1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
27#include "extents.h"
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/rcupdate.h>
36#include <linux/sched/clock.h>
37#include <linux/rculist.h>
38#include <linux/delay.h>
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91#define MAX_NEED_GC 64
92#define MAX_SAVE_PRIO 72
93#define MAX_GC_TIMES 100
94#define MIN_GC_NODES 100
95#define GC_SLEEP_MS 100
96
97#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99#define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102static struct workqueue_struct *btree_io_wq;
103
104#define insert_lock(s, b) ((b)->level <= (s)->lock)
105
106
107static inline struct bset *write_block(struct btree *b)
108{
109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110}
111
112static void bch_btree_init_next(struct btree *b)
113{
114 /* If not a leaf node, always sort */
115 if (b->level && b->keys.nsets)
116 bch_btree_sort(b: &b->keys, state: &b->c->sort);
117 else
118 bch_btree_sort_lazy(b: &b->keys, state: &b->c->sort);
119
120 if (b->written < btree_blocks(b))
121 bch_bset_init_next(b: &b->keys, i: write_block(b),
122 magic: bset_magic(sb: &b->c->cache->sb));
123
124}
125
126/* Btree key manipulation */
127
128void bkey_put(struct cache_set *c, struct bkey *k)
129{
130 unsigned int i;
131
132 for (i = 0; i < KEY_PTRS(k); i++)
133 if (ptr_available(c, k, i))
134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135}
136
137/* Btree IO */
138
139static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140{
141 uint64_t crc = b->key.ptr[0];
142 void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144 crc = crc64_be(crc, p: data, len: end - data);
145 return crc ^ 0xffffffffffffffffULL;
146}
147
148void bch_btree_node_read_done(struct btree *b)
149{
150 const char *err = "bad btree header";
151 struct bset *i = btree_bset_first(b);
152 struct btree_iter *iter;
153
154 /*
155 * c->fill_iter can allocate an iterator with more memory space
156 * than static MAX_BSETS.
157 * See the comment arount cache_set->fill_iter.
158 */
159 iter = mempool_alloc(pool: &b->c->fill_iter, GFP_NOIO);
160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 iter->used = 0;
162
163#ifdef CONFIG_BCACHE_DEBUG
164 iter->b = &b->keys;
165#endif
166
167 if (!i->seq)
168 goto err;
169
170 for (;
171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 i = write_block(b)) {
173 err = "unsupported bset version";
174 if (i->version > BCACHE_BSET_VERSION)
175 goto err;
176
177 err = "bad btree header";
178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 btree_blocks(b))
180 goto err;
181
182 err = "bad magic";
183 if (i->magic != bset_magic(sb: &b->c->cache->sb))
184 goto err;
185
186 err = "bad checksum";
187 switch (i->version) {
188 case 0:
189 if (i->csum != csum_set(i))
190 goto err;
191 break;
192 case BCACHE_BSET_VERSION:
193 if (i->csum != btree_csum_set(b, i))
194 goto err;
195 break;
196 }
197
198 err = "empty set";
199 if (i != b->keys.set[0].data && !i->keys)
200 goto err;
201
202 bch_btree_iter_push(iter, k: i->start, bset_bkey_last(i));
203
204 b->written += set_blocks(i, block_bytes(b->c->cache));
205 }
206
207 err = "corrupted btree";
208 for (i = write_block(b);
209 bset_sector_offset(b: &b->keys, i) < KEY_SIZE(k: &b->key);
210 i = ((void *) i) + block_bytes(b->c->cache))
211 if (i->seq == b->keys.set[0].data->seq)
212 goto err;
213
214 bch_btree_sort_and_fix_extents(b: &b->keys, iter, state: &b->c->sort);
215
216 i = b->keys.set[0].data;
217 err = "short btree key";
218 if (b->keys.set[0].size &&
219 bkey_cmp(l: &b->key, r: &b->keys.set[0].end) < 0)
220 goto err;
221
222 if (b->written < btree_blocks(b))
223 bch_bset_init_next(b: &b->keys, i: write_block(b),
224 magic: bset_magic(sb: &b->c->cache->sb));
225out:
226 mempool_free(element: iter, pool: &b->c->fill_iter);
227 return;
228err:
229 set_btree_node_io_error(b);
230 bch_cache_set_error(c: b->c, fmt: "%s at bucket %zu, block %u, %u keys",
231 err, PTR_BUCKET_NR(c: b->c, k: &b->key, ptr: 0),
232 bset_block_offset(b, i), i->keys);
233 goto out;
234}
235
236static void btree_node_read_endio(struct bio *bio)
237{
238 struct closure *cl = bio->bi_private;
239
240 closure_put(cl);
241}
242
243static void bch_btree_node_read(struct btree *b)
244{
245 uint64_t start_time = local_clock();
246 struct closure cl;
247 struct bio *bio;
248
249 trace_bcache_btree_read(b);
250
251 closure_init_stack(cl: &cl);
252
253 bio = bch_bbio_alloc(c: b->c);
254 bio->bi_iter.bi_size = KEY_SIZE(k: &b->key) << 9;
255 bio->bi_end_io = btree_node_read_endio;
256 bio->bi_private = &cl;
257 bio->bi_opf = REQ_OP_READ | REQ_META;
258
259 bch_bio_map(bio, base: b->keys.set[0].data);
260
261 bch_submit_bbio(bio, c: b->c, k: &b->key, ptr: 0);
262 closure_sync(cl: &cl);
263
264 if (bio->bi_status)
265 set_btree_node_io_error(b);
266
267 bch_bbio_free(bio, c: b->c);
268
269 if (btree_node_io_error(b))
270 goto err;
271
272 bch_btree_node_read_done(b);
273 bch_time_stats_update(stats: &b->c->btree_read_time, time: start_time);
274
275 return;
276err:
277 bch_cache_set_error(c: b->c, fmt: "io error reading bucket %zu",
278 PTR_BUCKET_NR(c: b->c, k: &b->key, ptr: 0));
279}
280
281static void btree_complete_write(struct btree *b, struct btree_write *w)
282{
283 if (w->prio_blocked &&
284 !atomic_sub_return(i: w->prio_blocked, v: &b->c->prio_blocked))
285 wake_up_allocators(c: b->c);
286
287 if (w->journal) {
288 atomic_dec_bug(w->journal);
289 __closure_wake_up(list: &b->c->journal.wait);
290 }
291
292 w->prio_blocked = 0;
293 w->journal = NULL;
294}
295
296static void btree_node_write_unlock(struct closure *cl)
297{
298 struct btree *b = container_of(cl, struct btree, io);
299
300 up(sem: &b->io_mutex);
301}
302
303static void __btree_node_write_done(struct closure *cl)
304{
305 struct btree *b = container_of(cl, struct btree, io);
306 struct btree_write *w = btree_prev_write(b);
307
308 bch_bbio_free(bio: b->bio, c: b->c);
309 b->bio = NULL;
310 btree_complete_write(b, w);
311
312 if (btree_node_dirty(b))
313 queue_delayed_work(wq: btree_io_wq, dwork: &b->work, delay: 30 * HZ);
314
315 closure_return_with_destructor(cl, btree_node_write_unlock);
316}
317
318static void btree_node_write_done(struct closure *cl)
319{
320 struct btree *b = container_of(cl, struct btree, io);
321
322 bio_free_pages(bio: b->bio);
323 __btree_node_write_done(cl);
324}
325
326static void btree_node_write_endio(struct bio *bio)
327{
328 struct closure *cl = bio->bi_private;
329 struct btree *b = container_of(cl, struct btree, io);
330
331 if (bio->bi_status)
332 set_btree_node_io_error(b);
333
334 bch_bbio_count_io_errors(c: b->c, bio, error: bio->bi_status, m: "writing btree");
335 closure_put(cl);
336}
337
338static void do_btree_node_write(struct btree *b)
339{
340 struct closure *cl = &b->io;
341 struct bset *i = btree_bset_last(b);
342 BKEY_PADDED(key) k;
343
344 i->version = BCACHE_BSET_VERSION;
345 i->csum = btree_csum_set(b, i);
346
347 BUG_ON(b->bio);
348 b->bio = bch_bbio_alloc(c: b->c);
349
350 b->bio->bi_end_io = btree_node_write_endio;
351 b->bio->bi_private = cl;
352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
354 bch_bio_map(bio: b->bio, base: i);
355
356 /*
357 * If we're appending to a leaf node, we don't technically need FUA -
358 * this write just needs to be persisted before the next journal write,
359 * which will be marked FLUSH|FUA.
360 *
361 * Similarly if we're writing a new btree root - the pointer is going to
362 * be in the next journal entry.
363 *
364 * But if we're writing a new btree node (that isn't a root) or
365 * appending to a non leaf btree node, we need either FUA or a flush
366 * when we write the parent with the new pointer. FUA is cheaper than a
367 * flush, and writes appending to leaf nodes aren't blocking anything so
368 * just make all btree node writes FUA to keep things sane.
369 */
370
371 bkey_copy(&k.key, &b->key);
372 SET_PTR_OFFSET(k: &k.key, i: 0, v: PTR_OFFSET(k: &k.key, i: 0) +
373 bset_sector_offset(b: &b->keys, i));
374
375 if (!bch_bio_alloc_pages(bio: b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 struct bio_vec *bv;
377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 struct bvec_iter_all iter_all;
379
380 bio_for_each_segment_all(bv, b->bio, iter_all) {
381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 addr += PAGE_SIZE;
383 }
384
385 bch_submit_bbio(bio: b->bio, c: b->c, k: &k.key, ptr: 0);
386
387 continue_at(cl, btree_node_write_done, NULL);
388 } else {
389 /*
390 * No problem for multipage bvec since the bio is
391 * just allocated
392 */
393 b->bio->bi_vcnt = 0;
394 bch_bio_map(bio: b->bio, base: i);
395
396 bch_submit_bbio(bio: b->bio, c: b->c, k: &k.key, ptr: 0);
397
398 closure_sync(cl);
399 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 }
401}
402
403void __bch_btree_node_write(struct btree *b, struct closure *parent)
404{
405 struct bset *i = btree_bset_last(b);
406
407 lockdep_assert_held(&b->write_lock);
408
409 trace_bcache_btree_write(b);
410
411 BUG_ON(current->bio_list);
412 BUG_ON(b->written >= btree_blocks(b));
413 BUG_ON(b->written && !i->keys);
414 BUG_ON(btree_bset_first(b)->seq != i->seq);
415 bch_check_keys(&b->keys, "writing");
416
417 cancel_delayed_work(dwork: &b->work);
418
419 /* If caller isn't waiting for write, parent refcount is cache set */
420 down(sem: &b->io_mutex);
421 closure_init(cl: &b->io, parent: parent ?: &b->c->cl);
422
423 clear_bit(nr: BTREE_NODE_dirty, addr: &b->flags);
424 change_bit(nr: BTREE_NODE_write_idx, addr: &b->flags);
425
426 do_btree_node_write(b);
427
428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 v: &b->c->cache->btree_sectors_written);
430
431 b->written += set_blocks(i, block_bytes(b->c->cache));
432}
433
434void bch_btree_node_write(struct btree *b, struct closure *parent)
435{
436 unsigned int nsets = b->keys.nsets;
437
438 lockdep_assert_held(&b->lock);
439
440 __bch_btree_node_write(b, parent);
441
442 /*
443 * do verify if there was more than one set initially (i.e. we did a
444 * sort) and we sorted down to a single set:
445 */
446 if (nsets && !b->keys.nsets)
447 bch_btree_verify(b);
448
449 bch_btree_init_next(b);
450}
451
452static void bch_btree_node_write_sync(struct btree *b)
453{
454 struct closure cl;
455
456 closure_init_stack(cl: &cl);
457
458 mutex_lock(&b->write_lock);
459 bch_btree_node_write(b, parent: &cl);
460 mutex_unlock(lock: &b->write_lock);
461
462 closure_sync(cl: &cl);
463}
464
465static void btree_node_write_work(struct work_struct *w)
466{
467 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469 mutex_lock(&b->write_lock);
470 if (btree_node_dirty(b))
471 __bch_btree_node_write(b, NULL);
472 mutex_unlock(lock: &b->write_lock);
473}
474
475static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476{
477 struct bset *i = btree_bset_last(b);
478 struct btree_write *w = btree_current_write(b);
479
480 lockdep_assert_held(&b->write_lock);
481
482 BUG_ON(!b->written);
483 BUG_ON(!i->keys);
484
485 if (!btree_node_dirty(b))
486 queue_delayed_work(wq: btree_io_wq, dwork: &b->work, delay: 30 * HZ);
487
488 set_btree_node_dirty(b);
489
490 /*
491 * w->journal is always the oldest journal pin of all bkeys
492 * in the leaf node, to make sure the oldest jset seq won't
493 * be increased before this btree node is flushed.
