1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for NAND MLC Controller in LPC32xx
4 *
5 * Author: Roland Stigge <stigge@antcom.de>
6 *
7 * Copyright © 2011 WORK Microwave GmbH
8 * Copyright © 2011, 2012 Roland Stigge
9 *
10 * NAND Flash Controller Operation:
11 * - Read: Auto Decode
12 * - Write: Auto Encode
13 * - Tested Page Sizes: 2048, 4096
14 */
15
16#include <linux/slab.h>
17#include <linux/module.h>
18#include <linux/platform_device.h>
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/rawnand.h>
21#include <linux/mtd/partitions.h>
22#include <linux/clk.h>
23#include <linux/err.h>
24#include <linux/delay.h>
25#include <linux/completion.h>
26#include <linux/interrupt.h>
27#include <linux/of.h>
28#include <linux/gpio/consumer.h>
29#include <linux/mtd/lpc32xx_mlc.h>
30#include <linux/io.h>
31#include <linux/mm.h>
32#include <linux/dma-mapping.h>
33#include <linux/dmaengine.h>
34
35#define DRV_NAME "lpc32xx_mlc"
36
37/**********************************************************************
38* MLC NAND controller register offsets
39**********************************************************************/
40
41#define MLC_BUFF(x) (x + 0x00000)
42#define MLC_DATA(x) (x + 0x08000)
43#define MLC_CMD(x) (x + 0x10000)
44#define MLC_ADDR(x) (x + 0x10004)
45#define MLC_ECC_ENC_REG(x) (x + 0x10008)
46#define MLC_ECC_DEC_REG(x) (x + 0x1000C)
47#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
48#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
49#define MLC_RPR(x) (x + 0x10018)
50#define MLC_WPR(x) (x + 0x1001C)
51#define MLC_RUBP(x) (x + 0x10020)
52#define MLC_ROBP(x) (x + 0x10024)
53#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
54#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
55#define MLC_ICR(x) (x + 0x10030)
56#define MLC_TIME_REG(x) (x + 0x10034)
57#define MLC_IRQ_MR(x) (x + 0x10038)
58#define MLC_IRQ_SR(x) (x + 0x1003C)
59#define MLC_LOCK_PR(x) (x + 0x10044)
60#define MLC_ISR(x) (x + 0x10048)
61#define MLC_CEH(x) (x + 0x1004C)
62
63/**********************************************************************
64* MLC_CMD bit definitions
65**********************************************************************/
66#define MLCCMD_RESET 0xFF
67
68/**********************************************************************
69* MLC_ICR bit definitions
70**********************************************************************/
71#define MLCICR_WPROT (1 << 3)
72#define MLCICR_LARGEBLOCK (1 << 2)
73#define MLCICR_LONGADDR (1 << 1)
74#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
75
76/**********************************************************************
77* MLC_TIME_REG bit definitions
78**********************************************************************/
79#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
80#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
81#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
82#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
83#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
84#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
85#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
86
87/**********************************************************************
88* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
89**********************************************************************/
90#define MLCIRQ_NAND_READY (1 << 5)
91#define MLCIRQ_CONTROLLER_READY (1 << 4)
92#define MLCIRQ_DECODE_FAILURE (1 << 3)
93#define MLCIRQ_DECODE_ERROR (1 << 2)
94#define MLCIRQ_ECC_READY (1 << 1)
95#define MLCIRQ_WRPROT_FAULT (1 << 0)
96
97/**********************************************************************
98* MLC_LOCK_PR bit definitions
99**********************************************************************/
100#define MLCLOCKPR_MAGIC 0xA25E
101
102/**********************************************************************
103* MLC_ISR bit definitions
