1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) 2014-2015 Hisilicon Limited.
4 */
5
6#include <linux/clk.h>
7#include <linux/cpumask.h>
8#include <linux/etherdevice.h>
9#include <linux/if_vlan.h>
10#include <linux/interrupt.h>
11#include <linux/io.h>
12#include <linux/ip.h>
13#include <linux/ipv6.h>
14#include <linux/irq.h>
15#include <linux/module.h>
16#include <linux/phy.h>
17#include <linux/platform_device.h>
18#include <linux/skbuff.h>
19
20#include "hnae.h"
21#include "hns_enet.h"
22#include "hns_dsaf_mac.h"
23
24#define NIC_MAX_Q_PER_VF 16
25#define HNS_NIC_TX_TIMEOUT (5 * HZ)
26
27#define SERVICE_TIMER_HZ (1 * HZ)
28
29#define RCB_IRQ_NOT_INITED 0
30#define RCB_IRQ_INITED 1
31#define HNS_BUFFER_SIZE_2048 2048
32
33#define BD_MAX_SEND_SIZE 8191
34
35static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
36 int send_sz, dma_addr_t dma, int frag_end,
37 int buf_num, enum hns_desc_type type, int mtu)
38{
39 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
40 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
41 struct iphdr *iphdr;
42 struct ipv6hdr *ipv6hdr;
43 struct sk_buff *skb;
44 __be16 protocol;
45 u8 bn_pid = 0;
46 u8 rrcfv = 0;
47 u8 ip_offset = 0;
48 u8 tvsvsn = 0;
49 u16 mss = 0;
50 u8 l4_len = 0;
51 u16 paylen = 0;
52
53 desc_cb->priv = priv;
54 desc_cb->length = size;
55 desc_cb->dma = dma;
56 desc_cb->type = type;
57
58 desc->addr = cpu_to_le64(dma);
59 desc->tx.send_size = cpu_to_le16((u16)send_sz);
60
61 /* config bd buffer end */
62 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
63 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
64
65 /* fill port_id in the tx bd for sending management pkts */
66 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
67 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
68
69 if (type == DESC_TYPE_SKB) {
70 skb = (struct sk_buff *)priv;
71
72 if (skb->ip_summed == CHECKSUM_PARTIAL) {
73 skb_reset_mac_len(skb);
74 protocol = skb->protocol;
75 ip_offset = ETH_HLEN;
76
77 if (protocol == htons(ETH_P_8021Q)) {
78 ip_offset += VLAN_HLEN;
79 protocol = vlan_get_protocol(skb);
80 skb->protocol = protocol;
81 }
82
83 if (skb->protocol == htons(ETH_P_IP)) {
84 iphdr = ip_hdr(skb);
85 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
86 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
87
88 /* check for tcp/udp header */
89 if (iphdr->protocol == IPPROTO_TCP &&
90 skb_is_gso(skb)) {
91 hnae_set_bit(tvsvsn,
92 HNSV2_TXD_TSE_B, 1);
93 l4_len = tcp_hdrlen(skb);
94 mss = skb_shinfo(skb)->gso_size;
95 paylen = skb->len - skb_tcp_all_headers(skb);
96 }
97 } else if (skb->protocol == htons(ETH_P_IPV6)) {
98 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
99 ipv6hdr = ipv6_hdr(skb);
100 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
101
102 /* check for tcp/udp header */
103 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
104 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
105 hnae_set_bit(tvsvsn,
106 HNSV2_TXD_TSE_B, 1);
107 l4_len = tcp_hdrlen(skb);
108 mss = skb_shinfo(skb)->gso_size;
109 paylen = skb->len - skb_tcp_all_headers(skb);
110 }
111 }
112 desc->tx.ip_offset = ip_offset;
113 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
114 desc->tx.mss = cpu_to_le16(mss);
115 desc->tx.l4_len = l4_len;
116 desc->tx.paylen = cpu_to_le16(paylen);
117 }
118 }
119
120 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
121
122 desc->tx.bn_pid = bn_pid;
123 desc->tx.ra_ri_cs_fe_vld = rrcfv;
124
125 ring_ptr_move_fw(ring, next_to_use);
126}
127
128static void fill_v2_desc(struct hnae_ring *ring, void *priv,
129 int size, dma_addr_t dma, int frag_end,
130 int buf_num, enum hns_desc_type type, int mtu)
131{
132 fill_v2_desc_hw(ring, priv, size, send_sz: size, dma, frag_end,
133 buf_num, type, mtu);
134}
135
136static const struct acpi_device_id hns_enet_acpi_match[] = {
137 { "HISI00C1", 0 },
138 { "HISI00C2", 0 },
139 { },
140};
141MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142
143static void fill_desc(struct hnae_ring *ring, void *priv,
144 int size, dma_addr_t dma, int frag_end,
145 int buf_num, enum hns_desc_type type, int mtu)
146{
147 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149 struct sk_buff *skb;
150 __be16 protocol;
151 u32 ip_offset;
152 u32 asid_bufnum_pid = 0;
153 u32 flag_ipoffset = 0;
154
155 desc_cb->priv = priv;
156 desc_cb->length = size;
157 desc_cb->dma = dma;
158 desc_cb->type = type;
159
160 desc->addr = cpu_to_le64(dma);
161 desc->tx.send_size = cpu_to_le16((u16)size);
162
163 /*config bd buffer end */
164 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165
166 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167
168 if (type == DESC_TYPE_SKB) {
169 skb = (struct sk_buff *)priv;
170
171 if (skb->ip_summed == CHECKSUM_PARTIAL) {
172 protocol = skb->protocol;
173 ip_offset = ETH_HLEN;
174
175 /*if it is a SW VLAN check the next protocol*/
176 if (protocol == htons(ETH_P_8021Q)) {
177 ip_offset += VLAN_HLEN;
178 protocol = vlan_get_protocol(skb);
179 skb->protocol = protocol;
180 }
181
182 if (skb->protocol == htons(ETH_P_IP)) {
183 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184 /* check for tcp/udp header */
185 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186
187 } else if (skb->protocol == htons(ETH_P_IPV6)) {
188 /* ipv6 has not l3 cs, check for L4 header */
189 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190 }
191
192 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193 }
194 }
195
196 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197
198 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200
201 ring_ptr_move_fw(ring, next_to_use);
202}
203
204static void unfill_desc(struct hnae_ring *ring)
205{
206 ring_ptr_move_bw(ring, next_to_use);
207}
208
209static int hns_nic_maybe_stop_tx(
210 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211{
212 struct sk_buff *skb = *out_skb;
213 struct sk_buff *new_skb = NULL;
214 int buf_num;
215
216 /* no. of segments (plus a header) */
217 buf_num = skb_shinfo(skb)->nr_frags + 1;
218
219 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 if (ring_space(ring) < 1)
221 return -EBUSY;
222
223 new_skb = skb_copy(skb, GFP_ATOMIC);
224 if (!new_skb)
225 return -ENOMEM;
226
227 dev_kfree_skb_any(skb);
228 *out_skb = new_skb;
229 buf_num = 1;
230 } else if (buf_num > ring_space(ring)) {
231 return -EBUSY;
232 }
233
234 *bnum = buf_num;
235 return 0;
236}
237
238static int hns_nic_maybe_stop_tso(
239 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240{
241 int i;
242 int size;
243 int buf_num;
244 int frag_num;
245 struct sk_buff *skb = *out_skb;
246 struct sk_buff *new_skb = NULL;
247 skb_frag_t *frag;
248
249 size = skb_headlen(skb);
250 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251
252 frag_num = skb_shinfo(skb)->nr_frags;
253 for (i = 0; i < frag_num; i++) {
254 frag = &skb_shinfo(skb)->frags[i];
255 size = skb_frag_size(frag);
256 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257 }
258
259 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261 if (ring_space(ring) < buf_num)
262 return -EBUSY;
263 /* manual split the send packet */
264 new_skb = skb_copy(skb, GFP_ATOMIC);
265 if (!new_skb)
266 return -ENOMEM;
267 dev_kfree_skb_any(skb);
268 *out_skb = new_skb;
269
270 } else if (ring_space(ring) < buf_num) {
271 return -EBUSY;
272 }
273
274 *bnum = buf_num;
275 return 0;
276}
277
278static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279 int size, dma_addr_t dma, int frag_end,
280 int buf_num, enum hns_desc_type type, int mtu)
281{
282 int frag_buf_num;
283 int sizeoflast;
284 int k;
285
286 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287 sizeoflast = size % BD_MAX_SEND_SIZE;
288 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289
290 /* when the frag size is bigger than hardware, split this frag */
291 for (k = 0; k < frag_buf_num; k++)
292 fill_v2_desc_hw(ring, priv, size: k == 0 ? size : 0,
293 send_sz: (k == frag_buf_num - 1) ?
294 sizeoflast : BD_MAX_SEND_SIZE,
295 dma: dma + BD_MAX_SEND_SIZE * k,
296 frag_end: frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297 buf_num,
298 type: (type == DESC_TYPE_SKB && !k) ?