494 */
495 if (journal_ref) {
496 if (w->journal &&
497 journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 atomic_dec_bug(w->journal);
499 w->journal = NULL;
500 }
501
502 if (!w->journal) {
503 w->journal = journal_ref;
504 atomic_inc(v: w->journal);
505 }
506 }
507
508 /* Force write if set is too big */
509 if (set_bytes(i) > PAGE_SIZE - 48 &&
510 !current->bio_list)
511 bch_btree_node_write(b, NULL);
512}
513
514/*
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
517 */
518
519#define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 ? c->root->level : 1) * 8 + 16)
521#define mca_can_free(c) \
522 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
524static void mca_data_free(struct btree *b)
525{
526 BUG_ON(b->io_mutex.count != 1);
527
528 bch_btree_keys_free(b: &b->keys);
529
530 b->c->btree_cache_used--;
531 list_move(list: &b->list, head: &b->c->btree_cache_freed);
532}
533
534static void mca_bucket_free(struct btree *b)
535{
536 BUG_ON(btree_node_dirty(b));
537
538 b->key.ptr[0] = 0;
539 hlist_del_init_rcu(n: &b->hash);
540 list_move(list: &b->list, head: &b->c->btree_cache_freeable);
541}
542
543static unsigned int btree_order(struct bkey *k)
544{
545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546}
547
548static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549{
550 if (!bch_btree_keys_alloc(b: &b->keys,
551 max_t(unsigned int,
552 ilog2(b->c->btree_pages),
553 btree_order(k)),
554 gfp)) {
555 b->c->btree_cache_used++;
556 list_move(list: &b->list, head: &b->c->btree_cache);
557 } else {
558 list_move(list: &b->list, head: &b->c->btree_cache_freed);
559 }
560}
561
562#define cmp_int(l, r) ((l > r) - (l < r))
563
564#ifdef CONFIG_PROVE_LOCKING
565static int btree_lock_cmp_fn(const struct lockdep_map *_a,
566 const struct lockdep_map *_b)
567{
568 const struct btree *a = container_of(_a, struct btree, lock.dep_map);
569 const struct btree *b = container_of(_b, struct btree, lock.dep_map);
570
571 return -cmp_int(a->level, b->level) ?: bkey_cmp(l: &a->key, r: &b->key);
572}
573
574static void btree_lock_print_fn(const struct lockdep_map *map)
575{
576 const struct btree *b = container_of(map, struct btree, lock.dep_map);
577
578 printk(KERN_CONT " l=%u %llu:%llu", b->level,
579 KEY_INODE(&b->key), KEY_OFFSET(&b->key));
580}
581#endif
582
583static struct btree *mca_bucket_alloc(struct cache_set *c,
584 struct bkey *k, gfp_t gfp)
585{
586 /*
587 * kzalloc() is necessary here for initialization,
588 * see code comments in bch_btree_keys_init().
589 */
590 struct btree *b = kzalloc(size: sizeof(struct btree), flags: gfp);
591
592 if (!b)
593 return NULL;
594
595 init_rwsem(&b->lock);
596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn);
597 mutex_init(&b->write_lock);
598 lockdep_set_novalidate_class(&b->write_lock);
599 INIT_LIST_HEAD(list: &b->list);
600 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
601 b->c = c;
602 sema_init(sem: &b->io_mutex, val: 1);
603
604 mca_data_alloc(b, k, gfp);
605 return b;
606}
607
608static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
609{
610 struct closure cl;
611
612 closure_init_stack(cl: &cl);
613 lockdep_assert_held(&b->c->bucket_lock);
614
615 if (!down_write_trylock(sem: &b->lock))
616 return -ENOMEM;
617
618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
619
620 if (b->keys.page_order < min_order)
621 goto out_unlock;
622
623 if (!flush) {
624 if (btree_node_dirty(b))
625 goto out_unlock;
626
627 if (down_trylock(sem: &b->io_mutex))
628 goto out_unlock;
629 up(sem: &b->io_mutex);
630 }
631
632retry:
633 /*
634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
635 * __bch_btree_node_write(). To avoid an extra flush, acquire
636 * b->write_lock before checking BTREE_NODE_dirty bit.
637 */
638 mutex_lock(&b->write_lock);
639 /*
640 * If this btree node is selected in btree_flush_write() by journal
641 * code, delay and retry until the node is flushed by journal code
642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
643 */
644 if (btree_node_journal_flush(b)) {
645 pr_debug("bnode %p is flushing by journal, retry\n", b);
646 mutex_unlock(lock: &b->write_lock);
647 udelay(1);
648 goto retry;
649 }
650
651 if (btree_node_dirty(b))
652 __bch_btree_node_write(b, parent: &cl);
653 mutex_unlock(lock: &b->write_lock);
654
655 closure_sync(cl: &cl);
656
657 /* wait for any in flight btree write */
658 down(sem: &b->io_mutex);
659 up(sem: &b->io_mutex);
660
661 return 0;
662out_unlock:
663 rw_unlock(w: true, b);
664 return -ENOMEM;
665}
666
667static unsigned long bch_mca_scan(struct shrinker *shrink,
668 struct shrink_control *sc)
669{
670 struct cache_set *c = shrink->private_data;
671 struct btree *b, *t;
672 unsigned long i, nr = sc->nr_to_scan;
673 unsigned long freed = 0;
674 unsigned int btree_cache_used;
675
676 if (c->shrinker_disabled)
677 return SHRINK_STOP;
678
679 if (c->btree_cache_alloc_lock)
680 return SHRINK_STOP;
681
682 /* Return -1 if we can't do anything right now */
683 if (sc->gfp_mask & __GFP_IO)
684 mutex_lock(&c->bucket_lock);
685 else if (!mutex_trylock(lock: &c->bucket_lock))
686 return -1;
687
688 /*
689 * It's _really_ critical that we don't free too many btree nodes - we
690 * have to always leave ourselves a reserve. The reserve is how we
691 * guarantee that allocating memory for a new btree node can always
692 * succeed, so that inserting keys into the btree can always succeed and
693 * IO can always make forward progress:
694 */
695 nr /= c->btree_pages;
696 if (nr == 0)
697 nr = 1;
698 nr = min_t(unsigned long, nr, mca_can_free(c));
699
700 i = 0;
701 btree_cache_used = c->btree_cache_used;
702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
703 if (nr <= 0)
704 goto out;
705
706 if (!mca_reap(b, min_order: 0, flush: false)) {
707 mca_data_free(b);
708 rw_unlock(w: true, b);
709 freed++;
710 }
711 nr--;
712 i++;
713 }
714
715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
716 if (nr <= 0 || i >= btree_cache_used)
717 goto out;
718
719 if (!mca_reap(b, min_order: 0, flush: false)) {
720 mca_bucket_free(b);
721 mca_data_free(b);
722 rw_unlock(w: true, b);
723 freed++;
724 }
725
726 nr--;
727 i++;
728 }
729out:
730 mutex_unlock(lock: &c->bucket_lock);
731 return freed * c->btree_pages;
732}
733
734static unsigned long bch_mca_count(struct shrinker *shrink,
735 struct shrink_control *sc)
736{
737 struct cache_set *c = shrink->private_data;
738
739 if (c->shrinker_disabled)
740 return 0;
741
742 if (c->btree_cache_alloc_lock)
743 return 0;
744
745 return mca_can_free(c) * c->btree_pages;
746}
747
748void bch_btree_cache_free(struct cache_set *c)
749{
750 struct btree *b;
751 struct closure cl;
752
753 closure_init_stack(cl: &cl);
754
755 if (c->shrink)
756 shrinker_free(shrinker: c->shrink);
757
758 mutex_lock(&c->bucket_lock);
759
760#ifdef CONFIG_BCACHE_DEBUG
761 if (c->verify_data)
762 list_move(list: &c->verify_data->list, head: &c->btree_cache);
763
764 free_pages(addr: (unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
765#endif
766
767 list_splice(list: &c->btree_cache_freeable,
768 head: &c->btree_cache);
769
770 while (!list_empty(head: &c->btree_cache)) {
771 b = list_first_entry(&c->btree_cache, struct btree, list);
772
773 /*
774 * This function is called by cache_set_free(), no I/O
775 * request on cache now, it is unnecessary to acquire
776 * b->write_lock before clearing BTREE_NODE_dirty anymore.
777 */
778 if (btree_node_dirty(b)) {
779 btree_complete_write(b, w: btree_current_write(b));
780 clear_bit(nr: BTREE_NODE_dirty, addr: &b->flags);
781 }
782 mca_data_free(b);
783 }
784
785 while (!list_empty(head: &c->btree_cache_freed)) {
786 b = list_first_entry(&c->btree_cache_freed,
787 struct btree, list);
788 list_del(entry: &b->list);
789 cancel_delayed_work_sync(dwork: &b->work);
790 kfree(objp: b);
791 }
792
793 mutex_unlock(lock: &c->bucket_lock);
794}
795
796int bch_btree_cache_alloc(struct cache_set *c)
797{
798 unsigned int i;
799
800 for (i = 0; i < mca_reserve(c); i++)
801 if (!mca_bucket_alloc(c, k: &ZERO_KEY, GFP_KERNEL))
802 return -ENOMEM;
803
804 list_splice_init(list: &c->btree_cache,
805 head: &c->btree_cache_freeable);
806
807#ifdef CONFIG_BCACHE_DEBUG
808 mutex_init(&c->verify_lock);
809
810 c->verify_ondisk = (void *)
811 __get_free_pages(GFP_KERNEL|__GFP_COMP,
812 ilog2(meta_bucket_pages(&c->cache->sb)));
813 if (!c->verify_ondisk) {
814 /*
815 * Don't worry about the mca_rereserve buckets
816 * allocated in previous for-loop, they will be
817 * handled properly in bch_cache_set_unregister().