104**********************************************************************/
105#define MLCISR_DECODER_FAILURE (1 << 6)
106#define MLCISR_ERRORS ((1 << 4) | (1 << 5))
107#define MLCISR_ERRORS_DETECTED (1 << 3)
108#define MLCISR_ECC_READY (1 << 2)
109#define MLCISR_CONTROLLER_READY (1 << 1)
110#define MLCISR_NAND_READY (1 << 0)
111
112/**********************************************************************
113* MLC_CEH bit definitions
114**********************************************************************/
115#define MLCCEH_NORMAL (1 << 0)
116
117struct lpc32xx_nand_cfg_mlc {
118 uint32_t tcea_delay;
119 uint32_t busy_delay;
120 uint32_t nand_ta;
121 uint32_t rd_high;
122 uint32_t rd_low;
123 uint32_t wr_high;
124 uint32_t wr_low;
125 struct mtd_partition *parts;
126 unsigned num_parts;
127};
128
129static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
130 struct mtd_oob_region *oobregion)
131{
132 struct nand_chip *nand_chip = mtd_to_nand(mtd);
133
134 if (section >= nand_chip->ecc.steps)
135 return -ERANGE;
136
137 oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
138 oobregion->length = nand_chip->ecc.bytes;
139
140 return 0;
141}
142
143static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
144 struct mtd_oob_region *oobregion)
145{
146 struct nand_chip *nand_chip = mtd_to_nand(mtd);
147
148 if (section >= nand_chip->ecc.steps)
149 return -ERANGE;
150
151 oobregion->offset = 16 * section;
152 oobregion->length = 16 - nand_chip->ecc.bytes;
153
154 return 0;
155}
156
157static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
158 .ecc = lpc32xx_ooblayout_ecc,
159 .free = lpc32xx_ooblayout_free,
160};
161
162static struct nand_bbt_descr lpc32xx_nand_bbt = {
163 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
164 NAND_BBT_WRITE,
165 .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
166};
167
168static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
169 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
170 NAND_BBT_WRITE,
171 .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
172};
173
174struct lpc32xx_nand_host {
175 struct platform_device *pdev;
176 struct nand_chip nand_chip;
177 struct lpc32xx_mlc_platform_data *pdata;
178 struct clk *clk;
179 struct gpio_desc *wp_gpio;
180 void __iomem *io_base;
181 int irq;
182 struct lpc32xx_nand_cfg_mlc *ncfg;
183 struct completion comp_nand;
184 struct completion comp_controller;
185 uint32_t llptr;
186 /*
187 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
188 */
189 dma_addr_t oob_buf_phy;
190 /*
191 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
192 */
193 uint8_t *oob_buf;
194 /* Physical address of DMA base address */
195 dma_addr_t io_base_phy;
196
197 struct completion comp_dma;
198 struct dma_chan *dma_chan;
199 struct dma_slave_config dma_slave_config;
200 struct scatterlist sgl;
201 uint8_t *dma_buf;
202 uint8_t *dummy_buf;
203 int mlcsubpages; /* number of 512bytes-subpages */
204};
205
206/*
207 * Activate/Deactivate DMA Operation:
208 *
209 * Using the PL080 DMA Controller for transferring the 512 byte subpages
210 * instead of doing readl() / writel() in a loop slows it down significantly.
211 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
212 *
213 * - readl() of 128 x 32 bits in a loop: ~20us
214 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
215 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
216 *
217 * This applies to the transfer itself. In the DMA case: only the
218 * wait_for_completion() (DMA setup _not_ included).
219 *
220 * Note that the 512 bytes subpage transfer is done directly from/to a
221 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
222 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
223 * controller transferring data between its internal buffer to/from the NAND
224 * chip.)
225 *
226 * Therefore, using the PL080 DMA is disabled by default, for now.
