1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018-2023, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_sched.h"
6#include "ice_adminq_cmd.h"
7#include "ice_flow.h"
8#include "ice_ptp_hw.h"
9
10#define ICE_PF_RESET_WAIT_COUNT 300
11#define ICE_MAX_NETLIST_SIZE 10
12
13static const char * const ice_link_mode_str_low[] = {
14 [0] = "100BASE_TX",
15 [1] = "100M_SGMII",
16 [2] = "1000BASE_T",
17 [3] = "1000BASE_SX",
18 [4] = "1000BASE_LX",
19 [5] = "1000BASE_KX",
20 [6] = "1G_SGMII",
21 [7] = "2500BASE_T",
22 [8] = "2500BASE_X",
23 [9] = "2500BASE_KX",
24 [10] = "5GBASE_T",
25 [11] = "5GBASE_KR",
26 [12] = "10GBASE_T",
27 [13] = "10G_SFI_DA",
28 [14] = "10GBASE_SR",
29 [15] = "10GBASE_LR",
30 [16] = "10GBASE_KR_CR1",
31 [17] = "10G_SFI_AOC_ACC",
32 [18] = "10G_SFI_C2C",
33 [19] = "25GBASE_T",
34 [20] = "25GBASE_CR",
35 [21] = "25GBASE_CR_S",
36 [22] = "25GBASE_CR1",
37 [23] = "25GBASE_SR",
38 [24] = "25GBASE_LR",
39 [25] = "25GBASE_KR",
40 [26] = "25GBASE_KR_S",
41 [27] = "25GBASE_KR1",
42 [28] = "25G_AUI_AOC_ACC",
43 [29] = "25G_AUI_C2C",
44 [30] = "40GBASE_CR4",
45 [31] = "40GBASE_SR4",
46 [32] = "40GBASE_LR4",
47 [33] = "40GBASE_KR4",
48 [34] = "40G_XLAUI_AOC_ACC",
49 [35] = "40G_XLAUI",
50 [36] = "50GBASE_CR2",
51 [37] = "50GBASE_SR2",
52 [38] = "50GBASE_LR2",
53 [39] = "50GBASE_KR2",
54 [40] = "50G_LAUI2_AOC_ACC",
55 [41] = "50G_LAUI2",
56 [42] = "50G_AUI2_AOC_ACC",
57 [43] = "50G_AUI2",
58 [44] = "50GBASE_CP",
59 [45] = "50GBASE_SR",
60 [46] = "50GBASE_FR",
61 [47] = "50GBASE_LR",
62 [48] = "50GBASE_KR_PAM4",
63 [49] = "50G_AUI1_AOC_ACC",
64 [50] = "50G_AUI1",
65 [51] = "100GBASE_CR4",
66 [52] = "100GBASE_SR4",
67 [53] = "100GBASE_LR4",
68 [54] = "100GBASE_KR4",
69 [55] = "100G_CAUI4_AOC_ACC",
70 [56] = "100G_CAUI4",
71 [57] = "100G_AUI4_AOC_ACC",
72 [58] = "100G_AUI4",
73 [59] = "100GBASE_CR_PAM4",
74 [60] = "100GBASE_KR_PAM4",
75 [61] = "100GBASE_CP2",
76 [62] = "100GBASE_SR2",
77 [63] = "100GBASE_DR",
78};
79
80static const char * const ice_link_mode_str_high[] = {
81 [0] = "100GBASE_KR2_PAM4",
82 [1] = "100G_CAUI2_AOC_ACC",
83 [2] = "100G_CAUI2",
84 [3] = "100G_AUI2_AOC_ACC",
85 [4] = "100G_AUI2",
86};
87
88/**
89 * ice_dump_phy_type - helper function to dump phy_type
90 * @hw: pointer to the HW structure
91 * @low: 64 bit value for phy_type_low
92 * @high: 64 bit value for phy_type_high
93 * @prefix: prefix string to differentiate multiple dumps
94 */
95static void
96ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97{
98 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99
100 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 if (low & BIT_ULL(i))
102 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
103 prefix, i, ice_link_mode_str_low[i]);
104 }
105
106 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107
108 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 if (high & BIT_ULL(i))
110 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
111 prefix, i, ice_link_mode_str_high[i]);
112 }
113}
114
115/**
116 * ice_set_mac_type - Sets MAC type
117 * @hw: pointer to the HW structure
118 *
119 * This function sets the MAC type of the adapter based on the
120 * vendor ID and device ID stored in the HW structure.
121 */
122static int ice_set_mac_type(struct ice_hw *hw)
123{
124 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 return -ENODEV;
126
127 switch (hw->device_id) {
128 case ICE_DEV_ID_E810C_BACKPLANE:
129 case ICE_DEV_ID_E810C_QSFP:
130 case ICE_DEV_ID_E810C_SFP:
131 case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 case ICE_DEV_ID_E810_XXV_QSFP:
133 case ICE_DEV_ID_E810_XXV_SFP:
134 hw->mac_type = ICE_MAC_E810;
135 break;
136 case ICE_DEV_ID_E823C_10G_BASE_T:
137 case ICE_DEV_ID_E823C_BACKPLANE:
138 case ICE_DEV_ID_E823C_QSFP:
139 case ICE_DEV_ID_E823C_SFP:
140 case ICE_DEV_ID_E823C_SGMII:
141 case ICE_DEV_ID_E822C_10G_BASE_T:
142 case ICE_DEV_ID_E822C_BACKPLANE:
143 case ICE_DEV_ID_E822C_QSFP:
144 case ICE_DEV_ID_E822C_SFP:
145 case ICE_DEV_ID_E822C_SGMII:
146 case ICE_DEV_ID_E822L_10G_BASE_T:
147 case ICE_DEV_ID_E822L_BACKPLANE:
148 case ICE_DEV_ID_E822L_SFP:
149 case ICE_DEV_ID_E822L_SGMII:
150 case ICE_DEV_ID_E823L_10G_BASE_T:
151 case ICE_DEV_ID_E823L_1GBE:
152 case ICE_DEV_ID_E823L_BACKPLANE:
153 case ICE_DEV_ID_E823L_QSFP:
154 case ICE_DEV_ID_E823L_SFP:
155 hw->mac_type = ICE_MAC_GENERIC;
156 break;
157 case ICE_DEV_ID_E825C_BACKPLANE:
158 case ICE_DEV_ID_E825C_QSFP:
159 case ICE_DEV_ID_E825C_SFP:
160 case ICE_DEV_ID_E825C_SGMII:
161 hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162 break;
163 case ICE_DEV_ID_E830_BACKPLANE:
164 case ICE_DEV_ID_E830_QSFP56:
165 case ICE_DEV_ID_E830_SFP:
166 case ICE_DEV_ID_E830_SFP_DD:
167 hw->mac_type = ICE_MAC_E830;
168 break;
169 default:
170 hw->mac_type = ICE_MAC_UNKNOWN;
171 break;
172 }
173
174 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
175 return 0;
176}
177
178/**
179 * ice_is_generic_mac - check if device's mac_type is generic
180 * @hw: pointer to the hardware structure
181 *
182 * Return: true if mac_type is generic (with SBQ support), false if not
183 */
184bool ice_is_generic_mac(struct ice_hw *hw)
185{
186 return (hw->mac_type == ICE_MAC_GENERIC ||
187 hw->mac_type == ICE_MAC_GENERIC_3K_E825);
188}
189
190/**
191 * ice_is_e810
192 * @hw: pointer to the hardware structure
193 *
194 * returns true if the device is E810 based, false if not.
195 */
196bool ice_is_e810(struct ice_hw *hw)
197{
198 return hw->mac_type == ICE_MAC_E810;
199}
200
201/**
202 * ice_is_e810t
203 * @hw: pointer to the hardware structure
204 *
205 * returns true if the device is E810T based, false if not.
206 */
207bool ice_is_e810t(struct ice_hw *hw)
208{
209 switch (hw->device_id) {
210 case ICE_DEV_ID_E810C_SFP:
211 switch (hw->subsystem_device_id) {
212 case ICE_SUBDEV_ID_E810T:
213 case ICE_SUBDEV_ID_E810T2:
214 case ICE_SUBDEV_ID_E810T3:
215 case ICE_SUBDEV_ID_E810T4:
216 case ICE_SUBDEV_ID_E810T6:
217 case ICE_SUBDEV_ID_E810T7:
218 return true;
219 }
220 break;
221 case ICE_DEV_ID_E810C_QSFP:
222 switch (hw->subsystem_device_id) {
223 case ICE_SUBDEV_ID_E810T2:
224 case ICE_SUBDEV_ID_E810T3:
225 case ICE_SUBDEV_ID_E810T5:
226 return true;
227 }
228 break;
229 default:
230 break;
231 }
232
233 return false;
234}
235
236/**
237 * ice_is_e823
238 * @hw: pointer to the hardware structure
239 *
240 * returns true if the device is E823-L or E823-C based, false if not.
241 */
242bool ice_is_e823(struct ice_hw *hw)
243{
244 switch (hw->device_id) {
245 case ICE_DEV_ID_E823L_BACKPLANE:
246 case ICE_DEV_ID_E823L_SFP:
247 case ICE_DEV_ID_E823L_10G_BASE_T:
248 case ICE_DEV_ID_E823L_1GBE:
249 case ICE_DEV_ID_E823L_QSFP:
250 case ICE_DEV_ID_E823C_BACKPLANE:
251 case ICE_DEV_ID_E823C_QSFP:
252 case ICE_DEV_ID_E823C_SFP:
253 case ICE_DEV_ID_E823C_10G_BASE_T:
254 case ICE_DEV_ID_E823C_SGMII:
255 return true;
256 default:
257 return false;
258 }
259}
260
261/**
262 * ice_is_e825c - Check if a device is E825C family device
263 * @hw: pointer to the hardware structure
264 *
265 * Return: true if the device is E825-C based, false if not.
266 */
267bool ice_is_e825c(struct ice_hw *hw)
268{
269 switch (hw->device_id) {
270 case ICE_DEV_ID_E825C_BACKPLANE:
271 case ICE_DEV_ID_E825C_QSFP:
272 case ICE_DEV_ID_E825C_SFP:
273 case ICE_DEV_ID_E825C_SGMII:
274 return true;
275 default:
276 return false;
277 }
278}
279
280/**
281 * ice_clear_pf_cfg - Clear PF configuration
282 * @hw: pointer to the hardware structure
283 *
284 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
285 * configuration, flow director filters, etc.).
286 */
287int ice_clear_pf_cfg(struct ice_hw *hw)
288{
289 struct ice_aq_desc desc;
290
291 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_clear_pf_cfg);
292
293 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
294}
295
296/**
297 * ice_aq_manage_mac_read - manage MAC address read command
298 * @hw: pointer to the HW struct
299 * @buf: a virtual buffer to hold the manage MAC read response
300 * @buf_size: Size of the virtual buffer
301 * @cd: pointer to command details structure or NULL
302 *
303 * This function is used to return per PF station MAC address (0x0107).
304 * NOTE: Upon successful completion of this command, MAC address information
305 * is returned in user specified buffer. Please interpret user specified
306 * buffer as "manage_mac_read" response.
307 * Response such as various MAC addresses are stored in HW struct (port.mac)
308 * ice_discover_dev_caps is expected to be called before this function is
309 * called.
310 */
311static int
312ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
313 struct ice_sq_cd *cd)
314{
315 struct ice_aqc_manage_mac_read_resp *resp;
316 struct ice_aqc_manage_mac_read *cmd;
317 struct ice_aq_desc desc;
318 int status;
319 u16 flags;
320 u8 i;
321
322 cmd = &desc.params.mac_read;
323
324 if (buf_size < sizeof(*resp))
325 return -EINVAL;
326
327 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_manage_mac_read);
328
329 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
330 if (status)
331 return status;
332
333 resp = buf;
334 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
335
336 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
337 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
338 return -EIO;
339 }
340
341 /* A single port can report up to two (LAN and WoL) addresses */
342 for (i = 0; i < cmd->num_addr; i++)
343 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
344 ether_addr_copy(dst: hw->port_info->mac.lan_addr,
345 src: resp[i].mac_addr);
346 ether_addr_copy(dst: hw->port_info->mac.perm_addr,
347 src: resp[i].mac_addr);
348 break;
349 }
350
351 return 0;
352}
353
354/**
355 * ice_aq_get_phy_caps - returns PHY capabilities
356 * @pi: port information structure
357 * @qual_mods: report qualified modules
358 * @report_mode: report mode capabilities
359 * @pcaps: structure for PHY capabilities to be filled
360 * @cd: pointer to command details structure or NULL
361 *
362 * Returns the various PHY capabilities supported on the Port (0x0600)
363 */
364int
365ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
366 struct ice_aqc_get_phy_caps_data *pcaps,
367 struct ice_sq_cd *cd)
368{
369 struct ice_aqc_get_phy_caps *cmd;
370 u16 pcaps_size = sizeof(*pcaps);
371 struct ice_aq_desc desc;
372 const char *prefix;
373 struct ice_hw *hw;
374 int status;
375
376 cmd = &desc.params.get_phy;
377
378 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
379 return -EINVAL;
380 hw = pi->hw;
381
382 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
383 !ice_fw_supports_report_dflt_cfg(hw))
384 return -EINVAL;
385
386 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_phy_caps);
387
388 if (qual_mods)
389 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
390
391 cmd->param0 |= cpu_to_le16(report_mode);
392 status = ice_aq_send_cmd(hw, desc: &desc, buf: pcaps, buf_size: pcaps_size, cd);
393
394 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
395
396 switch (report_mode) {
397 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
398 prefix = "phy_caps_media";
399 break;
400 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
401 prefix = "phy_caps_no_media";
402 break;
403 case ICE_AQC_REPORT_ACTIVE_CFG:
404 prefix = "phy_caps_active";
405 break;
406 case ICE_AQC_REPORT_DFLT_CFG:
407 prefix = "phy_caps_default";
408 break;
409 default:
410 prefix = "phy_caps_invalid";
411 }
412
413 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
414 le64_to_cpu(pcaps->phy_type_high), prefix);
415
416 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
417 prefix, report_mode);
418 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
419 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
420 pcaps->low_power_ctrl_an);
421 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
422 pcaps->eee_cap);
423 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
424 pcaps->eeer_value);
425 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
426 pcaps->link_fec_options);
427 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
428 prefix, pcaps->module_compliance_enforcement);
429 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
430 prefix, pcaps->extended_compliance_code);
431 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
432 pcaps->module_type[0]);
433 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
434 pcaps->module_type[1]);
435 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
436 pcaps->module_type[2]);
437
438 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
439 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
440 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
441 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
442 sizeof(pi->phy.link_info.module_type));
443 }
444
445 return status;
446}
447
448/**
449 * ice_aq_get_link_topo_handle - get link topology node return status
450 * @pi: port information structure
451 * @node_type: requested node type
452 * @cd: pointer to command details structure or NULL
453 *
454 * Get link topology node return status for specified node type (0x06E0)
455 *
456 * Node type cage can be used to determine if cage is present. If AQC
457 * returns error (ENOENT), then no cage present. If no cage present, then
458 * connection type is backplane or BASE-T.
459 */
460static int
461ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
462 struct ice_sq_cd *cd)
463{
464 struct ice_aqc_get_link_topo *cmd;
465 struct ice_aq_desc desc;
466
467 cmd = &desc.params.get_link_topo;
468
469 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_topo);
470
471 cmd->addr.topo_params.node_type_ctx =
472 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
473 ICE_AQC_LINK_TOPO_NODE_CTX_S);
474
475 /* set node type */
476 cmd->addr.topo_params.node_type_ctx |=
477 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
478
479 return ice_aq_send_cmd(hw: pi->hw, desc: &desc, NULL, buf_size: 0, cd);
480}
481
482/**
483 * ice_aq_get_netlist_node
484 * @hw: pointer to the hw struct
485 * @cmd: get_link_topo AQ structure
486 * @node_part_number: output node part number if node found
487 * @node_handle: output node handle parameter if node found
488 *
489 * Get netlist node handle.
490 */
491int
492ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
493 u8 *node_part_number, u16 *node_handle)
494{
495 struct ice_aq_desc desc;
496
497 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_topo);
498 desc.params.get_link_topo = *cmd;
499
500 if (ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL))
501 return -EINTR;
502
503 if (node_handle)
504 *node_handle =
505 le16_to_cpu(desc.params.get_link_topo.addr.handle);
506 if (node_part_number)
507 *node_part_number = desc.params.get_link_topo.node_part_num;
508
509 return 0;
510}
511
512/**
513 * ice_find_netlist_node
514 * @hw: pointer to the hw struct
515 * @node_type_ctx: type of netlist node to look for
516 * @node_part_number: node part number to look for
517 * @node_handle: output parameter if node found - optional
518 *
519 * Scan the netlist for a node handle of the given node type and part number.
520 *
521 * If node_handle is non-NULL it will be modified on function exit. It is only
522 * valid if the function returns zero, and should be ignored on any non-zero
523 * return value.
524 *
525 * Returns: 0 if the node is found, -ENOENT if no handle was found, and
526 * a negative error code on failure to access the AQ.
527 */
528static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
529 u8 node_part_number, u16 *node_handle)
530{
531 u8 idx;
532
533 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
534 struct ice_aqc_get_link_topo cmd = {};
535 u8 rec_node_part_number;
536 int status;
537
538 cmd.addr.topo_params.node_type_ctx =
539 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
540 node_type_ctx);
541 cmd.addr.topo_params.index = idx;
542
543 status = ice_aq_get_netlist_node(hw, cmd: &cmd,
544 node_part_number: &rec_node_part_number,
545 node_handle);
546 if (status)
547 return status;
548
549 if (rec_node_part_number == node_part_number)
550 return 0;
551 }
552
553 return -ENOENT;
554}
555
556/**
557 * ice_is_media_cage_present
558 * @pi: port information structure
559 *
560 * Returns true if media cage is present, else false. If no cage, then
561 * media type is backplane or BASE-T.
562 */
563static bool ice_is_media_cage_present(struct ice_port_info *pi)
564{
565 /* Node type cage can be used to determine if cage is present. If AQC
566 * returns error (ENOENT), then no cage present. If no cage present then
567 * connection type is backplane or BASE-T.
568 */
569 return !ice_aq_get_link_topo_handle(pi,
570 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
571 NULL);
572}
573
574/**
575 * ice_get_media_type - Gets media type
576 * @pi: port information structure
577 */
578static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
579{
580 struct ice_link_status *hw_link_info;
581
582 if (!pi)
583 return ICE_MEDIA_UNKNOWN;
584
585 hw_link_info = &pi->phy.link_info;
586 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
587 /* If more than one media type is selected, report unknown */
588 return ICE_MEDIA_UNKNOWN;
589
590 if (hw_link_info->phy_type_low) {
591 /* 1G SGMII is a special case where some DA cable PHYs
592 * may show this as an option when it really shouldn't
593 * be since SGMII is meant to be between a MAC and a PHY
594 * in a backplane. Try to detect this case and handle it
595 */
596 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
597 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
598 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
599 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
600 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
601 return ICE_MEDIA_DA;
602
603 switch (hw_link_info->phy_type_low) {
604 case ICE_PHY_TYPE_LOW_1000BASE_SX:
605 case ICE_PHY_TYPE_LOW_1000BASE_LX:
606 case ICE_PHY_TYPE_LOW_10GBASE_SR:
607 case ICE_PHY_TYPE_LOW_10GBASE_LR:
608 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
609 case ICE_PHY_TYPE_LOW_25GBASE_SR:
610 case ICE_PHY_TYPE_LOW_25GBASE_LR:
611 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
612 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
613 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
614 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
615 case ICE_PHY_TYPE_LOW_50GBASE_SR:
616 case ICE_PHY_TYPE_LOW_50GBASE_FR:
617 case ICE_PHY_TYPE_LOW_50GBASE_LR:
618 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
619 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
620 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
621 case ICE_PHY_TYPE_LOW_100GBASE_DR:
622 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
623 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
624 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
625 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
626 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
627 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
628 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
629 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
630 return ICE_MEDIA_FIBER;
631 case ICE_PHY_TYPE_LOW_100BASE_TX:
632 case ICE_PHY_TYPE_LOW_1000BASE_T:
633 case ICE_PHY_TYPE_LOW_2500BASE_T:
634 case ICE_PHY_TYPE_LOW_5GBASE_T:
635 case ICE_PHY_TYPE_LOW_10GBASE_T:
636 case ICE_PHY_TYPE_LOW_25GBASE_T:
637 return ICE_MEDIA_BASET;
638 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
639 case ICE_PHY_TYPE_LOW_25GBASE_CR:
640 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
641 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
642 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
643 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
644 case ICE_PHY_TYPE_LOW_50GBASE_CP:
645 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
646 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
647 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
648 return ICE_MEDIA_DA;
649 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
650 case ICE_PHY_TYPE_LOW_40G_XLAUI:
651 case ICE_PHY_TYPE_LOW_50G_LAUI2:
652 case ICE_PHY_TYPE_LOW_50G_AUI2:
653 case ICE_PHY_TYPE_LOW_50G_AUI1:
654 case ICE_PHY_TYPE_LOW_100G_AUI4:
655 case ICE_PHY_TYPE_LOW_100G_CAUI4:
656 if (ice_is_media_cage_present(pi))
657 return ICE_MEDIA_DA;
658 fallthrough;
659 case ICE_PHY_TYPE_LOW_1000BASE_KX:
660 case ICE_PHY_TYPE_LOW_2500BASE_KX:
661 case ICE_PHY_TYPE_LOW_2500BASE_X:
662 case ICE_PHY_TYPE_LOW_5GBASE_KR:
663 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
664 case ICE_PHY_TYPE_LOW_25GBASE_KR:
665 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
666 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
667 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
668 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
669 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
670 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
671 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
672 return ICE_MEDIA_BACKPLANE;
673 }
674 } else {
675 switch (hw_link_info->phy_type_high) {
676 case ICE_PHY_TYPE_HIGH_100G_AUI2:
677 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
678 if (ice_is_media_cage_present(pi))
679 return ICE_MEDIA_DA;
680 fallthrough;
681 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
682 return ICE_MEDIA_BACKPLANE;
683 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
684 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
685 return ICE_MEDIA_FIBER;
686 }
687 }
688 return ICE_MEDIA_UNKNOWN;
689}
690
691/**
692 * ice_get_link_status_datalen
693 * @hw: pointer to the HW struct
694 *
695 * Returns datalength for the Get Link Status AQ command, which is bigger for
696 * newer adapter families handled by ice driver.