818 */
819 return -ENOMEM;
820 }
821
822 c->verify_data = mca_bucket_alloc(c, k: &ZERO_KEY, GFP_KERNEL);
823
824 if (c->verify_data &&
825 c->verify_data->keys.set->data)
826 list_del_init(entry: &c->verify_data->list);
827 else
828 c->verify_data = NULL;
829#endif
830
831 c->shrink = shrinker_alloc(flags: 0, fmt: "md-bcache:%pU", c->set_uuid);
832 if (!c->shrink) {
833 pr_warn("bcache: %s: could not allocate shrinker\n", __func__);
834 return 0;
835 }
836
837 c->shrink->count_objects = bch_mca_count;
838 c->shrink->scan_objects = bch_mca_scan;
839 c->shrink->seeks = 4;
840 c->shrink->batch = c->btree_pages * 2;
841 c->shrink->private_data = c;
842
843 shrinker_register(shrinker: c->shrink);
844
845 return 0;
846}
847
848/* Btree in memory cache - hash table */
849
850static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
851{
852 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
853}
854
855static struct btree *mca_find(struct cache_set *c, struct bkey *k)
856{
857 struct btree *b;
858
859 rcu_read_lock();
860 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
861 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
862 goto out;
863 b = NULL;
864out:
865 rcu_read_unlock();
866 return b;
867}
868
869static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
870{
871 spin_lock(lock: &c->btree_cannibalize_lock);
872 if (likely(c->btree_cache_alloc_lock == NULL)) {
873 c->btree_cache_alloc_lock = current;
874 } else if (c->btree_cache_alloc_lock != current) {
875 if (op)
876 prepare_to_wait(wq_head: &c->btree_cache_wait, wq_entry: &op->wait,
877 TASK_UNINTERRUPTIBLE);
878 spin_unlock(lock: &c->btree_cannibalize_lock);
879 return -EINTR;
880 }
881 spin_unlock(lock: &c->btree_cannibalize_lock);
882
883 return 0;
884}
885
886static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
887 struct bkey *k)
888{
889 struct btree *b;
890
891 trace_bcache_btree_cache_cannibalize(c);
892
893 if (mca_cannibalize_lock(c, op))
894 return ERR_PTR(error: -EINTR);
895
896 list_for_each_entry_reverse(b, &c->btree_cache, list)
897 if (!mca_reap(b, min_order: btree_order(k), flush: false))
898 return b;
899
900 list_for_each_entry_reverse(b, &c->btree_cache, list)
901 if (!mca_reap(b, min_order: btree_order(k), flush: true))
902 return b;
903
904 WARN(1, "btree cache cannibalize failed\n");
905 return ERR_PTR(error: -ENOMEM);
906}
907
908/*
909 * We can only have one thread cannibalizing other cached btree nodes at a time,
910 * or we'll deadlock. We use an open coded mutex to ensure that, which a
911 * cannibalize_bucket() will take. This means every time we unlock the root of
912 * the btree, we need to release this lock if we have it held.
913 */
914void bch_cannibalize_unlock(struct cache_set *c)
915{
916 spin_lock(lock: &c->btree_cannibalize_lock);
917 if (c->btree_cache_alloc_lock == current) {
918 c->btree_cache_alloc_lock = NULL;
919 wake_up(&c->btree_cache_wait);
920 }
921 spin_unlock(lock: &c->btree_cannibalize_lock);
922}
923
924static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
925 struct bkey *k, int level)
926{
927 struct btree *b;
928
929 BUG_ON(current->bio_list);
930
931 lockdep_assert_held(&c->bucket_lock);
932
933 if (mca_find(c, k))
934 return NULL;
935
936 /* btree_free() doesn't free memory; it sticks the node on the end of
937 * the list. Check if there's any freed nodes there:
938 */
939 list_for_each_entry(b, &c->btree_cache_freeable, list)
940 if (!mca_reap(b, min_order: btree_order(k), flush: false))
941 goto out;
942
943 /* We never free struct btree itself, just the memory that holds the on
944 * disk node. Check the freed list before allocating a new one:
945 */
946 list_for_each_entry(b, &c->btree_cache_freed, list)
947 if (!mca_reap(b, min_order: 0, flush: false)) {
948 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
949 if (!b->keys.set[0].data)
950 goto err;
951 else
952 goto out;
953 }
954
955 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
956 if (!b)
957 goto err;
958
959 BUG_ON(!down_write_trylock(&b->lock));
960 if (!b->keys.set->data)
961 goto err;
962out:
963 BUG_ON(b->io_mutex.count != 1);
964
965 bkey_copy(&b->key, k);
966 list_move(list: &b->list, head: &c->btree_cache);
967 hlist_del_init_rcu(n: &b->hash);
968 hlist_add_head_rcu(n: &b->hash, h: mca_hash(c, k));
969
970 lock_set_subclass(lock: &b->lock.dep_map, subclass: level + 1, _THIS_IP_);
971 b->parent = (void *) ~0UL;
972 b->flags = 0;
973 b->written = 0;
974 b->level = level;
975
976 if (!b->level)
977 bch_btree_keys_init(b: &b->keys, ops: &bch_extent_keys_ops,
978 expensive_debug_checks: &b->c->expensive_debug_checks);
979 else
980 bch_btree_keys_init(b: &b->keys, ops: &bch_btree_keys_ops,
981 expensive_debug_checks: &b->c->expensive_debug_checks);
982
983 return b;
984err:
985 if (b)
986 rw_unlock(w: true, b);
987
988 b = mca_cannibalize(c, op, k);
989 if (!IS_ERR(ptr: b))
990 goto out;
991
992 return b;
993}
994
995/*
996 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
997 * in from disk if necessary.
998 *
999 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
1000 *
1001 * The btree node will have either a read or a write lock held, depending on
1002 * level and op->lock.
1003 */
1004struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1005 struct bkey *k, int level, bool write,
1006 struct btree *parent)
1007{
1008 int i = 0;
1009 struct btree *b;
1010
1011 BUG_ON(level < 0);
1012retry:
1013 b = mca_find(c, k);
1014
1015 if (!b) {
1016 if (current->bio_list)
1017 return ERR_PTR(error: -EAGAIN);
1018
1019 mutex_lock(&c->bucket_lock);
1020 b = mca_alloc(c, op, k, level);
1021 mutex_unlock(lock: &c->bucket_lock);
1022
1023 if (!b)
1024 goto retry;
1025 if (IS_ERR(ptr: b))
1026 return b;
1027
1028 bch_btree_node_read(b);
1029
1030 if (!write)
1031 downgrade_write(sem: &b->lock);
1032 } else {
1033 rw_lock(w: write, b, level);
1034 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1035 rw_unlock(w: write, b);
1036 goto retry;
1037 }
1038 BUG_ON(b->level != level);
1039 }
1040
1041 if (btree_node_io_error(b)) {
1042 rw_unlock(w: write, b);
1043 return ERR_PTR(error: -EIO);
1044 }
1045
1046 BUG_ON(!b->written);
1047
1048 b->parent = parent;
1049
1050 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1051 prefetch(b->keys.set[i].tree);
1052 prefetch(b->keys.set[i].data);
1053 }
1054
1055 for (; i <= b->keys.nsets; i++)
1056 prefetch(b->keys.set[i].data);
1057
1058 return b;
1059}
1060
1061static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1062{
1063 struct btree *b;
1064
1065 mutex_lock(&parent->c->bucket_lock);
1066 b = mca_alloc(c: parent->c, NULL, k, level: parent->level - 1);
1067 mutex_unlock(lock: &parent->c->bucket_lock);
1068
1069 if (!IS_ERR_OR_NULL(ptr: b)) {
1070 b->parent = parent;
1071 bch_btree_node_read(b);
1072 rw_unlock(w: true, b);
1073 }
1074}
1075
1076/* Btree alloc */
1077
1078static void btree_node_free(struct btree *b)
1079{
1080 trace_bcache_btree_node_free(b);
1081
1082 BUG_ON(b == b->c->root);
1083
1084retry:
1085 mutex_lock(&b->write_lock);
1086 /*
1087 * If the btree node is selected and flushing in btree_flush_write(),
1088 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1089 * then it is safe to free the btree node here. Otherwise this btree
1090 * node will be in race condition.
