219 *
5220 * http://thread.gmane.org/gmane.linux.ide/46764
5221 */
5222 ata_port_request_pm(ap, mesg, action: 0,
5223 ehi_flags: ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5224 ATA_EHI_NO_RECOVERY,
5225 async);
5226}
5227
5228static int ata_port_pm_suspend(struct device *dev)
5229{
5230 struct ata_port *ap = to_ata_port(dev);
5231
5232 if (pm_runtime_suspended(dev))
5233 return 0;
5234
5235 ata_port_suspend(ap, PMSG_SUSPEND, async: false);
5236 return 0;
5237}
5238
5239static int ata_port_pm_freeze(struct device *dev)
5240{
5241 struct ata_port *ap = to_ata_port(dev);
5242
5243 if (pm_runtime_suspended(dev))
5244 return 0;
5245
5246 ata_port_suspend(ap, PMSG_FREEZE, async: false);
5247 return 0;
5248}
5249
5250static int ata_port_pm_poweroff(struct device *dev)
5251{
5252 if (!pm_runtime_suspended(dev))
5253 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, async: false);
5254 return 0;
5255}
5256
5257static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5258 bool async)
5259{
5260 ata_port_request_pm(ap, mesg, action: ATA_EH_RESET,
5261 ehi_flags: ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5262 async);
5263}
5264
5265static int ata_port_pm_resume(struct device *dev)
5266{
5267 if (!pm_runtime_suspended(dev))
5268 ata_port_resume(to_ata_port(dev), PMSG_RESUME, async: true);
5269 return 0;
5270}
5271
5272/*
5273 * For ODDs, the upper layer will poll for media change every few seconds,
5274 * which will make it enter and leave suspend state every few seconds. And
5275 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5276 * is very little and the ODD may malfunction after constantly being reset.
5277 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5278 * ODD is attached to the port.
5279 */
5280static int ata_port_runtime_idle(struct device *dev)
5281{
5282 struct ata_port *ap = to_ata_port(dev);
5283 struct ata_link *link;
5284 struct ata_device *adev;
5285
5286 ata_for_each_link(link, ap, HOST_FIRST) {
5287 ata_for_each_dev(adev, link, ENABLED)
5288 if (adev->class == ATA_DEV_ATAPI &&
5289 !zpodd_dev_enabled(dev: adev))
5290 return -EBUSY;
5291 }
5292
5293 return 0;
5294}
5295
5296static int ata_port_runtime_suspend(struct device *dev)
5297{
5298 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, async: false);
5299 return 0;
5300}
5301
5302static int ata_port_runtime_resume(struct device *dev)
5303{
5304 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, async: false);
5305 return 0;
5306}
5307
5308static const struct dev_pm_ops ata_port_pm_ops = {
5309 .suspend = ata_port_pm_suspend,
5310 .resume = ata_port_pm_resume,
5311 .freeze = ata_port_pm_freeze,
5312 .thaw = ata_port_pm_resume,
5313 .poweroff = ata_port_pm_poweroff,
5314 .restore = ata_port_pm_resume,
5315
5316 .runtime_suspend = ata_port_runtime_suspend,
5317 .runtime_resume = ata_port_runtime_resume,
5318 .runtime_idle = ata_port_runtime_idle,
5319};
5320
5321/* sas ports don't participate in pm runtime management of ata_ports,
5322 * and need to resume ata devices at the domain level, not the per-port
5323 * level. sas suspend/resume is async to allow parallel port recovery
5324 * since sas has multiple ata_port instances per Scsi_Host.
5325 */
5326void ata_sas_port_suspend(struct ata_port *ap)
5327{
5328 ata_port_suspend(ap, PMSG_SUSPEND, async: true);
5329}
5330EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5331
5332void ata_sas_port_resume(struct ata_port *ap)
5333{
5334 ata_port_resume(ap, PMSG_RESUME, async: true);
5335}
5336EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5337
5338/**
5339 * ata_host_suspend - suspend host
5340 * @host: host to suspend
5341 * @mesg: PM message
5342 *
5343 * Suspend @host. Actual operation is performed by port suspend.
5344 */
5345void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5346{
5347 host->dev->power.power_state = mesg;
5348}
5349EXPORT_SYMBOL_GPL(ata_host_suspend);
5350
5351/**
5352 * ata_host_resume - resume host
5353 * @host: host to resume
5354 *
5355 * Resume @host. Actual operation is performed by port resume.
5356 */
5357void ata_host_resume(struct ata_host *host)
5358{
5359 host->dev->power.power_state = PMSG_ON;
5360}
5361EXPORT_SYMBOL_GPL(ata_host_resume);
5362#endif
5363
5364const struct device_type ata_port_type = {
5365 .name = ATA_PORT_TYPE_NAME,
5366#ifdef CONFIG_PM
5367 .pm = &ata_port_pm_ops,
5368#endif
5369};
5370
5371/**
5372 * ata_dev_init - Initialize an ata_device structure
5373 * @dev: Device structure to initialize
5374 *
5375 * Initialize @dev in preparation for probing.
5376 *
5377 * LOCKING:
5378 * Inherited from caller.
5379 */
5380void ata_dev_init(struct ata_device *dev)
5381{
5382 struct ata_link *link = ata_dev_phys_link(dev);
5383 struct ata_port *ap = link->ap;
5384 unsigned long flags;
5385
5386 /* SATA spd limit is bound to the attached device, reset together */
5387 link->sata_spd_limit = link->hw_sata_spd_limit;
5388 link->sata_spd = 0;
5389
5390 /* High bits of dev->flags are used to record warm plug
5391 * requests which occur asynchronously. Synchronize using
5392 * host lock.
