1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28/**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194#include <linux/anon_inodes.h>
195#include <linux/nospec.h>
196#include <linux/sizes.h>
197#include <linux/uuid.h>
198
199#include "gem/i915_gem_context.h"
200#include "gem/i915_gem_internal.h"
201#include "gt/intel_engine_pm.h"
202#include "gt/intel_engine_regs.h"
203#include "gt/intel_engine_user.h"
204#include "gt/intel_execlists_submission.h"
205#include "gt/intel_gpu_commands.h"
206#include "gt/intel_gt.h"
207#include "gt/intel_gt_clock_utils.h"
208#include "gt/intel_gt_mcr.h"
209#include "gt/intel_gt_print.h"
210#include "gt/intel_gt_regs.h"
211#include "gt/intel_lrc.h"
212#include "gt/intel_lrc_reg.h"
213#include "gt/intel_rc6.h"
214#include "gt/intel_ring.h"
215#include "gt/uc/intel_guc_slpc.h"
216
217#include "i915_drv.h"
218#include "i915_file_private.h"
219#include "i915_perf.h"
220#include "i915_perf_oa_regs.h"
221#include "i915_reg.h"
222
223/* HW requires this to be a power of two, between 128k and 16M, though driver
224 * is currently generally designed assuming the largest 16M size is used such
225 * that the overflow cases are unlikely in normal operation.
226 */
227#define OA_BUFFER_SIZE SZ_16M
228
229#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
230
231/**
232 * DOC: OA Tail Pointer Race
233 *
234 * There's a HW race condition between OA unit tail pointer register updates and
235 * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 * been written out to the OA buffer so far (in terms of what's visible to the
237 * CPU).
238 *
239 * Although this can be observed explicitly while copying reports to userspace
240 * by checking for a zeroed report-id field in tail reports, we want to account
241 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
242 * redundant read() attempts.
243 *
244 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
245 * in the OA buffer, starting from the tail reported by the HW until we find a
246 * report with its first 2 dwords not 0 meaning its previous report is
247 * completely in memory and ready to be read. Those dwords are also set to 0
248 * once read and the whole buffer is cleared upon OA buffer initialization. The
249 * first dword is the reason for this report while the second is the timestamp,
250 * making the chances of having those 2 fields at 0 fairly unlikely. A more
251 * detailed explanation is available in oa_buffer_check_unlocked().
252 *
253 * Most of the implementation details for this workaround are in
254 * oa_buffer_check_unlocked() and _append_oa_reports()
255 *
256 * Note for posterity: previously the driver used to define an effective tail
257 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
258 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
259 * This was flawed considering that the OA unit may also automatically generate
260 * non-periodic reports (such as on context switch) or the OA unit may be
261 * enabled without any periodic sampling.
262 */
263#define OA_TAIL_MARGIN_NSEC 100000ULL
264#define INVALID_TAIL_PTR 0xffffffff
265
266/* The default frequency for checking whether the OA unit has written new
267 * reports to the circular OA buffer...
268 */
269#define DEFAULT_POLL_FREQUENCY_HZ 200
270#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
271
272/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
273static u32 i915_perf_stream_paranoid = true;
274
275/* The maximum exponent the hardware accepts is 63 (essentially it selects one
276 * of the 64bit timestamp bits to trigger reports from) but there's currently
277 * no known use case for sampling as infrequently as once per 47 thousand years.
278 *
279 * Since the timestamps included in OA reports are only 32bits it seems
280 * reasonable to limit the OA exponent where it's still possible to account for
281 * overflow in OA report timestamps.
282 */
283#define OA_EXPONENT_MAX 31
284
285#define INVALID_CTX_ID 0xffffffff
286
287/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
288#define OAREPORT_REASON_MASK 0x3f
289#define OAREPORT_REASON_MASK_EXTENDED 0x7f
290#define OAREPORT_REASON_SHIFT 19
291#define OAREPORT_REASON_TIMER (1<<0)
292#define OAREPORT_REASON_CTX_SWITCH (1<<3)
293#define OAREPORT_REASON_CLK_RATIO (1<<5)
294
295#define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
296
297/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
298 *
299 * The highest sampling frequency we can theoretically program the OA unit
300 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
301 *
302 * Initialized just before we register the sysctl parameter.
303 */
304static int oa_sample_rate_hard_limit;
305
306/* Theoretically we can program the OA unit to sample every 160ns but don't
307 * allow that by default unless root...
308 *
309 * The default threshold of 100000Hz is based on perf's similar
310 * kernel.perf_event_max_sample_rate sysctl parameter.
311 */
312static u32 i915_oa_max_sample_rate = 100000;
313
314/* XXX: beware if future OA HW adds new report formats that the current
315 * code assumes all reports have a power-of-two size and ~(size - 1) can
316 * be used as a mask to align the OA tail pointer.
317 */
318static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
319 [I915_OA_FORMAT_A13] = { 0, 64 },
320 [I915_OA_FORMAT_A29] = { .format: 1, .size: 128 },
321 [I915_OA_FORMAT_A13_B8_C8] = { .format: 2, .size: 128 },
322 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
323 [I915_OA_FORMAT_B4_C8] = { .format: 4, .size: 64 },
324 [I915_OA_FORMAT_A45_B8_C8] = { .format: 5, .size: 256 },
325 [I915_OA_FORMAT_B4_C8_A16] = { .format: 6, .size: 128 },
326 [I915_OA_FORMAT_C4_B8] = { .format: 7, .size: 64 },
327 [I915_OA_FORMAT_A12] = { .format: 0, .size: 64 },
328 [I915_OA_FORMAT_A12_B8_C8] = { .format: 2, .size: 128 },
329 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { .format: 5, .size: 256 },
330 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { .format: 5, .size: 256 },
331 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { .format: 5, .size: 256 },
332 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { .format: 1, .size: 192, .type: TYPE_OAM, .header: HDR_64_BIT },
333 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { .format: 2, .size: 128, .type: TYPE_OAM, .header: HDR_64_BIT },
334};
335
336static const u32 mtl_oa_base[] = {
337 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
338};
339
340#define SAMPLE_OA_REPORT (1<<0)
341
342/**
343 * struct perf_open_properties - for validated properties given to open a stream
344 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
345 * @single_context: Whether a single or all gpu contexts should be monitored
346 * @hold_preemption: Whether the preemption is disabled for the filtered
347 * context
348 * @ctx_handle: A gem ctx handle for use with @single_context
349 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
350 * @oa_format: An OA unit HW report format
351 * @oa_periodic: Whether to enable periodic OA unit sampling
352 * @oa_period_exponent: The OA unit sampling period is derived from this
353 * @engine: The engine (typically rcs0) being monitored by the OA unit
354 * @has_sseu: Whether @sseu was specified by userspace
355 * @sseu: internal SSEU configuration computed either from the userspace
356 * specified configuration in the opening parameters or a default value
357 * (see get_default_sseu_config())
358 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
359 * data availability
360 *
361 * As read_properties_unlocked() enumerates and validates the properties given
362 * to open a stream of metrics the configuration is built up in the structure
363 * which starts out zero initialized.
364 */
365struct perf_open_properties {
366 u32 sample_flags;
367
368 u64 single_context:1;
369 u64 hold_preemption:1;
370 u64 ctx_handle;
371
372 /* OA sampling state */
373 int metrics_set;
374 int oa_format;
375 bool oa_periodic;
376 int oa_period_exponent;
377
378 struct intel_engine_cs *engine;
379
380 bool has_sseu;
381 struct intel_sseu sseu;
382
383 u64 poll_oa_period;
384};
385
386struct i915_oa_config_bo {
387 struct llist_node node;
388
389 struct i915_oa_config *oa_config;
390 struct i915_vma *vma;
391};
392
393static struct ctl_table_header *sysctl_header;
394
395static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
396
397void i915_oa_config_release(struct kref *ref)
398{
399 struct i915_oa_config *oa_config =
400 container_of(ref, typeof(*oa_config), ref);
401
402 kfree(objp: oa_config->flex_regs);
403 kfree(objp: oa_config->b_counter_regs);
404 kfree(objp: oa_config->mux_regs);
405
406 kfree_rcu(oa_config, rcu);
407}
408
409struct i915_oa_config *
410i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
411{
412 struct i915_oa_config *oa_config;
413
414 rcu_read_lock();
415 oa_config = idr_find(&perf->metrics_idr, id: metrics_set);
416 if (oa_config)
417 oa_config = i915_oa_config_get(oa_config);
418 rcu_read_unlock();
419
420 return oa_config;
421}
422
423static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
424{
425 i915_oa_config_put(oa_config: oa_bo->oa_config);
426 i915_vma_put(vma: oa_bo->vma);
427 kfree(objp: oa_bo);
428}
429
430static inline const
431struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
432{
433 return &stream->engine->oa_group->regs;
434}
435
436static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
437{
438 struct intel_uncore *uncore = stream->uncore;
439
440 return intel_uncore_read(uncore, reg: __oa_regs(stream)->oa_tail_ptr) &
441 GEN12_OAG_OATAILPTR_MASK;
442}
443
444static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
445{
446 struct intel_uncore *uncore = stream->uncore;
447
448 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
449}
450
451static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
452{
453 struct intel_uncore *uncore = stream->uncore;
454 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
455
456 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
457}
458
459#define oa_report_header_64bit(__s) \
460 ((__s)->oa_buffer.format->header == HDR_64_BIT)
461
462static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
463{
464 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
465}
466
467static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
468{
469 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
470 (GRAPHICS_VER(stream->perf->i915) == 12 ?
471 OAREPORT_REASON_MASK_EXTENDED :
472 OAREPORT_REASON_MASK);
473}
474
475static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
476{
477 if (oa_report_header_64bit(stream))
478 *(u64 *)report = 0;
479 else
480 *report = 0;
481}
482
483static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
484{
485 return !(oa_report_id(stream, report) &
486 stream->perf->gen8_valid_ctx_bit);
487}
488
489static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490{
491 return oa_report_header_64bit(stream) ?
492 *((u64 *)report + 1) :
493 *((u32 *)report + 1);
494}
495
496static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497{
498 if (oa_report_header_64bit(stream))
499 *(u64 *)&report[2] = 0;
500 else
501 report[1] = 0;
502}
503
504static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505{
506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507
508 return ctx_id & stream->specific_ctx_id_mask;
509}
510
511static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512{
513 if (oa_report_header_64bit(stream))
514 report[4] = INVALID_CTX_ID;
515 else
516 report[2] = INVALID_CTX_ID;
517}
518
519/**
520 * oa_buffer_check_unlocked - check for data and update tail ptr state
521 * @stream: i915 stream instance
522 *
523 * This is either called via fops (for blocking reads in user ctx) or the poll
524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525 * if there is data available for userspace to read.
526 *
527 * This function is central to providing a workaround for the OA unit tail
528 * pointer having a race with respect to what data is visible to the CPU.
529 * It is responsible for reading tail pointers from the hardware and giving
530 * the pointers time to 'age' before they are made available for reading.
531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532 *
533 * Besides returning true when there is data available to read() this function
534 * also updates the tail in the oa_buffer object.
535 *
536 * Note: It's safe to read OA config state here unlocked, assuming that this is
537 * only called while the stream is enabled, while the global OA configuration
538 * can't be modified.
539 *
540 * Returns: %true if the OA buffer contains data, else %false
541 */
542static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
543{
544 u32 gtt_offset = i915_ggtt_offset(vma: stream->oa_buffer.vma);
545 int report_size = stream->oa_buffer.format->size;
546 u32 tail, hw_tail;
547 unsigned long flags;
548 bool pollin;
549 u32 partial_report_size;
550
551 /* We have to consider the (unlikely) possibility that read() errors
552 * could result in an OA buffer reset which might reset the head and
553 * tail state.
554 */
555 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
556
557 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
558 hw_tail -= gtt_offset;
559
560 /* The tail pointer increases in 64 byte increments, not in report_size
561 * steps. Also the report size may not be a power of 2. Compute
562 * potentially partially landed report in the OA buffer
563 */
564 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
565 partial_report_size %= report_size;
566
567 /* Subtract partial amount off the tail */
568 hw_tail = OA_TAKEN(hw_tail, partial_report_size);
569
570 tail = hw_tail;
571
572 /* Walk the stream backward until we find a report with report
573 * id and timestmap not at 0. Since the circular buffer pointers
574 * progress by increments of 64 bytes and that reports can be up
575 * to 256 bytes long, we can't tell whether a report has fully
576 * landed in memory before the report id and timestamp of the
577 * following report have effectively landed.
578 *
579 * This is assuming that the writes of the OA unit land in
580 * memory in the order they were written to.
581 * If not : (╯°□°)╯︵ ┻━┻
582 */
583 while (OA_TAKEN(tail, stream->oa_buffer.tail) >= report_size) {
584 void *report = stream->oa_buffer.vaddr + tail;
585
586 if (oa_report_id(stream, report) ||
587 oa_timestamp(stream, report))
588 break;
589
590 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
591 }
592
593 if (OA_TAKEN(hw_tail, tail) > report_size &&
594 __ratelimit(&stream->perf->tail_pointer_race))
595 drm_notice(&stream->uncore->i915->drm,
596 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
597 stream->oa_buffer.head, tail, hw_tail);
598
599 stream->oa_buffer.tail = tail;
600
601 pollin = OA_TAKEN(stream->oa_buffer.tail,
602 stream->oa_buffer.head) >= report_size;
603
604 spin_unlock_irqrestore(lock: &stream->oa_buffer.ptr_lock, flags);
605
606 return pollin;
607}
608
609/**
610 * append_oa_status - Appends a status record to a userspace read() buffer.
611 * @stream: An i915-perf stream opened for OA metrics
612 * @buf: destination buffer given by userspace
613 * @count: the number of bytes userspace wants to read
614 * @offset: (inout): the current position for writing into @buf
615 * @type: The kind of status to report to userspace
616 *
617 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
618 * into the userspace read() buffer.
619 *
620 * The @buf @offset will only be updated on success.
621 *
622 * Returns: 0 on success, negative error code on failure.
623 */
624static int append_oa_status(struct i915_perf_stream *stream,
625 char __user *buf,
626 size_t count,
627 size_t *offset,
628 enum drm_i915_perf_record_type type)
629{
630 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
631
632 if ((count - *offset) < header.size)
633 return -ENOSPC;
634
635 if (copy_to_user(to: buf + *offset, from: &header, n: sizeof(header)))
636 return -EFAULT;
637
638 (*offset) += header.size;
639
640 return 0;
641}
642
643/**
644 * append_oa_sample - Copies single OA report into userspace read() buffer.
645 * @stream: An i915-perf stream opened for OA metrics
646 * @buf: destination buffer given by userspace
647 * @count: the number of bytes userspace wants to read
648 * @offset: (inout): the current position for writing into @buf
649 * @report: A single OA report to (optionally) include as part of the sample
650 *
651 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
652 * properties when opening a stream, tracked as `stream->sample_flags`. This
653 * function copies the requested components of a single sample to the given
654 * read() @buf.
655 *
656 * The @buf @offset will only be updated on success.
657 *
658 * Returns: 0 on success, negative error code on failure.
659 */
660static int append_oa_sample(struct i915_perf_stream *stream,
661 char __user *buf,
662 size_t count,
663 size_t *offset,
664 const u8 *report)
665{
666 int report_size = stream->oa_buffer.format->size;
667 struct drm_i915_perf_record_header header;
668 int report_size_partial;
669 u8 *oa_buf_end;
670
671 header.type = DRM_I915_PERF_RECORD_SAMPLE;
672 header.pad = 0;
673 header.size = stream->sample_size;
674
675 if ((count - *offset) < header.size)
676 return -ENOSPC;
677
678 buf += *offset;
679 if (copy_to_user(to: buf, from: &header, n: sizeof(header)))
680 return -EFAULT;
681 buf += sizeof(header);
682
683 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
684 report_size_partial = oa_buf_end - report;
685
686 if (report_size_partial < report_size) {
687 if (copy_to_user(to: buf, from: report, n: report_size_partial))
688 return -EFAULT;
689 buf += report_size_partial;
690
691 if (copy_to_user(to: buf, from: stream->oa_buffer.vaddr,
692 n: report_size - report_size_partial))
693 return -EFAULT;
694 } else if (copy_to_user(to: buf, from: report, n: report_size)) {
695 return -EFAULT;
696 }
697
698 (*offset) += header.size;
699
700 return 0;
701}
702
703/**
704 * gen8_append_oa_reports - Copies all buffered OA reports into
705 * userspace read() buffer.
706 * @stream: An i915-perf stream opened for OA metrics
707 * @buf: destination buffer given by userspace
708 * @count: the number of bytes userspace wants to read
709 * @offset: (inout): the current position for writing into @buf
710 *
711 * Notably any error condition resulting in a short read (-%ENOSPC or
712 * -%EFAULT) will be returned even though one or more records may
713 * have been successfully copied. In this case it's up to the caller
714 * to decide if the error should be squashed before returning to
715 * userspace.
716 *
717 * Note: reports are consumed from the head, and appended to the
718 * tail, so the tail chases the head?... If you think that's mad
719 * and back-to-front you're not alone, but this follows the
720 * Gen PRM naming convention.
721 *
722 * Returns: 0 on success, negative error code on failure.
723 */
724static int gen8_append_oa_reports(struct i915_perf_stream *stream,
725 char __user *buf,
726 size_t count,
727 size_t *offset)
728{
729 struct intel_uncore *uncore = stream->uncore;
730 int report_size = stream->oa_buffer.format->size;
731 u8 *oa_buf_base = stream->oa_buffer.vaddr;
732 u32 gtt_offset = i915_ggtt_offset(vma: stream->oa_buffer.vma);
733 u32 mask = (OA_BUFFER_SIZE - 1);
734 size_t start_offset = *offset;
735 unsigned long flags;
736 u32 head, tail;
737 int ret = 0;
738
739 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
740 return -EIO;
741
742 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
743
744 head = stream->oa_buffer.head;
745 tail = stream->oa_buffer.tail;
746
747 spin_unlock_irqrestore(lock: &stream->oa_buffer.ptr_lock, flags);
748
749 /*
750 * An out of bounds or misaligned head or tail pointer implies a driver
751 * bug since we validate + align the tail pointers we read from the
752 * hardware and we are in full control of the head pointer which should
753 * only be incremented by multiples of the report size.
754 */
755 if (drm_WARN_ONCE(&uncore->i915->drm,
756 head > OA_BUFFER_SIZE ||
757 tail > OA_BUFFER_SIZE,
758 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
759 head, tail))
760 return -EIO;
761
762
763 for (/* none */;
764 OA_TAKEN(tail, head);
765 head = (head + report_size) & mask) {
766 u8 *report = oa_buf_base + head;
767 u32 *report32 = (void *)report;
768 u32 ctx_id;
769 u64 reason;
770
771 /*
772 * The reason field includes flags identifying what
773 * triggered this specific report (mostly timer
774 * triggered or e.g. due to a context switch).
775 */
776 reason = oa_report_reason(stream, report);
777 ctx_id = oa_context_id(stream, report: report32);
778
779 /*
780 * Squash whatever is in the CTX_ID field if it's marked as
781 * invalid to be sure we avoid false-positive, single-context
782 * filtering below...
783 *
784 * Note: that we don't clear the valid_ctx_bit so userspace can
785 * understand that the ID has been squashed by the kernel.
786 *
787 * Update:
788 *
789 * On XEHP platforms the behavior of context id valid bit has
790 * changed compared to prior platforms. To describe this, we
791 * define a few terms:
792 *
793 * context-switch-report: This is a report with the reason type
794 * being context-switch. It is generated when a context switches
795 * out.
796 *
797 * context-valid-bit: A bit that is set in the report ID field
798 * to indicate that a valid context has been loaded.
799 *
800 * gpu-idle: A condition characterized by a
801 * context-switch-report with context-valid-bit set to 0.
802 *
803 * On prior platforms, context-id-valid bit is set to 0 only
804 * when GPU goes idle. In all other reports, it is set to 1.
805 *
806 * On XEHP platforms, context-valid-bit is set to 1 in a context
807 * switch report if a new context switched in. For all other
808 * reports it is set to 0.
809 *
810 * This change in behavior causes an issue with MMIO triggered
811 * reports. MMIO triggered reports have the markers in the
812 * context ID field and the context-valid-bit is 0. The logic
813 * below to squash the context ID would render the report
814 * useless since the user will not be able to find it in the OA
815 * buffer. Since MMIO triggered reports exist only on XEHP,
816 * we should avoid squashing these for XEHP platforms.
817 */
818
819 if (oa_report_ctx_invalid(stream, report) &&
820 GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 50)) {
821 ctx_id = INVALID_CTX_ID;
822 oa_context_id_squash(stream, report: report32);
823 }
824
825 /*
826 * NB: For Gen 8 the OA unit no longer supports clock gating
827 * off for a specific context and the kernel can't securely
828 * stop the counters from updating as system-wide / global
829 * values.