1091 */
1092 if (btree_node_journal_flush(b)) {
1093 mutex_unlock(lock: &b->write_lock);
1094 pr_debug("bnode %p journal_flush set, retry\n", b);
1095 udelay(1);
1096 goto retry;
1097 }
1098
1099 if (btree_node_dirty(b)) {
1100 btree_complete_write(b, w: btree_current_write(b));
1101 clear_bit(nr: BTREE_NODE_dirty, addr: &b->flags);
1102 }
1103
1104 mutex_unlock(lock: &b->write_lock);
1105
1106 cancel_delayed_work(dwork: &b->work);
1107
1108 mutex_lock(&b->c->bucket_lock);
1109 bch_bucket_free(c: b->c, k: &b->key);
1110 mca_bucket_free(b);
1111 mutex_unlock(lock: &b->c->bucket_lock);
1112}
1113
1114struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1115 int level, bool wait,
1116 struct btree *parent)
1117{
1118 BKEY_PADDED(key) k;
1119 struct btree *b;
1120
1121 mutex_lock(&c->bucket_lock);
1122retry:
1123 /* return ERR_PTR(-EAGAIN) when it fails */
1124 b = ERR_PTR(error: -EAGAIN);
1125 if (__bch_bucket_alloc_set(c, reserve: RESERVE_BTREE, k: &k.key, wait))
1126 goto err;
1127
1128 bkey_put(c, k: &k.key);
1129 SET_KEY_SIZE(k: &k.key, v: c->btree_pages * PAGE_SECTORS);
1130
1131 b = mca_alloc(c, op, k: &k.key, level);
1132 if (IS_ERR(ptr: b))
1133 goto err_free;
1134
1135 if (!b) {
1136 cache_bug(c,
1137 "Tried to allocate bucket that was in btree cache");
1138 goto retry;
1139 }
1140
1141 b->parent = parent;
1142 bch_bset_init_next(b: &b->keys, i: b->keys.set->data, magic: bset_magic(sb: &b->c->cache->sb));
1143
1144 mutex_unlock(lock: &c->bucket_lock);
1145
1146 trace_bcache_btree_node_alloc(b);
1147 return b;
1148err_free:
1149 bch_bucket_free(c, k: &k.key);
1150err:
1151 mutex_unlock(lock: &c->bucket_lock);
1152
1153 trace_bcache_btree_node_alloc_fail(c);
1154 return b;
1155}
1156
1157static struct btree *bch_btree_node_alloc(struct cache_set *c,
1158 struct btree_op *op, int level,
1159 struct btree *parent)
1160{
1161 return __bch_btree_node_alloc(c, op, level, wait: op != NULL, parent);
1162}
1163
1164static struct btree *btree_node_alloc_replacement(struct btree *b,
1165 struct btree_op *op)
1166{
1167 struct btree *n = bch_btree_node_alloc(c: b->c, op, level: b->level, parent: b->parent);
1168
1169 if (!IS_ERR(ptr: n)) {
1170 mutex_lock(&n->write_lock);
1171 bch_btree_sort_into(b: &b->keys, new: &n->keys, state: &b->c->sort);
1172 bkey_copy_key(dest: &n->key, src: &b->key);
1173 mutex_unlock(lock: &n->write_lock);
1174 }
1175
1176 return n;
1177}
1178
1179static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1180{
1181 unsigned int i;
1182
1183 mutex_lock(&b->c->bucket_lock);
1184
1185 atomic_inc(v: &b->c->prio_blocked);
1186
1187 bkey_copy(k, &b->key);
1188 bkey_copy_key(dest: k, src: &ZERO_KEY);
1189
1190 for (i = 0; i < KEY_PTRS(k); i++)
1191 SET_PTR_GEN(k, i,
1192 v: bch_inc_gen(ca: b->c->cache,
1193 b: PTR_BUCKET(c: b->c, k: &b->key, ptr: i)));
1194
1195 mutex_unlock(lock: &b->c->bucket_lock);
1196}
1197
1198static int btree_check_reserve(struct btree *b, struct btree_op *op)
1199{
1200 struct cache_set *c = b->c;
1201 struct cache *ca = c->cache;
1202 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1203
1204 mutex_lock(&c->bucket_lock);
1205
1206 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1207 if (op)
1208 prepare_to_wait(wq_head: &c->btree_cache_wait, wq_entry: &op->wait,
1209 TASK_UNINTERRUPTIBLE);
1210 mutex_unlock(lock: &c->bucket_lock);
1211 return -EINTR;
1212 }
1213
1214 mutex_unlock(lock: &c->bucket_lock);
1215
1216 return mca_cannibalize_lock(c: b->c, op);
1217}
1218
1219/* Garbage collection */
1220
1221static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1222 struct bkey *k)
1223{
1224 uint8_t stale = 0;
1225 unsigned int i;
1226 struct bucket *g;
1227
1228 /*
1229 * ptr_invalid() can't return true for the keys that mark btree nodes as
1230 * freed, but since ptr_bad() returns true we'll never actually use them
1231 * for anything and thus we don't want mark their pointers here
1232 */
1233 if (!bkey_cmp(l: k, r: &ZERO_KEY))
1234 return stale;
1235
1236 for (i = 0; i < KEY_PTRS(k); i++) {
1237 if (!ptr_available(c, k, i))
1238 continue;
1239
1240 g = PTR_BUCKET(c, k, ptr: i);
1241
1242 if (gen_after(a: g->last_gc, b: PTR_GEN(k, i)))
1243 g->last_gc = PTR_GEN(k, i);
1244
1245 if (ptr_stale(c, k, i)) {
1246 stale = max(stale, ptr_stale(c, k, i));
1247 continue;
1248 }
1249
1250 cache_bug_on(GC_MARK(g) &&
1251 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1252 c, "inconsistent ptrs: mark = %llu, level = %i",
1253 GC_MARK(g), level);
1254
1255 if (level)
1256 SET_GC_MARK(k: g, GC_MARK_METADATA);
1257 else if (KEY_DIRTY(k))
1258 SET_GC_MARK(k: g, GC_MARK_DIRTY);
1259 else if (!GC_MARK(k: g))
1260 SET_GC_MARK(k: g, GC_MARK_RECLAIMABLE);
1261
1262 /* guard against overflow */
1263 SET_GC_SECTORS_USED(k: g, min_t(unsigned int,
1264 GC_SECTORS_USED(g) + KEY_SIZE(k),
1265 MAX_GC_SECTORS_USED));
1266
1267 BUG_ON(!GC_SECTORS_USED(g));
1268 }
1269
1270 return stale;
1271}
1272
1273#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1274
1275void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1276{
1277 unsigned int i;
1278
1279 for (i = 0; i < KEY_PTRS(k); i++)
1280 if (ptr_available(c, k, i) &&
1281 !ptr_stale(c, k, i)) {
1282 struct bucket *b = PTR_BUCKET(c, k, ptr: i);
1283
1284 b->gen = PTR_GEN(k, i);
1285
1286 if (level && bkey_cmp(l: k, r: &ZERO_KEY))
1287 b->prio = BTREE_PRIO;
1288 else if (!level && b->prio == BTREE_PRIO)
1289 b->prio = INITIAL_PRIO;
1290 }
1291
1292 __bch_btree_mark_key(c, level, k);
1293}
1294
1295void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1296{
1297 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1298}
1299
1300static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1301{
1302 uint8_t stale = 0;
1303 unsigned int keys = 0, good_keys = 0;
1304 struct bkey *k;
1305 struct btree_iter iter;
1306 struct bset_tree *t;
1307
1308 gc->nodes++;
1309
1310 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1311 stale = max(stale, btree_mark_key(b, k));
1312 keys++;
1313
1314 if (bch_ptr_bad(b: &b->keys, k))
1315 continue;
1316
1317 gc->key_bytes += bkey_u64s(k);
1318 gc->nkeys++;
1319 good_keys++;
1320
1321 gc->data += KEY_SIZE(k);
1322 }
1323
1324 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1325 btree_bug_on(t->size &&
1326 bset_written(&b->keys, t) &&
1327 bkey_cmp(&b->key, &t->end) < 0,
1328 b, "found short btree key in gc");
1329
1330 if (b->c->gc_always_rewrite)
1331 return true;
1332
1333 if (stale > 10)
1334 return true;
1335
1336 if ((keys - good_keys) * 2 > keys)
1337 return true;
1338
1339 return false;
1340}
1341
1342#define GC_MERGE_NODES 4U
1343
1344struct gc_merge_info {
1345 struct btree *b;
1346 unsigned int keys;
1347};
1348
1349static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1350 struct keylist *insert_keys,
1351 atomic_t *journal_ref,
1352 struct bkey *replace_key);
1353
1354static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1355 struct gc_stat *gc, struct gc_merge_info *r)
1356{
1357 unsigned int i, nodes = 0, keys = 0, blocks;
1358 struct btree *new_nodes[GC_MERGE_NODES];
1359 struct keylist keylist;
1360 struct closure cl;
1361 struct bkey *k;
1362
1363 bch_keylist_init(l: &keylist);
1364
1365 if (btree_check_reserve(b, NULL))
1366 return 0;
1367
1368 memset(new_nodes, 0, sizeof(new_nodes));
1369 closure_init_stack(cl: &cl);
1370
1371 while (nodes < GC_MERGE_NODES && !IS_ERR(ptr: r[nodes].b))
1372 keys += r[nodes++].keys;
1373
1374 blocks = btree_default_blocks(b->c) * 2 / 3;
1375
1376 if (nodes < 2 ||
1377 __set_blocks(b->keys.set[0].data, keys,
1378 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1379 return 0;
1380
1381 for (i = 0; i < nodes; i++) {
1382 new_nodes[i] = btree_node_alloc_replacement(b: r[i].b, NULL);
1383 if (IS_ERR(ptr: new_nodes[i]))
1384 goto out_nocoalesce;
1385 }
1386
1387 /*
1388 * We have to check the reserve here, after we've allocated our new
1389 * nodes, to make sure the insert below will succeed - we also check
1390 * before as an optimization to potentially avoid a bunch of expensive
1391 * allocs/sorts
1392 */
1393 if (btree_check_reserve(b, NULL))
1394 goto out_nocoalesce;
1395
1396 for (i = 0; i < nodes; i++)
1397 mutex_lock(&new_nodes[i]->write_lock);
1398
1399 for (i = nodes - 1; i > 0; --i) {
1400 struct bset *n1 = btree_bset_first(b: new_nodes[i]);
1401 struct bset *n2 = btree_bset_first(b: new_nodes[i - 1]);
1402 struct bkey *k, *last = NULL;
1403
1404 keys = 0;
1405
1406 if (i > 1) {
1407 for (k = n2->start;
1408 k < bset_bkey_last(n2);
1409 k = bkey_next(k)) {
1410 if (__set_blocks(n1, n1->keys + keys +
1411 bkey_u64s(k),
1412 block_bytes(b->c->cache)) > blocks)
1413 break;
1414
1415 last = k;
1416 keys += bkey_u64s(k);
1417 }
1418 } else {
1419 /*
1420 * Last node we're not getting rid of - we're getting
1421 * rid of the node at r[0]. Have to try and fit all of
1422 * the remaining keys into this node; we can't ensure
1423 * they will always fit due to rounding and variable
1424 * length keys (shouldn't be possible in practice,
1425 * though)
1426 */
1427 if (__set_blocks(n1, n1->keys + n2->keys,
1428 block_bytes(b->c->cache)) >
1429 btree_blocks(new_nodes[i]))
1430 goto out_unlock_nocoalesce;
1431
1432 keys = n2->keys;
1433 /* Take the key of the node we're getting rid of */
1434 last = &r->b->key;