5393 */
5394 spin_lock_irqsave(ap->lock, flags);
5395 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5396 dev->horkage = 0;
5397 spin_unlock_irqrestore(lock: ap->lock, flags);
5398
5399 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5400 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5401 dev->pio_mask = UINT_MAX;
5402 dev->mwdma_mask = UINT_MAX;
5403 dev->udma_mask = UINT_MAX;
5404}
5405
5406/**
5407 * ata_link_init - Initialize an ata_link structure
5408 * @ap: ATA port link is attached to
5409 * @link: Link structure to initialize
5410 * @pmp: Port multiplier port number
5411 *
5412 * Initialize @link.
5413 *
5414 * LOCKING:
5415 * Kernel thread context (may sleep)
5416 */
5417void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5418{
5419 int i;
5420
5421 /* clear everything except for devices */
5422 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5423 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5424
5425 link->ap = ap;
5426 link->pmp = pmp;
5427 link->active_tag = ATA_TAG_POISON;
5428 link->hw_sata_spd_limit = UINT_MAX;
5429
5430 /* can't use iterator, ap isn't initialized yet */
5431 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5432 struct ata_device *dev = &link->device[i];
5433
5434 dev->link = link;
5435 dev->devno = dev - link->device;
5436#ifdef CONFIG_ATA_ACPI
5437 dev->gtf_filter = ata_acpi_gtf_filter;
5438#endif
5439 ata_dev_init(dev);
5440 }
5441}
5442
5443/**
5444 * sata_link_init_spd - Initialize link->sata_spd_limit
5445 * @link: Link to configure sata_spd_limit for
5446 *
5447 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5448 * configured value.
5449 *
5450 * LOCKING:
5451 * Kernel thread context (may sleep).
5452 *
5453 * RETURNS:
5454 * 0 on success, -errno on failure.
5455 */
5456int sata_link_init_spd(struct ata_link *link)
5457{
5458 u8 spd;
5459 int rc;
5460
5461 rc = sata_scr_read(link, reg: SCR_CONTROL, val: &link->saved_scontrol);
5462 if (rc)
5463 return rc;
5464
5465 spd = (link->saved_scontrol >> 4) & 0xf;
5466 if (spd)
5467 link->hw_sata_spd_limit &= (1 << spd) - 1;
5468
5469 ata_force_link_limits(link);
5470
5471 link->sata_spd_limit = link->hw_sata_spd_limit;
5472
5473 return 0;
5474}
5475
5476/**
5477 * ata_port_alloc - allocate and initialize basic ATA port resources
5478 * @host: ATA host this allocated port belongs to
5479 *
5480 * Allocate and initialize basic ATA port resources.
5481 *
5482 * RETURNS:
5483 * Allocate ATA port on success, NULL on failure.
5484 *
5485 * LOCKING:
5486 * Inherited from calling layer (may sleep).
5487 */
5488struct ata_port *ata_port_alloc(struct ata_host *host)
5489{
5490 struct ata_port *ap;
5491
5492 ap = kzalloc(size: sizeof(*ap), GFP_KERNEL);
5493 if (!ap)
5494 return NULL;
5495
5496 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5497 ap->lock = &host->lock;
5498 ap->print_id = -1;
5499 ap->local_port_no = -1;
5500 ap->host = host;
5501 ap->dev = host->dev;
5502
5503 mutex_init(&ap->scsi_scan_mutex);
5504 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5505 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5506 INIT_LIST_HEAD(list: &ap->eh_done_q);
5507 init_waitqueue_head(&ap->eh_wait_q);
5508 init_completion(x: &ap->park_req_pending);
5509 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5510 TIMER_DEFERRABLE);
5511
5512 ap->cbl = ATA_CBL_NONE;
5513
5514 ata_link_init(ap, link: &ap->link, pmp: 0);
5515
5516#ifdef ATA_IRQ_TRAP
5517 ap->stats.unhandled_irq = 1;
5518 ap->stats.idle_irq = 1;
5519#endif
5520 ata_sff_port_init(ap);
5521
5522 return ap;
5523}
5524
5525static void ata_devres_release(struct device *gendev, void *res)
5526{
5527 struct ata_host *host = dev_get_drvdata(dev: gendev);
5528 int i;
5529
5530 for (i = 0; i < host->n_ports; i++) {
5531 struct ata_port *ap = host->ports[i];
5532
5533 if (!ap)
5534 continue;
5535
5536 if (ap->scsi_host)
5537 scsi_host_put(t: ap->scsi_host);
5538
5539 }
5540
5541 dev_set_drvdata(dev: gendev, NULL);
5542 ata_host_put(host);
5543}
5544
5545static void ata_host_release(struct kref *kref)
5546{
5547 struct ata_host *host = container_of(kref, struct ata_host, kref);
5548 int i;
5549
5550 for (i = 0; i < host->n_ports; i++) {
5551 struct ata_port *ap = host->ports[i];
5552
5553 kfree(objp: ap->pmp_link);
5554 kfree(objp: ap->slave_link);
5555 kfree(objp: ap->ncq_sense_buf);
5556 kfree(objp: ap);
5557 host->ports[i] = NULL;
5558 }
5559 kfree(objp: host);
5560}
5561
5562void ata_host_get(struct ata_host *host)
5563{
5564 kref_get(kref: &host->kref);
5565}
5566
5567void ata_host_put(struct ata_host *host)
5568{
5569 kref_put(kref: &host->kref, release: ata_host_release);
5570}
5571EXPORT_SYMBOL_GPL(ata_host_put);
5572
5573/**
5574 * ata_host_alloc - allocate and init basic ATA host resources
5575 * @dev: generic device this host is associated with
5576 * @max_ports: maximum number of ATA ports associated with this host
5577 *
5578 * Allocate and initialize basic ATA host resources. LLD calls
5579 * this function to allocate a host, initializes it fully and
5580 * attaches it using ata_host_register().
5581 *
5582 * @max_ports ports are allocated and host->n_ports is
5583 * initialized to @max_ports. The caller is allowed to decrease
5584 * host->n_ports before calling ata_host_register(). The unused
5585 * ports will be automatically freed on registration.