299 DESC_TYPE_SKB : DESC_TYPE_PAGE,
300 mtu);
301}
302
303netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
304 struct sk_buff *skb,
305 struct hns_nic_ring_data *ring_data)
306{
307 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
308 struct hnae_ring *ring = ring_data->ring;
309 struct device *dev = ring_to_dev(ring);
310 struct netdev_queue *dev_queue;
311 skb_frag_t *frag;
312 int buf_num;
313 int seg_num;
314 dma_addr_t dma;
315 int size, next_to_use;
316 int i;
317
318 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319 case -EBUSY:
320 ring->stats.tx_busy++;
321 goto out_net_tx_busy;
322 case -ENOMEM:
323 ring->stats.sw_err_cnt++;
324 netdev_err(dev: ndev, format: "no memory to xmit!\n");
325 goto out_err_tx_ok;
326 default:
327 break;
328 }
329
330 /* no. of segments (plus a header) */
331 seg_num = skb_shinfo(skb)->nr_frags + 1;
332 next_to_use = ring->next_to_use;
333
334 /* fill the first part */
335 size = skb_headlen(skb);
336 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337 if (dma_mapping_error(dev, dma_addr: dma)) {
338 netdev_err(dev: ndev, format: "TX head DMA map failed\n");
339 ring->stats.sw_err_cnt++;
340 goto out_err_tx_ok;
341 }
342 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343 buf_num, DESC_TYPE_SKB, ndev->mtu);
344
345 /* fill the fragments */
346 for (i = 1; i < seg_num; i++) {
347 frag = &skb_shinfo(skb)->frags[i - 1];
348 size = skb_frag_size(frag);
349 dma = skb_frag_dma_map(dev, frag, offset: 0, size, dir: DMA_TO_DEVICE);
350 if (dma_mapping_error(dev, dma_addr: dma)) {
351 netdev_err(dev: ndev, format: "TX frag(%d) DMA map failed\n", i);
352 ring->stats.sw_err_cnt++;
353 goto out_map_frag_fail;
354 }
355 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356 seg_num - 1 == i ? 1 : 0, buf_num,
357 DESC_TYPE_PAGE, ndev->mtu);
358 }
359
360 /*complete translate all packets*/
361 dev_queue = netdev_get_tx_queue(dev: ndev, index: skb->queue_mapping);
362 netdev_tx_sent_queue(dev_queue, bytes: skb->len);
363
364 netif_trans_update(dev: ndev);
365 ndev->stats.tx_bytes += skb->len;
366 ndev->stats.tx_packets++;
367
368 wmb(); /* commit all data before submit */
369 assert(skb->queue_mapping < priv->ae_handle->q_num);
370 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
371
372 return NETDEV_TX_OK;
373
374out_map_frag_fail:
375
376 while (ring->next_to_use != next_to_use) {
377 unfill_desc(ring);
378 if (ring->next_to_use != next_to_use)
379 dma_unmap_page(dev,
380 ring->desc_cb[ring->next_to_use].dma,
381 ring->desc_cb[ring->next_to_use].length,
382 DMA_TO_DEVICE);
383 else
384 dma_unmap_single(dev,
385 ring->desc_cb[next_to_use].dma,
386 ring->desc_cb[next_to_use].length,
387 DMA_TO_DEVICE);
388 }
389
390out_err_tx_ok:
391
392 dev_kfree_skb_any(skb);
393 return NETDEV_TX_OK;
394
395out_net_tx_busy:
396
397 netif_stop_subqueue(dev: ndev, queue_index: skb->queue_mapping);
398
399 /* Herbert's original patch had:
400 * smp_mb__after_netif_stop_queue();
401 * but since that doesn't exist yet, just open code it.
402 */
403 smp_mb();
404 return NETDEV_TX_BUSY;
405}
406
407static void hns_nic_reuse_page(struct sk_buff *skb, int i,
408 struct hnae_ring *ring, int pull_len,
409 struct hnae_desc_cb *desc_cb)
410{
411 struct hnae_desc *desc;
412 u32 truesize;
413 int size;
414 int last_offset;
415 bool twobufs;
416
417 twobufs = ((PAGE_SIZE < 8192) &&
418 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
419
420 desc = &ring->desc[ring->next_to_clean];
421 size = le16_to_cpu(desc->rx.size);
422
423 if (twobufs) {
424 truesize = hnae_buf_size(ring);
425 } else {
426 truesize = ALIGN(size, L1_CACHE_BYTES);
427 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
428 }
429
430 skb_add_rx_frag(skb, i, page: desc_cb->priv, off: desc_cb->page_offset + pull_len,
431 size: size - pull_len, truesize);
432
433 /* avoid re-using remote pages,flag default unreuse */
434 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
435 return;
436
437 if (twobufs) {
438 /* if we are only owner of page we can reuse it */
439 if (likely(page_count(desc_cb->priv) == 1)) {
440 /* flip page offset to other buffer */
441 desc_cb->page_offset ^= truesize;
442
443 desc_cb->reuse_flag = 1;
444 /* bump ref count on page before it is given*/
445 get_page(page: desc_cb->priv);
446 }
447 return;
448 }
449
450 /* move offset up to the next cache line */
451 desc_cb->page_offset += truesize;
452
453 if (desc_cb->page_offset <= last_offset) {
454 desc_cb->reuse_flag = 1;
455 /* bump ref count on page before it is given*/
456 get_page(page: desc_cb->priv);
457 }
458}
459
460static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
461{
462 *out_bnum = hnae_get_field(bnum_flag,
463 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
464}
465
466static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
467{
468 *out_bnum = hnae_get_field(bnum_flag,
469 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
470}
471
472static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
473 struct sk_buff *skb, u32 flag)
474{
475 struct net_device *netdev = ring_data->napi.dev;
476 u32 l3id;
477 u32 l4id;
478
479 /* check if RX checksum offload is enabled */
480 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
481 return;
482
483 /* In hardware, we only support checksum for the following protocols:
484 * 1) IPv4,
485 * 2) TCP(over IPv4 or IPv6),
486 * 3) UDP(over IPv4 or IPv6),
487 * 4) SCTP(over IPv4 or IPv6)
488 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
489 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
490 *
491 * Hardware limitation:
492 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
493 * Error" bit (which usually can be used to indicate whether checksum
494 * was calculated by the hardware and if there was any error encountered
495 * during checksum calculation).
496 *
497 * Software workaround:
498 * We do get info within the RX descriptor about the kind of L3/L4
499 * protocol coming in the packet and the error status. These errors
500 * might not just be checksum errors but could be related to version,
501 * length of IPv4, UDP, TCP etc.
502 * Because there is no-way of knowing if it is a L3/L4 error due to bad
503 * checksum or any other L3/L4 error, we will not (cannot) convey
504 * checksum status for such cases to upper stack and will not maintain
505 * the RX L3/L4 checksum counters as well.
506 */
507
508 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
509 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
510
511 /* check L3 protocol for which checksum is supported */
512 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
513 return;
514
515 /* check for any(not just checksum)flagged L3 protocol errors */
516 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
517 return;
518
519 /* we do not support checksum of fragmented packets */
520 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
521 return;
522
523 /* check L4 protocol for which checksum is supported */
524 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
525 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
526 (l4id != HNS_RX_FLAG_L4ID_SCTP))
527 return;
528
529 /* check for any(not just checksum)flagged L4 protocol errors */
530 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
531 return;
532
533 /* now, this has to be a packet with valid RX checksum */
534 skb->ip_summed = CHECKSUM_UNNECESSARY;
535}
536
537static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
538 struct sk_buff **out_skb, int *out_bnum)
539{
540 struct hnae_ring *ring = ring_data->ring;
541 struct net_device *ndev = ring_data->napi.dev;
542 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
543 struct sk_buff *skb;
544 struct hnae_desc *desc;
545 struct hnae_desc_cb *desc_cb;
546 unsigned char *va;
547 int bnum, length, i;
548 int pull_len;
549 u32 bnum_flag;
550
551 desc = &ring->desc[ring->next_to_clean];
552 desc_cb = &ring->desc_cb[ring->next_to_clean];
553
554 prefetch(desc);
555
556 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
557
558 /* prefetch first cache line of first page */
559 net_prefetch(p: va);
560
561 skb = *out_skb = napi_alloc_skb(napi: &ring_data->napi,
562 HNS_RX_HEAD_SIZE);
563 if (unlikely(!skb)) {
564 ring->stats.sw_err_cnt++;
565 return -ENOMEM;
566 }
567
568 prefetchw(x: skb->data);
569 length = le16_to_cpu(desc->rx.pkt_len);
570 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
571 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
572 *out_bnum = bnum;
573
574 if (length <= HNS_RX_HEAD_SIZE) {
575 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
576
577 /* we can reuse buffer as-is, just make sure it is local */
578 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
579 desc_cb->reuse_flag = 1;
580 else /* this page cannot be reused so discard it */
581 put_page(page: desc_cb->priv);
582
583 ring_ptr_move_fw(ring, next_to_clean);
584
585 if (unlikely(bnum != 1)) { /* check err*/
586 *out_bnum = 1;
587 goto out_bnum_err;
588 }
589 } else {
590 ring->stats.seg_pkt_cnt++;
591
592 pull_len = eth_get_headlen(dev: ndev, data: va, HNS_RX_HEAD_SIZE);
593 memcpy(__skb_put(skb, pull_len), va,
594 ALIGN(pull_len, sizeof(long)));
595
596 hns_nic_reuse_page(skb, i: 0, ring, pull_len, desc_cb);
597 ring_ptr_move_fw(ring, next_to_clean);
598
599 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
600 *out_bnum = 1;
601 goto out_bnum_err;
602 }
603 for (i = 1; i < bnum; i++) {
604 desc = &ring->desc[ring->next_to_clean];
605 desc_cb = &ring->desc_cb[ring->next_to_clean];
606
607 hns_nic_reuse_page(skb, i, ring, pull_len: 0, desc_cb);
608 ring_ptr_move_fw(ring, next_to_clean);
609 }
610 }
611
612 /* check except process, free skb and jump the desc */
613 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
614out_bnum_err:
615 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
616 netdev_err(dev: ndev, format: "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
617 bnum, ring->max_desc_num_per_pkt,
618 length, (int)MAX_SKB_FRAGS,
619 ((u64 *)desc)[0], ((u64 *)desc)[1]);
620 ring->stats.err_bd_num++;
621 dev_kfree_skb_any(skb);
622 return -EDOM;
623 }
624
625 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
626
627 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
628 netdev_err(dev: ndev, format: "no valid bd,%016llx,%016llx\n",
629 ((u64 *)desc)[0], ((u64 *)desc)[1]);
630 ring->stats.non_vld_descs++;
631 dev_kfree_skb_any(skb);
632 return -EINVAL;
633 }
634
635 if (unlikely((!desc->rx.pkt_len) ||
636 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