830 *
831 * Automatic reports now include a context ID so reports can be
832 * filtered on the cpu but it's not worth trying to
833 * automatically subtract/hide counter progress for other
834 * contexts while filtering since we can't stop userspace
835 * issuing MI_REPORT_PERF_COUNT commands which would still
836 * provide a side-band view of the real values.
837 *
838 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
839 * to normalize counters for a single filtered context then it
840 * needs be forwarded bookend context-switch reports so that it
841 * can track switches in between MI_REPORT_PERF_COUNT commands
842 * and can itself subtract/ignore the progress of counters
843 * associated with other contexts. Note that the hardware
844 * automatically triggers reports when switching to a new
845 * context which are tagged with the ID of the newly active
846 * context. To avoid the complexity (and likely fragility) of
847 * reading ahead while parsing reports to try and minimize
848 * forwarding redundant context switch reports (i.e. between
849 * other, unrelated contexts) we simply elect to forward them
850 * all.
851 *
852 * We don't rely solely on the reason field to identify context
853 * switches since it's not-uncommon for periodic samples to
854 * identify a switch before any 'context switch' report.
855 */
856 if (!stream->ctx ||
857 stream->specific_ctx_id == ctx_id ||
858 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
859 reason & OAREPORT_REASON_CTX_SWITCH) {
860
861 /*
862 * While filtering for a single context we avoid
863 * leaking the IDs of other contexts.
864 */
865 if (stream->ctx &&
866 stream->specific_ctx_id != ctx_id) {
867 oa_context_id_squash(stream, report: report32);
868 }
869
870 ret = append_oa_sample(stream, buf, count, offset,
871 report);
872 if (ret)
873 break;
874
875 stream->oa_buffer.last_ctx_id = ctx_id;
876 }
877
878 if (is_power_of_2(n: report_size)) {
879 /*
880 * Clear out the report id and timestamp as a means
881 * to detect unlanded reports.
882 */
883 oa_report_id_clear(stream, report: report32);
884 oa_timestamp_clear(stream, report: report32);
885 } else {
886 u8 *oa_buf_end = stream->oa_buffer.vaddr +
887 OA_BUFFER_SIZE;
888 u32 part = oa_buf_end - (u8 *)report32;
889
890 /* Zero out the entire report */
891 if (report_size <= part) {
892 memset(report32, 0, report_size);
893 } else {
894 memset(report32, 0, part);
895 memset(oa_buf_base, 0, report_size - part);
896 }
897 }
898 }
899
900 if (start_offset != *offset) {
901 i915_reg_t oaheadptr;
902
903 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
904 __oa_regs(stream)->oa_head_ptr :
905 GEN8_OAHEADPTR;
906
907 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
908
909 /*
910 * We removed the gtt_offset for the copy loop above, indexing
911 * relative to oa_buf_base so put back here...
912 */
913 intel_uncore_write(uncore, reg: oaheadptr,
914 val: (head + gtt_offset) & GEN12_OAG_OAHEADPTR_MASK);
915 stream->oa_buffer.head = head;
916
917 spin_unlock_irqrestore(lock: &stream->oa_buffer.ptr_lock, flags);
918 }
919
920 return ret;
921}
922
923/**
924 * gen8_oa_read - copy status records then buffered OA reports
925 * @stream: An i915-perf stream opened for OA metrics
926 * @buf: destination buffer given by userspace
927 * @count: the number of bytes userspace wants to read
928 * @offset: (inout): the current position for writing into @buf
929 *
930 * Checks OA unit status registers and if necessary appends corresponding
931 * status records for userspace (such as for a buffer full condition) and then
932 * initiate appending any buffered OA reports.
933 *
934 * Updates @offset according to the number of bytes successfully copied into
935 * the userspace buffer.
936 *
937 * NB: some data may be successfully copied to the userspace buffer
938 * even if an error is returned, and this is reflected in the
939 * updated @offset.
940 *
941 * Returns: zero on success or a negative error code
942 */
943static int gen8_oa_read(struct i915_perf_stream *stream,
944 char __user *buf,
945 size_t count,
946 size_t *offset)
947{
948 struct intel_uncore *uncore = stream->uncore;
949 u32 oastatus;
950 i915_reg_t oastatus_reg;
951 int ret;
952
953 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
954 return -EIO;
955
956 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
957 __oa_regs(stream)->oa_status :
958 GEN8_OASTATUS;
959
960 oastatus = intel_uncore_read(uncore, reg: oastatus_reg);
961
962 /*
963 * We treat OABUFFER_OVERFLOW as a significant error:
964 *
965 * Although theoretically we could handle this more gracefully
966 * sometimes, some Gens don't correctly suppress certain
967 * automatically triggered reports in this condition and so we
968 * have to assume that old reports are now being trampled
969 * over.
970 *
971 * Considering how we don't currently give userspace control
972 * over the OA buffer size and always configure a large 16MB
973 * buffer, then a buffer overflow does anyway likely indicate
974 * that something has gone quite badly wrong.
975 */
976 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
977 ret = append_oa_status(stream, buf, count, offset,
978 type: DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
979 if (ret)
980 return ret;
981
982 drm_dbg(&stream->perf->i915->drm,
983 "OA buffer overflow (exponent = %d): force restart\n",
984 stream->period_exponent);
985
986 stream->perf->ops.oa_disable(stream);
987 stream->perf->ops.oa_enable(stream);
988
989 /*
990 * Note: .oa_enable() is expected to re-init the oabuffer and
991 * reset GEN8_OASTATUS for us
992 */
993 oastatus = intel_uncore_read(uncore, reg: oastatus_reg);
994 }
995
996 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
997 ret = append_oa_status(stream, buf, count, offset,
998 type: DRM_I915_PERF_RECORD_OA_REPORT_LOST);
999 if (ret)
1000 return ret;
1001
1002 intel_uncore_rmw(uncore, reg: oastatus_reg,
1003 GEN8_OASTATUS_COUNTER_OVERFLOW |
1004 GEN8_OASTATUS_REPORT_LOST,
1005 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
1006 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
1007 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
1008 }
1009
1010 return gen8_append_oa_reports(stream, buf, count, offset);
1011}
1012
1013/**
1014 * gen7_append_oa_reports - Copies all buffered OA reports into
1015 * userspace read() buffer.
1016 * @stream: An i915-perf stream opened for OA metrics
1017 * @buf: destination buffer given by userspace
1018 * @count: the number of bytes userspace wants to read
1019 * @offset: (inout): the current position for writing into @buf
1020 *
1021 * Notably any error condition resulting in a short read (-%ENOSPC or
1022 * -%EFAULT) will be returned even though one or more records may
1023 * have been successfully copied. In this case it's up to the caller
1024 * to decide if the error should be squashed before returning to
1025 * userspace.
1026 *
1027 * Note: reports are consumed from the head, and appended to the
1028 * tail, so the tail chases the head?... If you think that's mad
1029 * and back-to-front you're not alone, but this follows the
1030 * Gen PRM naming convention.
1031 *
1032 * Returns: 0 on success, negative error code on failure.
1033 */
1034static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1035 char __user *buf,
1036 size_t count,
1037 size_t *offset)
1038{
1039 struct intel_uncore *uncore = stream->uncore;
1040 int report_size = stream->oa_buffer.format->size;
1041 u8 *oa_buf_base = stream->oa_buffer.vaddr;
1042 u32 gtt_offset = i915_ggtt_offset(vma: stream->oa_buffer.vma);
1043 u32 mask = (OA_BUFFER_SIZE - 1);
1044 size_t start_offset = *offset;
1045 unsigned long flags;
1046 u32 head, tail;
1047 int ret = 0;
1048
1049 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1050 return -EIO;
1051
1052 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1053
1054 head = stream->oa_buffer.head;
1055 tail = stream->oa_buffer.tail;
1056
1057 spin_unlock_irqrestore(lock: &stream->oa_buffer.ptr_lock, flags);
1058
1059 /* An out of bounds or misaligned head or tail pointer implies a driver
1060 * bug since we validate + align the tail pointers we read from the
1061 * hardware and we are in full control of the head pointer which should
1062 * only be incremented by multiples of the report size (notably also
1063 * all a power of two).
1064 */
1065 if (drm_WARN_ONCE(&uncore->i915->drm,
1066 head > OA_BUFFER_SIZE || head % report_size ||
1067 tail > OA_BUFFER_SIZE || tail % report_size,
1068 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1069 head, tail))
1070 return -EIO;
1071
1072
1073 for (/* none */;
1074 OA_TAKEN(tail, head);
1075 head = (head + report_size) & mask) {
1076 u8 *report = oa_buf_base + head;
1077 u32 *report32 = (void *)report;
1078
1079 /* All the report sizes factor neatly into the buffer
1080 * size so we never expect to see a report split
1081 * between the beginning and end of the buffer.
1082 *
1083 * Given the initial alignment check a misalignment
1084 * here would imply a driver bug that would result
1085 * in an overrun.
1086 */
1087 if (drm_WARN_ON(&uncore->i915->drm,
1088 (OA_BUFFER_SIZE - head) < report_size)) {
1089 drm_err(&uncore->i915->drm,
1090 "Spurious OA head ptr: non-integral report offset\n");
1091 break;
1092 }
1093
1094 /* The report-ID field for periodic samples includes
1095 * some undocumented flags related to what triggered
1096 * the report and is never expected to be zero so we
1097 * can check that the report isn't invalid before
1098 * copying it to userspace...
1099 */
1100 if (report32[0] == 0) {
1101 if (__ratelimit(&stream->perf->spurious_report_rs))
1102 drm_notice(&uncore->i915->drm,
1103 "Skipping spurious, invalid OA report\n");
1104 continue;
1105 }
1106
1107 ret = append_oa_sample(stream, buf, count, offset, report);
1108 if (ret)
1109 break;
1110
1111 /* Clear out the first 2 dwords as a mean to detect unlanded
1112 * reports.
1113 */
1114 report32[0] = 0;
1115 report32[1] = 0;
1116 }
1117
1118 if (start_offset != *offset) {
1119 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1120
1121 intel_uncore_write(uncore, GEN7_OASTATUS2,
1122 val: ((head + gtt_offset) & GEN7_OASTATUS2_HEAD_MASK) |
1123 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1124 stream->oa_buffer.head = head;
1125
1126 spin_unlock_irqrestore(lock: &stream->oa_buffer.ptr_lock, flags);
1127 }
1128
1129 return ret;
1130}
1131
1132/**
1133 * gen7_oa_read - copy status records then buffered OA reports
1134 * @stream: An i915-perf stream opened for OA metrics
1135 * @buf: destination buffer given by userspace
1136 * @count: the number of bytes userspace wants to read
1137 * @offset: (inout): the current position for writing into @buf
1138 *
1139 * Checks Gen 7 specific OA unit status registers and if necessary appends
1140 * corresponding status records for userspace (such as for a buffer full
1141 * condition) and then initiate appending any buffered OA reports.
1142 *
1143 * Updates @offset according to the number of bytes successfully copied into
1144 * the userspace buffer.
1145 *
1146 * Returns: zero on success or a negative error code
1147 */
1148static int gen7_oa_read(struct i915_perf_stream *stream,
1149 char __user *buf,
1150 size_t count,
1151 size_t *offset)
1152{
1153 struct intel_uncore *uncore = stream->uncore;
1154 u32 oastatus1;
1155 int ret;
1156
1157 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1158 return -EIO;
1159
1160 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1161
1162 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1163 * bits while the OA unit is enabled (while the tail pointer
1164 * may be updated asynchronously) so we ignore status bits
1165 * that have already been reported to userspace.
1166 */
1167 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1168
1169 /* We treat OABUFFER_OVERFLOW as a significant error:
1170 *
1171 * - The status can be interpreted to mean that the buffer is
1172 * currently full (with a higher precedence than OA_TAKEN()
1173 * which will start to report a near-empty buffer after an
1174 * overflow) but it's awkward that we can't clear the status
1175 * on Haswell, so without a reset we won't be able to catch
1176 * the state again.
1177 *
1178 * - Since it also implies the HW has started overwriting old
1179 * reports it may also affect our sanity checks for invalid
1180 * reports when copying to userspace that assume new reports
1181 * are being written to cleared memory.
1182 *
1183 * - In the future we may want to introduce a flight recorder
1184 * mode where the driver will automatically maintain a safe
1185 * guard band between head/tail, avoiding this overflow
1186 * condition, but we avoid the added driver complexity for
1187 * now.
1188 */
1189 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1190 ret = append_oa_status(stream, buf, count, offset,
1191 type: DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1192 if (ret)
1193 return ret;
1194
1195 drm_dbg(&stream->perf->i915->drm,
1196 "OA buffer overflow (exponent = %d): force restart\n",
1197 stream->period_exponent);
1198
1199 stream->perf->ops.oa_disable(stream);
1200 stream->perf->ops.oa_enable(stream);
1201
1202 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1203 }
1204
1205 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1206 ret = append_oa_status(stream, buf, count, offset,
1207 type: DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1208 if (ret)
1209 return ret;
1210 stream->perf->gen7_latched_oastatus1 |=
1211 GEN7_OASTATUS1_REPORT_LOST;
1212 }
1213
1214 return gen7_append_oa_reports(stream, buf, count, offset);
1215}
1216
1217/**
1218 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1219 * @stream: An i915-perf stream opened for OA metrics
1220 *
1221 * Called when userspace tries to read() from a blocking stream FD opened
1222 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1223 * OA buffer and wakes us.
1224 *
1225 * Note: it's acceptable to have this return with some false positives
1226 * since any subsequent read handling will return -EAGAIN if there isn't
1227 * really data ready for userspace yet.
1228 *
1229 * Returns: zero on success or a negative error code
1230 */
1231static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1232{
1233 /* We would wait indefinitely if periodic sampling is not enabled */
1234 if (!stream->periodic)
1235 return -EIO;
1236
1237 return wait_event_interruptible(stream->poll_wq,
1238 oa_buffer_check_unlocked(stream));
1239}
1240
1241/**
1242 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1243 * @stream: An i915-perf stream opened for OA metrics
1244 * @file: An i915 perf stream file
1245 * @wait: poll() state table
1246 *
1247 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1248 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1249 * when it sees data ready to read in the circular OA buffer.
1250 */
1251static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1252 struct file *file,
1253 poll_table *wait)
1254{
1255 poll_wait(filp: file, wait_address: &stream->poll_wq, p: wait);
1256}
1257
1258/**
1259 * i915_oa_read - just calls through to &i915_oa_ops->read
1260 * @stream: An i915-perf stream opened for OA metrics
1261 * @buf: destination buffer given by userspace
1262 * @count: the number of bytes userspace wants to read
1263 * @offset: (inout): the current position for writing into @buf
1264 *
1265 * Updates @offset according to the number of bytes successfully copied into
1266 * the userspace buffer.
1267 *
1268 * Returns: zero on success or a negative error code
1269 */
1270static int i915_oa_read(struct i915_perf_stream *stream,
1271 char __user *buf,
1272 size_t count,
1273 size_t *offset)
1274{
1275 return stream->perf->ops.read(stream, buf, count, offset);
1276}
1277
1278static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1279{
1280 struct i915_gem_engines_iter it;
1281 struct i915_gem_context *ctx = stream->ctx;
1282 struct intel_context *ce;
1283 struct i915_gem_ww_ctx ww;
1284 int err = -ENODEV;
1285
1286 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1287 if (ce->engine != stream->engine) /* first match! */
1288 continue;
1289
1290 err = 0;
1291 break;
1292 }
1293 i915_gem_context_unlock_engines(ctx);
1294
1295 if (err)
1296 return ERR_PTR(error: err);
1297
1298 i915_gem_ww_ctx_init(ctx: &ww, intr: true);
1299retry:
1300 /*
1301 * As the ID is the gtt offset of the context's vma we
1302 * pin the vma to ensure the ID remains fixed.
1303 */
1304 err = intel_context_pin_ww(ce, ww: &ww);
1305 if (err == -EDEADLK) {
1306 err = i915_gem_ww_ctx_backoff(ctx: &ww);
1307 if (!err)
1308 goto retry;
1309 }
1310 i915_gem_ww_ctx_fini(ctx: &ww);
1311
1312 if (err)
1313 return ERR_PTR(error: err);
1314
1315 stream->pinned_ctx = ce;
1316 return stream->pinned_ctx;
1317}
1318
1319static int
1320__store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1321{
1322 u32 *cs, cmd;
1323
1324 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1325 if (GRAPHICS_VER(rq->i915) >= 8)
1326 cmd++;
1327
1328 cs = intel_ring_begin(rq, num_dwords: 4);
1329 if (IS_ERR(ptr: cs))
1330 return PTR_ERR(ptr: cs);
1331
1332 *cs++ = cmd;
1333 *cs++ = i915_mmio_reg_offset(reg);
1334 *cs++ = ggtt_offset;
1335 *cs++ = 0;
1336
1337 intel_ring_advance(rq, cs);
1338
1339 return 0;
1340}
1341
1342static int
1343__read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1344{
1345 struct i915_request *rq;
1346 int err;
1347
1348 rq = i915_request_create(ce);
1349 if (IS_ERR(ptr: rq))
1350 return PTR_ERR(ptr: rq);
1351
1352 i915_request_get(rq);
1353
1354 err = __store_reg_to_mem(rq, reg, ggtt_offset);
1355
1356 i915_request_add(rq);
1357 if (!err && i915_request_wait(rq, flags: 0, HZ / 2) < 0)
1358 err = -ETIME;
1359
1360 i915_request_put(rq);
1361
1362 return err;
1363}
1364
1365static int
1366gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1367{
1368 struct i915_vma *scratch;
1369 u32 *val;
1370 int err;
1371
1372 scratch = __vm_create_scratch_for_read_pinned(vm: &ce->engine->gt->ggtt->vm, size: 4);
1373 if (IS_ERR(ptr: scratch))
1374 return PTR_ERR(ptr: scratch);
1375
1376 err = i915_vma_sync(vma: scratch);
1377 if (err)
1378 goto err_scratch;
1379
1380 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1381 ggtt_offset: i915_ggtt_offset(vma: scratch));
1382 if (err)
1383 goto err_scratch;
1384
1385 val = i915_gem_object_pin_map_unlocked(obj: scratch->obj, type: I915_MAP_WB);
1386 if (IS_ERR(ptr: val)) {
1387 err = PTR_ERR(ptr: val);
1388 goto err_scratch;
1389 }
1390
1391 *ctx_id = *val;
1392 i915_gem_object_unpin_map(obj: scratch->obj);
1393
1394err_scratch:
1395 i915_vma_unpin_and_release(p_vma: &scratch, flags: 0);
1396 return err;
1397}
1398
1399/*
1400 * For execlist mode of submission, pick an unused context id
1401 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1402 * XXX_MAX_CONTEXT_HW_ID is used by idle context
1403 *
1404 * For GuC mode of submission read context id from the upper dword of the
1405 * EXECLIST_STATUS register. Note that we read this value only once and expect
1406 * that the value stays fixed for the entire OA use case. There are cases where
1407 * GuC KMD implementation may deregister a context to reuse it's context id, but
1408 * we prevent that from happening to the OA context by pinning it.
1409 */
1410static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1411{
1412 u32 ctx_id, mask;
1413 int ret;
1414
1415 if (intel_engine_uses_guc(engine: stream->engine)) {
1416 ret = gen12_guc_sw_ctx_id(ce: stream->pinned_ctx, ctx_id: &ctx_id);
1417 if (ret)
1418 return ret;
1419
1420 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1421 (GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1422 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1423 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1424 (XEHP_SW_CTX_ID_SHIFT - 32);
1425
1426 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1427 (XEHP_SW_CTX_ID_SHIFT - 32);
1428 } else {
1429 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1430 (GEN11_SW_CTX_ID_SHIFT - 32);
1431
1432 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1433 (GEN11_SW_CTX_ID_SHIFT - 32);
1434 }
1435 stream->specific_ctx_id = ctx_id & mask;
1436 stream->specific_ctx_id_mask = mask;
1437
1438 return 0;
1439}
1440
1441static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1442{
1443 u32 idx = *offset;
1444 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1445 bool found = false;
1446
1447 idx++;
1448 for (; idx < len; idx += 2) {
1449 if (state[idx] == reg) {
1450 found = true;
1451 break;
1452 }
1453 }
1454
1455 *offset = idx;
1456 return found;
1457}
1458
1459static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1460{
1461 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1462 u32 *state = ce->lrc_reg_state;
1463
1464 if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1465 return U32_MAX;
1466
1467 for (offset = 0; offset < len; ) {
1468 if (IS_MI_LRI_CMD(state[offset])) {
1469 /*
1470 * We expect reg-value pairs in MI_LRI command, so
1471 * MI_LRI_LEN() should be even, if not, issue a warning.