5586 *
5587 * RETURNS:
5588 * Allocate ATA host on success, NULL on failure.
5589 *
5590 * LOCKING:
5591 * Inherited from calling layer (may sleep).
5592 */
5593struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5594{
5595 struct ata_host *host;
5596 size_t sz;
5597 int i;
5598 void *dr;
5599
5600 /* alloc a container for our list of ATA ports (buses) */
5601 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5602 host = kzalloc(size: sz, GFP_KERNEL);
5603 if (!host)
5604 return NULL;
5605
5606 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5607 goto err_free;
5608
5609 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5610 if (!dr)
5611 goto err_out;
5612
5613 devres_add(dev, res: dr);
5614 dev_set_drvdata(dev, data: host);
5615
5616 spin_lock_init(&host->lock);
5617 mutex_init(&host->eh_mutex);
5618 host->dev = dev;
5619 host->n_ports = max_ports;
5620 kref_init(kref: &host->kref);
5621
5622 /* allocate ports bound to this host */
5623 for (i = 0; i < max_ports; i++) {
5624 struct ata_port *ap;
5625
5626 ap = ata_port_alloc(host);
5627 if (!ap)
5628 goto err_out;
5629
5630 ap->port_no = i;
5631 host->ports[i] = ap;
5632 }
5633
5634 devres_remove_group(dev, NULL);
5635 return host;
5636
5637 err_out:
5638 devres_release_group(dev, NULL);
5639 err_free:
5640 kfree(objp: host);
5641 return NULL;
5642}
5643EXPORT_SYMBOL_GPL(ata_host_alloc);
5644
5645/**
5646 * ata_host_alloc_pinfo - alloc host and init with port_info array
5647 * @dev: generic device this host is associated with
5648 * @ppi: array of ATA port_info to initialize host with
5649 * @n_ports: number of ATA ports attached to this host
5650 *
5651 * Allocate ATA host and initialize with info from @ppi. If NULL
5652 * terminated, @ppi may contain fewer entries than @n_ports. The
5653 * last entry will be used for the remaining ports.
5654 *
5655 * RETURNS:
5656 * Allocate ATA host on success, NULL on failure.
5657 *
5658 * LOCKING:
5659 * Inherited from calling layer (may sleep).
5660 */
5661struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5662 const struct ata_port_info * const * ppi,
5663 int n_ports)
5664{
5665 const struct ata_port_info *pi = &ata_dummy_port_info;
5666 struct ata_host *host;
5667 int i, j;
5668
5669 host = ata_host_alloc(dev, n_ports);
5670 if (!host)
5671 return NULL;
5672
5673 for (i = 0, j = 0; i < host->n_ports; i++) {
5674 struct ata_port *ap = host->ports[i];
5675
5676 if (ppi[j])
5677 pi = ppi[j++];
5678
5679 ap->pio_mask = pi->pio_mask;
5680 ap->mwdma_mask = pi->mwdma_mask;
5681 ap->udma_mask = pi->udma_mask;
5682 ap->flags |= pi->flags;
5683 ap->link.flags |= pi->link_flags;
5684 ap->ops = pi->port_ops;
5685
5686 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5687 host->ops = pi->port_ops;
5688 }
5689
5690 return host;
5691}
5692EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5693
5694static void ata_host_stop(struct device *gendev, void *res)
5695{
5696 struct ata_host *host = dev_get_drvdata(dev: gendev);
5697 int i;
5698
5699 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5700
5701 for (i = 0; i < host->n_ports; i++) {
5702 struct ata_port *ap = host->ports[i];
5703
5704 if (ap->ops->port_stop)
5705 ap->ops->port_stop(ap);
5706 }
5707
5708 if (host->ops->host_stop)
5709 host->ops->host_stop(host);
5710}
5711
5712/**
5713 * ata_finalize_port_ops - finalize ata_port_operations
5714 * @ops: ata_port_operations to finalize
5715 *
5716 * An ata_port_operations can inherit from another ops and that
5717 * ops can again inherit from another. This can go on as many
5718 * times as necessary as long as there is no loop in the
5719 * inheritance chain.
5720 *
5721 * Ops tables are finalized when the host is started. NULL or
5722 * unspecified entries are inherited from the closet ancestor
5723 * which has the method and the entry is populated with it.
5724 * After finalization, the ops table directly points to all the
5725 * methods and ->inherits is no longer necessary and cleared.
5726 *
5727 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5728 *
5729 * LOCKING:
5730 * None.
5731 */
5732static void ata_finalize_port_ops(struct ata_port_operations *ops)
5733{
5734 static DEFINE_SPINLOCK(lock);
5735 const struct ata_port_operations *cur;
5736 void **begin = (void **)ops;
5737 void **end = (void **)&ops->inherits;
5738 void **pp;
5739
5740 if (!ops || !ops->inherits)
5741 return;
5742
5743 spin_lock(lock: &lock);
5744
5745 for (cur = ops->inherits; cur; cur = cur->inherits) {
5746 void **inherit = (void **)cur;
5747
5748 for (pp = begin; pp < end; pp++, inherit++)
5749 if (!*pp)
5750 *pp = *inherit;
5751 }
5752
5753 for (pp = begin; pp < end; pp++)
5754 if (IS_ERR(ptr: *pp))
5755 *pp = NULL;
5756
5757 ops->inherits = NULL;
5758
5759 spin_unlock(lock: &lock);
5760}
5761
5762/**
5763 * ata_host_start - start and freeze ports of an ATA host
5764 * @host: ATA host to start ports for
5765 *
5766 * Start and then freeze ports of @host. Started status is
5767 * recorded in host->flags, so this function can be called
5768 * multiple times. Ports are guaranteed to get started only
5769 * once. If host->ops is not initialized yet, it is set to the
5770 * first non-dummy port ops.
5771 *
5772 * LOCKING:
5773 * Inherited from calling layer (may sleep).