637 ring->stats.err_pkt_len++;
638 dev_kfree_skb_any(skb);
639 return -EFAULT;
640 }
641
642 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
643 ring->stats.l2_err++;
644 dev_kfree_skb_any(skb);
645 return -EFAULT;
646 }
647
648 ring->stats.rx_pkts++;
649 ring->stats.rx_bytes += skb->len;
650
651 /* indicate to upper stack if our hardware has already calculated
652 * the RX checksum
653 */
654 hns_nic_rx_checksum(ring_data, skb, flag: bnum_flag);
655
656 return 0;
657}
658
659static void
660hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
661{
662 int i, ret;
663 struct hnae_desc_cb res_cbs;
664 struct hnae_desc_cb *desc_cb;
665 struct hnae_ring *ring = ring_data->ring;
666 struct net_device *ndev = ring_data->napi.dev;
667
668 for (i = 0; i < cleand_count; i++) {
669 desc_cb = &ring->desc_cb[ring->next_to_use];
670 if (desc_cb->reuse_flag) {
671 ring->stats.reuse_pg_cnt++;
672 hnae_reuse_buffer(ring, i: ring->next_to_use);
673 } else {
674 ret = hnae_reserve_buffer_map(ring, cb: &res_cbs);
675 if (ret) {
676 ring->stats.sw_err_cnt++;
677 netdev_err(dev: ndev, format: "hnae reserve buffer map failed.\n");
678 break;
679 }
680 hnae_replace_buffer(ring, i: ring->next_to_use, res_cb: &res_cbs);
681 }
682
683 ring_ptr_move_fw(ring, next_to_use);
684 }
685
686 wmb(); /* make all data has been write before submit */
687 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
688}
689
690/* return error number for error or number of desc left to take
691 */
692static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
693 struct sk_buff *skb)
694{
695 struct net_device *ndev = ring_data->napi.dev;
696
697 skb->protocol = eth_type_trans(skb, dev: ndev);
698 napi_gro_receive(napi: &ring_data->napi, skb);
699}
700
701static int hns_desc_unused(struct hnae_ring *ring)
702{
703 int ntc = ring->next_to_clean;
704 int ntu = ring->next_to_use;
705
706 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
707}
708
709#define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */
710#define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */
711
712#define HNS_COAL_BDNUM 3
713
714static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
715{
716 bool coal_enable = ring->q->handle->coal_adapt_en;
717
718 if (coal_enable &&
719 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
720 return HNS_COAL_BDNUM;
721 else
722 return 0;
723}
724
725static void hns_update_rx_rate(struct hnae_ring *ring)
726{
727 bool coal_enable = ring->q->handle->coal_adapt_en;
728 u32 time_passed_ms;
729 u64 total_bytes;
730
731 if (!coal_enable ||
732 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
733 return;
734
735 /* ring->stats.rx_bytes overflowed */
736 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
737 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
738 ring->coal_last_jiffies = jiffies;
739 return;
740 }
741
742 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
743 time_passed_ms = jiffies_to_msecs(j: jiffies - ring->coal_last_jiffies);
744 do_div(total_bytes, time_passed_ms);
745 ring->coal_rx_rate = total_bytes >> 10;
746
747 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
748 ring->coal_last_jiffies = jiffies;
749}
750
751/**
752 * smooth_alg - smoothing algrithm for adjusting coalesce parameter
753 * @new_param: new value
754 * @old_param: old value
755 **/
756static u32 smooth_alg(u32 new_param, u32 old_param)
757{
758 u32 gap = (new_param > old_param) ? new_param - old_param
759 : old_param - new_param;
760
761 if (gap > 8)
762 gap >>= 3;
763
764 if (new_param > old_param)
765 return old_param + gap;
766 else
767 return old_param - gap;
768}
769
770/**
771 * hns_nic_adpt_coalesce - self adapte coalesce according to rx rate
772 * @ring_data: pointer to hns_nic_ring_data
773 **/
774static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
775{
776 struct hnae_ring *ring = ring_data->ring;
777 struct hnae_handle *handle = ring->q->handle;
778 u32 new_coal_param, old_coal_param = ring->coal_param;
779
780 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
781 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
782 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
783 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
784 else
785 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
786
787 if (new_coal_param == old_coal_param &&
788 new_coal_param == handle->coal_param)
789 return;
790
791 new_coal_param = smooth_alg(new_param: new_coal_param, old_param: old_coal_param);
792 ring->coal_param = new_coal_param;
793
794 /**
795 * Because all ring in one port has one coalesce param, when one ring
796 * calculate its own coalesce param, it cannot write to hardware at
797 * once. There are three conditions as follows:
798 * 1. current ring's coalesce param is larger than the hardware.
799 * 2. or ring which adapt last time can change again.
800 * 3. timeout.
801 */
802 if (new_coal_param == handle->coal_param) {
803 handle->coal_last_jiffies = jiffies;
804 handle->coal_ring_idx = ring_data->queue_index;
805 } else if (new_coal_param > handle->coal_param ||
806 handle->coal_ring_idx == ring_data->queue_index ||
807 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
808 handle->dev->ops->set_coalesce_usecs(handle,
809 new_coal_param);
810 handle->dev->ops->set_coalesce_frames(handle,
811 1, new_coal_param);
812 handle->coal_param = new_coal_param;
813 handle->coal_ring_idx = ring_data->queue_index;
814 handle->coal_last_jiffies = jiffies;
815 }
816}
817
818static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
819 int budget, void *v)
820{
821 struct hnae_ring *ring = ring_data->ring;
822 struct sk_buff *skb;
823 int num, bnum;
824#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
825 int recv_pkts, recv_bds, clean_count, err;
826 int unused_count = hns_desc_unused(ring);
827
828 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
829 rmb(); /* make sure num taken effect before the other data is touched */
830
831 recv_pkts = 0, recv_bds = 0, clean_count = 0;
832 num -= unused_count;
833
834 while (recv_pkts < budget && recv_bds < num) {
835 /* reuse or realloc buffers */
836 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
837 hns_nic_alloc_rx_buffers(ring_data,
838 cleand_count: clean_count + unused_count);
839 clean_count = 0;
840 unused_count = hns_desc_unused(ring);
841 }
842
843 /* poll one pkt */
844 err = hns_nic_poll_rx_skb(ring_data, out_skb: &skb, out_bnum: &bnum);
845 if (unlikely(!skb)) /* this fault cannot be repaired */
846 goto out;
847
848 recv_bds += bnum;
849 clean_count += bnum;
850 if (unlikely(err)) { /* do jump the err */
851 recv_pkts++;
852 continue;
853 }
854
855 /* do update ip stack process*/
856 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
857 ring_data, skb);
858 recv_pkts++;
859 }
860
861out:
862 /* make all data has been write before submit */
863 if (clean_count + unused_count > 0)
864 hns_nic_alloc_rx_buffers(ring_data,
865 cleand_count: clean_count + unused_count);
866
867 return recv_pkts;
868}
869
870static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
871{
872 struct hnae_ring *ring = ring_data->ring;
873 int num;
874 bool rx_stopped;
875
876 hns_update_rx_rate(ring);
877
878 /* for hardware bug fixed */
879 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
880 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
881
882 if (num <= hns_coal_rx_bdnum(ring)) {
883 if (ring->q->handle->coal_adapt_en)
884 hns_nic_adpt_coalesce(ring_data);
885
886 rx_stopped = true;
887 } else {
888 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
889 ring_data->ring, 1);
890
891 rx_stopped = false;
892 }
893
894 return rx_stopped;
895}
896
897static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
898{
899 struct hnae_ring *ring = ring_data->ring;
900 int num;
901
902 hns_update_rx_rate(ring);
903 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
904
905 if (num <= hns_coal_rx_bdnum(ring)) {
906 if (ring->q->handle->coal_adapt_en)
907 hns_nic_adpt_coalesce(ring_data);
908
909 return true;
910 }
911
912 return false;
913}
914
915static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
916 int *bytes, int *pkts)
917{
918 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
919
920 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
921 (*bytes) += desc_cb->length;
922 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
923 hnae_free_buffer_detach(ring, i: ring->next_to_clean);
924
925 ring_ptr_move_fw(ring, next_to_clean);
926}
927
928static int is_valid_clean_head(struct hnae_ring *ring, int h)
929{
930 int u = ring->next_to_use;
931 int c = ring->next_to_clean;
932
933 if (unlikely(h > ring->desc_num))
934 return 0;
935
936 assert(u > 0 && u < ring->desc_num);
937 assert(c > 0 && c < ring->desc_num);
938 assert(u != c && h != c); /* must be checked before call this func */
939
940 return u > c ? (h > c && h <= u) : (h > c || h <= u);
941}
942
943/* reclaim all desc in one budget
944 * return error or number of desc left
945 */
946static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
947 int budget, void *v)
948{
949 struct hnae_ring *ring = ring_data->ring;
950 struct net_device *ndev = ring_data->napi.dev;
951 struct netdev_queue *dev_queue;
952 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
953 int head;
954 int bytes, pkts;
955
956 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
957 rmb(); /* make sure head is ready before touch any data */
958
959 if (is_ring_empty(ring) || head == ring->next_to_clean)
960 return 0; /* no data to poll */
961
962 if (!is_valid_clean_head(ring, h: head)) {
963 netdev_err(dev: ndev, format: "wrong head (%d, %d-%d)\n", head,
964 ring->next_to_use, ring->next_to_clean);
965 ring->stats.io_err_cnt++;
966 return -EIO;
967 }
968
969 bytes = 0;
970 pkts = 0;
971 while (head != ring->next_to_clean) {
972 hns_nic_reclaim_one_desc(ring, bytes: &bytes, pkts: &pkts);
973 /* issue prefetch for next Tx descriptor */
974 prefetch(&ring->desc_cb[ring->next_to_clean]);
975 }
976 /* update tx ring statistics. */
977 ring->stats.tx_pkts += pkts;
978 ring->stats.tx_bytes += bytes;
979
980 dev_queue = netdev_get_tx_queue(dev: ndev, index: ring_data->queue_index);
981 netdev_tx_completed_queue(dev_queue, pkts, bytes);
982
983 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
984 netif_carrier_on(dev: ndev);
985
986 if (unlikely(pkts && netif_carrier_ok(ndev) &&
987 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
988 /* Make sure that anybody stopping the queue after this
989 * sees the new next_to_clean.