227 *
228 */
229static int use_dma;
230
231static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
232{
233 uint32_t clkrate, tmp;
234
235 /* Reset MLC controller */
236 writel(MLCCMD_RESET, MLC_CMD(host->io_base));
237 udelay(1000);
238
239 /* Get base clock for MLC block */
240 clkrate = clk_get_rate(clk: host->clk);
241 if (clkrate == 0)
242 clkrate = 104000000;
243
244 /* Unlock MLC_ICR
245 * (among others, will be locked again automatically) */
246 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
247
248 /* Configure MLC Controller: Large Block, 5 Byte Address */
249 tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
250 writel(val: tmp, MLC_ICR(host->io_base));
251
252 /* Unlock MLC_TIME_REG
253 * (among others, will be locked again automatically) */
254 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
255
256 /* Compute clock setup values, see LPC and NAND manual */
257 tmp = 0;
258 tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
259 tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
260 tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
261 tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
262 tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
263 tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
264 tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
265 writel(val: tmp, MLC_TIME_REG(host->io_base));
266
267 /* Enable IRQ for CONTROLLER_READY and NAND_READY */
268 writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
269 MLC_IRQ_MR(host->io_base));
270
271 /* Normal nCE operation: nCE controlled by controller */
272 writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
273}
274
275/*
276 * Hardware specific access to control lines
277 */
278static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
279 unsigned int ctrl)
280{
281 struct lpc32xx_nand_host *host = nand_get_controller_data(chip: nand_chip);
282
283 if (cmd != NAND_CMD_NONE) {
284 if (ctrl & NAND_CLE)
285 writel(val: cmd, MLC_CMD(host->io_base));
286 else
287 writel(val: cmd, MLC_ADDR(host->io_base));
288 }
289}
290
291/*
292 * Read Device Ready (NAND device _and_ controller ready)
293 */
294static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
295{
296 struct lpc32xx_nand_host *host = nand_get_controller_data(chip: nand_chip);
297
298 if ((readb(MLC_ISR(host->io_base)) &
299 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
300 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
301 return 1;
302
303 return 0;
304}
305
306static irqreturn_t lpc3xxx_nand_irq(int irq, void *data)
307{
308 struct lpc32xx_nand_host *host = data;
309 uint8_t sr;
310
311 /* Clear interrupt flag by reading status */
312 sr = readb(MLC_IRQ_SR(host->io_base));
313 if (sr & MLCIRQ_NAND_READY)
314 complete(&host->comp_nand);
315 if (sr & MLCIRQ_CONTROLLER_READY)
316 complete(&host->comp_controller);
317
318 return IRQ_HANDLED;
319}
320
321static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
322{
323 struct mtd_info *mtd = nand_to_mtd(chip);
324 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
325
326 if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
327 goto exit;
328
329 wait_for_completion(&host->comp_nand);
330
331 while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
332 /* Seems to be delayed sometimes by controller */
333 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
334 cpu_relax();
335 }
336
337exit:
338 return NAND_STATUS_READY;
339}
340
341static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
342{
343 struct mtd_info *mtd = nand_to_mtd(chip);
344 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
345
346 if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
347 goto exit;
348
349 wait_for_completion(&host->comp_controller);
350
351 while (!(readb(MLC_ISR(host->io_base)) &
352 MLCISR_CONTROLLER_READY)) {
353 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
354 cpu_relax();
355 }
356
357exit:
358 return NAND_STATUS_READY;
359}
360
361static int lpc32xx_waitfunc(struct nand_chip *chip)
362{
363 lpc32xx_waitfunc_nand(chip);
364 lpc32xx_waitfunc_controller(chip);
365
366 return NAND_STATUS_READY;
367}
368
369/*
370 * Enable NAND write protect
371 */
372static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