5774 *
5775 * RETURNS:
5776 * 0 if all ports are started successfully, -errno otherwise.
5777 */
5778int ata_host_start(struct ata_host *host)
5779{
5780 int have_stop = 0;
5781 void *start_dr = NULL;
5782 int i, rc;
5783
5784 if (host->flags & ATA_HOST_STARTED)
5785 return 0;
5786
5787 ata_finalize_port_ops(ops: host->ops);
5788
5789 for (i = 0; i < host->n_ports; i++) {
5790 struct ata_port *ap = host->ports[i];
5791
5792 ata_finalize_port_ops(ops: ap->ops);
5793
5794 if (!host->ops && !ata_port_is_dummy(ap))
5795 host->ops = ap->ops;
5796
5797 if (ap->ops->port_stop)
5798 have_stop = 1;
5799 }
5800
5801 if (host->ops && host->ops->host_stop)
5802 have_stop = 1;
5803
5804 if (have_stop) {
5805 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5806 if (!start_dr)
5807 return -ENOMEM;
5808 }
5809
5810 for (i = 0; i < host->n_ports; i++) {
5811 struct ata_port *ap = host->ports[i];
5812
5813 if (ap->ops->port_start) {
5814 rc = ap->ops->port_start(ap);
5815 if (rc) {
5816 if (rc != -ENODEV)
5817 dev_err(host->dev,
5818 "failed to start port %d (errno=%d)\n",
5819 i, rc);
5820 goto err_out;
5821 }
5822 }
5823 ata_eh_freeze_port(ap);
5824 }
5825
5826 if (start_dr)
5827 devres_add(dev: host->dev, res: start_dr);
5828 host->flags |= ATA_HOST_STARTED;
5829 return 0;
5830
5831 err_out:
5832 while (--i >= 0) {
5833 struct ata_port *ap = host->ports[i];
5834
5835 if (ap->ops->port_stop)
5836 ap->ops->port_stop(ap);
5837 }
5838 devres_free(res: start_dr);
5839 return rc;
5840}
5841EXPORT_SYMBOL_GPL(ata_host_start);
5842
5843/**
5844 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5845 * @host: host to initialize
5846 * @dev: device host is attached to
5847 * @ops: port_ops
5848 *
5849 */
5850void ata_host_init(struct ata_host *host, struct device *dev,
5851 struct ata_port_operations *ops)
5852{
5853 spin_lock_init(&host->lock);
5854 mutex_init(&host->eh_mutex);
5855 host->n_tags = ATA_MAX_QUEUE;
5856 host->dev = dev;
5857 host->ops = ops;
5858 kref_init(kref: &host->kref);
5859}
5860EXPORT_SYMBOL_GPL(ata_host_init);
5861
5862void ata_port_probe(struct ata_port *ap)
5863{
5864 struct ata_eh_info *ehi = &ap->link.eh_info;
5865 unsigned long flags;
5866
5867 /* kick EH for boot probing */
5868 spin_lock_irqsave(ap->lock, flags);
5869
5870 ehi->probe_mask |= ATA_ALL_DEVICES;
5871 ehi->action |= ATA_EH_RESET;
5872 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5873
5874 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5875 ap->pflags |= ATA_PFLAG_LOADING;
5876 ata_port_schedule_eh(ap);
5877
5878 spin_unlock_irqrestore(lock: ap->lock, flags);
5879}
5880EXPORT_SYMBOL_GPL(ata_port_probe);
5881
5882static void async_port_probe(void *data, async_cookie_t cookie)
5883{
5884 struct ata_port *ap = data;
5885
5886 /*
5887 * If we're not allowed to scan this host in parallel,
5888 * we need to wait until all previous scans have completed
5889 * before going further.
5890 * Jeff Garzik says this is only within a controller, so we
5891 * don't need to wait for port 0, only for later ports.
5892 */
5893 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5894 async_synchronize_cookie(cookie);
5895
5896 ata_port_probe(ap);
5897 ata_port_wait_eh(ap);
5898
5899 /* in order to keep device order, we need to synchronize at this point */
5900 async_synchronize_cookie(cookie);
5901
5902 ata_scsi_scan_host(ap, sync: 1);
5903}
5904
5905/**
5906 * ata_host_register - register initialized ATA host
5907 * @host: ATA host to register
5908 * @sht: template for SCSI host
5909 *
5910 * Register initialized ATA host. @host is allocated using
5911 * ata_host_alloc() and fully initialized by LLD. This function
5912 * starts ports, registers @host with ATA and SCSI layers and
5913 * probe registered devices.
5914 *
5915 * LOCKING:
5916 * Inherited from calling layer (may sleep).
5917 *
5918 * RETURNS:
5919 * 0 on success, -errno otherwise.
5920 */
5921int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5922{
5923 int i, rc;
5924
5925 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5926
5927 /* host must have been started */
5928 if (!(host->flags & ATA_HOST_STARTED)) {
5929 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5930 WARN_ON(1);
5931 return -EINVAL;
5932 }
5933
5934 /* Blow away unused ports. This happens when LLD can't
5935 * determine the exact number of ports to allocate at
5936 * allocation time.