697 */
698static u16 ice_get_link_status_datalen(struct ice_hw *hw)
699{
700 switch (hw->mac_type) {
701 case ICE_MAC_E830:
702 return ICE_AQC_LS_DATA_SIZE_V2;
703 case ICE_MAC_E810:
704 default:
705 return ICE_AQC_LS_DATA_SIZE_V1;
706 }
707}
708
709/**
710 * ice_aq_get_link_info
711 * @pi: port information structure
712 * @ena_lse: enable/disable LinkStatusEvent reporting
713 * @link: pointer to link status structure - optional
714 * @cd: pointer to command details structure or NULL
715 *
716 * Get Link Status (0x607). Returns the link status of the adapter.
717 */
718int
719ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
720 struct ice_link_status *link, struct ice_sq_cd *cd)
721{
722 struct ice_aqc_get_link_status_data link_data = { 0 };
723 struct ice_aqc_get_link_status *resp;
724 struct ice_link_status *li_old, *li;
725 enum ice_media_type *hw_media_type;
726 struct ice_fc_info *hw_fc_info;
727 bool tx_pause, rx_pause;
728 struct ice_aq_desc desc;
729 struct ice_hw *hw;
730 u16 cmd_flags;
731 int status;
732
733 if (!pi)
734 return -EINVAL;
735 hw = pi->hw;
736 li_old = &pi->phy.link_info_old;
737 hw_media_type = &pi->phy.media_type;
738 li = &pi->phy.link_info;
739 hw_fc_info = &pi->fc;
740
741 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_status);
742 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
743 resp = &desc.params.get_link_status;
744 resp->cmd_flags = cpu_to_le16(cmd_flags);
745 resp->lport_num = pi->lport;
746
747 status = ice_aq_send_cmd(hw, desc: &desc, buf: &link_data,
748 buf_size: ice_get_link_status_datalen(hw), cd);
749 if (status)
750 return status;
751
752 /* save off old link status information */
753 *li_old = *li;
754
755 /* update current link status information */
756 li->link_speed = le16_to_cpu(link_data.link_speed);
757 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
758 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
759 *hw_media_type = ice_get_media_type(pi);
760 li->link_info = link_data.link_info;
761 li->link_cfg_err = link_data.link_cfg_err;
762 li->an_info = link_data.an_info;
763 li->ext_info = link_data.ext_info;
764 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
765 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
766 li->topo_media_conflict = link_data.topo_media_conflict;
767 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
768 ICE_AQ_CFG_PACING_TYPE_M);
769
770 /* update fc info */
771 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
772 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
773 if (tx_pause && rx_pause)
774 hw_fc_info->current_mode = ICE_FC_FULL;
775 else if (tx_pause)
776 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
777 else if (rx_pause)
778 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
779 else
780 hw_fc_info->current_mode = ICE_FC_NONE;
781
782 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
783
784 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
785 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
786 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
787 (unsigned long long)li->phy_type_low);
788 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
789 (unsigned long long)li->phy_type_high);
790 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
791 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
792 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
793 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
794 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
795 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
796 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
797 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
798 li->max_frame_size);
799 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
800
801 /* save link status information */
802 if (link)
803 *link = *li;
804
805 /* flag cleared so calling functions don't call AQ again */
806 pi->phy.get_link_info = false;
807
808 return 0;
809}
810
811/**
812 * ice_fill_tx_timer_and_fc_thresh
813 * @hw: pointer to the HW struct
814 * @cmd: pointer to MAC cfg structure
815 *
816 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
817 * descriptor
818 */
819static void
820ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
821 struct ice_aqc_set_mac_cfg *cmd)
822{
823 u32 val, fc_thres_m;
824
825 /* We read back the transmit timer and FC threshold value of
826 * LFC. Thus, we will use index =
827 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
828 *
829 * Also, because we are operating on transmit timer and FC
830 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
831 */
832#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
833#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
834
835 if (hw->mac_type == ICE_MAC_E830) {
836 /* Retrieve the transmit timer */
837 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
838 cmd->tx_tmr_value =
839 le16_encode_bits(v: val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
840
841 /* Retrieve the fc threshold */
842 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
843 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
844 } else {
845 /* Retrieve the transmit timer */
846 val = rd32(hw,
847 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
848 cmd->tx_tmr_value =
849 le16_encode_bits(v: val,
850 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
851
852 /* Retrieve the fc threshold */
853 val = rd32(hw,
854 E800_REFRESH_TMR(E800_IDX_OF_LFC));
855 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
856 }
857 cmd->fc_refresh_threshold = le16_encode_bits(v: val, field: fc_thres_m);
858}
859
860/**
861 * ice_aq_set_mac_cfg
862 * @hw: pointer to the HW struct
863 * @max_frame_size: Maximum Frame Size to be supported
864 * @cd: pointer to command details structure or NULL
865 *
866 * Set MAC configuration (0x0603)
867 */
868int
869ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
870{
871 struct ice_aqc_set_mac_cfg *cmd;
872 struct ice_aq_desc desc;
873
874 cmd = &desc.params.set_mac_cfg;
875
876 if (max_frame_size == 0)
877 return -EINVAL;
878
879 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_mac_cfg);
880
881 cmd->max_frame_size = cpu_to_le16(max_frame_size);
882
883 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
884
885 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
886}
887
888/**
889 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
890 * @hw: pointer to the HW struct
891 */
892static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
893{
894 struct ice_switch_info *sw;
895 int status;
896
897 hw->switch_info = devm_kzalloc(dev: ice_hw_to_dev(hw),
898 size: sizeof(*hw->switch_info), GFP_KERNEL);
899 sw = hw->switch_info;
900
901 if (!sw)
902 return -ENOMEM;
903
904 INIT_LIST_HEAD(list: &sw->vsi_list_map_head);
905 sw->prof_res_bm_init = 0;
906
907 status = ice_init_def_sw_recp(hw);
908 if (status) {
909 devm_kfree(dev: ice_hw_to_dev(hw), p: hw->switch_info);
910 return status;
911 }
912 return 0;
913}
914
915/**
916 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
917 * @hw: pointer to the HW struct
918 */
919static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
920{
921 struct ice_switch_info *sw = hw->switch_info;
922 struct ice_vsi_list_map_info *v_pos_map;
923 struct ice_vsi_list_map_info *v_tmp_map;
924 struct ice_sw_recipe *recps;
925 u8 i;
926
927 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
928 list_entry) {
929 list_del(entry: &v_pos_map->list_entry);
930 devm_kfree(dev: ice_hw_to_dev(hw), p: v_pos_map);
931 }
932 recps = sw->recp_list;
933 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
934 struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
935
936 recps[i].root_rid = i;
937 list_for_each_entry_safe(rg_entry, tmprg_entry,
938 &recps[i].rg_list, l_entry) {
939 list_del(entry: &rg_entry->l_entry);
940 devm_kfree(dev: ice_hw_to_dev(hw), p: rg_entry);
941 }
942
943 if (recps[i].adv_rule) {
944 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
945 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
946
947 mutex_destroy(lock: &recps[i].filt_rule_lock);
948 list_for_each_entry_safe(lst_itr, tmp_entry,
949 &recps[i].filt_rules,
950 list_entry) {
951 list_del(entry: &lst_itr->list_entry);
952 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr->lkups);
953 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr);
954 }
955 } else {
956 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
957
958 mutex_destroy(lock: &recps[i].filt_rule_lock);
959 list_for_each_entry_safe(lst_itr, tmp_entry,
960 &recps[i].filt_rules,
961 list_entry) {
962 list_del(entry: &lst_itr->list_entry);
963 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr);
964 }
965 }
966 devm_kfree(dev: ice_hw_to_dev(hw), p: recps[i].root_buf);
967 }
968 ice_rm_all_sw_replay_rule_info(hw);
969 devm_kfree(dev: ice_hw_to_dev(hw), p: sw->recp_list);
970 devm_kfree(dev: ice_hw_to_dev(hw), p: sw);
971}
972
973/**
974 * ice_get_itr_intrl_gran
975 * @hw: pointer to the HW struct
976 *
977 * Determines the ITR/INTRL granularities based on the maximum aggregate
978 * bandwidth according to the device's configuration during power-on.
979 */
980static void ice_get_itr_intrl_gran(struct ice_hw *hw)
981{
982 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
983 rd32(hw, GL_PWR_MODE_CTL));
984
985 switch (max_agg_bw) {
986 case ICE_MAX_AGG_BW_200G:
987 case ICE_MAX_AGG_BW_100G:
988 case ICE_MAX_AGG_BW_50G:
989 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
990 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
991 break;
992 case ICE_MAX_AGG_BW_25G:
993 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
994 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
995 break;
996 }
997}
998
999/**
1000 * ice_init_hw - main hardware initialization routine
1001 * @hw: pointer to the hardware structure
1002 */
1003int ice_init_hw(struct ice_hw *hw)
1004{
1005 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1006 void *mac_buf __free(kfree) = NULL;
1007 u16 mac_buf_len;
1008 int status;
1009
1010 /* Set MAC type based on DeviceID */
1011 status = ice_set_mac_type(hw);
1012 if (status)
1013 return status;
1014
1015 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1016
1017 status = ice_reset(hw, req: ICE_RESET_PFR);
1018 if (status)
1019 return status;
1020
1021 ice_get_itr_intrl_gran(hw);
1022
1023 status = ice_create_all_ctrlq(hw);
1024 if (status)
1025 goto err_unroll_cqinit;
1026
1027 status = ice_fwlog_init(hw);
1028 if (status)
1029 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1030 status);
1031
1032 status = ice_clear_pf_cfg(hw);
1033 if (status)
1034 goto err_unroll_cqinit;
1035
1036 /* Set bit to enable Flow Director filters */
1037 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1038 INIT_LIST_HEAD(list: &hw->fdir_list_head);
1039
1040 ice_clear_pxe_mode(hw);
1041
1042 status = ice_init_nvm(hw);
1043 if (status)
1044 goto err_unroll_cqinit;
1045
1046 status = ice_get_caps(hw);
1047 if (status)
1048 goto err_unroll_cqinit;
1049
1050 if (!hw->port_info)
1051 hw->port_info = devm_kzalloc(dev: ice_hw_to_dev(hw),
1052 size: sizeof(*hw->port_info),
1053 GFP_KERNEL);
1054 if (!hw->port_info) {
1055 status = -ENOMEM;
1056 goto err_unroll_cqinit;
1057 }
1058
1059 /* set the back pointer to HW */
1060 hw->port_info->hw = hw;
1061
1062 /* Initialize port_info struct with switch configuration data */
1063 status = ice_get_initial_sw_cfg(hw);
1064 if (status)
1065 goto err_unroll_alloc;
1066
1067 hw->evb_veb = true;
1068
1069 /* init xarray for identifying scheduling nodes uniquely */
1070 xa_init_flags(xa: &hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1071
1072 /* Query the allocated resources for Tx scheduler */
1073 status = ice_sched_query_res_alloc(hw);
1074 if (status) {
1075 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1076 goto err_unroll_alloc;
1077 }
1078 ice_sched_get_psm_clk_freq(hw);
1079
1080 /* Initialize port_info struct with scheduler data */
1081 status = ice_sched_init_port(pi: hw->port_info);
1082 if (status)
1083 goto err_unroll_sched;
1084
1085 pcaps = kzalloc(size: sizeof(*pcaps), GFP_KERNEL);
1086 if (!pcaps) {
1087 status = -ENOMEM;
1088 goto err_unroll_sched;
1089 }
1090
1091 /* Initialize port_info struct with PHY capabilities */
1092 status = ice_aq_get_phy_caps(pi: hw->port_info, qual_mods: false,
1093 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1094 NULL);
1095 if (status)
1096 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1097 status);
1098
1099 /* Initialize port_info struct with link information */
1100 status = ice_aq_get_link_info(pi: hw->port_info, ena_lse: false, NULL, NULL);
1101 if (status)
1102 goto err_unroll_sched;
1103
1104 /* need a valid SW entry point to build a Tx tree */
1105 if (!hw->sw_entry_point_layer) {
1106 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1107 status = -EIO;
1108 goto err_unroll_sched;
1109 }
1110 INIT_LIST_HEAD(list: &hw->agg_list);
1111 /* Initialize max burst size */
1112 if (!hw->max_burst_size)
1113 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1114
1115 status = ice_init_fltr_mgmt_struct(hw);
1116 if (status)
1117 goto err_unroll_sched;
1118
1119 /* Get MAC information */
1120 /* A single port can report up to two (LAN and WoL) addresses */
1121 mac_buf = kcalloc(n: 2, size: sizeof(struct ice_aqc_manage_mac_read_resp),
1122 GFP_KERNEL);
1123 if (!mac_buf) {
1124 status = -ENOMEM;
1125 goto err_unroll_fltr_mgmt_struct;
1126 }
1127
1128 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1129 status = ice_aq_manage_mac_read(hw, buf: mac_buf, buf_size: mac_buf_len, NULL);
1130
1131 if (status)
1132 goto err_unroll_fltr_mgmt_struct;
1133 /* enable jumbo frame support at MAC level */
1134 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1135 if (status)
1136 goto err_unroll_fltr_mgmt_struct;
1137 /* Obtain counter base index which would be used by flow director */
1138 status = ice_alloc_fd_res_cntr(hw, cntr_id: &hw->fd_ctr_base);
1139 if (status)
1140 goto err_unroll_fltr_mgmt_struct;
1141 status = ice_init_hw_tbls(hw);
1142 if (status)
1143 goto err_unroll_fltr_mgmt_struct;
1144 mutex_init(&hw->tnl_lock);
1145 return 0;
1146
1147err_unroll_fltr_mgmt_struct:
1148 ice_cleanup_fltr_mgmt_struct(hw);
1149err_unroll_sched:
1150 ice_sched_cleanup_all(hw);
1151err_unroll_alloc:
1152 devm_kfree(dev: ice_hw_to_dev(hw), p: hw->port_info);
1153err_unroll_cqinit:
1154 ice_destroy_all_ctrlq(hw);
1155 return status;
1156}
1157
1158/**
1159 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1160 * @hw: pointer to the hardware structure
1161 *
1162 * This should be called only during nominal operation, not as a result of
1163 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1164 * applicable initializations if it fails for any reason.
1165 */
1166void ice_deinit_hw(struct ice_hw *hw)
1167{
1168 ice_free_fd_res_cntr(hw, cntr_id: hw->fd_ctr_base);
1169 ice_cleanup_fltr_mgmt_struct(hw);
1170
1171 ice_sched_cleanup_all(hw);
1172 ice_sched_clear_agg(hw);
1173 ice_free_seg(hw);
1174 ice_free_hw_tbls(hw);
1175 mutex_destroy(lock: &hw->tnl_lock);
1176
1177 ice_fwlog_deinit(hw);
1178 ice_destroy_all_ctrlq(hw);
1179
1180 /* Clear VSI contexts if not already cleared */
1181 ice_clear_all_vsi_ctx(hw);
1182}
1183
1184/**
1185 * ice_check_reset - Check to see if a global reset is complete
1186 * @hw: pointer to the hardware structure
1187 */
1188int ice_check_reset(struct ice_hw *hw)
1189{
1190 u32 cnt, reg = 0, grst_timeout, uld_mask;
1191
1192 /* Poll for Device Active state in case a recent CORER, GLOBR,
1193 * or EMPR has occurred. The grst delay value is in 100ms units.
1194 * Add 1sec for outstanding AQ commands that can take a long time.
1195 */
1196 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1197 rd32(hw, GLGEN_RSTCTL)) + 10;
1198
1199 for (cnt = 0; cnt < grst_timeout; cnt++) {
1200 mdelay(100);
1201 reg = rd32(hw, GLGEN_RSTAT);
1202 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1203 break;
1204 }
1205
1206 if (cnt == grst_timeout) {
1207 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1208 return -EIO;
1209 }
1210
1211#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1212 GLNVM_ULD_PCIER_DONE_1_M |\
1213 GLNVM_ULD_CORER_DONE_M |\
1214 GLNVM_ULD_GLOBR_DONE_M |\
1215 GLNVM_ULD_POR_DONE_M |\
1216 GLNVM_ULD_POR_DONE_1_M |\
1217 GLNVM_ULD_PCIER_DONE_2_M)
1218
1219 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1220 GLNVM_ULD_PE_DONE_M : 0);
1221
1222 /* Device is Active; check Global Reset processes are done */
1223 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1224 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1225 if (reg == uld_mask) {
1226 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1227 break;
1228 }
1229 mdelay(10);
1230 }
1231
1232 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1233 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1234 reg);
1235 return -EIO;
1236 }
1237
1238 return 0;
1239}
1240
1241/**
1242 * ice_pf_reset - Reset the PF
1243 * @hw: pointer to the hardware structure
1244 *
1245 * If a global reset has been triggered, this function checks
1246 * for its completion and then issues the PF reset
1247 */
1248static int ice_pf_reset(struct ice_hw *hw)
1249{
1250 u32 cnt, reg;
1251
1252 /* If at function entry a global reset was already in progress, i.e.
1253 * state is not 'device active' or any of the reset done bits are not
1254 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1255 * global reset is done.
1256 */
1257 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1258 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1259 /* poll on global reset currently in progress until done */
1260 if (ice_check_reset(hw))
1261 return -EIO;
1262
1263 return 0;
1264 }
1265
1266 /* Reset the PF */
1267 reg = rd32(hw, PFGEN_CTRL);
1268
1269 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1270
1271 /* Wait for the PFR to complete. The wait time is the global config lock
1272 * timeout plus the PFR timeout which will account for a possible reset
1273 * that is occurring during a download package operation.
1274 */
1275 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1276 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1277 reg = rd32(hw, PFGEN_CTRL);
1278 if (!(reg & PFGEN_CTRL_PFSWR_M))
1279 break;
1280
1281 mdelay(1);
1282 }
1283
1284 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1285 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1286 return -EIO;
1287 }
1288
1289 return 0;
1290}
1291
1292/**
1293 * ice_reset - Perform different types of reset
1294 * @hw: pointer to the hardware structure
1295 * @req: reset request
1296 *
1297 * This function triggers a reset as specified by the req parameter.
1298 *
1299 * Note:
1300 * If anything other than a PF reset is triggered, PXE mode is restored.
1301 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1302 * interface has been restored in the rebuild flow.
1303 */
1304int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1305{
1306 u32 val = 0;
1307
1308 switch (req) {
1309 case ICE_RESET_PFR:
1310 return ice_pf_reset(hw);
1311 case ICE_RESET_CORER:
1312 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1313 val = GLGEN_RTRIG_CORER_M;
1314 break;
1315 case ICE_RESET_GLOBR:
1316 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1317 val = GLGEN_RTRIG_GLOBR_M;
1318 break;
1319 default:
1320 return -EINVAL;
1321 }
1322
1323 val |= rd32(hw, GLGEN_RTRIG);
1324 wr32(hw, GLGEN_RTRIG, val);
1325 ice_flush(hw);
1326
1327 /* wait for the FW to be ready */
1328 return ice_check_reset(hw);
1329}
1330
1331/**
1332 * ice_copy_rxq_ctx_to_hw
1333 * @hw: pointer to the hardware structure
1334 * @ice_rxq_ctx: pointer to the rxq context
1335 * @rxq_index: the index of the Rx queue
1336 *
1337 * Copies rxq context from dense structure to HW register space
1338 */
1339static int
1340ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1341{
1342 u8 i;
1343
1344 if (!ice_rxq_ctx)
1345 return -EINVAL;
1346
1347 if (rxq_index > QRX_CTRL_MAX_INDEX)
1348 return -EINVAL;
1349
1350 /* Copy each dword separately to HW */
1351 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1352 wr32(hw, QRX_CONTEXT(i, rxq_index),
1353 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1354
1355 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1356 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1357 }
1358
1359 return 0;
1360}
1361
1362/* LAN Rx Queue Context */
1363static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1364 /* Field Width LSB */
1365 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1366 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1367 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1368 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1369 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1370 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1371 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1372 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1373 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1374 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1375 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1376 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1377 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1378 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1379 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1380 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1381 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1382 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1383 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1384 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1385 { 0 }
1386};
1387
1388/**
1389 * ice_write_rxq_ctx
1390 * @hw: pointer to the hardware structure
1391 * @rlan_ctx: pointer to the rxq context
1392 * @rxq_index: the index of the Rx queue
1393 *
1394 * Converts rxq context from sparse to dense structure and then writes
1395 * it to HW register space and enables the hardware to prefetch descriptors
1396 * instead of only fetching them on demand
1397 */
1398int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1399 u32 rxq_index)
1400{
1401 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1402
1403 if (!rlan_ctx)
1404 return -EINVAL;
1405
1406 rlan_ctx->prefena = 1;
1407
1408 ice_set_ctx(hw, src_ctx: (u8 *)rlan_ctx, dest_ctx: ctx_buf, ce_info: ice_rlan_ctx_info);
1409 return ice_copy_rxq_ctx_to_hw(hw, ice_rxq_ctx: ctx_buf, rxq_index);
1410}
1411
1412/* LAN Tx Queue Context */
1413const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1414 /* Field Width LSB */
1415 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1416 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1417 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1418 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1419 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1420 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1421 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1422 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1423 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1424 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1425 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1426 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1427 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1428 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1429 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1430 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1431 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1432 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1433 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1434 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1435 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1436 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1437 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1438 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1439 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1440 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1441 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1442 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1443 { 0 }
1444};
1445
1446/* Sideband Queue command wrappers */
1447
1448/**
1449 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1450 * @hw: pointer to the HW struct
1451 * @desc: descriptor describing the command
1452 * @buf: buffer to use for indirect commands (NULL for direct commands)
1453 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1454 * @cd: pointer to command details structure
1455 */
1456static int
1457ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1458 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1459{
1460 return ice_sq_send_cmd(hw, cq: ice_get_sbq(hw),
1461 desc: (struct ice_aq_desc *)desc, buf, buf_size, cd);
1462}
1463
1464/**
1465 * ice_sbq_rw_reg - Fill Sideband Queue command
1466 * @hw: pointer to the HW struct
1467 * @in: message info to be filled in descriptor
1468 */
1469int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1470{
1471 struct ice_sbq_cmd_desc desc = {0};
1472 struct ice_sbq_msg_req msg = {0};
1473 u16 msg_len;
1474 int status;
1475
1476 msg_len = sizeof(msg);
1477
1478 msg.dest_dev = in->dest_dev;
1479 msg.opcode = in->opcode;
1480 msg.flags = ICE_SBQ_MSG_FLAGS;
1481 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1482 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1483 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1484
1485 if (in->opcode)
1486 msg.data = cpu_to_le32(in->data);
1487 else
1488 /* data read comes back in completion, so shorten the struct by
1489 * sizeof(msg.data)
1490 */
1491 msg_len -= sizeof(msg.data);
1492
1493 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1494 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1495 desc.param0.cmd_len = cpu_to_le16(msg_len);
1496 status = ice_sbq_send_cmd(hw, desc: &desc, buf: &msg, buf_size: msg_len, NULL);
1497 if (!status && !in->opcode)
1498 in->data = le32_to_cpu
1499 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1500 return status;
1501}
1502
1503/* FW Admin Queue command wrappers */
1504
1505/* Software lock/mutex that is meant to be held while the Global Config Lock
1506 * in firmware is acquired by the software to prevent most (but not all) types
1507 * of AQ commands from being sent to FW
1508 */
1509DEFINE_MUTEX(ice_global_cfg_lock_sw);
1510
1511/**
1512 * ice_should_retry_sq_send_cmd
1513 * @opcode: AQ opcode
1514 *
1515 * Decide if we should retry the send command routine for the ATQ, depending
1516 * on the opcode.