373{
374 if (host->wp_gpio)
375 gpiod_set_value_cansleep(desc: host->wp_gpio, value: 1);
376}
377
378/*
379 * Disable NAND write protect
380 */
381static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
382{
383 if (host->wp_gpio)
384 gpiod_set_value_cansleep(desc: host->wp_gpio, value: 0);
385}
386
387static void lpc32xx_dma_complete_func(void *completion)
388{
389 complete(completion);
390}
391
392static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
393 enum dma_transfer_direction dir)
394{
395 struct nand_chip *chip = mtd_to_nand(mtd);
396 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
397 struct dma_async_tx_descriptor *desc;
398 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
399 int res;
400
401 sg_init_one(&host->sgl, mem, len);
402
403 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
404 DMA_BIDIRECTIONAL);
405 if (res != 1) {
406 dev_err(mtd->dev.parent, "Failed to map sg list\n");
407 return -ENXIO;
408 }
409 desc = dmaengine_prep_slave_sg(chan: host->dma_chan, sgl: &host->sgl, sg_len: 1, dir,
410 flags);
411 if (!desc) {
412 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
413 goto out1;
414 }
415
416 init_completion(x: &host->comp_dma);
417 desc->callback = lpc32xx_dma_complete_func;
418 desc->callback_param = &host->comp_dma;
419
420 dmaengine_submit(desc);
421 dma_async_issue_pending(chan: host->dma_chan);
422
423 wait_for_completion_timeout(x: &host->comp_dma, timeout: msecs_to_jiffies(m: 1000));
424
425 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
426 DMA_BIDIRECTIONAL);
427 return 0;
428out1:
429 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
430 DMA_BIDIRECTIONAL);
431 return -ENXIO;
432}
433
434static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
435 int oob_required, int page)
436{
437 struct mtd_info *mtd = nand_to_mtd(chip);
438 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
439 int i, j;
440 uint8_t *oobbuf = chip->oob_poi;
441 uint32_t mlc_isr;
442 int res;
443 uint8_t *dma_buf;
444 bool dma_mapped;
445
446 if ((void *)buf <= high_memory) {
447 dma_buf = buf;
448 dma_mapped = true;
449 } else {
450 dma_buf = host->dma_buf;
451 dma_mapped = false;
452 }
453
454 /* Writing Command and Address */
455 nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0);
456
457 /* For all sub-pages */
458 for (i = 0; i < host->mlcsubpages; i++) {
459 /* Start Auto Decode Command */
460 writeb(val: 0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
461
462 /* Wait for Controller Ready */
463 lpc32xx_waitfunc_controller(chip);
464
465 /* Check ECC Error status */
466 mlc_isr = readl(MLC_ISR(host->io_base));
467 if (mlc_isr & MLCISR_DECODER_FAILURE) {
468 mtd->ecc_stats.failed++;
469 dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
470 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
471 mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
472 }
473
474 /* Read 512 + 16 Bytes */
475 if (use_dma) {
476 res = lpc32xx_xmit_dma(mtd, mem: dma_buf + i * 512, len: 512,
477 dir: DMA_DEV_TO_MEM);
478 if (res)
479 return res;
480 } else {
481 for (j = 0; j < (512 >> 2); j++) {
482 *((uint32_t *)(buf)) =
483 readl(MLC_BUFF(host->io_base));
484 buf += 4;
485 }
486 }
487 for (j = 0; j < (16 >> 2); j++) {
488 *((uint32_t *)(oobbuf)) =
489 readl(MLC_BUFF(host->io_base));
490 oobbuf += 4;
491 }
492 }
493
494 if (use_dma && !dma_mapped)
495 memcpy(buf, dma_buf, mtd->writesize);
496
497 return 0;
498}
499
500static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
501 const uint8_t *buf, int oob_required,
502 int page)
503{
504 struct mtd_info *mtd = nand_to_mtd(chip);
505 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
506 const uint8_t *oobbuf = chip->oob_poi;
507 uint8_t *dma_buf = (uint8_t *)buf;
508 int res;
509 int i, j;
510
511 if (use_dma && (void *)buf >= high_memory) {
512 dma_buf = host->dma_buf;
513 memcpy(dma_buf, buf, mtd->writesize);
514 }
515
516 nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0);
517
518 for (i = 0; i < host->mlcsubpages; i++) {
519 /* Start Encode */
520 writeb(val: 0x00, MLC_ECC_ENC_REG(host->io_base));
521
522 /* Write 512 + 6 Bytes to Buffer */
523 if (use_dma) {
524 res = lpc32xx_xmit_dma(mtd, mem: dma_buf + i * 512, len: 512,