1472 */
1473 drm_WARN_ON(&ce->engine->i915->drm,
1474 MI_LRI_LEN(state[offset]) & 0x1);
1475
1476 if (oa_find_reg_in_lri(state, reg, offset: &offset, end: len))
1477 break;
1478 } else {
1479 offset++;
1480 }
1481 }
1482
1483 return offset < len ? offset : U32_MAX;
1484}
1485
1486static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1487{
1488 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1489 struct i915_perf *perf = &ce->engine->i915->perf;
1490 u32 offset = perf->ctx_oactxctrl_offset;
1491
1492 /* Do this only once. Failure is stored as offset of U32_MAX */
1493 if (offset)
1494 goto exit;
1495
1496 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1497 perf->ctx_oactxctrl_offset = offset;
1498
1499 drm_dbg(&ce->engine->i915->drm,
1500 "%s oa ctx control at 0x%08x dword offset\n",
1501 ce->engine->name, offset);
1502
1503exit:
1504 return offset && offset != U32_MAX ? 0 : -ENODEV;
1505}
1506
1507static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1508{
1509 return engine->class == RENDER_CLASS;
1510}
1511
1512/**
1513 * oa_get_render_ctx_id - determine and hold ctx hw id
1514 * @stream: An i915-perf stream opened for OA metrics
1515 *
1516 * Determine the render context hw id, and ensure it remains fixed for the
1517 * lifetime of the stream. This ensures that we don't have to worry about
1518 * updating the context ID in OACONTROL on the fly.
1519 *
1520 * Returns: zero on success or a negative error code
1521 */
1522static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1523{
1524 struct intel_context *ce;
1525 int ret = 0;
1526
1527 ce = oa_pin_context(stream);
1528 if (IS_ERR(ptr: ce))
1529 return PTR_ERR(ptr: ce);
1530
1531 if (engine_supports_mi_query(engine: stream->engine) &&
1532 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1533 /*
1534 * We are enabling perf query here. If we don't find the context
1535 * offset here, just return an error.
1536 */
1537 ret = set_oa_ctx_ctrl_offset(ce);
1538 if (ret) {
1539 intel_context_unpin(ce);
1540 drm_err(&stream->perf->i915->drm,
1541 "Enabling perf query failed for %s\n",
1542 stream->engine->name);
1543 return ret;
1544 }
1545 }
1546
1547 switch (GRAPHICS_VER(ce->engine->i915)) {
1548 case 7: {
1549 /*
1550 * On Haswell we don't do any post processing of the reports
1551 * and don't need to use the mask.
1552 */
1553 stream->specific_ctx_id = i915_ggtt_offset(vma: ce->state);
1554 stream->specific_ctx_id_mask = 0;
1555 break;
1556 }
1557
1558 case 8:
1559 case 9:
1560 if (intel_engine_uses_guc(engine: ce->engine)) {
1561 /*
1562 * When using GuC, the context descriptor we write in
1563 * i915 is read by GuC and rewritten before it's
1564 * actually written into the hardware. The LRCA is
1565 * what is put into the context id field of the
1566 * context descriptor by GuC. Because it's aligned to
1567 * a page, the lower 12bits are always at 0 and
1568 * dropped by GuC. They won't be part of the context
1569 * ID in the OA reports, so squash those lower bits.
1570 */
1571 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1572
1573 /*
1574 * GuC uses the top bit to signal proxy submission, so
1575 * ignore that bit.
1576 */
1577 stream->specific_ctx_id_mask =
1578 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1579 } else {
1580 stream->specific_ctx_id_mask =
1581 (1U << GEN8_CTX_ID_WIDTH) - 1;
1582 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1583 }
1584 break;
1585
1586 case 11:
1587 case 12:
1588 ret = gen12_get_render_context_id(stream);
1589 break;
1590
1591 default:
1592 MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1593 }
1594
1595 ce->tag = stream->specific_ctx_id;
1596
1597 drm_dbg(&stream->perf->i915->drm,
1598 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1599 stream->specific_ctx_id,
1600 stream->specific_ctx_id_mask);
1601
1602 return ret;
1603}
1604
1605/**
1606 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1607 * @stream: An i915-perf stream opened for OA metrics
1608 *
1609 * In case anything needed doing to ensure the context HW ID would remain valid
1610 * for the lifetime of the stream, then that can be undone here.
1611 */
1612static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1613{
1614 struct intel_context *ce;
1615
1616 ce = fetch_and_zero(&stream->pinned_ctx);
1617 if (ce) {
1618 ce->tag = 0; /* recomputed on next submission after parking */
1619 intel_context_unpin(ce);
1620 }
1621
1622 stream->specific_ctx_id = INVALID_CTX_ID;
1623 stream->specific_ctx_id_mask = 0;
1624}
1625
1626static void
1627free_oa_buffer(struct i915_perf_stream *stream)
1628{
1629 i915_vma_unpin_and_release(p_vma: &stream->oa_buffer.vma,
1630 I915_VMA_RELEASE_MAP);
1631
1632 stream->oa_buffer.vaddr = NULL;
1633}
1634
1635static void
1636free_oa_configs(struct i915_perf_stream *stream)
1637{
1638 struct i915_oa_config_bo *oa_bo, *tmp;
1639
1640 i915_oa_config_put(oa_config: stream->oa_config);
1641 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1642 free_oa_config_bo(oa_bo);
1643}
1644
1645static void
1646free_noa_wait(struct i915_perf_stream *stream)
1647{
1648 i915_vma_unpin_and_release(p_vma: &stream->noa_wait, flags: 0);
1649}
1650
1651static bool engine_supports_oa(const struct intel_engine_cs *engine)
1652{
1653 return engine->oa_group;
1654}
1655
1656static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1657{
1658 return engine->oa_group && engine->oa_group->type == type;
1659}
1660
1661static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1662{
1663 struct i915_perf *perf = stream->perf;
1664 struct intel_gt *gt = stream->engine->gt;
1665 struct i915_perf_group *g = stream->engine->oa_group;
1666
1667 if (WARN_ON(stream != g->exclusive_stream))
1668 return;
1669
1670 /*
1671 * Unset exclusive_stream first, it will be checked while disabling
1672 * the metric set on gen8+.
1673 *
1674 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1675 */
1676 WRITE_ONCE(g->exclusive_stream, NULL);
1677 perf->ops.disable_metric_set(stream);
1678
1679 free_oa_buffer(stream);
1680
1681 intel_uncore_forcewake_put(uncore: stream->uncore, domains: FORCEWAKE_ALL);
1682 intel_engine_pm_put(engine: stream->engine);
1683
1684 if (stream->ctx)
1685 oa_put_render_ctx_id(stream);
1686
1687 free_oa_configs(stream);
1688 free_noa_wait(stream);
1689
1690 if (perf->spurious_report_rs.missed) {
1691 gt_notice(gt, "%d spurious OA report notices suppressed due to ratelimiting\n",
1692 perf->spurious_report_rs.missed);
1693 }
1694}
1695
1696static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1697{
1698 struct intel_uncore *uncore = stream->uncore;
1699 u32 gtt_offset = i915_ggtt_offset(vma: stream->oa_buffer.vma);
1700 unsigned long flags;
1701
1702 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1703
1704 /* Pre-DevBDW: OABUFFER must be set with counters off,
1705 * before OASTATUS1, but after OASTATUS2
1706 */
1707 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1708 val: gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1709 stream->oa_buffer.head = 0;
1710
1711 intel_uncore_write(uncore, GEN7_OABUFFER, val: gtt_offset);
1712
1713 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1714 val: gtt_offset | OABUFFER_SIZE_16M);
1715
1716 /* Mark that we need updated tail pointers to read from... */
1717 stream->oa_buffer.tail = 0;
1718
1719 spin_unlock_irqrestore(lock: &stream->oa_buffer.ptr_lock, flags);
1720
1721 /* On Haswell we have to track which OASTATUS1 flags we've
1722 * already seen since they can't be cleared while periodic
1723 * sampling is enabled.
1724 */
1725 stream->perf->gen7_latched_oastatus1 = 0;
1726
1727 /* NB: although the OA buffer will initially be allocated
1728 * zeroed via shmfs (and so this memset is redundant when
1729 * first allocating), we may re-init the OA buffer, either
1730 * when re-enabling a stream or in error/reset paths.
1731 *
1732 * The reason we clear the buffer for each re-init is for the
1733 * sanity check in gen7_append_oa_reports() that looks at the
1734 * report-id field to make sure it's non-zero which relies on
1735 * the assumption that new reports are being written to zeroed
1736 * memory...
1737 */
1738 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1739}
1740
1741static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1742{
1743 struct intel_uncore *uncore = stream->uncore;
1744 u32 gtt_offset = i915_ggtt_offset(vma: stream->oa_buffer.vma);
1745 unsigned long flags;
1746
1747 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1748
1749 intel_uncore_write(uncore, GEN8_OASTATUS, val: 0);
1750 intel_uncore_write(uncore, GEN8_OAHEADPTR, val: gtt_offset);
1751 stream->oa_buffer.head = 0;
1752
1753 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, val: 0);
1754
1755 /*
1756 * PRM says:
1757 *
1758 * "This MMIO must be set before the OATAILPTR
1759 * register and after the OAHEADPTR register. This is
1760 * to enable proper functionality of the overflow
1761 * bit."
1762 */
1763 intel_uncore_write(uncore, GEN8_OABUFFER, val: gtt_offset |
1764 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1765 intel_uncore_write(uncore, GEN8_OATAILPTR, val: gtt_offset & GEN8_OATAILPTR_MASK);
1766
1767 /* Mark that we need updated tail pointers to read from... */
1768 stream->oa_buffer.tail = 0;
1769
1770 /*
1771 * Reset state used to recognise context switches, affecting which
1772 * reports we will forward to userspace while filtering for a single
1773 * context.
1774 */
1775 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1776
1777 spin_unlock_irqrestore(lock: &stream->oa_buffer.ptr_lock, flags);
1778
1779 /*
1780 * NB: although the OA buffer will initially be allocated
1781 * zeroed via shmfs (and so this memset is redundant when
1782 * first allocating), we may re-init the OA buffer, either
1783 * when re-enabling a stream or in error/reset paths.
1784 *
1785 * The reason we clear the buffer for each re-init is for the
1786 * sanity check in gen8_append_oa_reports() that looks at the
1787 * reason field to make sure it's non-zero which relies on
1788 * the assumption that new reports are being written to zeroed
1789 * memory...
1790 */
1791 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1792}
1793
1794static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1795{
1796 struct intel_uncore *uncore = stream->uncore;
1797 u32 gtt_offset = i915_ggtt_offset(vma: stream->oa_buffer.vma);
1798 unsigned long flags;
1799
1800 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1801
1802 intel_uncore_write(uncore, reg: __oa_regs(stream)->oa_status, val: 0);
1803 intel_uncore_write(uncore, reg: __oa_regs(stream)->oa_head_ptr,
1804 val: gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1805 stream->oa_buffer.head = 0;
1806
1807 /*
1808 * PRM says:
1809 *
1810 * "This MMIO must be set before the OATAILPTR
1811 * register and after the OAHEADPTR register. This is
1812 * to enable proper functionality of the overflow
1813 * bit."
1814 */
1815 intel_uncore_write(uncore, reg: __oa_regs(stream)->oa_buffer, val: gtt_offset |
1816 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1817 intel_uncore_write(uncore, reg: __oa_regs(stream)->oa_tail_ptr,
1818 val: gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1819
1820 /* Mark that we need updated tail pointers to read from... */
1821 stream->oa_buffer.tail = 0;
1822
1823 /*
1824 * Reset state used to recognise context switches, affecting which
1825 * reports we will forward to userspace while filtering for a single
1826 * context.
1827 */
1828 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1829
1830 spin_unlock_irqrestore(lock: &stream->oa_buffer.ptr_lock, flags);
1831
1832 /*
1833 * NB: although the OA buffer will initially be allocated
1834 * zeroed via shmfs (and so this memset is redundant when
1835 * first allocating), we may re-init the OA buffer, either
1836 * when re-enabling a stream or in error/reset paths.
1837 *
1838 * The reason we clear the buffer for each re-init is for the
1839 * sanity check in gen8_append_oa_reports() that looks at the
1840 * reason field to make sure it's non-zero which relies on
1841 * the assumption that new reports are being written to zeroed
1842 * memory...
1843 */
1844 memset(stream->oa_buffer.vaddr, 0,
1845 stream->oa_buffer.vma->size);
1846}
1847
1848static int alloc_oa_buffer(struct i915_perf_stream *stream)
1849{
1850 struct drm_i915_private *i915 = stream->perf->i915;
1851 struct intel_gt *gt = stream->engine->gt;
1852 struct drm_i915_gem_object *bo;
1853 struct i915_vma *vma;
1854 int ret;
1855
1856 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1857 return -ENODEV;
1858
1859 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1860 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1861
1862 bo = i915_gem_object_create_shmem(i915: stream->perf->i915, OA_BUFFER_SIZE);
1863 if (IS_ERR(ptr: bo)) {
1864 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1865 return PTR_ERR(ptr: bo);
1866 }
1867
1868 i915_gem_object_set_cache_coherency(obj: bo, cache_level: I915_CACHE_LLC);
1869
1870 /* PreHSW required 512K alignment, HSW requires 16M */
1871 vma = i915_vma_instance(obj: bo, vm: &gt->ggtt->vm, NULL);
1872 if (IS_ERR(ptr: vma)) {
1873 ret = PTR_ERR(ptr: vma);
1874 goto err_unref;
1875 }
1876
1877 /*
1878 * PreHSW required 512K alignment.
1879 * HSW and onwards, align to requested size of OA buffer.
1880 */
1881 ret = i915_vma_pin(vma, size: 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1882 if (ret) {
1883 gt_err(gt, "Failed to pin OA buffer %d\n", ret);
1884 goto err_unref;
1885 }
1886
1887 stream->oa_buffer.vma = vma;
1888
1889 stream->oa_buffer.vaddr =
1890 i915_gem_object_pin_map_unlocked(obj: bo, type: I915_MAP_WB);
1891 if (IS_ERR(ptr: stream->oa_buffer.vaddr)) {
1892 ret = PTR_ERR(ptr: stream->oa_buffer.vaddr);
1893 goto err_unpin;
1894 }
1895
1896 return 0;
1897
1898err_unpin:
1899 __i915_vma_unpin(vma);
1900
1901err_unref:
1902 i915_gem_object_put(obj: bo);
1903
1904 stream->oa_buffer.vaddr = NULL;
1905 stream->oa_buffer.vma = NULL;
1906
1907 return ret;
1908}
1909
1910static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1911 bool save, i915_reg_t reg, u32 offset,
1912 u32 dword_count)
1913{
1914 u32 cmd;
1915 u32 d;
1916
1917 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1918 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1919 if (GRAPHICS_VER(stream->perf->i915) >= 8)
1920 cmd++;
1921
1922 for (d = 0; d < dword_count; d++) {
1923 *cs++ = cmd;
1924 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1925 *cs++ = i915_ggtt_offset(vma: stream->noa_wait) + offset + 4 * d;
1926 *cs++ = 0;
1927 }
1928
1929 return cs;
1930}
1931
1932static int alloc_noa_wait(struct i915_perf_stream *stream)
1933{
1934 struct drm_i915_private *i915 = stream->perf->i915;
1935 struct intel_gt *gt = stream->engine->gt;
1936 struct drm_i915_gem_object *bo;
1937 struct i915_vma *vma;
1938 const u64 delay_ticks = 0xffffffffffffffff -
1939 intel_gt_ns_to_clock_interval(gt: to_gt(i915: stream->perf->i915),
1940 ns: atomic64_read(v: &stream->perf->noa_programming_delay));
1941 const u32 base = stream->engine->mmio_base;
1942#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1943 u32 *batch, *ts0, *cs, *jump;
1944 struct i915_gem_ww_ctx ww;
1945 int ret, i;
1946 enum {
1947 START_TS,
1948 NOW_TS,
1949 DELTA_TS,
1950 JUMP_PREDICATE,
1951 DELTA_TARGET,
1952 N_CS_GPR
1953 };
1954 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1955 MI_PREDICATE_RESULT_2_ENGINE(base) :
1956 MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1957
1958 /*
1959 * gt->scratch was being used to save/restore the GPR registers, but on
1960 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1961 * causes an engine hang. Instead allocate an additional page here to
1962 * save/restore GPR registers
1963 */
1964 bo = i915_gem_object_create_internal(i915, size: 8192);
1965 if (IS_ERR(ptr: bo)) {
1966 drm_err(&i915->drm,
1967 "Failed to allocate NOA wait batchbuffer\n");
1968 return PTR_ERR(ptr: bo);
1969 }
1970
1971 i915_gem_ww_ctx_init(ctx: &ww, intr: true);
1972retry:
1973 ret = i915_gem_object_lock(obj: bo, ww: &ww);
1974 if (ret)
1975 goto out_ww;
1976
1977 /*
1978 * We pin in GGTT because we jump into this buffer now because
1979 * multiple OA config BOs will have a jump to this address and it
1980 * needs to be fixed during the lifetime of the i915/perf stream.
1981 */
1982 vma = i915_vma_instance(obj: bo, vm: &gt->ggtt->vm, NULL);
1983 if (IS_ERR(ptr: vma)) {
1984 ret = PTR_ERR(ptr: vma);
1985 goto out_ww;
1986 }
1987
1988 ret = i915_vma_pin_ww(vma, ww: &ww, size: 0, alignment: 0, PIN_GLOBAL | PIN_HIGH);
1989 if (ret)
1990 goto out_ww;
1991
1992 batch = cs = i915_gem_object_pin_map(obj: bo, type: I915_MAP_WB);
1993 if (IS_ERR(ptr: batch)) {
1994 ret = PTR_ERR(ptr: batch);
1995 goto err_unpin;
1996 }
1997
1998 stream->noa_wait = vma;
1999
2000#define GPR_SAVE_OFFSET 4096
2001#define PREDICATE_SAVE_OFFSET 4160
2002
2003 /* Save registers. */
2004 for (i = 0; i < N_CS_GPR; i++)
2005 cs = save_restore_register(
2006 stream, cs, save: true /* save */, CS_GPR(i),
2007 GPR_SAVE_OFFSET + 8 * i, dword_count: 2);
2008 cs = save_restore_register(
2009 stream, cs, save: true /* save */, reg: mi_predicate_result,
2010 PREDICATE_SAVE_OFFSET, dword_count: 1);
2011
2012 /* First timestamp snapshot location. */
2013 ts0 = cs;
2014
2015 /*
2016 * Initial snapshot of the timestamp register to implement the wait.
2017 * We work with 32b values, so clear out the top 32b bits of the
2018 * register because the ALU works 64bits.
2019 */
2020 *cs++ = MI_LOAD_REGISTER_IMM(1);
2021 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2022 *cs++ = 0;
2023 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2024 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2025 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2026
2027 /*
2028 * This is the location we're going to jump back into until the
2029 * required amount of time has passed.
2030 */
2031 jump = cs;
2032
2033 /*
2034 * Take another snapshot of the timestamp register. Take care to clear
2035 * up the top 32bits of CS_GPR(1) as we're using it for other
2036 * operations below.
2037 */
2038 *cs++ = MI_LOAD_REGISTER_IMM(1);
2039 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2040 *cs++ = 0;
2041 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2042 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2043 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2044
2045 /*
2046 * Do a diff between the 2 timestamps and store the result back into
2047 * CS_GPR(1).
2048 */
2049 *cs++ = MI_MATH(5);
2050 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2051 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2052 *cs++ = MI_MATH_SUB;
2053 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2054 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2055
2056 /*
2057 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2058 * timestamp have rolled over the 32bits) into the predicate register
2059 * to be used for the predicated jump.
2060 */
2061 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2062 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2063 *cs++ = i915_mmio_reg_offset(mi_predicate_result);
2064
2065 if (HAS_MI_SET_PREDICATE(i915))
2066 *cs++ = MI_SET_PREDICATE | 1;
2067
2068 /* Restart from the beginning if we had timestamps roll over. */
2069 *cs++ = (GRAPHICS_VER(i915) < 8 ?
2070 MI_BATCH_BUFFER_START :
2071 MI_BATCH_BUFFER_START_GEN8) |
2072 MI_BATCH_PREDICATE;
2073 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2074 *cs++ = 0;
2075
2076 if (HAS_MI_SET_PREDICATE(i915))
2077 *cs++ = MI_SET_PREDICATE;
2078
2079 /*
2080 * Now add the diff between to previous timestamps and add it to :
2081 * (((1 * << 64) - 1) - delay_ns)
2082 *
2083 * When the Carry Flag contains 1 this means the elapsed time is
2084 * longer than the expected delay, and we can exit the wait loop.
2085 */
2086 *cs++ = MI_LOAD_REGISTER_IMM(2);
2087 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2088 *cs++ = lower_32_bits(delay_ticks);
2089 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2090 *cs++ = upper_32_bits(delay_ticks);
2091
2092 *cs++ = MI_MATH(4);
2093 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2094 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2095 *cs++ = MI_MATH_ADD;
2096 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2097
2098 *cs++ = MI_ARB_CHECK;
2099
2100 /*
2101 * Transfer the result into the predicate register to be used for the
2102 * predicated jump.