1517 */
1518static bool ice_should_retry_sq_send_cmd(u16 opcode)
1519{
1520 switch (opcode) {
1521 case ice_aqc_opc_get_link_topo:
1522 case ice_aqc_opc_lldp_stop:
1523 case ice_aqc_opc_lldp_start:
1524 case ice_aqc_opc_lldp_filter_ctrl:
1525 return true;
1526 }
1527
1528 return false;
1529}
1530
1531/**
1532 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1533 * @hw: pointer to the HW struct
1534 * @cq: pointer to the specific Control queue
1535 * @desc: prefilled descriptor describing the command
1536 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1537 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1538 * @cd: pointer to command details structure
1539 *
1540 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1541 * Queue if the EBUSY AQ error is returned.
1542 */
1543static int
1544ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1545 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1546 struct ice_sq_cd *cd)
1547{
1548 struct ice_aq_desc desc_cpy;
1549 bool is_cmd_for_retry;
1550 u8 idx = 0;
1551 u16 opcode;
1552 int status;
1553
1554 opcode = le16_to_cpu(desc->opcode);
1555 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1556 memset(&desc_cpy, 0, sizeof(desc_cpy));
1557
1558 if (is_cmd_for_retry) {
1559 /* All retryable cmds are direct, without buf. */
1560 WARN_ON(buf);
1561
1562 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1563 }
1564
1565 do {
1566 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1567
1568 if (!is_cmd_for_retry || !status ||
1569 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1570 break;
1571
1572 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1573
1574 msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1575
1576 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1577
1578 return status;
1579}
1580
1581/**
1582 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1583 * @hw: pointer to the HW struct
1584 * @desc: descriptor describing the command
1585 * @buf: buffer to use for indirect commands (NULL for direct commands)
1586 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1587 * @cd: pointer to command details structure
1588 *
1589 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1590 */
1591int
1592ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1593 u16 buf_size, struct ice_sq_cd *cd)
1594{
1595 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1596 bool lock_acquired = false;
1597 int status;
1598
1599 /* When a package download is in process (i.e. when the firmware's
1600 * Global Configuration Lock resource is held), only the Download
1601 * Package, Get Version, Get Package Info List, Upload Section,
1602 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1603 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1604 * Recipes to Profile Association, and Release Resource (with resource
1605 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1606 * must block until the package download completes and the Global Config
1607 * Lock is released. See also ice_acquire_global_cfg_lock().
1608 */
1609 switch (le16_to_cpu(desc->opcode)) {
1610 case ice_aqc_opc_download_pkg:
1611 case ice_aqc_opc_get_pkg_info_list:
1612 case ice_aqc_opc_get_ver:
1613 case ice_aqc_opc_upload_section:
1614 case ice_aqc_opc_update_pkg:
1615 case ice_aqc_opc_set_port_params:
1616 case ice_aqc_opc_get_vlan_mode_parameters:
1617 case ice_aqc_opc_set_vlan_mode_parameters:
1618 case ice_aqc_opc_add_recipe:
1619 case ice_aqc_opc_recipe_to_profile:
1620 case ice_aqc_opc_get_recipe:
1621 case ice_aqc_opc_get_recipe_to_profile:
1622 break;
1623 case ice_aqc_opc_release_res:
1624 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1625 break;
1626 fallthrough;
1627 default:
1628 mutex_lock(&ice_global_cfg_lock_sw);
1629 lock_acquired = true;
1630 break;
1631 }
1632
1633 status = ice_sq_send_cmd_retry(hw, cq: &hw->adminq, desc, buf, buf_size, cd);
1634 if (lock_acquired)
1635 mutex_unlock(lock: &ice_global_cfg_lock_sw);
1636
1637 return status;
1638}
1639
1640/**
1641 * ice_aq_get_fw_ver
1642 * @hw: pointer to the HW struct
1643 * @cd: pointer to command details structure or NULL
1644 *
1645 * Get the firmware version (0x0001) from the admin queue commands
1646 */
1647int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1648{
1649 struct ice_aqc_get_ver *resp;
1650 struct ice_aq_desc desc;
1651 int status;
1652
1653 resp = &desc.params.get_ver;
1654
1655 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_ver);
1656
1657 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
1658
1659 if (!status) {
1660 hw->fw_branch = resp->fw_branch;
1661 hw->fw_maj_ver = resp->fw_major;
1662 hw->fw_min_ver = resp->fw_minor;
1663 hw->fw_patch = resp->fw_patch;
1664 hw->fw_build = le32_to_cpu(resp->fw_build);
1665 hw->api_branch = resp->api_branch;
1666 hw->api_maj_ver = resp->api_major;
1667 hw->api_min_ver = resp->api_minor;
1668 hw->api_patch = resp->api_patch;
1669 }
1670
1671 return status;
1672}
1673
1674/**
1675 * ice_aq_send_driver_ver
1676 * @hw: pointer to the HW struct
1677 * @dv: driver's major, minor version
1678 * @cd: pointer to command details structure or NULL
1679 *
1680 * Send the driver version (0x0002) to the firmware
1681 */
1682int
1683ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1684 struct ice_sq_cd *cd)
1685{
1686 struct ice_aqc_driver_ver *cmd;
1687 struct ice_aq_desc desc;
1688 u16 len;
1689
1690 cmd = &desc.params.driver_ver;
1691
1692 if (!dv)
1693 return -EINVAL;
1694
1695 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_driver_ver);
1696
1697 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1698 cmd->major_ver = dv->major_ver;
1699 cmd->minor_ver = dv->minor_ver;
1700 cmd->build_ver = dv->build_ver;
1701 cmd->subbuild_ver = dv->subbuild_ver;
1702
1703 len = 0;
1704 while (len < sizeof(dv->driver_string) &&
1705 isascii(dv->driver_string[len]) && dv->driver_string[len])
1706 len++;
1707
1708 return ice_aq_send_cmd(hw, desc: &desc, buf: dv->driver_string, buf_size: len, cd);
1709}
1710
1711/**
1712 * ice_aq_q_shutdown
1713 * @hw: pointer to the HW struct
1714 * @unloading: is the driver unloading itself
1715 *
1716 * Tell the Firmware that we're shutting down the AdminQ and whether
1717 * or not the driver is unloading as well (0x0003).
1718 */
1719int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1720{
1721 struct ice_aqc_q_shutdown *cmd;
1722 struct ice_aq_desc desc;
1723
1724 cmd = &desc.params.q_shutdown;
1725
1726 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_q_shutdown);
1727
1728 if (unloading)
1729 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1730
1731 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
1732}
1733
1734/**
1735 * ice_aq_req_res
1736 * @hw: pointer to the HW struct
1737 * @res: resource ID
1738 * @access: access type
1739 * @sdp_number: resource number
1740 * @timeout: the maximum time in ms that the driver may hold the resource
1741 * @cd: pointer to command details structure or NULL
1742 *
1743 * Requests common resource using the admin queue commands (0x0008).
1744 * When attempting to acquire the Global Config Lock, the driver can
1745 * learn of three states:
1746 * 1) 0 - acquired lock, and can perform download package
1747 * 2) -EIO - did not get lock, driver should fail to load
1748 * 3) -EALREADY - did not get lock, but another driver has
1749 * successfully downloaded the package; the driver does
1750 * not have to download the package and can continue
1751 * loading
1752 *
1753 * Note that if the caller is in an acquire lock, perform action, release lock
1754 * phase of operation, it is possible that the FW may detect a timeout and issue
1755 * a CORER. In this case, the driver will receive a CORER interrupt and will
1756 * have to determine its cause. The calling thread that is handling this flow
1757 * will likely get an error propagated back to it indicating the Download
1758 * Package, Update Package or the Release Resource AQ commands timed out.
1759 */
1760static int
1761ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1762 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1763 struct ice_sq_cd *cd)
1764{
1765 struct ice_aqc_req_res *cmd_resp;
1766 struct ice_aq_desc desc;
1767 int status;
1768
1769 cmd_resp = &desc.params.res_owner;
1770
1771 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_req_res);
1772
1773 cmd_resp->res_id = cpu_to_le16(res);
1774 cmd_resp->access_type = cpu_to_le16(access);
1775 cmd_resp->res_number = cpu_to_le32(sdp_number);
1776 cmd_resp->timeout = cpu_to_le32(*timeout);
1777 *timeout = 0;
1778
1779 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
1780
1781 /* The completion specifies the maximum time in ms that the driver
1782 * may hold the resource in the Timeout field.
1783 */
1784
1785 /* Global config lock response utilizes an additional status field.
1786 *
1787 * If the Global config lock resource is held by some other driver, the
1788 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1789 * and the timeout field indicates the maximum time the current owner
1790 * of the resource has to free it.
1791 */
1792 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1793 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1794 *timeout = le32_to_cpu(cmd_resp->timeout);
1795 return 0;
1796 } else if (le16_to_cpu(cmd_resp->status) ==
1797 ICE_AQ_RES_GLBL_IN_PROG) {
1798 *timeout = le32_to_cpu(cmd_resp->timeout);
1799 return -EIO;
1800 } else if (le16_to_cpu(cmd_resp->status) ==
1801 ICE_AQ_RES_GLBL_DONE) {
1802 return -EALREADY;
1803 }
1804
1805 /* invalid FW response, force a timeout immediately */
1806 *timeout = 0;
1807 return -EIO;
1808 }
1809
1810 /* If the resource is held by some other driver, the command completes
1811 * with a busy return value and the timeout field indicates the maximum
1812 * time the current owner of the resource has to free it.
1813 */
1814 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1815 *timeout = le32_to_cpu(cmd_resp->timeout);
1816
1817 return status;
1818}
1819
1820/**
1821 * ice_aq_release_res
1822 * @hw: pointer to the HW struct
1823 * @res: resource ID
1824 * @sdp_number: resource number
1825 * @cd: pointer to command details structure or NULL
1826 *
1827 * release common resource using the admin queue commands (0x0009)
1828 */
1829static int
1830ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1831 struct ice_sq_cd *cd)
1832{
1833 struct ice_aqc_req_res *cmd;
1834 struct ice_aq_desc desc;
1835
1836 cmd = &desc.params.res_owner;
1837
1838 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_release_res);
1839
1840 cmd->res_id = cpu_to_le16(res);
1841 cmd->res_number = cpu_to_le32(sdp_number);
1842
1843 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
1844}
1845
1846/**
1847 * ice_acquire_res
1848 * @hw: pointer to the HW structure
1849 * @res: resource ID
1850 * @access: access type (read or write)
1851 * @timeout: timeout in milliseconds
1852 *
1853 * This function will attempt to acquire the ownership of a resource.
1854 */
1855int
1856ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1857 enum ice_aq_res_access_type access, u32 timeout)
1858{
1859#define ICE_RES_POLLING_DELAY_MS 10
1860 u32 delay = ICE_RES_POLLING_DELAY_MS;
1861 u32 time_left = timeout;
1862 int status;
1863
1864 status = ice_aq_req_res(hw, res, access, sdp_number: 0, timeout: &time_left, NULL);
1865
1866 /* A return code of -EALREADY means that another driver has
1867 * previously acquired the resource and performed any necessary updates;
1868 * in this case the caller does not obtain the resource and has no
1869 * further work to do.
1870 */
1871 if (status == -EALREADY)
1872 goto ice_acquire_res_exit;
1873
1874 if (status)
1875 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1876
1877 /* If necessary, poll until the current lock owner timeouts */
1878 timeout = time_left;
1879 while (status && timeout && time_left) {
1880 mdelay(delay);
1881 timeout = (timeout > delay) ? timeout - delay : 0;
1882 status = ice_aq_req_res(hw, res, access, sdp_number: 0, timeout: &time_left, NULL);
1883
1884 if (status == -EALREADY)
1885 /* lock free, but no work to do */
1886 break;
1887
1888 if (!status)
1889 /* lock acquired */
1890 break;
1891 }
1892 if (status && status != -EALREADY)
1893 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1894
1895ice_acquire_res_exit:
1896 if (status == -EALREADY) {
1897 if (access == ICE_RES_WRITE)
1898 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1899 else
1900 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1901 }
1902 return status;
1903}
1904
1905/**
1906 * ice_release_res
1907 * @hw: pointer to the HW structure
1908 * @res: resource ID
1909 *
1910 * This function will release a resource using the proper Admin Command.
1911 */
1912void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1913{
1914 unsigned long timeout;
1915 int status;
1916
1917 /* there are some rare cases when trying to release the resource
1918 * results in an admin queue timeout, so handle them correctly
1919 */
1920 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1921 do {
1922 status = ice_aq_release_res(hw, res, sdp_number: 0, NULL);
1923 if (status != -EIO)
1924 break;
1925 usleep_range(min: 1000, max: 2000);
1926 } while (time_before(jiffies, timeout));
1927}
1928
1929/**
1930 * ice_aq_alloc_free_res - command to allocate/free resources
1931 * @hw: pointer to the HW struct
1932 * @buf: Indirect buffer to hold data parameters and response
1933 * @buf_size: size of buffer for indirect commands
1934 * @opc: pass in the command opcode
1935 *
1936 * Helper function to allocate/free resources using the admin queue commands
1937 */
1938int ice_aq_alloc_free_res(struct ice_hw *hw,
1939 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1940 enum ice_adminq_opc opc)
1941{
1942 struct ice_aqc_alloc_free_res_cmd *cmd;
1943 struct ice_aq_desc desc;
1944
1945 cmd = &desc.params.sw_res_ctrl;
1946
1947 if (!buf || buf_size < flex_array_size(buf, elem, 1))
1948 return -EINVAL;
1949
1950 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: opc);
1951
1952 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1953
1954 cmd->num_entries = cpu_to_le16(1);
1955
1956 return ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, NULL);
1957}
1958
1959/**
1960 * ice_alloc_hw_res - allocate resource
1961 * @hw: pointer to the HW struct
1962 * @type: type of resource
1963 * @num: number of resources to allocate
1964 * @btm: allocate from bottom
1965 * @res: pointer to array that will receive the resources
1966 */
1967int
1968ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1969{
1970 struct ice_aqc_alloc_free_res_elem *buf;
1971 u16 buf_len;
1972 int status;
1973
1974 buf_len = struct_size(buf, elem, num);
1975 buf = kzalloc(size: buf_len, GFP_KERNEL);
1976 if (!buf)
1977 return -ENOMEM;
1978
1979 /* Prepare buffer to allocate resource. */
1980 buf->num_elems = cpu_to_le16(num);
1981 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1982 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1983 if (btm)
1984 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1985
1986 status = ice_aq_alloc_free_res(hw, buf, buf_size: buf_len, opc: ice_aqc_opc_alloc_res);
1987 if (status)
1988 goto ice_alloc_res_exit;
1989
1990 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1991
1992ice_alloc_res_exit:
1993 kfree(objp: buf);
1994 return status;
1995}
1996
1997/**
1998 * ice_free_hw_res - free allocated HW resource
1999 * @hw: pointer to the HW struct
2000 * @type: type of resource to free
2001 * @num: number of resources
2002 * @res: pointer to array that contains the resources to free
2003 */
2004int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2005{
2006 struct ice_aqc_alloc_free_res_elem *buf;
2007 u16 buf_len;
2008 int status;
2009
2010 buf_len = struct_size(buf, elem, num);
2011 buf = kzalloc(size: buf_len, GFP_KERNEL);
2012 if (!buf)
2013 return -ENOMEM;
2014
2015 /* Prepare buffer to free resource. */
2016 buf->num_elems = cpu_to_le16(num);
2017 buf->res_type = cpu_to_le16(type);
2018 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2019
2020 status = ice_aq_alloc_free_res(hw, buf, buf_size: buf_len, opc: ice_aqc_opc_free_res);
2021 if (status)
2022 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2023
2024 kfree(objp: buf);
2025 return status;
2026}
2027
2028/**
2029 * ice_get_num_per_func - determine number of resources per PF
2030 * @hw: pointer to the HW structure
2031 * @max: value to be evenly split between each PF
2032 *
2033 * Determine the number of valid functions by going through the bitmap returned
2034 * from parsing capabilities and use this to calculate the number of resources
2035 * per PF based on the max value passed in.
2036 */
2037static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2038{
2039 u8 funcs;
2040
2041#define ICE_CAPS_VALID_FUNCS_M 0xFF
2042 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2043 ICE_CAPS_VALID_FUNCS_M);
2044
2045 if (!funcs)
2046 return 0;
2047
2048 return max / funcs;
2049}
2050
2051/**
2052 * ice_parse_common_caps - parse common device/function capabilities
2053 * @hw: pointer to the HW struct
2054 * @caps: pointer to common capabilities structure
2055 * @elem: the capability element to parse
2056 * @prefix: message prefix for tracing capabilities
2057 *
2058 * Given a capability element, extract relevant details into the common
2059 * capability structure.
2060 *
2061 * Returns: true if the capability matches one of the common capability ids,
2062 * false otherwise.
2063 */
2064static bool
2065ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2066 struct ice_aqc_list_caps_elem *elem, const char *prefix)
2067{
2068 u32 logical_id = le32_to_cpu(elem->logical_id);
2069 u32 phys_id = le32_to_cpu(elem->phys_id);
2070 u32 number = le32_to_cpu(elem->number);
2071 u16 cap = le16_to_cpu(elem->cap);
2072 bool found = true;
2073
2074 switch (cap) {
2075 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2076 caps->valid_functions = number;
2077 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2078 caps->valid_functions);
2079 break;
2080 case ICE_AQC_CAPS_SRIOV:
2081 caps->sr_iov_1_1 = (number == 1);
2082 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2083 caps->sr_iov_1_1);
2084 break;
2085 case ICE_AQC_CAPS_DCB:
2086 caps->dcb = (number == 1);
2087 caps->active_tc_bitmap = logical_id;
2088 caps->maxtc = phys_id;
2089 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2090 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2091 caps->active_tc_bitmap);
2092 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2093 break;
2094 case ICE_AQC_CAPS_RSS:
2095 caps->rss_table_size = number;
2096 caps->rss_table_entry_width = logical_id;
2097 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2098 caps->rss_table_size);
2099 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2100 caps->rss_table_entry_width);
2101 break;
2102 case ICE_AQC_CAPS_RXQS:
2103 caps->num_rxq = number;
2104 caps->rxq_first_id = phys_id;
2105 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2106 caps->num_rxq);
2107 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2108 caps->rxq_first_id);
2109 break;
2110 case ICE_AQC_CAPS_TXQS:
2111 caps->num_txq = number;
2112 caps->txq_first_id = phys_id;
2113 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2114 caps->num_txq);
2115 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2116 caps->txq_first_id);
2117 break;
2118 case ICE_AQC_CAPS_MSIX:
2119 caps->num_msix_vectors = number;
2120 caps->msix_vector_first_id = phys_id;
2121 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2122 caps->num_msix_vectors);
2123 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2124 caps->msix_vector_first_id);
2125 break;
2126 case ICE_AQC_CAPS_PENDING_NVM_VER:
2127 caps->nvm_update_pending_nvm = true;
2128 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2129 break;
2130 case ICE_AQC_CAPS_PENDING_OROM_VER:
2131 caps->nvm_update_pending_orom = true;
2132 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2133 break;
2134 case ICE_AQC_CAPS_PENDING_NET_VER:
2135 caps->nvm_update_pending_netlist = true;
2136 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2137 break;
2138 case ICE_AQC_CAPS_NVM_MGMT:
2139 caps->nvm_unified_update =
2140 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2141 true : false;
2142 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2143 caps->nvm_unified_update);
2144 break;
2145 case ICE_AQC_CAPS_RDMA:
2146 caps->rdma = (number == 1);
2147 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2148 break;
2149 case ICE_AQC_CAPS_MAX_MTU:
2150 caps->max_mtu = number;
2151 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2152 prefix, caps->max_mtu);
2153 break;
2154 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2155 caps->pcie_reset_avoidance = (number > 0);
2156 ice_debug(hw, ICE_DBG_INIT,
2157 "%s: pcie_reset_avoidance = %d\n", prefix,
2158 caps->pcie_reset_avoidance);
2159 break;
2160 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2161 caps->reset_restrict_support = (number == 1);
2162 ice_debug(hw, ICE_DBG_INIT,
2163 "%s: reset_restrict_support = %d\n", prefix,
2164 caps->reset_restrict_support);
2165 break;
2166 case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2167 caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2168 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2169 prefix, caps->roce_lag);
2170 caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2171 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2172 prefix, caps->sriov_lag);
2173 break;
2174 default:
2175 /* Not one of the recognized common capabilities */
2176 found = false;
2177 }
2178
2179 return found;
2180}
2181
2182/**
2183 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2184 * @hw: pointer to the HW structure
2185 * @caps: pointer to capabilities structure to fix
2186 *
2187 * Re-calculate the capabilities that are dependent on the number of physical
2188 * ports; i.e. some features are not supported or function differently on
2189 * devices with more than 4 ports.