1435 }
1436
1437 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1438 btree_blocks(new_nodes[i]));
1439
1440 if (last)
1441 bkey_copy_key(dest: &new_nodes[i]->key, src: last);
1442
1443 memcpy(bset_bkey_last(n1),
1444 n2->start,
1445 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1446
1447 n1->keys += keys;
1448 r[i].keys = n1->keys;
1449
1450 memmove(n2->start,
1451 bset_bkey_idx(n2, keys),
1452 (void *) bset_bkey_last(n2) -
1453 (void *) bset_bkey_idx(n2, keys));
1454
1455 n2->keys -= keys;
1456
1457 if (__bch_keylist_realloc(l: &keylist,
1458 u64s: bkey_u64s(k: &new_nodes[i]->key)))
1459 goto out_unlock_nocoalesce;
1460
1461 bch_btree_node_write(b: new_nodes[i], parent: &cl);
1462 bch_keylist_add(l: &keylist, k: &new_nodes[i]->key);
1463 }
1464
1465 for (i = 0; i < nodes; i++)
1466 mutex_unlock(lock: &new_nodes[i]->write_lock);
1467
1468 closure_sync(cl: &cl);
1469
1470 /* We emptied out this node */
1471 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1472 btree_node_free(b: new_nodes[0]);
1473 rw_unlock(w: true, b: new_nodes[0]);
1474 new_nodes[0] = NULL;
1475
1476 for (i = 0; i < nodes; i++) {
1477 if (__bch_keylist_realloc(l: &keylist, u64s: bkey_u64s(k: &r[i].b->key)))
1478 goto out_nocoalesce;
1479
1480 make_btree_freeing_key(b: r[i].b, k: keylist.top);
1481 bch_keylist_push(l: &keylist);
1482 }
1483
1484 bch_btree_insert_node(b, op, insert_keys: &keylist, NULL, NULL);
1485 BUG_ON(!bch_keylist_empty(&keylist));
1486
1487 for (i = 0; i < nodes; i++) {
1488 btree_node_free(b: r[i].b);
1489 rw_unlock(w: true, b: r[i].b);
1490
1491 r[i].b = new_nodes[i];
1492 }
1493
1494 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1495 r[nodes - 1].b = ERR_PTR(error: -EINTR);
1496
1497 trace_bcache_btree_gc_coalesce(nodes);
1498 gc->nodes--;
1499
1500 bch_keylist_free(l: &keylist);
1501
1502 /* Invalidated our iterator */
1503 return -EINTR;
1504
1505out_unlock_nocoalesce:
1506 for (i = 0; i < nodes; i++)
1507 mutex_unlock(lock: &new_nodes[i]->write_lock);
1508
1509out_nocoalesce:
1510 closure_sync(cl: &cl);
1511
1512 while ((k = bch_keylist_pop(l: &keylist)))
1513 if (!bkey_cmp(l: k, r: &ZERO_KEY))
1514 atomic_dec(v: &b->c->prio_blocked);
1515 bch_keylist_free(l: &keylist);
1516
1517 for (i = 0; i < nodes; i++)
1518 if (!IS_ERR(ptr: new_nodes[i])) {
1519 btree_node_free(b: new_nodes[i]);
1520 rw_unlock(w: true, b: new_nodes[i]);
1521 }
1522 return 0;
1523}
1524
1525static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1526 struct btree *replace)
1527{
1528 struct keylist keys;
1529 struct btree *n;
1530
1531 if (btree_check_reserve(b, NULL))
1532 return 0;
1533
1534 n = btree_node_alloc_replacement(b: replace, NULL);
1535
1536 /* recheck reserve after allocating replacement node */
1537 if (btree_check_reserve(b, NULL)) {
1538 btree_node_free(b: n);
1539 rw_unlock(w: true, b: n);
1540 return 0;
1541 }
1542
1543 bch_btree_node_write_sync(b: n);
1544
1545 bch_keylist_init(l: &keys);
1546 bch_keylist_add(l: &keys, k: &n->key);
1547
1548 make_btree_freeing_key(b: replace, k: keys.top);
1549 bch_keylist_push(l: &keys);
1550
1551 bch_btree_insert_node(b, op, insert_keys: &keys, NULL, NULL);
1552 BUG_ON(!bch_keylist_empty(&keys));
1553
1554 btree_node_free(b: replace);
1555 rw_unlock(w: true, b: n);
1556
1557 /* Invalidated our iterator */
1558 return -EINTR;
1559}
1560
1561static unsigned int btree_gc_count_keys(struct btree *b)
1562{
1563 struct bkey *k;
1564 struct btree_iter iter;
1565 unsigned int ret = 0;
1566
1567 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1568 ret += bkey_u64s(k);
1569
1570 return ret;
1571}
1572
1573static size_t btree_gc_min_nodes(struct cache_set *c)
1574{
1575 size_t min_nodes;
1576
1577 /*
1578 * Since incremental GC would stop 100ms when front
1579 * side I/O comes, so when there are many btree nodes,
1580 * if GC only processes constant (100) nodes each time,
1581 * GC would last a long time, and the front side I/Os
1582 * would run out of the buckets (since no new bucket
1583 * can be allocated during GC), and be blocked again.
1584 * So GC should not process constant nodes, but varied
1585 * nodes according to the number of btree nodes, which
1586 * realized by dividing GC into constant(100) times,
1587 * so when there are many btree nodes, GC can process
1588 * more nodes each time, otherwise, GC will process less
1589 * nodes each time (but no less than MIN_GC_NODES)
1590 */
1591 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1592 if (min_nodes < MIN_GC_NODES)
1593 min_nodes = MIN_GC_NODES;
1594
1595 return min_nodes;
1596}
1597
1598
1599static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1600 struct closure *writes, struct gc_stat *gc)
1601{
1602 int ret = 0;
1603 bool should_rewrite;
1604 struct bkey *k;
1605 struct btree_iter iter;
1606 struct gc_merge_info r[GC_MERGE_NODES];
1607 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1608
1609 bch_btree_iter_init(b: &b->keys, iter: &iter, search: &b->c->gc_done);
1610
1611 for (i = r; i < r + ARRAY_SIZE(r); i++)
1612 i->b = ERR_PTR(error: -EINTR);
1613
1614 while (1) {
1615 k = bch_btree_iter_next_filter(iter: &iter, b: &b->keys, fn: bch_ptr_bad);
1616 if (k) {
1617 r->b = bch_btree_node_get(c: b->c, op, k, level: b->level - 1,
1618 write: true, parent: b);
1619 if (IS_ERR(ptr: r->b)) {
1620 ret = PTR_ERR(ptr: r->b);
1621 break;
1622 }
1623
1624 r->keys = btree_gc_count_keys(b: r->b);
1625
1626 ret = btree_gc_coalesce(b, op, gc, r);
1627 if (ret)
1628 break;
1629 }
1630
1631 if (!last->b)
1632 break;
1633
1634 if (!IS_ERR(ptr: last->b)) {
1635 should_rewrite = btree_gc_mark_node(b: last->b, gc);
1636 if (should_rewrite) {
1637 ret = btree_gc_rewrite_node(b, op, replace: last->b);
1638 if (ret)
1639 break;
1640 }
1641
1642 if (last->b->level) {
1643 ret = btree_gc_recurse(b: last->b, op, writes, gc);
1644 if (ret)
1645 break;
1646 }
1647
1648 bkey_copy_key(dest: &b->c->gc_done, src: &last->b->key);
1649
1650 /*
1651 * Must flush leaf nodes before gc ends, since replace
1652 * operations aren't journalled
1653 */
1654 mutex_lock(&last->b->write_lock);
1655 if (btree_node_dirty(b: last->b))
1656 bch_btree_node_write(b: last->b, parent: writes);
1657 mutex_unlock(lock: &last->b->write_lock);
1658 rw_unlock(w: true, b: last->b);
1659 }
1660
1661 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1662 r->b = NULL;
1663
1664 if (atomic_read(v: &b->c->search_inflight) &&
1665 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(c: b->c)) {
1666 gc->nodes_pre = gc->nodes;
1667 ret = -EAGAIN;
1668 break;
1669 }
1670
1671 if (need_resched()) {
1672 ret = -EAGAIN;
1673 break;
1674 }
1675 }
1676
1677 for (i = r; i < r + ARRAY_SIZE(r); i++)
1678 if (!IS_ERR_OR_NULL(ptr: i->b)) {
1679 mutex_lock(&i->b->write_lock);
1680 if (btree_node_dirty(b: i->b))
1681 bch_btree_node_write(b: i->b, parent: writes);
1682 mutex_unlock(lock: &i->b->write_lock);
1683 rw_unlock(w: true, b: i->b);
1684 }
1685
1686 return ret;
1687}
1688
1689static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1690 struct closure *writes, struct gc_stat *gc)
1691{
1692 struct btree *n = NULL;
1693 int ret = 0;
1694 bool should_rewrite;
1695
1696 should_rewrite = btree_gc_mark_node(b, gc);
1697 if (should_rewrite) {
1698 n = btree_node_alloc_replacement(b, NULL);
1699
1700 if (!IS_ERR(ptr: n)) {
1701 bch_btree_node_write_sync(b: n);
1702
1703 bch_btree_set_root(b: n);
1704 btree_node_free(b);
1705 rw_unlock(w: true, b: n);
1706
1707 return -EINTR;
1708 }
1709 }
1710
1711 __bch_btree_mark_key(c: b->c, level: b->level + 1, k: &b->key);
1712
1713 if (b->level) {
1714 ret = btree_gc_recurse(b, op, writes, gc);
1715 if (ret)
1716 return ret;
1717 }
1718
1719 bkey_copy_key(dest: &b->c->gc_done, src: &b->key);
1720
1721 return ret;
1722}
1723
1724static void btree_gc_start(struct cache_set *c)
1725{
1726 struct cache *ca;
1727 struct bucket *b;
1728
1729 if (!c->gc_mark_valid)
1730 return;
1731
1732 mutex_lock(&c->bucket_lock);
1733
1734 c->gc_mark_valid = 0;
1735 c->gc_done = ZERO_KEY;
1736
1737 ca = c->cache;
1738 for_each_bucket(b, ca) {
1739 b->last_gc = b->gen;
1740 if (!atomic_read(v: &b->pin)) {
1741 SET_GC_MARK(k: b, v: 0);
1742 SET_GC_SECTORS_USED(k: b, v: 0);
1743 }
1744 }
1745
1746 mutex_unlock(lock: &c->bucket_lock);
1747}
1748
1749static void bch_btree_gc_finish(struct cache_set *c)
1750{
1751 struct bucket *b;
1752 struct cache *ca;
1753 unsigned int i, j;
1754 uint64_t *k;
1755
1756 mutex_lock(&c->bucket_lock);
1757
1758 set_gc_sectors(c);
1759 c->gc_mark_valid = 1;
1760 c->need_gc = 0;
1761
1762 for (i = 0; i < KEY_PTRS(k: &c->uuid_bucket); i++)
1763 SET_GC_MARK(k: PTR_BUCKET(c, k: &c->uuid_bucket, ptr: i),
1764 GC_MARK_METADATA);
1765
1766 /* don't reclaim buckets to which writeback keys point */
1767 rcu_read_lock();
1768 for (i = 0; i < c->devices_max_used; i++) {
1769 struct bcache_device *d = c->devices[i];
1770 struct cached_dev *dc;
1771 struct keybuf_key *w, *n;
1772
1773 if (!d || UUID_FLASH_ONLY(k: &c->uuids[i]))
1774 continue;
1775 dc = container_of(d, struct cached_dev, disk);
1776
1777 spin_lock(lock: &dc->writeback_keys.lock);
1778 rbtree_postorder_for_each_entry_safe(w, n,
1779 &dc->writeback_keys.keys, node)
1780 for (j = 0; j < KEY_PTRS(k: &w->key); j++)
1781 SET_GC_MARK(k: PTR_BUCKET(c, k: &w->key, ptr: j),