2103 */
2104 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2105 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2106 *cs++ = i915_mmio_reg_offset(mi_predicate_result);
2107
2108 if (HAS_MI_SET_PREDICATE(i915))
2109 *cs++ = MI_SET_PREDICATE | 1;
2110
2111 /* Predicate the jump. */
2112 *cs++ = (GRAPHICS_VER(i915) < 8 ?
2113 MI_BATCH_BUFFER_START :
2114 MI_BATCH_BUFFER_START_GEN8) |
2115 MI_BATCH_PREDICATE;
2116 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2117 *cs++ = 0;
2118
2119 if (HAS_MI_SET_PREDICATE(i915))
2120 *cs++ = MI_SET_PREDICATE;
2121
2122 /* Restore registers. */
2123 for (i = 0; i < N_CS_GPR; i++)
2124 cs = save_restore_register(
2125 stream, cs, save: false /* restore */, CS_GPR(i),
2126 GPR_SAVE_OFFSET + 8 * i, dword_count: 2);
2127 cs = save_restore_register(
2128 stream, cs, save: false /* restore */, reg: mi_predicate_result,
2129 PREDICATE_SAVE_OFFSET, dword_count: 1);
2130
2131 /* And return to the ring. */
2132 *cs++ = MI_BATCH_BUFFER_END;
2133
2134 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2135
2136 i915_gem_object_flush_map(obj: bo);
2137 __i915_gem_object_release_map(obj: bo);
2138
2139 goto out_ww;
2140
2141err_unpin:
2142 i915_vma_unpin_and_release(p_vma: &vma, flags: 0);
2143out_ww:
2144 if (ret == -EDEADLK) {
2145 ret = i915_gem_ww_ctx_backoff(ctx: &ww);
2146 if (!ret)
2147 goto retry;
2148 }
2149 i915_gem_ww_ctx_fini(ctx: &ww);
2150 if (ret)
2151 i915_gem_object_put(obj: bo);
2152 return ret;
2153}
2154
2155static u32 *write_cs_mi_lri(u32 *cs,
2156 const struct i915_oa_reg *reg_data,
2157 u32 n_regs)
2158{
2159 u32 i;
2160
2161 for (i = 0; i < n_regs; i++) {
2162 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2163 u32 n_lri = min_t(u32,
2164 n_regs - i,
2165 MI_LOAD_REGISTER_IMM_MAX_REGS);
2166
2167 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2168 }
2169 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2170 *cs++ = reg_data[i].value;
2171 }
2172
2173 return cs;
2174}
2175
2176static int num_lri_dwords(int num_regs)
2177{
2178 int count = 0;
2179
2180 if (num_regs > 0) {
2181 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2182 count += num_regs * 2;
2183 }
2184
2185 return count;
2186}
2187
2188static struct i915_oa_config_bo *
2189alloc_oa_config_buffer(struct i915_perf_stream *stream,
2190 struct i915_oa_config *oa_config)
2191{
2192 struct drm_i915_gem_object *obj;
2193 struct i915_oa_config_bo *oa_bo;
2194 struct i915_gem_ww_ctx ww;
2195 size_t config_length = 0;
2196 u32 *cs;
2197 int err;
2198
2199 oa_bo = kzalloc(size: sizeof(*oa_bo), GFP_KERNEL);
2200 if (!oa_bo)
2201 return ERR_PTR(error: -ENOMEM);
2202
2203 config_length += num_lri_dwords(num_regs: oa_config->mux_regs_len);
2204 config_length += num_lri_dwords(num_regs: oa_config->b_counter_regs_len);
2205 config_length += num_lri_dwords(num_regs: oa_config->flex_regs_len);
2206 config_length += 3; /* MI_BATCH_BUFFER_START */
2207 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2208
2209 obj = i915_gem_object_create_shmem(i915: stream->perf->i915, size: config_length);
2210 if (IS_ERR(ptr: obj)) {
2211 err = PTR_ERR(ptr: obj);
2212 goto err_free;
2213 }
2214
2215 i915_gem_ww_ctx_init(ctx: &ww, intr: true);
2216retry:
2217 err = i915_gem_object_lock(obj, ww: &ww);
2218 if (err)
2219 goto out_ww;
2220
2221 cs = i915_gem_object_pin_map(obj, type: I915_MAP_WB);
2222 if (IS_ERR(ptr: cs)) {
2223 err = PTR_ERR(ptr: cs);
2224 goto out_ww;
2225 }
2226
2227 cs = write_cs_mi_lri(cs,
2228 reg_data: oa_config->mux_regs,
2229 n_regs: oa_config->mux_regs_len);
2230 cs = write_cs_mi_lri(cs,
2231 reg_data: oa_config->b_counter_regs,
2232 n_regs: oa_config->b_counter_regs_len);
2233 cs = write_cs_mi_lri(cs,
2234 reg_data: oa_config->flex_regs,
2235 n_regs: oa_config->flex_regs_len);
2236
2237 /* Jump into the active wait. */
2238 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2239 MI_BATCH_BUFFER_START :
2240 MI_BATCH_BUFFER_START_GEN8);
2241 *cs++ = i915_ggtt_offset(vma: stream->noa_wait);
2242 *cs++ = 0;
2243
2244 i915_gem_object_flush_map(obj);
2245 __i915_gem_object_release_map(obj);
2246
2247 oa_bo->vma = i915_vma_instance(obj,
2248 vm: &stream->engine->gt->ggtt->vm,
2249 NULL);
2250 if (IS_ERR(ptr: oa_bo->vma)) {
2251 err = PTR_ERR(ptr: oa_bo->vma);
2252 goto out_ww;
2253 }
2254
2255 oa_bo->oa_config = i915_oa_config_get(oa_config);
2256 llist_add(new: &oa_bo->node, head: &stream->oa_config_bos);
2257
2258out_ww:
2259 if (err == -EDEADLK) {
2260 err = i915_gem_ww_ctx_backoff(ctx: &ww);
2261 if (!err)
2262 goto retry;
2263 }
2264 i915_gem_ww_ctx_fini(ctx: &ww);
2265
2266 if (err)
2267 i915_gem_object_put(obj);
2268err_free:
2269 if (err) {
2270 kfree(objp: oa_bo);
2271 return ERR_PTR(error: err);
2272 }
2273 return oa_bo;
2274}
2275
2276static struct i915_vma *
2277get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2278{
2279 struct i915_oa_config_bo *oa_bo;
2280
2281 /*
2282 * Look for the buffer in the already allocated BOs attached
2283 * to the stream.
2284 */
2285 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2286 if (oa_bo->oa_config == oa_config &&
2287 memcmp(p: oa_bo->oa_config->uuid,
2288 q: oa_config->uuid,
2289 size: sizeof(oa_config->uuid)) == 0)
2290 goto out;
2291 }
2292
2293 oa_bo = alloc_oa_config_buffer(stream, oa_config);
2294 if (IS_ERR(ptr: oa_bo))
2295 return ERR_CAST(ptr: oa_bo);
2296
2297out:
2298 return i915_vma_get(vma: oa_bo->vma);
2299}
2300
2301static int
2302emit_oa_config(struct i915_perf_stream *stream,
2303 struct i915_oa_config *oa_config,
2304 struct intel_context *ce,
2305 struct i915_active *active)
2306{
2307 struct i915_request *rq;
2308 struct i915_vma *vma;
2309 struct i915_gem_ww_ctx ww;
2310 int err;
2311
2312 vma = get_oa_vma(stream, oa_config);
2313 if (IS_ERR(ptr: vma))
2314 return PTR_ERR(ptr: vma);
2315
2316 i915_gem_ww_ctx_init(ctx: &ww, intr: true);
2317retry:
2318 err = i915_gem_object_lock(obj: vma->obj, ww: &ww);
2319 if (err)
2320 goto err;
2321
2322 err = i915_vma_pin_ww(vma, ww: &ww, size: 0, alignment: 0, PIN_GLOBAL | PIN_HIGH);
2323 if (err)
2324 goto err;
2325
2326 intel_engine_pm_get(engine: ce->engine);
2327 rq = i915_request_create(ce);
2328 intel_engine_pm_put(engine: ce->engine);
2329 if (IS_ERR(ptr: rq)) {
2330 err = PTR_ERR(ptr: rq);
2331 goto err_vma_unpin;
2332 }
2333
2334 if (!IS_ERR_OR_NULL(ptr: active)) {
2335 /* After all individual context modifications */
2336 err = i915_request_await_active(rq, ref: active,
2337 I915_ACTIVE_AWAIT_ACTIVE);
2338 if (err)
2339 goto err_add_request;
2340
2341 err = i915_active_add_request(ref: active, rq);
2342 if (err)
2343 goto err_add_request;
2344 }
2345
2346 err = i915_vma_move_to_active(vma, rq, flags: 0);
2347 if (err)
2348 goto err_add_request;
2349
2350 err = rq->engine->emit_bb_start(rq,
2351 i915_vma_offset(vma), 0,
2352 I915_DISPATCH_SECURE);
2353 if (err)
2354 goto err_add_request;
2355
2356err_add_request:
2357 i915_request_add(rq);
2358err_vma_unpin:
2359 i915_vma_unpin(vma);
2360err:
2361 if (err == -EDEADLK) {
2362 err = i915_gem_ww_ctx_backoff(ctx: &ww);
2363 if (!err)
2364 goto retry;
2365 }
2366
2367 i915_gem_ww_ctx_fini(ctx: &ww);
2368 i915_vma_put(vma);
2369 return err;
2370}
2371
2372static struct intel_context *oa_context(struct i915_perf_stream *stream)
2373{
2374 return stream->pinned_ctx ?: stream->engine->kernel_context;
2375}
2376
2377static int
2378hsw_enable_metric_set(struct i915_perf_stream *stream,
2379 struct i915_active *active)
2380{
2381 struct intel_uncore *uncore = stream->uncore;
2382
2383 /*
2384 * PRM:
2385 *
2386 * OA unit is using “crclk” for its functionality. When trunk
2387 * level clock gating takes place, OA clock would be gated,
2388 * unable to count the events from non-render clock domain.
2389 * Render clock gating must be disabled when OA is enabled to
2390 * count the events from non-render domain. Unit level clock
2391 * gating for RCS should also be disabled.
2392 */
2393 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2394 GEN7_DOP_CLOCK_GATE_ENABLE, set: 0);
2395 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2396 clear: 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2397
2398 return emit_oa_config(stream,
2399 oa_config: stream->oa_config, ce: oa_context(stream),
2400 active);
2401}
2402
2403static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2404{
2405 struct intel_uncore *uncore = stream->uncore;
2406
2407 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2408 GEN6_CSUNIT_CLOCK_GATE_DISABLE, set: 0);
2409 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2410 clear: 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2411
2412 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, set: 0);
2413}
2414
2415static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2416 i915_reg_t reg)
2417{
2418 u32 mmio = i915_mmio_reg_offset(reg);
2419 int i;
2420
2421 /*
2422 * This arbitrary default will select the 'EU FPU0 Pipeline
2423 * Active' event. In the future it's anticipated that there
2424 * will be an explicit 'No Event' we can select, but not yet...
2425 */
2426 if (!oa_config)
2427 return 0;
2428
2429 for (i = 0; i < oa_config->flex_regs_len; i++) {
2430 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2431 return oa_config->flex_regs[i].value;
2432 }
2433
2434 return 0;
2435}
2436/*
2437 * NB: It must always remain pointer safe to run this even if the OA unit
2438 * has been disabled.
2439 *
2440 * It's fine to put out-of-date values into these per-context registers
2441 * in the case that the OA unit has been disabled.
2442 */
2443static void
2444gen8_update_reg_state_unlocked(const struct intel_context *ce,
2445 const struct i915_perf_stream *stream)
2446{
2447 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2448 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2449 /* The MMIO offsets for Flex EU registers aren't contiguous */
2450 static const i915_reg_t flex_regs[] = {
2451 EU_PERF_CNTL0,
2452 EU_PERF_CNTL1,
2453 EU_PERF_CNTL2,
2454 EU_PERF_CNTL3,
2455 EU_PERF_CNTL4,
2456 EU_PERF_CNTL5,
2457 EU_PERF_CNTL6,
2458 };
2459 u32 *reg_state = ce->lrc_reg_state;
2460 int i;
2461
2462 reg_state[ctx_oactxctrl + 1] =
2463 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2464 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2465 GEN8_OA_COUNTER_RESUME;
2466
2467 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2468 reg_state[ctx_flexeu0 + i * 2 + 1] =
2469 oa_config_flex_reg(oa_config: stream->oa_config, reg: flex_regs[i]);
2470}
2471
2472struct flex {
2473 i915_reg_t reg;
2474 u32 offset;
2475 u32 value;
2476};
2477
2478static int
2479gen8_store_flex(struct i915_request *rq,
2480 struct intel_context *ce,
2481 const struct flex *flex, unsigned int count)
2482{
2483 u32 offset;
2484 u32 *cs;
2485
2486 cs = intel_ring_begin(rq, num_dwords: 4 * count);
2487 if (IS_ERR(ptr: cs))
2488 return PTR_ERR(ptr: cs);
2489
2490 offset = i915_ggtt_offset(vma: ce->state) + LRC_STATE_OFFSET;
2491 do {
2492 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2493 *cs++ = offset + flex->offset * sizeof(u32);
2494 *cs++ = 0;
2495 *cs++ = flex->value;
2496 } while (flex++, --count);
2497
2498 intel_ring_advance(rq, cs);
2499
2500 return 0;
2501}
2502
2503static int
2504gen8_load_flex(struct i915_request *rq,
2505 struct intel_context *ce,
2506 const struct flex *flex, unsigned int count)
2507{
2508 u32 *cs;
2509
2510 GEM_BUG_ON(!count || count > 63);
2511
2512 cs = intel_ring_begin(rq, num_dwords: 2 * count + 2);
2513 if (IS_ERR(ptr: cs))
2514 return PTR_ERR(ptr: cs);
2515
2516 *cs++ = MI_LOAD_REGISTER_IMM(count);
2517 do {
2518 *cs++ = i915_mmio_reg_offset(flex->reg);
2519 *cs++ = flex->value;
2520 } while (flex++, --count);
2521 *cs++ = MI_NOOP;
2522
2523 intel_ring_advance(rq, cs);
2524
2525 return 0;
2526}
2527
2528static int gen8_modify_context(struct intel_context *ce,
2529 const struct flex *flex, unsigned int count)
2530{
2531 struct i915_request *rq;
2532 int err;
2533
2534 rq = intel_engine_create_kernel_request(engine: ce->engine);
2535 if (IS_ERR(ptr: rq))
2536 return PTR_ERR(ptr: rq);
2537
2538 /* Serialise with the remote context */
2539 err = intel_context_prepare_remote_request(ce, rq);
2540 if (err == 0)
2541 err = gen8_store_flex(rq, ce, flex, count);
2542
2543 i915_request_add(rq);
2544 return err;
2545}
2546
2547static int
2548gen8_modify_self(struct intel_context *ce,
2549 const struct flex *flex, unsigned int count,
2550 struct i915_active *active)
2551{
2552 struct i915_request *rq;
2553 int err;
2554
2555 intel_engine_pm_get(engine: ce->engine);
2556 rq = i915_request_create(ce);
2557 intel_engine_pm_put(engine: ce->engine);
2558 if (IS_ERR(ptr: rq))
2559 return PTR_ERR(ptr: rq);
2560
2561 if (!IS_ERR_OR_NULL(ptr: active)) {
2562 err = i915_active_add_request(ref: active, rq);
2563 if (err)
2564 goto err_add_request;
2565 }
2566
2567 err = gen8_load_flex(rq, ce, flex, count);
2568 if (err)
2569 goto err_add_request;
2570
2571err_add_request:
2572 i915_request_add(rq);
2573 return err;
2574}
2575
2576static int gen8_configure_context(struct i915_perf_stream *stream,
2577 struct i915_gem_context *ctx,
2578 struct flex *flex, unsigned int count)
2579{
2580 struct i915_gem_engines_iter it;
2581 struct intel_context *ce;
2582 int err = 0;
2583
2584 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2585 GEM_BUG_ON(ce == ce->engine->kernel_context);
2586
2587 if (ce->engine->class != RENDER_CLASS)
2588 continue;
2589
2590 /* Otherwise OA settings will be set upon first use */
2591 if (!intel_context_pin_if_active(ce))
2592 continue;
2593
2594 flex->value = intel_sseu_make_rpcs(gt: ce->engine->gt, req_sseu: &ce->sseu);
2595 err = gen8_modify_context(ce, flex, count);
2596
2597 intel_context_unpin(ce);
2598 if (err)
2599 break;
2600 }
2601 i915_gem_context_unlock_engines(ctx);
2602
2603 return err;
2604}
2605
2606static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2607 struct i915_active *active)
2608{
2609 int err;
2610 struct intel_context *ce = stream->pinned_ctx;
2611 u32 format = stream->oa_buffer.format->format;
2612 u32 offset = stream->perf->ctx_oactxctrl_offset;
2613 struct flex regs_context[] = {
2614 {
2615 GEN8_OACTXCONTROL,
2616 offset + 1,
2617 active ? GEN8_OA_COUNTER_RESUME : 0,
2618 },
2619 };
2620 /* Offsets in regs_lri are not used since this configuration is only
2621 * applied using LRI. Initialize the correct offsets for posterity.
2622 */
2623#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2624 struct flex regs_lri[] = {
2625 {
2626 GEN12_OAR_OACONTROL,
2627 GEN12_OAR_OACONTROL_OFFSET + 1,
2628 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2629 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2630 },
2631 {
2632 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2633 CTX_CONTEXT_CONTROL,
2634 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2635 active ?
2636 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2637 0)
2638 },
2639 };
2640
2641 /* Modify the context image of pinned context with regs_context */
2642 err = intel_context_lock_pinned(ce);
2643 if (err)
2644 return err;
2645
2646 err = gen8_modify_context(ce, flex: regs_context,
2647 ARRAY_SIZE(regs_context));
2648 intel_context_unlock_pinned(ce);
2649 if (err)
2650 return err;
2651
2652 /* Apply regs_lri using LRI with pinned context */
2653 return gen8_modify_self(ce, flex: regs_lri, ARRAY_SIZE(regs_lri), active);
2654}
2655
2656/*
2657 * Manages updating the per-context aspects of the OA stream
2658 * configuration across all contexts.
2659 *
2660 * The awkward consideration here is that OACTXCONTROL controls the
2661 * exponent for periodic sampling which is primarily used for system
2662 * wide profiling where we'd like a consistent sampling period even in
2663 * the face of context switches.
2664 *
2665 * Our approach of updating the register state context (as opposed to
2666 * say using a workaround batch buffer) ensures that the hardware
2667 * won't automatically reload an out-of-date timer exponent even
2668 * transiently before a WA BB could be parsed.
2669 *
2670 * This function needs to:
2671 * - Ensure the currently running context's per-context OA state is
2672 * updated
2673 * - Ensure that all existing contexts will have the correct per-context
2674 * OA state if they are scheduled for use.
2675 * - Ensure any new contexts will be initialized with the correct
2676 * per-context OA state.
2677 *
2678 * Note: it's only the RCS/Render context that has any OA state.
2679 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2680 */
2681static int
2682oa_configure_all_contexts(struct i915_perf_stream *stream,
2683 struct flex *regs,
2684 size_t num_regs,
2685 struct i915_active *active)
2686{
2687 struct drm_i915_private *i915 = stream->perf->i915;
2688 struct intel_engine_cs *engine;
2689 struct intel_gt *gt = stream->engine->gt;
2690 struct i915_gem_context *ctx, *cn;
2691 int err;
2692
2693 lockdep_assert_held(&gt->perf.lock);
2694
2695 /*
2696 * The OA register config is setup through the context image. This image
2697 * might be written to by the GPU on context switch (in particular on
2698 * lite-restore). This means we can't safely update a context's image,
2699 * if this context is scheduled/submitted to run on the GPU.
2700 *
2701 * We could emit the OA register config through the batch buffer but
2702 * this might leave small interval of time where the OA unit is
2703 * configured at an invalid sampling period.
2704 *
2705 * Note that since we emit all requests from a single ring, there
2706 * is still an implicit global barrier here that may cause a high
2707 * priority context to wait for an otherwise independent low priority
2708 * context. Contexts idle at the time of reconfiguration are not
2709 * trapped behind the barrier.
2710 */
2711 spin_lock(lock: &i915->gem.contexts.lock);
2712 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2713 if (!kref_get_unless_zero(kref: &ctx->ref))
2714 continue;
2715
2716 spin_unlock(lock: &i915->gem.contexts.lock);
2717
2718 err = gen8_configure_context(stream, ctx, flex: regs, count: num_regs);
2719 if (err) {
2720 i915_gem_context_put(ctx);
2721 return err;
2722 }
2723
2724 spin_lock(lock: &i915->gem.contexts.lock);
2725 list_safe_reset_next(ctx, cn, link);
2726 i915_gem_context_put(ctx);
2727 }
2728 spin_unlock(lock: &i915->gem.contexts.lock);
2729
2730 /*
2731 * After updating all other contexts, we need to modify ourselves.