2190 */
2191static void
2192ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2193{
2194 /* This assumes device capabilities are always scanned before function
2195 * capabilities during the initialization flow.
2196 */
2197 if (hw->dev_caps.num_funcs > 4) {
2198 /* Max 4 TCs per port */
2199 caps->maxtc = 4;
2200 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2201 caps->maxtc);
2202 if (caps->rdma) {
2203 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2204 caps->rdma = 0;
2205 }
2206
2207 /* print message only when processing device capabilities
2208 * during initialization.
2209 */
2210 if (caps == &hw->dev_caps.common_cap)
2211 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2212 }
2213}
2214
2215/**
2216 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2217 * @hw: pointer to the HW struct
2218 * @func_p: pointer to function capabilities structure
2219 * @cap: pointer to the capability element to parse
2220 *
2221 * Extract function capabilities for ICE_AQC_CAPS_VF.
2222 */
2223static void
2224ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2225 struct ice_aqc_list_caps_elem *cap)
2226{
2227 u32 logical_id = le32_to_cpu(cap->logical_id);
2228 u32 number = le32_to_cpu(cap->number);
2229
2230 func_p->num_allocd_vfs = number;
2231 func_p->vf_base_id = logical_id;
2232 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2233 func_p->num_allocd_vfs);
2234 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2235 func_p->vf_base_id);
2236}
2237
2238/**
2239 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2240 * @hw: pointer to the HW struct
2241 * @func_p: pointer to function capabilities structure
2242 * @cap: pointer to the capability element to parse
2243 *
2244 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2245 */
2246static void
2247ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2248 struct ice_aqc_list_caps_elem *cap)
2249{
2250 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2251 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2252 le32_to_cpu(cap->number));
2253 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2254 func_p->guar_num_vsi);
2255}
2256
2257/**
2258 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2259 * @hw: pointer to the HW struct
2260 * @func_p: pointer to function capabilities structure
2261 * @cap: pointer to the capability element to parse
2262 *
2263 * Extract function capabilities for ICE_AQC_CAPS_1588.
2264 */
2265static void
2266ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2267 struct ice_aqc_list_caps_elem *cap)
2268{
2269 struct ice_ts_func_info *info = &func_p->ts_func_info;
2270 u32 number = le32_to_cpu(cap->number);
2271
2272 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2273 func_p->common_cap.ieee_1588 = info->ena;
2274
2275 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2276 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2277 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2278 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2279
2280 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2281 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2282
2283 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2284 info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2285 } else {
2286 /* Unknown clock frequency, so assume a (probably incorrect)
2287 * default to avoid out-of-bounds look ups of frequency
2288 * related information.
2289 */
2290 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2291 info->clk_freq);
2292 info->time_ref = ICE_TIME_REF_FREQ_25_000;
2293 }
2294
2295 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2296 func_p->common_cap.ieee_1588);
2297 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2298 info->src_tmr_owned);
2299 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2300 info->tmr_ena);
2301 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2302 info->tmr_index_owned);
2303 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2304 info->tmr_index_assoc);
2305 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2306 info->clk_freq);
2307 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2308 info->clk_src);
2309}
2310
2311/**
2312 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2313 * @hw: pointer to the HW struct
2314 * @func_p: pointer to function capabilities structure
2315 *
2316 * Extract function capabilities for ICE_AQC_CAPS_FD.
2317 */
2318static void
2319ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2320{
2321 u32 reg_val, gsize, bsize;
2322
2323 reg_val = rd32(hw, GLQF_FD_SIZE);
2324 switch (hw->mac_type) {
2325 case ICE_MAC_E830:
2326 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2327 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2328 break;
2329 case ICE_MAC_E810:
2330 default:
2331 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2332 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2333 }
2334 func_p->fd_fltr_guar = ice_get_num_per_func(hw, max: gsize);
2335 func_p->fd_fltr_best_effort = bsize;
2336
2337 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2338 func_p->fd_fltr_guar);
2339 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2340 func_p->fd_fltr_best_effort);
2341}
2342
2343/**
2344 * ice_parse_func_caps - Parse function capabilities
2345 * @hw: pointer to the HW struct
2346 * @func_p: pointer to function capabilities structure
2347 * @buf: buffer containing the function capability records
2348 * @cap_count: the number of capabilities
2349 *
2350 * Helper function to parse function (0x000A) capabilities list. For
2351 * capabilities shared between device and function, this relies on
2352 * ice_parse_common_caps.
2353 *
2354 * Loop through the list of provided capabilities and extract the relevant
2355 * data into the function capabilities structured.
2356 */
2357static void
2358ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2359 void *buf, u32 cap_count)
2360{
2361 struct ice_aqc_list_caps_elem *cap_resp;
2362 u32 i;
2363
2364 cap_resp = buf;
2365
2366 memset(func_p, 0, sizeof(*func_p));
2367
2368 for (i = 0; i < cap_count; i++) {
2369 u16 cap = le16_to_cpu(cap_resp[i].cap);
2370 bool found;
2371
2372 found = ice_parse_common_caps(hw, caps: &func_p->common_cap,
2373 elem: &cap_resp[i], prefix: "func caps");
2374
2375 switch (cap) {
2376 case ICE_AQC_CAPS_VF:
2377 ice_parse_vf_func_caps(hw, func_p, cap: &cap_resp[i]);
2378 break;
2379 case ICE_AQC_CAPS_VSI:
2380 ice_parse_vsi_func_caps(hw, func_p, cap: &cap_resp[i]);
2381 break;
2382 case ICE_AQC_CAPS_1588:
2383 ice_parse_1588_func_caps(hw, func_p, cap: &cap_resp[i]);
2384 break;
2385 case ICE_AQC_CAPS_FD:
2386 ice_parse_fdir_func_caps(hw, func_p);
2387 break;
2388 default:
2389 /* Don't list common capabilities as unknown */
2390 if (!found)
2391 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2392 i, cap);
2393 break;
2394 }
2395 }
2396
2397 ice_recalc_port_limited_caps(hw, caps: &func_p->common_cap);
2398}
2399
2400/**
2401 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2402 * @hw: pointer to the HW struct
2403 * @dev_p: pointer to device capabilities structure
2404 * @cap: capability element to parse
2405 *
2406 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2407 */
2408static void
2409ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2410 struct ice_aqc_list_caps_elem *cap)
2411{
2412 u32 number = le32_to_cpu(cap->number);
2413
2414 dev_p->num_funcs = hweight32(number);
2415 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2416 dev_p->num_funcs);
2417}
2418
2419/**
2420 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2421 * @hw: pointer to the HW struct
2422 * @dev_p: pointer to device capabilities structure
2423 * @cap: capability element to parse
2424 *
2425 * Parse ICE_AQC_CAPS_VF for device capabilities.
2426 */
2427static void
2428ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2429 struct ice_aqc_list_caps_elem *cap)
2430{
2431 u32 number = le32_to_cpu(cap->number);
2432
2433 dev_p->num_vfs_exposed = number;
2434 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2435 dev_p->num_vfs_exposed);
2436}
2437
2438/**
2439 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2440 * @hw: pointer to the HW struct
2441 * @dev_p: pointer to device capabilities structure
2442 * @cap: capability element to parse
2443 *
2444 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2445 */
2446static void
2447ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2448 struct ice_aqc_list_caps_elem *cap)
2449{
2450 u32 number = le32_to_cpu(cap->number);
2451
2452 dev_p->num_vsi_allocd_to_host = number;
2453 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2454 dev_p->num_vsi_allocd_to_host);
2455}
2456
2457/**
2458 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2459 * @hw: pointer to the HW struct
2460 * @dev_p: pointer to device capabilities structure
2461 * @cap: capability element to parse
2462 *
2463 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2464 */
2465static void
2466ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2467 struct ice_aqc_list_caps_elem *cap)
2468{
2469 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2470 u32 logical_id = le32_to_cpu(cap->logical_id);
2471 u32 phys_id = le32_to_cpu(cap->phys_id);
2472 u32 number = le32_to_cpu(cap->number);
2473
2474 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2475 dev_p->common_cap.ieee_1588 = info->ena;
2476
2477 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2478 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2479 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2480
2481 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2482 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2483 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2484
2485 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2486 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2487
2488 info->ena_ports = logical_id;
2489 info->tmr_own_map = phys_id;
2490
2491 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2492 dev_p->common_cap.ieee_1588);
2493 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2494 info->tmr0_owner);
2495 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2496 info->tmr0_owned);
2497 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2498 info->tmr0_ena);
2499 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2500 info->tmr1_owner);
2501 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2502 info->tmr1_owned);
2503 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2504 info->tmr1_ena);
2505 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2506 info->ts_ll_read);
2507 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2508 info->ts_ll_int_read);
2509 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2510 info->ena_ports);
2511 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2512 info->tmr_own_map);
2513}
2514
2515/**
2516 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2517 * @hw: pointer to the HW struct
2518 * @dev_p: pointer to device capabilities structure
2519 * @cap: capability element to parse
2520 *
2521 * Parse ICE_AQC_CAPS_FD for device capabilities.
2522 */
2523static void
2524ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2525 struct ice_aqc_list_caps_elem *cap)
2526{
2527 u32 number = le32_to_cpu(cap->number);
2528
2529 dev_p->num_flow_director_fltr = number;
2530 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2531 dev_p->num_flow_director_fltr);
2532}
2533
2534/**
2535 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2536 * @hw: pointer to the HW struct
2537 * @dev_p: pointer to device capabilities structure
2538 * @cap: capability element to parse
2539 *
2540 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2541 * enabled sensors.
2542 */
2543static void
2544ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2545 struct ice_aqc_list_caps_elem *cap)
2546{
2547 dev_p->supported_sensors = le32_to_cpu(cap->number);
2548
2549 ice_debug(hw, ICE_DBG_INIT,
2550 "dev caps: supported sensors (bitmap) = 0x%x\n",
2551 dev_p->supported_sensors);
2552}
2553
2554/**
2555 * ice_parse_dev_caps - Parse device capabilities
2556 * @hw: pointer to the HW struct
2557 * @dev_p: pointer to device capabilities structure
2558 * @buf: buffer containing the device capability records
2559 * @cap_count: the number of capabilities
2560 *
2561 * Helper device to parse device (0x000B) capabilities list. For
2562 * capabilities shared between device and function, this relies on
2563 * ice_parse_common_caps.
2564 *
2565 * Loop through the list of provided capabilities and extract the relevant
2566 * data into the device capabilities structured.
2567 */
2568static void
2569ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2570 void *buf, u32 cap_count)
2571{
2572 struct ice_aqc_list_caps_elem *cap_resp;
2573 u32 i;
2574
2575 cap_resp = buf;
2576
2577 memset(dev_p, 0, sizeof(*dev_p));
2578
2579 for (i = 0; i < cap_count; i++) {
2580 u16 cap = le16_to_cpu(cap_resp[i].cap);
2581 bool found;
2582
2583 found = ice_parse_common_caps(hw, caps: &dev_p->common_cap,
2584 elem: &cap_resp[i], prefix: "dev caps");
2585
2586 switch (cap) {
2587 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2588 ice_parse_valid_functions_cap(hw, dev_p, cap: &cap_resp[i]);
2589 break;
2590 case ICE_AQC_CAPS_VF:
2591 ice_parse_vf_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2592 break;
2593 case ICE_AQC_CAPS_VSI:
2594 ice_parse_vsi_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2595 break;
2596 case ICE_AQC_CAPS_1588:
2597 ice_parse_1588_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2598 break;
2599 case ICE_AQC_CAPS_FD:
2600 ice_parse_fdir_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2601 break;
2602 case ICE_AQC_CAPS_SENSOR_READING:
2603 ice_parse_sensor_reading_cap(hw, dev_p, cap: &cap_resp[i]);
2604 break;
2605 default:
2606 /* Don't list common capabilities as unknown */
2607 if (!found)
2608 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2609 i, cap);
2610 break;
2611 }
2612 }
2613
2614 ice_recalc_port_limited_caps(hw, caps: &dev_p->common_cap);
2615}
2616
2617/**
2618 * ice_is_pf_c827 - check if pf contains c827 phy
2619 * @hw: pointer to the hw struct
2620 */
2621bool ice_is_pf_c827(struct ice_hw *hw)
2622{
2623 struct ice_aqc_get_link_topo cmd = {};
2624 u8 node_part_number;
2625 u16 node_handle;
2626 int status;
2627
2628 if (hw->mac_type != ICE_MAC_E810)
2629 return false;
2630
2631 if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2632 return true;
2633
2634 cmd.addr.topo_params.node_type_ctx =
2635 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2636 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2637 cmd.addr.topo_params.index = 0;
2638
2639 status = ice_aq_get_netlist_node(hw, cmd: &cmd, node_part_number: &node_part_number,
2640 node_handle: &node_handle);
2641
2642 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2643 return false;
2644
2645 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2646 return true;
2647
2648 return false;
2649}
2650
2651/**
2652 * ice_is_phy_rclk_in_netlist
2653 * @hw: pointer to the hw struct
2654 *
2655 * Check if the PHY Recovered Clock device is present in the netlist
2656 */
2657bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2658{
2659 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2660 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2661 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2662 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2663 return false;
2664
2665 return true;
2666}
2667
2668/**
2669 * ice_is_clock_mux_in_netlist
2670 * @hw: pointer to the hw struct
2671 *
2672 * Check if the Clock Multiplexer device is present in the netlist
2673 */
2674bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2675{
2676 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2677 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2678 NULL))
2679 return false;
2680
2681 return true;
2682}
2683
2684/**
2685 * ice_is_cgu_in_netlist - check for CGU presence
2686 * @hw: pointer to the hw struct
2687 *
2688 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2689 * Save the CGU part number in the hw structure for later use.
2690 * Return:
2691 * * true - cgu is present
2692 * * false - cgu is not present
2693 */
2694bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2695{
2696 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2697 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2698 NULL)) {
2699 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2700 return true;
2701 } else if (!ice_find_netlist_node(hw,
2702 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2703 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2704 NULL)) {
2705 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2706 return true;
2707 }
2708
2709 return false;
2710}
2711
2712/**
2713 * ice_is_gps_in_netlist
2714 * @hw: pointer to the hw struct
2715 *
2716 * Check if the GPS generic device is present in the netlist
2717 */
2718bool ice_is_gps_in_netlist(struct ice_hw *hw)
2719{
2720 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2721 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2722 return false;
2723
2724 return true;
2725}
2726
2727/**
2728 * ice_aq_list_caps - query function/device capabilities
2729 * @hw: pointer to the HW struct
2730 * @buf: a buffer to hold the capabilities
2731 * @buf_size: size of the buffer
2732 * @cap_count: if not NULL, set to the number of capabilities reported
2733 * @opc: capabilities type to discover, device or function
2734 * @cd: pointer to command details structure or NULL
2735 *
2736 * Get the function (0x000A) or device (0x000B) capabilities description from
2737 * firmware and store it in the buffer.
2738 *
2739 * If the cap_count pointer is not NULL, then it is set to the number of
2740 * capabilities firmware will report. Note that if the buffer size is too
2741 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2742 * cap_count will still be updated in this case. It is recommended that the
2743 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2744 * firmware could return) to avoid this.
2745 */
2746int
2747ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2748 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2749{
2750 struct ice_aqc_list_caps *cmd;
2751 struct ice_aq_desc desc;
2752 int status;
2753
2754 cmd = &desc.params.get_cap;
2755
2756 if (opc != ice_aqc_opc_list_func_caps &&
2757 opc != ice_aqc_opc_list_dev_caps)
2758 return -EINVAL;
2759
2760 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: opc);
2761 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
2762
2763 if (cap_count)
2764 *cap_count = le32_to_cpu(cmd->count);
2765
2766 return status;
2767}
2768
2769/**
2770 * ice_discover_dev_caps - Read and extract device capabilities
2771 * @hw: pointer to the hardware structure
2772 * @dev_caps: pointer to device capabilities structure
2773 *
2774 * Read the device capabilities and extract them into the dev_caps structure
2775 * for later use.
2776 */
2777int
2778ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2779{
2780 u32 cap_count = 0;
2781 void *cbuf;
2782 int status;
2783
2784 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2785 if (!cbuf)
2786 return -ENOMEM;
2787
2788 /* Although the driver doesn't know the number of capabilities the
2789 * device will return, we can simply send a 4KB buffer, the maximum
2790 * possible size that firmware can return.
2791 */
2792 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2793
2794 status = ice_aq_list_caps(hw, buf: cbuf, ICE_AQ_MAX_BUF_LEN, cap_count: &cap_count,
2795 opc: ice_aqc_opc_list_dev_caps, NULL);
2796 if (!status)
2797 ice_parse_dev_caps(hw, dev_p: dev_caps, buf: cbuf, cap_count);
2798 kfree(objp: cbuf);
2799
2800 return status;
2801}
2802
2803/**
2804 * ice_discover_func_caps - Read and extract function capabilities
2805 * @hw: pointer to the hardware structure
2806 * @func_caps: pointer to function capabilities structure
2807 *
2808 * Read the function capabilities and extract them into the func_caps structure
2809 * for later use.
2810 */
2811static int
2812ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2813{
2814 u32 cap_count = 0;
2815 void *cbuf;
2816 int status;
2817
2818 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2819 if (!cbuf)
2820 return -ENOMEM;
2821
2822 /* Although the driver doesn't know the number of capabilities the
2823 * device will return, we can simply send a 4KB buffer, the maximum
2824 * possible size that firmware can return.
2825 */
2826 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2827
2828 status = ice_aq_list_caps(hw, buf: cbuf, ICE_AQ_MAX_BUF_LEN, cap_count: &cap_count,
2829 opc: ice_aqc_opc_list_func_caps, NULL);
2830 if (!status)
2831 ice_parse_func_caps(hw, func_p: func_caps, buf: cbuf, cap_count);
2832 kfree(objp: cbuf);
2833
2834 return status;
2835}
2836
2837/**
2838 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2839 * @hw: pointer to the hardware structure
2840 */
2841void ice_set_safe_mode_caps(struct ice_hw *hw)
2842{
2843 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2844 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2845 struct ice_hw_common_caps cached_caps;
2846 u32 num_funcs;
2847
2848 /* cache some func_caps values that should be restored after memset */
2849 cached_caps = func_caps->common_cap;
2850
2851 /* unset func capabilities */
2852 memset(func_caps, 0, sizeof(*func_caps));
2853
2854#define ICE_RESTORE_FUNC_CAP(name) \
2855 func_caps->common_cap.name = cached_caps.name
2856
2857 /* restore cached values */
2858 ICE_RESTORE_FUNC_CAP(valid_functions);
2859 ICE_RESTORE_FUNC_CAP(txq_first_id);
2860 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2861 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2862 ICE_RESTORE_FUNC_CAP(max_mtu);
2863 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2864 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2865 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2866 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2867
2868 /* one Tx and one Rx queue in safe mode */
2869 func_caps->common_cap.num_rxq = 1;
2870 func_caps->common_cap.num_txq = 1;
2871
2872 /* two MSIX vectors, one for traffic and one for misc causes */
2873 func_caps->common_cap.num_msix_vectors = 2;
2874 func_caps->guar_num_vsi = 1;
2875
2876 /* cache some dev_caps values that should be restored after memset */
2877 cached_caps = dev_caps->common_cap;
2878 num_funcs = dev_caps->num_funcs;
2879
2880 /* unset dev capabilities */
2881 memset(dev_caps, 0, sizeof(*dev_caps));
2882
2883#define ICE_RESTORE_DEV_CAP(name) \
2884 dev_caps->common_cap.name = cached_caps.name
2885
2886 /* restore cached values */
2887 ICE_RESTORE_DEV_CAP(valid_functions);
2888 ICE_RESTORE_DEV_CAP(txq_first_id);
2889 ICE_RESTORE_DEV_CAP(rxq_first_id);
2890 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2891 ICE_RESTORE_DEV_CAP(max_mtu);
2892 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2893 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2894 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2895 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2896 dev_caps->num_funcs = num_funcs;
2897
2898 /* one Tx and one Rx queue per function in safe mode */
2899 dev_caps->common_cap.num_rxq = num_funcs;
2900 dev_caps->common_cap.num_txq = num_funcs;
2901
2902 /* two MSIX vectors per function */
2903 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2904}
2905
2906/**
2907 * ice_get_caps - get info about the HW
2908 * @hw: pointer to the hardware structure
2909 */
2910int ice_get_caps(struct ice_hw *hw)
2911{
2912 int status;
2913
2914 status = ice_discover_dev_caps(hw, dev_caps: &hw->dev_caps);
2915 if (status)
2916 return status;
2917
2918 return ice_discover_func_caps(hw, func_caps: &hw->func_caps);
2919}
2920
2921/**
2922 * ice_aq_manage_mac_write - manage MAC address write command
2923 * @hw: pointer to the HW struct
2924 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2925 * @flags: flags to control write behavior
2926 * @cd: pointer to command details structure or NULL
2927 *
2928 * This function is used to write MAC address to the NVM (0x0108).
2929 */
2930int
2931ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2932 struct ice_sq_cd *cd)
2933{
2934 struct ice_aqc_manage_mac_write *cmd;
2935 struct ice_aq_desc desc;
2936
2937 cmd = &desc.params.mac_write;
2938 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_manage_mac_write);
2939
2940 cmd->flags = flags;
2941 ether_addr_copy(dst: cmd->mac_addr, src: mac_addr);
2942
2943 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
2944}
2945
2946/**
2947 * ice_aq_clear_pxe_mode
2948 * @hw: pointer to the HW struct
2949 *
2950 * Tell the firmware that the driver is taking over from PXE (0x0110).