990 */
991 smp_mb();
992 if (netif_tx_queue_stopped(dev_queue) &&
993 !test_bit(NIC_STATE_DOWN, &priv->state)) {
994 netif_tx_wake_queue(dev_queue);
995 ring->stats.restart_queue++;
996 }
997 }
998 return 0;
999}
1000
1001static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1002{
1003 struct hnae_ring *ring = ring_data->ring;
1004 int head;
1005
1006 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1007
1008 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1009
1010 if (head != ring->next_to_clean) {
1011 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1012 ring_data->ring, 1);
1013
1014 return false;
1015 } else {
1016 return true;
1017 }
1018}
1019
1020static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1021{
1022 struct hnae_ring *ring = ring_data->ring;
1023 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1024
1025 if (head == ring->next_to_clean)
1026 return true;
1027 else
1028 return false;
1029}
1030
1031static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1032{
1033 struct hnae_ring *ring = ring_data->ring;
1034 struct net_device *ndev = ring_data->napi.dev;
1035 struct netdev_queue *dev_queue;
1036 int head;
1037 int bytes, pkts;
1038
1039 head = ring->next_to_use; /* ntu :soft setted ring position*/
1040 bytes = 0;
1041 pkts = 0;
1042 while (head != ring->next_to_clean)
1043 hns_nic_reclaim_one_desc(ring, bytes: &bytes, pkts: &pkts);
1044
1045 dev_queue = netdev_get_tx_queue(dev: ndev, index: ring_data->queue_index);
1046 netdev_tx_reset_queue(q: dev_queue);
1047}
1048
1049static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1050{
1051 int clean_complete = 0;
1052 struct hns_nic_ring_data *ring_data =
1053 container_of(napi, struct hns_nic_ring_data, napi);
1054 struct hnae_ring *ring = ring_data->ring;
1055
1056 clean_complete += ring_data->poll_one(
1057 ring_data, budget - clean_complete,
1058 ring_data->ex_process);
1059
1060 if (clean_complete < budget) {
1061 if (ring_data->fini_process(ring_data)) {
1062 napi_complete(n: napi);
1063 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1064 } else {
1065 return budget;
1066 }
1067 }
1068
1069 return clean_complete;
1070}
1071
1072static irqreturn_t hns_irq_handle(int irq, void *dev)
1073{
1074 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1075
1076 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1077 ring_data->ring, 1);
1078 napi_schedule(n: &ring_data->napi);
1079
1080 return IRQ_HANDLED;
1081}
1082
1083/**
1084 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1085 *@ndev: net device
1086 */
1087static void hns_nic_adjust_link(struct net_device *ndev)
1088{
1089 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1090 struct hnae_handle *h = priv->ae_handle;
1091 int state = 1;
1092
1093 /* If there is no phy, do not need adjust link */
1094 if (ndev->phydev) {
1095 /* When phy link down, do nothing */
1096 if (ndev->phydev->link == 0)
1097 return;
1098
1099 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1100 ndev->phydev->duplex)) {
1101 /* because Hi161X chip don't support to change gmac
1102 * speed and duplex with traffic. Delay 200ms to
1103 * make sure there is no more data in chip FIFO.
1104 */
1105 netif_carrier_off(dev: ndev);
1106 msleep(msecs: 200);
1107 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1108 ndev->phydev->duplex);
1109 netif_carrier_on(dev: ndev);
1110 }
1111 }
1112
1113 state = state && h->dev->ops->get_status(h);
1114
1115 if (state != priv->link) {
1116 if (state) {
1117 netif_carrier_on(dev: ndev);
1118 netif_tx_wake_all_queues(dev: ndev);
1119 netdev_info(dev: ndev, format: "link up\n");
1120 } else {
1121 netif_carrier_off(dev: ndev);
1122 netdev_info(dev: ndev, format: "link down\n");
1123 }
1124 priv->link = state;
1125 }
1126}
1127
1128/**
1129 *hns_nic_init_phy - init phy
1130 *@ndev: net device
1131 *@h: ae handle
1132 * Return 0 on success, negative on failure
1133 */
1134int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1135{
1136 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1137 struct phy_device *phy_dev = h->phy_dev;
1138 int ret;
1139
1140 if (!h->phy_dev)
1141 return 0;
1142
1143 ethtool_convert_legacy_u32_to_link_mode(dst: supported, legacy_u32: h->if_support);
1144 linkmode_and(dst: phy_dev->supported, a: phy_dev->supported, b: supported);
1145 linkmode_copy(dst: phy_dev->advertising, src: phy_dev->supported);
1146
1147 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1148 phy_dev->autoneg = false;
1149
1150 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1151 phy_dev->dev_flags = 0;
1152
1153 ret = phy_connect_direct(dev: ndev, phydev: phy_dev, handler: hns_nic_adjust_link,
1154 interface: h->phy_if);
1155 } else {
1156 ret = phy_attach_direct(dev: ndev, phydev: phy_dev, flags: 0, interface: h->phy_if);
1157 }
1158 if (unlikely(ret))
1159 return -ENODEV;
1160
1161 phy_attached_info(phydev: phy_dev);
1162
1163 return 0;
1164}
1165
1166static int hns_nic_ring_open(struct net_device *netdev, int idx)
1167{
1168 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1169 struct hnae_handle *h = priv->ae_handle;
1170
1171 napi_enable(n: &priv->ring_data[idx].napi);
1172
1173 enable_irq(irq: priv->ring_data[idx].ring->irq);
1174 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1175
1176 return 0;
1177}
1178
1179static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1180{
1181 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1182 struct hnae_handle *h = priv->ae_handle;
1183 struct sockaddr *mac_addr = p;
1184 int ret;
1185
1186 if (!mac_addr || !is_valid_ether_addr(addr: (const u8 *)mac_addr->sa_data))
1187 return -EADDRNOTAVAIL;
1188
1189 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1190 if (ret) {
1191 netdev_err(dev: ndev, format: "set_mac_address fail, ret=%d!\n", ret);
1192 return ret;
1193 }
1194
1195 eth_hw_addr_set(dev: ndev, addr: mac_addr->sa_data);
1196
1197 return 0;
1198}
1199
1200static void hns_nic_update_stats(struct net_device *netdev)
1201{
1202 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1203 struct hnae_handle *h = priv->ae_handle;
1204
1205 h->dev->ops->update_stats(h, &netdev->stats);
1206}
1207
1208/* set mac addr if it is configed. or leave it to the AE driver */
1209static void hns_init_mac_addr(struct net_device *ndev)
1210{
1211 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1212
1213 if (device_get_ethdev_address(dev: priv->dev, netdev: ndev)) {
1214 eth_hw_addr_random(dev: ndev);
1215 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1216 ndev->dev_addr);
1217 }
1218}
1219
1220static void hns_nic_ring_close(struct net_device *netdev, int idx)
1221{
1222 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1223 struct hnae_handle *h = priv->ae_handle;
1224
1225 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1226 disable_irq(irq: priv->ring_data[idx].ring->irq);
1227
1228 napi_disable(n: &priv->ring_data[idx].napi);
1229}
1230
1231static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1232 struct hnae_ring *ring, cpumask_t *mask)
1233{
1234 int cpu;
1235
1236 /* Different irq balance between 16core and 32core.
1237 * The cpu mask set by ring index according to the ring flag
1238 * which indicate the ring is tx or rx.