5937 */
5938 for (i = host->n_ports; host->ports[i]; i++)
5939 kfree(objp: host->ports[i]);
5940
5941 /* give ports names and add SCSI hosts */
5942 for (i = 0; i < host->n_ports; i++) {
5943 host->ports[i]->print_id = atomic_inc_return(v: &ata_print_id);
5944 host->ports[i]->local_port_no = i + 1;
5945 }
5946
5947 /* Create associated sysfs transport objects */
5948 for (i = 0; i < host->n_ports; i++) {
5949 rc = ata_tport_add(parent: host->dev,ap: host->ports[i]);
5950 if (rc) {
5951 goto err_tadd;
5952 }
5953 }
5954
5955 rc = ata_scsi_add_hosts(host, sht);
5956 if (rc)
5957 goto err_tadd;
5958
5959 /* set cable, sata_spd_limit and report */
5960 for (i = 0; i < host->n_ports; i++) {
5961 struct ata_port *ap = host->ports[i];
5962 unsigned int xfer_mask;
5963
5964 /* set SATA cable type if still unset */
5965 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5966 ap->cbl = ATA_CBL_SATA;
5967
5968 /* init sata_spd_limit to the current value */
5969 sata_link_init_spd(link: &ap->link);
5970 if (ap->slave_link)
5971 sata_link_init_spd(link: ap->slave_link);
5972
5973 /* print per-port info to dmesg */
5974 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5975 ap->udma_mask);
5976
5977 if (!ata_port_is_dummy(ap)) {
5978 ata_port_info(ap, "%cATA max %s %s\n",
5979 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5980 ata_mode_string(xfer_mask),
5981 ap->link.eh_info.desc);
5982 ata_ehi_clear_desc(ehi: &ap->link.eh_info);
5983 } else
5984 ata_port_info(ap, "DUMMY\n");
5985 }
5986
5987 /* perform each probe asynchronously */
5988 for (i = 0; i < host->n_ports; i++) {
5989 struct ata_port *ap = host->ports[i];
5990 ap->cookie = async_schedule(func: async_port_probe, data: ap);
5991 }
5992
5993 return 0;
5994
5995 err_tadd:
5996 while (--i >= 0) {
5997 ata_tport_delete(ap: host->ports[i]);
5998 }
5999 return rc;
6000
6001}
6002EXPORT_SYMBOL_GPL(ata_host_register);
6003
6004/**
6005 * ata_host_activate - start host, request IRQ and register it
6006 * @host: target ATA host
6007 * @irq: IRQ to request
6008 * @irq_handler: irq_handler used when requesting IRQ
6009 * @irq_flags: irq_flags used when requesting IRQ
6010 * @sht: scsi_host_template to use when registering the host
6011 *
6012 * After allocating an ATA host and initializing it, most libata
6013 * LLDs perform three steps to activate the host - start host,
6014 * request IRQ and register it. This helper takes necessary
6015 * arguments and performs the three steps in one go.
6016 *
6017 * An invalid IRQ skips the IRQ registration and expects the host to
6018 * have set polling mode on the port. In this case, @irq_handler
6019 * should be NULL.
6020 *
6021 * LOCKING:
6022 * Inherited from calling layer (may sleep).
6023 *
6024 * RETURNS:
6025 * 0 on success, -errno otherwise.
6026 */
6027int ata_host_activate(struct ata_host *host, int irq,
6028 irq_handler_t irq_handler, unsigned long irq_flags,
6029 const struct scsi_host_template *sht)
6030{
6031 int i, rc;
6032 char *irq_desc;
6033
6034 rc = ata_host_start(host);
6035 if (rc)
6036 return rc;
6037
6038 /* Special case for polling mode */
6039 if (!irq) {
6040 WARN_ON(irq_handler);
6041 return ata_host_register(host, sht);
6042 }
6043
6044 irq_desc = devm_kasprintf(dev: host->dev, GFP_KERNEL, fmt: "%s[%s]",
6045 dev_driver_string(dev: host->dev),
6046 dev_name(dev: host->dev));
6047 if (!irq_desc)
6048 return -ENOMEM;
6049
6050 rc = devm_request_irq(dev: host->dev, irq, handler: irq_handler, irqflags: irq_flags,
6051 devname: irq_desc, dev_id: host);
6052 if (rc)
6053 return rc;
6054
6055 for (i = 0; i < host->n_ports; i++)
6056 ata_port_desc_misc(ap: host->ports[i], irq);
6057
6058 rc = ata_host_register(host, sht);
6059 /* if failed, just free the IRQ and leave ports alone */
6060 if (rc)
6061 devm_free_irq(dev: host->dev, irq, dev_id: host);
6062
6063 return rc;
6064}
6065EXPORT_SYMBOL_GPL(ata_host_activate);
6066
6067/**
6068 * ata_port_detach - Detach ATA port in preparation of device removal
6069 * @ap: ATA port to be detached
6070 *
6071 * Detach all ATA devices and the associated SCSI devices of @ap;
6072 * then, remove the associated SCSI host. @ap is guaranteed to
6073 * be quiescent on return from this function.
6074 *
6075 * LOCKING:
6076 * Kernel thread context (may sleep).
6077 */
6078static void ata_port_detach(struct ata_port *ap)
6079{
6080 unsigned long flags;
6081 struct ata_link *link;
6082 struct ata_device *dev;
6083
6084 /* Ensure ata_port probe has completed */
6085 async_synchronize_cookie(cookie: ap->cookie + 1);
6086
6087 /* Wait for any ongoing EH */
6088 ata_port_wait_eh(ap);
6089
6090 mutex_lock(&ap->scsi_scan_mutex);
6091 spin_lock_irqsave(ap->lock, flags);
6092
6093 /* Remove scsi devices */
6094 ata_for_each_link(link, ap, HOST_FIRST) {
6095 ata_for_each_dev(dev, link, ALL) {
6096 if (dev->sdev) {
6097 spin_unlock_irqrestore(lock: ap->lock, flags);
6098 scsi_remove_device(dev->sdev);
6099 spin_lock_irqsave(ap->lock, flags);
6100 dev->sdev = NULL;
6101 }
6102 }
6103 }
6104
6105 /* Tell EH to disable all devices */
6106 ap->pflags |= ATA_PFLAG_UNLOADING;
6107 ata_port_schedule_eh(ap);
6108
6109 spin_unlock_irqrestore(lock: ap->lock, flags);
6110 mutex_unlock(lock: &ap->scsi_scan_mutex);
6111
6112 /* wait till EH commits suicide */
6113 ata_port_wait_eh(ap);
6114
6115 /* it better be dead now */
6116 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6117
6118 cancel_delayed_work_sync(dwork: &ap->hotplug_task);
6119 cancel_delayed_work_sync(dwork: &ap->scsi_rescan_task);
6120
6121 /* clean up zpodd on port removal */
6122 ata_for_each_link(link, ap, HOST_FIRST) {
6123 ata_for_each_dev(dev, link, ALL) {
6124 if (zpodd_dev_enabled(dev))
6125 zpodd_exit(dev);
6126 }
6127 }
6128 if (ap->pmp_link) {
6129 int i;
6130 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6131 ata_tlink_delete(link: &ap->pmp_link[i]);
6132 }
6133 /* remove the associated SCSI host */
6134 scsi_remove_host(ap->scsi_host);
6135 ata_tport_delete(ap);
6136}
6137
6138/**
6139 * ata_host_detach - Detach all ports of an ATA host
6140 * @host: Host to detach
6141 *
6142 * Detach all ports of @host.