1782 GC_MARK_DIRTY);
1783 spin_unlock(lock: &dc->writeback_keys.lock);
1784 }
1785 rcu_read_unlock();
1786
1787 c->avail_nbuckets = 0;
1788
1789 ca = c->cache;
1790 ca->invalidate_needs_gc = 0;
1791
1792 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1793 SET_GC_MARK(k: ca->buckets + *k, GC_MARK_METADATA);
1794
1795 for (k = ca->prio_buckets;
1796 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1797 SET_GC_MARK(k: ca->buckets + *k, GC_MARK_METADATA);
1798
1799 for_each_bucket(b, ca) {
1800 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1801
1802 if (atomic_read(v: &b->pin))
1803 continue;
1804
1805 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1806
1807 if (!GC_MARK(k: b) || GC_MARK(k: b) == GC_MARK_RECLAIMABLE)
1808 c->avail_nbuckets++;
1809 }
1810
1811 mutex_unlock(lock: &c->bucket_lock);
1812}
1813
1814static void bch_btree_gc(struct cache_set *c)
1815{
1816 int ret;
1817 struct gc_stat stats;
1818 struct closure writes;
1819 struct btree_op op;
1820 uint64_t start_time = local_clock();
1821
1822 trace_bcache_gc_start(c);
1823
1824 memset(&stats, 0, sizeof(struct gc_stat));
1825 closure_init_stack(cl: &writes);
1826 bch_btree_op_init(op: &op, SHRT_MAX);
1827
1828 btree_gc_start(c);
1829
1830 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1831 do {
1832 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1833 closure_sync(cl: &writes);
1834 cond_resched();
1835
1836 if (ret == -EAGAIN)
1837 schedule_timeout_interruptible(timeout: msecs_to_jiffies
1838 (GC_SLEEP_MS));
1839 else if (ret)
1840 pr_warn("gc failed!\n");
1841 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1842
1843 bch_btree_gc_finish(c);
1844 wake_up_allocators(c);
1845
1846 bch_time_stats_update(stats: &c->btree_gc_time, time: start_time);
1847
1848 stats.key_bytes *= sizeof(uint64_t);
1849 stats.data <<= 9;
1850 bch_update_bucket_in_use(c, stats: &stats);
1851 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1852
1853 trace_bcache_gc_end(c);
1854
1855 bch_moving_gc(c);
1856}
1857
1858static bool gc_should_run(struct cache_set *c)
1859{
1860 struct cache *ca = c->cache;
1861
1862 if (ca->invalidate_needs_gc)
1863 return true;
1864
1865 if (atomic_read(v: &c->sectors_to_gc) < 0)
1866 return true;
1867
1868 return false;
1869}
1870
1871static int bch_gc_thread(void *arg)
1872{
1873 struct cache_set *c = arg;
1874
1875 while (1) {
1876 wait_event_interruptible(c->gc_wait,
1877 kthread_should_stop() ||
1878 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1879 gc_should_run(c));
1880
1881 if (kthread_should_stop() ||
1882 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1883 break;
1884
1885 set_gc_sectors(c);
1886 bch_btree_gc(c);
1887 }
1888
1889 wait_for_kthread_stop();
1890 return 0;
1891}
1892
1893int bch_gc_thread_start(struct cache_set *c)
1894{
1895 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1896 return PTR_ERR_OR_ZERO(ptr: c->gc_thread);
1897}
1898
1899/* Initial partial gc */
1900
1901static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1902{
1903 int ret = 0;
1904 struct bkey *k, *p = NULL;
1905 struct btree_iter iter;
1906
1907 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1908 bch_initial_mark_key(c: b->c, level: b->level, k);
1909
1910 bch_initial_mark_key(c: b->c, level: b->level + 1, k: &b->key);
1911
1912 if (b->level) {
1913 bch_btree_iter_init(b: &b->keys, iter: &iter, NULL);
1914
1915 do {
1916 k = bch_btree_iter_next_filter(iter: &iter, b: &b->keys,
1917 fn: bch_ptr_bad);
1918 if (k) {
1919 btree_node_prefetch(parent: b, k);
1920 /*
1921 * initiallize c->gc_stats.nodes
1922 * for incremental GC
1923 */
1924 b->c->gc_stats.nodes++;
1925 }
1926
1927 if (p)
1928 ret = bcache_btree(check_recurse, p, b, op);
1929
1930 p = k;
1931 } while (p && !ret);
1932 }
1933
1934 return ret;
1935}
1936
1937
1938static int bch_btree_check_thread(void *arg)
1939{
1940 int ret;
1941 struct btree_check_info *info = arg;
1942 struct btree_check_state *check_state = info->state;
1943 struct cache_set *c = check_state->c;
1944 struct btree_iter iter;
1945 struct bkey *k, *p;
1946 int cur_idx, prev_idx, skip_nr;
1947
1948 k = p = NULL;
1949 cur_idx = prev_idx = 0;
1950 ret = 0;
1951
1952 /* root node keys are checked before thread created */
1953 bch_btree_iter_init(b: &c->root->keys, iter: &iter, NULL);
1954 k = bch_btree_iter_next_filter(iter: &iter, b: &c->root->keys, fn: bch_ptr_bad);
1955 BUG_ON(!k);
1956
1957 p = k;
1958 while (k) {
1959 /*
1960 * Fetch a root node key index, skip the keys which
1961 * should be fetched by other threads, then check the
1962 * sub-tree indexed by the fetched key.
1963 */
1964 spin_lock(lock: &check_state->idx_lock);
1965 cur_idx = check_state->key_idx;
1966 check_state->key_idx++;
1967 spin_unlock(lock: &check_state->idx_lock);
1968
1969 skip_nr = cur_idx - prev_idx;
1970
1971 while (skip_nr) {
1972 k = bch_btree_iter_next_filter(iter: &iter,
1973 b: &c->root->keys,
1974 fn: bch_ptr_bad);
1975 if (k)
1976 p = k;
1977 else {
1978 /*
1979 * No more keys to check in root node,
1980 * current checking threads are enough,
1981 * stop creating more.
1982 */
1983 atomic_set(v: &check_state->enough, i: 1);
1984 /* Update check_state->enough earlier */
1985 smp_mb__after_atomic();
1986 goto out;
1987 }
1988 skip_nr--;
1989 cond_resched();
1990 }
1991
1992 if (p) {
1993 struct btree_op op;
1994
1995 btree_node_prefetch(parent: c->root, k: p);
1996 c->gc_stats.nodes++;
1997 bch_btree_op_init(op: &op, write_lock_level: 0);
1998 ret = bcache_btree(check_recurse, p, c->root, &op);
1999 /*
2000 * The op may be added to cache_set's btree_cache_wait
2001 * in mca_cannibalize(), must ensure it is removed from
2002 * the list and release btree_cache_alloc_lock before
2003 * free op memory.
2004 * Otherwise, the btree_cache_wait will be damaged.
2005 */
2006 bch_cannibalize_unlock(c);
2007 finish_wait(wq_head: &c->btree_cache_wait, wq_entry: &(&op)->wait);
2008 if (ret)
2009 goto out;
2010 }
2011 p = NULL;
2012 prev_idx = cur_idx;
2013 cond_resched();
2014 }
2015
2016out:
2017 info->result = ret;
2018 /* update check_state->started among all CPUs */
2019 smp_mb__before_atomic();
2020 if (atomic_dec_and_test(v: &check_state->started))
2021 wake_up(&check_state->wait);
2022
2023 return ret;
2024}
2025
2026
2027
2028static int bch_btree_chkthread_nr(void)
2029{
2030 int n = num_online_cpus()/2;
2031
2032 if (n == 0)
2033 n = 1;
2034 else if (n > BCH_BTR_CHKTHREAD_MAX)
2035 n = BCH_BTR_CHKTHREAD_MAX;
2036
2037 return n;
2038}
2039
2040int bch_btree_check(struct cache_set *c)
2041{
2042 int ret = 0;
2043 int i;
2044 struct bkey *k = NULL;
2045 struct btree_iter iter;
2046 struct btree_check_state check_state;
2047
2048 /* check and mark root node keys */
2049 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2050 bch_initial_mark_key(c, level: c->root->level, k);
2051
2052 bch_initial_mark_key(c, level: c->root->level + 1, k: &c->root->key);
2053
2054 if (c->root->level == 0)
2055 return 0;
2056
2057 memset(&check_state, 0, sizeof(struct btree_check_state));
2058 check_state.c = c;
2059 check_state.total_threads = bch_btree_chkthread_nr();
2060 check_state.key_idx = 0;
2061 spin_lock_init(&check_state.idx_lock);
2062 atomic_set(v: &check_state.started, i: 0);
2063 atomic_set(v: &check_state.enough, i: 0);
2064 init_waitqueue_head(&check_state.wait);
2065
2066 rw_lock(w: 0, b: c->root, level: c->root->level);
2067 /*
2068 * Run multiple threads to check btree nodes in parallel,
2069 * if check_state.enough is non-zero, it means current
2070 * running check threads are enough, unncessary to create
2071 * more.
2072 */
2073 for (i = 0; i < check_state.total_threads; i++) {
2074 /* fetch latest check_state.enough earlier */
2075 smp_mb__before_atomic();
2076 if (atomic_read(v: &check_state.enough))
2077 break;
2078
2079 check_state.infos[i].result = 0;
2080 check_state.infos[i].state = &check_state;
2081
2082 check_state.infos[i].thread =
2083 kthread_run(bch_btree_check_thread,
2084 &check_state.infos[i],
2085 "bch_btrchk[%d]", i);
2086 if (IS_ERR(ptr: check_state.infos[i].thread)) {
2087 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2088 for (--i; i >= 0; i--)
2089 kthread_stop(k: check_state.infos[i].thread);
2090 ret = -ENOMEM;
2091 goto out;
2092 }
2093 atomic_inc(v: &check_state.started);
2094 }
2095
2096 /*
2097 * Must wait for all threads to stop.
2098 */
2099 wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2100
2101 for (i = 0; i < check_state.total_threads; i++) {
2102 if (check_state.infos[i].result) {
2103 ret = check_state.infos[i].result;
2104 goto out;
2105 }
2106 }
2107
2108out:
2109 rw_unlock(w: 0, b: c->root);
2110 return ret;
2111}
2112
2113void bch_initial_gc_finish(struct cache_set *c)
2114{
2115 struct cache *ca = c->cache;
2116 struct bucket *b;
2117
2118 bch_btree_gc_finish(c);
2119
2120 mutex_lock(&c->bucket_lock);
2121
2122 /*
2123 * We need to put some unused buckets directly on the prio freelist in
2124 * order to get the allocator thread started - it needs freed buckets in
2125 * order to rewrite the prios and gens, and it needs to rewrite prios
2126 * and gens in order to free buckets.
2127 *
2128 * This is only safe for buckets that have no live data in them, which
2129 * there should always be some of.