1239 */
1240 if (q_num == num_possible_cpus()) {
1241 if (is_tx_ring(ring))
1242 cpu = ring_idx;
1243 else
1244 cpu = ring_idx - q_num;
1245 } else {
1246 if (is_tx_ring(ring))
1247 cpu = ring_idx * 2;
1248 else
1249 cpu = (ring_idx - q_num) * 2 + 1;
1250 }
1251
1252 cpumask_clear(dstp: mask);
1253 cpumask_set_cpu(cpu, dstp: mask);
1254
1255 return cpu;
1256}
1257
1258static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1259{
1260 int i;
1261
1262 for (i = 0; i < q_num * 2; i++) {
1263 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1264 irq_set_affinity_hint(irq: priv->ring_data[i].ring->irq,
1265 NULL);
1266 free_irq(priv->ring_data[i].ring->irq,
1267 &priv->ring_data[i]);
1268 priv->ring_data[i].ring->irq_init_flag =
1269 RCB_IRQ_NOT_INITED;
1270 }
1271 }
1272}
1273
1274static int hns_nic_init_irq(struct hns_nic_priv *priv)
1275{
1276 struct hnae_handle *h = priv->ae_handle;
1277 struct hns_nic_ring_data *rd;
1278 int i;
1279 int ret;
1280 int cpu;
1281
1282 for (i = 0; i < h->q_num * 2; i++) {
1283 rd = &priv->ring_data[i];
1284
1285 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1286 break;
1287
1288 snprintf(buf: rd->ring->ring_name, RCB_RING_NAME_LEN,
1289 fmt: "%s-%s%d", priv->netdev->name,
1290 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1291
1292 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1293
1294 irq_set_status_flags(irq: rd->ring->irq, set: IRQ_NOAUTOEN);
1295 ret = request_irq(irq: rd->ring->irq,
1296 handler: hns_irq_handle, flags: 0, name: rd->ring->ring_name, dev: rd);
1297 if (ret) {
1298 netdev_err(dev: priv->netdev, format: "request irq(%d) fail\n",
1299 rd->ring->irq);
1300 goto out_free_irq;
1301 }
1302
1303 cpu = hns_nic_init_affinity_mask(q_num: h->q_num, ring_idx: i,
1304 ring: rd->ring, mask: &rd->mask);
1305
1306 if (cpu_online(cpu))
1307 irq_set_affinity_hint(irq: rd->ring->irq,
1308 m: &rd->mask);
1309
1310 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1311 }
1312
1313 return 0;
1314
1315out_free_irq:
1316 hns_nic_free_irq(q_num: h->q_num, priv);
1317 return ret;
1318}
1319
1320static int hns_nic_net_up(struct net_device *ndev)
1321{
1322 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1323 struct hnae_handle *h = priv->ae_handle;
1324 int i, j;
1325 int ret;
1326
1327 if (!test_bit(NIC_STATE_DOWN, &priv->state))
1328 return 0;
1329
1330 ret = hns_nic_init_irq(priv);
1331 if (ret != 0) {
1332 netdev_err(dev: ndev, format: "hns init irq failed! ret=%d\n", ret);
1333 return ret;
1334 }
1335
1336 for (i = 0; i < h->q_num * 2; i++) {
1337 ret = hns_nic_ring_open(netdev: ndev, idx: i);
1338 if (ret)
1339 goto out_has_some_queues;
1340 }
1341
1342 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1343 if (ret)
1344 goto out_set_mac_addr_err;
1345
1346 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1347 if (ret)
1348 goto out_start_err;
1349
1350 if (ndev->phydev)
1351 phy_start(phydev: ndev->phydev);
1352
1353 clear_bit(nr: NIC_STATE_DOWN, addr: &priv->state);
1354 (void)mod_timer(timer: &priv->service_timer, expires: jiffies + SERVICE_TIMER_HZ);
1355
1356 return 0;
1357
1358out_start_err:
1359 netif_stop_queue(dev: ndev);
1360out_set_mac_addr_err:
1361out_has_some_queues:
1362 for (j = i - 1; j >= 0; j--)
1363 hns_nic_ring_close(netdev: ndev, idx: j);
1364
1365 hns_nic_free_irq(q_num: h->q_num, priv);
1366 set_bit(nr: NIC_STATE_DOWN, addr: &priv->state);
1367
1368 return ret;
1369}
1370
1371static void hns_nic_net_down(struct net_device *ndev)
1372{
1373 int i;
1374 struct hnae_ae_ops *ops;
1375 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1376
1377 if (test_and_set_bit(nr: NIC_STATE_DOWN, addr: &priv->state))
1378 return;
1379
1380 (void)del_timer_sync(timer: &priv->service_timer);
1381 netif_tx_stop_all_queues(dev: ndev);
1382 netif_carrier_off(dev: ndev);
1383 netif_tx_disable(dev: ndev);
1384 priv->link = 0;
1385
1386 if (ndev->phydev)
1387 phy_stop(phydev: ndev->phydev);
1388
1389 ops = priv->ae_handle->dev->ops;
1390
1391 if (ops->stop)
1392 ops->stop(priv->ae_handle);
1393
1394 netif_tx_stop_all_queues(dev: ndev);
1395
1396 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1397 hns_nic_ring_close(netdev: ndev, idx: i);
1398 hns_nic_ring_close(netdev: ndev, idx: i + priv->ae_handle->q_num);
1399
1400 /* clean tx buffers*/
1401 hns_nic_tx_clr_all_bufs(ring_data: priv->ring_data + i);
1402 }
1403}
1404
1405void hns_nic_net_reset(struct net_device *ndev)
1406{
1407 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1408 struct hnae_handle *handle = priv->ae_handle;
1409
1410 while (test_and_set_bit(nr: NIC_STATE_RESETTING, addr: &priv->state))
1411 usleep_range(min: 1000, max: 2000);
1412
1413 (void)hnae_reinit_handle(handle);
1414
1415 clear_bit(nr: NIC_STATE_RESETTING, addr: &priv->state);
1416}
1417
1418void hns_nic_net_reinit(struct net_device *netdev)
1419{
1420 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1421 enum hnae_port_type type = priv->ae_handle->port_type;
1422
1423 netif_trans_update(dev: priv->netdev);
1424 while (test_and_set_bit(nr: NIC_STATE_REINITING, addr: &priv->state))
1425 usleep_range(min: 1000, max: 2000);
1426
1427 hns_nic_net_down(ndev: netdev);
1428
1429 /* Only do hns_nic_net_reset in debug mode
1430 * because of hardware limitation.
1431 */
1432 if (type == HNAE_PORT_DEBUG)
1433 hns_nic_net_reset(ndev: netdev);
1434
1435 (void)hns_nic_net_up(ndev: netdev);
1436 clear_bit(nr: NIC_STATE_REINITING, addr: &priv->state);
1437}
1438
1439static int hns_nic_net_open(struct net_device *ndev)
1440{
1441 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1442 struct hnae_handle *h = priv->ae_handle;
1443 int ret;
1444
1445 if (test_bit(NIC_STATE_TESTING, &priv->state))
1446 return -EBUSY;
1447
1448 priv->link = 0;
1449 netif_carrier_off(dev: ndev);
1450
1451 ret = netif_set_real_num_tx_queues(dev: ndev, txq: h->q_num);
1452 if (ret < 0) {
1453 netdev_err(dev: ndev, format: "netif_set_real_num_tx_queues fail, ret=%d!\n",
1454 ret);
1455 return ret;
1456 }
1457
1458 ret = netif_set_real_num_rx_queues(dev: ndev, rxq: h->q_num);
1459 if (ret < 0) {
1460 netdev_err(dev: ndev,
1461 format: "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1462 return ret;
1463 }
1464
1465 ret = hns_nic_net_up(ndev);
1466 if (ret) {
1467 netdev_err(dev: ndev,
1468 format: "hns net up fail, ret=%d!\n", ret);
1469 return ret;
1470 }
1471
1472 return 0;
1473}
1474
1475static int hns_nic_net_stop(struct net_device *ndev)
1476{
1477 hns_nic_net_down(ndev);
1478
1479 return 0;
1480}
1481
1482static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1483#define HNS_TX_TIMEO_LIMIT (40 * HZ)
1484static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1485{
1486 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1487
1488 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1489 ndev->watchdog_timeo *= 2;
1490 netdev_info(dev: ndev, format: "watchdog_timo changed to %d.\n",
1491 ndev->watchdog_timeo);
1492 } else {
1493 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1494 hns_tx_timeout_reset(priv);
1495 }
1496}
1497
1498static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1499 struct net_device *ndev)
1500{
1501 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1502
1503 assert(skb->queue_mapping < priv->ae_handle->q_num);
1504
1505 return hns_nic_net_xmit_hw(ndev, skb,
1506 ring_data: &tx_ring_data(priv, skb->queue_mapping));
1507}
1508
1509static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1510 struct sk_buff *skb)
1511{
1512 dev_kfree_skb_any(skb);
1513}
1514
1515#define HNS_LB_TX_RING 0
1516static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1517{
1518 struct sk_buff *skb;
1519 struct ethhdr *ethhdr;
1520 int frame_len;
1521
1522 /* allocate test skb */
1523 skb = alloc_skb(size: 64, GFP_KERNEL);
1524 if (!skb)
1525 return NULL;
1526
1527 skb_put(skb, len: 64);
1528 skb->dev = ndev;
1529 memset(skb->data, 0xFF, skb->len);
1530
1531 /* must be tcp/ip package */
1532 ethhdr = (struct ethhdr *)skb->data;
1533 ethhdr->h_proto = htons(ETH_P_IP);
1534
1535 frame_len = skb->len & (~1ul);
1536 memset(&skb->data[frame_len / 2], 0xAA,
1537 frame_len / 2 - 1);
1538
1539 skb->queue_mapping = HNS_LB_TX_RING;
1540
1541 return skb;
1542}
1543
1544static int hns_enable_serdes_lb(struct net_device *ndev)
1545{
1546 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1547 struct hnae_handle *h = priv->ae_handle;
1548 struct hnae_ae_ops *ops = h->dev->ops;
1549 int speed, duplex;
1550 int ret;
1551
1552 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1553 if (ret)
1554 return ret;
1555
1556 ret = ops->start ? ops->start(h) : 0;
1557 if (ret)
1558 return ret;
1559
1560 /* link adjust duplex*/
1561 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1562 speed = 1000;
1563 else
1564 speed = 10000;
1565 duplex = 1;
1566
1567 ops->adjust_link(h, speed, duplex);
1568
1569 /* wait h/w ready */
1570 mdelay(300);
1571
1572 return 0;
1573}
1574
1575static void hns_disable_serdes_lb(struct net_device *ndev)
1576{
1577 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1578 struct hnae_handle *h = priv->ae_handle;
1579 struct hnae_ae_ops *ops = h->dev->ops;
1580
1581 ops->stop(h);
1582 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1583}
1584
1585/**
1586 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1587 *function as follows:
1588 * 1. if one rx ring has found the page_offset is not equal 0 between head
1589 * and tail, it means that the chip fetched the wrong descs for the ring
1590 * which buffer size is 4096.