2732 * If we don't modify the kernel_context, we do not get events while
2733 * idle.
2734 */
2735 for_each_uabi_engine(engine, i915) {
2736 struct intel_context *ce = engine->kernel_context;
2737
2738 if (engine->class != RENDER_CLASS)
2739 continue;
2740
2741 regs[0].value = intel_sseu_make_rpcs(gt: engine->gt, req_sseu: &ce->sseu);
2742
2743 err = gen8_modify_self(ce, flex: regs, count: num_regs, active);
2744 if (err)
2745 return err;
2746 }
2747
2748 return 0;
2749}
2750
2751static int
2752gen12_configure_all_contexts(struct i915_perf_stream *stream,
2753 const struct i915_oa_config *oa_config,
2754 struct i915_active *active)
2755{
2756 struct flex regs[] = {
2757 {
2758 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2759 CTX_R_PWR_CLK_STATE,
2760 },
2761 };
2762
2763 if (stream->engine->class != RENDER_CLASS)
2764 return 0;
2765
2766 return oa_configure_all_contexts(stream,
2767 regs, ARRAY_SIZE(regs),
2768 active);
2769}
2770
2771static int
2772lrc_configure_all_contexts(struct i915_perf_stream *stream,
2773 const struct i915_oa_config *oa_config,
2774 struct i915_active *active)
2775{
2776 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2777 /* The MMIO offsets for Flex EU registers aren't contiguous */
2778 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2779#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2780 struct flex regs[] = {
2781 {
2782 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2783 CTX_R_PWR_CLK_STATE,
2784 },
2785 {
2786 GEN8_OACTXCONTROL,
2787 ctx_oactxctrl + 1,
2788 },
2789 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2790 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2791 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2792 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2793 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2794 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2795 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2796 };
2797#undef ctx_flexeuN
2798 int i;
2799
2800 regs[1].value =
2801 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2802 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2803 GEN8_OA_COUNTER_RESUME;
2804
2805 for (i = 2; i < ARRAY_SIZE(regs); i++)
2806 regs[i].value = oa_config_flex_reg(oa_config, reg: regs[i].reg);
2807
2808 return oa_configure_all_contexts(stream,
2809 regs, ARRAY_SIZE(regs),
2810 active);
2811}
2812
2813static int
2814gen8_enable_metric_set(struct i915_perf_stream *stream,
2815 struct i915_active *active)
2816{
2817 struct intel_uncore *uncore = stream->uncore;
2818 struct i915_oa_config *oa_config = stream->oa_config;
2819 int ret;
2820
2821 /*
2822 * We disable slice/unslice clock ratio change reports on SKL since
2823 * they are too noisy. The HW generates a lot of redundant reports
2824 * where the ratio hasn't really changed causing a lot of redundant
2825 * work to processes and increasing the chances we'll hit buffer
2826 * overruns.
2827 *
2828 * Although we don't currently use the 'disable overrun' OABUFFER
2829 * feature it's worth noting that clock ratio reports have to be
2830 * disabled before considering to use that feature since the HW doesn't
2831 * correctly block these reports.
2832 *
2833 * Currently none of the high-level metrics we have depend on knowing
2834 * this ratio to normalize.
2835 *
2836 * Note: This register is not power context saved and restored, but
2837 * that's OK considering that we disable RC6 while the OA unit is
2838 * enabled.
2839 *
2840 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2841 * be read back from automatically triggered reports, as part of the
2842 * RPT_ID field.
2843 */
2844 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2845 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2846 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2847 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2848 }
2849
2850 /*
2851 * Update all contexts prior writing the mux configurations as we need
2852 * to make sure all slices/subslices are ON before writing to NOA
2853 * registers.
2854 */
2855 ret = lrc_configure_all_contexts(stream, oa_config, active);
2856 if (ret)
2857 return ret;
2858
2859 return emit_oa_config(stream,
2860 oa_config: stream->oa_config, ce: oa_context(stream),
2861 active);
2862}
2863
2864static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2865{
2866 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2867 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2868 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2869}
2870
2871static int
2872gen12_enable_metric_set(struct i915_perf_stream *stream,
2873 struct i915_active *active)
2874{
2875 struct drm_i915_private *i915 = stream->perf->i915;
2876 struct intel_uncore *uncore = stream->uncore;
2877 struct i915_oa_config *oa_config = stream->oa_config;
2878 bool periodic = stream->periodic;
2879 u32 period_exponent = stream->period_exponent;
2880 u32 sqcnt1;
2881 int ret;
2882
2883 /*
2884 * Wa_1508761755:xehpsdv, dg2
2885 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2886 * Disable thread stall DOP gating and EU DOP gating.
2887 */
2888 if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2889 intel_gt_mcr_multicast_write(gt: uncore->gt, GEN8_ROW_CHICKEN,
2890 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2891 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2892 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2893 }
2894
2895 intel_uncore_write(uncore, reg: __oa_regs(stream)->oa_debug,
2896 /* Disable clk ratio reports, like previous Gens. */
2897 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2898 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2899 /*
2900 * If the user didn't require OA reports, instruct
2901 * the hardware not to emit ctx switch reports.
2902 */
2903 oag_report_ctx_switches(stream));
2904
2905 intel_uncore_write(uncore, reg: __oa_regs(stream)->oa_ctx_ctrl, val: periodic ?
2906 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2907 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2908 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2909 : 0);
2910
2911 /*
2912 * Initialize Super Queue Internal Cnt Register
2913 * Set PMON Enable in order to collect valid metrics.
2914 * Enable byets per clock reporting in OA for XEHPSDV onward.
2915 */
2916 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2917 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2918
2919 intel_uncore_rmw(uncore, GEN12_SQCNT1, clear: 0, set: sqcnt1);
2920
2921 /*
2922 * Update all contexts prior writing the mux configurations as we need
2923 * to make sure all slices/subslices are ON before writing to NOA
2924 * registers.
2925 */
2926 ret = gen12_configure_all_contexts(stream, oa_config, active);
2927 if (ret)
2928 return ret;
2929
2930 /*
2931 * For Gen12, performance counters are context
2932 * saved/restored. Only enable it for the context that
2933 * requested this.
2934 */
2935 if (stream->ctx) {
2936 ret = gen12_configure_oar_context(stream, active);
2937 if (ret)
2938 return ret;
2939 }
2940
2941 return emit_oa_config(stream,
2942 oa_config: stream->oa_config, ce: oa_context(stream),
2943 active);
2944}
2945
2946static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2947{
2948 struct intel_uncore *uncore = stream->uncore;
2949
2950 /* Reset all contexts' slices/subslices configurations. */
2951 lrc_configure_all_contexts(stream, NULL, NULL);
2952
2953 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, set: 0);
2954}
2955
2956static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2957{
2958 struct intel_uncore *uncore = stream->uncore;
2959
2960 /* Reset all contexts' slices/subslices configurations. */
2961 lrc_configure_all_contexts(stream, NULL, NULL);
2962
2963 /* Make sure we disable noa to save power. */
2964 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, set: 0);
2965}
2966
2967static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2968{
2969 struct intel_uncore *uncore = stream->uncore;
2970 struct drm_i915_private *i915 = stream->perf->i915;
2971 u32 sqcnt1;
2972
2973 /*
2974 * Wa_1508761755:xehpsdv, dg2
2975 * Enable thread stall DOP gating and EU DOP gating.
2976 */
2977 if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2978 intel_gt_mcr_multicast_write(gt: uncore->gt, GEN8_ROW_CHICKEN,
2979 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2980 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2981 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2982 }
2983
2984 /* Reset all contexts' slices/subslices configurations. */
2985 gen12_configure_all_contexts(stream, NULL, NULL);
2986
2987 /* disable the context save/restore or OAR counters */
2988 if (stream->ctx)
2989 gen12_configure_oar_context(stream, NULL);
2990
2991 /* Make sure we disable noa to save power. */
2992 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, set: 0);
2993
2994 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2995 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2996
2997 /* Reset PMON Enable to save power. */
2998 intel_uncore_rmw(uncore, GEN12_SQCNT1, clear: sqcnt1, set: 0);
2999}
3000
3001static void gen7_oa_enable(struct i915_perf_stream *stream)
3002{
3003 struct intel_uncore *uncore = stream->uncore;
3004 struct i915_gem_context *ctx = stream->ctx;
3005 u32 ctx_id = stream->specific_ctx_id;
3006 bool periodic = stream->periodic;
3007 u32 period_exponent = stream->period_exponent;
3008 u32 report_format = stream->oa_buffer.format->format;
3009
3010 /*
3011 * Reset buf pointers so we don't forward reports from before now.
3012 *
3013 * Think carefully if considering trying to avoid this, since it
3014 * also ensures status flags and the buffer itself are cleared
3015 * in error paths, and we have checks for invalid reports based
3016 * on the assumption that certain fields are written to zeroed
3017 * memory which this helps maintains.
3018 */
3019 gen7_init_oa_buffer(stream);
3020
3021 intel_uncore_write(uncore, GEN7_OACONTROL,
3022 val: (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3023 (period_exponent <<
3024 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3025 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3026 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3027 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3028 GEN7_OACONTROL_ENABLE);
3029}
3030
3031static void gen8_oa_enable(struct i915_perf_stream *stream)
3032{
3033 struct intel_uncore *uncore = stream->uncore;
3034 u32 report_format = stream->oa_buffer.format->format;
3035
3036 /*
3037 * Reset buf pointers so we don't forward reports from before now.
3038 *
3039 * Think carefully if considering trying to avoid this, since it
3040 * also ensures status flags and the buffer itself are cleared
3041 * in error paths, and we have checks for invalid reports based
3042 * on the assumption that certain fields are written to zeroed
3043 * memory which this helps maintains.
3044 */
3045 gen8_init_oa_buffer(stream);
3046
3047 /*
3048 * Note: we don't rely on the hardware to perform single context
3049 * filtering and instead filter on the cpu based on the context-id
3050 * field of reports
3051 */
3052 intel_uncore_write(uncore, GEN8_OACONTROL,
3053 val: (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3054 GEN8_OA_COUNTER_ENABLE);
3055}
3056
3057static void gen12_oa_enable(struct i915_perf_stream *stream)
3058{
3059 const struct i915_perf_regs *regs;
3060 u32 val;
3061
3062 /*
3063 * If we don't want OA reports from the OA buffer, then we don't even
3064 * need to program the OAG unit.
3065 */
3066 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3067 return;
3068
3069 gen12_init_oa_buffer(stream);
3070
3071 regs = __oa_regs(stream);
3072 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3073 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3074
3075 intel_uncore_write(uncore: stream->uncore, reg: regs->oa_ctrl, val);
3076}
3077
3078/**
3079 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3080 * @stream: An i915 perf stream opened for OA metrics
3081 *
3082 * [Re]enables hardware periodic sampling according to the period configured
3083 * when opening the stream. This also starts a hrtimer that will periodically
3084 * check for data in the circular OA buffer for notifying userspace (e.g.
3085 * during a read() or poll()).
3086 */
3087static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3088{
3089 stream->pollin = false;
3090
3091 stream->perf->ops.oa_enable(stream);
3092
3093 if (stream->sample_flags & SAMPLE_OA_REPORT)
3094 hrtimer_start(timer: &stream->poll_check_timer,
3095 tim: ns_to_ktime(ns: stream->poll_oa_period),
3096 mode: HRTIMER_MODE_REL_PINNED);
3097}
3098
3099static void gen7_oa_disable(struct i915_perf_stream *stream)
3100{
3101 struct intel_uncore *uncore = stream->uncore;
3102
3103 intel_uncore_write(uncore, GEN7_OACONTROL, val: 0);
3104 if (intel_wait_for_register(uncore,
3105 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, value: 0,
3106 timeout_ms: 50))
3107 drm_err(&stream->perf->i915->drm,
3108 "wait for OA to be disabled timed out\n");
3109}
3110
3111static void gen8_oa_disable(struct i915_perf_stream *stream)
3112{
3113 struct intel_uncore *uncore = stream->uncore;
3114
3115 intel_uncore_write(uncore, GEN8_OACONTROL, val: 0);
3116 if (intel_wait_for_register(uncore,
3117 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, value: 0,
3118 timeout_ms: 50))
3119 drm_err(&stream->perf->i915->drm,
3120 "wait for OA to be disabled timed out\n");
3121}
3122
3123static void gen12_oa_disable(struct i915_perf_stream *stream)
3124{
3125 struct intel_uncore *uncore = stream->uncore;
3126
3127 intel_uncore_write(uncore, reg: __oa_regs(stream)->oa_ctrl, val: 0);
3128 if (intel_wait_for_register(uncore,
3129 reg: __oa_regs(stream)->oa_ctrl,
3130 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, value: 0,
3131 timeout_ms: 50))
3132 drm_err(&stream->perf->i915->drm,
3133 "wait for OA to be disabled timed out\n");
3134
3135 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, val: 1);
3136 if (intel_wait_for_register(uncore,
3137 GEN12_OA_TLB_INV_CR,
3138 mask: 1, value: 0,
3139 timeout_ms: 50))
3140 drm_err(&stream->perf->i915->drm,
3141 "wait for OA tlb invalidate timed out\n");
3142}
3143
3144/**
3145 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3146 * @stream: An i915 perf stream opened for OA metrics
3147 *
3148 * Stops the OA unit from periodically writing counter reports into the
3149 * circular OA buffer. This also stops the hrtimer that periodically checks for
3150 * data in the circular OA buffer, for notifying userspace.
3151 */
3152static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3153{
3154 stream->perf->ops.oa_disable(stream);
3155
3156 if (stream->sample_flags & SAMPLE_OA_REPORT)
3157 hrtimer_cancel(timer: &stream->poll_check_timer);
3158}
3159
3160static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3161 .destroy = i915_oa_stream_destroy,
3162 .enable = i915_oa_stream_enable,
3163 .disable = i915_oa_stream_disable,
3164 .wait_unlocked = i915_oa_wait_unlocked,
3165 .poll_wait = i915_oa_poll_wait,
3166 .read = i915_oa_read,
3167};
3168
3169static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3170{
3171 struct i915_active *active;
3172 int err;
3173
3174 active = i915_active_create();
3175 if (!active)
3176 return -ENOMEM;
3177
3178 err = stream->perf->ops.enable_metric_set(stream, active);
3179 if (err == 0)
3180 __i915_active_wait(ref: active, TASK_UNINTERRUPTIBLE);
3181
3182 i915_active_put(ref: active);
3183 return err;
3184}
3185
3186static void
3187get_default_sseu_config(struct intel_sseu *out_sseu,
3188 struct intel_engine_cs *engine)
3189{
3190 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3191
3192 *out_sseu = intel_sseu_from_device_info(sseu: devinfo_sseu);
3193
3194 if (GRAPHICS_VER(engine->i915) == 11) {
3195 /*
3196 * We only need subslice count so it doesn't matter which ones
3197 * we select - just turn off low bits in the amount of half of
3198 * all available subslices per slice.
3199 */
3200 out_sseu->subslice_mask =
3201 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3202 out_sseu->slice_mask = 0x1;
3203 }
3204}
3205
3206static int
3207get_sseu_config(struct intel_sseu *out_sseu,
3208 struct intel_engine_cs *engine,
3209 const struct drm_i915_gem_context_param_sseu *drm_sseu)
3210{
3211 if (drm_sseu->engine.engine_class != engine->uabi_class ||
3212 drm_sseu->engine.engine_instance != engine->uabi_instance)
3213 return -EINVAL;
3214
3215 return i915_gem_user_to_context_sseu(gt: engine->gt, user: drm_sseu, context: out_sseu);
3216}
3217
3218/*
3219 * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3220 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3221 * cases, return the adjusted CS timestamp frequency to the user.
3222 */
3223u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3224{
3225 struct intel_gt *gt = to_gt(i915);
3226
3227 /* Wa_18013179988 */
3228 if (IS_DG2(i915) || IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
3229 intel_wakeref_t wakeref;
3230 u32 reg, shift;
3231
3232 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3233 reg = intel_uncore_read(uncore: to_gt(i915)->uncore, RPM_CONFIG0);
3234
3235 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3236 reg);
3237
3238 return to_gt(i915)->clock_frequency << (3 - shift);
3239 }
3240
3241 return to_gt(i915)->clock_frequency;
3242}
3243
3244/**
3245 * i915_oa_stream_init - validate combined props for OA stream and init
3246 * @stream: An i915 perf stream
3247 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3248 * @props: The property state that configures stream (individually validated)
3249 *
3250 * While read_properties_unlocked() validates properties in isolation it
3251 * doesn't ensure that the combination necessarily makes sense.
3252 *
3253 * At this point it has been determined that userspace wants a stream of
3254 * OA metrics, but still we need to further validate the combined
3255 * properties are OK.
3256 *
3257 * If the configuration makes sense then we can allocate memory for
3258 * a circular OA buffer and apply the requested metric set configuration.
3259 *
3260 * Returns: zero on success or a negative error code.
3261 */
3262static int i915_oa_stream_init(struct i915_perf_stream *stream,
3263 struct drm_i915_perf_open_param *param,
3264 struct perf_open_properties *props)
3265{
3266 struct drm_i915_private *i915 = stream->perf->i915;
3267 struct i915_perf *perf = stream->perf;
3268 struct i915_perf_group *g;
3269 int ret;
3270
3271 if (!props->engine) {
3272 drm_dbg(&stream->perf->i915->drm,
3273 "OA engine not specified\n");
3274 return -EINVAL;
3275 }
3276 g = props->engine->oa_group;
3277
3278 /*
3279 * If the sysfs metrics/ directory wasn't registered for some
3280 * reason then don't let userspace try their luck with config
3281 * IDs
3282 */
3283 if (!perf->metrics_kobj) {
3284 drm_dbg(&stream->perf->i915->drm,
3285 "OA metrics weren't advertised via sysfs\n");
3286 return -EINVAL;
3287 }
3288
3289 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3290 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3291 drm_dbg(&stream->perf->i915->drm,
3292 "Only OA report sampling supported\n");
3293 return -EINVAL;
3294 }
3295
3296 if (!perf->ops.enable_metric_set) {
3297 drm_dbg(&stream->perf->i915->drm,
3298 "OA unit not supported\n");
3299 return -ENODEV;
3300 }
3301
3302 /*
3303 * To avoid the complexity of having to accurately filter
3304 * counter reports and marshal to the appropriate client
3305 * we currently only allow exclusive access
3306 */
3307 if (g->exclusive_stream) {
3308 drm_dbg(&stream->perf->i915->drm,
3309 "OA unit already in use\n");
3310 return -EBUSY;
3311 }
3312
3313 if (!props->oa_format) {
3314 drm_dbg(&stream->perf->i915->drm,
3315 "OA report format not specified\n");
3316 return -EINVAL;
3317 }
3318
3319 stream->engine = props->engine;
3320 stream->uncore = stream->engine->gt->uncore;
3321
3322 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3323
3324 stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3325 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3326 return -EINVAL;
3327
3328 stream->sample_flags = props->sample_flags;
3329 stream->sample_size += stream->oa_buffer.format->size;
3330
3331 stream->hold_preemption = props->hold_preemption;
3332
3333 stream->periodic = props->oa_periodic;
3334 if (stream->periodic)
3335 stream->period_exponent = props->oa_period_exponent;
3336
3337 if (stream->ctx) {
3338 ret = oa_get_render_ctx_id(stream);
3339 if (ret) {
3340 drm_dbg(&stream->perf->i915->drm,
3341 "Invalid context id to filter with\n");
3342 return ret;
3343 }
3344 }
3345
3346 ret = alloc_noa_wait(stream);
3347 if (ret) {
3348 drm_dbg(&stream->perf->i915->drm,
3349 "Unable to allocate NOA wait batch buffer\n");
3350 goto err_noa_wait_alloc;
3351 }
3352
3353 stream->oa_config = i915_perf_get_oa_config(perf, metrics_set: props->metrics_set);
3354 if (!stream->oa_config) {
3355 drm_dbg(&stream->perf->i915->drm,
3356 "Invalid OA config id=%i\n", props->metrics_set);
3357 ret = -EINVAL;
3358 goto err_config;
3359 }
3360
3361 /* PRM - observability performance counters:
3362 *
3363 * OACONTROL, performance counter enable, note:
3364 *
3365 * "When this bit is set, in order to have coherent counts,
3366 * RC6 power state and trunk clock gating must be disabled.
3367 * This can be achieved by programming MMIO registers as
3368 * 0xA094=0 and 0xA090[31]=1"
3369 *
3370 * In our case we are expecting that taking pm + FORCEWAKE
3371 * references will effectively disable RC6.