2951 */
2952static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2953{
2954 struct ice_aq_desc desc;
2955
2956 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_clear_pxe_mode);
2957 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2958
2959 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
2960}
2961
2962/**
2963 * ice_clear_pxe_mode - clear pxe operations mode
2964 * @hw: pointer to the HW struct
2965 *
2966 * Make sure all PXE mode settings are cleared, including things
2967 * like descriptor fetch/write-back mode.
2968 */
2969void ice_clear_pxe_mode(struct ice_hw *hw)
2970{
2971 if (ice_check_sq_alive(hw, cq: &hw->adminq))
2972 ice_aq_clear_pxe_mode(hw);
2973}
2974
2975/**
2976 * ice_aq_set_port_params - set physical port parameters.
2977 * @pi: pointer to the port info struct
2978 * @double_vlan: if set double VLAN is enabled
2979 * @cd: pointer to command details structure or NULL
2980 *
2981 * Set Physical port parameters (0x0203)
2982 */
2983int
2984ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2985 struct ice_sq_cd *cd)
2986
2987{
2988 struct ice_aqc_set_port_params *cmd;
2989 struct ice_hw *hw = pi->hw;
2990 struct ice_aq_desc desc;
2991 u16 cmd_flags = 0;
2992
2993 cmd = &desc.params.set_port_params;
2994
2995 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_params);
2996 if (double_vlan)
2997 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2998 cmd->cmd_flags = cpu_to_le16(cmd_flags);
2999
3000 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3001}
3002
3003/**
3004 * ice_is_100m_speed_supported
3005 * @hw: pointer to the HW struct
3006 *
3007 * returns true if 100M speeds are supported by the device,
3008 * false otherwise.
3009 */
3010bool ice_is_100m_speed_supported(struct ice_hw *hw)
3011{
3012 switch (hw->device_id) {
3013 case ICE_DEV_ID_E822C_SGMII:
3014 case ICE_DEV_ID_E822L_SGMII:
3015 case ICE_DEV_ID_E823L_1GBE:
3016 case ICE_DEV_ID_E823C_SGMII:
3017 return true;
3018 default:
3019 return false;
3020 }
3021}
3022
3023/**
3024 * ice_get_link_speed_based_on_phy_type - returns link speed
3025 * @phy_type_low: lower part of phy_type
3026 * @phy_type_high: higher part of phy_type
3027 *
3028 * This helper function will convert an entry in PHY type structure
3029 * [phy_type_low, phy_type_high] to its corresponding link speed.
3030 * Note: In the structure of [phy_type_low, phy_type_high], there should
3031 * be one bit set, as this function will convert one PHY type to its
3032 * speed.
3033 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3034 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3035 */
3036static u16
3037ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3038{
3039 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3040 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3041
3042 switch (phy_type_low) {
3043 case ICE_PHY_TYPE_LOW_100BASE_TX:
3044 case ICE_PHY_TYPE_LOW_100M_SGMII:
3045 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3046 break;
3047 case ICE_PHY_TYPE_LOW_1000BASE_T:
3048 case ICE_PHY_TYPE_LOW_1000BASE_SX:
3049 case ICE_PHY_TYPE_LOW_1000BASE_LX:
3050 case ICE_PHY_TYPE_LOW_1000BASE_KX:
3051 case ICE_PHY_TYPE_LOW_1G_SGMII:
3052 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3053 break;
3054 case ICE_PHY_TYPE_LOW_2500BASE_T:
3055 case ICE_PHY_TYPE_LOW_2500BASE_X:
3056 case ICE_PHY_TYPE_LOW_2500BASE_KX:
3057 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3058 break;
3059 case ICE_PHY_TYPE_LOW_5GBASE_T:
3060 case ICE_PHY_TYPE_LOW_5GBASE_KR:
3061 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3062 break;
3063 case ICE_PHY_TYPE_LOW_10GBASE_T:
3064 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3065 case ICE_PHY_TYPE_LOW_10GBASE_SR:
3066 case ICE_PHY_TYPE_LOW_10GBASE_LR:
3067 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3068 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3069 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3070 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3071 break;
3072 case ICE_PHY_TYPE_LOW_25GBASE_T:
3073 case ICE_PHY_TYPE_LOW_25GBASE_CR:
3074 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3075 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3076 case ICE_PHY_TYPE_LOW_25GBASE_SR:
3077 case ICE_PHY_TYPE_LOW_25GBASE_LR:
3078 case ICE_PHY_TYPE_LOW_25GBASE_KR:
3079 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3080 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3081 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3082 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3083 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3084 break;
3085 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3086 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3087 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3088 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3089 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3090 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3091 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3092 break;
3093 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3094 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3095 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3096 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3097 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3098 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3099 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3100 case ICE_PHY_TYPE_LOW_50G_AUI2:
3101 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3102 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3103 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3104 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3105 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3106 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3107 case ICE_PHY_TYPE_LOW_50G_AUI1:
3108 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3109 break;
3110 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3111 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3112 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3113 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3114 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3115 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3116 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3117 case ICE_PHY_TYPE_LOW_100G_AUI4:
3118 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3119 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3120 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3121 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3122 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3123 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3124 break;
3125 default:
3126 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3127 break;
3128 }
3129
3130 switch (phy_type_high) {
3131 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3132 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3133 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3134 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3135 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3136 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3137 break;
3138 default:
3139 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3140 break;
3141 }
3142
3143 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3144 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3145 return ICE_AQ_LINK_SPEED_UNKNOWN;
3146 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3147 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3148 return ICE_AQ_LINK_SPEED_UNKNOWN;
3149 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3150 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3151 return speed_phy_type_low;
3152 else
3153 return speed_phy_type_high;
3154}
3155
3156/**
3157 * ice_update_phy_type
3158 * @phy_type_low: pointer to the lower part of phy_type
3159 * @phy_type_high: pointer to the higher part of phy_type
3160 * @link_speeds_bitmap: targeted link speeds bitmap
3161 *
3162 * Note: For the link_speeds_bitmap structure, you can check it at
3163 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3164 * link_speeds_bitmap include multiple speeds.
3165 *
3166 * Each entry in this [phy_type_low, phy_type_high] structure will
3167 * present a certain link speed. This helper function will turn on bits
3168 * in [phy_type_low, phy_type_high] structure based on the value of
3169 * link_speeds_bitmap input parameter.
3170 */
3171void
3172ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3173 u16 link_speeds_bitmap)
3174{
3175 u64 pt_high;
3176 u64 pt_low;
3177 int index;
3178 u16 speed;
3179
3180 /* We first check with low part of phy_type */
3181 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3182 pt_low = BIT_ULL(index);
3183 speed = ice_get_link_speed_based_on_phy_type(phy_type_low: pt_low, phy_type_high: 0);
3184
3185 if (link_speeds_bitmap & speed)
3186 *phy_type_low |= BIT_ULL(index);
3187 }
3188
3189 /* We then check with high part of phy_type */
3190 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3191 pt_high = BIT_ULL(index);
3192 speed = ice_get_link_speed_based_on_phy_type(phy_type_low: 0, phy_type_high: pt_high);
3193
3194 if (link_speeds_bitmap & speed)
3195 *phy_type_high |= BIT_ULL(index);
3196 }
3197}
3198
3199/**
3200 * ice_aq_set_phy_cfg
3201 * @hw: pointer to the HW struct
3202 * @pi: port info structure of the interested logical port
3203 * @cfg: structure with PHY configuration data to be set
3204 * @cd: pointer to command details structure or NULL
3205 *
3206 * Set the various PHY configuration parameters supported on the Port.
3207 * One or more of the Set PHY config parameters may be ignored in an MFP
3208 * mode as the PF may not have the privilege to set some of the PHY Config
3209 * parameters. This status will be indicated by the command response (0x0601).
3210 */
3211int
3212ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3213 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3214{
3215 struct ice_aq_desc desc;
3216 int status;
3217
3218 if (!cfg)
3219 return -EINVAL;
3220
3221 /* Ensure that only valid bits of cfg->caps can be turned on. */
3222 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3223 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3224 cfg->caps);
3225
3226 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3227 }
3228
3229 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_phy_cfg);
3230 desc.params.set_phy.lport_num = pi->lport;
3231 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3232
3233 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3234 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3235 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3236 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3237 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3238 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3239 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3240 cfg->low_power_ctrl_an);
3241 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3242 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3243 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3244 cfg->link_fec_opt);
3245
3246 status = ice_aq_send_cmd(hw, desc: &desc, buf: cfg, buf_size: sizeof(*cfg), cd);
3247 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3248 status = 0;
3249
3250 if (!status)
3251 pi->phy.curr_user_phy_cfg = *cfg;
3252
3253 return status;
3254}
3255
3256/**
3257 * ice_update_link_info - update status of the HW network link
3258 * @pi: port info structure of the interested logical port
3259 */
3260int ice_update_link_info(struct ice_port_info *pi)
3261{
3262 struct ice_link_status *li;
3263 int status;
3264
3265 if (!pi)
3266 return -EINVAL;
3267
3268 li = &pi->phy.link_info;
3269
3270 status = ice_aq_get_link_info(pi, ena_lse: true, NULL, NULL);
3271 if (status)
3272 return status;
3273
3274 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3275 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3276
3277 pcaps = kzalloc(size: sizeof(*pcaps), GFP_KERNEL);
3278 if (!pcaps)
3279 return -ENOMEM;
3280
3281 status = ice_aq_get_phy_caps(pi, qual_mods: false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3282 pcaps, NULL);
3283 }
3284
3285 return status;
3286}
3287
3288/**
3289 * ice_cache_phy_user_req
3290 * @pi: port information structure
3291 * @cache_data: PHY logging data
3292 * @cache_mode: PHY logging mode
3293 *
3294 * Log the user request on (FC, FEC, SPEED) for later use.
3295 */
3296static void
3297ice_cache_phy_user_req(struct ice_port_info *pi,
3298 struct ice_phy_cache_mode_data cache_data,
3299 enum ice_phy_cache_mode cache_mode)
3300{
3301 if (!pi)
3302 return;
3303
3304 switch (cache_mode) {
3305 case ICE_FC_MODE:
3306 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3307 break;
3308 case ICE_SPEED_MODE:
3309 pi->phy.curr_user_speed_req =
3310 cache_data.data.curr_user_speed_req;
3311 break;
3312 case ICE_FEC_MODE:
3313 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3314 break;
3315 default:
3316 break;
3317 }
3318}
3319
3320/**
3321 * ice_caps_to_fc_mode
3322 * @caps: PHY capabilities
3323 *
3324 * Convert PHY FC capabilities to ice FC mode
3325 */
3326enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3327{
3328 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3329 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3330 return ICE_FC_FULL;
3331
3332 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3333 return ICE_FC_TX_PAUSE;
3334
3335 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3336 return ICE_FC_RX_PAUSE;
3337
3338 return ICE_FC_NONE;
3339}
3340
3341/**
3342 * ice_caps_to_fec_mode
3343 * @caps: PHY capabilities
3344 * @fec_options: Link FEC options
3345 *
3346 * Convert PHY FEC capabilities to ice FEC mode
3347 */
3348enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3349{
3350 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3351 return ICE_FEC_AUTO;
3352
3353 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3354 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3355 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3356 ICE_AQC_PHY_FEC_25G_KR_REQ))
3357 return ICE_FEC_BASER;
3358
3359 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3360 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3361 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3362 return ICE_FEC_RS;
3363
3364 return ICE_FEC_NONE;
3365}
3366
3367/**
3368 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3369 * @pi: port information structure
3370 * @cfg: PHY configuration data to set FC mode
3371 * @req_mode: FC mode to configure
3372 */
3373int
3374ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3375 enum ice_fc_mode req_mode)
3376{
3377 struct ice_phy_cache_mode_data cache_data;
3378 u8 pause_mask = 0x0;
3379
3380 if (!pi || !cfg)
3381 return -EINVAL;
3382
3383 switch (req_mode) {
3384 case ICE_FC_FULL:
3385 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3386 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3387 break;
3388 case ICE_FC_RX_PAUSE:
3389 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3390 break;
3391 case ICE_FC_TX_PAUSE:
3392 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3393 break;
3394 default:
3395 break;
3396 }
3397
3398 /* clear the old pause settings */
3399 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3400 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3401
3402 /* set the new capabilities */
3403 cfg->caps |= pause_mask;
3404
3405 /* Cache user FC request */
3406 cache_data.data.curr_user_fc_req = req_mode;
3407 ice_cache_phy_user_req(pi, cache_data, cache_mode: ICE_FC_MODE);
3408
3409 return 0;
3410}
3411
3412/**
3413 * ice_set_fc
3414 * @pi: port information structure
3415 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3416 * @ena_auto_link_update: enable automatic link update
3417 *
3418 * Set the requested flow control mode.
3419 */
3420int
3421ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3422{
3423 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3424 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3425 struct ice_hw *hw;
3426 int status;
3427
3428 if (!pi || !aq_failures)
3429 return -EINVAL;
3430
3431 *aq_failures = 0;
3432 hw = pi->hw;
3433
3434 pcaps = kzalloc(size: sizeof(*pcaps), GFP_KERNEL);
3435 if (!pcaps)
3436 return -ENOMEM;
3437
3438 /* Get the current PHY config */
3439 status = ice_aq_get_phy_caps(pi, qual_mods: false, ICE_AQC_REPORT_ACTIVE_CFG,
3440 pcaps, NULL);
3441 if (status) {
3442 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3443 goto out;
3444 }
3445
3446 ice_copy_phy_caps_to_cfg(pi, caps: pcaps, cfg: &cfg);
3447
3448 /* Configure the set PHY data */
3449 status = ice_cfg_phy_fc(pi, cfg: &cfg, req_mode: pi->fc.req_mode);
3450 if (status)
3451 goto out;
3452
3453 /* If the capabilities have changed, then set the new config */
3454 if (cfg.caps != pcaps->caps) {
3455 int retry_count, retry_max = 10;
3456
3457 /* Auto restart link so settings take effect */
3458 if (ena_auto_link_update)
3459 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3460
3461 status = ice_aq_set_phy_cfg(hw, pi, cfg: &cfg, NULL);
3462 if (status) {
3463 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3464 goto out;
3465 }
3466
3467 /* Update the link info
3468 * It sometimes takes a really long time for link to
3469 * come back from the atomic reset. Thus, we wait a
3470 * little bit.
3471 */
3472 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3473 status = ice_update_link_info(pi);
3474
3475 if (!status)
3476 break;
3477
3478 mdelay(100);
3479 }
3480
3481 if (status)
3482 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3483 }
3484
3485out:
3486 return status;
3487}
3488
3489/**
3490 * ice_phy_caps_equals_cfg
3491 * @phy_caps: PHY capabilities
3492 * @phy_cfg: PHY configuration
3493 *
3494 * Helper function to determine if PHY capabilities matches PHY
3495 * configuration
3496 */
3497bool
3498ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3499 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3500{
3501 u8 caps_mask, cfg_mask;
3502
3503 if (!phy_caps || !phy_cfg)
3504 return false;
3505
3506 /* These bits are not common between capabilities and configuration.
3507 * Do not use them to determine equality.
3508 */
3509 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3510 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3511 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3512
3513 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3514 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3515 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3516 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3517 phy_caps->eee_cap != phy_cfg->eee_cap ||
3518 phy_caps->eeer_value != phy_cfg->eeer_value ||
3519 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3520 return false;
3521
3522 return true;
3523}
3524
3525/**
3526 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3527 * @pi: port information structure
3528 * @caps: PHY ability structure to copy date from
3529 * @cfg: PHY configuration structure to copy data to
3530 *
3531 * Helper function to copy AQC PHY get ability data to PHY set configuration
3532 * data structure
3533 */
3534void
3535ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3536 struct ice_aqc_get_phy_caps_data *caps,
3537 struct ice_aqc_set_phy_cfg_data *cfg)
3538{
3539 if (!pi || !caps || !cfg)
3540 return;
3541
3542 memset(cfg, 0, sizeof(*cfg));
3543 cfg->phy_type_low = caps->phy_type_low;
3544 cfg->phy_type_high = caps->phy_type_high;
3545 cfg->caps = caps->caps;
3546 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3547 cfg->eee_cap = caps->eee_cap;
3548 cfg->eeer_value = caps->eeer_value;
3549 cfg->link_fec_opt = caps->link_fec_options;
3550 cfg->module_compliance_enforcement =
3551 caps->module_compliance_enforcement;
3552}
3553
3554/**
3555 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3556 * @pi: port information structure
3557 * @cfg: PHY configuration data to set FEC mode
3558 * @fec: FEC mode to configure
3559 */
3560int
3561ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3562 enum ice_fec_mode fec)
3563{
3564 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3565 struct ice_hw *hw;
3566 int status;
3567
3568 if (!pi || !cfg)
3569 return -EINVAL;
3570
3571 hw = pi->hw;
3572
3573 pcaps = kzalloc(size: sizeof(*pcaps), GFP_KERNEL);
3574 if (!pcaps)
3575 return -ENOMEM;
3576
3577 status = ice_aq_get_phy_caps(pi, qual_mods: false,
3578 report_mode: (ice_fw_supports_report_dflt_cfg(hw) ?
3579 ICE_AQC_REPORT_DFLT_CFG :
3580 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3581 if (status)
3582 goto out;
3583
3584 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3585 cfg->link_fec_opt = pcaps->link_fec_options;
3586
3587 switch (fec) {
3588 case ICE_FEC_BASER:
3589 /* Clear RS bits, and AND BASE-R ability
3590 * bits and OR request bits.
3591 */
3592 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3593 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3594 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3595 ICE_AQC_PHY_FEC_25G_KR_REQ;
3596 break;
3597 case ICE_FEC_RS:
3598 /* Clear BASE-R bits, and AND RS ability
3599 * bits and OR request bits.
3600 */
3601 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3602 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3603 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3604 break;
3605 case ICE_FEC_NONE:
3606 /* Clear all FEC option bits. */
3607 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3608 break;
3609 case ICE_FEC_AUTO:
3610 /* AND auto FEC bit, and all caps bits. */
3611 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3612 cfg->link_fec_opt |= pcaps->link_fec_options;
3613 break;
3614 default:
3615 status = -EINVAL;
3616 break;
3617 }
3618
3619 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3620 !ice_fw_supports_report_dflt_cfg(hw)) {
3621 struct ice_link_default_override_tlv tlv = { 0 };
3622
3623 status = ice_get_link_default_override(ldo: &tlv, pi);
3624 if (status)
3625 goto out;
3626
3627 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3628 (tlv.options & ICE_LINK_OVERRIDE_EN))
3629 cfg->link_fec_opt = tlv.fec_options;
3630 }
3631
3632out:
3633 return status;
3634}
3635
3636/**
3637 * ice_get_link_status - get status of the HW network link
3638 * @pi: port information structure
3639 * @link_up: pointer to bool (true/false = linkup/linkdown)
3640 *
3641 * Variable link_up is true if link is up, false if link is down.
3642 * The variable link_up is invalid if status is non zero. As a
3643 * result of this call, link status reporting becomes enabled
3644 */
3645int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3646{
3647 struct ice_phy_info *phy_info;
3648 int status = 0;
3649
3650 if (!pi || !link_up)
3651 return -EINVAL;
3652
3653 phy_info = &pi->phy;
3654
3655 if (phy_info->get_link_info) {
3656 status = ice_update_link_info(pi);
3657
3658 if (status)
3659 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3660 status);
3661 }
3662
3663 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3664
3665 return status;
3666}
3667
3668/**
3669 * ice_aq_set_link_restart_an
3670 * @pi: pointer to the port information structure
3671 * @ena_link: if true: enable link, if false: disable link
3672 * @cd: pointer to command details structure or NULL
3673 *
3674 * Sets up the link and restarts the Auto-Negotiation over the link.
3675 */
3676int
3677ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3678 struct ice_sq_cd *cd)
3679{
3680 struct ice_aqc_restart_an *cmd;
3681 struct ice_aq_desc desc;
3682
3683 cmd = &desc.params.restart_an;
3684
3685 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_restart_an);
3686
3687 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3688 cmd->lport_num = pi->lport;
3689 if (ena_link)
3690 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3691 else
3692 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3693
3694 return ice_aq_send_cmd(hw: pi->hw, desc: &desc, NULL, buf_size: 0, cd);
3695}
3696
3697/**
3698 * ice_aq_set_event_mask
3699 * @hw: pointer to the HW struct
3700 * @port_num: port number of the physical function
3701 * @mask: event mask to be set
3702 * @cd: pointer to command details structure or NULL
3703 *
3704 * Set event mask (0x0613)
3705 */
3706int
3707ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3708 struct ice_sq_cd *cd)
3709{
3710 struct ice_aqc_set_event_mask *cmd;
3711 struct ice_aq_desc desc;
3712
3713 cmd = &desc.params.set_event_mask;
3714
3715 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_event_mask);
3716
3717 cmd->lport_num = port_num;
3718
3719 cmd->event_mask = cpu_to_le16(mask);
3720 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3721}
3722
3723/**
3724 * ice_aq_set_mac_loopback
3725 * @hw: pointer to the HW struct
3726 * @ena_lpbk: Enable or Disable loopback
3727 * @cd: pointer to command details structure or NULL
3728 *
3729 * Enable/disable loopback on a given port
3730 */
3731int
3732ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3733{
3734 struct ice_aqc_set_mac_lb *cmd;
3735 struct ice_aq_desc desc;
3736
3737 cmd = &desc.params.set_mac_lb;
3738
3739 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_mac_lb);
3740 if (ena_lpbk)
3741 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3742
3743 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3744}
3745
3746/**
3747 * ice_aq_set_port_id_led
3748 * @pi: pointer to the port information
3749 * @is_orig_mode: is this LED set to original mode (by the net-list)
3750 * @cd: pointer to command details structure or NULL
3751 *
3752 * Set LED value for the given port (0x06e9)
3753 */
3754int
3755ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3756 struct ice_sq_cd *cd)
3757{
3758 struct ice_aqc_set_port_id_led *cmd;
3759 struct ice_hw *hw = pi->hw;
3760 struct ice_aq_desc desc;
3761
3762 cmd = &desc.params.set_port_id_led;
3763
3764 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_id_led);
3765
3766 if (is_orig_mode)
3767 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3768 else
3769 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3770
3771 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3772}
3773
3774/**
3775 * ice_aq_get_port_options
3776 * @hw: pointer to the HW struct
3777 * @options: buffer for the resultant port options
3778 * @option_count: input - size of the buffer in port options structures,
3779 * output - number of returned port options
3780 * @lport: logical port to call the command with (optional)
3781 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3782 * when PF owns more than 1 port it must be true
3783 * @active_option_idx: index of active port option in returned buffer
3784 * @active_option_valid: active option in returned buffer is valid
3785 * @pending_option_idx: index of pending port option in returned buffer
3786 * @pending_option_valid: pending option in returned buffer is valid
3787 *
3788 * Calls Get Port Options AQC (0x06ea) and verifies result.