2130 */
2131 for_each_bucket(b, ca) {
2132 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2133 fifo_full(&ca->free[RESERVE_BTREE]))
2134 break;
2135
2136 if (bch_can_invalidate_bucket(ca, b) &&
2137 !GC_MARK(k: b)) {
2138 __bch_invalidate_one_bucket(ca, b);
2139 if (!fifo_push(&ca->free[RESERVE_PRIO],
2140 b - ca->buckets))
2141 fifo_push(&ca->free[RESERVE_BTREE],
2142 b - ca->buckets);
2143 }
2144 }
2145
2146 mutex_unlock(lock: &c->bucket_lock);
2147}
2148
2149/* Btree insertion */
2150
2151static bool btree_insert_key(struct btree *b, struct bkey *k,
2152 struct bkey *replace_key)
2153{
2154 unsigned int status;
2155
2156 BUG_ON(bkey_cmp(k, &b->key) > 0);
2157
2158 status = bch_btree_insert_key(b: &b->keys, k, replace_key);
2159 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2160 bch_check_keys(&b->keys, "%u for %s", status,
2161 replace_key ? "replace" : "insert");
2162
2163 trace_bcache_btree_insert_key(b, k, op: replace_key != NULL,
2164 status);
2165 return true;
2166 } else
2167 return false;
2168}
2169
2170static size_t insert_u64s_remaining(struct btree *b)
2171{
2172 long ret = bch_btree_keys_u64s_remaining(b: &b->keys);
2173
2174 /*
2175 * Might land in the middle of an existing extent and have to split it
2176 */
2177 if (b->keys.ops->is_extents)
2178 ret -= KEY_MAX_U64S;
2179
2180 return max(ret, 0L);
2181}
2182
2183static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2184 struct keylist *insert_keys,
2185 struct bkey *replace_key)
2186{
2187 bool ret = false;
2188 int oldsize = bch_count_data(b: &b->keys);
2189
2190 while (!bch_keylist_empty(l: insert_keys)) {
2191 struct bkey *k = insert_keys->keys;
2192
2193 if (bkey_u64s(k) > insert_u64s_remaining(b))
2194 break;
2195
2196 if (bkey_cmp(l: k, r: &b->key) <= 0) {
2197 if (!b->level)
2198 bkey_put(c: b->c, k);
2199
2200 ret |= btree_insert_key(b, k, replace_key);
2201 bch_keylist_pop_front(l: insert_keys);
2202 } else if (bkey_cmp(l: &START_KEY(k), r: &b->key) < 0) {
2203 BKEY_PADDED(key) temp;
2204 bkey_copy(&temp.key, insert_keys->keys);
2205
2206 bch_cut_back(where: &b->key, k: &temp.key);
2207 bch_cut_front(where: &b->key, k: insert_keys->keys);
2208
2209 ret |= btree_insert_key(b, k: &temp.key, replace_key);
2210 break;
2211 } else {
2212 break;
2213 }
2214 }
2215
2216 if (!ret)
2217 op->insert_collision = true;
2218
2219 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2220
2221 BUG_ON(bch_count_data(&b->keys) < oldsize);
2222 return ret;
2223}
2224
2225static int btree_split(struct btree *b, struct btree_op *op,
2226 struct keylist *insert_keys,
2227 struct bkey *replace_key)
2228{
2229 bool split;
2230 struct btree *n1, *n2 = NULL, *n3 = NULL;
2231 uint64_t start_time = local_clock();
2232 struct closure cl;
2233 struct keylist parent_keys;
2234
2235 closure_init_stack(cl: &cl);
2236 bch_keylist_init(l: &parent_keys);
2237
2238 if (btree_check_reserve(b, op)) {
2239 if (!b->level)
2240 return -EINTR;
2241 else
2242 WARN(1, "insufficient reserve for split\n");
2243 }
2244
2245 n1 = btree_node_alloc_replacement(b, op);
2246 if (IS_ERR(ptr: n1))
2247 goto err;
2248
2249 split = set_blocks(btree_bset_first(n1),
2250 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2251
2252 if (split) {
2253 unsigned int keys = 0;
2254
2255 trace_bcache_btree_node_split(b, keys: btree_bset_first(b: n1)->keys);
2256
2257 n2 = bch_btree_node_alloc(c: b->c, op, level: b->level, parent: b->parent);
2258 if (IS_ERR(ptr: n2))
2259 goto err_free1;
2260
2261 if (!b->parent) {
2262 n3 = bch_btree_node_alloc(c: b->c, op, level: b->level + 1, NULL);
2263 if (IS_ERR(ptr: n3))
2264 goto err_free2;
2265 }
2266
2267 mutex_lock(&n1->write_lock);
2268 mutex_lock(&n2->write_lock);
2269
2270 bch_btree_insert_keys(b: n1, op, insert_keys, replace_key);
2271
2272 /*
2273 * Has to be a linear search because we don't have an auxiliary
2274 * search tree yet
2275 */
2276
2277 while (keys < (btree_bset_first(b: n1)->keys * 3) / 5)
2278 keys += bkey_u64s(k: bset_bkey_idx(i: btree_bset_first(b: n1),
2279 idx: keys));
2280
2281 bkey_copy_key(dest: &n1->key,
2282 src: bset_bkey_idx(i: btree_bset_first(b: n1), idx: keys));
2283 keys += bkey_u64s(k: bset_bkey_idx(i: btree_bset_first(b: n1), idx: keys));
2284
2285 btree_bset_first(b: n2)->keys = btree_bset_first(b: n1)->keys - keys;
2286 btree_bset_first(b: n1)->keys = keys;
2287
2288 memcpy(btree_bset_first(n2)->start,
2289 bset_bkey_last(btree_bset_first(n1)),
2290 btree_bset_first(n2)->keys * sizeof(uint64_t));
2291
2292 bkey_copy_key(dest: &n2->key, src: &b->key);
2293
2294 bch_keylist_add(l: &parent_keys, k: &n2->key);
2295 bch_btree_node_write(b: n2, parent: &cl);
2296 mutex_unlock(lock: &n2->write_lock);
2297 rw_unlock(w: true, b: n2);
2298 } else {
2299 trace_bcache_btree_node_compact(b, keys: btree_bset_first(b: n1)->keys);
2300
2301 mutex_lock(&n1->write_lock);
2302 bch_btree_insert_keys(b: n1, op, insert_keys, replace_key);
2303 }
2304
2305 bch_keylist_add(l: &parent_keys, k: &n1->key);
2306 bch_btree_node_write(b: n1, parent: &cl);
2307 mutex_unlock(lock: &n1->write_lock);
2308
2309 if (n3) {
2310 /* Depth increases, make a new root */
2311 mutex_lock(&n3->write_lock);
2312 bkey_copy_key(dest: &n3->key, src: &MAX_KEY);
2313 bch_btree_insert_keys(b: n3, op, insert_keys: &parent_keys, NULL);
2314 bch_btree_node_write(b: n3, parent: &cl);
2315 mutex_unlock(lock: &n3->write_lock);
2316
2317 closure_sync(cl: &cl);
2318 bch_btree_set_root(b: n3);
2319 rw_unlock(w: true, b: n3);
2320 } else if (!b->parent) {
2321 /* Root filled up but didn't need to be split */
2322 closure_sync(cl: &cl);
2323 bch_btree_set_root(b: n1);
2324 } else {
2325 /* Split a non root node */
2326 closure_sync(cl: &cl);
2327 make_btree_freeing_key(b, k: parent_keys.top);
2328 bch_keylist_push(l: &parent_keys);
2329
2330 bch_btree_insert_node(b: b->parent, op, insert_keys: &parent_keys, NULL, NULL);
2331 BUG_ON(!bch_keylist_empty(&parent_keys));
2332 }
2333
2334 btree_node_free(b);
2335 rw_unlock(w: true, b: n1);
2336
2337 bch_time_stats_update(stats: &b->c->btree_split_time, time: start_time);
2338
2339 return 0;
2340err_free2:
2341 bkey_put(c: b->c, k: &n2->key);
2342 btree_node_free(b: n2);
2343 rw_unlock(w: true, b: n2);
2344err_free1:
2345 bkey_put(c: b->c, k: &n1->key);
2346 btree_node_free(b: n1);
2347 rw_unlock(w: true, b: n1);
2348err:
2349 WARN(1, "bcache: btree split failed (level %u)", b->level);
2350
2351 if (n3 == ERR_PTR(error: -EAGAIN) ||
2352 n2 == ERR_PTR(error: -EAGAIN) ||
2353 n1 == ERR_PTR(error: -EAGAIN))
2354 return -EAGAIN;
2355
2356 return -ENOMEM;
2357}
2358
2359static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2360 struct keylist *insert_keys,
2361 atomic_t *journal_ref,
2362 struct bkey *replace_key)
2363{
2364 struct closure cl;
2365
2366 BUG_ON(b->level && replace_key);
2367
2368 closure_init_stack(cl: &cl);
2369
2370 mutex_lock(&b->write_lock);
2371
2372 if (write_block(b) != btree_bset_last(b) &&
2373 b->keys.last_set_unwritten)
2374 bch_btree_init_next(b); /* just wrote a set */
2375
2376 if (bch_keylist_nkeys(l: insert_keys) > insert_u64s_remaining(b)) {
2377 mutex_unlock(lock: &b->write_lock);
2378 goto split;
2379 }
2380
2381 BUG_ON(write_block(b) != btree_bset_last(b));
2382
2383 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2384 if (!b->level)
2385 bch_btree_leaf_dirty(b, journal_ref);
2386 else
2387 bch_btree_node_write(b, parent: &cl);
2388 }
2389
2390 mutex_unlock(lock: &b->write_lock);
2391
2392 /* wait for btree node write if necessary, after unlock */
2393 closure_sync(cl: &cl);
2394
2395 return 0;
2396split:
2397 if (current->bio_list) {
2398 op->lock = b->c->root->level + 1;
2399 return -EAGAIN;
2400 } else if (op->lock <= b->c->root->level) {
2401 op->lock = b->c->root->level + 1;
2402 return -EINTR;
2403 } else {
2404 /* Invalidated all iterators */
2405 int ret = btree_split(b, op, insert_keys, replace_key);
2406
2407 if (bch_keylist_empty(l: insert_keys))
2408 return 0;
2409 else if (!ret)
2410 return -EINTR;
2411 return ret;
2412 }
2413}
2414
2415int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2416 struct bkey *check_key)
2417{
2418 int ret = -EINTR;
2419 uint64_t btree_ptr = b->key.ptr[0];
2420 unsigned long seq = b->seq;
2421 struct keylist insert;
2422 bool upgrade = op->lock == -1;
2423
2424 bch_keylist_init(l: &insert);
2425
2426 if (upgrade) {
2427 rw_unlock(w: false, b);
2428 rw_lock(w: true, b, level: b->level);
2429
2430 if (b->key.ptr[0] != btree_ptr ||
2431 b->seq != seq + 1) {
2432 op->lock = b->level;
2433 goto out;
2434 }
2435 }
2436
2437 SET_KEY_PTRS(k: check_key, v: 1);
2438 get_random_bytes(buf: &check_key->ptr[0], len: sizeof(uint64_t));
2439
2440 SET_PTR_DEV(k: check_key, i: 0, PTR_CHECK_DEV);
2441
2442 bch_keylist_add(l: &insert, k: check_key);
2443
2444 ret = bch_btree_insert_node(b, op, insert_keys: &insert, NULL, NULL);
2445
2446 BUG_ON(!ret && !bch_keylist_empty(&insert));
2447out:
2448 if (upgrade)
2449 downgrade_write(sem: &b->lock);