3372 */
3373 intel_engine_pm_get(engine: stream->engine);
3374 intel_uncore_forcewake_get(uncore: stream->uncore, domains: FORCEWAKE_ALL);
3375
3376 ret = alloc_oa_buffer(stream);
3377 if (ret)
3378 goto err_oa_buf_alloc;
3379
3380 stream->ops = &i915_oa_stream_ops;
3381
3382 stream->engine->gt->perf.sseu = props->sseu;
3383 WRITE_ONCE(g->exclusive_stream, stream);
3384
3385 ret = i915_perf_stream_enable_sync(stream);
3386 if (ret) {
3387 drm_dbg(&stream->perf->i915->drm,
3388 "Unable to enable metric set\n");
3389 goto err_enable;
3390 }
3391
3392 drm_dbg(&stream->perf->i915->drm,
3393 "opening stream oa config uuid=%s\n",
3394 stream->oa_config->uuid);
3395
3396 hrtimer_init(timer: &stream->poll_check_timer,
3397 CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL);
3398 stream->poll_check_timer.function = oa_poll_check_timer_cb;
3399 init_waitqueue_head(&stream->poll_wq);
3400 spin_lock_init(&stream->oa_buffer.ptr_lock);
3401 mutex_init(&stream->lock);
3402
3403 return 0;
3404
3405err_enable:
3406 WRITE_ONCE(g->exclusive_stream, NULL);
3407 perf->ops.disable_metric_set(stream);
3408
3409 free_oa_buffer(stream);
3410
3411err_oa_buf_alloc:
3412 intel_uncore_forcewake_put(uncore: stream->uncore, domains: FORCEWAKE_ALL);
3413 intel_engine_pm_put(engine: stream->engine);
3414
3415 free_oa_configs(stream);
3416
3417err_config:
3418 free_noa_wait(stream);
3419
3420err_noa_wait_alloc:
3421 if (stream->ctx)
3422 oa_put_render_ctx_id(stream);
3423
3424 return ret;
3425}
3426
3427void i915_oa_init_reg_state(const struct intel_context *ce,
3428 const struct intel_engine_cs *engine)
3429{
3430 struct i915_perf_stream *stream;
3431
3432 if (engine->class != RENDER_CLASS)
3433 return;
3434
3435 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3436 stream = READ_ONCE(engine->oa_group->exclusive_stream);
3437 if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3438 gen8_update_reg_state_unlocked(ce, stream);
3439}
3440
3441/**
3442 * i915_perf_read - handles read() FOP for i915 perf stream FDs
3443 * @file: An i915 perf stream file
3444 * @buf: destination buffer given by userspace
3445 * @count: the number of bytes userspace wants to read
3446 * @ppos: (inout) file seek position (unused)
3447 *
3448 * The entry point for handling a read() on a stream file descriptor from
3449 * userspace. Most of the work is left to the i915_perf_read_locked() and
3450 * &i915_perf_stream_ops->read but to save having stream implementations (of
3451 * which we might have multiple later) we handle blocking read here.
3452 *
3453 * We can also consistently treat trying to read from a disabled stream
3454 * as an IO error so implementations can assume the stream is enabled
3455 * while reading.
3456 *
3457 * Returns: The number of bytes copied or a negative error code on failure.
3458 */
3459static ssize_t i915_perf_read(struct file *file,
3460 char __user *buf,
3461 size_t count,
3462 loff_t *ppos)
3463{
3464 struct i915_perf_stream *stream = file->private_data;
3465 size_t offset = 0;
3466 int ret;
3467
3468 /* To ensure it's handled consistently we simply treat all reads of a
3469 * disabled stream as an error. In particular it might otherwise lead
3470 * to a deadlock for blocking file descriptors...
3471 */
3472 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3473 return -EIO;
3474
3475 if (!(file->f_flags & O_NONBLOCK)) {
3476 /* There's the small chance of false positives from
3477 * stream->ops->wait_unlocked.
3478 *
3479 * E.g. with single context filtering since we only wait until
3480 * oabuffer has >= 1 report we don't immediately know whether
3481 * any reports really belong to the current context
3482 */
3483 do {
3484 ret = stream->ops->wait_unlocked(stream);
3485 if (ret)
3486 return ret;
3487
3488 mutex_lock(&stream->lock);
3489 ret = stream->ops->read(stream, buf, count, &offset);
3490 mutex_unlock(lock: &stream->lock);
3491 } while (!offset && !ret);
3492 } else {
3493 mutex_lock(&stream->lock);
3494 ret = stream->ops->read(stream, buf, count, &offset);
3495 mutex_unlock(lock: &stream->lock);
3496 }
3497
3498 /* We allow the poll checking to sometimes report false positive EPOLLIN
3499 * events where we might actually report EAGAIN on read() if there's
3500 * not really any data available. In this situation though we don't
3501 * want to enter a busy loop between poll() reporting a EPOLLIN event
3502 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3503 * effectively ensures we back off until the next hrtimer callback
3504 * before reporting another EPOLLIN event.
3505 * The exception to this is if ops->read() returned -ENOSPC which means
3506 * that more OA data is available than could fit in the user provided
3507 * buffer. In this case we want the next poll() call to not block.
3508 */
3509 if (ret != -ENOSPC)
3510 stream->pollin = false;
3511
3512 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3513 return offset ?: (ret ?: -EAGAIN);
3514}
3515
3516static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3517{
3518 struct i915_perf_stream *stream =
3519 container_of(hrtimer, typeof(*stream), poll_check_timer);
3520
3521 if (oa_buffer_check_unlocked(stream)) {
3522 stream->pollin = true;
3523 wake_up(&stream->poll_wq);
3524 }
3525
3526 hrtimer_forward_now(timer: hrtimer,
3527 interval: ns_to_ktime(ns: stream->poll_oa_period));
3528
3529 return HRTIMER_RESTART;
3530}
3531
3532/**
3533 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3534 * @stream: An i915 perf stream
3535 * @file: An i915 perf stream file
3536 * @wait: poll() state table
3537 *
3538 * For handling userspace polling on an i915 perf stream, this calls through to
3539 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3540 * will be woken for new stream data.
3541 *
3542 * Returns: any poll events that are ready without sleeping
3543 */
3544static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3545 struct file *file,
3546 poll_table *wait)
3547{
3548 __poll_t events = 0;
3549
3550 stream->ops->poll_wait(stream, file, wait);
3551
3552 /* Note: we don't explicitly check whether there's something to read
3553 * here since this path may be very hot depending on what else
3554 * userspace is polling, or on the timeout in use. We rely solely on
3555 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3556 * samples to read.
3557 */
3558 if (stream->pollin)
3559 events |= EPOLLIN;
3560
3561 return events;
3562}
3563
3564/**
3565 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3566 * @file: An i915 perf stream file
3567 * @wait: poll() state table
3568 *
3569 * For handling userspace polling on an i915 perf stream, this ensures
3570 * poll_wait() gets called with a wait queue that will be woken for new stream
3571 * data.
3572 *
3573 * Note: Implementation deferred to i915_perf_poll_locked()
3574 *
3575 * Returns: any poll events that are ready without sleeping
3576 */
3577static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3578{
3579 struct i915_perf_stream *stream = file->private_data;
3580 __poll_t ret;
3581
3582 mutex_lock(&stream->lock);
3583 ret = i915_perf_poll_locked(stream, file, wait);
3584 mutex_unlock(lock: &stream->lock);
3585
3586 return ret;
3587}
3588
3589/**
3590 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3591 * @stream: A disabled i915 perf stream
3592 *
3593 * [Re]enables the associated capture of data for this stream.
3594 *
3595 * If a stream was previously enabled then there's currently no intention
3596 * to provide userspace any guarantee about the preservation of previously
3597 * buffered data.
3598 */
3599static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3600{
3601 if (stream->enabled)
3602 return;
3603
3604 /* Allow stream->ops->enable() to refer to this */
3605 stream->enabled = true;
3606
3607 if (stream->ops->enable)
3608 stream->ops->enable(stream);
3609
3610 if (stream->hold_preemption)
3611 intel_context_set_nopreempt(ce: stream->pinned_ctx);
3612}
3613
3614/**
3615 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3616 * @stream: An enabled i915 perf stream
3617 *
3618 * Disables the associated capture of data for this stream.
3619 *
3620 * The intention is that disabling an re-enabling a stream will ideally be
3621 * cheaper than destroying and re-opening a stream with the same configuration,
3622 * though there are no formal guarantees about what state or buffered data
3623 * must be retained between disabling and re-enabling a stream.
3624 *
3625 * Note: while a stream is disabled it's considered an error for userspace
3626 * to attempt to read from the stream (-EIO).
3627 */
3628static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3629{
3630 if (!stream->enabled)
3631 return;
3632
3633 /* Allow stream->ops->disable() to refer to this */
3634 stream->enabled = false;
3635
3636 if (stream->hold_preemption)
3637 intel_context_clear_nopreempt(ce: stream->pinned_ctx);
3638
3639 if (stream->ops->disable)
3640 stream->ops->disable(stream);
3641}
3642
3643static long i915_perf_config_locked(struct i915_perf_stream *stream,
3644 unsigned long metrics_set)
3645{
3646 struct i915_oa_config *config;
3647 long ret = stream->oa_config->id;
3648
3649 config = i915_perf_get_oa_config(perf: stream->perf, metrics_set);
3650 if (!config)
3651 return -EINVAL;
3652
3653 if (config != stream->oa_config) {
3654 int err;
3655
3656 /*
3657 * If OA is bound to a specific context, emit the
3658 * reconfiguration inline from that context. The update
3659 * will then be ordered with respect to submission on that
3660 * context.
3661 *
3662 * When set globally, we use a low priority kernel context,
3663 * so it will effectively take effect when idle.
3664 */
3665 err = emit_oa_config(stream, oa_config: config, ce: oa_context(stream), NULL);
3666 if (!err)
3667 config = xchg(&stream->oa_config, config);
3668 else
3669 ret = err;
3670 }
3671
3672 i915_oa_config_put(oa_config: config);
3673
3674 return ret;
3675}
3676
3677/**
3678 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3679 * @stream: An i915 perf stream
3680 * @cmd: the ioctl request
3681 * @arg: the ioctl data
3682 *
3683 * Returns: zero on success or a negative error code. Returns -EINVAL for
3684 * an unknown ioctl request.
3685 */
3686static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3687 unsigned int cmd,
3688 unsigned long arg)
3689{
3690 switch (cmd) {
3691 case I915_PERF_IOCTL_ENABLE:
3692 i915_perf_enable_locked(stream);
3693 return 0;
3694 case I915_PERF_IOCTL_DISABLE:
3695 i915_perf_disable_locked(stream);
3696 return 0;
3697 case I915_PERF_IOCTL_CONFIG:
3698 return i915_perf_config_locked(stream, metrics_set: arg);
3699 }
3700
3701 return -EINVAL;
3702}
3703
3704/**
3705 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3706 * @file: An i915 perf stream file
3707 * @cmd: the ioctl request
3708 * @arg: the ioctl data
3709 *
3710 * Implementation deferred to i915_perf_ioctl_locked().
3711 *
3712 * Returns: zero on success or a negative error code. Returns -EINVAL for
3713 * an unknown ioctl request.
3714 */
3715static long i915_perf_ioctl(struct file *file,
3716 unsigned int cmd,
3717 unsigned long arg)
3718{
3719 struct i915_perf_stream *stream = file->private_data;
3720 long ret;
3721
3722 mutex_lock(&stream->lock);
3723 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3724 mutex_unlock(lock: &stream->lock);
3725
3726 return ret;
3727}
3728
3729/**
3730 * i915_perf_destroy_locked - destroy an i915 perf stream
3731 * @stream: An i915 perf stream
3732 *
3733 * Frees all resources associated with the given i915 perf @stream, disabling
3734 * any associated data capture in the process.
3735 *
3736 * Note: The &gt->perf.lock mutex has been taken to serialize
3737 * with any non-file-operation driver hooks.
3738 */
3739static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3740{
3741 if (stream->enabled)
3742 i915_perf_disable_locked(stream);
3743
3744 if (stream->ops->destroy)
3745 stream->ops->destroy(stream);
3746
3747 if (stream->ctx)
3748 i915_gem_context_put(ctx: stream->ctx);
3749
3750 kfree(objp: stream);
3751}
3752
3753/**
3754 * i915_perf_release - handles userspace close() of a stream file
3755 * @inode: anonymous inode associated with file
3756 * @file: An i915 perf stream file
3757 *
3758 * Cleans up any resources associated with an open i915 perf stream file.
3759 *
3760 * NB: close() can't really fail from the userspace point of view.
3761 *
3762 * Returns: zero on success or a negative error code.
3763 */
3764static int i915_perf_release(struct inode *inode, struct file *file)
3765{
3766 struct i915_perf_stream *stream = file->private_data;
3767 struct i915_perf *perf = stream->perf;
3768 struct intel_gt *gt = stream->engine->gt;
3769
3770 /*
3771 * Within this call, we know that the fd is being closed and we have no
3772 * other user of stream->lock. Use the perf lock to destroy the stream
3773 * here.
3774 */
3775 mutex_lock(&gt->perf.lock);
3776 i915_perf_destroy_locked(stream);
3777 mutex_unlock(lock: &gt->perf.lock);
3778
3779 /* Release the reference the perf stream kept on the driver. */
3780 drm_dev_put(dev: &perf->i915->drm);
3781
3782 return 0;
3783}
3784
3785
3786static const struct file_operations fops = {
3787 .owner = THIS_MODULE,
3788 .llseek = no_llseek,
3789 .release = i915_perf_release,
3790 .poll = i915_perf_poll,
3791 .read = i915_perf_read,
3792 .unlocked_ioctl = i915_perf_ioctl,
3793 /* Our ioctl have no arguments, so it's safe to use the same function
3794 * to handle 32bits compatibility.
3795 */
3796 .compat_ioctl = i915_perf_ioctl,
3797};
3798
3799
3800/**
3801 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3802 * @perf: i915 perf instance
3803 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3804 * @props: individually validated u64 property value pairs
3805 * @file: drm file
3806 *
3807 * See i915_perf_ioctl_open() for interface details.
3808 *
3809 * Implements further stream config validation and stream initialization on
3810 * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3811 * taken to serialize with any non-file-operation driver hooks.
3812 *
3813 * Note: at this point the @props have only been validated in isolation and
3814 * it's still necessary to validate that the combination of properties makes
3815 * sense.
3816 *
3817 * In the case where userspace is interested in OA unit metrics then further
3818 * config validation and stream initialization details will be handled by
3819 * i915_oa_stream_init(). The code here should only validate config state that
3820 * will be relevant to all stream types / backends.
3821 *
3822 * Returns: zero on success or a negative error code.
3823 */
3824static int
3825i915_perf_open_ioctl_locked(struct i915_perf *perf,
3826 struct drm_i915_perf_open_param *param,
3827 struct perf_open_properties *props,
3828 struct drm_file *file)
3829{
3830 struct i915_gem_context *specific_ctx = NULL;
3831 struct i915_perf_stream *stream = NULL;
3832 unsigned long f_flags = 0;
3833 bool privileged_op = true;
3834 int stream_fd;
3835 int ret;
3836
3837 if (props->single_context) {
3838 u32 ctx_handle = props->ctx_handle;
3839 struct drm_i915_file_private *file_priv = file->driver_priv;
3840
3841 specific_ctx = i915_gem_context_lookup(file_priv, id: ctx_handle);
3842 if (IS_ERR(ptr: specific_ctx)) {
3843 drm_dbg(&perf->i915->drm,
3844 "Failed to look up context with ID %u for opening perf stream\n",
3845 ctx_handle);
3846 ret = PTR_ERR(ptr: specific_ctx);
3847 goto err;
3848 }
3849 }
3850
3851 /*
3852 * On Haswell the OA unit supports clock gating off for a specific
3853 * context and in this mode there's no visibility of metrics for the
3854 * rest of the system, which we consider acceptable for a
3855 * non-privileged client.
3856 *
3857 * For Gen8->11 the OA unit no longer supports clock gating off for a
3858 * specific context and the kernel can't securely stop the counters
3859 * from updating as system-wide / global values. Even though we can
3860 * filter reports based on the included context ID we can't block
3861 * clients from seeing the raw / global counter values via
3862 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3863 * enable the OA unit by default.
3864 *
3865 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3866 * per context basis. So we can relax requirements there if the user
3867 * doesn't request global stream access (i.e. query based sampling
3868 * using MI_RECORD_PERF_COUNT.
3869 */
3870 if (IS_HASWELL(perf->i915) && specific_ctx)
3871 privileged_op = false;
3872 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3873 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3874 privileged_op = false;
3875
3876 if (props->hold_preemption) {
3877 if (!props->single_context) {
3878 drm_dbg(&perf->i915->drm,
3879 "preemption disable with no context\n");
3880 ret = -EINVAL;
3881 goto err;
3882 }
3883 privileged_op = true;
3884 }
3885
3886 /*
3887 * Asking for SSEU configuration is a priviliged operation.
3888 */
3889 if (props->has_sseu)
3890 privileged_op = true;
3891 else
3892 get_default_sseu_config(out_sseu: &props->sseu, engine: props->engine);
3893
3894 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3895 * we check a dev.i915.perf_stream_paranoid sysctl option
3896 * to determine if it's ok to access system wide OA counters
3897 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3898 */
3899 if (privileged_op &&
3900 i915_perf_stream_paranoid && !perfmon_capable()) {
3901 drm_dbg(&perf->i915->drm,
3902 "Insufficient privileges to open i915 perf stream\n");
3903 ret = -EACCES;
3904 goto err_ctx;
3905 }
3906
3907 stream = kzalloc(size: sizeof(*stream), GFP_KERNEL);
3908 if (!stream) {
3909 ret = -ENOMEM;
3910 goto err_ctx;
3911 }
3912
3913 stream->perf = perf;
3914 stream->ctx = specific_ctx;
3915 stream->poll_oa_period = props->poll_oa_period;
3916
3917 ret = i915_oa_stream_init(stream, param, props);
3918 if (ret)
3919 goto err_alloc;
3920
3921 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3922 * to have _stream_init check the combination of sample flags more
3923 * thoroughly, but still this is the expected result at this point.
3924 */
3925 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3926 ret = -ENODEV;
3927 goto err_flags;
3928 }
3929
3930 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3931 f_flags |= O_CLOEXEC;
3932 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3933 f_flags |= O_NONBLOCK;
3934
3935 stream_fd = anon_inode_getfd(name: "[i915_perf]", fops: &fops, priv: stream, flags: f_flags);
3936 if (stream_fd < 0) {
3937 ret = stream_fd;
3938 goto err_flags;
3939 }
3940
3941 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3942 i915_perf_enable_locked(stream);
3943
3944 /* Take a reference on the driver that will be kept with stream_fd
3945 * until its release.
3946 */
3947 drm_dev_get(dev: &perf->i915->drm);
3948
3949 return stream_fd;
3950
3951err_flags:
3952 if (stream->ops->destroy)
3953 stream->ops->destroy(stream);
3954err_alloc:
3955 kfree(objp: stream);
3956err_ctx:
3957 if (specific_ctx)
3958 i915_gem_context_put(ctx: specific_ctx);
3959err:
3960 return ret;
3961}
3962
3963static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3964{
3965 u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3966 u32 den = i915_perf_oa_timestamp_frequency(i915: perf->i915);
3967
3968 return div_u64(dividend: nom + den - 1, divisor: den);
3969}
3970
3971static __always_inline bool
3972oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3973{
3974 return test_bit(format, perf->format_mask);
3975}
3976
3977static __always_inline void
3978oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3979{
3980 __set_bit(format, perf->format_mask);
3981}
3982
3983/**
3984 * read_properties_unlocked - validate + copy userspace stream open properties
3985 * @perf: i915 perf instance
3986 * @uprops: The array of u64 key value pairs given by userspace
3987 * @n_props: The number of key value pairs expected in @uprops
3988 * @props: The stream configuration built up while validating properties
3989 *
3990 * Note this function only validates properties in isolation it doesn't
3991 * validate that the combination of properties makes sense or that all
3992 * properties necessary for a particular kind of stream have been set.
3993 *
3994 * Note that there currently aren't any ordering requirements for properties so
3995 * we shouldn't validate or assume anything about ordering here. This doesn't
3996 * rule out defining new properties with ordering requirements in the future.
3997 */
3998static int read_properties_unlocked(struct i915_perf *perf,
3999 u64 __user *uprops,
4000 u32 n_props,
4001 struct perf_open_properties *props)
4002{
4003 struct drm_i915_gem_context_param_sseu user_sseu;
4004 const struct i915_oa_format *f;
4005 u64 __user *uprop = uprops;
4006 bool config_instance = false;
4007 bool config_class = false;
4008 bool config_sseu = false;
4009 u8 class, instance;
4010 u32 i;
4011 int ret;
4012
4013 memset(props, 0, sizeof(struct perf_open_properties));
4014 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4015
4016 /* Considering that ID = 0 is reserved and assuming that we don't
4017 * (currently) expect any configurations to ever specify duplicate
4018 * values for a particular property ID then the last _PROP_MAX value is
4019 * one greater than the maximum number of properties we expect to get
4020 * from userspace.