1591 * 2. we set the chip serdes loopback and set rss indirection to the ring.
1592 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1593 * receiving all packages and it will fetch new descriptions.
1594 * 4. recover to the original state.
1595 *
1596 *@ndev: net device
1597 */
1598static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1599{
1600 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1601 struct hnae_handle *h = priv->ae_handle;
1602 struct hnae_ae_ops *ops = h->dev->ops;
1603 struct hns_nic_ring_data *rd;
1604 struct hnae_ring *ring;
1605 struct sk_buff *skb;
1606 u32 *org_indir;
1607 u32 *cur_indir;
1608 int indir_size;
1609 int head, tail;
1610 int fetch_num;
1611 int i, j;
1612 bool found;
1613 int retry_times;
1614 int ret = 0;
1615
1616 /* alloc indir memory */
1617 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1618 org_indir = kzalloc(size: indir_size, GFP_KERNEL);
1619 if (!org_indir)
1620 return -ENOMEM;
1621
1622 /* store the original indirection */
1623 ops->get_rss(h, org_indir, NULL, NULL);
1624
1625 cur_indir = kzalloc(size: indir_size, GFP_KERNEL);
1626 if (!cur_indir) {
1627 ret = -ENOMEM;
1628 goto cur_indir_alloc_err;
1629 }
1630
1631 /* set loopback */
1632 if (hns_enable_serdes_lb(ndev)) {
1633 ret = -EINVAL;
1634 goto enable_serdes_lb_err;
1635 }
1636
1637 /* foreach every rx ring to clear fetch desc */
1638 for (i = 0; i < h->q_num; i++) {
1639 ring = &h->qs[i]->rx_ring;
1640 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1641 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1642 found = false;
1643 fetch_num = ring_dist(ring, begin: head, end: tail);
1644
1645 while (head != tail) {
1646 if (ring->desc_cb[head].page_offset != 0) {
1647 found = true;
1648 break;
1649 }
1650
1651 head++;
1652 if (head == ring->desc_num)
1653 head = 0;
1654 }
1655
1656 if (found) {
1657 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1658 cur_indir[j] = i;
1659 ops->set_rss(h, cur_indir, NULL, 0);
1660
1661 for (j = 0; j < fetch_num; j++) {
1662 /* alloc one skb and init */
1663 skb = hns_assemble_skb(ndev);
1664 if (!skb) {
1665 ret = -ENOMEM;
1666 goto out;
1667 }
1668 rd = &tx_ring_data(priv, skb->queue_mapping);
1669 hns_nic_net_xmit_hw(ndev, skb, ring_data: rd);
1670
1671 retry_times = 0;
1672 while (retry_times++ < 10) {
1673 mdelay(10);
1674 /* clean rx */
1675 rd = &rx_ring_data(priv, i);
1676 if (rd->poll_one(rd, fetch_num,
1677 hns_nic_drop_rx_fetch))
1678 break;
1679 }
1680
1681 retry_times = 0;
1682 while (retry_times++ < 10) {
1683 mdelay(10);
1684 /* clean tx ring 0 send package */
1685 rd = &tx_ring_data(priv,
1686 HNS_LB_TX_RING);
1687 if (rd->poll_one(rd, fetch_num, NULL))
1688 break;
1689 }
1690 }
1691 }
1692 }
1693
1694out:
1695 /* restore everything */
1696 ops->set_rss(h, org_indir, NULL, 0);
1697 hns_disable_serdes_lb(ndev);
1698enable_serdes_lb_err:
1699 kfree(objp: cur_indir);
1700cur_indir_alloc_err:
1701 kfree(objp: org_indir);
1702
1703 return ret;
1704}
1705
1706static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1707{
1708 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1709 struct hnae_handle *h = priv->ae_handle;
1710 bool if_running = netif_running(dev: ndev);
1711 int ret;
1712
1713 /* MTU < 68 is an error and causes problems on some kernels */
1714 if (new_mtu < 68)
1715 return -EINVAL;
1716
1717 /* MTU no change */
1718 if (new_mtu == ndev->mtu)
1719 return 0;
1720
1721 if (!h->dev->ops->set_mtu)
1722 return -ENOTSUPP;
1723
1724 if (if_running) {
1725 (void)hns_nic_net_stop(ndev);
1726 msleep(msecs: 100);
1727 }
1728
1729 if (priv->enet_ver != AE_VERSION_1 &&
1730 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1731 new_mtu > BD_SIZE_2048_MAX_MTU) {
1732 /* update desc */
1733 hnae_reinit_all_ring_desc(h);
1734
1735 /* clear the package which the chip has fetched */
1736 ret = hns_nic_clear_all_rx_fetch(ndev);
1737
1738 /* the page offset must be consist with desc */
1739 hnae_reinit_all_ring_page_off(h);
1740
1741 if (ret) {
1742 netdev_err(dev: ndev, format: "clear the fetched desc fail\n");
1743 goto out;
1744 }
1745 }
1746
1747 ret = h->dev->ops->set_mtu(h, new_mtu);
1748 if (ret) {
1749 netdev_err(dev: ndev, format: "set mtu fail, return value %d\n",
1750 ret);
1751 goto out;
1752 }
1753
1754 /* finally, set new mtu to netdevice */
1755 ndev->mtu = new_mtu;
1756
1757out:
1758 if (if_running) {
1759 if (hns_nic_net_open(ndev)) {
1760 netdev_err(dev: ndev, format: "hns net open fail\n");
1761 ret = -EINVAL;
1762 }
1763 }
1764
1765 return ret;
1766}
1767
1768static int hns_nic_set_features(struct net_device *netdev,
1769 netdev_features_t features)
1770{
1771 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1772
1773 switch (priv->enet_ver) {
1774 case AE_VERSION_1:
1775 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1776 netdev_info(dev: netdev, format: "enet v1 do not support tso!\n");
1777 break;
1778 default:
1779 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1780 priv->ops.fill_desc = fill_tso_desc;
1781 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1782 /* The chip only support 7*4096 */
1783 netif_set_tso_max_size(dev: netdev, size: 7 * 4096);
1784 } else {
1785 priv->ops.fill_desc = fill_v2_desc;
1786 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1787 }
1788 break;
1789 }
1790 netdev->features = features;
1791 return 0;
1792}
1793
1794static netdev_features_t hns_nic_fix_features(
1795 struct net_device *netdev, netdev_features_t features)
1796{
1797 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1798
1799 switch (priv->enet_ver) {
1800 case AE_VERSION_1:
1801 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1802 NETIF_F_HW_VLAN_CTAG_FILTER);
1803 break;
1804 default:
1805 break;
1806 }
1807 return features;
1808}
1809
1810static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1811{
1812 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1813 struct hnae_handle *h = priv->ae_handle;
1814
1815 if (h->dev->ops->add_uc_addr)
1816 return h->dev->ops->add_uc_addr(h, addr);
1817
1818 return 0;
1819}
1820
1821static int hns_nic_uc_unsync(struct net_device *netdev,
1822 const unsigned char *addr)
1823{
1824 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1825 struct hnae_handle *h = priv->ae_handle;
1826
1827 if (h->dev->ops->rm_uc_addr)
1828 return h->dev->ops->rm_uc_addr(h, addr);
1829
1830 return 0;
1831}
1832
1833/**
1834 * hns_set_multicast_list - set mutl mac address
1835 * @ndev: net device
1836 *
1837 * return void
1838 */
1839static void hns_set_multicast_list(struct net_device *ndev)
1840{
1841 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1842 struct hnae_handle *h = priv->ae_handle;
1843 struct netdev_hw_addr *ha = NULL;
1844
1845 if (!h) {
1846 netdev_err(dev: ndev, format: "hnae handle is null\n");
1847 return;
1848 }
1849
1850 if (h->dev->ops->clr_mc_addr)
1851 if (h->dev->ops->clr_mc_addr(h))
1852 netdev_err(dev: ndev, format: "clear multicast address fail\n");
1853
1854 if (h->dev->ops->set_mc_addr) {
1855 netdev_for_each_mc_addr(ha, ndev)
1856 if (h->dev->ops->set_mc_addr(h, ha->addr))
1857 netdev_err(dev: ndev, format: "set multicast fail\n");
1858 }
1859}
1860
1861static void hns_nic_set_rx_mode(struct net_device *ndev)
1862{
1863 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1864 struct hnae_handle *h = priv->ae_handle;
1865
1866 if (h->dev->ops->set_promisc_mode) {
1867 if (ndev->flags & IFF_PROMISC)
1868 h->dev->ops->set_promisc_mode(h, 1);
1869 else
1870 h->dev->ops->set_promisc_mode(h, 0);
1871 }
1872
1873 hns_set_multicast_list(ndev);
1874
1875 if (__dev_uc_sync(dev: ndev, sync: hns_nic_uc_sync, unsync: hns_nic_uc_unsync))
1876 netdev_err(dev: ndev, format: "sync uc address fail\n");
1877}
1878
1879static void hns_nic_get_stats64(struct net_device *ndev,
1880 struct rtnl_link_stats64 *stats)
1881{
1882 int idx;
1883 u64 tx_bytes = 0;
1884 u64 rx_bytes = 0;
1885 u64 tx_pkts = 0;
1886 u64 rx_pkts = 0;
1887 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1888 struct hnae_handle *h = priv->ae_handle;
1889
1890 for (idx = 0; idx < h->q_num; idx++) {
1891 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1892 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1893 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1894 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1895 }
1896
1897 stats->tx_bytes = tx_bytes;
1898 stats->tx_packets = tx_pkts;
1899 stats->rx_bytes = rx_bytes;
1900 stats->rx_packets = rx_pkts;
1901
1902 stats->rx_errors = ndev->stats.rx_errors;
1903 stats->multicast = ndev->stats.multicast;
1904 stats->rx_length_errors = ndev->stats.rx_length_errors;