525 dir: DMA_MEM_TO_DEV);
526 if (res)
527 return res;
528 } else {
529 for (j = 0; j < (512 >> 2); j++) {
530 writel(val: *((uint32_t *)(buf)),
531 MLC_BUFF(host->io_base));
532 buf += 4;
533 }
534 }
535 writel(val: *((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
536 oobbuf += 4;
537 writew(val: *((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
538 oobbuf += 12;
539
540 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
541 writeb(val: 0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
542
543 /* Wait for Controller Ready */
544 lpc32xx_waitfunc_controller(chip);
545 }
546
547 return nand_prog_page_end_op(chip);
548}
549
550static int lpc32xx_read_oob(struct nand_chip *chip, int page)
551{
552 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
553
554 /* Read whole page - necessary with MLC controller! */
555 lpc32xx_read_page(chip, buf: host->dummy_buf, oob_required: 1, page);
556
557 return 0;
558}
559
560static int lpc32xx_write_oob(struct nand_chip *chip, int page)
561{
562 /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
563 return 0;
564}
565
566/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
567static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
568{
569 /* Always enabled! */
570}
571
572static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
573{
574 struct mtd_info *mtd = nand_to_mtd(chip: &host->nand_chip);
575 dma_cap_mask_t mask;
576
577 if (!host->pdata || !host->pdata->dma_filter) {
578 dev_err(mtd->dev.parent, "no DMA platform data\n");
579 return -ENOENT;
580 }
581
582 dma_cap_zero(mask);
583 dma_cap_set(DMA_SLAVE, mask);
584 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
585 "nand-mlc");
586 if (!host->dma_chan) {
587 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
588 return -EBUSY;
589 }
590
591 /*
592 * Set direction to a sensible value even if the dmaengine driver
593 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
594 * driver criticizes it as "alien transfer direction".
595 */
596 host->dma_slave_config.direction = DMA_DEV_TO_MEM;
597 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
598 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599 host->dma_slave_config.src_maxburst = 128;
600 host->dma_slave_config.dst_maxburst = 128;
601 /* DMA controller does flow control: */
602 host->dma_slave_config.device_fc = false;
603 host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
604 host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
605 if (dmaengine_slave_config(chan: host->dma_chan, config: &host->dma_slave_config)) {
606 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
607 goto out1;
608 }
609
610 return 0;
611out1:
612 dma_release_channel(chan: host->dma_chan);
613 return -ENXIO;
614}
615
616static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
617{
618 struct lpc32xx_nand_cfg_mlc *ncfg;
619 struct device_node *np = dev->of_node;
620
621 ncfg = devm_kzalloc(dev, size: sizeof(*ncfg), GFP_KERNEL);
622 if (!ncfg)
623 return NULL;
624
625 of_property_read_u32(np, propname: "nxp,tcea-delay", out_value: &ncfg->tcea_delay);
626 of_property_read_u32(np, propname: "nxp,busy-delay", out_value: &ncfg->busy_delay);
627 of_property_read_u32(np, propname: "nxp,nand-ta", out_value: &ncfg->nand_ta);
628 of_property_read_u32(np, propname: "nxp,rd-high", out_value: &ncfg->rd_high);
629 of_property_read_u32(np, propname: "nxp,rd-low", out_value: &ncfg->rd_low);
630 of_property_read_u32(np, propname: "nxp,wr-high", out_value: &ncfg->wr_high);
631 of_property_read_u32(np, propname: "nxp,wr-low", out_value: &ncfg->wr_low);
632
633 if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
634 !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
635 !ncfg->wr_low) {
636 dev_err(dev, "chip parameters not specified correctly\n");
637 return NULL;
638 }
639
640 return ncfg;
641}
642
643static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
644{
645 struct mtd_info *mtd = nand_to_mtd(chip);
646 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
647 struct device *dev = &host->pdev->dev;
648
649 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
650 return 0;
651
652 host->dma_buf = devm_kzalloc(dev, size: mtd->writesize, GFP_KERNEL);