3789 */
3790int
3791ice_aq_get_port_options(struct ice_hw *hw,
3792 struct ice_aqc_get_port_options_elem *options,
3793 u8 *option_count, u8 lport, bool lport_valid,
3794 u8 *active_option_idx, bool *active_option_valid,
3795 u8 *pending_option_idx, bool *pending_option_valid)
3796{
3797 struct ice_aqc_get_port_options *cmd;
3798 struct ice_aq_desc desc;
3799 int status;
3800 u8 i;
3801
3802 /* options buffer shall be able to hold max returned options */
3803 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3804 return -EINVAL;
3805
3806 cmd = &desc.params.get_port_options;
3807 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_port_options);
3808
3809 if (lport_valid)
3810 cmd->lport_num = lport;
3811 cmd->lport_num_valid = lport_valid;
3812
3813 status = ice_aq_send_cmd(hw, desc: &desc, buf: options,
3814 buf_size: *option_count * sizeof(*options), NULL);
3815 if (status)
3816 return status;
3817
3818 /* verify direct FW response & set output parameters */
3819 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3820 cmd->port_options_count);
3821 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3822 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3823 cmd->port_options);
3824 if (*active_option_valid) {
3825 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3826 cmd->port_options);
3827 if (*active_option_idx > (*option_count - 1))
3828 return -EIO;
3829 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3830 *active_option_idx);
3831 }
3832
3833 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3834 cmd->pending_port_option_status);
3835 if (*pending_option_valid) {
3836 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3837 cmd->pending_port_option_status);
3838 if (*pending_option_idx > (*option_count - 1))
3839 return -EIO;
3840 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3841 *pending_option_idx);
3842 }
3843
3844 /* mask output options fields */
3845 for (i = 0; i < *option_count; i++) {
3846 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3847 options[i].pmd);
3848 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3849 options[i].max_lane_speed);
3850 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3851 options[i].pmd, options[i].max_lane_speed);
3852 }
3853
3854 return 0;
3855}
3856
3857/**
3858 * ice_aq_set_port_option
3859 * @hw: pointer to the HW struct
3860 * @lport: logical port to call the command with
3861 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3862 * when PF owns more than 1 port it must be true
3863 * @new_option: new port option to be written
3864 *
3865 * Calls Set Port Options AQC (0x06eb).
3866 */
3867int
3868ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3869 u8 new_option)
3870{
3871 struct ice_aqc_set_port_option *cmd;
3872 struct ice_aq_desc desc;
3873
3874 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3875 return -EINVAL;
3876
3877 cmd = &desc.params.set_port_option;
3878 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_option);
3879
3880 if (lport_valid)
3881 cmd->lport_num = lport;
3882
3883 cmd->lport_num_valid = lport_valid;
3884 cmd->selected_port_option = new_option;
3885
3886 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
3887}
3888
3889/**
3890 * ice_aq_sff_eeprom
3891 * @hw: pointer to the HW struct
3892 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3893 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3894 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3895 * @page: QSFP page
3896 * @set_page: set or ignore the page
3897 * @data: pointer to data buffer to be read/written to the I2C device.
3898 * @length: 1-16 for read, 1 for write.
3899 * @write: 0 read, 1 for write.
3900 * @cd: pointer to command details structure or NULL
3901 *
3902 * Read/Write SFF EEPROM (0x06EE)
3903 */
3904int
3905ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3906 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3907 bool write, struct ice_sq_cd *cd)
3908{
3909 struct ice_aqc_sff_eeprom *cmd;
3910 struct ice_aq_desc desc;
3911 u16 i2c_bus_addr;
3912 int status;
3913
3914 if (!data || (mem_addr & 0xff00))
3915 return -EINVAL;
3916
3917 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_sff_eeprom);
3918 cmd = &desc.params.read_write_sff_param;
3919 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3920 cmd->lport_num = (u8)(lport & 0xff);
3921 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3922 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
3923 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
3924 if (write)
3925 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
3926 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
3927 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3928 cmd->eeprom_page = le16_encode_bits(v: page, ICE_AQC_SFF_EEPROM_PAGE_M);
3929
3930 status = ice_aq_send_cmd(hw, desc: &desc, buf: data, buf_size: length, cd);
3931 return status;
3932}
3933
3934static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3935{
3936 switch (type) {
3937 case ICE_LUT_VSI:
3938 return ICE_LUT_VSI_SIZE;
3939 case ICE_LUT_GLOBAL:
3940 return ICE_LUT_GLOBAL_SIZE;
3941 case ICE_LUT_PF:
3942 return ICE_LUT_PF_SIZE;
3943 }
3944 WARN_ONCE(1, "incorrect type passed");
3945 return ICE_LUT_VSI_SIZE;
3946}
3947
3948static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
3949{
3950 switch (size) {
3951 case ICE_LUT_VSI_SIZE:
3952 return ICE_AQC_LUT_SIZE_SMALL;
3953 case ICE_LUT_GLOBAL_SIZE:
3954 return ICE_AQC_LUT_SIZE_512;
3955 case ICE_LUT_PF_SIZE:
3956 return ICE_AQC_LUT_SIZE_2K;
3957 }
3958 WARN_ONCE(1, "incorrect size passed");
3959 return 0;
3960}
3961
3962/**
3963 * __ice_aq_get_set_rss_lut
3964 * @hw: pointer to the hardware structure
3965 * @params: RSS LUT parameters
3966 * @set: set true to set the table, false to get the table
3967 *
3968 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3969 */
3970static int
3971__ice_aq_get_set_rss_lut(struct ice_hw *hw,
3972 struct ice_aq_get_set_rss_lut_params *params, bool set)
3973{
3974 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
3975 enum ice_lut_type lut_type = params->lut_type;
3976 struct ice_aqc_get_set_rss_lut *desc_params;
3977 enum ice_aqc_lut_flags flags;
3978 enum ice_lut_size lut_size;
3979 struct ice_aq_desc desc;
3980 u8 *lut = params->lut;
3981
3982
3983 if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
3984 return -EINVAL;
3985
3986 lut_size = ice_lut_type_to_size(type: lut_type);
3987 if (lut_size > params->lut_size)
3988 return -EINVAL;
3989 else if (set && lut_size != params->lut_size)
3990 return -EINVAL;
3991
3992 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
3993 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode);
3994 if (set)
3995 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3996
3997 desc_params = &desc.params.get_set_rss_lut;
3998 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3999 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4000
4001 if (lut_type == ICE_LUT_GLOBAL)
4002 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4003 params->global_lut_id);
4004
4005 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(size: lut_size);
4006 desc_params->flags = cpu_to_le16(flags);
4007
4008 return ice_aq_send_cmd(hw, desc: &desc, buf: lut, buf_size: lut_size, NULL);
4009}
4010
4011/**
4012 * ice_aq_get_rss_lut
4013 * @hw: pointer to the hardware structure
4014 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4015 *
4016 * get the RSS lookup table, PF or VSI type
4017 */
4018int
4019ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4020{
4021 return __ice_aq_get_set_rss_lut(hw, params: get_params, set: false);
4022}
4023
4024/**
4025 * ice_aq_set_rss_lut
4026 * @hw: pointer to the hardware structure
4027 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4028 *
4029 * set the RSS lookup table, PF or VSI type
4030 */
4031int
4032ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4033{
4034 return __ice_aq_get_set_rss_lut(hw, params: set_params, set: true);
4035}
4036
4037/**
4038 * __ice_aq_get_set_rss_key
4039 * @hw: pointer to the HW struct
4040 * @vsi_id: VSI FW index
4041 * @key: pointer to key info struct
4042 * @set: set true to set the key, false to get the key
4043 *
4044 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4045 */
4046static int
4047__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4048 struct ice_aqc_get_set_rss_keys *key, bool set)
4049{
4050 struct ice_aqc_get_set_rss_key *desc_params;
4051 u16 key_size = sizeof(*key);
4052 struct ice_aq_desc desc;
4053
4054 if (set) {
4055 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_rss_key);
4056 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4057 } else {
4058 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_rss_key);
4059 }
4060
4061 desc_params = &desc.params.get_set_rss_key;
4062 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4063
4064 return ice_aq_send_cmd(hw, desc: &desc, buf: key, buf_size: key_size, NULL);
4065}
4066
4067/**
4068 * ice_aq_get_rss_key
4069 * @hw: pointer to the HW struct
4070 * @vsi_handle: software VSI handle
4071 * @key: pointer to key info struct
4072 *
4073 * get the RSS key per VSI
4074 */
4075int
4076ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4077 struct ice_aqc_get_set_rss_keys *key)
4078{
4079 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4080 return -EINVAL;
4081
4082 return __ice_aq_get_set_rss_key(hw, vsi_id: ice_get_hw_vsi_num(hw, vsi_handle),
4083 key, set: false);
4084}
4085
4086/**
4087 * ice_aq_set_rss_key
4088 * @hw: pointer to the HW struct
4089 * @vsi_handle: software VSI handle
4090 * @keys: pointer to key info struct
4091 *
4092 * set the RSS key per VSI
4093 */
4094int
4095ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4096 struct ice_aqc_get_set_rss_keys *keys)
4097{
4098 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4099 return -EINVAL;
4100
4101 return __ice_aq_get_set_rss_key(hw, vsi_id: ice_get_hw_vsi_num(hw, vsi_handle),
4102 key: keys, set: true);
4103}
4104
4105/**
4106 * ice_aq_add_lan_txq
4107 * @hw: pointer to the hardware structure
4108 * @num_qgrps: Number of added queue groups
4109 * @qg_list: list of queue groups to be added
4110 * @buf_size: size of buffer for indirect command
4111 * @cd: pointer to command details structure or NULL
4112 *
4113 * Add Tx LAN queue (0x0C30)
4114 *
4115 * NOTE:
4116 * Prior to calling add Tx LAN queue:
4117 * Initialize the following as part of the Tx queue context:
4118 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4119 * Cache profile and Packet shaper profile.
4120 *
4121 * After add Tx LAN queue AQ command is completed:
4122 * Interrupts should be associated with specific queues,
4123 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4124 * flow.
4125 */
4126static int
4127ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4128 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4129 struct ice_sq_cd *cd)
4130{
4131 struct ice_aqc_add_tx_qgrp *list;
4132 struct ice_aqc_add_txqs *cmd;
4133 struct ice_aq_desc desc;
4134 u16 i, sum_size = 0;
4135
4136 cmd = &desc.params.add_txqs;
4137
4138 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_add_txqs);
4139
4140 if (!qg_list)
4141 return -EINVAL;
4142
4143 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4144 return -EINVAL;
4145
4146 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4147 sum_size += struct_size(list, txqs, list->num_txqs);
4148 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4149 list->num_txqs);
4150 }
4151
4152 if (buf_size != sum_size)
4153 return -EINVAL;
4154
4155 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4156
4157 cmd->num_qgrps = num_qgrps;
4158
4159 return ice_aq_send_cmd(hw, desc: &desc, buf: qg_list, buf_size, cd);
4160}
4161
4162/**
4163 * ice_aq_dis_lan_txq
4164 * @hw: pointer to the hardware structure
4165 * @num_qgrps: number of groups in the list
4166 * @qg_list: the list of groups to disable
4167 * @buf_size: the total size of the qg_list buffer in bytes
4168 * @rst_src: if called due to reset, specifies the reset source
4169 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4170 * @cd: pointer to command details structure or NULL
4171 *
4172 * Disable LAN Tx queue (0x0C31)
4173 */
4174static int
4175ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4176 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4177 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4178 struct ice_sq_cd *cd)
4179{
4180 struct ice_aqc_dis_txq_item *item;
4181 struct ice_aqc_dis_txqs *cmd;
4182 struct ice_aq_desc desc;
4183 u16 vmvf_and_timeout;
4184 u16 i, sz = 0;
4185 int status;
4186
4187 cmd = &desc.params.dis_txqs;
4188 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_dis_txqs);
4189
4190 /* qg_list can be NULL only in VM/VF reset flow */
4191 if (!qg_list && !rst_src)
4192 return -EINVAL;
4193
4194 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4195 return -EINVAL;
4196
4197 cmd->num_entries = num_qgrps;
4198
4199 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4200
4201 switch (rst_src) {
4202 case ICE_VM_RESET:
4203 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4204 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4205 break;
4206 case ICE_VF_RESET:
4207 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4208 /* In this case, FW expects vmvf_num to be absolute VF ID */
4209 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4210 ICE_AQC_Q_DIS_VMVF_NUM_M;
4211 break;
4212 case ICE_NO_RESET:
4213 default:
4214 break;
4215 }
4216
4217 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4218
4219 /* flush pipe on time out */
4220 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4221 /* If no queue group info, we are in a reset flow. Issue the AQ */
4222 if (!qg_list)
4223 goto do_aq;
4224
4225 /* set RD bit to indicate that command buffer is provided by the driver
4226 * and it needs to be read by the firmware
4227 */
4228 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4229
4230 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4231 u16 item_size = struct_size(item, q_id, item->num_qs);
4232
4233 /* If the num of queues is even, add 2 bytes of padding */
4234 if ((item->num_qs % 2) == 0)
4235 item_size += 2;
4236
4237 sz += item_size;
4238
4239 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4240 }
4241
4242 if (buf_size != sz)
4243 return -EINVAL;
4244
4245do_aq:
4246 status = ice_aq_send_cmd(hw, desc: &desc, buf: qg_list, buf_size, cd);
4247 if (status) {
4248 if (!qg_list)
4249 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4250 vmvf_num, hw->adminq.sq_last_status);
4251 else
4252 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4253 le16_to_cpu(qg_list[0].q_id[0]),
4254 hw->adminq.sq_last_status);
4255 }
4256 return status;
4257}
4258
4259/**
4260 * ice_aq_cfg_lan_txq
4261 * @hw: pointer to the hardware structure
4262 * @buf: buffer for command
4263 * @buf_size: size of buffer in bytes
4264 * @num_qs: number of queues being configured
4265 * @oldport: origination lport
4266 * @newport: destination lport
4267 * @cd: pointer to command details structure or NULL
4268 *
4269 * Move/Configure LAN Tx queue (0x0C32)
4270 *
4271 * There is a better AQ command to use for moving nodes, so only coding
4272 * this one for configuring the node.
4273 */
4274int
4275ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4276 u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4277 struct ice_sq_cd *cd)
4278{
4279 struct ice_aqc_cfg_txqs *cmd;
4280 struct ice_aq_desc desc;
4281 int status;
4282
4283 cmd = &desc.params.cfg_txqs;
4284 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_cfg_txqs);
4285 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4286
4287 if (!buf)
4288 return -EINVAL;
4289
4290 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4291 cmd->num_qs = num_qs;
4292 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4293 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4294 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4295 cmd->blocked_cgds = 0;
4296
4297 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
4298 if (status)
4299 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4300 hw->adminq.sq_last_status);
4301 return status;
4302}
4303
4304/**
4305 * ice_aq_add_rdma_qsets
4306 * @hw: pointer to the hardware structure
4307 * @num_qset_grps: Number of RDMA Qset groups
4308 * @qset_list: list of Qset groups to be added
4309 * @buf_size: size of buffer for indirect command
4310 * @cd: pointer to command details structure or NULL
4311 *
4312 * Add Tx RDMA Qsets (0x0C33)
4313 */
4314static int
4315ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4316 struct ice_aqc_add_rdma_qset_data *qset_list,
4317 u16 buf_size, struct ice_sq_cd *cd)
4318{
4319 struct ice_aqc_add_rdma_qset_data *list;
4320 struct ice_aqc_add_rdma_qset *cmd;
4321 struct ice_aq_desc desc;
4322 u16 i, sum_size = 0;
4323
4324 cmd = &desc.params.add_rdma_qset;
4325
4326 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_add_rdma_qset);
4327
4328 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4329 return -EINVAL;
4330
4331 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4332 u16 num_qsets = le16_to_cpu(list->num_qsets);
4333
4334 sum_size += struct_size(list, rdma_qsets, num_qsets);
4335 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4336 num_qsets);
4337 }
4338
4339 if (buf_size != sum_size)
4340 return -EINVAL;
4341
4342 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4343
4344 cmd->num_qset_grps = num_qset_grps;
4345
4346 return ice_aq_send_cmd(hw, desc: &desc, buf: qset_list, buf_size, cd);
4347}
4348
4349/* End of FW Admin Queue command wrappers */
4350
4351/**
4352 * ice_pack_ctx_byte - write a byte to a packed context structure
4353 * @src_ctx: unpacked source context structure
4354 * @dest_ctx: packed destination context data
4355 * @ce_info: context element description
4356 */
4357static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4358 const struct ice_ctx_ele *ce_info)
4359{
4360 u8 src_byte, dest_byte, mask;
4361 u8 *from, *dest;
4362 u16 shift_width;
4363
4364 /* copy from the next struct field */
4365 from = src_ctx + ce_info->offset;
4366
4367 /* prepare the bits and mask */
4368 shift_width = ce_info->lsb % 8;
4369 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4370
4371 src_byte = *from;
4372 src_byte <<= shift_width;
4373 src_byte &= mask;
4374
4375 /* get the current bits from the target bit string */
4376 dest = dest_ctx + (ce_info->lsb / 8);
4377
4378 memcpy(&dest_byte, dest, sizeof(dest_byte));
4379
4380 dest_byte &= ~mask; /* get the bits not changing */
4381 dest_byte |= src_byte; /* add in the new bits */
4382
4383 /* put it all back */
4384 memcpy(dest, &dest_byte, sizeof(dest_byte));
4385}
4386
4387/**
4388 * ice_pack_ctx_word - write a word to a packed context structure
4389 * @src_ctx: unpacked source context structure
4390 * @dest_ctx: packed destination context data
4391 * @ce_info: context element description
4392 */
4393static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4394 const struct ice_ctx_ele *ce_info)
4395{
4396 u16 src_word, mask;
4397 __le16 dest_word;
4398 u8 *from, *dest;
4399 u16 shift_width;
4400
4401 /* copy from the next struct field */
4402 from = src_ctx + ce_info->offset;
4403
4404 /* prepare the bits and mask */
4405 shift_width = ce_info->lsb % 8;
4406 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4407
4408 /* don't swizzle the bits until after the mask because the mask bits
4409 * will be in a different bit position on big endian machines
4410 */
4411 src_word = *(u16 *)from;
4412 src_word <<= shift_width;
4413 src_word &= mask;
4414
4415 /* get the current bits from the target bit string */
4416 dest = dest_ctx + (ce_info->lsb / 8);
4417
4418 memcpy(&dest_word, dest, sizeof(dest_word));
4419
4420 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
4421 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
4422
4423 /* put it all back */
4424 memcpy(dest, &dest_word, sizeof(dest_word));
4425}
4426
4427/**
4428 * ice_pack_ctx_dword - write a dword to a packed context structure
4429 * @src_ctx: unpacked source context structure
4430 * @dest_ctx: packed destination context data
4431 * @ce_info: context element description
4432 */
4433static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4434 const struct ice_ctx_ele *ce_info)
4435{
4436 u32 src_dword, mask;
4437 __le32 dest_dword;
4438 u8 *from, *dest;
4439 u16 shift_width;
4440
4441 /* copy from the next struct field */
4442 from = src_ctx + ce_info->offset;
4443
4444 /* prepare the bits and mask */
4445 shift_width = ce_info->lsb % 8;
4446 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4447
4448 /* don't swizzle the bits until after the mask because the mask bits
4449 * will be in a different bit position on big endian machines
4450 */
4451 src_dword = *(u32 *)from;
4452 src_dword <<= shift_width;
4453 src_dword &= mask;
4454
4455 /* get the current bits from the target bit string */
4456 dest = dest_ctx + (ce_info->lsb / 8);
4457
4458 memcpy(&dest_dword, dest, sizeof(dest_dword));
4459
4460 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
4461 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
4462
4463 /* put it all back */
4464 memcpy(dest, &dest_dword, sizeof(dest_dword));
4465}
4466
4467/**
4468 * ice_pack_ctx_qword - write a qword to a packed context structure
4469 * @src_ctx: unpacked source context structure
4470 * @dest_ctx: packed destination context data
4471 * @ce_info: context element description
4472 */
4473static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4474 const struct ice_ctx_ele *ce_info)
4475{
4476 u64 src_qword, mask;
4477 __le64 dest_qword;
4478 u8 *from, *dest;
4479 u16 shift_width;
4480
4481 /* copy from the next struct field */
4482 from = src_ctx + ce_info->offset;
4483
4484 /* prepare the bits and mask */
4485 shift_width = ce_info->lsb % 8;
4486 mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4487
4488 /* don't swizzle the bits until after the mask because the mask bits
4489 * will be in a different bit position on big endian machines
4490 */
4491 src_qword = *(u64 *)from;
4492 src_qword <<= shift_width;
4493 src_qword &= mask;
4494
4495 /* get the current bits from the target bit string */
4496 dest = dest_ctx + (ce_info->lsb / 8);
4497
4498 memcpy(&dest_qword, dest, sizeof(dest_qword));
4499
4500 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
4501 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
4502
4503 /* put it all back */
4504 memcpy(dest, &dest_qword, sizeof(dest_qword));
4505}
4506
4507/**
4508 * ice_set_ctx - set context bits in packed structure
4509 * @hw: pointer to the hardware structure
4510 * @src_ctx: pointer to a generic non-packed context structure
4511 * @dest_ctx: pointer to memory for the packed structure
4512 * @ce_info: List of Rx context elements
4513 */
4514int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4515 const struct ice_ctx_ele *ce_info)
4516{
4517 int f;
4518
4519 for (f = 0; ce_info[f].width; f++) {
4520 /* We have to deal with each element of the FW response
4521 * using the correct size so that we are correct regardless
4522 * of the endianness of the machine.