1905 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1906 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1907
1908 stats->tx_errors = ndev->stats.tx_errors;
1909 stats->rx_dropped = ndev->stats.rx_dropped;
1910 stats->tx_dropped = ndev->stats.tx_dropped;
1911 stats->collisions = ndev->stats.collisions;
1912 stats->rx_over_errors = ndev->stats.rx_over_errors;
1913 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1914 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1915 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1916 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1917 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1918 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1919 stats->tx_window_errors = ndev->stats.tx_window_errors;
1920 stats->rx_compressed = ndev->stats.rx_compressed;
1921 stats->tx_compressed = ndev->stats.tx_compressed;
1922}
1923
1924static u16
1925hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1926 struct net_device *sb_dev)
1927{
1928 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1929 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
1930
1931 /* fix hardware broadcast/multicast packets queue loopback */
1932 if (!AE_IS_VER1(priv->enet_ver) &&
1933 is_multicast_ether_addr(addr: eth_hdr->h_dest))
1934 return 0;
1935 else
1936 return netdev_pick_tx(dev: ndev, skb, NULL);
1937}
1938
1939static const struct net_device_ops hns_nic_netdev_ops = {
1940 .ndo_open = hns_nic_net_open,
1941 .ndo_stop = hns_nic_net_stop,
1942 .ndo_start_xmit = hns_nic_net_xmit,
1943 .ndo_tx_timeout = hns_nic_net_timeout,
1944 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1945 .ndo_change_mtu = hns_nic_change_mtu,
1946 .ndo_eth_ioctl = phy_do_ioctl_running,
1947 .ndo_set_features = hns_nic_set_features,
1948 .ndo_fix_features = hns_nic_fix_features,
1949 .ndo_get_stats64 = hns_nic_get_stats64,
1950 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1951 .ndo_select_queue = hns_nic_select_queue,
1952};
1953
1954static void hns_nic_update_link_status(struct net_device *netdev)
1955{
1956 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
1957
1958 struct hnae_handle *h = priv->ae_handle;
1959
1960 if (h->phy_dev) {
1961 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1962 return;
1963
1964 (void)genphy_read_status(phydev: h->phy_dev);
1965 }
1966 hns_nic_adjust_link(ndev: netdev);
1967}
1968
1969/* for dumping key regs*/
1970static void hns_nic_dump(struct hns_nic_priv *priv)
1971{
1972 struct hnae_handle *h = priv->ae_handle;
1973 struct hnae_ae_ops *ops = h->dev->ops;
1974 u32 *data, reg_num, i;
1975
1976 if (ops->get_regs_len && ops->get_regs) {
1977 reg_num = ops->get_regs_len(priv->ae_handle);
1978 reg_num = (reg_num + 3ul) & ~3ul;
1979 data = kcalloc(n: reg_num, size: sizeof(u32), GFP_KERNEL);
1980 if (data) {
1981 ops->get_regs(priv->ae_handle, data);
1982 for (i = 0; i < reg_num; i += 4)
1983 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1984 i, data[i], data[i + 1],
1985 data[i + 2], data[i + 3]);
1986 kfree(objp: data);
1987 }
1988 }
1989
1990 for (i = 0; i < h->q_num; i++) {
1991 pr_info("tx_queue%d_next_to_clean:%d\n",
1992 i, h->qs[i]->tx_ring.next_to_clean);
1993 pr_info("tx_queue%d_next_to_use:%d\n",
1994 i, h->qs[i]->tx_ring.next_to_use);
1995 pr_info("rx_queue%d_next_to_clean:%d\n",
1996 i, h->qs[i]->rx_ring.next_to_clean);
1997 pr_info("rx_queue%d_next_to_use:%d\n",
1998 i, h->qs[i]->rx_ring.next_to_use);
1999 }
2000}
2001
2002/* for resetting subtask */
2003static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2004{
2005 enum hnae_port_type type = priv->ae_handle->port_type;
2006
2007 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2008 return;
2009 clear_bit(nr: NIC_STATE2_RESET_REQUESTED, addr: &priv->state);
2010
2011 /* If we're already down, removing or resetting, just bail */
2012 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2013 test_bit(NIC_STATE_REMOVING, &priv->state) ||
2014 test_bit(NIC_STATE_RESETTING, &priv->state))
2015 return;
2016
2017 hns_nic_dump(priv);
2018 netdev_info(dev: priv->netdev, format: "try to reset %s port!\n",
2019 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2020
2021 rtnl_lock();
2022 /* put off any impending NetWatchDogTimeout */
2023 netif_trans_update(dev: priv->netdev);
2024 hns_nic_net_reinit(netdev: priv->netdev);
2025
2026 rtnl_unlock();
2027}
2028
2029/* for doing service complete*/
2030static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2031{
2032 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2033 /* make sure to commit the things */
2034 smp_mb__before_atomic();
2035 clear_bit(nr: NIC_STATE_SERVICE_SCHED, addr: &priv->state);
2036}
2037
2038static void hns_nic_service_task(struct work_struct *work)
2039{
2040 struct hns_nic_priv *priv
2041 = container_of(work, struct hns_nic_priv, service_task);
2042 struct hnae_handle *h = priv->ae_handle;
2043
2044 hns_nic_reset_subtask(priv);
2045 hns_nic_update_link_status(netdev: priv->netdev);
2046 h->dev->ops->update_led_status(h);
2047 hns_nic_update_stats(netdev: priv->netdev);
2048
2049 hns_nic_service_event_complete(priv);
2050}
2051
2052static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2053{
2054 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2055 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2056 !test_and_set_bit(nr: NIC_STATE_SERVICE_SCHED, addr: &priv->state))
2057 (void)schedule_work(work: &priv->service_task);
2058}
2059
2060static void hns_nic_service_timer(struct timer_list *t)
2061{
2062 struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2063
2064 (void)mod_timer(timer: &priv->service_timer, expires: jiffies + SERVICE_TIMER_HZ);
2065
2066 hns_nic_task_schedule(priv);
2067}
2068
2069/**
2070 * hns_tx_timeout_reset - initiate reset due to Tx timeout
2071 * @priv: driver private struct
2072 **/
2073static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2074{
2075 /* Do the reset outside of interrupt context */
2076 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2077 set_bit(nr: NIC_STATE2_RESET_REQUESTED, addr: &priv->state);
2078 netdev_warn(dev: priv->netdev,
2079 format: "initiating reset due to tx timeout(%llu,0x%lx)\n",
2080 priv->tx_timeout_count, priv->state);
2081 priv->tx_timeout_count++;
2082 hns_nic_task_schedule(priv);
2083 }
2084}
2085
2086static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2087{
2088 struct hnae_handle *h = priv->ae_handle;
2089 struct hns_nic_ring_data *rd;
2090 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2091 int i;
2092
2093 if (h->q_num > NIC_MAX_Q_PER_VF) {
2094 netdev_err(dev: priv->netdev, format: "too much queue (%d)\n", h->q_num);
2095 return -EINVAL;
2096 }
2097
2098 priv->ring_data = kzalloc(array3_size(h->q_num,
2099 sizeof(*priv->ring_data), 2),
2100 GFP_KERNEL);
2101 if (!priv->ring_data)
2102 return -ENOMEM;
2103
2104 for (i = 0; i < h->q_num; i++) {
2105 rd = &priv->ring_data[i];
2106 rd->queue_index = i;
2107 rd->ring = &h->qs[i]->tx_ring;
2108 rd->poll_one = hns_nic_tx_poll_one;
2109 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2110 hns_nic_tx_fini_pro_v2;
2111
2112 netif_napi_add(dev: priv->netdev, napi: &rd->napi, poll: hns_nic_common_poll);
2113 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2114 }
2115 for (i = h->q_num; i < h->q_num * 2; i++) {
2116 rd = &priv->ring_data[i];
2117 rd->queue_index = i - h->q_num;
2118 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2119 rd->poll_one = hns_nic_rx_poll_one;
2120 rd->ex_process = hns_nic_rx_up_pro;
2121 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2122 hns_nic_rx_fini_pro_v2;
2123
2124 netif_napi_add(dev: priv->netdev, napi: &rd->napi, poll: hns_nic_common_poll);
2125 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2126 }
2127
2128 return 0;
2129}
2130
2131static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2132{
2133 struct hnae_handle *h = priv->ae_handle;
2134 int i;
2135
2136 for (i = 0; i < h->q_num * 2; i++) {
2137 netif_napi_del(napi: &priv->ring_data[i].napi);
2138 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2139 (void)irq_set_affinity_hint(
2140 irq: priv->ring_data[i].ring->irq,
2141 NULL);
2142 free_irq(priv->ring_data[i].ring->irq,
2143 &priv->ring_data[i]);
2144 }
2145
2146 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2147 }
2148 kfree(objp: priv->ring_data);
2149}
2150
2151static void hns_nic_set_priv_ops(struct net_device *netdev)
2152{
2153 struct hns_nic_priv *priv = netdev_priv(dev: netdev);
2154 struct hnae_handle *h = priv->ae_handle;
2155
2156 if (AE_IS_VER1(priv->enet_ver)) {
2157 priv->ops.fill_desc = fill_desc;
2158 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2159 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2160 } else {