6143 *
6144 * LOCKING:
6145 * Kernel thread context (may sleep).
6146 */
6147void ata_host_detach(struct ata_host *host)
6148{
6149 int i;
6150
6151 for (i = 0; i < host->n_ports; i++)
6152 ata_port_detach(ap: host->ports[i]);
6153
6154 /* the host is dead now, dissociate ACPI */
6155 ata_acpi_dissociate(host);
6156}
6157EXPORT_SYMBOL_GPL(ata_host_detach);
6158
6159#ifdef CONFIG_PCI
6160
6161/**
6162 * ata_pci_remove_one - PCI layer callback for device removal
6163 * @pdev: PCI device that was removed
6164 *
6165 * PCI layer indicates to libata via this hook that hot-unplug or
6166 * module unload event has occurred. Detach all ports. Resource
6167 * release is handled via devres.
6168 *
6169 * LOCKING:
6170 * Inherited from PCI layer (may sleep).
6171 */
6172void ata_pci_remove_one(struct pci_dev *pdev)
6173{
6174 struct ata_host *host = pci_get_drvdata(pdev);
6175
6176 ata_host_detach(host);
6177}
6178EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6179
6180void ata_pci_shutdown_one(struct pci_dev *pdev)
6181{
6182 struct ata_host *host = pci_get_drvdata(pdev);
6183 struct ata_port *ap;
6184 unsigned long flags;
6185 int i;
6186
6187 /* Tell EH to disable all devices */
6188 for (i = 0; i < host->n_ports; i++) {
6189 ap = host->ports[i];
6190 spin_lock_irqsave(ap->lock, flags);
6191 ap->pflags |= ATA_PFLAG_UNLOADING;
6192 ata_port_schedule_eh(ap);
6193 spin_unlock_irqrestore(lock: ap->lock, flags);
6194 }
6195
6196 for (i = 0; i < host->n_ports; i++) {
6197 ap = host->ports[i];
6198
6199 /* Wait for EH to complete before freezing the port */
6200 ata_port_wait_eh(ap);
6201
6202 ap->pflags |= ATA_PFLAG_FROZEN;
6203
6204 /* Disable port interrupts */
6205 if (ap->ops->freeze)
6206 ap->ops->freeze(ap);
6207
6208 /* Stop the port DMA engines */
6209 if (ap->ops->port_stop)
6210 ap->ops->port_stop(ap);
6211 }
6212}
6213EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6214
6215/* move to PCI subsystem */
6216int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6217{
6218 unsigned long tmp = 0;
6219
6220 switch (bits->width) {
6221 case 1: {
6222 u8 tmp8 = 0;
6223 pci_read_config_byte(dev: pdev, where: bits->reg, val: &tmp8);
6224 tmp = tmp8;
6225 break;
6226 }
6227 case 2: {
6228 u16 tmp16 = 0;
6229 pci_read_config_word(dev: pdev, where: bits->reg, val: &tmp16);
6230 tmp = tmp16;
6231 break;
6232 }
6233 case 4: {
6234 u32 tmp32 = 0;
6235 pci_read_config_dword(dev: pdev, where: bits->reg, val: &tmp32);
6236 tmp = tmp32;
6237 break;
6238 }
6239
6240 default:
6241 return -EINVAL;
6242 }
6243
6244 tmp &= bits->mask;
6245
6246 return (tmp == bits->val) ? 1 : 0;
6247}
6248EXPORT_SYMBOL_GPL(pci_test_config_bits);
6249
6250#ifdef CONFIG_PM
6251void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6252{
6253 pci_save_state(dev: pdev);
6254 pci_disable_device(dev: pdev);
6255
6256 if (mesg.event & PM_EVENT_SLEEP)
6257 pci_set_power_state(dev: pdev, PCI_D3hot);
6258}
6259EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6260
6261int ata_pci_device_do_resume(struct pci_dev *pdev)
6262{
6263 int rc;
6264
6265 pci_set_power_state(dev: pdev, PCI_D0);
6266 pci_restore_state(dev: pdev);
6267
6268 rc = pcim_enable_device(pdev);
6269 if (rc) {
6270 dev_err(&pdev->dev,
6271 "failed to enable device after resume (%d)\n", rc);
6272 return rc;
6273 }
6274
6275 pci_set_master(dev: pdev);
6276 return 0;
6277}
6278EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6279
6280int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6281{
6282 struct ata_host *host = pci_get_drvdata(pdev);
6283
6284 ata_host_suspend(host, mesg);
6285
6286 ata_pci_device_do_suspend(pdev, mesg);
6287
6288 return 0;
6289}
6290EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6291
6292int ata_pci_device_resume(struct pci_dev *pdev)
6293{
6294 struct ata_host *host = pci_get_drvdata(pdev);
6295 int rc;
6296
6297 rc = ata_pci_device_do_resume(pdev);
6298 if (rc == 0)
6299 ata_host_resume(host);
6300 return rc;
6301}
6302EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6303#endif /* CONFIG_PM */
6304#endif /* CONFIG_PCI */
6305
6306/**
6307 * ata_platform_remove_one - Platform layer callback for device removal
6308 * @pdev: Platform device that was removed
6309 *
6310 * Platform layer indicates to libata via this hook that hot-unplug or
6311 * module unload event has occurred. Detach all ports. Resource
6312 * release is handled via devres.