2450 return ret;
2451}
2452
2453struct btree_insert_op {
2454 struct btree_op op;
2455 struct keylist *keys;
2456 atomic_t *journal_ref;
2457 struct bkey *replace_key;
2458};
2459
2460static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2461{
2462 struct btree_insert_op *op = container_of(b_op,
2463 struct btree_insert_op, op);
2464
2465 int ret = bch_btree_insert_node(b, op: &op->op, insert_keys: op->keys,
2466 journal_ref: op->journal_ref, replace_key: op->replace_key);
2467 if (ret && !bch_keylist_empty(l: op->keys))
2468 return ret;
2469 else
2470 return MAP_DONE;
2471}
2472
2473int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2474 atomic_t *journal_ref, struct bkey *replace_key)
2475{
2476 struct btree_insert_op op;
2477 int ret = 0;
2478
2479 BUG_ON(current->bio_list);
2480 BUG_ON(bch_keylist_empty(keys));
2481
2482 bch_btree_op_init(op: &op.op, write_lock_level: 0);
2483 op.keys = keys;
2484 op.journal_ref = journal_ref;
2485 op.replace_key = replace_key;
2486
2487 while (!ret && !bch_keylist_empty(l: keys)) {
2488 op.op.lock = 0;
2489 ret = bch_btree_map_leaf_nodes(op: &op.op, c,
2490 from: &START_KEY(keys->keys),
2491 fn: btree_insert_fn);
2492 }
2493
2494 if (ret) {
2495 struct bkey *k;
2496
2497 pr_err("error %i\n", ret);
2498
2499 while ((k = bch_keylist_pop(l: keys)))
2500 bkey_put(c, k);
2501 } else if (op.op.insert_collision)
2502 ret = -ESRCH;
2503
2504 return ret;
2505}
2506
2507void bch_btree_set_root(struct btree *b)
2508{
2509 unsigned int i;
2510 struct closure cl;
2511
2512 closure_init_stack(cl: &cl);
2513
2514 trace_bcache_btree_set_root(b);
2515
2516 BUG_ON(!b->written);
2517
2518 for (i = 0; i < KEY_PTRS(k: &b->key); i++)
2519 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2520
2521 mutex_lock(&b->c->bucket_lock);
2522 list_del_init(entry: &b->list);
2523 mutex_unlock(lock: &b->c->bucket_lock);
2524
2525 b->c->root = b;
2526
2527 bch_journal_meta(c: b->c, cl: &cl);
2528 closure_sync(cl: &cl);
2529}
2530
2531/* Map across nodes or keys */
2532
2533static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2534 struct bkey *from,
2535 btree_map_nodes_fn *fn, int flags)
2536{
2537 int ret = MAP_CONTINUE;
2538
2539 if (b->level) {
2540 struct bkey *k;
2541 struct btree_iter iter;
2542
2543 bch_btree_iter_init(b: &b->keys, iter: &iter, search: from);
2544
2545 while ((k = bch_btree_iter_next_filter(iter: &iter, b: &b->keys,
2546 fn: bch_ptr_bad))) {
2547 ret = bcache_btree(map_nodes_recurse, k, b,
2548 op, from, fn, flags);
2549 from = NULL;
2550
2551 if (ret != MAP_CONTINUE)
2552 return ret;
2553 }
2554 }
2555
2556 if (!b->level || flags == MAP_ALL_NODES)
2557 ret = fn(op, b);
2558
2559 return ret;
2560}
2561
2562int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2563 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2564{
2565 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2566}
2567
2568int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2569 struct bkey *from, btree_map_keys_fn *fn,
2570 int flags)
2571{
2572 int ret = MAP_CONTINUE;
2573 struct bkey *k;
2574 struct btree_iter iter;
2575
2576 bch_btree_iter_init(b: &b->keys, iter: &iter, search: from);
2577
2578 while ((k = bch_btree_iter_next_filter(iter: &iter, b: &b->keys, fn: bch_ptr_bad))) {
2579 ret = !b->level
2580 ? fn(op, b, k)
2581 : bcache_btree(map_keys_recurse, k,
2582 b, op, from, fn, flags);
2583 from = NULL;
2584
2585 if (ret != MAP_CONTINUE)
2586 return ret;
2587 }
2588
2589 if (!b->level && (flags & MAP_END_KEY))
2590 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2591 KEY_OFFSET(&b->key), 0));
2592
2593 return ret;
2594}
2595
2596int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2597 struct bkey *from, btree_map_keys_fn *fn, int flags)
2598{
2599 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2600}
2601
2602/* Keybuf code */
2603
2604static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2605{
2606 /* Overlapping keys compare equal */
2607 if (bkey_cmp(l: &l->key, r: &START_KEY(&r->key)) <= 0)
2608 return -1;
2609 if (bkey_cmp(l: &START_KEY(&l->key), r: &r->key) >= 0)
2610 return 1;
2611 return 0;
2612}
2613
2614static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2615 struct keybuf_key *r)
2616{
2617 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2618}
2619
2620struct refill {
2621 struct btree_op op;
2622 unsigned int nr_found;
2623 struct keybuf *buf;
2624 struct bkey *end;
2625 keybuf_pred_fn *pred;
2626};
2627
2628static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2629 struct bkey *k)
2630{
2631 struct refill *refill = container_of(op, struct refill, op);
2632 struct keybuf *buf = refill->buf;
2633 int ret = MAP_CONTINUE;
2634
2635 if (bkey_cmp(l: k, r: refill->end) > 0) {
2636 ret = MAP_DONE;
2637 goto out;
2638 }
2639
2640 if (!KEY_SIZE(k)) /* end key */
2641 goto out;
2642
2643 if (refill->pred(buf, k)) {
2644 struct keybuf_key *w;
2645
2646 spin_lock(lock: &buf->lock);
2647
2648 w = array_alloc(&buf->freelist);
2649 if (!w) {
2650 spin_unlock(lock: &buf->lock);
2651 return MAP_DONE;
2652 }
2653
2654 w->private = NULL;
2655 bkey_copy(&w->key, k);
2656
2657 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2658 array_free(&buf->freelist, w);
2659 else
2660 refill->nr_found++;
2661
2662 if (array_freelist_empty(&buf->freelist))
2663 ret = MAP_DONE;
2664
2665 spin_unlock(lock: &buf->lock);
2666 }
2667out:
2668 buf->last_scanned = *k;
2669 return ret;
2670}
2671
2672void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2673 struct bkey *end, keybuf_pred_fn *pred)
2674{
2675 struct bkey start = buf->last_scanned;
2676 struct refill refill;
2677
2678 cond_resched();
2679
2680 bch_btree_op_init(op: &refill.op, write_lock_level: -1);
2681 refill.nr_found = 0;
2682 refill.buf = buf;
2683 refill.end = end;
2684 refill.pred = pred;
2685
2686 bch_btree_map_keys(op: &refill.op, c, from: &buf->last_scanned,
2687 fn: refill_keybuf_fn, MAP_END_KEY);
2688
2689 trace_bcache_keyscan(nr_found: refill.nr_found,
2690 start_inode: KEY_INODE(k: &start), start_offset: KEY_OFFSET(k: &start),
2691 end_inode: KEY_INODE(k: &buf->last_scanned),
2692 end_offset: KEY_OFFSET(k: &buf->last_scanned));
2693
2694 spin_lock(lock: &buf->lock);
2695
2696 if (!RB_EMPTY_ROOT(&buf->keys)) {
2697 struct keybuf_key *w;
2698
2699 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2700 buf->start = START_KEY(&w->key);
2701
2702 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2703 buf->end = w->key;
2704 } else {
2705 buf->start = MAX_KEY;
2706 buf->end = MAX_KEY;
2707 }
2708
2709 spin_unlock(lock: &buf->lock);
2710}
2711
2712static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2713{
2714 rb_erase(&w->node, &buf->keys);
2715 array_free(&buf->freelist, w);
2716}
2717
2718void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2719{
2720 spin_lock(lock: &buf->lock);
2721 __bch_keybuf_del(buf, w);
2722 spin_unlock(lock: &buf->lock);
2723}
2724
2725bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2726 struct bkey *end)
2727{
2728 bool ret = false;
2729 struct keybuf_key *p, *w, s;
2730
2731 s.key = *start;
2732
2733 if (bkey_cmp(l: end, r: &buf->start) <= 0 ||
2734 bkey_cmp(l: start, r: &buf->end) >= 0)
2735 return false;
2736
2737 spin_lock(lock: &buf->lock);
2738 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2739
2740 while (w && bkey_cmp(l: &START_KEY(&w->key), r: end) < 0) {
2741 p = w;
2742 w = RB_NEXT(w, node);
2743
2744 if (p->private)
2745 ret = true;
2746 else
2747 __bch_keybuf_del(buf, w: p);
2748 }
2749
2750 spin_unlock(lock: &buf->lock);
2751 return ret;
2752}
2753
2754struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2755{
2756 struct keybuf_key *w;
2757
2758 spin_lock(lock: &buf->lock);
2759
2760 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2761
2762 while (w && w->private)
2763 w = RB_NEXT(w, node);
2764
2765 if (w)
2766 w->private = ERR_PTR(error: -EINTR);
2767
2768 spin_unlock(lock: &buf->lock);
2769 return w;
2770}
2771
2772struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2773 struct keybuf *buf,
2774 struct bkey *end,
2775 keybuf_pred_fn *pred)
2776{
2777 struct keybuf_key *ret;
2778
2779 while (1) {
2780 ret = bch_keybuf_next(buf);
2781 if (ret)
2782 break;
2783
2784 if (bkey_cmp(l: &buf->last_scanned, r: end) >= 0) {
2785 pr_debug("scan finished\n");
2786 break;
2787 }
2788
2789 bch_refill_keybuf(c, buf, end, pred);
2790 }
2791
2792 return ret;
2793}
2794
2795void bch_keybuf_init(struct keybuf *buf)
2796{
2797 buf->last_scanned = MAX_KEY;
2798 buf->keys = RB_ROOT;
2799
2800 spin_lock_init(&buf->lock);
2801 array_allocator_init(&buf->freelist);
2802}
2803
2804void bch_btree_exit(void)
2805{
2806 if (btree_io_wq)
2807 destroy_workqueue(wq: btree_io_wq);
2808}
2809
2810int __init bch_btree_init(void)
2811{
2812 btree_io_wq = alloc_workqueue(fmt: "bch_btree_io", flags: WQ_MEM_RECLAIM, max_active: 0);
2813 if (!btree_io_wq)
2814 return -ENOMEM;
2815
2816 return 0;
2817}
2818

source code of linux/drivers/md/bcache/btree.c