4021 */
4022 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4023 drm_dbg(&perf->i915->drm,
4024 "Invalid number of i915 perf properties given\n");
4025 return -EINVAL;
4026 }
4027
4028 /* Defaults when class:instance is not passed */
4029 class = I915_ENGINE_CLASS_RENDER;
4030 instance = 0;
4031
4032 for (i = 0; i < n_props; i++) {
4033 u64 oa_period, oa_freq_hz;
4034 u64 id, value;
4035
4036 ret = get_user(id, uprop);
4037 if (ret)
4038 return ret;
4039
4040 ret = get_user(value, uprop + 1);
4041 if (ret)
4042 return ret;
4043
4044 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4045 drm_dbg(&perf->i915->drm,
4046 "Unknown i915 perf property ID\n");
4047 return -EINVAL;
4048 }
4049
4050 switch ((enum drm_i915_perf_property_id)id) {
4051 case DRM_I915_PERF_PROP_CTX_HANDLE:
4052 props->single_context = 1;
4053 props->ctx_handle = value;
4054 break;
4055 case DRM_I915_PERF_PROP_SAMPLE_OA:
4056 if (value)
4057 props->sample_flags |= SAMPLE_OA_REPORT;
4058 break;
4059 case DRM_I915_PERF_PROP_OA_METRICS_SET:
4060 if (value == 0) {
4061 drm_dbg(&perf->i915->drm,
4062 "Unknown OA metric set ID\n");
4063 return -EINVAL;
4064 }
4065 props->metrics_set = value;
4066 break;
4067 case DRM_I915_PERF_PROP_OA_FORMAT:
4068 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4069 drm_dbg(&perf->i915->drm,
4070 "Out-of-range OA report format %llu\n",
4071 value);
4072 return -EINVAL;
4073 }
4074 if (!oa_format_valid(perf, format: value)) {
4075 drm_dbg(&perf->i915->drm,
4076 "Unsupported OA report format %llu\n",
4077 value);
4078 return -EINVAL;
4079 }
4080 props->oa_format = value;
4081 break;
4082 case DRM_I915_PERF_PROP_OA_EXPONENT:
4083 if (value > OA_EXPONENT_MAX) {
4084 drm_dbg(&perf->i915->drm,
4085 "OA timer exponent too high (> %u)\n",
4086 OA_EXPONENT_MAX);
4087 return -EINVAL;
4088 }
4089
4090 /* Theoretically we can program the OA unit to sample
4091 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4092 * for BXT. We don't allow such high sampling
4093 * frequencies by default unless root.
4094 */
4095
4096 BUILD_BUG_ON(sizeof(oa_period) != 8);
4097 oa_period = oa_exponent_to_ns(perf, exponent: value);
4098
4099 /* This check is primarily to ensure that oa_period <=
4100 * UINT32_MAX (before passing to do_div which only
4101 * accepts a u32 denominator), but we can also skip
4102 * checking anything < 1Hz which implicitly can't be
4103 * limited via an integer oa_max_sample_rate.
4104 */
4105 if (oa_period <= NSEC_PER_SEC) {
4106 u64 tmp = NSEC_PER_SEC;
4107 do_div(tmp, oa_period);
4108 oa_freq_hz = tmp;
4109 } else
4110 oa_freq_hz = 0;
4111
4112 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4113 drm_dbg(&perf->i915->drm,
4114 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4115 i915_oa_max_sample_rate);
4116 return -EACCES;
4117 }
4118
4119 props->oa_periodic = true;
4120 props->oa_period_exponent = value;
4121 break;
4122 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4123 props->hold_preemption = !!value;
4124 break;
4125 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4126 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4127 drm_dbg(&perf->i915->drm,
4128 "SSEU config not supported on gfx %x\n",
4129 GRAPHICS_VER_FULL(perf->i915));
4130 return -ENODEV;
4131 }
4132
4133 if (copy_from_user(to: &user_sseu,
4134 u64_to_user_ptr(value),
4135 n: sizeof(user_sseu))) {
4136 drm_dbg(&perf->i915->drm,
4137 "Unable to copy global sseu parameter\n");
4138 return -EFAULT;
4139 }
4140 config_sseu = true;
4141 break;
4142 }
4143 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4144 if (value < 100000 /* 100us */) {
4145 drm_dbg(&perf->i915->drm,
4146 "OA availability timer too small (%lluns < 100us)\n",
4147 value);
4148 return -EINVAL;
4149 }
4150 props->poll_oa_period = value;
4151 break;
4152 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4153 class = (u8)value;
4154 config_class = true;
4155 break;
4156 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4157 instance = (u8)value;
4158 config_instance = true;
4159 break;
4160 default:
4161 MISSING_CASE(id);
4162 return -EINVAL;
4163 }
4164
4165 uprop += 2;
4166 }
4167
4168 if ((config_class && !config_instance) ||
4169 (config_instance && !config_class)) {
4170 drm_dbg(&perf->i915->drm,
4171 "OA engine-class and engine-instance parameters must be passed together\n");
4172 return -EINVAL;
4173 }
4174
4175 props->engine = intel_engine_lookup_user(i915: perf->i915, class, instance);
4176 if (!props->engine) {
4177 drm_dbg(&perf->i915->drm,
4178 "OA engine class and instance invalid %d:%d\n",
4179 class, instance);
4180 return -EINVAL;
4181 }
4182
4183 if (!engine_supports_oa(engine: props->engine)) {
4184 drm_dbg(&perf->i915->drm,
4185 "Engine not supported by OA %d:%d\n",
4186 class, instance);
4187 return -EINVAL;
4188 }
4189
4190 /*
4191 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4192 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4193 * does not work as expected.
4194 */
4195 if (IS_MEDIA_GT_IP_STEP(props->engine->gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
4196 props->engine->oa_group->type == TYPE_OAM &&
4197 intel_check_bios_c6_setup(rc6: &props->engine->gt->rc6)) {
4198 drm_dbg(&perf->i915->drm,
4199 "OAM requires media C6 to be disabled in BIOS\n");
4200 return -EINVAL;
4201 }
4202
4203 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4204 f = &perf->oa_formats[i];
4205 if (!engine_supports_oa_format(engine: props->engine, type: f->type)) {
4206 drm_dbg(&perf->i915->drm,
4207 "Invalid OA format %d for class %d\n",
4208 f->type, props->engine->class);
4209 return -EINVAL;
4210 }
4211
4212 if (config_sseu) {
4213 ret = get_sseu_config(out_sseu: &props->sseu, engine: props->engine, drm_sseu: &user_sseu);
4214 if (ret) {
4215 drm_dbg(&perf->i915->drm,
4216 "Invalid SSEU configuration\n");
4217 return ret;
4218 }
4219 props->has_sseu = true;
4220 }
4221
4222 return 0;
4223}
4224
4225/**
4226 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4227 * @dev: drm device
4228 * @data: ioctl data copied from userspace (unvalidated)
4229 * @file: drm file
4230 *
4231 * Validates the stream open parameters given by userspace including flags
4232 * and an array of u64 key, value pair properties.
4233 *
4234 * Very little is assumed up front about the nature of the stream being
4235 * opened (for instance we don't assume it's for periodic OA unit metrics). An
4236 * i915-perf stream is expected to be a suitable interface for other forms of
4237 * buffered data written by the GPU besides periodic OA metrics.
4238 *
4239 * Note we copy the properties from userspace outside of the i915 perf
4240 * mutex to avoid an awkward lockdep with mmap_lock.
4241 *
4242 * Most of the implementation details are handled by
4243 * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4244 * mutex for serializing with any non-file-operation driver hooks.
4245 *
4246 * Return: A newly opened i915 Perf stream file descriptor or negative
4247 * error code on failure.
4248 */
4249int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4250 struct drm_file *file)
4251{
4252 struct i915_perf *perf = &to_i915(dev)->perf;
4253 struct drm_i915_perf_open_param *param = data;
4254 struct intel_gt *gt;
4255 struct perf_open_properties props;
4256 u32 known_open_flags;
4257 int ret;
4258
4259 if (!perf->i915)
4260 return -ENOTSUPP;
4261
4262 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4263 I915_PERF_FLAG_FD_NONBLOCK |
4264 I915_PERF_FLAG_DISABLED;
4265 if (param->flags & ~known_open_flags) {
4266 drm_dbg(&perf->i915->drm,
4267 "Unknown drm_i915_perf_open_param flag\n");
4268 return -EINVAL;
4269 }
4270
4271 ret = read_properties_unlocked(perf,
4272 u64_to_user_ptr(param->properties_ptr),
4273 n_props: param->num_properties,
4274 props: &props);
4275 if (ret)
4276 return ret;
4277
4278 gt = props.engine->gt;
4279
4280 mutex_lock(&gt->perf.lock);
4281 ret = i915_perf_open_ioctl_locked(perf, param, props: &props, file);
4282 mutex_unlock(lock: &gt->perf.lock);
4283
4284 return ret;
4285}
4286
4287/**
4288 * i915_perf_register - exposes i915-perf to userspace
4289 * @i915: i915 device instance
4290 *
4291 * In particular OA metric sets are advertised under a sysfs metrics/
4292 * directory allowing userspace to enumerate valid IDs that can be
4293 * used to open an i915-perf stream.
4294 */
4295void i915_perf_register(struct drm_i915_private *i915)
4296{
4297 struct i915_perf *perf = &i915->perf;
4298 struct intel_gt *gt = to_gt(i915);
4299
4300 if (!perf->i915)
4301 return;
4302
4303 /* To be sure we're synchronized with an attempted
4304 * i915_perf_open_ioctl(); considering that we register after
4305 * being exposed to userspace.
4306 */
4307 mutex_lock(&gt->perf.lock);
4308
4309 perf->metrics_kobj =
4310 kobject_create_and_add(name: "metrics",
4311 parent: &i915->drm.primary->kdev->kobj);
4312
4313 mutex_unlock(lock: &gt->perf.lock);
4314}
4315
4316/**
4317 * i915_perf_unregister - hide i915-perf from userspace
4318 * @i915: i915 device instance
4319 *
4320 * i915-perf state cleanup is split up into an 'unregister' and
4321 * 'deinit' phase where the interface is first hidden from
4322 * userspace by i915_perf_unregister() before cleaning up
4323 * remaining state in i915_perf_fini().
4324 */
4325void i915_perf_unregister(struct drm_i915_private *i915)
4326{
4327 struct i915_perf *perf = &i915->perf;
4328
4329 if (!perf->metrics_kobj)
4330 return;
4331
4332 kobject_put(kobj: perf->metrics_kobj);
4333 perf->metrics_kobj = NULL;
4334}
4335
4336static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4337{
4338 static const i915_reg_t flex_eu_regs[] = {
4339 EU_PERF_CNTL0,
4340 EU_PERF_CNTL1,
4341 EU_PERF_CNTL2,
4342 EU_PERF_CNTL3,
4343 EU_PERF_CNTL4,
4344 EU_PERF_CNTL5,
4345 EU_PERF_CNTL6,
4346 };
4347 int i;
4348
4349 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4350 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4351 return true;
4352 }
4353 return false;
4354}
4355
4356static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4357{
4358 while (table->start || table->end) {
4359 if (addr >= table->start && addr <= table->end)
4360 return true;
4361
4362 table++;
4363 }
4364
4365 return false;
4366}
4367
4368#define REG_EQUAL(addr, mmio) \
4369 ((addr) == i915_mmio_reg_offset(mmio))
4370
4371static const struct i915_range gen7_oa_b_counters[] = {
4372 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */
4373 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */
4374 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */
4375 {}
4376};
4377
4378static const struct i915_range gen12_oa_b_counters[] = {
4379 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */
4380 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */
4381 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */
4382 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */
4383 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */
4384 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */
4385 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */
4386 {}
4387};
4388
4389static const struct i915_range mtl_oam_b_counters[] = {
4390 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */
4391 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */
4392 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */
4393 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */
4394 {}
4395};
4396
4397static const struct i915_range xehp_oa_b_counters[] = {
4398 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */
4399 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */
4400 {}
4401};
4402
4403static const struct i915_range gen7_oa_mux_regs[] = {
4404 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */
4405 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */
4406 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */
4407 {}
4408};
4409
4410static const struct i915_range hsw_oa_mux_regs[] = {
4411 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4412 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4413 { .start = 0x25100, .end = 0x2ff90 },
4414 {}
4415};
4416
4417static const struct i915_range chv_oa_mux_regs[] = {
4418 { .start = 0x182300, .end = 0x1823a4 },
4419 {}
4420};
4421
4422static const struct i915_range gen8_oa_mux_regs[] = {
4423 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4424 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
4425 {}
4426};
4427
4428static const struct i915_range gen11_oa_mux_regs[] = {
4429 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */
4430 {}
4431};
4432
4433static const struct i915_range gen12_oa_mux_regs[] = {
4434 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
4435 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
4436 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
4437 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
4438 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
4439 {}
4440};
4441
4442/*
4443 * Ref: 14010536224:
4444 * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4445 */
4446static const struct i915_range mtl_oa_mux_regs[] = {
4447 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
4448 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
4449 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
4450 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
4451 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */
4452 {}
4453};
4454
4455static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4456{
4457 return reg_in_range_table(addr, table: gen7_oa_b_counters);
4458}
4459
4460static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4461{
4462 return reg_in_range_table(addr, table: gen7_oa_mux_regs) ||
4463 reg_in_range_table(addr, table: gen8_oa_mux_regs);
4464}
4465
4466static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4467{
4468 return reg_in_range_table(addr, table: gen7_oa_mux_regs) ||
4469 reg_in_range_table(addr, table: gen8_oa_mux_regs) ||
4470 reg_in_range_table(addr, table: gen11_oa_mux_regs);
4471}
4472
4473static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4474{
4475 return reg_in_range_table(addr, table: gen7_oa_mux_regs) ||
4476 reg_in_range_table(addr, table: hsw_oa_mux_regs);
4477}
4478
4479static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4480{
4481 return reg_in_range_table(addr, table: gen7_oa_mux_regs) ||
4482 reg_in_range_table(addr, table: chv_oa_mux_regs);
4483}
4484
4485static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4486{
4487 return reg_in_range_table(addr, table: gen12_oa_b_counters);
4488}
4489
4490static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4491{
4492 if (HAS_OAM(perf->i915) &&
4493 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4494 return reg_in_range_table(addr, table: mtl_oam_b_counters);
4495
4496 return false;
4497}
4498
4499static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4500{
4501 return reg_in_range_table(addr, table: xehp_oa_b_counters) ||
4502 reg_in_range_table(addr, table: gen12_oa_b_counters) ||
4503 mtl_is_valid_oam_b_counter_addr(perf, addr);
4504}
4505
4506static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4507{
4508 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4509 return reg_in_range_table(addr, table: mtl_oa_mux_regs);
4510 else
4511 return reg_in_range_table(addr, table: gen12_oa_mux_regs);
4512}
4513
4514static u32 mask_reg_value(u32 reg, u32 val)
4515{
4516 /* HALF_SLICE_CHICKEN2 is programmed with a the
4517 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4518 * programmed by userspace doesn't change this.
4519 */
4520 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4521 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4522
4523 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4524 * indicated by its name and a bunch of selection fields used by OA
4525 * configs.
4526 */
4527 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4528 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4529
4530 return val;
4531}
4532
4533static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4534 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4535 u32 __user *regs,
4536 u32 n_regs)
4537{
4538 struct i915_oa_reg *oa_regs;
4539 int err;
4540 u32 i;
4541
4542 if (!n_regs)
4543 return NULL;
4544
4545 /* No is_valid function means we're not allowing any register to be programmed. */
4546 GEM_BUG_ON(!is_valid);
4547 if (!is_valid)
4548 return ERR_PTR(error: -EINVAL);
4549
4550 oa_regs = kmalloc_array(n: n_regs, size: sizeof(*oa_regs), GFP_KERNEL);
4551 if (!oa_regs)
4552 return ERR_PTR(error: -ENOMEM);
4553
4554 for (i = 0; i < n_regs; i++) {
4555 u32 addr, value;
4556
4557 err = get_user(addr, regs);
4558 if (err)
4559 goto addr_err;
4560
4561 if (!is_valid(perf, addr)) {
4562 drm_dbg(&perf->i915->drm,
4563 "Invalid oa_reg address: %X\n", addr);
4564 err = -EINVAL;
4565 goto addr_err;
4566 }
4567
4568 err = get_user(value, regs + 1);
4569 if (err)
4570 goto addr_err;
4571
4572 oa_regs[i].addr = _MMIO(addr);
4573 oa_regs[i].value = mask_reg_value(reg: addr, val: value);
4574
4575 regs += 2;
4576 }
4577
4578 return oa_regs;
4579
4580addr_err:
4581 kfree(objp: oa_regs);
4582 return ERR_PTR(error: err);
4583}
4584
4585static ssize_t show_dynamic_id(struct kobject *kobj,
4586 struct kobj_attribute *attr,
4587 char *buf)
4588{
4589 struct i915_oa_config *oa_config =
4590 container_of(attr, typeof(*oa_config), sysfs_metric_id);
4591
4592 return sprintf(buf, fmt: "%d\n", oa_config->id);
4593}
4594
4595static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4596 struct i915_oa_config *oa_config)
4597{
4598 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4599 oa_config->sysfs_metric_id.attr.name = "id";
4600 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4601 oa_config->sysfs_metric_id.show = show_dynamic_id;
4602 oa_config->sysfs_metric_id.store = NULL;
4603
4604 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4605 oa_config->attrs[1] = NULL;
4606
4607 oa_config->sysfs_metric.name = oa_config->uuid;
4608 oa_config->sysfs_metric.attrs = oa_config->attrs;
4609
4610 return sysfs_create_group(kobj: perf->metrics_kobj,
4611 grp: &oa_config->sysfs_metric);
4612}
4613
4614/**
4615 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4616 * @dev: drm device
4617 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4618 * userspace (unvalidated)
4619 * @file: drm file
4620 *
4621 * Validates the submitted OA register to be saved into a new OA config that
4622 * can then be used for programming the OA unit and its NOA network.
4623 *
4624 * Returns: A new allocated config number to be used with the perf open ioctl
4625 * or a negative error code on failure.
4626 */
4627int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4628 struct drm_file *file)
4629{
4630 struct i915_perf *perf = &to_i915(dev)->perf;
4631 struct drm_i915_perf_oa_config *args = data;
4632 struct i915_oa_config *oa_config, *tmp;
4633 struct i915_oa_reg *regs;
4634 int err, id;
4635
4636 if (!perf->i915)
4637 return -ENOTSUPP;
4638
4639 if (!perf->metrics_kobj) {
4640 drm_dbg(&perf->i915->drm,
4641 "OA metrics weren't advertised via sysfs\n");
4642 return -EINVAL;
4643 }
4644
4645 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4646 drm_dbg(&perf->i915->drm,
4647 "Insufficient privileges to add i915 OA config\n");
4648 return -EACCES;
4649 }
4650
4651 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4652 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4653 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4654 drm_dbg(&perf->i915->drm,
4655 "No OA registers given\n");
4656 return -EINVAL;
4657 }
4658
4659 oa_config = kzalloc(size: sizeof(*oa_config), GFP_KERNEL);
4660 if (!oa_config) {
4661 drm_dbg(&perf->i915->drm,
4662 "Failed to allocate memory for the OA config\n");
4663 return -ENOMEM;
4664 }
4665
4666 oa_config->perf = perf;
4667 kref_init(kref: &oa_config->ref);
4668
4669 if (!uuid_is_valid(uuid: args->uuid)) {
4670 drm_dbg(&perf->i915->drm,
4671 "Invalid uuid format for OA config\n");
4672 err = -EINVAL;
4673 goto reg_err;
4674 }
4675
4676 /* Last character in oa_config->uuid will be 0 because oa_config is
4677 * kzalloc.
4678 */
4679 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4680
4681 oa_config->mux_regs_len = args->n_mux_regs;
4682 regs = alloc_oa_regs(perf,
4683 is_valid: perf->ops.is_valid_mux_reg,
4684 u64_to_user_ptr(args->mux_regs_ptr),
4685 n_regs: args->n_mux_regs);
4686
4687 if (IS_ERR(ptr: regs)) {
4688 drm_dbg(&perf->i915->drm,
4689 "Failed to create OA config for mux_regs\n");
4690 err = PTR_ERR(ptr: regs);
4691 goto reg_err;
4692 }
4693 oa_config->mux_regs = regs;
4694
4695 oa_config->b_counter_regs_len = args->n_boolean_regs;
4696 regs = alloc_oa_regs(perf,
4697 is_valid: perf->ops.is_valid_b_counter_reg,
4698 u64_to_user_ptr(args->boolean_regs_ptr),
4699 n_regs: args->n_boolean_regs);
4700
4701 if (IS_ERR(ptr: regs)) {
4702 drm_dbg(&perf->i915->drm,
4703 "Failed to create OA config for b_counter_regs\n");
4704 err = PTR_ERR(ptr: regs);
4705 goto reg_err;
4706 }
4707 oa_config->b_counter_regs = regs;
4708
4709 if (GRAPHICS_VER(perf->i915) < 8) {
4710 if (args->n_flex_regs != 0) {
4711 err = -EINVAL;
4712 goto reg_err;
4713 }
4714 } else {
4715 oa_config->flex_regs_len = args->n_flex_regs;
4716 regs = alloc_oa_regs(perf,
4717 is_valid: perf->ops.is_valid_flex_reg,
4718 u64_to_user_ptr(args->flex_regs_ptr),
4719 n_regs: args->n_flex_regs);
4720
4721 if (IS_ERR(ptr: regs)) {
4722 drm_dbg(&perf->i915->drm,
4723 "Failed to create OA config for flex_regs\n");
4724 err = PTR_ERR(ptr: regs);
4725 goto reg_err;
4726 }
4727 oa_config->flex_regs = regs;
4728 }
4729
4730 err = mutex_lock_interruptible(&perf->metrics_lock);
4731 if (err)
4732 goto reg_err;
4733
4734 /* We shouldn't have too many configs, so this iteration shouldn't be
4735 * too costly.