6313 *
6314 * LOCKING:
6315 * Inherited from platform layer (may sleep).
6316 */
6317void ata_platform_remove_one(struct platform_device *pdev)
6318{
6319 struct ata_host *host = platform_get_drvdata(pdev);
6320
6321 ata_host_detach(host);
6322}
6323EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6324
6325#ifdef CONFIG_ATA_FORCE
6326
6327#define force_cbl(name, flag) \
6328 { #name, .cbl = (flag) }
6329
6330#define force_spd_limit(spd, val) \
6331 { #spd, .spd_limit = (val) }
6332
6333#define force_xfer(mode, shift) \
6334 { #mode, .xfer_mask = (1UL << (shift)) }
6335
6336#define force_lflag_on(name, flags) \
6337 { #name, .lflags_on = (flags) }
6338
6339#define force_lflag_onoff(name, flags) \
6340 { "no" #name, .lflags_on = (flags) }, \
6341 { #name, .lflags_off = (flags) }
6342
6343#define force_horkage_on(name, flag) \
6344 { #name, .horkage_on = (flag) }
6345
6346#define force_horkage_onoff(name, flag) \
6347 { "no" #name, .horkage_on = (flag) }, \
6348 { #name, .horkage_off = (flag) }
6349
6350static const struct ata_force_param force_tbl[] __initconst = {
6351 force_cbl(40c, ATA_CBL_PATA40),
6352 force_cbl(80c, ATA_CBL_PATA80),
6353 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6354 force_cbl(unk, ATA_CBL_PATA_UNK),
6355 force_cbl(ign, ATA_CBL_PATA_IGN),
6356 force_cbl(sata, ATA_CBL_SATA),
6357
6358 force_spd_limit(1.5Gbps, 1),
6359 force_spd_limit(3.0Gbps, 2),
6360
6361 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6362 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6363 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6364 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6365 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6366 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6367 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6368 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6369 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6370 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6371 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6372 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6373 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6374 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6375 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6376 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6377 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6378 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6379 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6380 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6381 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6382 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6383 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6384 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6385 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6386 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6387 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6388 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6389 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6390 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6391 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6392 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6393 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6394 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6395
6396 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6397 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6398 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6399 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6400 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6401
6402 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ),
6403 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM),
6404 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI),
6405
6406 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM),
6407 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM),
6408 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6409
6410 force_horkage_onoff(dma, ATA_HORKAGE_NODMA),
6411 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR),
6412 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6413
6414 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG),
6415 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG),
6416 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR),
6417
6418 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128),
6419 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024),
6420 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48),
6421
6422 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM),
6423 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER),
6424 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID),
6425 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA),
6426
6427 force_horkage_on(disable, ATA_HORKAGE_DISABLE),
6428};
6429
6430static int __init ata_parse_force_one(char **cur,
6431 struct ata_force_ent *force_ent,
6432 const char **reason)
6433{
6434 char *start = *cur, *p = *cur;
6435 char *id, *val, *endp;
6436 const struct ata_force_param *match_fp = NULL;
6437 int nr_matches = 0, i;
6438
6439 /* find where this param ends and update *cur */
6440 while (*p != '\0' && *p != ',')
6441 p++;
6442
6443 if (*p == '\0')
6444 *cur = p;
6445 else
6446 *cur = p + 1;
6447
6448 *p = '\0';
6449
6450 /* parse */
6451 p = strchr(start, ':');
6452 if (!p) {
6453 val = strstrip(str: start);
6454 goto parse_val;
6455 }
6456 *p = '\0';
6457
6458 id = strstrip(str: start);
6459 val = strstrip(str: p + 1);
6460
6461 /* parse id */
6462 p = strchr(id, '.');
6463 if (p) {
6464 *p++ = '\0';
6465 force_ent->device = simple_strtoul(p, &endp, 10);
6466 if (p == endp || *endp != '\0') {
6467 *reason = "invalid device";
6468 return -EINVAL;
6469 }
6470 }
6471
6472 force_ent->port = simple_strtoul(id, &endp, 10);
6473 if (id == endp || *endp != '\0') {
6474 *reason = "invalid port/link";
6475 return -EINVAL;
6476 }
6477
6478 parse_val:
6479 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6480 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6481 const struct ata_force_param *fp = &force_tbl[i];
6482
6483 if (strncasecmp(s1: val, s2: fp->name, strlen(val)))
6484 continue;
6485
6486 nr_matches++;
6487 match_fp = fp;
6488