4523 */
4524 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4525 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4526 f, ce_info[f].width, ce_info[f].size_of);
4527 continue;
4528 }
4529 switch (ce_info[f].size_of) {
4530 case sizeof(u8):
4531 ice_pack_ctx_byte(src_ctx, dest_ctx, ce_info: &ce_info[f]);
4532 break;
4533 case sizeof(u16):
4534 ice_pack_ctx_word(src_ctx, dest_ctx, ce_info: &ce_info[f]);
4535 break;
4536 case sizeof(u32):
4537 ice_pack_ctx_dword(src_ctx, dest_ctx, ce_info: &ce_info[f]);
4538 break;
4539 case sizeof(u64):
4540 ice_pack_ctx_qword(src_ctx, dest_ctx, ce_info: &ce_info[f]);
4541 break;
4542 default:
4543 return -EINVAL;
4544 }
4545 }
4546
4547 return 0;
4548}
4549
4550/**
4551 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4552 * @hw: pointer to the HW struct
4553 * @vsi_handle: software VSI handle
4554 * @tc: TC number
4555 * @q_handle: software queue handle
4556 */
4557struct ice_q_ctx *
4558ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4559{
4560 struct ice_vsi_ctx *vsi;
4561 struct ice_q_ctx *q_ctx;
4562
4563 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4564 if (!vsi)
4565 return NULL;
4566 if (q_handle >= vsi->num_lan_q_entries[tc])
4567 return NULL;
4568 if (!vsi->lan_q_ctx[tc])
4569 return NULL;
4570 q_ctx = vsi->lan_q_ctx[tc];
4571 return &q_ctx[q_handle];
4572}
4573
4574/**
4575 * ice_ena_vsi_txq
4576 * @pi: port information structure
4577 * @vsi_handle: software VSI handle
4578 * @tc: TC number
4579 * @q_handle: software queue handle
4580 * @num_qgrps: Number of added queue groups
4581 * @buf: list of queue groups to be added
4582 * @buf_size: size of buffer for indirect command
4583 * @cd: pointer to command details structure or NULL
4584 *
4585 * This function adds one LAN queue
4586 */
4587int
4588ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4589 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4590 struct ice_sq_cd *cd)
4591{
4592 struct ice_aqc_txsched_elem_data node = { 0 };
4593 struct ice_sched_node *parent;
4594 struct ice_q_ctx *q_ctx;
4595 struct ice_hw *hw;
4596 int status;
4597
4598 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4599 return -EIO;
4600
4601 if (num_qgrps > 1 || buf->num_txqs > 1)
4602 return -ENOSPC;
4603
4604 hw = pi->hw;
4605
4606 if (!ice_is_vsi_valid(hw, vsi_handle))
4607 return -EINVAL;
4608
4609 mutex_lock(&pi->sched_lock);
4610
4611 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4612 if (!q_ctx) {
4613 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4614 q_handle);
4615 status = -EINVAL;
4616 goto ena_txq_exit;
4617 }
4618
4619 /* find a parent node */
4620 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4621 ICE_SCHED_NODE_OWNER_LAN);
4622 if (!parent) {
4623 status = -EINVAL;
4624 goto ena_txq_exit;
4625 }
4626
4627 buf->parent_teid = parent->info.node_teid;
4628 node.parent_teid = parent->info.node_teid;
4629 /* Mark that the values in the "generic" section as valid. The default
4630 * value in the "generic" section is zero. This means that :
4631 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4632 * - 0 priority among siblings, indicated by Bit 1-3.
4633 * - WFQ, indicated by Bit 4.
4634 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4635 * Bit 5-6.
4636 * - Bit 7 is reserved.
4637 * Without setting the generic section as valid in valid_sections, the
4638 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4639 */
4640 buf->txqs[0].info.valid_sections =
4641 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4642 ICE_AQC_ELEM_VALID_EIR;
4643 buf->txqs[0].info.generic = 0;
4644 buf->txqs[0].info.cir_bw.bw_profile_idx =
4645 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4646 buf->txqs[0].info.cir_bw.bw_alloc =
4647 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4648 buf->txqs[0].info.eir_bw.bw_profile_idx =
4649 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4650 buf->txqs[0].info.eir_bw.bw_alloc =
4651 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4652
4653 /* add the LAN queue */
4654 status = ice_aq_add_lan_txq(hw, num_qgrps, qg_list: buf, buf_size, cd);
4655 if (status) {
4656 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4657 le16_to_cpu(buf->txqs[0].txq_id),
4658 hw->adminq.sq_last_status);
4659 goto ena_txq_exit;
4660 }
4661
4662 node.node_teid = buf->txqs[0].q_teid;
4663 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4664 q_ctx->q_handle = q_handle;
4665 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4666
4667 /* add a leaf node into scheduler tree queue layer */
4668 status = ice_sched_add_node(pi, layer: hw->num_tx_sched_layers - 1, info: &node, NULL);
4669 if (!status)
4670 status = ice_sched_replay_q_bw(pi, q_ctx);
4671
4672ena_txq_exit:
4673 mutex_unlock(lock: &pi->sched_lock);
4674 return status;
4675}
4676
4677/**
4678 * ice_dis_vsi_txq
4679 * @pi: port information structure
4680 * @vsi_handle: software VSI handle
4681 * @tc: TC number
4682 * @num_queues: number of queues
4683 * @q_handles: pointer to software queue handle array
4684 * @q_ids: pointer to the q_id array
4685 * @q_teids: pointer to queue node teids
4686 * @rst_src: if called due to reset, specifies the reset source
4687 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4688 * @cd: pointer to command details structure or NULL
4689 *
4690 * This function removes queues and their corresponding nodes in SW DB
4691 */
4692int
4693ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4694 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4695 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4696 struct ice_sq_cd *cd)
4697{
4698 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4699 u16 i, buf_size = __struct_size(qg_list);
4700 struct ice_q_ctx *q_ctx;
4701 int status = -ENOENT;
4702 struct ice_hw *hw;
4703
4704 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4705 return -EIO;
4706
4707 hw = pi->hw;
4708
4709 if (!num_queues) {
4710 /* if queue is disabled already yet the disable queue command
4711 * has to be sent to complete the VF reset, then call
4712 * ice_aq_dis_lan_txq without any queue information
4713 */
4714 if (rst_src)
4715 return ice_aq_dis_lan_txq(hw, num_qgrps: 0, NULL, buf_size: 0, rst_src,
4716 vmvf_num, NULL);
4717 return -EIO;
4718 }
4719
4720 mutex_lock(&pi->sched_lock);
4721
4722 for (i = 0; i < num_queues; i++) {
4723 struct ice_sched_node *node;
4724
4725 node = ice_sched_find_node_by_teid(start_node: pi->root, teid: q_teids[i]);
4726 if (!node)
4727 continue;
4728 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle: q_handles[i]);
4729 if (!q_ctx) {
4730 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4731 q_handles[i]);
4732 continue;
4733 }
4734 if (q_ctx->q_handle != q_handles[i]) {
4735 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4736 q_ctx->q_handle, q_handles[i]);
4737 continue;
4738 }
4739 qg_list->parent_teid = node->info.parent_teid;
4740 qg_list->num_qs = 1;
4741 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4742 status = ice_aq_dis_lan_txq(hw, num_qgrps: 1, qg_list, buf_size, rst_src,
4743 vmvf_num, cd);
4744
4745 if (status)
4746 break;
4747 ice_free_sched_node(pi, node);
4748 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4749 q_ctx->q_teid = ICE_INVAL_TEID;
4750 }
4751 mutex_unlock(lock: &pi->sched_lock);
4752 return status;
4753}
4754
4755/**
4756 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4757 * @pi: port information structure
4758 * @vsi_handle: software VSI handle
4759 * @tc_bitmap: TC bitmap
4760 * @maxqs: max queues array per TC
4761 * @owner: LAN or RDMA
4762 *
4763 * This function adds/updates the VSI queues per TC.
4764 */
4765static int
4766ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4767 u16 *maxqs, u8 owner)
4768{
4769 int status = 0;
4770 u8 i;
4771
4772 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4773 return -EIO;
4774
4775 if (!ice_is_vsi_valid(hw: pi->hw, vsi_handle))
4776 return -EINVAL;
4777
4778 mutex_lock(&pi->sched_lock);
4779
4780 ice_for_each_traffic_class(i) {
4781 /* configuration is possible only if TC node is present */
4782 if (!ice_sched_get_tc_node(pi, tc: i))
4783 continue;
4784
4785 status = ice_sched_cfg_vsi(pi, vsi_handle, tc: i, maxqs: maxqs[i], owner,
4786 enable: ice_is_tc_ena(bitmap: tc_bitmap, tc: i));
4787 if (status)
4788 break;
4789 }
4790
4791 mutex_unlock(lock: &pi->sched_lock);
4792 return status;
4793}
4794
4795/**
4796 * ice_cfg_vsi_lan - configure VSI LAN queues
4797 * @pi: port information structure
4798 * @vsi_handle: software VSI handle
4799 * @tc_bitmap: TC bitmap
4800 * @max_lanqs: max LAN queues array per TC
4801 *
4802 * This function adds/updates the VSI LAN queues per TC.
4803 */
4804int
4805ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4806 u16 *max_lanqs)
4807{
4808 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, maxqs: max_lanqs,
4809 ICE_SCHED_NODE_OWNER_LAN);
4810}
4811
4812/**
4813 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4814 * @pi: port information structure
4815 * @vsi_handle: software VSI handle
4816 * @tc_bitmap: TC bitmap
4817 * @max_rdmaqs: max RDMA queues array per TC
4818 *
4819 * This function adds/updates the VSI RDMA queues per TC.
4820 */
4821int
4822ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4823 u16 *max_rdmaqs)
4824{
4825 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, maxqs: max_rdmaqs,
4826 ICE_SCHED_NODE_OWNER_RDMA);
4827}
4828
4829/**
4830 * ice_ena_vsi_rdma_qset
4831 * @pi: port information structure
4832 * @vsi_handle: software VSI handle
4833 * @tc: TC number
4834 * @rdma_qset: pointer to RDMA Qset
4835 * @num_qsets: number of RDMA Qsets
4836 * @qset_teid: pointer to Qset node TEIDs
4837 *
4838 * This function adds RDMA Qset
4839 */
4840int
4841ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4842 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4843{
4844 struct ice_aqc_txsched_elem_data node = { 0 };
4845 struct ice_aqc_add_rdma_qset_data *buf;
4846 struct ice_sched_node *parent;
4847 struct ice_hw *hw;
4848 u16 i, buf_size;
4849 int ret;
4850
4851 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4852 return -EIO;
4853 hw = pi->hw;
4854
4855 if (!ice_is_vsi_valid(hw, vsi_handle))
4856 return -EINVAL;
4857
4858 buf_size = struct_size(buf, rdma_qsets, num_qsets);
4859 buf = kzalloc(size: buf_size, GFP_KERNEL);
4860 if (!buf)
4861 return -ENOMEM;
4862 mutex_lock(&pi->sched_lock);
4863
4864 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4865 ICE_SCHED_NODE_OWNER_RDMA);
4866 if (!parent) {
4867 ret = -EINVAL;
4868 goto rdma_error_exit;
4869 }
4870 buf->parent_teid = parent->info.node_teid;
4871 node.parent_teid = parent->info.node_teid;
4872
4873 buf->num_qsets = cpu_to_le16(num_qsets);
4874 for (i = 0; i < num_qsets; i++) {
4875 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4876 buf->rdma_qsets[i].info.valid_sections =
4877 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4878 ICE_AQC_ELEM_VALID_EIR;
4879 buf->rdma_qsets[i].info.generic = 0;
4880 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4881 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4882 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4883 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4884 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4885 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4886 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4887 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4888 }
4889 ret = ice_aq_add_rdma_qsets(hw, num_qset_grps: 1, qset_list: buf, buf_size, NULL);
4890 if (ret) {
4891 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4892 goto rdma_error_exit;
4893 }
4894 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4895 for (i = 0; i < num_qsets; i++) {
4896 node.node_teid = buf->rdma_qsets[i].qset_teid;
4897 ret = ice_sched_add_node(pi, layer: hw->num_tx_sched_layers - 1,
4898 info: &node, NULL);
4899 if (ret)
4900 break;
4901 qset_teid[i] = le32_to_cpu(node.node_teid);
4902 }
4903rdma_error_exit:
4904 mutex_unlock(lock: &pi->sched_lock);
4905 kfree(objp: buf);
4906 return ret;
4907}
4908
4909/**
4910 * ice_dis_vsi_rdma_qset - free RDMA resources
4911 * @pi: port_info struct
4912 * @count: number of RDMA Qsets to free
4913 * @qset_teid: TEID of Qset node
4914 * @q_id: list of queue IDs being disabled
4915 */
4916int
4917ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4918 u16 *q_id)
4919{
4920 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4921 u16 qg_size = __struct_size(qg_list);
4922 struct ice_hw *hw;
4923 int status = 0;
4924 int i;
4925
4926 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4927 return -EIO;
4928
4929 hw = pi->hw;
4930
4931 mutex_lock(&pi->sched_lock);
4932
4933 for (i = 0; i < count; i++) {
4934 struct ice_sched_node *node;
4935
4936 node = ice_sched_find_node_by_teid(start_node: pi->root, teid: qset_teid[i]);
4937 if (!node)
4938 continue;
4939
4940 qg_list->parent_teid = node->info.parent_teid;
4941 qg_list->num_qs = 1;
4942 qg_list->q_id[0] =
4943 cpu_to_le16(q_id[i] |
4944 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4945
4946 status = ice_aq_dis_lan_txq(hw, num_qgrps: 1, qg_list, buf_size: qg_size,
4947 rst_src: ICE_NO_RESET, vmvf_num: 0, NULL);
4948 if (status)
4949 break;
4950
4951 ice_free_sched_node(pi, node);
4952 }
4953
4954 mutex_unlock(lock: &pi->sched_lock);
4955 return status;
4956}
4957
4958/**
4959 * ice_aq_get_cgu_abilities - get cgu abilities
4960 * @hw: pointer to the HW struct
4961 * @abilities: CGU abilities
4962 *
4963 * Get CGU abilities (0x0C61)
4964 * Return: 0 on success or negative value on failure.
4965 */
4966int
4967ice_aq_get_cgu_abilities(struct ice_hw *hw,
4968 struct ice_aqc_get_cgu_abilities *abilities)
4969{
4970 struct ice_aq_desc desc;
4971
4972 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_abilities);
4973 return ice_aq_send_cmd(hw, desc: &desc, buf: abilities, buf_size: sizeof(*abilities), NULL);
4974}
4975
4976/**
4977 * ice_aq_set_input_pin_cfg - set input pin config
4978 * @hw: pointer to the HW struct
4979 * @input_idx: Input index
4980 * @flags1: Input flags
4981 * @flags2: Input flags
4982 * @freq: Frequency in Hz
4983 * @phase_delay: Delay in ps
4984 *
4985 * Set CGU input config (0x0C62)
4986 * Return: 0 on success or negative value on failure.
4987 */
4988int
4989ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
4990 u32 freq, s32 phase_delay)
4991{
4992 struct ice_aqc_set_cgu_input_config *cmd;
4993 struct ice_aq_desc desc;
4994
4995 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_input_config);
4996 cmd = &desc.params.set_cgu_input_config;
4997 cmd->input_idx = input_idx;
4998 cmd->flags1 = flags1;
4999 cmd->flags2 = flags2;
5000 cmd->freq = cpu_to_le32(freq);
5001 cmd->phase_delay = cpu_to_le32(phase_delay);
5002
5003 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5004}
5005
5006/**
5007 * ice_aq_get_input_pin_cfg - get input pin config
5008 * @hw: pointer to the HW struct
5009 * @input_idx: Input index
5010 * @status: Pin status
5011 * @type: Pin type
5012 * @flags1: Input flags
5013 * @flags2: Input flags
5014 * @freq: Frequency in Hz
5015 * @phase_delay: Delay in ps
5016 *
5017 * Get CGU input config (0x0C63)
5018 * Return: 0 on success or negative value on failure.
5019 */
5020int
5021ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5022 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5023{
5024 struct ice_aqc_get_cgu_input_config *cmd;
5025 struct ice_aq_desc desc;
5026 int ret;
5027
5028 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_input_config);
5029 cmd = &desc.params.get_cgu_input_config;
5030 cmd->input_idx = input_idx;
5031
5032 ret = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5033 if (!ret) {
5034 if (status)
5035 *status = cmd->status;
5036 if (type)
5037 *type = cmd->type;
5038 if (flags1)
5039 *flags1 = cmd->flags1;
5040 if (flags2)
5041 *flags2 = cmd->flags2;
5042 if (freq)
5043 *freq = le32_to_cpu(cmd->freq);
5044 if (phase_delay)
5045 *phase_delay = le32_to_cpu(cmd->phase_delay);
5046 }
5047
5048 return ret;
5049}
5050
5051/**
5052 * ice_aq_set_output_pin_cfg - set output pin config
5053 * @hw: pointer to the HW struct
5054 * @output_idx: Output index
5055 * @flags: Output flags
5056 * @src_sel: Index of DPLL block
5057 * @freq: Output frequency
5058 * @phase_delay: Output phase compensation
5059 *
5060 * Set CGU output config (0x0C64)
5061 * Return: 0 on success or negative value on failure.
5062 */
5063int
5064ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5065 u8 src_sel, u32 freq, s32 phase_delay)
5066{
5067 struct ice_aqc_set_cgu_output_config *cmd;
5068 struct ice_aq_desc desc;
5069
5070 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_output_config);
5071 cmd = &desc.params.set_cgu_output_config;
5072 cmd->output_idx = output_idx;
5073 cmd->flags = flags;
5074 cmd->src_sel = src_sel;
5075 cmd->freq = cpu_to_le32(freq);
5076 cmd->phase_delay = cpu_to_le32(phase_delay);
5077
5078 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5079}
5080
5081/**
5082 * ice_aq_get_output_pin_cfg - get output pin config
5083 * @hw: pointer to the HW struct
5084 * @output_idx: Output index
5085 * @flags: Output flags
5086 * @src_sel: Internal DPLL source
5087 * @freq: Output frequency
5088 * @src_freq: Source frequency
5089 *
5090 * Get CGU output config (0x0C65)
5091 * Return: 0 on success or negative value on failure.
5092 */
5093int
5094ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5095 u8 *src_sel, u32 *freq, u32 *src_freq)
5096{
5097 struct ice_aqc_get_cgu_output_config *cmd;
5098 struct ice_aq_desc desc;
5099 int ret;
5100
5101 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_output_config);
5102 cmd = &desc.params.get_cgu_output_config;
5103 cmd->output_idx = output_idx;
5104
5105 ret = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5106 if (!ret) {
5107 if (flags)
5108 *flags = cmd->flags;
5109 if (src_sel)
5110 *src_sel = cmd->src_sel;
5111 if (freq)
5112 *freq = le32_to_cpu(cmd->freq);
5113 if (src_freq)
5114 *src_freq = le32_to_cpu(cmd->src_freq);
5115 }
5116
5117 return ret;
5118}
5119
5120/**
5121 * ice_aq_get_cgu_dpll_status - get dpll status
5122 * @hw: pointer to the HW struct
5123 * @dpll_num: DPLL index
5124 * @ref_state: Reference clock state
5125 * @config: current DPLL config
5126 * @dpll_state: current DPLL state
5127 * @phase_offset: Phase offset in ns
5128 * @eec_mode: EEC_mode
5129 *
5130 * Get CGU DPLL status (0x0C66)
5131 * Return: 0 on success or negative value on failure.
5132 */
5133int
5134ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5135 u8 *dpll_state, u8 *config, s64 *phase_offset,
5136 u8 *eec_mode)
5137{
5138 struct ice_aqc_get_cgu_dpll_status *cmd;
5139 struct ice_aq_desc desc;
5140 int status;
5141
5142 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_dpll_status);
5143 cmd = &desc.params.get_cgu_dpll_status;
5144 cmd->dpll_num = dpll_num;
5145
5146 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5147 if (!status) {
5148 *ref_state = cmd->ref_state;
5149 *dpll_state = cmd->dpll_state;
5150 *config = cmd->config;
5151 *phase_offset = le32_to_cpu(cmd->phase_offset_h);
5152 *phase_offset <<= 32;
5153 *phase_offset += le32_to_cpu(cmd->phase_offset_l);
5154 *phase_offset = sign_extend64(value: *phase_offset, index: 47);
5155 *eec_mode = cmd->eec_mode;
5156 }
5157
5158 return status;
5159}
5160
5161/**
5162 * ice_aq_set_cgu_dpll_config - set dpll config
5163 * @hw: pointer to the HW struct
5164 * @dpll_num: DPLL index
5165 * @ref_state: Reference clock state
5166 * @config: DPLL config
5167 * @eec_mode: EEC mode
5168 *
5169 * Set CGU DPLL config (0x0C67)
5170 * Return: 0 on success or negative value on failure.
5171 */
5172int
5173ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5174 u8 config, u8 eec_mode)
5175{
5176 struct ice_aqc_set_cgu_dpll_config *cmd;
5177 struct ice_aq_desc desc;
5178
5179 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_dpll_config);
5180 cmd = &desc.params.set_cgu_dpll_config;
5181 cmd->dpll_num = dpll_num;
5182 cmd->ref_state = ref_state;
5183 cmd->config = config;
5184 cmd->eec_mode = eec_mode;
5185
5186 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5187}
5188
5189/**
5190 * ice_aq_set_cgu_ref_prio - set input reference priority
5191 * @hw: pointer to the HW struct
5192 * @dpll_num: DPLL index
5193 * @ref_idx: Reference pin index
5194 * @ref_priority: Reference input priority
5195 *
5196 * Set CGU reference priority (0x0C68)
5197 * Return: 0 on success or negative value on failure.