4736 */
4737 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4738 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4739 drm_dbg(&perf->i915->drm,
4740 "OA config already exists with this uuid\n");
4741 err = -EADDRINUSE;
4742 goto sysfs_err;
4743 }
4744 }
4745
4746 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4747 if (err) {
4748 drm_dbg(&perf->i915->drm,
4749 "Failed to create sysfs entry for OA config\n");
4750 goto sysfs_err;
4751 }
4752
4753 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4754 oa_config->id = idr_alloc(&perf->metrics_idr,
4755 ptr: oa_config, start: 2,
4756 end: 0, GFP_KERNEL);
4757 if (oa_config->id < 0) {
4758 drm_dbg(&perf->i915->drm,
4759 "Failed to create sysfs entry for OA config\n");
4760 err = oa_config->id;
4761 goto sysfs_err;
4762 }
4763 id = oa_config->id;
4764
4765 drm_dbg(&perf->i915->drm,
4766 "Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4767 mutex_unlock(lock: &perf->metrics_lock);
4768
4769 return id;
4770
4771sysfs_err:
4772 mutex_unlock(lock: &perf->metrics_lock);
4773reg_err:
4774 i915_oa_config_put(oa_config);
4775 drm_dbg(&perf->i915->drm,
4776 "Failed to add new OA config\n");
4777 return err;
4778}
4779
4780/**
4781 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4782 * @dev: drm device
4783 * @data: ioctl data (pointer to u64 integer) copied from userspace
4784 * @file: drm file
4785 *
4786 * Configs can be removed while being used, the will stop appearing in sysfs
4787 * and their content will be freed when the stream using the config is closed.
4788 *
4789 * Returns: 0 on success or a negative error code on failure.
4790 */
4791int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4792 struct drm_file *file)
4793{
4794 struct i915_perf *perf = &to_i915(dev)->perf;
4795 u64 *arg = data;
4796 struct i915_oa_config *oa_config;
4797 int ret;
4798
4799 if (!perf->i915)
4800 return -ENOTSUPP;
4801
4802 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4803 drm_dbg(&perf->i915->drm,
4804 "Insufficient privileges to remove i915 OA config\n");
4805 return -EACCES;
4806 }
4807
4808 ret = mutex_lock_interruptible(&perf->metrics_lock);
4809 if (ret)
4810 return ret;
4811
4812 oa_config = idr_find(&perf->metrics_idr, id: *arg);
4813 if (!oa_config) {
4814 drm_dbg(&perf->i915->drm,
4815 "Failed to remove unknown OA config\n");
4816 ret = -ENOENT;
4817 goto err_unlock;
4818 }
4819
4820 GEM_BUG_ON(*arg != oa_config->id);
4821
4822 sysfs_remove_group(kobj: perf->metrics_kobj, grp: &oa_config->sysfs_metric);
4823
4824 idr_remove(&perf->metrics_idr, id: *arg);
4825
4826 mutex_unlock(lock: &perf->metrics_lock);
4827
4828 drm_dbg(&perf->i915->drm,
4829 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4830
4831 i915_oa_config_put(oa_config);
4832
4833 return 0;
4834
4835err_unlock:
4836 mutex_unlock(lock: &perf->metrics_lock);
4837 return ret;
4838}
4839
4840static struct ctl_table oa_table[] = {
4841 {
4842 .procname = "perf_stream_paranoid",
4843 .data = &i915_perf_stream_paranoid,
4844 .maxlen = sizeof(i915_perf_stream_paranoid),
4845 .mode = 0644,
4846 .proc_handler = proc_dointvec_minmax,
4847 .extra1 = SYSCTL_ZERO,
4848 .extra2 = SYSCTL_ONE,
4849 },
4850 {
4851 .procname = "oa_max_sample_rate",
4852 .data = &i915_oa_max_sample_rate,
4853 .maxlen = sizeof(i915_oa_max_sample_rate),
4854 .mode = 0644,
4855 .proc_handler = proc_dointvec_minmax,
4856 .extra1 = SYSCTL_ZERO,
4857 .extra2 = &oa_sample_rate_hard_limit,
4858 },
4859};
4860
4861static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4862{
4863 return 1;
4864}
4865
4866static u32 __oam_engine_group(struct intel_engine_cs *engine)
4867{
4868 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4869 /*
4870 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4871 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4872 */
4873 drm_WARN_ON(&engine->i915->drm,
4874 engine->gt->type != GT_MEDIA);
4875
4876 return PERF_GROUP_OAM_SAMEDIA_0;
4877 }
4878
4879 return PERF_GROUP_INVALID;
4880}
4881
4882static u32 __oa_engine_group(struct intel_engine_cs *engine)
4883{
4884 switch (engine->class) {
4885 case RENDER_CLASS:
4886 return PERF_GROUP_OAG;
4887
4888 case VIDEO_DECODE_CLASS:
4889 case VIDEO_ENHANCEMENT_CLASS:
4890 return __oam_engine_group(engine);
4891
4892 default:
4893 return PERF_GROUP_INVALID;
4894 }
4895}
4896
4897static struct i915_perf_regs __oam_regs(u32 base)
4898{
4899 return (struct i915_perf_regs) {
4900 base,
4901 GEN12_OAM_HEAD_POINTER(base),
4902 GEN12_OAM_TAIL_POINTER(base),
4903 GEN12_OAM_BUFFER(base),
4904 GEN12_OAM_CONTEXT_CONTROL(base),
4905 GEN12_OAM_CONTROL(base),
4906 GEN12_OAM_DEBUG(base),
4907 GEN12_OAM_STATUS(base),
4908 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4909 };
4910}
4911
4912static struct i915_perf_regs __oag_regs(void)
4913{
4914 return (struct i915_perf_regs) {
4915 0,
4916 GEN12_OAG_OAHEADPTR,
4917 GEN12_OAG_OATAILPTR,
4918 GEN12_OAG_OABUFFER,
4919 GEN12_OAG_OAGLBCTXCTRL,
4920 GEN12_OAG_OACONTROL,
4921 GEN12_OAG_OA_DEBUG,
4922 GEN12_OAG_OASTATUS,
4923 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4924 };
4925}
4926
4927static void oa_init_groups(struct intel_gt *gt)
4928{
4929 int i, num_groups = gt->perf.num_perf_groups;
4930
4931 for (i = 0; i < num_groups; i++) {
4932 struct i915_perf_group *g = &gt->perf.group[i];
4933
4934 /* Fused off engines can result in a group with num_engines == 0 */
4935 if (g->num_engines == 0)
4936 continue;
4937
4938 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4939 g->regs = __oag_regs();
4940 g->type = TYPE_OAG;
4941 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4942 g->regs = __oam_regs(base: mtl_oa_base[i]);
4943 g->type = TYPE_OAM;
4944 }
4945 }
4946}
4947
4948static int oa_init_gt(struct intel_gt *gt)
4949{
4950 u32 num_groups = num_perf_groups_per_gt(gt);
4951 struct intel_engine_cs *engine;
4952 struct i915_perf_group *g;
4953 intel_engine_mask_t tmp;
4954
4955 g = kcalloc(n: num_groups, size: sizeof(*g), GFP_KERNEL);
4956 if (!g)
4957 return -ENOMEM;
4958
4959 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
4960 u32 index = __oa_engine_group(engine);
4961
4962 engine->oa_group = NULL;
4963 if (index < num_groups) {
4964 g[index].num_engines++;
4965 engine->oa_group = &g[index];
4966 }
4967 }
4968
4969 gt->perf.num_perf_groups = num_groups;
4970 gt->perf.group = g;
4971
4972 oa_init_groups(gt);
4973
4974 return 0;
4975}
4976
4977static int oa_init_engine_groups(struct i915_perf *perf)
4978{
4979 struct intel_gt *gt;
4980 int i, ret;
4981
4982 for_each_gt(gt, perf->i915, i) {
4983 ret = oa_init_gt(gt);
4984 if (ret)
4985 return ret;
4986 }
4987
4988 return 0;
4989}
4990
4991static void oa_init_supported_formats(struct i915_perf *perf)
4992{
4993 struct drm_i915_private *i915 = perf->i915;
4994 enum intel_platform platform = INTEL_INFO(i915)->platform;
4995
4996 switch (platform) {
4997 case INTEL_HASWELL:
4998 oa_format_add(perf, format: I915_OA_FORMAT_A13);
4999 oa_format_add(perf, format: I915_OA_FORMAT_A13);
5000 oa_format_add(perf, format: I915_OA_FORMAT_A29);
5001 oa_format_add(perf, format: I915_OA_FORMAT_A13_B8_C8);
5002 oa_format_add(perf, format: I915_OA_FORMAT_B4_C8);
5003 oa_format_add(perf, format: I915_OA_FORMAT_A45_B8_C8);
5004 oa_format_add(perf, format: I915_OA_FORMAT_B4_C8_A16);
5005 oa_format_add(perf, format: I915_OA_FORMAT_C4_B8);
5006 break;
5007
5008 case INTEL_BROADWELL:
5009 case INTEL_CHERRYVIEW:
5010 case INTEL_SKYLAKE:
5011 case INTEL_BROXTON:
5012 case INTEL_KABYLAKE:
5013 case INTEL_GEMINILAKE:
5014 case INTEL_COFFEELAKE:
5015 case INTEL_COMETLAKE:
5016 case INTEL_ICELAKE:
5017 case INTEL_ELKHARTLAKE:
5018 case INTEL_JASPERLAKE:
5019 case INTEL_TIGERLAKE:
5020 case INTEL_ROCKETLAKE:
5021 case INTEL_DG1:
5022 case INTEL_ALDERLAKE_S:
5023 case INTEL_ALDERLAKE_P:
5024 oa_format_add(perf, format: I915_OA_FORMAT_A12);
5025 oa_format_add(perf, format: I915_OA_FORMAT_A12_B8_C8);
5026 oa_format_add(perf, format: I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5027 oa_format_add(perf, format: I915_OA_FORMAT_C4_B8);
5028 break;
5029
5030 case INTEL_DG2:
5031 oa_format_add(perf, format: I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5032 oa_format_add(perf, format: I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5033 break;
5034
5035 case INTEL_METEORLAKE:
5036 oa_format_add(perf, format: I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5037 oa_format_add(perf, format: I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5038 oa_format_add(perf, format: I915_OAM_FORMAT_MPEC8u64_B8_C8);
5039 oa_format_add(perf, format: I915_OAM_FORMAT_MPEC8u32_B8_C8);
5040 break;
5041
5042 default:
5043 MISSING_CASE(platform);
5044 }
5045}
5046
5047static void i915_perf_init_info(struct drm_i915_private *i915)
5048{
5049 struct i915_perf *perf = &i915->perf;
5050
5051 switch (GRAPHICS_VER(i915)) {
5052 case 8:
5053 perf->ctx_oactxctrl_offset = 0x120;
5054 perf->ctx_flexeu0_offset = 0x2ce;
5055 perf->gen8_valid_ctx_bit = BIT(25);
5056 break;
5057 case 9:
5058 perf->ctx_oactxctrl_offset = 0x128;
5059 perf->ctx_flexeu0_offset = 0x3de;
5060 perf->gen8_valid_ctx_bit = BIT(16);
5061 break;
5062 case 11:
5063 perf->ctx_oactxctrl_offset = 0x124;
5064 perf->ctx_flexeu0_offset = 0x78e;
5065 perf->gen8_valid_ctx_bit = BIT(16);
5066 break;
5067 case 12:
5068 perf->gen8_valid_ctx_bit = BIT(16);
5069 /*
5070 * Calculate offset at runtime in oa_pin_context for gen12 and
5071 * cache the value in perf->ctx_oactxctrl_offset.
5072 */
5073 break;
5074 default:
5075 MISSING_CASE(GRAPHICS_VER(i915));
5076 }
5077}
5078
5079/**
5080 * i915_perf_init - initialize i915-perf state on module bind
5081 * @i915: i915 device instance
5082 *
5083 * Initializes i915-perf state without exposing anything to userspace.
5084 *
5085 * Note: i915-perf initialization is split into an 'init' and 'register'
5086 * phase with the i915_perf_register() exposing state to userspace.
5087 */
5088int i915_perf_init(struct drm_i915_private *i915)
5089{
5090 struct i915_perf *perf = &i915->perf;
5091
5092 perf->oa_formats = oa_formats;
5093 if (IS_HASWELL(i915)) {
5094 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5095 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5096 perf->ops.is_valid_flex_reg = NULL;
5097 perf->ops.enable_metric_set = hsw_enable_metric_set;
5098 perf->ops.disable_metric_set = hsw_disable_metric_set;
5099 perf->ops.oa_enable = gen7_oa_enable;
5100 perf->ops.oa_disable = gen7_oa_disable;
5101 perf->ops.read = gen7_oa_read;
5102 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5103 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5104 /* Note: that although we could theoretically also support the
5105 * legacy ringbuffer mode on BDW (and earlier iterations of
5106 * this driver, before upstreaming did this) it didn't seem
5107 * worth the complexity to maintain now that BDW+ enable
5108 * execlist mode by default.
5109 */
5110 perf->ops.read = gen8_oa_read;
5111 i915_perf_init_info(i915);
5112
5113 if (IS_GRAPHICS_VER(i915, 8, 9)) {
5114 perf->ops.is_valid_b_counter_reg =
5115 gen7_is_valid_b_counter_addr;
5116 perf->ops.is_valid_mux_reg =
5117 gen8_is_valid_mux_addr;
5118 perf->ops.is_valid_flex_reg =
5119 gen8_is_valid_flex_addr;
5120
5121 if (IS_CHERRYVIEW(i915)) {
5122 perf->ops.is_valid_mux_reg =
5123 chv_is_valid_mux_addr;
5124 }
5125
5126 perf->ops.oa_enable = gen8_oa_enable;
5127 perf->ops.oa_disable = gen8_oa_disable;
5128 perf->ops.enable_metric_set = gen8_enable_metric_set;
5129 perf->ops.disable_metric_set = gen8_disable_metric_set;
5130 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5131 } else if (GRAPHICS_VER(i915) == 11) {
5132 perf->ops.is_valid_b_counter_reg =
5133 gen7_is_valid_b_counter_addr;
5134 perf->ops.is_valid_mux_reg =
5135 gen11_is_valid_mux_addr;
5136 perf->ops.is_valid_flex_reg =
5137 gen8_is_valid_flex_addr;
5138
5139 perf->ops.oa_enable = gen8_oa_enable;
5140 perf->ops.oa_disable = gen8_oa_disable;
5141 perf->ops.enable_metric_set = gen8_enable_metric_set;
5142 perf->ops.disable_metric_set = gen11_disable_metric_set;
5143 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5144 } else if (GRAPHICS_VER(i915) == 12) {
5145 perf->ops.is_valid_b_counter_reg =
5146 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5147 xehp_is_valid_b_counter_addr :
5148 gen12_is_valid_b_counter_addr;
5149 perf->ops.is_valid_mux_reg =
5150 gen12_is_valid_mux_addr;
5151 perf->ops.is_valid_flex_reg =
5152 gen8_is_valid_flex_addr;
5153
5154 perf->ops.oa_enable = gen12_oa_enable;
5155 perf->ops.oa_disable = gen12_oa_disable;
5156 perf->ops.enable_metric_set = gen12_enable_metric_set;
5157 perf->ops.disable_metric_set = gen12_disable_metric_set;
5158 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5159 }
5160 }
5161
5162 if (perf->ops.enable_metric_set) {
5163 struct intel_gt *gt;
5164 int i, ret;
5165
5166 for_each_gt(gt, i915, i)
5167 mutex_init(&gt->perf.lock);
5168
5169 /* Choose a representative limit */
5170 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5171
5172 mutex_init(&perf->metrics_lock);
5173 idr_init_base(idr: &perf->metrics_idr, base: 1);
5174
5175 /* We set up some ratelimit state to potentially throttle any
5176 * _NOTES about spurious, invalid OA reports which we don't
5177 * forward to userspace.
5178 *
5179 * We print a _NOTE about any throttling when closing the
5180 * stream instead of waiting until driver _fini which no one
5181 * would ever see.
5182 *
5183 * Using the same limiting factors as printk_ratelimit()
5184 */
5185 ratelimit_state_init(rs: &perf->spurious_report_rs, interval: 5 * HZ, burst: 10);
5186 /* Since we use a DRM_NOTE for spurious reports it would be
5187 * inconsistent to let __ratelimit() automatically print a
5188 * warning for throttling.
5189 */
5190 ratelimit_set_flags(rs: &perf->spurious_report_rs,
5191 RATELIMIT_MSG_ON_RELEASE);
5192
5193 ratelimit_state_init(rs: &perf->tail_pointer_race,
5194 interval: 5 * HZ, burst: 10);
5195 ratelimit_set_flags(rs: &perf->tail_pointer_race,
5196 RATELIMIT_MSG_ON_RELEASE);
5197
5198 atomic64_set(v: &perf->noa_programming_delay,
5199 i: 500 * 1000 /* 500us */);
5200
5201 perf->i915 = i915;
5202
5203 ret = oa_init_engine_groups(perf);
5204 if (ret) {
5205 drm_err(&i915->drm,
5206 "OA initialization failed %d\n", ret);
5207 return ret;
5208 }
5209
5210 oa_init_supported_formats(perf);
5211 }
5212
5213 return 0;
5214}
5215
5216static int destroy_config(int id, void *p, void *data)
5217{
5218 i915_oa_config_put(oa_config: p);
5219 return 0;
5220}
5221
5222int i915_perf_sysctl_register(void)
5223{
5224 sysctl_header = register_sysctl("dev/i915", oa_table);
5225 return 0;
5226}
5227
5228void i915_perf_sysctl_unregister(void)
5229{
5230 unregister_sysctl_table(table: sysctl_header);
5231}
5232
5233/**
5234 * i915_perf_fini - Counter part to i915_perf_init()
5235 * @i915: i915 device instance
5236 */
5237void i915_perf_fini(struct drm_i915_private *i915)
5238{
5239 struct i915_perf *perf = &i915->perf;
5240 struct intel_gt *gt;
5241 int i;
5242
5243 if (!perf->i915)
5244 return;
5245
5246 for_each_gt(gt, perf->i915, i)
5247 kfree(objp: gt->perf.group);
5248
5249 idr_for_each(&perf->metrics_idr, fn: destroy_config, data: perf);
5250 idr_destroy(&perf->metrics_idr);
5251
5252 memset(&perf->ops, 0, sizeof(perf->ops));
5253 perf->i915 = NULL;
5254}
5255
5256/**
5257 * i915_perf_ioctl_version - Version of the i915-perf subsystem
5258 * @i915: The i915 device
5259 *
5260 * This version number is used by userspace to detect available features.
5261 */
5262int i915_perf_ioctl_version(struct drm_i915_private *i915)
5263{
5264 /*
5265 * 1: Initial version
5266 * I915_PERF_IOCTL_ENABLE
5267 * I915_PERF_IOCTL_DISABLE
5268 *
5269 * 2: Added runtime modification of OA config.
5270 * I915_PERF_IOCTL_CONFIG
5271 *
5272 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5273 * preemption on a particular context so that performance data is
5274 * accessible from a delta of MI_RPC reports without looking at the
5275 * OA buffer.
5276 *
5277 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5278 * be run for the duration of the performance recording based on
5279 * their SSEU configuration.
5280 *
5281 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5282 * interval for the hrtimer used to check for OA data.
5283 *
5284 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5285 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5286 *
5287 * 7: Add support for video decode and enhancement classes.
5288 */
5289
5290 /*
5291 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5292 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5293 * to indicate that OA media is not supported.
5294 */
5295 if (IS_MEDIA_GT_IP_STEP(i915->media_gt, IP_VER(13, 0), STEP_A0, STEP_C0) &&
5296 intel_check_bios_c6_setup(rc6: &i915->media_gt->rc6))
5297 return 6;
5298
5299 return 7;
5300}
5301
5302#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5303#include "selftests/i915_perf.c"
5304#endif
5305

source code of linux/drivers/gpu/drm/i915/i915_perf.c