6489 if (strcasecmp(s1: val, s2: fp->name) == 0) {
6490 nr_matches = 1;
6491 break;
6492 }
6493 }
6494
6495 if (!nr_matches) {
6496 *reason = "unknown value";
6497 return -EINVAL;
6498 }
6499 if (nr_matches > 1) {
6500 *reason = "ambiguous value";
6501 return -EINVAL;
6502 }
6503
6504 force_ent->param = *match_fp;
6505
6506 return 0;
6507}
6508
6509static void __init ata_parse_force_param(void)
6510{
6511 int idx = 0, size = 1;
6512 int last_port = -1, last_device = -1;
6513 char *p, *cur, *next;
6514
6515 /* Calculate maximum number of params and allocate ata_force_tbl */
6516 for (p = ata_force_param_buf; *p; p++)
6517 if (*p == ',')
6518 size++;
6519
6520 ata_force_tbl = kcalloc(n: size, size: sizeof(ata_force_tbl[0]), GFP_KERNEL);
6521 if (!ata_force_tbl) {
6522 printk(KERN_WARNING "ata: failed to extend force table, "
6523 "libata.force ignored\n");
6524 return;
6525 }
6526
6527 /* parse and populate the table */
6528 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6529 const char *reason = "";
6530 struct ata_force_ent te = { .port = -1, .device = -1 };
6531
6532 next = cur;
6533 if (ata_parse_force_one(cur: &next, force_ent: &te, reason: &reason)) {
6534 printk(KERN_WARNING "ata: failed to parse force "
6535 "parameter \"%s\" (%s)\n",
6536 cur, reason);
6537 continue;
6538 }
6539
6540 if (te.port == -1) {
6541 te.port = last_port;
6542 te.device = last_device;
6543 }
6544
6545 ata_force_tbl[idx++] = te;
6546
6547 last_port = te.port;
6548 last_device = te.device;
6549 }
6550
6551 ata_force_tbl_size = idx;
6552}
6553
6554static void ata_free_force_param(void)
6555{
6556 kfree(objp: ata_force_tbl);
6557}
6558#else
6559static inline void ata_parse_force_param(void) { }
6560static inline void ata_free_force_param(void) { }
6561#endif
6562
6563static int __init ata_init(void)
6564{
6565 int rc;
6566
6567 ata_parse_force_param();
6568
6569 rc = ata_sff_init();
6570 if (rc) {
6571 ata_free_force_param();
6572 return rc;
6573 }
6574
6575 libata_transport_init();
6576 ata_scsi_transport_template = ata_attach_transport();
6577 if (!ata_scsi_transport_template) {
6578 ata_sff_exit();
6579 rc = -ENOMEM;
6580 goto err_out;
6581 }
6582
6583 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6584 return 0;
6585
6586err_out:
6587 return rc;
6588}
6589
6590static void __exit ata_exit(void)
6591{
6592 ata_release_transport(t: ata_scsi_transport_template);
6593 libata_transport_exit();
6594 ata_sff_exit();
6595 ata_free_force_param();
6596}
6597
6598subsys_initcall(ata_init);
6599module_exit(ata_exit);
6600
6601static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6602
6603int ata_ratelimit(void)
6604{
6605 return __ratelimit(&ratelimit);
6606}
6607EXPORT_SYMBOL_GPL(ata_ratelimit);
6608
6609/**
6610 * ata_msleep - ATA EH owner aware msleep
6611 * @ap: ATA port to attribute the sleep to
6612 * @msecs: duration to sleep in milliseconds
6613 *
6614 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6615 * ownership is released before going to sleep and reacquired
6616 * after the sleep is complete. IOW, other ports sharing the
6617 * @ap->host will be allowed to own the EH while this task is
6618 * sleeping.
6619 *
6620 * LOCKING:
6621 * Might sleep.
6622 */
6623void ata_msleep(struct ata_port *ap, unsigned int msecs)
6624{
6625 bool owns_eh = ap && ap->host->eh_owner == current;
6626
6627 if (owns_eh)
6628 ata_eh_release(ap);
6629
6630 if (msecs < 20) {
6631 unsigned long usecs = msecs * USEC_PER_MSEC;
6632 usleep_range(min: usecs, max: usecs + 50);
6633 } else {
6634 msleep(msecs);
6635 }
6636
6637 if (owns_eh)
6638 ata_eh_acquire(ap);
6639}
6640EXPORT_SYMBOL_GPL(ata_msleep);
6641
6642/**
6643 * ata_wait_register - wait until register value changes
6644 * @ap: ATA port to wait register for, can be NULL
6645 * @reg: IO-mapped register
6646 * @mask: Mask to apply to read register value
6647 * @val: Wait condition
6648 * @interval: polling interval in milliseconds
6649 * @timeout: timeout in milliseconds
6650 *
6651 * Waiting for some bits of register to change is a common
6652 * operation for ATA controllers. This function reads 32bit LE
6653 * IO-mapped register @reg and tests for the following condition.
6654 *
6655 * (*@reg & mask) != val
6656 *
6657 * If the condition is met, it returns; otherwise, the process is
6658 * repeated after @interval_msec until timeout.
6659 *
6660 * LOCKING:
6661 * Kernel thread context (may sleep)
6662 *
6663 * RETURNS:
6664 * The final register value.
6665 */
6666u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6667 unsigned int interval, unsigned int timeout)
6668{
6669 unsigned long deadline;
6670 u32 tmp;
6671
6672 tmp = ioread32(reg);
6673
6674 /* Calculate timeout _after_ the first read to make sure
6675 * preceding writes reach the controller before starting to
6676 * eat away the timeout.
6677 */
6678 deadline = ata_deadline(from_jiffies: jiffies, timeout_msecs: timeout);
6679
6680 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6681 ata_msleep(ap, interval);
6682 tmp = ioread32(reg);
6683 }
6684
6685 return tmp;
6686}
6687EXPORT_SYMBOL_GPL(ata_wait_register);
6688
6689/*
6690 * Dummy port_ops
6691 */
6692static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6693{
6694 return AC_ERR_SYSTEM;
6695}
6696
6697static void ata_dummy_error_handler(struct ata_port *ap)
6698{
6699 /* truly dummy */
6700}
6701
6702struct ata_port_operations ata_dummy_port_ops = {
6703 .qc_prep = ata_noop_qc_prep,
6704 .qc_issue = ata_dummy_qc_issue,
6705 .error_handler = ata_dummy_error_handler,
6706 .sched_eh = ata_std_sched_eh,
6707 .end_eh = ata_std_end_eh,
6708};
6709EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6710
6711const struct ata_port_info ata_dummy_port_info = {
6712 .port_ops = &ata_dummy_port_ops,
6713};
6714EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6715
6716void ata_print_version(const struct device *dev, const char *version)
6717{
6718 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6719}
6720EXPORT_SYMBOL(ata_print_version);
6721
6722EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6723EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6724EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6725EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6726EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6727

source code of linux/drivers/ata/libata-core.c