2161 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2162 if ((netdev->features & NETIF_F_TSO) ||
2163 (netdev->features & NETIF_F_TSO6)) {
2164 priv->ops.fill_desc = fill_tso_desc;
2165 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2166 /* This chip only support 7*4096 */
2167 netif_set_tso_max_size(dev: netdev, size: 7 * 4096);
2168 } else {
2169 priv->ops.fill_desc = fill_v2_desc;
2170 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2171 }
2172 /* enable tso when init
2173 * control tso on/off through TSE bit in bd
2174 */
2175 h->dev->ops->set_tso_stats(h, 1);
2176 }
2177}
2178
2179static int hns_nic_try_get_ae(struct net_device *ndev)
2180{
2181 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
2182 struct hnae_handle *h;
2183 int ret;
2184
2185 h = hnae_get_handle(owner_dev: &priv->netdev->dev,
2186 fwnode: priv->fwnode, port_id: priv->port_id, NULL);
2187 if (IS_ERR_OR_NULL(ptr: h)) {
2188 ret = -ENODEV;
2189 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2190 goto out;
2191 }
2192 priv->ae_handle = h;
2193
2194 ret = hns_nic_init_phy(ndev, h);
2195 if (ret) {
2196 dev_err(priv->dev, "probe phy device fail!\n");
2197 goto out_init_phy;
2198 }
2199
2200 ret = hns_nic_init_ring_data(priv);
2201 if (ret) {
2202 ret = -ENOMEM;
2203 goto out_init_ring_data;
2204 }
2205
2206 hns_nic_set_priv_ops(netdev: ndev);
2207
2208 ret = register_netdev(dev: ndev);
2209 if (ret) {
2210 dev_err(priv->dev, "probe register netdev fail!\n");
2211 goto out_reg_ndev_fail;
2212 }
2213 return 0;
2214
2215out_reg_ndev_fail:
2216 hns_nic_uninit_ring_data(priv);
2217 priv->ring_data = NULL;
2218out_init_phy:
2219out_init_ring_data:
2220 hnae_put_handle(handle: priv->ae_handle);
2221 priv->ae_handle = NULL;
2222out:
2223 return ret;
2224}
2225
2226static int hns_nic_notifier_action(struct notifier_block *nb,
2227 unsigned long action, void *data)
2228{
2229 struct hns_nic_priv *priv =
2230 container_of(nb, struct hns_nic_priv, notifier_block);
2231
2232 assert(action == HNAE_AE_REGISTER);
2233
2234 if (!hns_nic_try_get_ae(ndev: priv->netdev)) {
2235 hnae_unregister_notifier(nb: &priv->notifier_block);
2236 priv->notifier_block.notifier_call = NULL;
2237 }
2238 return 0;
2239}
2240
2241static int hns_nic_dev_probe(struct platform_device *pdev)
2242{
2243 struct device *dev = &pdev->dev;
2244 struct net_device *ndev;
2245 struct hns_nic_priv *priv;
2246 u32 port_id;
2247 int ret;
2248
2249 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2250 if (!ndev)
2251 return -ENOMEM;
2252
2253 platform_set_drvdata(pdev, data: ndev);
2254
2255 priv = netdev_priv(dev: ndev);
2256 priv->dev = dev;
2257 priv->netdev = ndev;
2258
2259 if (dev_of_node(dev)) {
2260 struct device_node *ae_node;
2261
2262 if (of_device_is_compatible(device: dev->of_node,
2263 "hisilicon,hns-nic-v1"))
2264 priv->enet_ver = AE_VERSION_1;
2265 else
2266 priv->enet_ver = AE_VERSION_2;
2267
2268 ae_node = of_parse_phandle(np: dev->of_node, phandle_name: "ae-handle", index: 0);
2269 if (!ae_node) {
2270 ret = -ENODEV;
2271 dev_err(dev, "not find ae-handle\n");
2272 goto out_read_prop_fail;
2273 }
2274 priv->fwnode = &ae_node->fwnode;
2275 } else if (is_acpi_node(fwnode: dev->fwnode)) {
2276 struct fwnode_reference_args args;
2277
2278 if (acpi_dev_found(hid: hns_enet_acpi_match[0].id))
2279 priv->enet_ver = AE_VERSION_1;
2280 else if (acpi_dev_found(hid: hns_enet_acpi_match[1].id))
2281 priv->enet_ver = AE_VERSION_2;
2282 else {
2283 ret = -ENXIO;
2284 goto out_read_prop_fail;
2285 }
2286
2287 /* try to find port-idx-in-ae first */
2288 ret = acpi_node_get_property_reference(fwnode: dev->fwnode,
2289 name: "ae-handle", index: 0, args: &args);
2290 if (ret) {
2291 dev_err(dev, "not find ae-handle\n");
2292 goto out_read_prop_fail;
2293 }
2294 if (!is_acpi_device_node(fwnode: args.fwnode)) {
2295 ret = -EINVAL;
2296 goto out_read_prop_fail;
2297 }
2298 priv->fwnode = args.fwnode;
2299 } else {
2300 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2301 ret = -ENXIO;
2302 goto out_read_prop_fail;
2303 }
2304
2305 ret = device_property_read_u32(dev, propname: "port-idx-in-ae", val: &port_id);
2306 if (ret) {
2307 /* only for old code compatible */
2308 ret = device_property_read_u32(dev, propname: "port-id", val: &port_id);
2309 if (ret)
2310 goto out_read_prop_fail;
2311 /* for old dts, we need to caculate the port offset */
2312 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2313 : port_id - HNS_SRV_OFFSET;
2314 }
2315 priv->port_id = port_id;
2316
2317 hns_init_mac_addr(ndev);
2318
2319 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2320 ndev->priv_flags |= IFF_UNICAST_FLT;
2321 ndev->netdev_ops = &hns_nic_netdev_ops;
2322 hns_ethtool_set_ops(ndev);
2323
2324 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2325 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2326 NETIF_F_GRO;
2327 ndev->vlan_features |=
2328 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2329 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2330
2331 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2332 ndev->min_mtu = MAC_MIN_MTU;
2333 switch (priv->enet_ver) {
2334 case AE_VERSION_2:
2335 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2336 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2337 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2338 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2339 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2340 ndev->max_mtu = MAC_MAX_MTU_V2 -
2341 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2342 break;
2343 default:
2344 ndev->max_mtu = MAC_MAX_MTU -
2345 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2346 break;
2347 }
2348
2349 SET_NETDEV_DEV(ndev, dev);
2350
2351 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2352 dev_dbg(dev, "set mask to 64bit\n");
2353 else
2354 dev_err(dev, "set mask to 64bit fail!\n");
2355
2356 /* carrier off reporting is important to ethtool even BEFORE open */
2357 netif_carrier_off(dev: ndev);
2358
2359 timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2360 INIT_WORK(&priv->service_task, hns_nic_service_task);
2361
2362 set_bit(nr: NIC_STATE_SERVICE_INITED, addr: &priv->state);
2363 clear_bit(nr: NIC_STATE_SERVICE_SCHED, addr: &priv->state);
2364 set_bit(nr: NIC_STATE_DOWN, addr: &priv->state);
2365
2366 if (hns_nic_try_get_ae(ndev: priv->netdev)) {
2367 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2368 ret = hnae_register_notifier(nb: &priv->notifier_block);
2369 if (ret) {
2370 dev_err(dev, "register notifier fail!\n");
2371 goto out_notify_fail;
2372 }
2373 dev_dbg(dev, "has not handle, register notifier!\n");
2374 }
2375
2376 return 0;
2377
2378out_notify_fail:
2379 (void)cancel_work_sync(work: &priv->service_task);
2380out_read_prop_fail:
2381 /* safe for ACPI FW */
2382 of_node_put(to_of_node(priv->fwnode));
2383 free_netdev(dev: ndev);
2384 return ret;
2385}
2386
2387static void hns_nic_dev_remove(struct platform_device *pdev)
2388{
2389 struct net_device *ndev = platform_get_drvdata(pdev);
2390 struct hns_nic_priv *priv = netdev_priv(dev: ndev);
2391
2392 if (ndev->reg_state != NETREG_UNINITIALIZED)
2393 unregister_netdev(dev: ndev);
2394
2395 if (priv->ring_data)
2396 hns_nic_uninit_ring_data(priv);
2397 priv->ring_data = NULL;
2398
2399 if (ndev->phydev)
2400 phy_disconnect(phydev: ndev->phydev);
2401
2402 if (!IS_ERR_OR_NULL(ptr: priv->ae_handle))
2403 hnae_put_handle(handle: priv->ae_handle);
2404 priv->ae_handle = NULL;
2405 if (priv->notifier_block.notifier_call)
2406 hnae_unregister_notifier(nb: &priv->notifier_block);
2407 priv->notifier_block.notifier_call = NULL;
2408
2409 set_bit(nr: NIC_STATE_REMOVING, addr: &priv->state);
2410 (void)cancel_work_sync(work: &priv->service_task);
2411
2412 /* safe for ACPI FW */
2413 of_node_put(to_of_node(priv->fwnode));
2414
2415 free_netdev(dev: ndev);
2416}
2417
2418static const struct of_device_id hns_enet_of_match[] = {
2419 {.compatible = "hisilicon,hns-nic-v1",},
2420 {.compatible = "hisilicon,hns-nic-v2",},
2421 {},
2422};
2423
2424MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2425
2426static struct platform_driver hns_nic_dev_driver = {
2427 .driver = {
2428 .name = "hns-nic",
2429 .of_match_table = hns_enet_of_match,
2430 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2431 },
2432 .probe = hns_nic_dev_probe,
2433 .remove_new = hns_nic_dev_remove,
2434};
2435
2436module_platform_driver(hns_nic_dev_driver);
2437
2438MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2439MODULE_AUTHOR("Hisilicon, Inc.");
2440MODULE_LICENSE("GPL");
2441MODULE_ALIAS("platform:hns-nic");
2442

source code of linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c