5198 */
5199int
5200ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5201 u8 ref_priority)
5202{
5203 struct ice_aqc_set_cgu_ref_prio *cmd;
5204 struct ice_aq_desc desc;
5205
5206 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_ref_prio);
5207 cmd = &desc.params.set_cgu_ref_prio;
5208 cmd->dpll_num = dpll_num;
5209 cmd->ref_idx = ref_idx;
5210 cmd->ref_priority = ref_priority;
5211
5212 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5213}
5214
5215/**
5216 * ice_aq_get_cgu_ref_prio - get input reference priority
5217 * @hw: pointer to the HW struct
5218 * @dpll_num: DPLL index
5219 * @ref_idx: Reference pin index
5220 * @ref_prio: Reference input priority
5221 *
5222 * Get CGU reference priority (0x0C69)
5223 * Return: 0 on success or negative value on failure.
5224 */
5225int
5226ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5227 u8 *ref_prio)
5228{
5229 struct ice_aqc_get_cgu_ref_prio *cmd;
5230 struct ice_aq_desc desc;
5231 int status;
5232
5233 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_ref_prio);
5234 cmd = &desc.params.get_cgu_ref_prio;
5235 cmd->dpll_num = dpll_num;
5236 cmd->ref_idx = ref_idx;
5237
5238 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5239 if (!status)
5240 *ref_prio = cmd->ref_priority;
5241
5242 return status;
5243}
5244
5245/**
5246 * ice_aq_get_cgu_info - get cgu info
5247 * @hw: pointer to the HW struct
5248 * @cgu_id: CGU ID
5249 * @cgu_cfg_ver: CGU config version
5250 * @cgu_fw_ver: CGU firmware version
5251 *
5252 * Get CGU info (0x0C6A)
5253 * Return: 0 on success or negative value on failure.
5254 */
5255int
5256ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5257 u32 *cgu_fw_ver)
5258{
5259 struct ice_aqc_get_cgu_info *cmd;
5260 struct ice_aq_desc desc;
5261 int status;
5262
5263 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_info);
5264 cmd = &desc.params.get_cgu_info;
5265
5266 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5267 if (!status) {
5268 *cgu_id = le32_to_cpu(cmd->cgu_id);
5269 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5270 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5271 }
5272
5273 return status;
5274}
5275
5276/**
5277 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5278 * @hw: pointer to the HW struct
5279 * @phy_output: PHY reference clock output pin
5280 * @enable: GPIO state to be applied
5281 * @freq: PHY output frequency
5282 *
5283 * Set phy recovered clock as reference (0x0630)
5284 * Return: 0 on success or negative value on failure.
5285 */
5286int
5287ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5288 u32 *freq)
5289{
5290 struct ice_aqc_set_phy_rec_clk_out *cmd;
5291 struct ice_aq_desc desc;
5292 int status;
5293
5294 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_phy_rec_clk_out);
5295 cmd = &desc.params.set_phy_rec_clk_out;
5296 cmd->phy_output = phy_output;
5297 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5298 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5299 cmd->freq = cpu_to_le32(*freq);
5300
5301 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5302 if (!status)
5303 *freq = le32_to_cpu(cmd->freq);
5304
5305 return status;
5306}
5307
5308/**
5309 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5310 * @hw: pointer to the HW struct
5311 * @phy_output: PHY reference clock output pin
5312 * @port_num: Port number
5313 * @flags: PHY flags
5314 * @node_handle: PHY output frequency
5315 *
5316 * Get PHY recovered clock output info (0x0631)
5317 * Return: 0 on success or negative value on failure.
5318 */
5319int
5320ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5321 u8 *flags, u16 *node_handle)
5322{
5323 struct ice_aqc_get_phy_rec_clk_out *cmd;
5324 struct ice_aq_desc desc;
5325 int status;
5326
5327 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_phy_rec_clk_out);
5328 cmd = &desc.params.get_phy_rec_clk_out;
5329 cmd->phy_output = *phy_output;
5330
5331 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5332 if (!status) {
5333 *phy_output = cmd->phy_output;
5334 if (port_num)
5335 *port_num = cmd->port_num;
5336 if (flags)
5337 *flags = cmd->flags;
5338 if (node_handle)
5339 *node_handle = le16_to_cpu(cmd->node_handle);
5340 }
5341
5342 return status;
5343}
5344
5345/**
5346 * ice_aq_get_sensor_reading
5347 * @hw: pointer to the HW struct
5348 * @data: pointer to data to be read from the sensor
5349 *
5350 * Get sensor reading (0x0632)
5351 */
5352int ice_aq_get_sensor_reading(struct ice_hw *hw,
5353 struct ice_aqc_get_sensor_reading_resp *data)
5354{
5355 struct ice_aqc_get_sensor_reading *cmd;
5356 struct ice_aq_desc desc;
5357 int status;
5358
5359 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_sensor_reading);
5360 cmd = &desc.params.get_sensor_reading;
5361#define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0
5362#define ICE_INTERNAL_TEMP_SENSOR 0
5363 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5364 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5365
5366 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5367 if (!status)
5368 memcpy(data, &desc.params.get_sensor_reading_resp,
5369 sizeof(*data));
5370
5371 return status;
5372}
5373
5374/**
5375 * ice_replay_pre_init - replay pre initialization
5376 * @hw: pointer to the HW struct
5377 *
5378 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5379 */
5380static int ice_replay_pre_init(struct ice_hw *hw)
5381{
5382 struct ice_switch_info *sw = hw->switch_info;
5383 u8 i;
5384
5385 /* Delete old entries from replay filter list head if there is any */
5386 ice_rm_all_sw_replay_rule_info(hw);
5387 /* In start of replay, move entries into replay_rules list, it
5388 * will allow adding rules entries back to filt_rules list,
5389 * which is operational list.
5390 */
5391 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5392 list_replace_init(old: &sw->recp_list[i].filt_rules,
5393 new: &sw->recp_list[i].filt_replay_rules);
5394 ice_sched_replay_agg_vsi_preinit(hw);
5395
5396 return 0;
5397}
5398
5399/**
5400 * ice_replay_vsi - replay VSI configuration
5401 * @hw: pointer to the HW struct
5402 * @vsi_handle: driver VSI handle
5403 *
5404 * Restore all VSI configuration after reset. It is required to call this
5405 * function with main VSI first.
5406 */
5407int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5408{
5409 int status;
5410
5411 if (!ice_is_vsi_valid(hw, vsi_handle))
5412 return -EINVAL;
5413
5414 /* Replay pre-initialization if there is any */
5415 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5416 status = ice_replay_pre_init(hw);
5417 if (status)
5418 return status;
5419 }
5420 /* Replay per VSI all RSS configurations */
5421 status = ice_replay_rss_cfg(hw, vsi_handle);
5422 if (status)
5423 return status;
5424 /* Replay per VSI all filters */
5425 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5426 if (!status)
5427 status = ice_replay_vsi_agg(hw, vsi_handle);
5428 return status;
5429}
5430
5431/**
5432 * ice_replay_post - post replay configuration cleanup
5433 * @hw: pointer to the HW struct
5434 *
5435 * Post replay cleanup.
5436 */
5437void ice_replay_post(struct ice_hw *hw)
5438{
5439 /* Delete old entries from replay filter list head */
5440 ice_rm_all_sw_replay_rule_info(hw);
5441 ice_sched_replay_agg(hw);
5442}
5443
5444/**
5445 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5446 * @hw: ptr to the hardware info
5447 * @reg: offset of 64 bit HW register to read from
5448 * @prev_stat_loaded: bool to specify if previous stats are loaded
5449 * @prev_stat: ptr to previous loaded stat value
5450 * @cur_stat: ptr to current stat value
5451 */
5452void
5453ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5454 u64 *prev_stat, u64 *cur_stat)
5455{
5456 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5457
5458 /* device stats are not reset at PFR, they likely will not be zeroed
5459 * when the driver starts. Thus, save the value from the first read
5460 * without adding to the statistic value so that we report stats which
5461 * count up from zero.
5462 */
5463 if (!prev_stat_loaded) {
5464 *prev_stat = new_data;
5465 return;
5466 }
5467
5468 /* Calculate the difference between the new and old values, and then
5469 * add it to the software stat value.
5470 */
5471 if (new_data >= *prev_stat)
5472 *cur_stat += new_data - *prev_stat;
5473 else
5474 /* to manage the potential roll-over */
5475 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5476
5477 /* Update the previously stored value to prepare for next read */
5478 *prev_stat = new_data;
5479}
5480
5481/**
5482 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5483 * @hw: ptr to the hardware info
5484 * @reg: offset of HW register to read from
5485 * @prev_stat_loaded: bool to specify if previous stats are loaded
5486 * @prev_stat: ptr to previous loaded stat value
5487 * @cur_stat: ptr to current stat value
5488 */
5489void
5490ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5491 u64 *prev_stat, u64 *cur_stat)
5492{
5493 u32 new_data;
5494
5495 new_data = rd32(hw, reg);
5496
5497 /* device stats are not reset at PFR, they likely will not be zeroed
5498 * when the driver starts. Thus, save the value from the first read
5499 * without adding to the statistic value so that we report stats which
5500 * count up from zero.
5501 */
5502 if (!prev_stat_loaded) {
5503 *prev_stat = new_data;
5504 return;
5505 }
5506
5507 /* Calculate the difference between the new and old values, and then
5508 * add it to the software stat value.
5509 */
5510 if (new_data >= *prev_stat)
5511 *cur_stat += new_data - *prev_stat;
5512 else
5513 /* to manage the potential roll-over */
5514 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5515
5516 /* Update the previously stored value to prepare for next read */
5517 *prev_stat = new_data;
5518}
5519
5520/**
5521 * ice_sched_query_elem - query element information from HW
5522 * @hw: pointer to the HW struct
5523 * @node_teid: node TEID to be queried
5524 * @buf: buffer to element information
5525 *
5526 * This function queries HW element information
5527 */
5528int
5529ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5530 struct ice_aqc_txsched_elem_data *buf)
5531{
5532 u16 buf_size, num_elem_ret = 0;
5533 int status;
5534
5535 buf_size = sizeof(*buf);
5536 memset(buf, 0, buf_size);
5537 buf->node_teid = cpu_to_le32(node_teid);
5538 status = ice_aq_query_sched_elems(hw, elems_req: 1, buf, buf_size, elems_ret: &num_elem_ret,
5539 NULL);
5540 if (status || num_elem_ret != 1)
5541 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5542 return status;
5543}
5544
5545/**
5546 * ice_aq_read_i2c
5547 * @hw: pointer to the hw struct
5548 * @topo_addr: topology address for a device to communicate with
5549 * @bus_addr: 7-bit I2C bus address
5550 * @addr: I2C memory address (I2C offset) with up to 16 bits
5551 * @params: I2C parameters: bit [7] - Repeated start,
5552 * bits [6:5] data offset size,
5553 * bit [4] - I2C address type,
5554 * bits [3:0] - data size to read (0-16 bytes)
5555 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5556 * @cd: pointer to command details structure or NULL
5557 *
5558 * Read I2C (0x06E2)
5559 */
5560int
5561ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5562 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5563 struct ice_sq_cd *cd)
5564{
5565 struct ice_aq_desc desc = { 0 };
5566 struct ice_aqc_i2c *cmd;
5567 u8 data_size;
5568 int status;
5569
5570 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_read_i2c);
5571 cmd = &desc.params.read_write_i2c;
5572
5573 if (!data)
5574 return -EINVAL;
5575
5576 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5577
5578 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5579 cmd->topo_addr = topo_addr;
5580 cmd->i2c_params = params;
5581 cmd->i2c_addr = addr;
5582
5583 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5584 if (!status) {
5585 struct ice_aqc_read_i2c_resp *resp;
5586 u8 i;
5587
5588 resp = &desc.params.read_i2c_resp;
5589 for (i = 0; i < data_size; i++) {
5590 *data = resp->i2c_data[i];
5591 data++;
5592 }
5593 }
5594
5595 return status;
5596}
5597
5598/**
5599 * ice_aq_write_i2c
5600 * @hw: pointer to the hw struct
5601 * @topo_addr: topology address for a device to communicate with
5602 * @bus_addr: 7-bit I2C bus address
5603 * @addr: I2C memory address (I2C offset) with up to 16 bits
5604 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5605 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5606 * @cd: pointer to command details structure or NULL
5607 *
5608 * Write I2C (0x06E3)
5609 *
5610 * * Return:
5611 * * 0 - Successful write to the i2c device
5612 * * -EINVAL - Data size greater than 4 bytes
5613 * * -EIO - FW error
5614 */
5615int
5616ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5617 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5618 struct ice_sq_cd *cd)
5619{
5620 struct ice_aq_desc desc = { 0 };
5621 struct ice_aqc_i2c *cmd;
5622 u8 data_size;
5623
5624 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_write_i2c);
5625 cmd = &desc.params.read_write_i2c;
5626
5627 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5628
5629 /* data_size limited to 4 */
5630 if (data_size > 4)
5631 return -EINVAL;
5632
5633 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5634 cmd->topo_addr = topo_addr;
5635 cmd->i2c_params = params;
5636 cmd->i2c_addr = addr;
5637
5638 memcpy(cmd->i2c_data, data, data_size);
5639
5640 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5641}
5642
5643/**
5644 * ice_aq_set_gpio
5645 * @hw: pointer to the hw struct
5646 * @gpio_ctrl_handle: GPIO controller node handle
5647 * @pin_idx: IO Number of the GPIO that needs to be set
5648 * @value: SW provide IO value to set in the LSB
5649 * @cd: pointer to command details structure or NULL
5650 *
5651 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5652 */
5653int
5654ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5655 struct ice_sq_cd *cd)
5656{
5657 struct ice_aqc_gpio *cmd;
5658 struct ice_aq_desc desc;
5659
5660 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_gpio);
5661 cmd = &desc.params.read_write_gpio;
5662 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5663 cmd->gpio_num = pin_idx;
5664 cmd->gpio_val = value ? 1 : 0;
5665
5666 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5667}
5668
5669/**
5670 * ice_aq_get_gpio
5671 * @hw: pointer to the hw struct
5672 * @gpio_ctrl_handle: GPIO controller node handle
5673 * @pin_idx: IO Number of the GPIO that needs to be set
5674 * @value: IO value read
5675 * @cd: pointer to command details structure or NULL
5676 *
5677 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5678 * the topology
5679 */
5680int
5681ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5682 bool *value, struct ice_sq_cd *cd)
5683{
5684 struct ice_aqc_gpio *cmd;
5685 struct ice_aq_desc desc;
5686 int status;
5687
5688 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_gpio);
5689 cmd = &desc.params.read_write_gpio;
5690 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5691 cmd->gpio_num = pin_idx;
5692
5693 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5694 if (status)
5695 return status;
5696
5697 *value = !!cmd->gpio_val;
5698 return 0;
5699}
5700
5701/**
5702 * ice_is_fw_api_min_ver
5703 * @hw: pointer to the hardware structure
5704 * @maj: major version
5705 * @min: minor version
5706 * @patch: patch version
5707 *
5708 * Checks if the firmware API is minimum version
5709 */
5710static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5711{
5712 if (hw->api_maj_ver == maj) {
5713 if (hw->api_min_ver > min)
5714 return true;
5715 if (hw->api_min_ver == min && hw->api_patch >= patch)
5716 return true;
5717 } else if (hw->api_maj_ver > maj) {
5718 return true;
5719 }
5720
5721 return false;
5722}
5723
5724/**
5725 * ice_fw_supports_link_override
5726 * @hw: pointer to the hardware structure
5727 *
5728 * Checks if the firmware supports link override
5729 */
5730bool ice_fw_supports_link_override(struct ice_hw *hw)
5731{
5732 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5733 ICE_FW_API_LINK_OVERRIDE_MIN,
5734 ICE_FW_API_LINK_OVERRIDE_PATCH);
5735}
5736
5737/**
5738 * ice_get_link_default_override
5739 * @ldo: pointer to the link default override struct
5740 * @pi: pointer to the port info struct
5741 *
5742 * Gets the link default override for a port
5743 */
5744int
5745ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5746 struct ice_port_info *pi)
5747{
5748 u16 i, tlv, tlv_len, tlv_start, buf, offset;
5749 struct ice_hw *hw = pi->hw;
5750 int status;
5751
5752 status = ice_get_pfa_module_tlv(hw, module_tlv: &tlv, module_tlv_len: &tlv_len,
5753 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5754 if (status) {
5755 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5756 return status;
5757 }
5758
5759 /* Each port has its own config; calculate for our port */
5760 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5761 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5762
5763 /* link options first */
5764 status = ice_read_sr_word(hw, offset: tlv_start, data: &buf);
5765 if (status) {
5766 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5767 return status;
5768 }
5769 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5770 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5771 ICE_LINK_OVERRIDE_PHY_CFG_S;
5772
5773 /* link PHY config */
5774 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5775 status = ice_read_sr_word(hw, offset, data: &buf);
5776 if (status) {
5777 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5778 return status;
5779 }
5780 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5781
5782 /* PHY types low */
5783 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5784 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5785 status = ice_read_sr_word(hw, offset: (offset + i), data: &buf);
5786 if (status) {
5787 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5788 return status;
5789 }
5790 /* shift 16 bits at a time to fill 64 bits */
5791 ldo->phy_type_low |= ((u64)buf << (i * 16));
5792 }
5793
5794 /* PHY types high */
5795 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5796 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5797 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5798 status = ice_read_sr_word(hw, offset: (offset + i), data: &buf);
5799 if (status) {
5800 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5801 return status;
5802 }
5803 /* shift 16 bits at a time to fill 64 bits */
5804 ldo->phy_type_high |= ((u64)buf << (i * 16));
5805 }
5806
5807 return status;
5808}
5809
5810/**
5811 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5812 * @caps: get PHY capability data
5813 */
5814bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5815{
5816 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5817 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5818 ICE_AQC_PHY_AN_EN_CLAUSE73 |
5819 ICE_AQC_PHY_AN_EN_CLAUSE37))
5820 return true;
5821
5822 return false;
5823}
5824
5825/**
5826 * ice_aq_set_lldp_mib - Set the LLDP MIB
5827 * @hw: pointer to the HW struct
5828 * @mib_type: Local, Remote or both Local and Remote MIBs
5829 * @buf: pointer to the caller-supplied buffer to store the MIB block
5830 * @buf_size: size of the buffer (in bytes)
5831 * @cd: pointer to command details structure or NULL
5832 *
5833 * Set the LLDP MIB. (0x0A08)
5834 */
5835int
5836ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5837 struct ice_sq_cd *cd)
5838{
5839 struct ice_aqc_lldp_set_local_mib *cmd;
5840 struct ice_aq_desc desc;
5841
5842 cmd = &desc.params.lldp_set_mib;
5843
5844 if (buf_size == 0 || !buf)
5845 return -EINVAL;
5846
5847 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_set_local_mib);
5848
5849 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5850 desc.datalen = cpu_to_le16(buf_size);
5851
5852 cmd->type = mib_type;
5853 cmd->length = cpu_to_le16(buf_size);
5854
5855 return ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
5856}
5857
5858/**
5859 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5860 * @hw: pointer to HW struct
5861 */
5862bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5863{
5864 if (hw->mac_type != ICE_MAC_E810)
5865 return false;
5866
5867 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5868 ICE_FW_API_LLDP_FLTR_MIN,
5869 ICE_FW_API_LLDP_FLTR_PATCH);
5870}
5871
5872/**
5873 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5874 * @hw: pointer to HW struct
5875 * @vsi_num: absolute HW index for VSI
5876 * @add: boolean for if adding or removing a filter
5877 */
5878int
5879ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5880{
5881 struct ice_aqc_lldp_filter_ctrl *cmd;
5882 struct ice_aq_desc desc;
5883
5884 cmd = &desc.params.lldp_filter_ctrl;
5885
5886 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_filter_ctrl);
5887
5888 if (add)
5889 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5890 else
5891 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5892
5893 cmd->vsi_num = cpu_to_le16(vsi_num);
5894
5895 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5896}
5897
5898/**
5899 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5900 * @hw: pointer to HW struct
5901 */
5902int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5903{
5904 struct ice_aq_desc desc;
5905
5906 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_execute_pending_mib);
5907
5908 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5909}
5910
5911/**
5912 * ice_fw_supports_report_dflt_cfg
5913 * @hw: pointer to the hardware structure
5914 *
5915 * Checks if the firmware supports report default configuration
5916 */
5917bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5918{
5919 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5920 ICE_FW_API_REPORT_DFLT_CFG_MIN,
5921 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5922}
5923
5924/* each of the indexes into the following array match the speed of a return
5925 * value from the list of AQ returned speeds like the range:
5926 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5927 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5928 * array. The array is defined as 15 elements long because the link_speed
5929 * returned by the firmware is a 16 bit * value, but is indexed
5930 * by [fls(speed) - 1]
5931 */
5932static const u32 ice_aq_to_link_speed[] = {
5933 SPEED_10, /* BIT(0) */
5934 SPEED_100,
5935 SPEED_1000,
5936 SPEED_2500,
5937 SPEED_5000,
5938 SPEED_10000,
5939 SPEED_20000,
5940 SPEED_25000,
5941 SPEED_40000,
5942 SPEED_50000,
5943 SPEED_100000, /* BIT(10) */
5944 SPEED_200000,
5945};
5946
5947/**
5948 * ice_get_link_speed - get integer speed from table
5949 * @index: array index from fls(aq speed) - 1
5950 *
5951 * Returns: u32 value containing integer speed
5952 */
5953u32 ice_get_link_speed(u16 index)
5954{
5955 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5956 return 0;
5957
5958 return ice_aq_to_link_speed[index];
5959}
5960

source code of linux/drivers/net/ethernet/intel/ice/ice_common.c