653 if (!host->dma_buf)
654 return -ENOMEM;
655
656 host->dummy_buf = devm_kzalloc(dev, size: mtd->writesize, GFP_KERNEL);
657 if (!host->dummy_buf)
658 return -ENOMEM;
659
660 chip->ecc.size = 512;
661 chip->ecc.hwctl = lpc32xx_ecc_enable;
662 chip->ecc.read_page_raw = lpc32xx_read_page;
663 chip->ecc.read_page = lpc32xx_read_page;
664 chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
665 chip->ecc.write_page = lpc32xx_write_page_lowlevel;
666 chip->ecc.write_oob = lpc32xx_write_oob;
667 chip->ecc.read_oob = lpc32xx_read_oob;
668 chip->ecc.strength = 4;
669 chip->ecc.bytes = 10;
670
671 mtd_set_ooblayout(mtd, ooblayout: &lpc32xx_ooblayout_ops);
672 host->mlcsubpages = mtd->writesize / 512;
673
674 return 0;
675}
676
677static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
678 .attach_chip = lpc32xx_nand_attach_chip,
679};
680
681/*
682 * Probe for NAND controller
683 */
684static int lpc32xx_nand_probe(struct platform_device *pdev)
685{
686 struct lpc32xx_nand_host *host;
687 struct mtd_info *mtd;
688 struct nand_chip *nand_chip;
689 struct resource *rc;
690 int res;
691
692 /* Allocate memory for the device structure (and zero it) */
693 host = devm_kzalloc(dev: &pdev->dev, size: sizeof(*host), GFP_KERNEL);
694 if (!host)
695 return -ENOMEM;
696
697 host->pdev = pdev;
698
699 host->io_base = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &rc);
700 if (IS_ERR(ptr: host->io_base))
701 return PTR_ERR(ptr: host->io_base);
702
703 host->io_base_phy = rc->start;
704
705 nand_chip = &host->nand_chip;
706 mtd = nand_to_mtd(chip: nand_chip);
707 if (pdev->dev.of_node)
708 host->ncfg = lpc32xx_parse_dt(dev: &pdev->dev);
709 if (!host->ncfg) {
710 dev_err(&pdev->dev,
711 "Missing or bad NAND config from device tree\n");
712 return -ENOENT;
713 }
714
715 /* Start with WP disabled, if available */
716 host->wp_gpio = gpiod_get_optional(dev: &pdev->dev, NULL, flags: GPIOD_OUT_LOW);
717 res = PTR_ERR_OR_ZERO(ptr: host->wp_gpio);
718 if (res) {
719 if (res != -EPROBE_DEFER)
720 dev_err(&pdev->dev, "WP GPIO is not available: %d\n",
721 res);
722 return res;
723 }
724
725 gpiod_set_consumer_name(desc: host->wp_gpio, name: "NAND WP");
726
727 host->pdata = dev_get_platdata(dev: &pdev->dev);
728
729 /* link the private data structures */
730 nand_set_controller_data(chip: nand_chip, priv: host);
731 nand_set_flash_node(chip: nand_chip, np: pdev->dev.of_node);
732 mtd->dev.parent = &pdev->dev;
733
734 /* Get NAND clock */
735 host->clk = clk_get(dev: &pdev->dev, NULL);
736 if (IS_ERR(ptr: host->clk)) {
737 dev_err(&pdev->dev, "Clock initialization failure\n");
738 res = -ENOENT;
739 goto free_gpio;
740 }
741 res = clk_prepare_enable(clk: host->clk);
742 if (res)
743 goto put_clk;
744
745 nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
746 nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
747 nand_chip->legacy.chip_delay = 25; /* us */
748 nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
749 nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
750
751 /* Init NAND controller */
752 lpc32xx_nand_setup(host);
753
754 platform_set_drvdata(pdev, data: host);
755
756 /* Initialize function pointers */
757 nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
758
759 nand_chip->options = NAND_NO_SUBPAGE_WRITE;
760 nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
761 nand_chip->bbt_td = &lpc32xx_nand_bbt;
762 nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
763
764 if (use_dma) {
765 res = lpc32xx_dma_setup(host);
766 if (res) {
767 res = -EIO;
768 goto unprepare_clk;
769 }
770 }
771
772 /* initially clear interrupt status */
773 readb(MLC_IRQ_SR(host->io_base));
774
775 init_completion(x: &host->comp_nand);
776 init_completion(x: &host->comp_controller);
777
778 host->irq = platform_get_irq(pdev, 0);
779 if (host->irq < 0) {
780 res = -EINVAL;
781 goto release_dma_chan;
782 }
783
784 if (request_irq(irq: host->irq, handler: &lpc3xxx_nand_irq,
785 IRQF_TRIGGER_HIGH, DRV_NAME, dev: host)) {
786 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
787 res = -ENXIO;
788 goto release_dma_chan;
789 }
790
791 /*
792 * Scan to find existence of the device and get the type of NAND device:
793 * SMALL block or LARGE block.
794 */
795 nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
796 res = nand_scan(chip: nand_chip, max_chips: 1);
797 if (res)
798 goto free_irq;
799
800 mtd->name = DRV_NAME;
801
802 res = mtd_device_register(mtd, host->ncfg->parts,
803 host->ncfg->num_parts);
804 if (res)
805 goto cleanup_nand;
806
807 return 0;
808
809cleanup_nand:
810 nand_cleanup(chip: nand_chip);
811free_irq:
812 free_irq(host->irq, host);
813release_dma_chan:
814 if (use_dma)
815 dma_release_channel(chan: host->dma_chan);
816unprepare_clk:
817 clk_disable_unprepare(clk: host->clk);
818put_clk:
819 clk_put(clk: host->clk);
820free_gpio:
821 lpc32xx_wp_enable(host);
822 gpiod_put(desc: host->wp_gpio);
823
824 return res;
825}
826
827/*
828 * Remove NAND device
829 */
830static void lpc32xx_nand_remove(struct platform_device *pdev)
831{
832 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
833 struct nand_chip *chip = &host->nand_chip;
834 int ret;
835
836 ret = mtd_device_unregister(master: nand_to_mtd(chip));
837 WARN_ON(ret);
838 nand_cleanup(chip);
839
840 free_irq(host->irq, host);
841 if (use_dma)
842 dma_release_channel(chan: host->dma_chan);
843
844 clk_disable_unprepare(clk: host->clk);
845 clk_put(clk: host->clk);
846
847 lpc32xx_wp_enable(host);
848 gpiod_put(desc: host->wp_gpio);
849}
850
851static int lpc32xx_nand_resume(struct platform_device *pdev)
852{
853 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
854 int ret;
855
856 /* Re-enable NAND clock */
857 ret = clk_prepare_enable(clk: host->clk);
858 if (ret)
859 return ret;
860
861 /* Fresh init of NAND controller */
862 lpc32xx_nand_setup(host);
863
864 /* Disable write protect */
865 lpc32xx_wp_disable(host);
866
867 return 0;
868}
869
870static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
871{
872 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
873
874 /* Enable write protect for safety */
875 lpc32xx_wp_enable(host);
876
877 /* Disable clock */
878 clk_disable_unprepare(clk: host->clk);
879 return 0;
880}
881
882static const struct of_device_id lpc32xx_nand_match[] = {
883 { .compatible = "nxp,lpc3220-mlc" },
884 { /* sentinel */ },
885};
886MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
887
888static struct platform_driver lpc32xx_nand_driver = {
889 .probe = lpc32xx_nand_probe,
890 .remove_new = lpc32xx_nand_remove,
891 .resume = pm_ptr(lpc32xx_nand_resume),
892 .suspend = pm_ptr(lpc32xx_nand_suspend),
893 .driver = {
894 .name = DRV_NAME,
895 .of_match_table = lpc32xx_nand_match,
896 },
897};
898
899module_platform_driver(lpc32xx_nand_driver);
900
901MODULE_LICENSE("GPL");
902MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
903MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
904

source code of linux/drivers/mtd/nand/raw/lpc32xx_mlc.c